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Chapter 1 

Introduetion 

1.1. Motivation and objective 

In many practical situations, one may have to wait some time before a service request can be 
fulfilled. This happens for example, when buying bread at a bakery, when passing a traffic 
crossing point (possibly with traffic lights) or when visiting a dentist. Similarly, produels in a 
factory may have to wait before being processed on machines and computing jobs may have 
to wait before being handled by the central computer. All these situations have in common 
that they can be modeled as queueing systems. 

Having to wait is bad in the first place, but it is even worse if one catches unexpected 
waiting times, due to a bad planning, for example. When having an appointment somewhere, 
it is desirabie to have some information on the total driving time, including the time spent to 
waiting, to know what time one should leave home. And, when selling a product to order, 
one needs information on the production time, including delays caused by machines which 
are not available at the time they are needed, to know what due date can be promised. There­
fore, it is necessary to have methods for obtaining information on waiting times, and other 
quantities, in queueing systerns. 

An important class of queueing systems is formed by those systems, for which the 
behavior can be described by Markov processes. For such systems, the information on the 
relevant performance measures may be obtained from the equilibrium distribution of the 
underlying Markov process. Therefore, much effort has been put in developing techniques 
for the determination of such equilibrium distributions. In this monograph, we shall focus on 
techniques for multi-dimensional Markov processes on integer grids and with some homo­
geneity in the transition probabilities/rates~ Here, one should think of multi-dimensional state 
spaces, which are discrete and infinite in each component. Markov processes of this type are 
also called multi-dimensional random walks. They may be useful for modeling queueing sys­
tems consisting of two or more servers which all have their own queue, for example. 

If the equilibrium distribution of a Markovian queueing system can be determined expli­
citly by some analytica/ method, then, usually, one also obtains explicit formulae for the 
relevant performance measures such as the mean waiting time. If the equilibrium distri bution 
cannot be determined explicitly, then numerical methods may provide a way to obtain the dis­
tribution and the performance measures of interest, and the performance of the queueing sys­
tem under consideration may be analyzed by means of a numerical study. 

Contrary to the case where one has a Markov process or random walk with a state space 
which is essentially one-dimensional, i.e. which is infinite in at most one direction, for the 
equilibrium distribution of multi-dimensional random walks only a few analytica[ results and 
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techniques are available. For so-called product-fonn networks (see Baskett et al. [15]), it has 
been proved that the equilibrium distribution can be written as a product of powers of fixed 
factors. These factors may be obtained by substituting a product-form solution in the equili­
brium equations and solving the rema.ining system of non-linear equations. Further two 
methods based on generating function analysis are ava.ilable for a class of two-dimensional 
random walks. They are called the unifonnization technique (see e.g. Kingman [49] and 
Aano and McKean [33]) and the boundiJry value methad (see e.g. Cohen and Boxrna [23]). 
The results obta.ined by these methods are discussed in the next chapter. Here, it suffices to 
state that, unfortunately, both methods seem not to be extensible to random walks with 
dimension three and higher. Finally, there is the compensation approach, which bas been 
developed for a class of two-dimensional, homogeneaus random walks on the integer grid in 
the positive quadrant of the plane (see Adan [3] and the papers [5, 8, 12, 19]). Apart from the 
obvious ergodicity requirements, one has to require that no transitions can be made from 
points in the interlor to the North, North-East and East, in order to obta.in explicit expressions 
in the form of infinite series of products of powers of fixed factors. Contrary to the uniformi­
zation technique and the boundary value method, the compensation approach is a direct 
metbod for solving the equilibrium equations. The compensation approach seems to be the 
most prornising metbod for being extended to a class of random walks with general dimen­
sion N ~ 2. In the first part of this monograph, we shall investigate to what ex tent this exten­
sion is possible. 

lf one is studying a multi-dimensional queueing system for which it is not possible to 
derive explicit formulae for the equilibrium distri bution of the underlying random walk, then 
numerical techniques may be used to determine the equilibrium distri bution ·and the relevant 
performance measures within a given accuracy. However, most numerical techniques 
described in the literature only work for random walks for which the state space is infinite in 
at most one component (see Stewart [68] and the references therein for an overview of a 
number of standard numerical techniques; see Neuts [58, 59] for a description of the matrix­
geometrie approach). The only numerical technique ava.ilable for random walks with a state 
space which is infinite in each component, is the power-series algorithm (see Hoogbierostra 
et al. [42] and Blanc [ 18]). The ma.in idea of the power-series algorithm is that power-series 
expansions of equilibrium probabilities as a function of the load of a queueing system can be 
used to solve the equilibrium equations. This technique has successfully been applied to 
several multi-dimensional queueing problems. It must be noted that for each numerical tech­
nique its use will be restricted by the requirements with respect to the computational effort 
and the memory space. Usually, this means that the equilibrium distribution and the relevant 
performance measures can be determined within the desired accuracy only for systems with a 
lirnited number of servers and a workload which is not too close to the maximum workload. 

lnstead of solving numerically the exact model within a given accuracy, one can also use 
flexible approximation models which can be solved exactly (or at least within a very high 
numerical accuracy, if they are solved by some numerical method) and which can approxi­
rnate the exact model as accurately as desired. Appropriate flexible approximation roodels 
are, for example, truncation models which can be solved efficiently by a standard numerical 
technique or the matrix-geometrie approach and which depend on some parameter(s) that 
determine(s) the size of the truncated state space. Approximation roodels such as truncation 
roodels lead to approximations for both the equilibrium distribution and the relevant perfor­
mance measures of the exact model. Some approximation roodels can be proved to lead to 
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bounds for the relevant performance measures of the exact model. Such models are also 
called bound models. By combining a lower bound model and an upper bound model, one 
may obtain approximations for the relevant performance measures as well as upper bounds 
for the inaccuracy of these approximations. Definingftexible lower and upper bound models, 
and solving them for varying values of the parameters which determine the quality of the 
bound models, constitutes an appropriate, alternative way for determining the relevant perfor­
mance measures within a given accuracy. In the second part of this monograph, we will 
develop the so-called preeedenee relation method, which is an analytica] technique that is 
appropriate for deriving flexible bound models. Usually these flexible bound models wiJl be 
truncation models which can be solved efficiently by a numerical method. It will be shown 
that for multi-dimensional queueing systems which cannot be solved by an analytical metbod 
and which have a favorable structure for deriving efficient, flexible bound models, an algo­
rithrn based on these flexible bound models may be very efficient compared to other algo­
rithms such as the power-series algorithm (i.e. such an algorithm may solve larger systems 
with less computational effort and less memory space). 

The main objective of this monograph is the development of methods for the analysis of 
queueing systems for which the behavior is described by multi-dimensional random walks. 
Because of its success for two-dimensional random walks, we first extend the compensation 
approach to random walks with dimension three and higher; and, since, for the three- and 
higher-dimensional case, the application of the compensation approach will appear to be lim­
ited to a relatively small class of problems, after that we will develop the preeedenee relation 
metbod for deriving flexible bound models. In the remaioder of this introductory chapter, we 
will extensively explain the main ideas of both methods by using a special case of a practical 
queueing problem. The practical queueing problem is described in the next section, and the 
main ideas of both methods will be shown in the Sections 1.3 and 1.4. An outline of this 
monograph will be given in the final section of this chapter. 

1.2. A practical queueing situation 

In this section, we describe a queueing situation stemming from a flexible assembly system 
consisting of a group of parallel insertion machin~s. which have to mount vertical com­
ponents on Printed Circuit Boards. This queueing situation leads to the formulation of a 
queueing model which we shall cal! the shortest queue system with a job-dependent parallel­
ism. A special, simple case of this model is represented by the well-known symmetrie shor­
test queue system, which has been studied extensively in the literature and which is known to 
be a hard problem already. 

Let us start the description of the practical queueing situation with explaining how an 
inserfion machine operates. An insertion machine mounts vertical components, such as resis­
tors and capacitators, on a Printed Circuit Board (PCB) by the insertion head. The com­
ponents are mounted in a certain sequence, which is prescribed by a Numerical Control pro­
gram. The insertion head is fed by the sequencer, which picks components from tapes and 
transports them in the right order to the insertion head. Each tape contains only one type of 
components. The tapes are slored in the component magazine, which may contain 80 tapes, 
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say. Each PCB needs, on average, 60 different types of components. If a machine has to 
mount components on a PCB, then all the components need to be available on that machine. 
That means that for all those components a tape must be placed in the magazine. So the set of 
components available on the machine completely detennines which types of PCBs can be 
handled. 

In general we have a group of parallel insertion machines which have to process a 
number of different types of PCBs at the same time. Each insertion machine has its own 
queue, and the PCBs are transporled to the insertion machines by an Automatic Conveyor 
System. In Figure 1.1, we have depicted a system which consists of three insertion machines 
and which has to process three different types of PCBs. The machines are basically similar, 
but due to the fact that they may be loaded with different types of components, the classes of 
PCB-types that can be handled by the machines may be different. In the situation depicted in 
Figure 1.1, machine M 1 can handle PCBs of the types A and B, machine M 2 can handle the 
types A and C, and machine M 3 can handle the types B and C. 

In fact, there are two decision problems: the assignment problem and the routing prob­
Lem. We first describe the assignment problem, which is the major problem. The assignment 
problem concerns how the tapes with components have to be divided among the machines. 
One should try to allocate the tapes with components to the machines such that, for example, 
the waiting times andlor sojaurn times of the PCBs are minimized. There would be no prob­
lem if the magazines were big enough to contain all components needed to process all types 
of PCBs. However, in general they can only contain the components needed for a smalt sub­
set of the different types of PCBs. So, the Limitations of the magazine capacities give rise to a 
job-dependent parallelism. 

In order to solve the assignment problem, we must be able to evaluate the performance 
characteristics of a given assignment of the components to the machines. These performance 
characteristics depend on how the second decision problem, i.e. the routing problem, is han­
dled. This problem concerns to which machines the PCBs must be sent upon arrival. For an 
arriving PCB, we must select one of the machines which can handle that PCB. If for all types 
the mounting times are roughly the same, then it is reasonable to select the machine with the 
shortest queue (let ties be broken with equal probabilities); this at least (roughly) rninimizes 
the waiting time of the arriving PCB itself, and it may be expected that this also roughly 
minimizes the average waiting time for all PCBs together, provided that we are in a balanced 
situation (i.e. a situation in which each server will have to handle the same amount of work 
on average). Assume that the shortest queue routing is used by the Automatic Conveyer Sys­
tem, and that, once arrived in a queue, the PCBs are served in a First-Come-First-Served 
(FCFS) manner. Then we have the following problem: 

Given the shortest queue routing and the FCFS service discipline at each machine, 
we want to have an efficient method for the determination of the performance 
characteristics of the jlexible assembly system for a given assignment of the com­
ponents to the machines. 

The main performance characteristics we are interested in, are the waiting times andlor 
sojourn times for each type of PCBs and for all PCBs together. It is obvious that an efficient 
metbod for determining these measures can be exploited for selecting the best possible 
assignment of the components to the machines. 
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Figure l.I. A flexible assembly system consisting of three parallel insertion machines, on 
which three types of PCBs are made. 
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The assembly of PCBs is often characterized by relatively few job types, large produc­
tion batches and small processing times (see Zijm [86]). Therefore, a queueing model 
approach seerns natural . The flexible assembly system can be modeled as a job-dependent 
parallel server system. For example, the system of Figure 1.1 is modeled as a queueing sys­
tem with three parallel servers, each with its own queue, and three types of jobs; see Figure 
1.2, where ÀA, ).8 and Àc denote the arrival intensities of the three types of jobs (the meaning 
of the parameter Jl. is explained later on). The resulting queueing system will be called a 
Shortest Queue System with a Job-Dependent Parallelism (SQS-JDP). The problem is to 
detennine the waiting times andlor sojoum times for each type of jobs and for a job of an 
arbitrary type. 

Apart from the situation described above, queueing systems with job-dependent parallel 
servers also occur in many other practical situations; for example, in a job shop with a group 
of identical, parallel machines which are loaded with different sets of tools, in a computer 
system where each information file is available on a restricted set of a number of parallel 
disks and requests for information files have to be handled by only one disk, and at a banking 
office where each clerk is able to carry out a restricted set of tasks. Nevertheless, queueing 
systems with job-dependent parallel servers have hardly been studied in the literature. To our 
knowledge, the only contributions are the following ones. Schwartz [63] (see also Roque 
[61]) studies models with another type of routing than shortest queue routing and a server 
hierarchy such that the higher the level of the server, the more types of jobs it can handle. 
Green [37] studies a similar model with two types of jobs and two types of servers: servers 
which can serve jobs of both types and servers which can serve only jobs of the second type. 
Places where this situation occurs are, for example, a restaurant with tables that can seat four 
people and smaller tables for two, and a men's room with toilet stalis and urinals. In this sys­
tem, there is not a queue at each server (table, toilet stall, urinal), but there is a central queue 
for the groups of customers. Finally, there is the paper by Adan et al. [7], from which we 
have adopted the ftexible assembly system and the corresponding queueing model as 
described above. 
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AB 
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Figure 1.2. The queueing model with job-dependent parallel servers, which corresponds to 
the flexible assembly system depicted in Figure l.I. 

Schwartz [63], Green [37] and Adan et al. [7] have in common that they make similar 
assumptionslsimplifications. They all assume that: 

(i) All jobs arrive according to Poisson streams; 

(ii) The service times are exponentially d.istributed; 

(iii) The service times are job-independent. 

In Adan et al. [7], it also is assumed that: 

(iv) ·All insertion machines work equally fast. 

Even for the simpÜfied models, which are obtained by these assumptions, they all have not 
been able to derive an analytica! solution; in Schwartz [63] and in Adan et al. [7] approxirna­
tions for the waiting times are given, and Green [37] derives flexible truncation models, 
which may be solved efficiently by the matrix-geometrie approach. This indicates that 
models with a job-dependent structure are hard to analyze, and that it is sensible to adopt the 
assumptions (i)-(iv) for the SQS-JDP as described here. 

We can now complete the description of our model for the SQS-JDP. Let Àj denote the 
intensity of the Poisson arrival process for jobs of type j. The assumptions (ii)-(iv) imply that 
all service times are exponentially distributed with the same parameter; let this parameter be 
denoted by fl· The behavior of the queueing model is described by a continuous-time Markov 
process with states (m 1, • •. , mN ), where N denotes the number of servers and m; denotes the 
number of jobs at server i, including the job in service. The waiting times can easily be 
obtained from the equilibrium distribution. So, we would like to have a methad for the deler­
mination of the equilibrium distribution for systems such as the SQS-JDP. If possible, we 
would like to have an analytica! method, otherwise we will have to be content with a numeri­
cal method. Up to now, in the literature there is no appropriate, analytica! methad available. 

As already denoted, the main reason for making the assumptions (i)-(iv) is that even the 
simplified model, which is obtained for the SQS-JDP by these assumptions, will be hard to 
analyze (see also the last paragraph of this section). For this reason, we better first attempt to 
find a method with which our simplified model can be solved. If we succeed in finding an 
appropriate method, then after that we can investigate whether the method itself, or a 
modilied version of it, also works in case some assumptions of our model for the SQS-JDP 
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are relaxed. If we do not succeed in finding an appropriate method, then we also wiJl not he 
able to solve a more general model for tbe SQS-JDP. Further, it must he noted that even the 
simplified model for the SQS-JDP may already yield a useful contribution to the assignment 
problem. Our simplified model may lead to insight in how the waiting times depend on the 
workloads of the different job types and on the job-dependent structure, especially on the 
number of servers from which a job of a particular type may choose one. Moreover, an 
efficient metbod for the determination of tbe performance characteristics of the simplified 
model may he useful for finding a good solution for tbe assignment problem. Here, tbe real 
quality of such a solution could he tested afterwards on the basis of a more general queueing 
model or a simulation model. 

A special case of the model for tbe SQS-JDP is formed by the well-known Symmetrie 
Shortest Queue System (SSQS), which is obtained if there is only one job type, or if each 
server can handle all job types. The SSQS is described as follows. It consists of N parallel 
servers, where jobs arrive according to a Poisson process with parameter À. Each arriving job 
joins tbe shortest queue (ties are broken with equal probabilities), and all service times are 
exponentially distributed with parameter ll· The SSQS has been studied extensively in the 
literature, and it is known to be a hard problem. This indicates that it is better to focus first on 
metbods for the determination of tbe equilibrium distribution of the SSQS. We shall use the 
model for the SSQS as an illustration model at several places in this monograph, and espe­
cially in the next two sections, in which we will explain the main ideas of the compensation 
approach and tbe preeedenee relation metbod for deriving flexible bound mode is. Only in the 
last but one chapter oftbis monograph, i.e. in Chapter 7, we wiJl return to the SQS-JDP. 

1.3. The compensation approach 

In tbe literature, explicit results for tbe equilibrium distribution of the SSQS have only been 
obtained for tbe case with N = 2 servers. Methods applied to the two-dimensional SSQS are 
tbe uniformization technique (see Kingman [49] and Flatto and McKean [33]), tbe boundary 
value metbod (see Cohen and Boxma [23]), and the compensation approach (see Adan et al. 
[8]). The most explicit results have been obtained ~y the compensation approach, which is 
an analytica/ method leading to explicit formulae for all equilibrium probabilities. In this 
section, we shall describe both the way in which the compensation approach works for the 
two-dimensional SSQS and the general main idea bebind this approach. Precedingly, an 
extensive numerical experiment is performed to explain the origin of the compensation 
approach as developed for the two-dimensional SSQS. 

This section consists of four parts and is organized as follows. In the first part, we 
describe a Markov model for the two-dimensional SSQS. Next, the extensive numerical 
experiment is performed in order to gain some insight in the structure of tbe corresponding 
equilibrium distribution. Subsequently, it is shown that by exploiting the conjectured stroc­
ture stemming from the numerical experiment, explicit expressions for the equilibrium distri­
bution can be derived. Thereafter, in the last part of this section, it is shown how these expli­
cit expressions may be derived in a similar, but purely analytica[ way by using the so-called 
compensation approach. In this last part, we also formulate the general main idea bebind the 
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compensation approach and we discuss the other two-dimensional probieros for which the 
equilibrium distribution can he detennined by the compensation approach. 

The Markov model for the SSQS with N = 2 servers 

Consider the SSQS with N = 2 servers, which is depicted in Figure 1.3. The behavior of this 
system may bedescribed by a continuous-time Markov process withstales (m',n'), where m' 
and n' denote the queue lengths (including the jobs in service) at the servers 1 and 2. Because 
of the shortest queue routing, for this state description the state space is divided into two, 
similar, homogeneaus regions (i.e. two similar regions with uniform transition rates) by the 
diagonal. A more attractive Markov process, of which the state space consists of one homo­
geneous region, is obtained by choosing the following alternative state description, which 
exploits the symmetry. Let the system be described by a continuous-time Markov process 
with states (m,n), where m denotes the lengthof the shortest queue and n denotes the differ­
ence between both queue lengths. The transition rates for this Markov process are depicted in 
Figure 1.4. 

The system may be shown to be ergodie if and only if the workload p = À/(2~) is smaller 
than 1. This condition is assumed to be satisfied, and consequently we may characterize the 
equilibrium distribution IPm.n} as the unique normalized solution of the equilibrium equa­
tions: 

(À.+2~) Pm,n ÀPm-l,n+l + J.l.Pm,n+l + ~Pm+l,n-1 if m <! 1, n <! 2, (1.1) 

(À.+2j.l)Pm, 1 ÀPm-1,2 + ~Pm, 2 + ÀPm, o + 2~Pm+l , O if m <!I, n =I, (1.2) 

(À.+2~)Pm, O . - ÀPm-1,1 + ~Pm,l if m ~ 1, n=O, (1.3) 

(À.+!J.) Po,n llPO,n+l + llP l,n-1 if m=O, n~2. (1.4) 

(À.+Jl) PO. I llPo.2 + À.Po.o + 2J.1p 1.0 if m=O, n= 1, (1.5) 

À.Po,o !!PO, I if m=O, n=O. (1.6) 

Equation (1.1) is called the equilibrium equation for the interior, (1.2) and (1.3) are called the 
equilibrium equations for the horizontal boundary, and (1.4) is the equilibrium equation for 
the vertical boundary. Note that the horizontal boundary consists of two layers, since the 
rates for the outgoing transitions to the north for the points on the horizontal axis differ from 
the corresponding rates for the stales (m,n) with m,n ~I. Dividing all equations by 11 shows 
that the equilibrium distribution IPm.n} only depends on the workload p. 

It is easily verified that the equilibrium equations do nol have a simple product-form 
solution. So, we must lookfora solution with a more complicated structure. In order to gain 
some insight in the structure of the equilibrium distribution, we shall perform a numerical 
experiment. The numerical experiment itself will lead to a conjecture with respect to the 
form of the equilibrium distribution. 

Numerical experiment 

We shall gain insight in the structure of the equilibrium distribution IPm.n} for the SSQS with 
N = 2 servers by studying a numerically determined equilibrium distribution, which can be 
obtained by the method of successive substitutions after truncation of the state space. An 
appropriate truncated Markov process is obtained by truncating all states (m,n) with 



1.3. The compensalion approach 9 

Figure 1.3. The symmetrie shortest queue system (SSQS) with N = 2 servers. 

n 1.1.~· . . 
• 1.1. À. 

m-

Figure 1.4. The transition rate diagram for the SSQS with N = 2 servers. 

m+n > T. where T is a fixed positive integer, and cutting off the transition from (T, 0) to 
(T, I), which is caused by an arrival of a new job when there are T jobs present at each server. 
In fact, this truncated Markov process describes the behavior of the SSQS with finite buffers 
of size T -1. The equilibrium probabilities of the truncated process will serve as quite accu­
rate approximations for the equilibrium probabilities Pm.n of the original Markov process, at 
least for the states (m, n) near the origin, if the truncation level T is taken sufficiently large. 

Below, we shall study the equilibrium distribution {Pm.n} for the case p=0.6. We shall 
restriet ourselves to the probabilities Pm,n for the stales in the region 0 ~ m,n ~ 15. Accurate 
approximations for these probabilities are obtained from the equilibrium distribution of the 
Markov process truncated at level T = 60, which we have computed with a relative accuracy 
of 0.5 .w-14• The level T = 60 seemed to be sufficiently large to exclude the impact of the 
truncation on the probabilities in the region 0 ~ m,n ~ 15. The probabilities for the stales 
(m,n) with m,n ~ 8 are depicted in Table l.I. As expected, a large part of the probability 
mass appears to be concentraled around the origin. Further, there appears to be more mass 
concentraled around the horizontal axis than around the vertical axis. This undoubtedly is 
due to the shortest queue routing, which causes a strong drift to the states corresponding to 
situations with equal queue lengths (i.e. to the stales on the horizontal axis). 
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t 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
n 7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
5 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
4 0.0011 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
3 0.0080 0.0023 0.0008 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 
2 0.0544 0.0166 0.0058 0.0021 0.0007 0.0003 0.0001 0.0000 0.0000 
1 0.2761 0.1117 0.0410 0.0148 0.0053 0.0019 0.0007 0.0002 0.0001 
0 0.2301 0.1384 0.0547 0.0200 0.0072 0.0026 0.0009 0.0003 0.0001 

0 2 3 4 5 6 7 8 
m-+ 

Table l.I. The equilibrium probabilities Pm,n for the symmetrie shortest queue system with 
two servers and workload p = 0.6. 

t 5 0.286 0.343 0.357 0.359 0.360 0.360 t 5 0.139 0.138 0.138 0.138 0.138 0.138 
n 4 0.286 0.343 0.357 0.359 0.360 0.360 n 4 0.139 0.139 0.138 0.138 0.138 0.138 

3 0.289 0.344 0.357 0.359 0.360 0.360 3 0.140 0.139 0.139 0.138 0.138 0.138 
2 0.304 0.347 0.358 0.360 0.360 0.360 2 0.148 0.140 0.139 0.139 0.138 0.138 
I 0.405 0.367 0.361 0.360 0.360 0.360 I 0.197 0.148 0.140 0.139 0.139 0.138 
0 0.602 0.395 0.366 0.361 0.360 0.360 0 1.200 0.807 0.750 0.741 0.739 0.739 

0 2 3 4 5 0 2 3 4 5 
m-+ m-+ 

Table 1.2. The ratios Pm+l,n1Pm.n (on the left-hand side) and the ratios Pm.n+IIPm.n (on the 
right-hand side) of the equilibrium probabilities Pm.n for the symmetrie shortest queue 
system with two servers and workload p = 0.6. 

Although the equilibrium distri bution IPm,n} is not a product-form solution, it may still 
behave as a product-form solution for the states (m,n) corresponding to large queue lengths. 
It is known that for several complex (non-product-form) queueing systems the equilibrium 
distribution has such a behavior (which usually results in geometric/exponential tails in the 
distributions of queue lengths and waiting times; see e.g. Takahashi [69)). A product-form 
(geometrie) behavior may be established by consictering ratios of equilibrium probabilities. 
For the equilibrium distribution IPm.n } , which we have numerically determined for the two­
dimensional SSQS with work.load p = 0.6, we have computed the rat i os Pm + 1 ,n1Pm,n and 
Pm,n+IIPm,n of the equilibrium probabilities for two neighboring states in the m- and n­

direction, respectively; see Table 1.2, where these ratios are depicted for all m,n :5:5. As we 
see, the same values are obtained for all states (m,n) with sufficiently largem and n, which 
rneans that IPm.n} behaves as a product-form solution am~n, with a:::0.360 and ~:::0.138, for 
sufficiently large m and n (note that we would have found the same values for all m and n, in 
case the equilibrium distribution IPm.n} would have been equal to a product-form solution). 
We define the product-form salution 

p~\ = coa3'~3 for all m,n ~0. 



1.3. The compensation approach 11 

such that it accurately describes the behavior for the stales around some point far from the 
origin, say around point (14,14); we take 

IJ{)= P 15,14 = 0.3600. ~o = P 14.15 = 0.1385. co= PI~4.I:4 = 2.2974. 
P 14.14 P 14,14 ao ~o 

Then, studying the values for the difference Pm,n-P~!n, see Table 1.3, shows that {p~!n) may 
serve as a rather good tirst-order approximation for lPm,n ), at least for all states (m,n) with 
n ~ 1. The probabilities Pm,n for the states on the horizontal axis appear to have a deviant 
behavior, which probably is due to the fact that for these states the rates for the transitions to 
the north differ from the corresponding rates for the states above them, and therefore we wiJl 
neglect them during the remaioder of our numerical experiment. 

Ju st like for the equilibrium distribution lPm.n ) , we can also compute ratios for the 
values found for the difference Pm,n-P~!n. In Table 1.4, we have depicted the ratios 
(pm+I,n -p~~I,n)l(pm,n -p~!n) for two neighboring stales inthem-direction (on the left-hand 
side) and the ratios (pm,n+l -p~!n+I )l(pm,n -p~!n) for two neighboring stales in the n­
direction (on the right-hand side). We again observe that the same values occur for 
sufticiently large m and n, which means that also the second-order behavior of lPm,n} is 
described by a product form am ~n. Since approximately the same value as before is found 
for the ratios in the n-direction, it seerns that the factor ~ must he taken equal to ~0 • We 
detine 

P~!n = c oali' ~3 + c 1 a'{' ~3 for all m,n ~ 0, 

and choose a 1 and c 1 such that {p~!n) accurately describes the equilibrium behavior around 
the point (6,6), i.e. we choose 

(I) (I) 
"' P7,6-P7,6 ;;;;QQ639 "' P6,6-P6,6 "' 07732 ai m . , c I 6 6 . . 

P6,6-P6,6 a1~0 

Studying the values for the difference Pm.n-P~!n• see Table 1.5, shows that the solution 
{P~!n) (slightly) impraves the tirst-order approximation {p~!n ). 

The salution {p~!n) is called the second-order approximation and may be further 
improved to a third-order approximation {p~!n). Let us compute the ratios in the m- and n­
direction for Pm.n-p~!n; see Table 1.6. Since {p~!n) has been detined such that it accurately 
describes the behavior of {p171,n) around the point (6,6), the values obtained for Pm,n-P~!n 
for the stales close to (6,6) are very smalt and cannot be used to delermine the third-order 
behavior of {Pm,n). The ratios for the points which are sufticiently close to the origin suggest 
to detine 

P~!n "'coéx3'~3+cla'{'~3+c2a'{'~7 for all m.n~O. 

and let ~ 1 and c 2 he chosen such that {P~!n} accurately describes the equilibrium behavior 
around the point (2,2): 

~ = p2• 3 -p~:~ =00233 = p 2'2 -p~:~ =-65469 
1 P2.2-P~:~ . ' c2 at~T . . 

The results presenled in Table 1.7 show that {p~!n) very closely approximates lPm,n) for all 
stales (m,n) with n ~ 1. Mainly because of the numerical inaccuracy with which we have 
computed the equilibrium probabilities Pm.n for the states (m,n) with m,n ~ 15, the third-order 
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Î 5 
n 4 

3 
2 
I 
0 

/. Introduetion 

Î 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
n 7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
4 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
3 0.0019 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2 0.0104 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
I -0.0420 -0.0028 -0.0002 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 
0 -2.0674 -0.6886 -0.2430 -0.0872 -0.0314 -0.0113 -0.0041 -0.0015 -0.0005 

0 2 3 4 5 6 7 8 
m ~ 

Table 1.3. The values for the difference Pm.n -p~!n between the equilibrium probability 
Pm.n and its first order approximation p~!n. 

0.064 0.064 0.064 0.064 0.064 0.064 i 5 0.139 0.139 0.139 0.139 0.139 
0.064 0.064 0.064 0.064 0.064 0.064 n 4 0.140 0.139 0.139 0.139 0.139 
0.065 0.064 0.064 0.064 0.064 0.064 3 0.145 0.144 0.143 0.143 0.143 
0.069 0.065 0.064 0.064 0.064 0.064 2 0.187 0.177 0.175 0.175 0.175 

0.139 
0.139 
0.143 
0.175 

0.067 0.064 0.064 0.064 0.064 0.064 I -0.247 -0.252 -0.253 -0.253 -0.253 -0.253 
0.333 0.353 0.359 0.360 0.360 0.360 0 0.020 0.004 0.001 0.000 0.000 

0 2 3 4 5 0 2 3 4 
m ~ 

Table 1.4. The ratios in the m-direction (on the left-hand side) and the n-direction (on !he 

right-hand side) for Pm.n -p~! •. 

0.000 

5 
m~ 

behavior of {Pm.n} is the highest-order behavior which we can delermine numerically, and 
therefore the numerical experiment must be ended here. 

The main conclusion, which may be drawn from the numerical experiment, is the fol­
lowing one. The equilibrium distribution {Pm.n } for the SSQS is not equal to a simple 
product-form solution, but it seems to consist of a linear combination of product-form solu­
tions. at least for all states (m,n) with n ~ 1. More specifically, the equilibrium distri bution 
{Pm.n} for the states (m,n) with n ~ I seems to be equal to a linear combination 

coaö'~3+c•a'{'~3+c2a'l'~7+c3aT~7+c4aT~~+ ··· (1.7) 

of product forms aö'~3. a'{'~3. a'{'~7. · · · (note that altemately a new a-factor and a new 
~-factor is taken), presumably with real-valued, positive and monotonously strictly decreas­
ing product factors ai and ~i (which must be smaller than I, since the linear combination 
given by (1.7) must lead to a normalized solution of the equilibrium equations), and with 
real-valued coefficients Cj. It is noted that the linear combination given by ( 1.7) consistsof an 
infinite number of terms; the number of nonnull terms may be finite, of course (this is the 
case, if there is an index k such that ei =0 for all i ~k. for example). Now, the question is 
whether the equilibrium distribution in deed has the form as denoted by (I. 7), and, if so, then 
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Î 5 
n 4 

3 
2 

0 

Î 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
n 7 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

6 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000 
5 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 
4 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 
3 -0.0001 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 
2 -0.0044 -0.0002 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 
1 -0.1491 -0.0097 -0.0006 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 
0 -2.8405 -0.7380 -0.2462 -0.0874 -0.0314 -0.0113 -0.0041 -0.0015 -0.0005 

0 2 3 4 5 6 7 8 
m--+ 

Table l.S. The va1ues for the difference Pm.n-P<;!;!n between the equilibrium probability 
Pm.n and its second order approximation P<;/;!n· 

0.049 0.059 0.062 0.062 0.062 0.062 i 5 0.022 0.018 0.015 0.011 0.007 
0.051 0.061 0.063 0.064 0.064 0.064 n 4 0.023 0.023 0.022 0.021 0.021 
0.051 0.061 0.063 0.064 0.064 0.064 3 0.023 0.023 0.023 0.023 0.023 
0.053 0.062 0.064 0.064 0.064 0.064 2 0.024 0.023 0.023 0.023 0.023 
0.065 0.064 0.064 0.064 0.064 0.064 I 0.030 0.024 0.024 0.023 0.023 
0.260 0.334 0.355 0.359 0.360 0.360 0 0.052 0.013 0.003 0.000 0.000 

0 2 3 4 5 0 2 3 4 
m~ 

0.003 
O.D20 
0.023 
0.023 
0.023 
0.000 

5 
m--+ 

Table 1.6. The ratiosin the m-direction (on the left-hand side) and the n-direction (on·the 
right-hand side) for Pm.n -p<;;;!n. 

i 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
n 7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

6 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
5 -0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
4 -0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
3 -0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2 -0.0009 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
I 0.0036 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0 3.7063 -0.3197 -0.2195 -0.0857 -0.0313 -0.0113 -0.0041 -0.0015 -0.0005 

0 2 3 4 5 6 7 8 
m--+ 

Table 1.7. The va1ues for the difference Pm,n-PlJ!n between the equilibrium probability 

Pm.n and its third order approximation plJ!n· 
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we would like to know how the product factors O.; and 13; and the coefficients c; have to be 
chosen. The answers are given in the next part of this section. 

Explicit expressions for the equilibrium distribution 

Suppose that the equilibrium distribution {Pm,n} for the states (m,n) with n ~I is equal toa 
linear combination of product forms as denoted by (1.7), where the a;. 13; and c; have the 
presumed properties. Then the linear combination of (1.7) has to satisfy all equilibrium equa­
tions (1.1)-(1.6). We shall show that this observation leads to explicit expressions for the pro­
duct factors a; and 13; and the coefficients c;. Besides, it will be shown that if the O.; , 13; and 
c; are defined by these explicit expressions, then the equilibrium distribution (Pm,n } indeed is 
equal to the linear combination given by (1.7) for the states (m,n) with n ~ 1 and it is equal to 
a similar expression for the states (m, 0). 

Let us first exploit the fact that the linear combination given in (1.7) has to satisfy the 
equilibrium equation ( 1.1) for the interior for all m ~ 1 and n ~ 2. Por large m and n, the linear 
combination is dominaled by the first product form o.3'133. which has a largera-factor and/or 
a larger 13-factor than all other product forms. Therefore, o.3' 133 itself will be a sol ut ion of the 
equilibrium equation (1.1) for the interior. But, then, because of the linearity of this equili­
brium equation, also the linear combination without the first term c 0 o.3'133 will be a solution 
of this equilibrium equation. Por this remaining part of the linear combination the same rea­
soning can be given as for the full linear combination, and similarly for the linear combina­
tion without the terms c 0 o.3'133 and c 1ai"l33. and so on. This leads to the conjecture that all 
product forms of the linear combination given by (1.7) must be solutions of the equilibrium 
equation ( 1.1) for the interior. 

Substituting a product form o.ml3" into (1.1), and dividing by ~am-I 13"-1, shows that a 
product form o.m 13" is a (nonnull) solution of the equilibrium equation ( 1.1) for the interior if 
and only if the pair ( o., 13) is a solution of the equation 

2(p+ 1) o.l3 = 2p 132 + o.l32 + o.2 
0 ( 1.8) 

By substituting the pairs (CJ.o, 130 ), (O.~o J30 ) and (o.~o J31 ), which we found during the numerical 
experiment for the case p = 0.6, into equation ( 1.8), it is easily verified that for that case the 
product forms a3'133. ai"l33 and o.j"J37 indeed satisfy the equilibrium equation (1.1} for the 
interior, which supports our conjecture. 

Explicit formulae for the factors O.; and 13; for all i ~ I are now obtained by noting that 
equation (1.8) is a quadratic equation in o. for fixed J3, and vice versa. This means that equa­
tion (1.8) always has two. (possibly complex) solutions o. for fixed 13 and two (possibly com­
plex) solutions 13 for fixed o.. Therefore, the factor o.1 of the second product form o.i"J33 of 
the linear combination given by (1.7) must be the companion solution to 0.0 of the quadratic 
equation (1.8) for fixed 13= J30 , the factor J31 of the third product form ai"l37 must be the com­
panion solution to 13o ofthe quadratic equation (1.8) for fixed a=o.1, and so on. This leads to 
the recursive formulae 

A2 1 O.J+I 
Cl;+l = 2pp; 0- • J3i+l = 

a; 2p+ai+l 
i ~o. (1.9) 

which are obtained from the formula for the product of the two roots of a quadratic equation. 
With these formulae we can easily generate the factors a; and J3; for all i~ 1, once the starting 
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factors <Xo and ~o are known. In the left part of Figure 1.5 we have depicted the real-valued 
solutions of equation ( 1.8) for the case p = 0.6, and in the right part of Figure 1.5 we have 
visualized the generation of the factors a; and Pi; here, the factors ao and Po have been taken 
equal to the values which we found during the numerical experiment. 

Next, exploiting the fact that the Iinear combination of (1.7) has to satisfy the equili­
brium equation (1.4) for the vertical boundary for all n :2:2, leads to an explicit expression for 
the coefficients c;. For the states (m,n) around the vertical axis and large n, the linear combi­
nation of (1.7) is dominaled by the first two product forms, since they have the Iargest P­
factor. Therefore the sum c 0a(i' Po + c 1 af Po of the first two terms wîll be a salution of the 
equilibrium equation (1.4) for the vertical boundary. But, then also the remaining part of the 
linear combination will be a solution of this equilibrium equation, by which we find that also 
the sum c 2aî'P7 +c 3afP7 will be a salution of this equilibrium equation; and so on. This 
leads to the conjecture that all pairs of product forms with the same P-factor must be solutions 
of the equilibrium equation (1.4) for the vertical boundary. By using elementary algebra, it 
may be shown that a sum c2kaZ'PZ +c2k+l af+I PZ satisfies equatîon (1.4), if the coefficîents 
c2k and c2k+l satisfy the equation 

Pk-ak+l 
C2k+l = A C2k, k:2=0. (1.10) 

ak-tJk 

This expression may be used as a definition for the coefficients c; for all odd i. lt is easily 
verified that the coefficients c 0 and c 1 which we found for the case p = 0.6 satîsfy equatîon 
(1.10). 

Subsequently, we exploit the fact that the linear combination of (1.7) has to satisfy the 
equilibrium equations (1.2) and (1 .3) for the horizontal boundary for all m :2: I. This will lead 
to a definition for the coefficients c; for all even i :2: 2, and also to explicit expressions for the 
product factors <Xo and p0 . Note that, to Iet the linear combination of (1.7) satisfy the equa­
tions (1.2) and (1.3), we also have to give a definition for the equilibrium probabilitîes for the 
states (m, 0) with m :2:1, since the linear combination of (1.7) is assumed to describe the 
equilibrium behavior only for the states (m,n) with n :2: I , and in the equations (1.2) and (1.3) 
also the equilibrium probabilities for the states (m, 0) with m :2: I are present. 

For the states (m,n) around the horizontal axis and large m, the linear combination of 
(1.7) is dominaled by the first term c 0a3'P3. which has the Iargest a-factor. Therefore this 
term itself, accompanied by some salution for the states (m, 0) with m :2: I, must be a salution 
of the equilibrium equations (1.2) and ( 1.3). Since these equations have to be satisfied for all 
m ~ 1, it seems sensible to take a salution of the form cóa3' for the states (m, 0) with m :2: I. 
This choice is supported by values for the ratîos Pm. 1 IPm, o which we found for the case 
p=0.6; see Table 1.2. By replacîng the coefficient có by foc 0 , we obtain the solution 

{ 
coa3'P3 if m ~0. n ~I; 

(1.11) 
focoa3' if m ~ 1, n =0, 

which should satisfy the equilibrium equations ( 1.2) and ( 1.3). By substituting this solution 
into ( 1.2) and ( 1.3) and using that c 0 a3' Po also is a salution of the equilibrium equation ( 1.1) 

for the interior, we find that <X(), Po and Jo must be equal to 

- n2 <Xo 
<Xo = p2 , Po - --:+2 , Jo = 2(P+<Xo) (1.12) 
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Figure l.S. The real-valued solutions (a,~) of the quadratic equation (1.8) for the case 
p=0.6. The part outlined by the dotled line in the tigure on the left hand, has been blown 
up and is depicted in the tigure on the right hand, where the bold dots denote the solutions 
needed for the equilibrium distribution IPm.n } . 

a 

Note that for the case p = 0.6, we obtain ao = 0.3600 and ~0 = 0.1385, which are precisely the 
values which we found during the numerical experiment. 

Since the first term of the linear combination given by (1.7) is a salution of the equili­
brium equations (1.2) and (1.3) for the horizontal boundary, also the remaining part has to 
satisfy these equations. This leads to the property that c 1 ai'~3 +c 2 a'{'~7, accompanied by 
some salution for the states (m, 0) with m ~ l, must be a salution of the equations (1.2) and 
(1.3); and, similarly for all other sums of pairs of product forms with the same a-factor. Por 
all k~O. we let the sums c2t+ 1 aT+ 1 ~Z+c2k+2 aZ'+ 1 ~Z+I be accompanied by solutions 
fk+l (c2k+l +c2k+2)aZ'+1 for the states (m, 0) with m ~ l. By using elementary algebra, it may 
be shown that the salution 

{ 
C2k+l aZ'+I ~z + C2k+2af+l ~~+I 

!Jc+l (c2k+l +c2k+2)af+l 

if m ~o. n ~I; 

if m~l. n=O, 

satisfies the equations (1.2) and (1.3), if the coefficients c2k+l• c2k+2 and fk+l 

equations 

(p+at+IY13k+l -(p+l) ak+l 
c2k+2 =- (p+ak+IY13k-(p+l) c2k+l • fk+l = 2(p+ak+l) k~O. 

(1.13) 

satisfy the 

(1.14) 

The first one of these equations is used as a definition for the coefficients c; for all even i ~ 2. 

Let us recapitulate what we found up to now. The linear combination of (1.7) for the 
states (m,n) with n ~ l is accompanied by the linear combination 

(1.15) 

for the states (m, 0) with m ~I (see (1.11) and (1.13)). Further, explicit definitions have been 
given for all product factors <Xj and ~; and for all coefficients c; and /;. except for c 0 (see 
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(1.9), (1.10), (1.12) and (1.14)). The formulae for the coefficients c; may be slightly 
simplified by replacing, for all k~O. the C2Jc by akbk and the C2Jc+l by ak+lbk. Wethen 
obtain the formulae 

~k-ak+l (p+ak+!YI3k+l-(p+1) 
ak+l = ak-~k ak' bk+l =- (p+ak+IYI3k-(p+1) bk' k~O. (1.16) 

ins te ad of the formulae for the coefficients c; as given in ( 1.10) and ( 1.14 ), and the forma! 
solution {xm,n} defined by 

V V 

l aoboa3'~3 + a,boaT~3 + a,h,a'{'~7 + a2b1aT~7 + .. . 

~~= H H 

foaoboa3' + f 1a 1(bo+b 1)a'{' + .. . 

ifm ~o. n ~ 1; 

ifm ~ 1, n =0; 

is obtained instead ofthe linear expressions given by (1.7) and (1.15). Let the coefficients a 0 

and b 0 be defined by a 0 = b o = 1. Then the terms of { Xm,n } satisfy the following properties: 

(i) all terms a;b;a;" ~7 and a; +i b;a7't1 ~7, i~ 0, individually satisfy the equilibrium equa-
tion ( 1.1) for the interior; 

(ii) all pairs a;b;a7'~7 + ai+l b;a7't1 ~7, i ~0. of terms with the same ~-factor satisfy the 
equilibrium equation (1.4) for the vertical boundary (V); 

(iii) for all i ~0. the pairs a;+1b;a;"+1 P7 +ai+lbi+l a7'+1 ~7+1 of terms with the same a-factor, 
which are accompanied by the terms fi+l ai+l (b; + b;+l )af+ I for the stales (m, 0) with 
m ~ I, satisfy the equilibrium equations ( 1.2) and ( 1.3) for the horizontal boundary (H), 
while the first term a0b0a3'~3. which is accompanied by the term j 0a 0b 0a3' for the 
states (m,n) with n = 0, individually satisfies these equations. 

So, we find that { Xm,n} is an unnormalized sol u ti on of the equilibrium equations ( 1.1 )-( 1.4), at 
least in principle; it remains to show that lxm,n} is well-defined, i.e. that {xm,n) converges 
(absolutely) for allmand n, (m,n) 'f. (0,0)). 

By exploiting the explicit formulae for the profi,.ct factors a; and ~;, it may be proved 
that they are real-valued numbers satisfying the monotonicity result 

I > ao > ~0 > a, > ~I > . . . > 0 

(see also Figure 1.5), and that both the ct; and the ~i decrease exponentially fast to 0 as i ~ oo. 

From these properties, it irrunediately follows that the coefficients a;. b; and fi are well­
defined, real-valued, nonnull numbers and that fxm,n} consists of infinitely many (nonnull) 
terms. Further, it may be shown that for allmand n, (m,n)'f.(O,O), the terms a;b;a;"~7. 
a; +i b;a7'+i ~7 and .ti +I a; +i (b; + b; +i )af't1, in absolute value, decrease exponentially fast to 0, 
as i ~ oo, which implies that all series occurring in the expressions for Xm.n are absolutely 
convergent for all m and n, (m,n) 'f. (0,0). So, all variables Xm,n are well-defined and {xm,n} 

indeed is a salution of the equilibrium equations (I. I )-(1.4). 

The solution fxm,n} is compieled by defining xo,o such that the equilibrium equation 
(1.5) for the state (0,1) is satisfied. Then, fxm,n} satisfies all equilibrium equations. The 
equilibrium equation (1.6) for the state (0,0) is also satisfied, since it is well-known that the 
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system of equilibrium equations of a Markov process is dependent Next, it may be shown 
that l:.m,n ~ o I Xm,n I < oo. As a result, the equilibrium distribution {Pm.n } may be obtained by 
simply normalizing the solution { Xm,n } : 

Pm,n = c-l Xm,n for all m,n ~o. (1.17) 

where Cis the normalizing constant and may be proved to be equal to (see [8]) 

c = p(2+p) 
4(l-p2}(2-p} 

Tbe main result stated in ( 1.17) shows that the equilibrium distri bution {Pm.n ) consists 
of a linear combination of an infinite number of product-form solutions, and it confirms the 
conjecture which we obtained from the numerical experiment, i.e. it confirms that for the 
stales (m,n) with n ~ 1 the equilibrium behavior indeed is described by a linear combination 
of the form denoted by ( 1.7). Note that, for the case p = 0.6, this main result states that 

Pm,n = C 1 (aobocx3'~3+atbocx'{'~3+athtcx'f"~7+a2btcx!f~7+ · · ·) 

= 2.2974 (0.3600)m(0.1385)" + 0.7732 (0.0639)m(0.1385)" 

-6.4977 (0.0639}m(0.0233)"- 2.0998 (0.0102)m(0.0233)" + 

for all states (m,n) with n ~ 1, which (almost completely) corresponds to the values for the 
product factors and coefficients which we found during the numerical experiment (for the 
coefficient of the third product form we found c 1 = -6.5469 instead of -6.4977, which seems 
to be due to numerical inaccuracy). 

The main result stated in (1.17) and the formulae for the solution {xm,n}. the product 
factors a; and ~;. and the coefficients a;, b; and /; provide us of explicit expressions for the 
equilibrium distribution {Pm,n}. We have obtained these expressions by exploiting the con­
jecrured structure stemming from the numerical experiment. In the next and last part of this 
section, it is explained how these expressions may be derived in a sirnilar, but purely analyti­
ca! way by using the so-called compensation approach, which for the two-dimensional SSQS 
has been developed in Adan et al. [8]. 

The compensation approach 

Consider the solution {xm,n}. which is equal to the equilibrium distribution {Pm,n) for the 
SSQS with N=2 servers, up toa normalizing constant. The first term aobocx3'~3 of {xm,nl. 
which is accompanied by the termf0a0 b0cx3' for the states (m, 0) with m ~ 1, is the dominat­
ing term, which satisfies the equilibrium equations (l.l)-(l.3) for the interior and the horizon­
tal boundary. This first termalready quite accurately describes the equilibrium behavior, pro­
vided that it is normalized by the normalizing constant C; see Table 1.3, in which we have 
depicted the difference between the equilibrium distribution {Pm,n} and the tirst-order 
approximation {p~!n} consisting of only the first term. lt is easily verified that the first term 
violales the equilibrium equation (1.4) for the vertical boundary, and therefore the second 
term a 1 b0a'{'~3. which satisfies equation (1.1) for the interior and, logether with the first 
term, also equation (1.4) for the vertical boundary, may be seen as a compensation tenn, 
which is added to compensate the error of the first term on the vertical boundary. However, 
the solution consisting of the first two termsof {xm,n} violates the equations (1.2) and (1.3) 
for the horizontal boundary, i.e. the second term has introduced a new error on this horizontal 
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boundary. Fortunately, this new error is smaller than the old one; see Table 1.5, in which the 
quality of the second-order approximation IP~!n} consisting of the first two terms of lxm,n} 
has been depicted. Next, in order to compensate the error of the second term, the third term 
a 1 b 1 et'{'~7. logether with the term flal(bo+bl)et'{' for the states (m,O) with m~1. is 
added. The third term, which has been defined such that it satisfies equation ( 1.1) for the inte­
rlor and, together with the first two terms, also the equations (1.2) and (1.3) for the horizontal 
boundary, introduces a new, but smaller error at the vertical boundary (see also Table 1.7). 
This error is compensated by the forth term a 2b 1 etT ~7 similarly to the compensation of the 
error of the first term on the vertical boundary by the second term; and so on. 

The reasoning in the previous paragraph shows that the solution {xm,n} may be obtained 
in an alternative way by starting with an initial term (the first term of {xm,n }), which satisfies 
the equilibrium equations ( 1.1 )-( 1.3) for the interior and the horizontal boundary, but violates 
the equilibrium equation (1.4) for the vertical boundary, and subsequently, step by step, 
adding compensation terms such that each compensation term compensates the error of the 
previous term on alternately the vertical boundary and the horizontal boundary. This pre­
cisely describes how for the two-dimensional SSQS, a solution of the equilibrium equations is 
generated by the compensation approach. The compensation approach is based on the fol­
lowing, simple main idea, which easily can be applied to several other problems: 

1. Characterize a set P of product-fonn solutions which satisfy the equilibrium equation 
for the interior; 

2. Try to construct a linear combination of product-fonn solutions of this set P, such that 
also the equilibrium equations for the boundaries are satis.fied. 

In general, the application of the compensation approach leads to the generation of one or 
more forma/ solutions of the equilibrium equations for the interior and the boundaries. A fier 
that, the formal solutions must be shown to be absolutely convergent, and subsequently these 
solutions must be linearly combined and normalized in order to obtain the equilibrium distri­
bution. For the two-dimensional SSQS, the application of the compensation approach leads 
to one formal solution, the solution {xm,n }, which is just sufficient for obtaining the equili­
brium distri bution (see the explicit result stated in ( 1.17)). 

The SSQS with N = 2 servers has been the first problem which bas been solved by the 
compensation approach, i.e. for which the compensation approach has been developed (see 
Adan et al. [8]). In the meantime, the compensation approach has been applied to several 
other two-dimensional problems. The success for the two-dimensional SSQS inspired Adan 
et al. [12] to apply the compensation approach to the class of homogeneous, nearest­
neighboring random walks on the lattice of the first quadrant; see Figure 1.6. They esta­
blished that the compensation approach is successful for a problem of this class if and only if 
the transition probabilities/rates Qi,j for the interior satisfy the condition that 

( 1.18) 

This condition states that no transitions to the North, East and North-East are allowed from 
points in the interlor of the state space, and sterns from convergence requirements for the gen­
eraled formal solutions. Probieros belonging to the class considered in [ 12] and satisfying 
condition (1.18), are besides the two-dimensional SSQS, a multiprogramming queues system 
(see [5]), and the 2 x 2 buffered switch (see [ 19]). A problem belonging to the class con­
sidered in [ 12), but violating condition ( 1.18), is the symmetrie SQS-JDP with N = 2 servers, 
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Figure 1.6. The transition rates for a two-dimensional, homogeneous, nearest-neighboring 
random walk on the lattice of the first quadrant; for all stales the transitions to themselves 
have been Je ft away. 
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Figure 1.7. A SQS-JDP with N=2 servers and 3 types of jobs. The system is symmetrie 
since the arrival intensity ).8 for the jobs which can be served only by server 1 is equal to 

the arrival intensity Àc for the jobs which can be served only by server 2. 

as depicted in Figure 1.7. Just like the SSQS, this system can be modeled as a Markov pro­
cess with states (m,n ), where m denotes the Jength of the shortest queue and n denotes the 
difference between both queue Jengths. For this process, the positive transition rates for the 
interlor are 

ql,-1 = À.A +À.B • qo,l = À.B • q-1 ,1 = q0,-1 = ~ • 

which shows that there is a positive ra te q 0,1 for the transitions to the North from interior 
points (it is noted that a similar Markov process is obtained for the model studied by Rassin 
and Haviv [40]). Apart from the problems belonging to the class of two-dimensional random 
walks studied in [12], and satisfying (1.18), the compensation approach bas been proved to 
work for the asymmetrie shortest queue system with 2 servers working at different speeds 
(see [9]), and for the system consisting of two parallel Erlang servers, where jobs arrive 



1.3. The compensation approach 21 

according to a Poisson stream and join the queue where they ex peet to have the shortest delay 
(see [6]). All two-dimensional problems for which the compensation approach works, have 
in conunon that for each interior point (m,n) only transitions are possible to points (m',n') 
with I m' I+ In' I ~ I m I+ In I; for points (m,n) in the interior of the first quadrant this means 
that only transitions are possible to points (m+i,n +j) with i +j ~ 0 (cf. (1.18)). 

In the first part of this monograph, we will apply the compensation approach to a class 
of N-dimensional homogeneous, nearest-neighboring random walks (see also [78, 80]). 
Among others, we will generalize the condition (1.18), under which the compensation 
approach works. The analysis will point out that the compensation approach does nol work 
for the SSQS with N ~ 3 servers, which supports the conjecture staled in [77] . In that paper, 
on the basis of a numerical study of ratios of equilibrium probabilities, we formulated the 
conjecture that the equilibrium distri bution of the SSQS with N = 3 cannot be expressed as a 
linear combination of product-form solutions, but must have a more complicated structure. 
The same wil! hold for the SQS-JDP, of which the SSQS is a special case. Since also no 
other analytica! methods are available for the SSQS and the SQS-JDP with N ~ 3 servers (the 
other two methods mentioned at the beginning of this section, the uniformization technique 
and the boundary value method, seem to he not extensible to random walks with dimeosion 
N ~ 3 at all), these conclusions constitute a justification for the use of numerical or numeri­
cally oriented methods for these queueing systems. 

1.4. The preeedenee relation metbod for deriving flexible bound roodels 

Since no analytica! methods are available for the determination of the equilibrium distribution 
of the N-dimensional SSQS with N ~ 3, in the literature many numerical studies have 
appeared. However, most studies deal with approximation models, which can be solved by a 
standard numerical technique and which lead to approximations for the equilibrium distribu­
tion andlor the relevant performance measures, or they deal with simple approximations for 
the relevant performance measures (of which subsequently the quality is tested). Only a few 
studies may be characterized as exact numerical studies, i.e. as studies which lead to numeri­
cal procedures with which the equilibrium distribution andlor the relevant performance meas­
ures can be computed as accurately as desired. 

The exact studies by Blanc [17], Lui et al. [54] (see also [53]), and Adan et al. [2] have 
led to the most successful numerical procedures. In Blanc [17], the power-series algorithm 
has been applied to the SSQS, with which all equilibrium probabilities as well as all perfor­
mance measures may be computed (as accurately as desired). In the papers by Lui and Muntz 
[54] and Adan et al. [2], the analysis has mainly been focused on the determination of the 
mean waiting time, which may be considered to he the most interesting performance measure 
for the SSQS, and for that purpose, in both papers a ftexible lower bound model and a ftexible 
upper bound model are derived; by combining these two models, approximations for the 
mean waiting time as well as upper bounds for the corresponding inaccuracies are obtained. 
For the computation of the mean waiting time for the SSQS, the numerical procedure based 
on the ftexible bound models as derived in [2], seems to be the most powerful procedure; up 
to now, the largest systems (viz. systems with up toN= 50 servers and workloads up to 0.95) 
have been solved with this procedure. 
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The flexible bound models derived in [2] are truncation models of which the state space 
and the structure of the transitions are such that they can be solved efficiently by the matrix­
geometrie approach (as described by Neuts [58]). To prove that one model (a threshold jock­
eying model) leads to lower bounds for the mean waiting time, and the other model (a thres­
hold blocking model) to upper bounds, an analytica/ method based on Markov cost/reward 
theory has been used. This analytical method is similar to the technique used in the papers by 
Van der Wal [72], Van Dijk and Van der Wal [76], and Van Dijk and Lamond [75], and we 
call this method the preeedenee re lation method. 

In this section, we shall explain the main idea of the preeedenee relation method, as it is 
used for comparing truncation models to their original model. From this main idea, it 
immediately follows that, apart from proving that an approximation or truncation model is a 
bound model, the preeedenee relation method is also appropriate for deriving bound models, 
and especially for deriving jlexible bound models. The main idea will be explained on the 
basis of the SSQS with N = 2 servers. For this model, we shall describe the two flexible trun­
cation models as presented in [2], and subsequently it will be shown how the preeedenee rela­
tion method may be used to prove that these truncation models lead to bounds for the mean 
waiting time. Finally, some numerical results will be presented to show how tight these 
bounds are. 

Consider the Markov process for the SSQS with N = 2 servers as described at the begin­
ning of the previous section. To obtain approximations for the equilibrium probabilities Pm.n 

for the states close to the origin, we defined a simple truncated Markov process with a finite 
state space of the form { (m,n) I m +n ~ T}, where T is a fixed, positive integer. We used this 
simple truncation model to determine quite accurately the probabilities Pm,n depicted in Table 
1.1 for the case p = 0.6. The results depicted in this table show that most of the probability 
mass is concentrated around the states on the horizontal axis. An explanation for this pro­
perty follows from the shortest queue routing discipline, which causes a strong drift to the 
states corresponding to situations with equal queue lengths, i.e. to the states on the horizontal 
axis. This observation suggests that it rnight be better to define a truncated Markov process 
with a state space of the form { (m,n) I n ~ T } , si nee a set of this form better matches the 
states where most of the probability mass is present. 

Suppose that we take a truncated statespace M' = { (m,n) In$ T }, where T is a fixed, 
positive integer. This means that we do not allow the difference between both queue lengtbs 
to exceed the threshold value T. Therefore we must modify the transitions from the states 
(m, T), m ~ I, inside the state space M' to the states (m-I, T +I) outside M'. These transitions 
are due to a service completion at the shortest queue when the difference between both queue 
lengtbs has already reached its maximum allowed value T, _ and occur with rate iJ.. We con­
sider the following two modifications: 

* A very natural modification is that we just cut off each transition from a state (m, n. 
m ~ 1, to a state (m-I, T + 1 ), i.e. the transition is redirected to the state (m, n itself. The 
physical interpretation is that, if a service completion at the shortest queue causes a too 
large difference between the longest and the shortest queue, then the job in service at the 
shortest queue stays in the system and has to be served again. Since we have exponen­
tially distributed service times (which satisfy the memoryless property), this is 
equivalent to saying that the server at the shortest queue is blocked, if the length of the 
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shortest queue is T less than the length of the longest queue. The model corresponding 
to the truncated Markov process which we obtain in this case, is called the Threshold 
Blocking (TB) model. 

* Another modification is that each transition from a state (m, T), m ~ I, to the state 
(m -1, T + 1) is redirected to the state (m, T-I), in which we have one job more in the 
shortest queue and one job less in the longest queue ( compared to the state (m -1, T + l )). 
The physical interpretation for this redirection is that if a service completion at the shor­
test queue occurs in a situation that the length of the shortest queue is T less than the 
length of the longest queue, then at the same time we let a job of the longest queue 
jockey to the shortest queue. The truncation model which we obtain in this case is 
called the Threshold Jockeying (Tl) model. 

For both truncation models, the modifications are depicted in Figure 1.8. Note that both the 
TJ and TB model can approximate the original SSQS as accurately as desired, since the size 
of the truncated state space M' depends on the threshold parameter T and M' is equal to the 
statespace of the original SSQS in case T=oo; for that reason, they are calledfiexible trunca­
tion models. 

The reason why it makes sense to consider the TJ model and the TB model, is that for 
both models the equilibrium distribution, and the relevant performance measures, can be 
determined by using the matrix-geometrie approach. For both models, one may even obtain 
very efficient numerical procedures by exploiting the special structure of the transitions (i .e. 
by partitioning the statespace into levels l consisting of all stales (m,n) for which the length 
m+n of the longest queue is equal tol, by which each level has only one state from which a 
transition to a higher level can be made, and the rate matrix R has only one row with nonnull 
elements). It must be noted that, besides in [2], the TJ model has also been studied in several 
other papers (see, for example, Haight [38], Gertsbakh [35], and Adan et al. [10, 13]; actually, 
Gertsbakh [35] uses the TJ model as an approximation model for the two-dimensional SSQS). 

We shall use the TJ and TB model to delermine the mean normalized waiting time W for 
the original SSQS. The normalized waiting time is defined as the ratio of the waiting time 
and the mean of a service time (= l-1J,), and only depends on the workload p (and on the 
number of servers N in the case with general N ~ 2). By using Little's formula, it follows that 

L,., 
w = 2P' ( 1.19) 

where L,., is the mean of the total number of waiting jobs in the system. The two bound 
roodels are expected to give bounds for L",, and therefore also for W. Since in the TJ model 
some jobs are allowed to jockey from the longest queue to the shortest queue, which leads to 
more balance in the system and probably less frequently to the 'bad' situations in which one 
server is idle while there are still waiting jobs at the other queue (in fact, these situations 
cause the difference between the SSQS and the MI M 12 queue), the mean L~1 (T) of the total 
number of waiting jobs in the TJ model is ex peeled to produce a lower bound for L,.,. The TB 
model is obtained by introducing a type of service blocking, and therefore the mean L~8 (T) 
of the total number of waiting jobs in the TB model is expected to produce an upper bound 
for L",. If Lr/ (T) and L~8 (T) produce a lower bound and an upper bound for L",, then, by 
equation (1.19), the variables WTJ(T) and WT8(T) defined by WTJ(T) =Lr/(T)I(2p) and 
WT8(T) = {!Jl(T)/(2p), produce a lower bound and an upper bound for W; and, vice versa 
(note that, by these definitions, the variables WT1(T) and WT8(T) are precisely equal to the 
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Figure 1.8. The two truncation models, both with threshold parameter T=3, for the SSQS 
with N = 2 seiVers. The dashed arrows denote transitions of the original model to states 
outside the truncated state space and the corresponding uninterrupted arrows show how 
these transitions are modified. 

mean normalired waiting times in the TJ and TB model itself). Except that the two bound 
roodels are expected to produce bounds for Lw and W, it is also expected that the larger T, the 
more accurate the bounds wiJl be. So, our conjecture is that 

0 :s; Lr-'(1) :s; · · · :s; L"[/(D :s; L"[/(T+I) :s; · · · :s; Lw 
( 1.20) 

which, by (1.19) and the definitions for WTJ(D and Wr8 (D. is equivalent to the conjecture 
that 

0 :s; WrJ0) :s; · · · :s; WrJ(D :s; WTJ(T+I) :s; · · · :s; W 

:s; · · · :s; WrB(T+I) :s; WrB(D :s; · · · :s; WrB(l). (1.21) 

lt is noted that, since both truncation roodels are identical to the SSQS in case T = oo, for 
both truncation models the produced bounds will tend to Lw and Was T ~ oo. Tagether with 
the conjectures stated in ( 1.20) and ( 1.21), this implies that 

L"[/(DfL,. and L!8 (D.1L,.., asT~oo, (1.22) 

WrJCD t w and Wr8 (D .1 w . as T ~ oo. ( 1.23) 

The latter property for the bounds WTJ(T) and Wr8 (D shows that the mean normalized wait­
ing time W may be determined within an arbitrary, desired accuracy by solving both bound 
models for increasing values of T. Further, it is noted that since the behavior of the M IM 12 
queue may be described by a Markov process that is equivalent to the Markov process for the 
TJ model with T = I, the means for the total number of waiting jobs and the normalized wait­
ing time for the M I M 12 queue are the same as for the TJ model with T = I; and, thus, the 
conjectures stated in (1.20) and (1.21) also imply the intuitively obvious result that the means 
for the total number of waiting jobs and the normalized waiting time for the MI M 12 queue 
are smaller than or equal to the corresponding quantities Lw and W for the SSQS. 
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Let us now discuss the so-called preeedenee relation method. This method in principle 
is an analytica[ method for the comparison between an original Markov cost model on a state 
space M and a seeond model Markov cost model on a state space M' which is a subset of M 
(M' =Mis also allowed). The main idea of the preeedenee relation method is that this com­
parison may be based on so-called preeedenee pairs of stales of the original model, which 
satisfy a certain preeedenee relation which denotes that the first state of a pair is more attrac­
tive with respect to certain costs than the seeond state. The preeedenee pairscan be derived 
in a first, prelirninary, step. After that, in a second step, they can be exploited to compare the 
costs (or the relevant performance measures) in the seeond model to the corresponding costs 
(or the relevant performance measures) in the original model (if the seeond model is a trunca­
tion model, then this second step appears to result in an extremely simpte step; see step 2 as 
described in the next paragraph). The preeedenee relation method will be described in detail 
in Chapter 5 of this monograph. It will be developed mainly for the comparison of perfor­
mance measures for truncation roodels to the corresponding quantities for their original 
model. Here, in this section, we shall only globally show how the preeedenee relation 
method may be used to prove the monotonicity results as stated in (1.20) and (1.21). 

The preeedenee relation method, as it is used for the comparison of performance meas­
ures for truncation roodels to the corresponding performance measures for the original model, 
consists of the following two steps: 

1. The derivation of preeedenee pairsjor the original model (i.e. proving for pairs of stat es 
of the original model that they satisfy the given preeedenee relation); 

2. Establishing, for each truneation model, whether eaeh transition whieh originally ended 
in astaten outside the truneated statespace M', has been redireeted toa staten' inside 
M' which is a moreness attractive state than the state n aeeording to the preeedenee 
pairs derived in step 1. 

Usually, most of the effort has to be devoted to the first step. Further, it is noted that which 
preeedenee pairs can be derived depends on, among others, the performance measures which 
are considered. Below, both the first and the second step are further explained on the basis of 
the comparison of the TJ and TB model to the original SSQS. 

The first step of the preeedenee re lation method consists of the denvation of preeedenee 
pairs for the original model, which satisfy a certain. given preeedenee relation. Let us con­
sider the mean Lw of the total number of waiting jobs in the original SSQS. Then the 
corresponding preeedenee relation is satisfied by the following pairs of states. It can be 
shown that a state (m,n) is a more attractive state than its neighbor (m,n+l), which represents 
a situation with one extra job in the longest queue. Th is means that the prospects with respect 
to the total number of waiting jobs are better when being in the state (m,n) than when being 
in the state (m,n+l). Further, it can be shown that a state (m,n+l) is more attractive than a 
state (m + l,n ), which represents a situation with one extra job in the shortest queue, and that a 
state (m+l,n) is more attractive than a state (m,n+2), which represents a situation with the 
same total number of jobs in the system, but with less balanee between the queue lengths. 

In the second step, for a truncation model which is expected to be a lower bound model 
(upper bound model), it must be established whether the transitions which originally were 
ending in states outside the truncated state space, have been redirected to more (less) attrac­
tive states. lf so, then for the truncation model, independently of the starting state, the future 
expectations are better (worse) than for the original model, and therefore Jower bounds (upper 
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bounds) for the performance measure(s) under consideration are obtained. In the TJ model, 
the transitions starting in the states (m, n. m ~ 1, and originally ending in the states 
(m -1, T + 1 ), have been redirected to the states (m; T -1 ). According to the preeedenee pairs 
obtained in the first step, a state (m, T -1) is more attractive than a state (m -1, T + 1 ), and 
therefore the TJ model leads to a lower bound for the mean number Lw of waiting jobs in the 
system. In the TB model, the transitions from the states (m, n. m ~ I, to the states 
(m -1, T +I), have been redirected to the less attractive states (m, n. by which the TB model 
leads to an upper bound for Lw. So, this indicates that 

Lr/ (D S: Lw and L'[! (D ~ Lw for all T ~ l. ( 1.24) 

By consirlering the TJ model with threshold parameter Tas a truncation model of the TJ 
model with threshold parameter T +I, and similarly for the TB model, it may be shown that 

L~1(D S: Lr/(T+1) and L~8(D ~ L~8(T+1) for all T~ 1. (1.25) 

Together with (1.24), (1.25) implies the monotonicity results as stated in (1.20), and therefore 
also the monotonicity results as stated in ( 1.21) for the mean normalized waiting time. 

Due to the simplicity of the second step of the preeedenee relation metbod as described 
above for proving that a truncation model is a bound model, the preeedenee relation metbod 
is also very appropriate for deriving (or constructing) bound models, and especially for denv­
ing .flexible bound models. The preeedenee relation methad for deriving jlexible bound 
models consists of the following two steps (note that step 2 is a constructive step in this case): 

1. The denvation of preeedenee pairsjor the original model; 

2. The definition of flexible lower and upper bound models: to obtain a jlexible lower 
(upper) bound model, first a flexible truncated statespace M' must be defined, and next 
each transition from a state m inside M' to a state n outside M' must be redirected to a 
staten' inside M' which, according to the preeedenee pairs derived in step 1, is more 
(less) attractive than the staten in which the transition originally ended. 

In this way, once the preeedenee pairs have been derived, a whole set of ftexible bound 
roodels can be obtained. 

In Chapter 5, the preeedenee relation method is described in detail (see also [79, 81]). In 
that chapter, the SSQS with N = 2 servers will serve as an illustration model, and the pre­
eedenee relation metbod will be used to derive six ftexible bound models, among which the 
TJ modeland the TB model (and aJso the truncation roodels as presented by Conolly [24] and 
Rao and Posner [60]). In Chapter 5, we shall also see that the preeedenee relation metbod is 
appropriate for deriving several other results than those given by ( 1.24) and ( 1.25). 

After having indicated that the TJ model and the TB model indeed give bounds for the 
means of the total number of waiting jobs and the normalized waiting time, we would like to 
know whether they also give accurate bounds. We shaJI investigate this for the mean normal­
ized waiting time W by computing the bounds W71(D and W78(T) for varying values of p 
and Tand camparing them to the values which are found for W. As noted earlier in this sec­
tion, both bound roodels can be solved very efficiently by the matrix-geometrie approach (see 
aJso Chapter 6). 

The values for W itself can be determined by solving the model for the SSQS by the 
compensation approach, or by solving the bound roodels for large values of T. In Table 1.8, 
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the accuracy of the bounds WTJ(T) and Wr8 (T) is depicted for varying values of p and T. 
Note that, due to the blocking, which leads to a destruction of capacity, the TB model may be 
notergodie for large values of pandlor small values of T, in which case W78(T)=oo and a 
value oo is obtained for the difference Wr8 (T)- W. In Figure 1.9, the values for the bounds 
and Witself are depicted graphically. In this figure, a Iogarithmic axis has been taken for pin 
order to blow up the relevant region near p = l. 

The numerical results illustrate that the bounds are tight for already small values of the 
threshold parameter T, which seems to be due to the appropriate choice for the truncated state 
space M' for both bound roodels (by which only few redirections occur). Contrary to the 
bounds obtained from the TB model, the tightness of the bounds obtained from the TJ model 
appears to decrease only slowly as the workload p increases to its maximum value, by which 
for large workloads p the bounds obtained from the TJ model are considerably tighter than 
the bounds obtained from the TB model; this indicates that for large workloads p the jockey­
ing of jobs in the TJ model has a much smaller impact than the destruc ti on of capacity in the 
TB model. Further, the numerical results show that the larger p, the larger T must be taken to 
obtain bounds of which the difference with respect to W is smaller than a given, required 
absolute or relative accuracy. 

Due to the tightness of the bounds Wr;(T) and W78 (T), an efficient numerical procedure 
for the determination of the mean normalized waiting time W within a given absolute or rela­
live accuracy, is obtained by computing the lower bound WTJ(T) and the upper bound WTB(T) 
for increasing values of T. Here, for each fixed value of T, W may be approximated by the 
mean (Wr;(T)+ W78(T))I2, and upper bounds for the absolute and relative inaccuracy of this 
approximation are given by (WrB(T)- Wr;(T))/2 and (W78(T)- W7;(T)Y(2W7;(T)), respec­
tively. The computation process may be stopped as soon as the desired accuracy is reached 
forsome T. 

We end this section with some remarks on the preeedenee relation method, as used for 
deriving flexible bound models. In principle, this metbod can be applied to any Markovian 
(queueing) system, but it depends on the structure of a particular problem whether the pre­
eedenee relation metbod can lead to flexible bound roodels which are appropriate for the 
determination of the relevant performance measure(S). We are satisfied, if we can delermine 
the relevant performance measure(s) of the original system in an analytica/ way (this may be 
possible in case the bound roodels can be solved analytically) or by an efficient numerical 
procedure (for this it is required that the bound roodels can be solved efficiently by a standard 
numerical technique, for example, and that they closely approximate the original model for 
relatively small values of the parameters which delermine the flexible sizes of the truncated 
state spaces). In this section, for the SSQS with N = 2 servers, we have been able to derive 
appropriate, flexible bound roodels by exploiting the property that, due to the shortest queue 
routing, most of the probability mass is concentraled around the horizontal axis. These flexi­
ble bound roodels were named the TJ model and the TB model, and they have appeared to be 
appropriate for being used in an efficient numerical procedure for the determination of the 
mean normalized waiting time. In the Chapters 6 and 7 of this monograph, we will apply the 
preeedenee relation method in order to obtain appropriate, flexible bound roodels for the 
determination of the waiting times in the SSQS and the SQS-JDP, both with N ~ 2 servers. In 
Chapter 6, we shall see that the TJ model and the TB model are also appropriate for the N-
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Wr1(D- W w Wrs<n-w 
p 

T=1 T=3 T=5 T=IO T=10 T=5 T=3 T=1 

0.1 -0.008 -0.000 -0.000 -0.000 0.018 +{).000 +{) .000 +{).000 +{).003 
0.2 -0.024 -0.000 -0.000 -0.000 0.066 +{).000 +{).000 +{).000 +{).026 
0.3 -0.045 -0.000 -0.000 -0.000 0.144 +{).000 +{).000 +0.000 +0.100 
0.4 -0.068 -0.001 -0.000 -0.000 0.259 +{).000 +{).000 +{).001 +{).296 
0.5 -0.093 -0.003 -0.000 -0.000 0.426 +{).000 +0.000 +{).004 +{).824 
0.6 -0.119 -0.006 -0.000 -0.000 0.682 +{).000 +{).000 +{).017 +2.731 
0.7 -0.147 -0.012 -0.001 -0.000 1.108 +0.000 +{).002 +0.058 +67 .899 
0.8 -0.178 -0.022 -0.002 -0.000 1.956 +{).000 +{).012 +{).227 +oo 
0.9 -0.212 -0.037 -0.005 -0.000 4.475 +{).000 +0.096 +1.500 +oo 
0.95 -0.230 -0.046 -0.007 -0.000 9.487 +{).002 +{).504 + 10.345 +oo 
0.98 -0.242 -0.053 -0.009 -0.000 24.494 +{).012 +3.828 +oo +oo 
0.99 -0.246 -0.055 -0.010 -0.000 49.497 +0.053 +18.737 +oo +oo 

Table 1.8. The values for the mean normalized waiting time W for the SSQS with N=2 

servers and for the differences between the bounds WTJ(D and Wra(D and W itself. 
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Figure 1.9. The mean normalized waiting time Wand the bounds WTJ(D and Wra(D for 

the SSQS with N = 2 servers. 
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dimensional SSQS (see also [2]), and in Chapter 7, similar bound roodels are shown to be 
appropriate for the SQS-JDP with N servers. We finally remark that in [I] appropriate, flexi­
ble bound roodels have been derived for the symmetrie longest queue system. 

l.S. Outline 

This monograph is devoted to two methods for the analysis of multi-dimensional Markov 
processes/random walks, which are used for descrihing the behavior of queueing systems, for 
example. The main ideas of both methods have been described in this introductory chapter. 

In the first part of this monograph, consisting of the Chapters 2-4, we shall extend the 
eompensation approach, as developed by Adan et al. [12] for the class of 2-dimensional, 
homogeneous, nearest-neighboring random walks, to the corresponding class of N­
dimensional random walks. An additional property, called the projection property, is intro­
duced to avoid complex notations and to simplify the analysis. The analysis leads to two 
main results. First of all, it is shown that the compensation approach works for a random 
walk of the considered class if and only if from stales (m 1, •.• , mN) in the interlor no transi­
tions can be made into directions which for some pair of components mi and mi enlarge the 
distance to the origin, which generalires the condition derived in [12] for the case N=2 (see 
also condition (1.18)). Secondly, it is shown that the equilibrium distribution of a random 
walk satisfying this condition can be expressedas an altemating sum of infinitely many, pure 
product-form distributions, which are obtained from (N-I )-fold trees of product-fonn solu­
tions of the equilibrium equation for the interior. The results are proved by induction with 
respect to the di mension N. The case N = 2 is treated in Chapter 2. The step from N = 2 to 
N = 3, which contains all elements of the general step, is described in Chapter 3. In Chapter 
4, an extensive analysis of the structure of the solution obtained for the equilibrium distribu­
tion will be presented; this structure analysis will lead to the development of efficient numeri­
cal procedures for the computation of the equilibrium distri bution and related quantities. 

The second part of this monograph, consisting of the Chapters 5-7, is devoted to the so­
called preeedenee relation method. This metbod is an analytica! method, which is based on 
Markov cost/reward theory, and which is appropriate for camparing the costs of two Markov 
cost models, of which the state space of one model is a subset of the state space of the other 
model. We shall mainly focus on how the preeedenee relation metbod may be used for deriv­
ing flexible truncation roodels which lead to lower and upper bounds for the relevant perfor­
mance measure(s) of the original model. Such roodels are called flexible lower and upper 
bound models, and, provided that they can be solved, they may be used to delermine the 
relevant performance measure(s) of the original model (which itself may be a model that can­
not be solved). The preeedenee relation method is developed in Chapter 5, and in the 
Chapters 6 and 7 the metbod is applied to the well-known Symmetrie Shortest Queue System 
(SSQS), consisting of N ~ 2 parallel servers, and to a generalization of it, called the Shortest 
Queue System with a Job-Dependent Parallelism (SQS-JDP). For both systems, we derive 
flexible bound roodels which lead to efficient numerical procedures for the deterrnination of 
the mean waiting times within a given accuracy. 

Finally, in Chapter 8, we draw the main conclusions and we discuss some extensions 
which might be interesting for future research. 
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Chapter 2 

The Compensation Approach for a Class 

of Two-Dimensional Random Walks 

2.1. Introduetion 

For several queueing systems, the behavior may be described by Markov processes/random 
walks with a discrete, possibly multi-dimensional, state space. Therefore, much effort has 
been put in investigating the equilibrium distribution of such random walks. Explicit expres­
sions for the equilibrium distribution have been derived for many one-dimensional systerns. 
However, for the multi-dimensional case, only a few results are available. For product-fonn 
networks, which are modeled by random walks with a dimension that is at least equal to the 
number of queues in the network, it has been shown that the equilibrium distribution can he 
written as a product of powers of fixed factors (see Baskett et al. [15]). Further, explicit 
expressions have been derived for some multi-dimensional random walks with a state space 
being infinite in only one dimension (see [4], and also Bertsimas [16], fora treatmeitt of the 
Ek IE, I c queue; see [ 13] for a treatment of the shortest queue system with N servers and 
threshold jockeying). Finally, explicit expressions, in the form of infinite series of products 
of powers of fixed factors, are available for a number of two-dimensional random walks with 
a state space being infinite in both dimensions (for example, as we have shown in Chapter 1, 
for the symmetrie shortest queue system, for which explicit expressions may he constructed 
step by step with the help of the compensation approach). This type of random walks is con-
sidered in this chapter. · 

The body of this clwpter consists of the application of the compensation approach to a 
subclass of the class of two-dimensional random walks studied by Adan et al. [12] (see also 
[3]), and serves as a preparation for the analysis in Chapter 3, where a class of two- and 
higher-dimensional random walks, with a state space being infinite in each dimension, is stu­
died. 

For two-dimensional random walks such as the one descrihing the behavior of the sym­
metrie shortest queue system (see Figure 1.4), there essentially exist three methods to obtain 
explicit expressions for the equilibrium distribution. The most recent method is the compen­
sation approach, developed by Adan et al. [12] for the class of homogeneous, nearest­
neighboring random walks which satisfy the additional condition that no transitions from 
interior points are possible to the North, East and North-East (cf. (1.18)). This metbod may 
be characterized as a direct approach for solving the equilibrium equations without resorting 
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to generating functions. The two other methods are indirect, complex-variabie methods, 
which focus on explicit expressions for the generating function of the equilibrium distribu­
tion. Let us shortly discuss the main results for all three methods. 

The oldest of the complex-variabie approaches is the unifonnization technique, which 
has been deve1oped by K.ingman [49] and Flatto and McKean [33] for the symmetrie shortest 
queue system with two servers. For the generating function f (x,y) of the equilibrium distri­
bution of the lengtbs of the two queues, they derive a functional equation with as unknown 
functions f (x,y) on one side and the generating functions f (x, 0) and f (O,y) for the equili­
brium probabilities on the axes on the other side of the equation. The functions f (x, 0) and 
f (O,y) and, hence, f (x,y) are shown to be meromorphic, and explicit formulae are derived 
for the poles and their residues after having introduced a unifonnizing variable. By decom­
posing the meromorphic function f (x,y) into partial fractions it follows that the equilibrium 
probabilities may be written as infinite linear combinations of product forms. The same tech­
nique has been used by Hofri [41] fora multiprogramming queueing model (see also [ll]) 
and by Jaffe [47] for the 2 x 2 clocked buffered switch. All three cases for which the uniform­
ization technique has been worked out, have the property that there are no transitions from 
interior points to the North, East and North-East. In all three cases the generating function is 
meromorphic and partia1 fraction decomposition of this function yields expressions for the 
equilibrium probabilities in the form of infinite Iinear combinations of product forms, 
although it appears to be difficult to give explicit formulae for the coefficients of the Iinear 
combinations. 

The unifonnization technique has also been employed by Flatto and Hahn [32] to 
analyze the forlc aiid jöin model with two servers. They show that the generating functions 
f (x, 0) and f (O,y) can be extended to multiple-valued algebraic functions. However, partial 
fraction decomposition is not available for multiple-valued functions, hence it is no Jonger 
possible to derive exact formulae for the equilibrium probabilities via this decomposition. 
Recently, Wright [82] analyzed a generalization of the fork and join model by using the uni­
fonnization technique. In his analysis he encounters the same difficulties as Flatto and Hahn 
[32], i.e. multiple-valued functions. Until recently, there has been nogeneral result for two­
dimensional random walks basedon a denvation via the unifonnization technique, although it 
seems possible to derive a general result for cases which satisfy the additional condition that 
no transitions from interior points are possible to the North, East and North-East. Neverthe­
less, the resu1ts of K.ingman [49] and Flatto and McKean [33] for the symmetrie shortest 
queue problem inspired the compensation procedure (see [8] and [12]), which indeed gives 
explicit formulae for the coefficients of the linear combination for all cases satisfying the 
additional condition. 

Extension of the uniformization technique to random walks with more than two dimen­
sions has never succeeded. One reason for this failure might be that the additional condition 
has never appeared as essential in these investigations, whereas the shortest queue problem 
with N servers (N > 2) appears not to satisfy the generalization of the extra condition to 
higher dimensions (this general i zation is derived in the next chapter; see Condition 3.1 ). 
Recently, inspired by [12], Cohen [22] has shown that a technique, which is actually a direct 
generalization of the uniformization technique, may be used for the same class of problems as 
the class to which the compensation approach is applicable (which has to do with the resem­
blance between both methods; see Section 2.6). Therefore we can conclude that for a two-
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dimensional, irreducible, positive recurrent, homogeneous, nearest-neighboring random walk 
the compensation approach and the uniformization technique are only usable, in the sense that 
they give explicit expressions for the equilibrium probabilities in the form of series of pro­
ductsof powers, if there are no transitions from interlor points to the North, East and North­
East. But, if this condition is satisfied, then these two methods are very suitable. Further, we 
believe that the compensation approach is preferabie to the uniformization technique, since it 
leads to more explicit results (explicit formulae for all equilibrium probabilities, for example) 
and it avoids complex analysis. 

A more recent indirect metbod for solving the functional equation for the generating 
function of the equilibrium distribution, is the bourulary value method. This metbod aims at 
reducing the functional equation to a standard problem of the theory of boundary value prob­
Ieros and integral equations for complex functions and has established itself as a powerlul 
metbod for a large class of two-dimensional random walks in the first quadrant; see Cohen 
and Boxma [23]. Queueing probieros solved by the boundary value metbod are the sym­
metrie shortest queue model, the M/G/2 queue, a polling model with two queues and 1-
limited service (see [23] for all these examples), the coupled processor model (see [23], the 
work of Fayolle and Iasnogorodski [29, 30, 45] and also Konheim et al. [51 ]), the longest 
queue model with nonpreemptive priority (see Cohen [20]; the longest queue model with 
preemptive priority has been treated by Zheng and Zipkin [85], who solve the equilibrium 
equations iteratively, and by Flatto [31], who explicitly solves the functional equation for the 
generating function), the fork and join model (see De Klein [25]), and the 2 x 2 clocked buf­
fered switch (see Jaffe [46]). Fora review of the boundary value metbod for two-dimensional 
problems, see Cohen [21]. Some examples mentioned show already that the boundary value 
metbod is not restricted to random walks without transitions from interlor points to the North, 
East and North-East. lt seems to be the only really general method for two-dimensional ran­
dom walks on the integer grid in the positive quadrant. However, the compensation metbod 
gives more complete results in the cases in which it works. Conceming extensions of the 
boundary value metbod to higher dimensions, the review paper [21] states that it should be 
possib1e in principle, but the mathematica) as well as the numerical analysis becomes very 
intricate. 

Let us finally discuss the main results obtained by the compensation approach. In Adan 
et al. [12], the compensation approach has been applied to the class of two-dimensional, 
homogeneous, nearest-neighboring random walks on the integer grid in the first quadrant of 
the plane; see Figure 1.6. This metbod starts with characterizing the product forms which 
satisfy the equilibrium equations in the interlor points (m ~ 2, n ~ 2). Subsequently, it is 
attempted to construct an infinite series of such solutions which also satisfies the boundary 
equations. The construction starts by taking a product form which satisfies the interlor equa­
tions as well as the equations for one of the boundaries. lt is then corrected by adding a pro­
duct form which not only satisfies the interlor equations, but also makes the sum satisfy the 
equations on the other boundary. Then a new correction term is added to make the solution 
again satisfy the equations on the first boundary, etc. Requirements for this metbod to work 
are: 

1. In each step it should be possible to find a new correction term which satisfies the needs; 

2. The resulting series should converge. 
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In [12], it appeared that these requirements are fulfilled if and only if the random walk is 
irreducible, positive recurrent and satisfies the additional condition that no transitions from 
interior points can be made to the North, East and North-East. The latter condition sterns 
from convergence requirements for the infinite linear combinations of product forms con­
structed by the compensation approach, and certainly limits the applicability of this method. 
'However, if this condition is satisfied, then the compensation approach is very powerful. 
Application of this metbod shows that the equilibrium distri bution consists of a linear combi­
nation of at most four series of product-form solutions and explicit formulae are produced for 
all coefficients and factors. lt is noted that, if the additional condition is not satisfied, then the 
equilibrium distribution may be expected to have a more complicated structure than a linear 
combination of product-form distributions (this conjecture follows from a study of the ratios 
of numerically determined equilibrium probabilities for various instances for which the addi­
tional condition is nol satisfied). 

There are a number of well-known queueing problems present in the class of two­
dimensional, homogeneous, nearest-neighboring random walks, as studied in [ 12]. For these 
problems, the additional condition stemming from the convergence requirements is satisfied 
by the symmetrie shortest queue problem, Hofri's multiprogramming queues modeland the 
2 x 2 clocked buffered switch (see [5, 8, 19]), while this condition is violaled by the coupled 
processor model, the longest queue model, and the fork and join model (and, as we observed 
in Chapter 1, also by the two-dimensional, symmetrie shortest queue system with a job­
dependent parallelism; see Figure 1.7). Except for the problems betonging to the class stu­
died in [ 12] and satisfying the additional condition, the compensation approach bas appeared 
to work also forsome other two-dimensional problems; see [6, 9]. From the analysis in [6], it 
follows that the restrietion to nearest-neighbor transitions is nol essential, however, it 
simplifies the arguments considerably. Particularly, to find good starting solutions becomes 
much more complex in the other case with not only nearest-neighbor transitions. From the 
analysis in [9], it follows that the compensation approach can also be used for random walks 
on integer grids of a more complex form. Contrary to the complex-variabie methods, exten­
sion of the compensation approach to higher-dimensional random walks appears to be possi­
ble, as will be shown in the next chapter. But, the main question remains: under which condi­
tion does it work? 

The main objective of this chapter is to derive, by using the compensation approach, 
explicit expressions for the equilibrium distribution for a relevant subclass of the class of ran­
dom walks studied in [12]. This derivation and the explicit expressions for the equilibrium 
distribution serve as a preparation for the analysis presenled in the next chapter. In that 
chapter, the so-called projection property will be introduced to avoid complex notations and 
to simplify the analysis, and therefore this property will also be introduced here. Moreover, 
from the beginning, we shall restriet ourselves to the class of random walks satisfying the 
condition under which the compensation approach works. The assumed properties are 
satisfied by the 2 x 2 switch, for which the compensation approach has been worked out in 
detail by Boxma and Van Houturn [19]. In fact, this chapter largely coincides with that 
paper. 

The organization of this chapter is as follows. In Section 2.2, we present in detail the 
class of random walks for which we shall describe the compensation approach, and we derive 
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the equilibrium equations. The equilibrium equations are solved in the Sections 2.3 ànd 2.4, 
by using the compensation approach; in its application several simplifications arise which are 
due to the projection property. InSection 2.3, we show that for the present model the com­
pensation approach generates two alternating series of pure, two-dimensional product-form 
(geometrie) distributions, and, in Section 2.4, we prove that the equilibrium distribution 
{Pm,n} is obtained by simply tak.ing the sum of these two series: 

Pm,n = l:(l-J3;)J3f [(1-<X;)<Xf'-(1-a;+I)af'+tl 
i=O 

i=O 

The a;, J3;, Ûj and ~;are specified inSection 2.3 and the convergence of the above sums for 
all m ~ 0, n ~ 0 with m +n ~ 1 is discussed in Section 2.4. Due to divergence of the series of 
product forms for m =n =0, formula (2.1) does not hold for PO,O· The main results obtained 
from the application of the compensation approach, are summarized in the Main Theorem at 
the end of Section 2.4. In the Sections 2.5 and 2.6, some additional results are derived. In 
Section 2.5, we derive error bounds for the computation of the series which constitute the 
equilibrium distribution, and numerical results are presenled for the 2 x 2 buffered switch, 
which belongs to the class studied in this chapter. In Section 2.6, on the basis of the results 
which are obtained for the symmetrie 2 x 2 buffered switch, the compensation approach is 
compared to the two complex-variabie methods, which have been used by Jaffe [46,47] for 
this problem. Finally, Section 2.7 is devoted to the conclusions. 

2.2. The class of two-dimensional random walks 

In this section, we describe a class of two-dimensional random walks, for which we shall 
show in detail how the compensation approach works. Three examples of queueing systems 
are presenled to illustrate for which kind of problems the assumed properties are satisfied. 
Finally, the equilibrium equations are formulated, which will be used by the compensation 
approach todetermine the equilibrium distribution. 

For the class of two-dimensional random walks considered in this chapter, we shall 
assume some properties which are rather natura! for random walks stemming from queueing 
systems. Since several queueing systems can be modeled as discrete-time or continuous-time 
Markov processes/random walks on the lattice of the first quadrant, the state space M is 
assumed to be equal to 

M = {(m,n) I m,ne !No}, 

where IN 0 is the set of nonnegative in te gers. Further, some reasonable assumptions may be 
made with respect to the transitions and the corresponding probabilities/rates. 

The components m and n of the states (m, n) of a random walk descrihing the behavior of 
a queueing system, usually represent quantities such as queue lengths, which in most cases 
leads to a eertaio homogeneity in the transition probabilities/rates. This means that the state 
space may be partitioned into a finite number of subsets consisting of states with the same 
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outgoing transition probabilities/rates. We shall assume that the same transition probabili­
ties/rates occur for allstatesin the interior, i.e. for all states (m,n) with m,n ~I, and similarly 
for all states (m, 0), m ~ l, on the horizontal boundary and for all states (O,n), n ~ 1, on the 
vertical boundary. In case the components m and n represent queue lengths, this assumption 
means that the same transition probabilities/rates occur for all states corresponding to situa­
tions with the same set of empty queues. 

The assumed homogeneity in the transition probabilities/rates is essential for having a 
chance that the equilibrium distribution can be determined by using the compensation 
approach. The other two assumptions which we make with respect to the transitions, and the 
corresponding probabilities/rates, are mainly made to simplify the analysis. These assump­
tions are also satisfied by several random walks stemming from queueing systems. They read 
as follows. We assume that only transitions to nearest neighbors occur, i.e. that for each state 
(m,n)EM it is only possible to jump to states (m',n')eM with lm'-m I~ I and ln'-n I~ I, 
and further we assume that the so-called projection property is satisfied. This projection pro­
perty may be forrnulated only for random walks with homogeneity in the transition 
probabilities/rates and is explained below. 

The first two assumptions on the transitions imply that we have a homogeneous, 
nearest-neighboring random walk, as depicted in Figure 1.6. Let the transition probabili­
ties/rates for the interior, the horizontal boundary, the vertical boundary and the origin be 
denoted by the variables q1,.12 , h1,,12 , v1" 12 and o1,,12 , respectively. Then the projection pro­
perty means the following. For the horizontal boundary, the transition probabilities/rates h1, 1 

are the . !;ame as the probabilities/rates q1, 1 and the probabilities/rates h1, 0 are equal to the 
sums of q1, 0 and q1, _ 1. One might say that for the horizontal boundary, thesetof transitions, 
accompanied by the corresponding probabilities/rates, is obtained by pushing the set of transi­
tions for the interlor against this horizontal boundary. Similarly, the set of transitions for the 
vertical boundary is obtained by pushing the set of transitions for the interlor against the vert­
ical boundary. For the origin the impact of the projection property is a little bit more com­
plex. The set of transitions for the origin is obtained by pushing the set of transitions for the 
horizontal boundary against the vertical boundary, or by pushing the set of transitions for the 
vertical boundary against the horizontal boundary. We say that for both the horizontal boun­
dary and the vertical boundary, the set of transitions is a kind of projection of the set of transi­
tions for the interior; and, similarly the set of transitions for the origin is the projection of the 
set of transitions for the horizontal boundary as well as the set of transitions for the vertical 
boundary. In Figure 2.1, we have depicted the random walk that is obtained in the end. Note 
that for a random walk with the projection property all transition probabilities/rates are 
uniquely determined by the transition probabilities/rates for the interior. 

A formal description of the three assumptions on the transitions is given in Assumption 
2.1. After that, three examples of queueing systems are presented. All three systems satisfy 
the Assumptions 2.1 (i) and 2.1 (ii), and two of them also satisfy Assumption 2.1 (iii). 

Assumption 2.1. 

(i) For all stat es only transitions to nearest neighbors occur, i.e. for all states (m,n) E M, 
only transitions to states (m',n') E M with I m'-m I SI and In'- n I ~ 1 occur; 



2.2. The class oftwo-dimensional random walles 

t 
n 
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Figure 2.1. The transitton probabilities/rates for a two-dimensional, homogeneous, 
nearest-neighboring random walk with the projection property; for all stales the transitions 
to themselves have been left away. 
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(ii) Homogeneity: for the interior, the horizontal boundary as wellas the vertical boundary, 
all states have the same outgoing transition probabilities/rates; the probabilities/rates 
for the transitions from an interior state (m,n) e M, m,n ::=: 1, to the stales (m+t 1 ,n+t 2), 

t 1 ,t2 e { -1,0, 1 }, are denoted by q11 , 12 , and similarly the transition probabilities!rates 

for the horizontal boundary and the vertical boundary are denoted by h1,,1, and v1,,1,, 

respectively; let the transition probabilities/rates for the origin be denoted by o1 ,,1,; 

(iii) Projection property: the transition probabilities/rates q1,.12 , h1 ,,1,. v1 ,,12 and o1,,12 

satisfy the following equations: 

h1,1 =q1,1 and h1.o=q1,o+q1, - 1 for allte{-1 ,0,1}, 

v 1,1 =q 1,1 and vo,1 =q0,1 +q_1,1 for all te-{-1,0,1}, 

o1,1 =q1,1, oo.1 =qo,l +q-1.1, o1.o =q1,o+ql,-1 and 

oo.o =qo.o+q-l,o+qo,-1 +q-1,-1 · 

Example 2.1: The symmetrie shortest queue system 

This system has been described at the end of Section 1.2 and the beginning of Section 1.3. 
The transition rates have been depicted in Figure 1.4, and it is easily seen that the Assump­
tions 2.1 (i) and 2.1 (ii) are satisfied. The projection property appears to be violated; however, 
the projection property is not essential for the application of the compensation approach and 
violation of the projection property only leads to more complex formulae for the equilibrium 
distribution (compare the expressions obtained in Section 1.3 (see (1.17) and the form of the 

solution lxm,n}) to formula (2.1)). 
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Figure 2.2. The 2x2 switch consisting of 2 parallel servers, where 2 types of jobs arrive. 

E:xample 2.2: The 2 x 2 switch 

The 2 x 2 clocked buffered switch is a discrete-time queueing system with 2 types of arriving 
jobs and 2 parallel servers; see Figure 2.2. Jobs of type j, j = 1,2, arrive according toa Ber­
noulli stream with rate rj, 0 < rj :S 1, i.e .. every time unit (clock cycle) the number of arriving 
jobs oftypej is one with probability rj and zero with probability 1-rj . Upon arrival ajob of 
type j joins the queue at server i, i = 1, 2, with probability r j,i, r j,i > 0, where r j, 1 +r j, 2 = 1 for 
j = 1,2. As a result, every time unit the number of arriving jobs of type j at server i is one 
with probability rj,i = r/j,i and zero with probability 1-rj,i· Jobs are assumed to arrive at the 
beginning of a time unit and they are immediately candidates for service. Each server serves 
exactly one job per time unit, if öhe present. Since we want to have an ergodie system, it is 
assumed that r 1,i+r2,i < 1 for i= 1,2. The behavior of the 2x2 switch is described by a 
discrete-time Markov process with states (m,n), where mand n denote the numbers ofwaiting 
jobs at server 1 and 2 at the beginning of a time unit Uust before the arrival instant). The only 
positive transition probabilities for the states in the interior are 

Q\,-1 =rJ,1r2,1, Qo.o=rl,Jr2,2+r1,2r2,1. Q-\,1 =r1.2r2.2. 

Q-t,o=(l-r 1)r2,2 +(l-r2)r 1,2 , QO,-l =(1-r 1)rz,t +(1-r2)r 1, 1 , 

Q-t.-1 = (1-rl) (l-r2). 

It is easily verified that the 2 x 2 switch satisfies all three properties stated in Assumption 2.1. 

Example 2.3: The rork and join model 

This system consists of 2 parallel servers, where customers arrive according to a Poisson 
strearn with intensity À., À> 0. Each customer brings along 2 sub jobs, one subjob for each 
server, and may 1eave the system if and only if both subjobs have been served. Each server 
uses a FCFS service discipline and for server i the service times are assumed to be exponen­
tially distributed with mean 1fl.l.;, ).1; >À (which implies the ergodicity of the system). This 
system may be described by a continuous-time Markov chain with states (m,n ), where m and 
n denote the numbers of unfinished subjobs at the servers 1 and 2. The positive transition 
rates for the interior points are 

Qt,t=À., Q-l.o=Jll· Qo,-I=Jl2· 

Also the fork and join model satisfies all three properties stated in Assumption 2.1. 
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In the paper by Adan et al. [12], the compensation approach has been applied to the class 
of random walks which satisfy the Assumptions 2.1 (i) and 2.1 (ii). They established that the 
equilibrium distribution can be obtained by means of the compensation approach, if and only 
if there are no transitions from the states in the interlor to the North, East and North-East. 
Here, for simplicity, it is assumed from the beginning that this condition is satisfied. 

Assurnpüon 2.2. 

qo,J = qi,O = ql,l = 0. (2.2) 

Note that this assumptionlcondition is satisfied by the symmetrie shortest queue system and 
the 2 x 2 switch. Assumption 2.2 is violated by the fork and join model (this could be 
expected, since the asymptotic formula derived by Flatto and Hahn (see [32], Theorem 7.1) 
for the equilibrium probability Pm,n as m is fixed and n ~ oo involves a factor n 312 (if 
IJ. I < 1J.2), which suggests that its equilibrium distribution cannot be expressed as a linear com­
bination of product fonns o!" ~" ). 

Apart from satisfying the Assumptions 2.1 and 2.2, the random walks which we consider 
are assumed to be irreducible and positive recurrent(= ergodic). Due to the projection pro­
perty, we can give a simple, necessary and sufficient condition for the irreducibility and the 
positive recurrence. This simple condition is derived by analyzing the two one-dimensional 
random walks with the aggregate states associated with the marginal distributions; see the 
next two paragraphs. 

Let IPm,n} be the equilibrium distribution of the (full) random walk and let its marginal 
distributions forthem-component and n-component be denoted by {p~)} and {p~2l}: 

p~) = Ï:, Pm,n for all m ~0. 
n=O 

p~2) = Ï:, Pm,n for all n ~ 0. 
m=O 

Due to the projection property. for all states (m.n) with m ~I the total probability/rate for 
transitions to states (m+t,n') equals q~ 1 ) = q1, _ 1 +q,, 0 +q,, 1o where t is fixed and te { -1,0,1 }. 
and for all states (O,n) the total probability/rate for transitions to states (t,n') equals q\1) for 
t:: 1 and qbl) +q~1( for t = 0; similarly for the n-direction. This shows that the distributions 
{p~l} may be characterized as the equilibrium distributions of one-dimensional, homogene­
ous, nearest-neighboring random walks with the projection property; here, the transition 
probabilities/rates for the interior are given by the variables q~i) defined by 

qpl = q,,-1 +q,,o+q,, 1. forte {-1,0,1 }. 

lt can be shown that the full random walk is positive recurrent if and only if both com­
ponent random walks are positive recurrent, i.e. if and only if the component random walks 
have negative drifts (for a proof, see Malyshev [55], who discusses ergodicity conditions of 
two-dimensional random walks with bounded jumps). So, we obtain the following necessary 
and sufficient condition for the positive recurrence: 

(2.3) 

lf q\i) ::0 for some i= 1,2, then all states (m,n) with m ~ I (if i:: I) or all states (m,n) with 
n ~ 1 (if i:: 2) are transient, and we can restriet ourselves to a one-dimensional problem. To 
exclude this special case, we must require that q\i) > 0 for all i. Together with (2.3), this 
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leads to the condition that 

q~~ > q\il > 0 for all i= 1,2. (2.4) 

Given Assumption 2.2, condition (2.4) is necessary and suftkient for having an irreducible 
and positive recurrent random walk, since then q 1,_1 >0 and q_1, 1 >0 (without Assumption 
2.2, (2.4) does not guarantee the irreducibility; in that case, one might have the situation with 
q -I,-! > q 1, 1 > 0 and q1,,1, =0 for all other directions (t 1,t2), for example). 

Since the random walks which we consider are assumed to be irreducible and positive 
recurrent, condition (2.4) must be satisfied, and we obtain the following geometrie distribu­
tions for the one-dimensional marginal distributions {p~l): 

p~) = [~- :~;J [:~;r. k~O. i=l.2. (2.5) 

In the next sections, we apply the compensation approach to the class of two­
dimensional random walks which are irreducible and positive recurrent and which satisfy the 
Assumptions 2.1 and 2.2, i.e. to the class of two-dimensional, irreducible, positive recurrent, 
homogeneous, nearest-neighboring random walks which satisfy the projection property and 
the property that from interior points no transitions are possible to the North, East and North­
East. Note that the 2 x 2 switch belongs to this class. The equilibrium distri bution IPm,n ) for 
a random walk of this class is characterized as the unique normalized solution of the equili­
brium equations, which are given below. 

The equilibrium equations, and also some other formulae in the remainder of this 
chapter, slightly simplify in case we have the property that for each state the total 
probability/rate of outgoing transitions adds up to 1, i.e. in case 

q_,,, +qo,o+ql,-l +q_,,o+Qo,-1 +Q-1,-1 = 1. (2.6) 

Therefore, from now on we assume that we have a discrete-time random walk, since then the 
property stated in (2.6) is satisfied by definition. This assumption also implies that we may 
use the term transition probabilities instead of transition probabilities/rates. For a 
continuous-time random walk, the property stated in (2.6) may be satisfied by rescaling time, 
after which the sameequilibrium equations and, hence, also the same equilibrium distribution 
are obtained as in the discrete-time case. So, the analysis in the remainder of this chapter also 
applies to the continuous-time case; this also follows from the property that, by using the uni­
formization technique as described in e.g. Tijrns [70] (not to be confused with the uniforrniza­
tion technique developed by Kingman [49] and Flatto and McKean [33]), a continuous-time 
random walk/Markov process can be transformed to an equivalent discrete-time random 
walk/Markov process. By (2.6), we obtain the following equilibrium equations: 

Pm,n = ql,-1 Pm-l,n+l +Qo,OPm,n + q-1,1 Pm+l,n-l 

+ Q0,-1 Pm,n+I + q-I.OPm+l,n + q-1,-1 Pm+l,n+l ifm~l.n~J. (2.7) 

Pm,O q 1,-1 Pm-1,0 + q 1,-1 Pm-1, 1 + (qo,o +qo,-I )Pm,O 

+ qo,-I Pm, I + (q -1 ,0 +q- 1,-1 )Pm+I.O + q-1 ,-1 Pm+l,I if m ~I, n =0, (2.8) 
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Po.n = q-l.IPO,n-1 +(qo,o+q-t,o)Po.n +q-t,IPI,n-1 

+ (qo,-t +q-1,-1 )PO,n+l + q-I,OP l,n + q-1,-1 P l,n+l if m =0, n ~ 1, (2.9) 

Po.o (qo,o +q-1.0 +qo,-1 +q-1 .-1 )Po.o + (qo,-1 +q-1.-1 )Po. I 

if m =0, n =0. (2.10) 

Equation (2.7) is called the equilibrium equation for the interior, (2.8) is called the equili­
brium equation for the horizontal boundary, (2.9) is the equation for the vertical boundary, 
and (2.10) is the equation for the origin. 

2.3. The compensation approach 

Application of the compensation approach to a random walk of the class described in the pre­
vious section, leads to the generation of two forma! solutions of the equilibrium equations. In 
this section, we show how these solutions are obtained. In the next section, it is shown that 
these solutions are well-defined and that they lead to the equilibrium distribution IPm,n ) . 

When applying the compensation approach, according to its main idea (see Section 1.3), 
we have to start with characterizing the set of product-form solutions which satisfy the equili­
brium equation (2. 7) for the interior. Substitution of the product form am ~n into equation 
(2.7), and dividing by common terms, leads to the following lemma. 

Lemma 2.1 

The product fonn am ~n is a solution of the equilibrium equation (2. 7) for the interior if and 
only if(a.~) satisfies 

(2.11) 

Equation (2.11) is a quadratic equation in a for fixed ~. and vice versa. The set P of 
appropriate product-form solutions of (2.7) is defined by 

P = {(a.~)eC2 1(a,~)satisfies(2.11), a,~:tOand lal,l~l<l} . 

Product forms with a or ~ equal to 0 are excluded, since they only lead to non-relevant solu­
tions; and, product forms with a or ~ Iarger than or equal to I in absolute value are excluded, 
since later on it must be possible to normalize the ultimate solution of product forms. 

Due to the Iinearity of the equilibrium equations, each linear combination of appropriate 
product-form solutions of the equilibrium equation (2.7) for the interior, also satisfies this 
equation (2.7). This property is exploited in the second step of the main idea of the compen­
sation approach. This second step prescribes to construct a linear combination of product­
form solutions of P, such that also the equilibrium equations (2.8) and (2.9) for the boun­
daries are satisfied. For the class under consideration, we obtain two series of product-form 
solutions, i.e. two linear combinations of countably many product-form solutions. These 
series are called forma[ solutions. Here, the adjective forma[ is used, since we do not pay 
attention to the convergence of the series during the construction process. A forma! solution 
consists of an initia[ tenn, which satisfies the equilibrium equations for the interior and one of 
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the two boundaries, and a countable number of compensation terms. Each compensation term 
corrects the error made by the previous term at one of the two boundaries. 

The number of forrnal solutions needed for the equilibrium distribution is equal to the 
number of different initial terms that can be found. For the general case discussed in [12] one 
finds at least one and at most four initial terms. In our case, due to the projection property, 
we have exactly two initial terms: one for the horizontal boundary and one for the vertical 
boundary. Contrary to the general case, we have explicit formulae for the initial terms. 

Lemma 2.2. 

(i) 

(ii) 

There exists exactly one solution (a,~) EP which also satisfies the equilibrium equation 
(2.8) for the horizontal boundary. The factors ex and ~of this solution are equal to 

q\1) R = Q-1,1CX2 
a=m·'"' 2' 

q_r q 1.-1 +Qo,-1 a+q -1,-1 ex 
(2.12) 

There exists exactly one solution (a,~) EP which also satisfies the equilibrium equation 
(2.9)for the vertical boundary. The factors ex and ~ ofthis solution are equal to 

F> ~2 
A - !!..._ - ql,-l (2.13) 
'"' - (2l ex - 2 · 

Q-r Q-1,1+Q-J.o~+Q-I.-I~ 

Proof. 

We only prove part (i). Part (i i) can be proved along the same lines. Let a."' ~n, 0< I a I < 1 and 
0< I ~I < 1, be a solution of (2. 7) and (2.8). Substitution of cxm ~n in (2. 7) and (2.8) gives the 
quadratic equafion stated in (2.11) and 

ex= ql,-1 +qi.-I~+(Qo,o+qo,-t>a+qo,-lcx~+(q_l.o+q-l,-l)a2 +q_1.-lcx2 ~. (2.14) 

Multiplying both si des of (2.14) by ~ and subtracting from both sides of (2.11) leads to 

' 2 2 0 = -ql,-1~-qO,-ICX~+q_I,ICX -Q- 1,-ICX ~. 

which shows that ~ has to be taken as presenled by (2.12). To find ex, we first rearrange the 
terms of (2.11 ): 

(q 1.-1 +qo,-1 a+q-1.-1 a 2) ~2 - (a-qo.ocx-q_l.oa2) ~ + q-1 .1 a 2 = 0 . 

Now, dividing by ~. and substituting the formula for ~ as stated in (2.12), leads to 

q-1.1 cx2 - (a-qo,oa-q -1 ,oa2) + (q 1.- 1 +Qo.-1 a+Q-1,-1 cx2) = 0. 

Finally, rearranging terms and using (2.6) leads to 

(q_1. t+Q- t,o+q-l,-t> a 2 - (q 1.-1 +Q- 1,1 +q_l.o+Q-1,- 1) ex+ q 1.-1 = 0 . 

This quadratic equation has two real-valued solutions, viz. a= 1 and ex as given by (2.12). 
Here a= 1 is not feasible, but, by (2.4), the other solution is. By (2.4), also the related solu­
tion for ~ is feasible, which completes the proof. 0 

As we shall see inSection 2.4, for largem the product form cxm~n with a and ~as given 
by (2.12) will be the dorninating term (largest ex-factor) of the equilibrium distribution 
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IPm,n}. So this product form describes the behavior of IPm,n } for large m, which explains 
that this <X is equal to the parameter of the marginal distri bution {p~l }. In the same way it is 
explained that the factor p given by (2.13) is equal to the parameter of the marginal distribu­
tion {p ~2) } . 

For both initia! terms we get a forma! solution. Let us first consicter the forma! solution 
{ Xm,n ) with initia! term a o<X~ P3, where <Xo and Po are defined by (2.12) and a o is a nonnull 
constant. Inslead of only giving explicit formulae for fxm,n }, we prefer tostart with showing 
how {xm,n) is constructed step by step. This also enables us to make clear why we get such 
simple forma! solutions for our class of random walks. 

The initia! term a0n~P3 satisfies the equilibrium equations (2.7) and (2.8) for the inte­
rlor of the state space and the horizontal boundary. However, it violales equation (2.9) for the 
vertical boundary. To obtain a solution which satisfies the equations (2.7)-(2.9), we add step 
by step product-farm solutions ~ pn of equation (2.7) for the interior, i.e. product forms 
~ pn for which (<X, j3) satisfies equation (2.11) (in the next section, it wil! be checked whether 
these solutions have product factors which are not equal to 0 and which are smaller than 1 in 
absolute value, i.e. whether they are in the set P). In the first compensation step, to the initia! 
term, a compensation term a 1 <Xm pn is added to compensate the error of the initia! term at the 
vertical boundary. This error is compensated by chosing the coefficient a 1 and the product 
factors <X and p such that (n,p) satisfies (2.11) and the new salution a 0n~P3+a 1 ~pn 
satisfies (2.9). Since the compensation term generates a new error at the horizontal boundary, 
after this step more compensation terms have to be added. To show the details of the con­
struction of a compensation term, we give an extensive description of the first compensation 
step in the next paragraph. All other compensation terms are constructed in the same way. 

In the first compensation step, we have to define a 1, <X and 13 such that (n,l3) is a solution 
of (2.11) and the linear combination a0n~P3+a 1 ~pn satisfies the equilibrium equation 
(2.9) for the vertical boundary. Substitution of the linear combination into (2.9) gives the 
condition 

ao K(<Xo.i3o) 133-1 +a 1 K(n,l3) 13n - l = 0 for all n ~I. 

where 

K(n,j3) = Q-1.1 -O-Qo,o-Q-I.o)l3+(qo,-l+-q_l.-l)l32 

+ (q -l ,l+q -1.013 +q -1,-1132) (X. 

(2.15) 

Because a0n~l33 violales (2.9), K(<Xo.Po) ;t 0 and hence condition (2. 15) forces us to take 
13 = p0. Next, we u se equation (2. I I) for the choice for <X. Substitution of P =Po into (2.11) 
and rearrangement of the terms of (2.1 I) gives the following quadratic equation for n : 

(Q-J,I+Q-J,ol3o+q_I.-1P5)n2 - (13o-Qo,ol3o - qo.- IP5)n+qi.-1P5 = 0. (2.16) 

Of course, <Xo is one root of this quadratic equation. Let n1 be the other root. Since we 
would have no compensation if we would take a:::: <XQ, we have to take <X= n 1• For the com­
putation of n 1, one can use one of the formulae 

q 1,- 1135 (2.17) <Xo<Xl :::: 2 ' 
q -1.1 +q -1.oPo + q -l.- 1 Po 
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(1- qo.o -qo,-113o) 13o 
ao +al = 2 ' 

q-1,1 +q-1 ,oPo +q-1.-1 Po 
(2.18) 

which are the formulae for the product and the sum of the roots of the quadratic equation 
(2.16). Finally, the first compensation step is compieled by defining the factor a 1 such that 
the linear combination a 0a3' 133 +a 1 a'j' P3 satisfies equation (2. 9). By (2.15), we find the 
expression 

K(ao.l3o) 
ai = - K(aJ,I3o) ao . 

This expression can be simplified considerably. By substituting (2.18) in the formulae for 
K(Oo.Po) and K(aJ,I3o). we find the expressions 

K(ao.Po) = (1-a.)(q_•.•+q-I,oPo +q-1.-I PÖ). 

K(a~ol3o) = (1- ao)(q -1.1 +q -I.oPo +q -1.-tPÖ) • 

which are due to the projection property (it is easily verified that this factorization is not 
obtained for a homogeneous, nearest-neighboring random walk without the projection pro­
perty). As a result, the expression fora 1 simplifies to 

1-a1 
a t = - 1 _ ao a o . (2. 19) 

Tbe salution a 0a(ll P3 +a 1 a'j' 133. which we have after the first compensation step, 
satisfies the equilibrium equations (2.7) and (2.9) for the interlor and the vertical boundary. 
However, the compensation term a 1 a'i'l33 has generaled a new error (a smaller one, as will 
be shown in Section 2.4) at the horizontal boundary. To compensate for this error, we again 
have to add a compensation term, and so on; here, a compensation step on the horizontal 
boundary is symmetrie to the compensation step on the vertical boundary. Ultimately, we 
obtain the following forma! solution, where ho is a second nonnull constant: 

H H 

V V 

The construction is such that each term in this series satisfies (2.7), each sum of terms with 
the same a-factor satisfies (2.8) and each sum of terms with the same p-raetor satisfies (2.9). 
As a consequence, {xm,n} is a forma! salution of the equilibrium equations (2.7)-(2.9). 

The formulae for {xm.n} are as follows. By taking pairs of product forms in two dif­
ferent ways, we get two expressions: 

-
Xm,n = aoboa3'P3+ l:ai+la7'+1 (h;P7+h;+1P7+1) 

j=() 

-= l:b;P7(a;a;"+a;+laf'+l), m?::O,n?::O. 
j=() 

(2.20) 

(2.21) 

The factors ao and Po are given by (2.12). The other a- and P-factors are obtained by using 
the formula for the product of the roots of (2.11) (compare (2.17)): 
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IXï+l 
ql.-1 ~r ; ~o. (2.22) 

q-l,lllf+l 1 
A - - i~O. 
Pi+l - ql,-l+qo,-lai+l +q-1,-lllf+l . ~; ' 

(2.23) 

The coefficients a 0 and ho are only required to be nonnull constants. 
coefficients are derived in the sarne way as forrnula (2.19) for a 1: 

Formulae for the other 

1-~Xï+l 

l-Il; 

1-~i+l 
1-~; 

a;, i~O. 

h; , i~O. 

(2.24) 

(2.25) 

The simp Ie form of the recursive formulae (2.24) and (2.25) for the coefficients a; and h; 
(which is due to the projection property, cf. the derivation of formula (2.19) fora 1 ), leads to 
an elegant expression for lxm,n }. Define a 0 := 1-ao and ho:= 1- ~0 , then the recursive for­
mulae (2.24) and (2.25) fora; and h; are easily rewritten to 

a; = (-1i (1-a;), i ~o. 

h; = ( -1 i (1 - ~i) • i ~ 0. 

Substitution of these forrnulae in (2.20) and (2.21) yields 

-
xm,n = (1-ao)a3' (l-~o)~3- :I;(l-a;+J)ai".-1 [(1-~;)~7 -(l-~i+I)~7+I1 

i=O 

-= :I;0-~;)~7 [(1-a;)af'-(1-a;+l)af'+d, m~O, n~O. 
i=O 

(2.26) 

(2.27) 

which show that {xm,n} is an altemating sum of pure, two-dimensional product-forrn solu­
tions. 

For the other forma! solution {xm,n} generaled by the initia! term with product factors 
defined by (2.13), we get similar expressionsas for {xm.n }: 

Xm,n = O-óo)&3' o-~o)~3- :i:o-~i+l)~7+1 [O-á;)&7' -(1-&;+d&i"+tl 
i=O 

= :i:CI-á;)&7' [(l-~;)~7-(l-~;+1)~7+d. m~O. n~O. 
i=O 

(2.28) 

(2.29) 

Here, the factors ~0 and &o are defined by (2.13). The other factors are defined such that each 
product form satisfies quadratic equation (2.11 ): 

(2.30) 

i ~0. (2.31) 

This completes the description of the two series { Xm,n } and {x m.n } , which both are format 
solutions of the equilibrium equations (2.7)-(2.9). 
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2.4. Main Theorem 

This section is devoted to the derivation of the Main Theorem, which stales tbat the equili­
brium distribution fPm,n} is obtained by simply tak.ing the sum of the two fonnal solutions 
{xm.nl and {xm,nl; see Theorem 2.1 at the end of this section. For the proof of this main 
result, some preliminary results are needed. This section starts with showing that all product 
forms which constitute the fonnal solutions are in the setPof appropriate solutions of (2.7) 
(up to now, this only has been verified for the initia! product forms) and that the fonnal solu­
tions are absolutely convergent in all states, except in the origin. For this, we shall refer to 
some results of Adan et al. [12). After that, it is shown that a simple result for the fonnal 
solutions leads to the suggestion that a solution of all equilibrium equations may be obtained 
by taking the sum of the two fonnal solutions, which ultimately leads to the Main Theorem. 

For the convergence of the formal solutions {xm,n} and {xm,n }, we need infonnation 
about the limiting behavior of the a- and ~-factors. We gather some results of the analysis 
presented in [12). 

Lemma 2.3. 

For the factors Ctj, ~i• &i and ~i• we find: 

(i) 1 > CX() > ~0 > Ut > ~t > .. . i 0; 

ai+t ~i I 
(ii) --~At and - ~- as i~oo; 

~ Cl.j A2 

(iii) 1 > ~0 > &o > ~t > d.t > ... i 0 ; 

~i+t I nd (iv) -- ~- a ai A2 
as i ~oo; 

Here, A t and A 2 are defined by 

At= 
(1 - q o,o)- V,-(1---q-o-.o-)2---4-q-t-.--t q---t.-t 

2q-t,t 

Part (i) of this lemma is proved by first writing the quadratic equation (2.11 ), by which 
the a- and ~-factors are defined, as a quadratic equation in z = 13/a and then applying 
Rouché's theorem (see Titchmarch [71)). Part (ii) is found by first writing the roots of the 
quadratic equation in z = 13/a as function of a and then letting a~O (see Lemma 6.1 of [12]). 
The parts (iii) and (iv) are proved along the same lines. 

The parts (i) and (iii) of Lemma 2.3 show that all product forms which constitute the for­
mal solutions, are memhers of the set P. Further, by Lemma 2.3, 

(1--<Xi+t)CXfrt (1-~i+t)~f+t ~ [ AA
2
t] m+n (2.32) 

(1--a; )a;" (1-~i )~7 
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and 

O-«i+2)a:"+2 o-Pi+t)Pf+t 
O-a;+t)a:"+l o-P;)P? 
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(2.33) 

as i~ oo. Elementary algebra shows that A 1 and A 2 are positive real-valued variables with 
A 1 <I <A 2• Therefore the limitsin (2.32) and (2.33) are smaller than 1 for all stales (m,n) 
with m+n ~ 1, which proves part (i) of the following lemma. Part (ii) of that lemma, which is 
needed in the second part of this section, is also easily proved by using Lemma 2.3. 

Lemma2.4. 

For {xm.n }, we have the following properties: 

(i) The series 

- -l:<l-a;)a:" (1-P;)Pf and l:O-«i+t)a:".-t (1-P;)Pf 
i=O i=O 

are absolutely convergentfor all m~O. n~O and m+n ~ 1. So, lxm,n} is well de.fined by 
(2.26) and (2.27) in all states except in the origin. 

(ii) l: lxm,n I < 00 • 

m:?:O, n:?:O 
m+n:?:l 

The same results holdfor lxm,n }. 

By Lemma 2.4, {xm.n} and lxm,n} satisfy the equilibrium equations for all states except 
for the states for which the equilibrium probability Po.o occurs in the corresponding equili­
brium equations, i.e. except for the states (0, 0), (1, 0) and (0, I). 

From the analysis in Adan et al . [12], we know that the equilibrium distribution is found 
by taking a linear combination of the forma! solutions, of which the coefficients can be deter­
mined by substituting this linear combination in two of the three equilibrium equations for the 
stales (0,0), (1,0) and (0, 1). This is proved by analyzing the embedded process on thesetof 
states where the forma! solutions are absolutely convergent. For our problem, however, due 
to the projection property, it follows that we have to-take the sum of the forma! solutions and 
we can give an alternative proof to show that the equilibrium distri bution is equal to this sum. 

Due to the projection property, we found the formulae (2.26)-(2.29). Using these formu­
lae, we easily see that 

l:xm,n = (l-ao)a3' for all m ~ 1, l: Xm,n = 0 for all n ~ 1, 
n=O m=O 

:Ëxm.n = 0 for all m~l. :Ëxm,n = (1-~o)~3 for all n~l. 
n=O m=O 

Since ao and ~0 are equal to the parameters of the marginal distributions IPkl)} and IPF)} 
(see also the paragraph right after the proof of Lemma 2.2), by defining IPm,n) as the sum of 
the forma! solutions, i.e. 

Pm,n := Xm,n +xm,n , m~O. n~O, m+n ~ 1, 
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we obtain a solution for which 

:ËPm,n = p~l for all m:<!:l, 
n=O 

.. 
L Pm,n = p~2) for all n:<!:l. 

m=O 

To obtain a solution for which the probabilities add up to I, wedefine fio.o by 

Po.o := I - L Pm.n • 
m:!O, n:!O 

m+n:!l 

which is a correct definition due to Lemma 2.4. Now, rewriting fio.o leads to 

Po.o = (1-<XQ)- :Ëfio.n "" (1-~o)- :Ëfim.o · 
n=l m=l 

(2.34) 

Hence the first equality in (2.34) also holds for m =0 and the second equality in (2.34) also 
holds for n =0. As a consequence, the marginal distributions of {Pm,n} are equal to the mar­
ginal distributions IPW} and {p~2l} of IPm,n): 

:Ëfim.n "" p~l for all m:<!:O, 
n=O 

:ËPm,n = p~2l for all n:<!:O. 
m=O 

(2.35) 

Since IPm,n} is a linear combination of the forma! solutions, we know that IPm,n} 
satisfies the equilibrium equations in all stales except in (0,0), (1,0) and (0,1). To show that 
IPm,n} also satisfies the equations in these remaining states, we use (2.35) and the balance 
principle: 

the strearn out of a set M' "" the strearn into this set M' , M' cM. 

The balance principle for the set M 1 "" { (m,n) e MI m:<!: I} gives the condition 

(q-l,l+q-l,O+q_l,-1) LPI,n ""q1,-1 LPO,n · 
n=O n=O 

By using (2.35) it is easily shown that IPm,n} satisfies this condition, i.e. the balance principle 
for the set M 1• Further, {Pm,n} also satisfies the balance principle for the subset 
M 2 ""M 1 \{ (1 ,0)} of M 1, since it satisfies the balance principle (i.e. the equilibrium equation) 
for each state of this set. Hence, IPm,n} also satisfies the balance principle for M 1 \M 2 , i.e. 
the equilibrium equation in (1,0). In the sarne way it is proved that {Pm.n} satisfies the equa­
tions in (0,1) and (0,0). So, we find that IPm,n} satisfies all equilibrium equations. By Lemma 
2.4, I:",," :!O lfim.n I < oo, and thus the equilibrium distri bution fPm,n} may be obtained by nor­
malizing the solution {Pm,n }. Since, by the definition of PO.O• the probabilities Pm,n already 
add up to I, we finally find that IPm,n} is equal to fPm,n}. This completes the proof of the 
Main Theorem. 
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Theorem 2.1. (Main Theorem) 

The equilibrium distribution IPm,n } fora randnm walk of the class described in Section 2.2, is 
equal to the sum of two alternaring series of pure two-dimensional product-form distribu­
tions: 

-
Pm,n 1:(1-~i)M [(1-<Xi)af' -(1-«i+l)af'+d 

i=O 

Po.o = 1 -

+ Ï,(1--&i)cif' [(l-~i)~7 -0-Pi+I)M+d . (m,n)eM\{(0,0)). 
i=O 

(m,n)eM 
(m,n) ;< (0,0) 

Pm,n · 

Here, the factors CLj, ~i· ~ and Pi are defined as denoted at the end of Section 2.3. 

2.5. Error bounds and numerical results 

(2.36) 

(2.37) 

The analytic results for the equilibrium distribution IPm,n} make it possible to develop 
efficient numerical procedures for the computation of IPm,n } . In this section, we first derive 
error bounds for the relevant series of product forms. After that, numerical results are 
presented for the symmetrie 2 x 2 switch. Among others, we show that for most states only a 
few product forrns are needed to obtain accurate approximations for the equilibrium probabi1-
itiespm,n · 

Suppose that we want to compute the equilibrium distri bution within a given absolute or 
relative accuracy. For a state (m,n) -:t (0,0), by (2.36), the equilibrium probability Pm.n is 
equal to the sum of the series Xm,n and Xm ,n defined by (2.26)-(2.29). For the absolute differ­
ence between these series and their partial sums, we can derive light error bounds by using 
the property that the sequences {ai+Jt13d. {~/ad. l~i+l/ad and {a/~d. of which all ele­
ments are positive and smaller than 1, and of which the limits are given by Lemma 2.3, are 
monotonously strictly decreasing (see Lemma 5.1 of [12]). 

Let (m,n) e M\{ (0,0)} and Jet x~!n denote the ·partial sum consisting of the first k ~ 1 
product forms of Xm,n. Then 

k-1 
x~~J = _t(l-~;)~?[(l-a;)a;"-(1-a;+ 1 )af'+d, k~l. 

i=O 

k-l 
x~~+l) = (1-<XQ)al)'(l-~o)~3-l:O-«i+l)af'..t [(1-~;)~f-(I-~;+t)~7+t1, k~O. 

i=O 

Since the sequences {ai+l~i) and {~/<X;} are monotonously strictly decreasing, also the 
sequences { <X;+1/ai) and { ~i+tt13;) are monotonously strictly decreasing. We use this pro­
perty to derive an error bound for the approximation of Xm,n by a part ia! sum x~.k,l, where 
k ~ I. For the computation of the partial sum x~.kJ itself, one needs the product factors 
ao.~0 , a., .. . • ~k-l>ak . Suppose that, for the benefit of the error bound, we are willing to 
compute in advance the next product factor ~k· Then, after defining the factors X a and x~ by 
x a = ( ak/ak _1 )m and x 13 = (~kt13k _ 1 )" (note that x a and x 13 are positive and smaller than 1 ), we 
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obtain the following error bound: 

lxm.n -x~~J I = I i(l-MM [(l-<X;)<X7' -(l-<Xi+t)<X7'+Ill 
l=k 

-s: L [ a7'P7 + ai"+t P?l 
i=k 

l+xcx 
= aTP~ __ ....:;;.,_ 

1-XcxX~ 

Similarly, one can derive error bounds for the partial sums xi;.~+t). Further, similar error 
bounds can he derived for the partial sums x!!_ln of the series xm,n· This results in the follow­
ing lemma. 

Lemma2.5 

Let (m, n) E M\{ (0, 0)}. Then the following error bounds hold for the part ia/ sums x!!?n and 
x}!>n consisring of the first k product-form solutions of the series Xm n and Xm n respectively 
(lkfine P~t :=la~ <i...t :~=;I to let the bounds also be validfor x~!n a;w x~!nJ; . 

I+ (ak/ak - t )m 
lxm,n- x~~J I S: ampn for k '?. 1, 

k k 1-(ak/ak-t )m(pkfPk-d 

I x - x<2k+l) I s; aT+tPZ 
1 + <Pk!Pk-t t 

for k '?.0, m,n m,n 
1- (<Xk+ti<Xk)m(pkfPk-l )" 

lxm,n - x~~J I s; &T~Z 
I+ (~k!J3k-t t 

for k '?.1, 
l- (ak/&k-1 )m(~k!J3k- t )n 

lxm n- x~2k/1) I s; &T~~+t 
1 + c&*;&*-1 )" 

for k '?.0. 
t- (ak/&k-1 )m(~k+t!J3k)" 

Denote the error bounds for x~?n and x~!n by b~!n and 6!!.~. These bounds tend to 0, 
exponentially fast, as k ~ oo, Further, for fixed k, these bounds decrease monotonously and 
exponentially fast to 0, as m ~ oo and/or n ~ oo. 

For the computation of the equilibrium probability Pm,n fora state (m,n) -:t (0,0) within a 
given absolute accuracy Eabs• we propose to use the following procedure. Compute xWn and 
,i<O and the corresponding error bounds b(l) and 60l . If b(l) +b 0 > S:E b then x(ll ~_x<O m,n• m,n m,n m,n m,n a s• m,n m,n 

approximates Pm,n within the desired accuracy. Else, one continues by approximating the 
series Xm,n and Xm,n more accurately, say with absolute accuracy E1 and E2 , respectively. The 
parameters Et and E2 must be defined such that Et > 0, E2 > 0 and Et+ E2 = Eabs. It seems rea­
sonable to divide Eabs over Et and E2 proportional to the values for the error bounds b~!n and 
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b ~!,.; bere, in order to avoid the situation that one series must be computed with a very smal! 
absolute accuracy and the other series only with a relatively very large absolute accuracy (this 
could occur in case m is very smal! and n very large, or vice versa), it must be provided that 
each E; gets at least 5% of Eabs. Thus, we take 

Ei = 0.05·Eabs and E2 = 0.95 · Eabs if b<ll ~ 0.05.(b0 >, +b 0 >) · m,n m, m,n , 

El = 0.95·Eabs and E2 = 0.05·Eabs if J}O> SO.OS.(bO>, +b(l) )· m,n m, m,n ' 

b(l) ~(I) 

m,n 
and 

bm,n 
otherwise. El b(l) +b(l) Eabs E2 = b(l) +h(l) Eabs 

m,n m,n m,n m,n 

The series Xm,n is approximated within absolute accuracy E1, by computing the partial surns 
x<k> and the corresponding error bounds b(Jc) for k = 2 3 • • • until b(Jc) < E1 · and similarly m,n m,n ' ' m,n ' 

for Xm,n· This compieles the description for the computation of Pm,n• (m,n)EM\{(0,0)}, 
within a given absolute accuracy. The equilibrium probability Po.o for the origin may be 
easily computed out of the equilibrium equation for this state (see (2.10)). Finally, we remark 
that a probability Pm,n can be computed within a given relative accuracy by perfonning the 
above procedure for decreasing values of the absolute accuracy Eabs. 

Below, the proposed procedure is applied for the computation of the equilibrium distri­
bution of the 2 x 2 switch. Based on this example, it is also shown that the explicit expres­
sions for the equilibrium distri bution fPm,n } may lead to similar expressions for the relevant 
performance measures. 

Example 2.2: The 2 x 2 switch ( continued) 

The symmetrie 2 x 2 switch is defined as a 2 x 2 switch with parameters 

r, =r2=r, ;.1,1 =r, ,2=r2,1 =r2,2=~. (2.38) 

where r denotes the arrival rate of the Bernoulli streams for both types of arriving jobs. The 
parameter r is equal to the fraction of time units that each server works, and therefore r is 
called the workload. We assume that 0 < r < I (the case r = 1 is excluded, since it 
corresponds to a non-ergodie system). Remark that the symmetry leads to some 
simplifications in the formulae for the equilibrium distribution {Pm,n}. For the symmetrie 
2 x 2 switch, the transition probabi I i ties simplify to _ 

q-1,1 =ql,-1 =I14r2, qo,o=I!zr2, q-l.o=qo,-1 =r(l-r), q-1,-1 =(l-r)2. (2.39) 

So, q;,j = qj,i for all directions (i,j), and the equilibriull! distri bution will also be symmetrie. 
lndeed, it is easily verified that in the symmetrie case ~; = fl; and a; = ~; for all i ?! 0, which 
implies that Xm,n =x11 ,m for all (m,n)EM\{ (0,0)}, and Pm.n =p,.,m for all (m,n)EM. 

For the symmetrie 2 x 2 switch, we used the procedure described in this section to com­
pute the equilibrium probabilities Pm,n for all states (m,n ), m +n :s; 10, within absolute accu­
racy Eabs = 10-{;. In Table 2.1, we have depicted the values of the equilibrium probabilities 
Pm,n for the case r=0.8. In Table 2.2, for each state (m,n) ~ (0,0), it is denoted how many 
product forrns of the series Xm,n and Xm.n were needed for the computation of Pm.n within the 
desired accuracy. As we see, for all states which are not too close to the origin, only a few 
terms of the series Xm,n and Xm,n are needed to obtain accurate approximations for Pm,n· 
Further, the results indicate that, for a workload r = 0.8, the sum 
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t 10 0.0001 
n 9 0.0003 0.0000 

8 0.0007 0.0001 0.0000 
7 0.0017 0.0002 0.0000 0.0000 
6 0.0037 0.0005 0.0001 0.0000 0.0000 
5 0.0083 0.0011 0.0002 0.0000 0.0000 0.0000 
4 0.0187 0.0025 0.0004 0.0001 0.0000 0.0000 0.0000 
3 0.0415 0.0060 0.0010 0.0002 0.0001 0.0000 0.0000 0.0000 
2 0.0892 0.0157 0.0033 0.0010 0.0004 0.0002 0.0001 0.0000 0.0000 

0.1711 0.0495 0.0157 0.0060 0.0025 0.0011 0.0005 0.0002 0.0001 0.0000 
0 0.2201 0.17ll 0.0892 0.0415 0.0187 0.0083 0.0037 0.0017 0.0007 0.0003 0.0001 

0 2 3 4 5 6 7 8 9 10 
m~ 

Table 2.1. The equilibrium probabilities Pm,n for all stales (m,n) with m+n ~ 10 for the 
symmetrie 2 x 2 switch with workload r = 0.8. 

t 10 (1,1) 
n 9 (1,1) (1,1) 

8 (1,1) (1,1) (1,1) 
7 (1,1) (1,1) (1,1) (1,1) 
6 (2,1) (1,1) ( 1,1) (1,1) (1,1) 
5 (2,2) (2,1) (1,1) (1 ,1) (1,1) (1,1) 
4 (2,3) (2,2) (1,1) (1,1) (1,1) (1,1) (1,1) 
3 (3,3) (2,3) (2,2) (1,1) (1,1) ( 1,1) (1,1) (1,1) 
2 (4,5) (3,3) (2,2) (2,2) (1,1) ( 1,1) (1,1) (1,1) (1,1) 
1 (10,11) (5,5) (3,3) (3,2) (2,2) (1,2) (1,1) (1 ,1) (1,1) (1,1) 
0 (11,10) (5,4) (3,3) (3,2) (2,2) (1,2) (1,1) (1,1) (1,1) (1,1) 

0 2 3 4 5 6 7 8 9 10 
m ~ 

Table 2.2. The numbers of product fonns of Xm,n and Xm,n needed to compute the 
equilibrium probabilities Pm.n for the symmetrie 2x2 switch with workload r=0.8 within 
absolute accuracy Eabs = 1 o-6. 

x~!n +x~!n = (1-Qo)(l-~o)a3'~3 + (l-<io)O-~o)a3'~3 
is already a sufficiently accurate approximation for Pm,n for all states (m,n) with m +n ~7. 

Except fora procedure for the computation of the equilibrium distribution {Pm,n} itself, 
the explicit fonnulae for {Pm,n } may also be exploited for the computation of queue lengths, 
for example. Let L 1 and ~ denote the lengths of the queues at the servers 1 and 2, and let 
L= L 1 +~ denote the total number of jobs present at the beginning of a time unit. The distri­
butions for L 1 and ~ are given by {p~)} and {p~2)}. i.e. L 1 and L2 have geometrie distribu­
tions with parameters ao =q\l) /q~l( and ~0 =q\2l /q~2( . respectively. Therefore, the mean, 
standard deviation and coefficient of variation of L 1 and L2 are given by 
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lELt 
ao ..JO; 

cv(Lt) = 1 --- . cr(Lt) = -1-- , ..JO; . 1-ao -!X() 

~0 -fro" 
cv(L2) = 1 

JE~=~· cr(L2) = ~. -.rr;;· 1- 0 

For the corresponding quantities for L, we find 

lEL= lELt+ JEL2 , cr(L) = "JEL2-(JEL)2 , cv(L) = cr(L)/JEL. 

The joint queue length distri bution IPm,n } is needed to compute 

JEL2 = IE(Lt +L2)2 = lELT+ 2JE{LtL2l +IEL~ 

!l()(l+!l()) +2/E{L L l+ ~oo:~o) 
(l-!l())2 1 2 (1-~d 

i.e. to compute 

E{LtL2} = L I.mnpm,n 
m=On=O 

i~[~-~]+i a;. [L-~]. 
i=O 1-~; 1-a; 1-a;+t i=O 1-a; 1-~; 1-~i+t 

53 

(2.40) 

For JE {Lt ~}, one can derive similar error bounds and a similar numerical procedure as for 
the equilibrium probabilities Pm.n. The forroula for the mean of the product of the queue 
lengtbs L1 and ~ enables us to compute also the coefficient of correlation of Lt and L2: 

E{Lt~l- ELt EL2 
p(LtoL2) = cr(Lt) cr(L2) . (2.41) 

In Table 2.3, numerical results for the symmetrie 2 x 2 switch are presented for increas­
ing values of r. In the second column, the numbers of terros of the two series in (2.39) needed 
to compute JE {L1 L2} within an absolute accuracy of 10-6 are given. Next, the relevant 
information for the length of a queue at each server (note that L1 and L2 are equally distri­
huled in this case), and the total number of jobs L is given. After that, it is presenled which 
values for the total number of jobs one would obtain in case we would have a system consist­
ing of 2 independent queues; the corresponding random variabie is denoted by Lind. Finally, 
the coefficient of correlation p(L1 ,L2) is given. The results show that the higher the work­
load r, the more terros are needed for the computation of JE { Lt L2} (a similar behavior has 
been established for the number of terros needed for the computation of the equilibrium pro­
bahilities Pm,n)· This is caused by the fact that the product factors are relatively large and 
decrease only slowly to 0 for high values of r. The results also show that the total number of 
jobs for the 2 x 2 switch has a smaller variability than the total number of jobs L;nd for a sys­
tem with independent queues (note that the means of Land L;nd are the same). This is linked 
up with the negative correlation of the two queue lengtbs L 1 and L2, which we have due to 
the negative coupling between the two streams of arriving jobs; there is a negative correlation 
of -r/(2-r) between the number of jobs arriving at the two servers at the beginning of an 
arbitrary time unit. 

Let N denote the number of non-empty queues at the beginning of a time unit and let 
p (k) denote the probability that N equals k. Then 
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r terms IEL; o(L;) cv(L;) IEL o(L) cv(L) IEL;nd o(L;nd) cv(L;nd) p(L •• I.q) 

O.Ql (1,1) 0.00 0.01 199.00 0.00 0.01 140.71 0.00 0.01 140.71 -0.000 
0.2 (1,1) 0.01 0.11 9.00 0.03 0.16 6.33 0.03 0.16 6.36 -0.012 
0.4 (1,1) 0.07 0.27 4.00 0.13 0.37 2.75 0.13 0.38 2.83 -0.057 
0.6 (3,3) 0.23 0.53 2.33 0.45 0.69 1.52 0.45 0.74 1.65 -0.148 
0.8 (5,5) 0.80 1.20 1.50 1.60 1.44 0.89 1.60 1.70 1.06 -0.282 
0.95 (12,12) 4.51 4.99 1.11 9.03 5.51 0.61 9.03 7.05 0.78 -0.390 
0.99 (30,30) 24.50 25.00 1.02 49.01 27.05 0.55 49.01 35.35 0.72 -0.415 

Table 2.3. Somerelevant performance measures for the symmetrie 2x2 switch and the 
corresponding system consisting of 2 independent queues for varying values of the 
workload r. 

p(O) = Po.o, p(l) = :ËPm,o + :ËPo,n = (l-<Xo)+(l-~o)-2po,o, 
m=l n = l 

p(2)= L LPm,n = :Ë~dai-ai+t>+:Ëai(~i-~i+J). 
m=l n=l i=O i=O 

For the computation of p (2), one can also u se the formula p (2) = 1-p (0)-p ( 1 ). From the dis­
tribution of N, one can easily compute the distribution {p(k)} of the number N of work.ing 
servers during a time unit. In Tab1e 2.4, for the symmetrie 2 x 2 switch, the distribution, 
mean, deviation and coefficient of correlation of N, and the corresponding quantities for the 
system consisting of independent queues, are given for increasing values of r; note that 
JEN= 2r for both systems. The results show that only for moderate values of r the negative 
correlation between the queue lengths causes a really smaller variability of the number of 
working servers for the 2 x 2 switch than for the system with independent queues. For high 
workloads, we obtain the same distributions and variabilities, since then in both systems the 
servers have to work almost all time units. 

Let us finally pay some more attention to the coefficient of correlation p(L1 ,L2). For 
the symmetrie 2 x2 switch, p(L1 ,L2) is only a function of r, i.e. p(L 1 .~)=p(r). The func­
tion p(r) is pictured in Figure 2.3. As we already learned from the results in Table 2.3, p(r) is 
a negative, strictly decreasing function of r. Figure 2.3 shows that the negative correlation for 
the two queue lengths is very weak for low workloads r. It may easily be shown that 
p(r)- - 114r2 as r! 0. For higher workloads r the negative correlation gets rather strong. The 
maximal strength of the correlation is reached for r close to 1: p(r) ~-0.4203 as r Î 1. 

Jndeed, by exploiting the symmetry (~i = ai and ai= ~i for all i) and using the formulae (2.22) 
and (2.23) for ai and ~i• one can show that for r Î 1: 

ai :::: 1- 4(i+1)(2i+1)(1-r) + o (1-r), ~i = 1- 4(i+1)(2i+3)(1-r) + o(l-r). 

Hence, from (2.40) and (2.41 ): 

lim p(r) :::: -1 + 2 L 12 [ (' 12 1 - (' 2);2. 3 ] . 
rfl i=O (i+1)( i+3) z+l)( i+) z+ z+) 

Rewriting, leads to 
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2x2 switch independentqueues 
r 

p(O) p(l) p(2) JEN o(N) cv(?Îil) p(O) p(1) p(2) JEN o(N) cv(?ÎJ) 

0.01 0.9801 0.0198 0.0001 0.02 0.141 7.027 0.9801 0.0198 0.0001 0.02 0.141 7.036 
0.2 0.6242 0.3516 0.0242 0.4 0.537 1.343 0.6400 0.3200 0.0400 0.4 0.566 1.414 
0.4 0.3151 0.5697 0.1151 0.8 0.625 0.781 0.3600 0.4800 0.1600 0.8 0.693 0.866 
0.6 0.1025 0.5950 0.3025 1.2 0.604 0.503 0.1600 0.4800 0.3600 1.2 0.693 0.577 
0.8 0.0088 0.3824 0.6088 1.6 0.508 0.317 0.0400 0.3200 0.6400 1.6 0.566 0.354 
0.95 0. ()()()() 0.1 000 0. 9000 1.9 0.300 0.158 0.0025 0.0950 0.9025 1.9 0.308 0.162 
0.99 0.0000 0.0200 0.9800 1.98 0.140 0.071 0.0001 0.0198 0.9801 1.98 0.141 0.071 

Table 2.4. The distribution of the number of working servers during a time unit for the 
symmetrie 2 x 2 switch; the second part gives the distribution for independent queues. 

r-
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

--Q.I 

--Q.2 

--o.3 

--Q.4 

p(r) --o.s 
~ 

Figure 2.3. The coefficient of correlation p(r) of the two queue lengths for the symmetrie 
2x2 switch. 

limp(r)=-1+2:1:: 1 -2:1:: 1 
rtl k=l k 2(2k-1)(2k+1) k=l k(k+1)(2k+1)2 

1 .. 1 .. 1 .. 1 
= -1 +8:1:: -2 l: - -2 l:--+8:1::--~ 

k=l (2k - 1)(2k+1) k=l k 2 k=l k(k+1) k=l (2k+1)2 

1t2 1t2 
= -1+4--3--2+8(-8 -1) 

2 2 =-1t-7. 
3 
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This leading term for the heavy traffic behavior of the queue length correlation coefficient 
also follows from Section 5 of Jaffe [47]. 
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2.6. Complex-variabie methods 

As observed in the introduetion of this chapter, Jaffe [46, 47] has analyzed the symmetrie 2 x 2 
switch by two different complex-variabie methods, viz. the boundary value method and the 
uniformization technique. In the present section we briefty outline these two solutions, and 
we point out some differences and similarities with the results obtained by the compensation 
approach for the symmetrie 2 x 2 switch. 

In the symmetrie case, the input parameters of the 2 x 2 switch are given by (2.38). In 
both complex-variabie methods the first step is the introduetion of the generating function 

f(x,y):= L LPm,nXmyn, lxl~1,1yl:s;I. 
m=On=O 

It follows from (2.7)-(2.10) and (2.39) that, for lx Is; l, ly I~ 1,f(x,y) satisfies the following 
functional equation: 

(x y -r(x,y))f (x,y) = (y-1) r(x, 0)/ (x, 0) + (x-1) r(O,y)f (O,y) 

+ (x-1)(y-l) r(O,O)f (0,0), 

where 

r(x,y) := (l-r+f(x+y))2 • 

(2.42) 

Denote by S the complex c~e x y- r(x,y) = 0 (the zeros of the 'kemel' of (2.42)), by D the 
interlor of the unit circle, by D the ciosure of the unit ei rele; and, subsequently, separate the x­
and y-parts of the right-hand side of (2.42) by defining 

g (x) := r(x, O)f (x, 0) + _!_r(O,O)f (0,0) = r(O,x)[ (O,x) + _21 r(O,O)f (0,0). (2.43) 
x-1 2 x-1 

Then the boundedness of f (x,y) in D2 implies that 
-2 

g(x) + g(y) = 0, (x,y)e SnD , x,y "t: l, (2.44) 

whereas, as seen from (2.43), g has a simple pole at 1. Formula (2.44) is the fundamental 
equation in both complex-variabie methods, which are successively discussed below. 

A. The boundary value method 

We outline the approach in Jaffe [46]. The boundary value metbod considers a suitab1e sub­

set of Sn D2 , by taking y =x. Formula (2.44) now red u ces to 

g(x)+g(X)=O, xeE\{1}. 

Here, E is the ellipse { x I I x 12 = r(x,X), XE D}. Let cp, with inverse 'Ijl. be the conformal 
mapping of the unit disk onto the region bounded by E, with normalization conditions 
$(0) = r I( 1 +r ), $( 1) = 1. De fine h ( w) := g ( $( w) ). We now obtain a 'boundary value problem 
with a pole' of an extremely simple form, cf. Section 1.3.3 of [23], for h (.) on the unit circle 
r: 
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Re h (w) = 0, WE r\{ 1}. 

1-r 
lim (w-1)h(w) = -,- , 

W-+1 ~ (1) 
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with h (.) analytic on D and continuous on D\{ 1}. The so1ution of this boundary value prob­
Iemis 

1 1-r w+1 
h(w) = 2 ~,( 1 ) w-1 , wED, 

which de termines g (x)= h (\jf(x )); he re, the confonnal mapping \jf(x) is explicitly expressed in 
the Jacobi elliptic (sin amor sn) function. Substitution of 

_ ..!_ 1-r \jf(u)+1 
g(u) - 2 ~'(l) \jf(u)-1 

in (2.42) (for u =x,y) finally yields f (x,y ), for I x I::; 1, I y I::; 1: 

f(x,y) = (l-r)\jf'(l) (x-l)(y-1) \jf(x)'&)-1 . 
(\jf(X) -1 )(\jf(y) -1) xy - r(x,y) 

B. The uniformization technique 

Starting point is again fonnula (2.44). Jaffe [47] exploits the following idea. Suppose that g 
is meromorphic, i.e., all its singularities are isolated poles. lt follows from (2.43) that g has a 
simple po1e at 1, with residue 1-r. For points (x,y) ES, a simple pole of g (x) at x with known 
residue must be compensated by a simple pole of g (y) at y, with residue being determined by 
(2.44). Starting from the pole at 1, one now iteratively delennines a countable set of poles. 
Jaffe shows that g has simple poles at 

hm := d À m + ~À -m + y, m = 0, I, · · · , (2.45) 

with residues 

(2.46) 

he re 

• l+"h-r2 • 1-"h-r2 • r ._ d 
a := 2( I+ r) ' ~ := 2(1 + r) ' 'Y := 1 + r ' À .- j · 

Observe that ho= I< b 1 < b 2 < · · ·. For later reference we note that 

2 2 2 4 2 b1 =(--I) , b2 = (1+--2) · 
r r r 

(2.47) 

Jaffe derives (2.45) and (2.46) by first introducing linear coordinate changes for the hyperbola 
xy -r(x,y) = 0: 

x=ax+ay+y, y=a.Y+ax+y, 
which transforen S into xy = I, or y = 1/X. Hence x is a uniformizing variabie which 
parametenzes S. Jaffe shows that the transfonned version of (2.44) gives rise to simple poles 
at x= À m, m = 0, I , · · · , which implies that g has simple pol es given by (2.45). He finally 
verifies that his initia) assumption of g being a meromorphic function is indeed correct. 
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Comparison between the compensation approach and the uniformization technique 

Using the compensation approach we have ~i= ct; and &i =~i for the completely symmetrie 
case. Hence, from (2.36), we obtain the following generating function of {Pm,n ) : 

- 1-~; (1-<X;)CI.;X (1-<Xi+l )CI.i+IX 
+ l: -- [ - - (CXj-<X;+I )~;Y] 

i=O 1-~;Y 1-ct;x 1-ct;+1x 
Po.o 

- 1-~; (1-ai)o.;y (1-o.i+l)o.i+IY 
+ l: -- ( - - (CXj-C/.;+I)~iX] . 

i=O l-~;X 1-a;y 1-ai+IY 
(2.48) 

Cbserve that this generating function, and the ones for {Pm, 0 ) and {Po,n}. are meromorphic 
functions with simple pol es at 1/o.;, i = 0, 1, · · · and at 1113;, i = 0,1, · · · . We claim that the 
sequence {1/CJ.o,liJ3o,1/o.~olJ13 1 , · · ·} corresponds to the sequence {b~ob2 ,b 3 ,b4 , • • • }. 

From (2.12), it is seen that 

Cl.o = ( ~- 1)-2 • ~0 = (1 + 1.- _i_ )-2 . 
r r ,2 

Comparison with (2.47) reveals that indeed b 1 = 1/CJ.o and b 2 = 1J130 . In fact Jaffe [47] starts 
with b 0 = 1 and b 1, which corresponds to our observation, in the proof of Lemma 2.2, that the 
quadratic equation fora as given at the end of the proof, has two real solutions, viz. 1 and CJ.o. 
The successive ct; and ~; are determined from (2.22) and (2.23), what really amounts to 
finding product forms which satisfy the equilibrium equation (2.7) for the interior and which, 
together with a previous product form, satisfy one of the two equilibrium equations (2.8) and 
(2.9) for the boundaries. In terms of generating functions, this is translated into finding those 
zero tup1es (x,y) of the 'kemel' xy-r(x,y) = 0 that are related via (2.44) (note that (i) the ker­
nel x y - r(x,y) = 0 is completely determined by the behavior of the random walk in the inte­
rior; (ii) the right-hand side of (2.42) reflects the behavior of the random walk on the boun­
daries; and (iii) demanding that (2.44) holds for points (x,y) that are zeroes of the kemel 
corresponds to demanding that the equilibrium equations are satisfied both in the interior and 
on the boundaries). Remember that in the compensation approach each time a new term is 
added, to compensate an error on one of the boundaries; in terros of generating functions, this 
is translated into adding a new pole bm to compensate a pole bm-l in (2.44). The above rea­
soning implies the following: 

(i) The mechanism to find ~; for given ct; (or o.i+l for given ~;) is equivalent with Jaffe's 
mechanism to find bm given bm-1 , viz., by solving the equation bm-l y -r(bm-l ,y) = 0. 

(ii) b2m+l = 1/ct", , b2m+2 = 1J13m . 

Hence we see that the generating function given by (2.48) has exactly the same (simple) poles 
as the generating function f (x,y ), and that in both approaches these pol es, in increasing order 
of absolute value, are successively obtained from one another by compensating the effect of 
the preceding pole. 

Comparison between the boundary value method and the uniformization technique 

In the boundary value method, g (x) has pol es at the ze roes of Ijl( x )-1 = 0. The normalization 
condition (jl(l)= 1 for the conformal mapping implies Ijl(!)= I, so that b 0 = 1 is again found to 
be a pole of g. The periodic nature of the Jacobian elliptic function Ijl(.) subsequently leads to 
the sequence of poles b 1 ,b2, · · · . 
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From an analytic point of view, both complex-variabie methods are for the present 
model of similar complexity (compared with the shortest queue problem and similar two­
dimensional problems, one might say: of similar simplicity). They lead to different represen­
tations of the two-dimensional queue-length generating function. From a numerical point of 
view these representations can be exploited to obtain, e.g., queue length moments; however, 
the explicit representation obtained by the compensation approach seems more suitable for 
numerical calculations. 

2.7. Conclusions 

In this chapter, we have considered the class of two-dimensional, irreducible, pos1t1ve 
recurrent, homogeneous, nearest-neighboring random walks with the projection property. 
This classis a subclass of the class of random walks studied by Adan et al. [12]. Fora ran­
dom walk of the considered class, according to [12], one can use the compensation approach 
to determine the equilibrium distribution if and only if for the states in the interlor there are 
no transitions possible to the North, East and North-East. The study in this chapter has shown 
that if this condition is satisfied, then the equilibrium distribution is equal to the sum of two 
alternating series of pure product-form solutions of the equilibrium equation for the interior, 
and explicit formulae have been obtained for all product factors of the product-form solu­
tions; see Theorem 2.1, where this main result has been stated. 

In the last two sections of this chapter, some additional results have been presented. 
First of all, we have derived error bounds for the two series of product forms which constitute 
the equilibrium distribution. These error bounds have led to an efficient numerical procedure 
for the computation of the equilibrium distribution, and numerical results have been presenled 
to show that for all states which are not too close to the origin, only a few product forms are 
needed to approximate the equilibrium probabilities sufficientlyaccurate. Further, it has been 
shown that the explicit formulae for the equilibrium distribution may be used to obtain expli­
cit fonnulae and efficient numerical procedures for the relevant performance measures. 
Finally, basedon the symmetrie 2x2 switch, the compensation approach has been compared 
to the other methods available for the analysis of two-dimensional random walks. The com­
pensation approach appears to have a striking resemblance to the unifonnization technique. 
The product factors obtained by the compensation approach are the reciprocals of the poles of 
the generating functions for the equilibrium probabilities on the two axes found by applying 
the uniformization technique, and they are generated by a mechanism which is equivalent to 
the mechanism for the generation of the po les of the uniformization technique. 
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Chapter 3 

The Equilibrium Distribution for a Class 

ofMulti-Dimensional Random Walks 

3.1. Introduetion 

This chapter is devoted to the application of the compensation approach to the class of N­
dimensional, homogeneous, nearest-neighboring random walks with the projection property 
and with states (m 1 , ••• , mN ), m; E IN 0 for all i. The objective is to general i ze the main 
results which in the previous chapter have been derived for the case N = 2. lt will be esta­
blished under which condition the compensation approach works for models with general 
N~2. The condition appears to be rather simple. Because of the projection property, all 
transition probabilities/rates are uniquely determined by the transition probabilities/rates for 
the states in the interior. Let the probability/rate fora transition from an interior state into the 
direction (t 1, ... , tN) be denoted by q,,, . .. ·'N. It will be shown that the compensation 
approach can be applied successfully under the following condition, which is a generalization 
of the condition for the two-dimensional case (see Assumption 2.2): 

q1,, ... ·'N = 0 for all directions (1 1, ... ,IN) with 

l;+lj>O forsome i,jE(l, ... ,N}, i*j. (3.1) 

This condition essentially restricts the applicability of the compensation approach for a ran­
dom walk with dimeosion N ~ 3; in that case from a state in the interior only transitions are 
allowed to the state itself or to states closer to the origin (i.e. to stales with a smaller total 
number of jobs, if the components m; of the states (m 1, • . . , mN) represent queue lengths). 
However, when the condition is satisfied, we obtain explicit results: the equilibrium distribu­
tion is equal to an alternating sum of infinitely many, pure product-form solutions of the 
equilibrium equation for the interior; and, similarly for all marginal distributions (see Section 
3.8, Theorem 3.4). Note that, apart from the class of product-form networks (see Baskett et 
al. [15]), up to now no such explicit results have been derived for random walks/Markov 
processes with a three- or higher-dimensional state space being infinite in each dimension. 

In the Sections 3.2-3.7, we present in detail the analysis for the three-dimensional case. 
Although the analysis wiJl be rather long and complex, the main results, viz. the condition 
under which the compensation approach works and the explicit formulae which are obtained 
for the equilibrium distribution in case this condition is satisfied, will appear to be extremely 
compact and relatively simple. The analysis consists of two parts. 
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In the first part, consisting of the Sections 3.2-3.4, it is shown for the case N = 3 that the 
condition stated in (3.1) is needed for the absolute convergence of the format solutions, as 
constructed by the compensation approach. lt will be indicated in Section 3.8, how the 
analysis leading to this result may be generalized to the case with an arbitrary N ~ 2. In the 
paper [78], on which this chapter is based in fact, it is shown how the analysis may be gen­
eralized to show that condition (3.1) is also needed necessary for random walks without the 
projection property. 

In the second part, consisting of the Sections 3.5-3.7, it is shown for tbe class of three­
dimensional random walks which satisfy condition (3.1 ), that the format solutions constructed 
by the compensation approach are absolutely convergent, and that they may be used to obtain 
explicit formulae for tbe equilibrium distribution. This proves that condition (3.1) is also 
sufficient for the determination of the equilibrium distribution by the compensation approach. 
The explicit formulae for the equilibrium distribution are derived by using, among others, 
explicit formuJae for the two-dimensional marginal distributions. Because of the projection 
property, these marginal distributions are the equilibrium distributions of two-dimensional 
random walks which explicitly can be solved by applying the theory of Chapter 2. As we wiJl 
indicate in Section 3.8, the explicit formulae for the equilibrium distribution and the marginal 
distributions may be generalized to any N ~ 2 by using induction with respect to the dimen­
sion N. The induction step from dimension N = 2 to dimension N = 3, which in fact is 
described in this chapter, wiJl appear to contain all elements required for the general induc­
tion step. 

The main results of this chapter are summarized in the M~in Theorem (i.e. Theorem 3.4) 
at the end of Section 3.8. This theorem will show that the infinitely many product-form solu­
tions which constitute the equilibrium distribution of a random walk satisfying condition 
(3.1 ), are obtained from ( N-1)-fold trees (i.e. trees, where at each node one parent splits into 
N-1 branches). The tree structure bebind the relevant product forms wil! be investigated 
extensively in Chapter 4. In that chapter, it wiJl be shown that the tree structure can be 
exploited to obtain error bounds and efficient numerical procedures for the computation of the 
equilibrium distribution and related quantities. Numerical results will be given for the 2 xN 
switch (which satisfies condition (3.1)). 

The organization of this chapter is as follows. In Section 3.2, we describe the class of 
N-dimensional random walks to which we want to apply the compensation approach, mainly 
for the case N = 3. In Section 3.3, it is shown which type of formal solutions for the equili­
brium equations is generated by the compensation approach for the three-dimensional case. 
The forma! solutions are required to be absolutely convergent, which leads to condition (3.1) 
and to a reformulation of the formal solutions; this is the subject of Section 3.4. Next, in Sec­
tion 3.5, condition (3.1) is shown to be also sufficient for the absolute convergence. Subse­
quently, explicit formulae for the equilibrium distribution are derived in Section 3.6, and 
alternative and more compact formulae for the equilibrium distribution, and its marginal dis­
tributions, are given in Section 3.7. In Section 3.8, the main results for the N-dimensional 
case are presented. Finally, inSection 3.9, the conclusions are presented. 
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3.2. Tbe class of three-dimensional random walks 

In this section, the class of N-dimensional, homogeneous, nearest-neighboring random walks 
with the projection property is described for the case N = 3. The description is such that the 
definitions can easily be generalized to the case with general N '?.. 2. Just as for the two­
dimensional case, we may assume (w.l.o.g.) that we have discrete-time random walks. This 
assumption slightly simplifies the formulae, since a discrete-time random walk has the pro­
perty that for each state the total probability of outgoing transitions adds up to 1. Neverthe­
less, the theory developed in this chapter also applies to continuous-time random walks. 

For several queueing systems, the behavior is described by an N-dimensional random 
walk on states (m 1 , ... , mN ), where the components m; denote queue lengths and are ele­
ments of the set IN 0 of nonnegative integers. For the class of three-dimensional random 
walks considered in this chapter, the state space Mis assumed to be equa1 to 

M = { (m,n,r) I m,n,re /No}. 

The state space may be divided into a set of interlor points and various sets of boundary 
points. Define 

M1 = {(m~om 2,m 3)eM I m;>O for all iel and m;=O for all i~J}, lel, 

where I:= { 1,2,3}. Then Mr is the interlor of M; M 11 .21 , M {l,JJ and M 12,31 are the boundary 
planes; M 11 1, M {2} and M 131 are the axes; and, M" is the origin. The subscript indicates 
which of the components m; are Iarger than zero; see Figure 3.1. 

For the transitions and the corresponding probabilities, the same assumptions are made 
as for the case N = 2 in the previous chapter. The main assumption concerns homogeneity in 
the transition probabilities. All states (m,n,r) with the same non-zero components, i.e. all 
statesof the sameset M1 , lel, are assumed to have the same outgoing transition probabili­
ties; these probabilities are denoted by variables qf,.r,.r,. Further. we assume that only transi­

tions to nearest neighbors occur, and that the transition probabilities satisfy the projection 
property; these two assumptions are mainly made to simplify the analysis. Because of its 
complexity, the projection property is further explained in the next paragraph. After that, all 
three assumptions are formally described in Assumption 3.1. 

In Section 2.2, the interpretation of the projection property has been given for the two­
dimensional case; see also Figure 2.1. For the three-dimensional case, the projection property 
means the following. For the boundary p1ane m =0, i.e. for M 12.31 , the probabilities qe;?J, 
are the same as the probabilities q{.,,,1, for the interlor, i.e. for Mr. and the probabilities 

qb~i?.L are equal to the sums ofthe probabilities qb.r,.r, and q~l .r,.r,· So to speak, thesetof 
transitions for M 12.31 is obtained by pushing the set of transitions for the interior against the 
boundary plane m =0. We say that thesetof transitions for the boundary p1ane M 12.31 is the 
projection of thesetof transitions for the interlor Mr. Sirnilarly, the sets of transitions for the 
boundary planes n =0 and r=O (i.e. M 1 I,3J and M 1 1,2]) are the projectionsof thesetof tran­
sitions for the interlor Mr. Just like for the origin in the two-dimensional case, for the axes 
and the orlgin the impact of the projection property is more complex. The set of transitions 
for the m-axis (i.e. M 1 1 1) is the projection of both the set of transitions for the boundary plane 
n = O (i.e. Mp,31 ) and thesetof transitions for the boundary plane r=O (i.e. Mp,2J); and 



64 3. Multi-Dimensional Random Walks 

r 

Ml3l Ml2.3l 

M 1 1,31 ,,:·:::::::·:::::: ::::::_._._._._·_·_·_·_·_·_·_~~~~:.-.::::.·.:::::::-~ 
MI 

Ml21 

-----·· ····························------------------·· 

n 

m M{l,2l 

Figure 3.1. Eight states (m,n,r) of eight different subsets M1 ofthe statespace M. 

similarly for the sets of transitions for the n-axis and the r-axis. The set of transitions for the 
origin (i.e. M 121 ) is the projection of the set of transitions for the m-axis (M 111 ), the n-axis 
(M 121 ) as well as the r-axis (M 131 ). It may be verified that the projection property is satisfied 
if and only if the transition probabilities satisfy the equations as given in Assumption 3.1(iii). 

Assumption 3.1. 

(i) For all states only transitions to nearest neighbors occur, i.e. for all Je I and all states 
(m,n,r) E M,, it is only possible to make transitions to the states (m +t 1 ,n +t 2,r+t3) with 
(t 1 ,t2,t3) ET,, where 

T1 = { (t1.t2,t3) I t;E {-1,0,1} for all iEl and t;E {0,1} for all i El}. 

(ii) Homogeneity: all states belonging to the samesubset M" Je/, have the same outgoing 
transition probabilities; for all Je/, the probabilities for the transitions from a state 
(m,n,r) E M, to the states (m+t 1 ,n+t2,r+t3), (t 1ot2,t3) ET,, are denoted by variables 
q} . 

''·'2·'3, 
(iii) Projection property: the transition probabilities satisfy the following equations: 

q{,,,2 ,t1 = L q~,.u,,u, for all Je/ and (t~ot2,t3)ETJ, 
(u 1,u 2 ,u 3) e U1(t 1,t2 ,t3 ) 

where U,(t 1 .t2,t3) is defined by 

U1(t1h.t3) = {(ul,u2,UJ)ET/I U;E{-1,0} if iE} and t;=O;u;=t; else } . 

It is clear that for a random walk with the projection property all transition probabilities 
are uniquely determined by the transition probabilities q{.,,,,,, for the states in the interlor of 

the state space. Because of the importance of these probabilities, in the sequel we shall omit 
the superscript I of q{. .~,.,,; simi1arly, we shall write T instead of T1. 
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The properties stated in Assumption 3.1 are fonnu1ated in such a way that they can 
easily be generalized to the N-dimensional case. The first two properties are satisfied by 
several queueing systems, among others by the N-dimensional versions of the symmetrie 
shortest queue syslem, the 2 x 2 switch and the fork and join model. The last two syslems 
also satisfy the third property, i.e. the projection property. The symmetrie shortest queue 
syslem violates the projection property (note that for the case N = 2, this already has been 
verified in Section 2.2). 

Example 3.1: The symmetrie shortest queue system 

The N-dimensional symmetrie shortest queue system consists of N parallel, identical servers, 
where N ~ 2. All servers are assumed to have exponentially distributed service times with 
mean 11).1. Jobs arrive at the system according to a Poisson stream with inlensity Ä., 

0 < Ä. < NJ.l. (this implies the ergodicity of the system), and an arriving job always joins the 
shortest queue (ties are broken with equal probabilities). This system may be modeled by a 
continuous-time Markov process with stales (m 1 , ••• , mN ), where m 1 denotes the number of 
jobs at the shortest queue and m; denotes the difference between the queue lengtbs of the i-th 
shortest queue and the (i -1)-th shortest queue (for all queue lengtbs the jobs in service are 
included). It may easily be verified that, for all N ~ 2, this system satisfies the Assumptions 
3.1(i) and 3.l(ii), but violales Assumption 3.l(iii) (compare the transition rates for the subset 
M {2,3} to the transition rates for the interlor M1, for example). Nevertheless, the analysis 
presenled in this chapter still is relevant for the symmetrie shortest queue problem (one only 
obtains more complex formulae for the forma! solutions generated by the compensation 
approach). 

Example 3.2: The 2 x N switch 

The 2xN switch is an extension of the 2x2 switch; see Example 2.2 in Section 2.2. The 
2 x N switch is obtained in case one has N instead of 2 parallel servers. The behavior of this 
system is described by a discrete-time Markov process with states (m 1 , .•• , mN ), where m; 

denotes the number of waiting jobs at server i at the beginning of a time unit. It is left to the 
reader to verify that the 2 x N switch satisfies all three properties staled in Assumption 3.1. 

Example 3.3: The fork and join model 

Consider the fork and join model with N inslead of 2 parallel servers; see Example 2.3 in Sec­
tion 2.2. The behavior of the N-dimensional fork and join model is described by a 
continuous-time Markov process with stales (m 1 , •• • , mN ), where m; denoles the number of 
unfinished subjobs at server i. Also for this system it may be shown that all three properties 
staled in Assumption 3.1 are satisfied. 

Apart from satisfying Assumption 3.1, the random walks considered in this chapler are 
assumed to be irreducible and positive recurrent (= ergodic). The class of random walks 
which is obtained by these assumptions, is called the class of three-dimensional, irreducible, 
positive recurrent, homogeneous, nearest-neighboring random walks with the projection pro­
perty. Each random walk of this class has an equilibrium distribution !Pm,n,r}, which is 
characterized as the unique norrnalized solution of the equilibrium equations. The equili­
brium equations are given at the end of this section. After that, in the next section, we shall 
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try to solve them by applying the compensation approach. But first, we discuss the marginal 
distributions of (Pm.n.r}, which leads to some interesting properties. 

Consider a three-dimensional, irreducible, positive recurrent, homogeneous, nearest­
neighboring random walk with the projection property. Due to the projection property, we 
have the nice feature that the transitions for a subset of the components of the random walk 
are independent of the state of the whole system. This does not mean that the marginal distri­
bution for a subset of the components is independent of the distribution for the other com­
ponents, but it does mean that all marginal distributions of (Pm,n,r} can be characterized as 
equilibrium distributions of lower-dimensional, homogeneous, nearest-neighboring random 
walks with the projection property. 

Let us start with considering the one-dimensional marginal distributions {p~> }, {p~2>} 
and {pp>} for the components m, n and r, respectively: 

p~> L Pn 1,n2.n1 , m<!O, iel. 
(n 1,n 2,n1)eM 

ni=m 

(3.2) 

Analyzing these distributions for the component random walks of the full random walk does 
not only lead to explicit formulae for these distributions, but it also leads to a simple, neces­
sary and sufticient condition for the positive recurrence. Due to the projection property, for 
all states (m,n,r) with m <'!I the total probability for transitions to states (m+t,n',r') equals 
q~l) = I.r,1•12 , 11)eTQt,12,13 , where t is fixed and tE { -1 ,0, I}, and for all stales (O,n,r) the total 

probability for transitions to states (t,n',r') equals q~1 > fort= land qfJ'>+q~1( for t=O; simi­
larly for the n- and r-direction. This shows that the distributions {pg>} may be characterized 
as the equilibrium distributions of one-dimensional, homogeneous, nearest-neighboring ran­
dom walks with the projection property; here, the transition probabilities for the interlor are 
given by the variables q~il defined by 

q (i) -
I - L Qs,,s1 ,s1 • 

(s"s2,s1)eT 

t E {-I, 0, l } , i E /. (3.3) 

Sj=t 

The full random walk will be positive recurrent if and only if all component random 
walks are positive recurrent, i.e. if and only if the component random walks have negative 
drifts. So, we obtain the following necessary and sufticient condition for the positive 
recurrence: 

q~/ > q\i) for all i e /. 

Further, we obtain the following product-form 
dimensional marginal distributions {p~> }: 

. [ q\i) ] [ q\i) ] m 
p~> = l- q~/ q~/ , m<!O, iel. 

(3.4) 

(geometrie) distributions for the one-

(3.5) 

lf q\il = 0 for some i, then all states (m 1 ,m 2 , m 3 ) with m; > 0 are transient and we can 
restriet ourselves to a Jower-dimensional problem. The assumed irreducibility implies that 
this special case is excluded; so, q\il > 0 for all i. Together with (3.4), this leads to the pro­
perty that 

(3.6) 
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Let us now consider the two-dimensional marginal distributions, willeb we denote by 
{p(2,3)} {p(1,3)} and {p(1,2) }: 

n,r ' m,r m,n 

P
(i,j) 
"'t•ml I: p,.,,,.,.,.,. m~om2~0,i,je/,i>j. 

(n 1.n2,n3)eM 
n1=m 1, ni=m1 

(3.7) 

For all i,j e /, i > j, {p}!;f!m, } is the equilibrium distribution of the two-dimensional random 

walk with the projection property for willeb the transition probabilities are given by 

q(i,j) 
r1.r2 L qs,.s2 ,s1 , 1t.f2E{-l,O,l}. 

(s 1,s2,s1)eT 
s;=l~t si=t2 

(3.8) 

Note that, according to the theory of Chapter 2, explicit formulae for the distributions 
{p}f;(!m, } can be obtained by applying the compensation approach if the transition probabili-
. (ij) . f A . 2 2 . ' f ties q1;,1, saus y ssumphon . , 1.e. 1 

(3.9) 

We finally give the equilibrium equations, which uniquely determine the equilibrium 
distribution {Pm.n} and which wil! be tried to be solved by using the compensation approach. 
For the time being, we only need the equilibrium equations for the interior and the boundary 
planes m ==0, n ==0 and r==O, for which in the sequel we shall use the notations M/\[1], M/\121 
and M/\131 (instead of M 12.31 , M (1.31 and M (1.21 ), since they indicate more explicitly which 
component must be equal to 0: 

Pm,n,r ::: L q,,,t2 ,t3 Pm-r 1,n-r2,r-r3 • 

(r 1,r2,r1)eT 

Po,n,r == L q -1,r2,r1 P l,n-t2 ,r-t3 
(-1,r2,r1)eT 

(m,n,r) E M~o 

+ L (qo,r2,r3 +q-l,r2,r1 )Po,n-r2.r-r1 , (O,n,r)eM/\(1]• 
(0,r2,r1)eT 

Pm,O,r L qt 1,-l,t1 Pm-t 1,1,r-t3 
(r 1,-1,r1)eT 

(3.10) 

(3.11) 

+ L (qr,.O.r3 +qr,,-t.r1 )Pm-r,,O,r-r1 , (m, O,r)eM/\(2]• (3.12) 
(r 1,0.r3)eT 

Pm,n, O ::: L qt,,t2 ,-1 Pm-t 1,n-t2 ,1 
(r 1,r2 ,-1)eT 

+ L (qr,,r,.o+q,,,,,.-1)Pm-r 1,n-r,.O, (m,n,O)eM/\(3]· (3.13) 
(r,.r,,O)eT 
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3.3. The compensation approach 

For a three-dimensional random walk of the class described in the previous section, the com­
pensation approach generales whole networks of product-fonn solutions of the equilibrium 
equation (3.10) for the interior. Each network provides a fonnal solution of the equilibrium 
equations (3.10)-(3.13) for the interior and the three boundary planes, and is built up such that 
each product-fonn solution is conneeled to three other solutions (in fact, the structure of the 
network is such that we can make pairs of connected product-fonn solutions in three different 
ways, which is needed to show that the network of solutions satisfies the three equilibrium 
equations for the boundary planes). This section is devoted to the construction of the fonnal 
solutions by the compensation approach. Only in later sections, it wiJl be shown under which 
conditions these formal solutions are well-defined and how they lead to a solution for all 
equilibrium equations. 

The first step of the compensation approach consists of the characterization of appropri­
ate product-fonn solutions of the equilibrium equation for the interior (see the main idea of 
the compensation approach as described in Section 1.3). Substituting am P"y' in (3.10) and 
dividing both sides ofthe equation by am- I pn - lyr- l leads to the following lemma: 

Lemma3.1. 

The product form am pny is a salution of the equilibrium equation ( 3.10) for the interior ij 
and only ij (a, p, y) satisfies 

(3.14) 

Note that equation (3.14) is a quadratic equation in one variabie in case two of the three fac­
tors a, 13 and y are fixed. 

Any linear combination l:;c;a7'(37y[ consisting of solutions (a;, (3; ,y;) of (3.14) also 
satisfies (3.10). By the second part of the main idea of the compensation approach, we must 
try to build Jinear combinations which also satisfy the equilibrium equations (3.11 )-(3.13) for 
the boundary planes. Product forms with one or more factors equal to zero lead to special, 
non-relevant cases, and, since later on the final solution has to be nonnalized, also product 
fonns with one of the factors larger than or equal to 1 in absolute value are not relevant. 
Hence, we are only interested in solutions (a;, (3;, Y;) that are elements of 

P = ( (a,(3;y)e c3 I (a,(3,y) satisfies (3.14), a,(3,y;t 0 and I al, I (31,1yl < 1 } . 

We shall construct a linear combination consisting of solutions (a,(3,y) EP by using the 
following compensation idea. Each error of a solution (a,(3,y) of equation (3.14) on one of 
the boundary planes (i.e. a violation of one of the equilibrium equations (3.11 )-(3.13) for the 
boundary planes by the product-fonn solution ampny') may be compensated by adding 
another solution of (3.14). The addition of such a product-fonn solution is called a compen­
sation step. We shall construct solutions of the equilibrium equations (3.10)-(3.14) by start­
ing with a solution (a,(3,y)eP and successively perfonning compensation steps to compen­
sate errors of previous product-fonn solutions. Only later on, it wiJl be checked whether the 
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product factors of the solutions added during the compensation steps are not equal to 0 and 
smaller than I in absolute value. 

Let us start with the description of a compensation step on the boundary plane m =0 (i.e. 
on MI\{ I)). Let (d.~.'Y) satisfy (3.14), i.e. let d"'~"y be a solution of (3.10), and suppose that 
this product form violates the equilibrium equation (3.11) for the boundary plane m = 0. To 
correct the error of dm~ny on m =0, we add a compensation term act"~"'( such that (a.~.y) 
satisfies (3.14) and d"'~"y +a<Xm~nyr satisfies (3.11). Substitution of this linear combination 
in (3.11) leads to the condition 

K(d,p,'Y)pn-lyr-l +aK(a.~.y)~n-lyr-l = 0 for allnè!:1, rè!:l, (3.15) 

where the function K(a.~.y) is defined by 
R Rl-r2 l-r3 

K(a,f-1,'/) = a I: q-l,r,,r, f' Y 
(-l,t2 ,r3)eT 

+ Rl-r2 l-r3 R L (q O,t2 ,t3 + q -!,t2,t3 ) f' Y - f''Y · 
(O,r2,r3)eT 

Here, K(a.~.y)=O if and only if c:t"'~"y is a solution of (3.11). Because dmpnyr has been 
supposed to viola te (3.11 ), K ( d, ~. "() ~ 0 and condition (3.15) forces us to take ~ = p and y= y. 
Next, equation (3.14) is used for the choice of a. Substitution of (a.~.y) = (a,p, "() into (3.14) 
and rearrangement of terrns leads to the following quadratic equation for a: 

[ 
"'t" ii1-r2 -l-r3] 2 [ A .v "'t" iil-r2 -1-r3] 
"-" q-t,r2,r3 f' Y <X - f' r- .LJ qo,r2,r3 f' Y <X 

(-t,r2 ,r3)e T (0,t2,r3) eT 

+ [ 1: q , ,,,.,, pl-l,r-''] = o. (3.16) 
(l,r2,r3)eT 

The product factor d represents one root of this equation. Since choosing a=d wou1d not 
lead to compensation, we have to take a equal to the companion solution to dof (3.16), i.e. 

A fi(~.'Y) 
<X = <X = ---- • 

<X 

where the function / 1 (~. y) denotes the product of the· roots a of the quadratic equation (3.14) 
for fixed ~ and y: 

(3.17) 
Al-r2 l-r3 I: q_,,,,,,, f' y 

(-l.r2,r3 ) eT 

Finally, the factor a is chosen such that ct"~"'( +aam~nyr satisfies (3.11). By (3.15), we 
obtain 

a = _ xc«.ê.v 
K(a.~.Y> · 

Note that we would get a =0 if ampn-yr already satisfied (3.11). By using the formula for the 
sum ofthe roots ofthe quadratic equation (3.16), we find 

K(d,p,'Y) = (1-<i) L q-l,r, ,r, pl-r,YI-r, 
(-l,r2,r3)eT 
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K(d.~.'Y) = (l-a) L q_1,,,,,3 ~l-t,f-t3 
(-l,t2,t3)eT 

by which the expression fora may be rewritten to 

• 1-d 
a =- 1-ti · 

The compensation step on the boundary plane m =0 fails if the denominator of f 1 (~.'Y) 
vanishes (in that case (3.16) has only one solution). However, this is not very likely to occur, 
and therefore, for the time being, we shall neglect this special case (at the end of the next sec­
tion, the formal solutions defined in this section are renovated, after whicb it is shown that 
this special case indeed does not occur). 

For a compensation step on the boundary planes n = 0 and r == 0, similar results can be 
derived as for the compensation step on the boundary plane m ==0. These results are summar­
ized in the following lemma. 

Lemma3.2. 

(i) Let (a.~.y) satisfy (3.14) and let a e C\{0}. Then (d.~.y) satis.fies (3.14) and 
aam ~n'( +a dm ~nyr satis.fies ( 3.11 ), if d and a are taken equal to 

a:: fl(~.y) and a ::- 1-d a. 
a !-a 

where f 1 (~. y) is de.fined by ( 3. 1 7); 

(ii) Let (a.~.y) satisfy (3.14) and let b e C\{0}. Then (a.~,y) satis.fies (3.14) and 
bam~ny +bam~nyr satis.fies (3.12), if~ and bare taken equal to 

0 == f2(a,y) • I-R 
p ~ and b==--T=fb, 

where f2(a,y) is de.fined in the same way as f1 (~.y), but with the combinations t,t2,t3 

replaced by t 1,t,t3 fort=-!,! and the powers ~l-t, by al-t,; 

(iii) Let (a.~.y) satisfy (3.14) and let c e C\{0}. Then (a.~.y) satis.fies (3.14) and 
cam~n'( +êam~ny satis.fies (3.13), ifyand ê are taken equal to 

y == !J(a,~) and ê = _l=.i c , 
'Y 1-y 

where !J(a.~) is de.fined in the same way as ! 1 (~.y), but with the combinations t,t 2.1) 
l-t3 l-t 1 replaced by t l·t2,tfor t ==-1,1 and the powers y by a . 

The Lemmas 3.1 and 3.2 provide the tools for the compensation approach to construct a 
solution of (3.10)-(3.13). Let (a.~.y) e P, i.e. am~nyr is a solution of (3.10). Most likely, 
this solution, which we cal! the storting solution, is nota sol ut ion of the equilibrium equations 
(3.11 )-(3.13) for the boundary planes. Therefore compensation terms have to be added to 
correct the errors of am~ny on these boundary planes. To correct the error on the boundary 
plane m ==0 for example, we have to add a product form a (l)a(b~(1 >Y(Il with ~(I)=~. 'Y(I) =y 
and CX(I) and a (I) defined according to Lemma 3.2(i). Unfortunately, this compensation term 
introduces two new errors on the other two boundary planes. To compensate these new 
errors, which are hoped to be smaller than the initia! error of am~nyr on m = 0, two more 
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compensation terms have to be added. To compensate the new error of the term 

a<oa(IJ~(l>'Yb> on n = 0, we add a product form a(l.2)b(1,2)a(I,2)~(1,2)'Y[i,2) with «l(!.2) = Cl(!)• 
'Y(1,2) ='Y(l)· a (1,2) =ao> and ~(1,2) and b(1.2) defined according to Lemma 3.2(ii). To compen­
sate the new error on r=O a product form a(1,3)C(1,3)a('I,3)13(1 ,3)'Y[i,3) is added. 

Continuing the above procedure leads to the generation of a tree or a network of product 
forms; see Figure 3.2. The product farms are labeled as follows. For each vector v out of the 
set 

V = { (v 1, ... , v1) ll e .OV0 , if l~ 1 then v 1 e/ and vk e/\{v.~:-d for all k~}. 

we get a product form avbvcva': ~~'Y~. The empty vector 0, which we get for l = 0, is used as 
subscript for the starting solution. For all other elements v = (v 1 , ...• v1) e V\{ 0} the product 
form avbvcva':~~'Y~ is the compensation term which compensates an error of 
ap(v)bp(v)Cp(v)a;(v)l3;(v)'Y;(v)• where p(v)=(v" ... , Vt-d is the parent of v . The last com­
ponent of v denotes on which boundary an error of ap(v)bp(v)Cp(v)a;(v)l3;(v)'Y;(v) is compen­
sated: on m=O ifv1= 1, on n ::;Q if v1=2 and on r=O ifv1=3. In Figure 3.2, the factors a,l3 
and y denote which new factor one gets for each compensation step. When compensating on 
m =0 we get a compensation term with a new a-factor, on n = 0 we get a new 13-factor and on 
r = 0 we get a new y-factor. 

The sum of the starting salution (a,~. y) e P and all compensation terms is denoted by 
Xm,n,,(a, 13, y). So, 

Xm,n,r<a.l3. y) = I: avbvcva':I3~'Y~ • (3.18) 
veV 

where CteJ ::;a, 130 = 13. y0 =y and for all v E V\{0} we have (see Lemma 3.2 and the previous 
paragraph): 

~v = ~p(v) • 'Yv='Yp(v) • bv=bp(v), 

h (j3p(v)•'Yp(v)) 
av= 

ap(v) 

1-Cly 
• av =- ap(v) 

1-ap(v) 

Clv =ap(v) , 'Yv ='Yp(v) , av ::;ap(v) , Cv =cp(v) , 

if V[(v) = 1; 

j3 = f2(ap(v)•'Yp(v)) b ::;- 1-~v bp(v) if V[(v)::;2; 

v J3p(v) • v !-j3p(v) 

av=ap(v). 13v::;l3p(v). av=ap(v). bv=bp(v). 

f3(ap(v)•J3p(v)) 1-Yv 
'Yv = , Cv=- Cp(v) if V[(v) = 3. 

'Yp(v) 1 -Yp(v) 

Here, l (v) is defined as the length (i.e. the number of components) of a vector v E V and Vt(v) 

is the last component of v. For the initia] factors a 0 , b 0 and c 0 any choice is allowed. 
De fine a 0 = 1-a, b 0 = 1-13 and c 0 ::; 1-y, then, by using induction with respect to I ( v ), it may 
be shown that 

llvbvcv = (-li(v)(l-Cly)(l-J3v)(l-yv) for all VEV, 

by which formula (3.18) simplifies to 

Xm,n,,(a,j3,y) = I: (-li(v)(l-a,.)a': (1-J3v)J3~ (1-yv)'Y~. 
veV 

(3.19) 
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~~,;:;a;..,...,.,...-.410 
..... (I) 

y ~ ....... 
~nn=a~..c···( I. 2) 

-~/ ...... (1,2,1) y 
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a 
(2,1,2) 

Figure 3.2. The construction process of a format solution. Node v represents the product 

form a"b.c.a': ~~y~. 

So, each solution is a kind of altemating sum of pure product-fonn distributions. 

For each (a. ~.y) EP, the solution {xm.n,,(a.~.y)} is well-defined by (3.19) if the sum in 
(3.19) converges absolutely, i.e. if 

:r, I (-l)1<•>o-a.)a~ (1-~.)~~ (1-y.)y~ I < oo. (3.20) 
veV 

In principle, this should hold for all states (m,n,r) eM. Since we do oot know for which start­
ing solutions (a,~. y), and for which states (m,n,r), condition (3.20) holds, we cal I each solu­
tion {xm,n,rCa.~.y)} afonnal solution. If (3.20) holds, then {xm,n,rCa.~.y)} will be a solution 
of the equilibrium equations (3.10)-(3.13) for the interlor and the boundary planes. Since 
each tenn of the sum in (3.19) is a solution of (3.1 0), it is obvious that the whole sum also 
satisfies (3.10). By talcing conneeled pairs of product forms (see the network depicted in Fig­
ure 3.2), we find that {xm,n,,(a.~.y)} is also a salution of the equations for the boundary 
planes. If (3.20) holds, then Xm,n,,(a. ~. y) may be rewritten as a sum of pairs of product fonns 
with the same ~- and y-factor (i.e. pairs of product fonns which are conneeled by an a-edge 
in Figure 3.2), 

Xm,n,,(a,~,y) L (-ti<•) [(1-a.p(v))a~(v) -(1-a.)a~] (l-~.)~~ (1-y.)y~, (3.21) 
ve V\{0} 

VJ(v)=l 

from which it immediately follows that { Xm,n, ,(a,~. y)} is a solution of the equilibrium equa­
tion (3.11) for the boundary plane m = 0, since each pair of product fonns in the above sum is 
a solution of (3.11). By taking pairs with the samea-factorand y-factor and pairs with the 
samea-factorand ~-factor, it is readily seen that {xm,n,rCa.~.y)} satisfies the equilibrium 
equations (3.12) and (3.13) for the boundary planes n =0 and r=O. In the next section we 
shall investigate whether condition (3.20) is satisfied. We shall also investigate whether all 
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solutions (O:...~v• Yv) of a formal salution are in the set P, especiaJiy whether 

I a., I < 1, I ~ I < 1, I 'Yv I < 1 for aJl v e V . 
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(3.22) 

Since each starting salution is required to be an element of P, (3.22) is satisfied for v =0 by 
definition; for aJl other v e V, this still must be verified. 

3.4. Two necessary conditloos 

In this section we show that the requirements (3.20) and (3.22) lead to necessary conditions 
for the transition probabilities q11 , 12 ,1, in the interlor of the state space and for the starting 

salution (a,~.y). As we shaJl see, the resulting condition for the probabilities q11 ,12 , 1, is rather 

severe, but it is satisfied by the 2 x N switch (the other two examples of queueing systerns 
mentioned in Section 3.2 vialate this condition). The resulting condition for the starting solu­
tion (a.~.y) willlead toa small renovation of the definition of the forma] solutions, but for­
tunately, it does not further restriet the applicability of the compensation approach. 

In genera!, (almost) all terms of a forma[ sol u ti on (xm.n,,(a, ~. y)} will be nonnull terms 
and in that case it is required that the terms get sufficiently small in absolute value for veetors 
v e Vwith large lengtbs l(v). Define a path as a sequence (v(k)} of veetors of Vwith v<0> =0 
and v<kl e O(v<k-t)) for all k ~ 1, where 0 (v) is the offspring of a vector v: 

O(v)= {v'eVIp(v')=v}, veV. 

In Figure 3.2, the dotled Iine denotes an example of a path. Requirement (3.20) implies that 

i 1(-ti<v)(l--a.,<»)a~•> (1-~v<ll)~~<» (1-Yv<•>)y~<» I < 00 

k=O 
(3.23) 

for all paths (v<k>} . lt is interesting to verify this condition fcir the two paths for which we 
have product forms with alternately new a- and ~-factors (i.e. the paths with v~~~> e ( 1,2} for 
all k ~ 1, see Figure 3.2). In genera!, for at least one of these two paths, aJl terms in the sum 
of (3.23) will be nonnull . Without Ioss of generality we may assume that this is at least the 
case for the path with v<0l =0 and v<kl =(1,2, ... , 1) if k ~ 1 and k odd, v<k) = (1,2, ... , 1,2) 
if k ~ 1 and keven (which is precisely the path denoied by the dotted Iine in Figure 3.2). For 
this path condition (3 .23) reduces to 

-l: I (1-0:.,<» )a~•> (1-~v<» )~~<» I < oo , 

k=O 

since 'Yv<» =Y for all k. Because we want this condition to hold for (almost) all m and n, it 
seems reasanabie to require that 

a.,c•1 ~ 0 and ~v<» ~ 0 as k ~ oo (3.24) 

(alternative properties, such as Uv<•> ~ 1 or ~v<" ~ I, are neglected, since it seems very 
unlikely that they can be satisfied). For odd k the factors <Xv<•-ll and Uv<•> are the roots of the 
quadratic equation (3.14) (see also (3.16)) for fixed ~ = ~v<•-ll and y and therefore 
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According to (3.24), for both equations the parts on the left-hand side go to zero as k ~ oo, 

whereas the parts on the right-hand side go to 

and 

respectively. Of course both sides of an equation have to go to the same limit and therefore 
(3.24) results in the condition that q 0,1,13 =q 1, 1,13 =0 for all t 3 . In the same way, consirlering 
the sum and the product for ~vc•-•l and 13vc•l for even k, leads to the condition that 
q 1.0.13 = q 1, 1,13 = 0 for all t 3. So, summarizing, in order to satisfy requirement (3.23) for the 
paths { v<*>} with v~~~> e { 1, 2} for all k 2! 1, it seems to be necessary that 

qo,1,13 =q1,0.13 =q1,1,r3 =0 for all fJE{-1,0,1}. 

Sirnilar conditions are obtained by consirlering paths with vm) E { 1,3} or vm) E {2,3} for all 
values of k. Combining these conditions results in the following necessary condition (cf. con­
dition (3.1)), which in the sequel (i.e. till the end of Secrion 3.6) is assumed to be satisfied: 

Condition 3.1. ( condirion stemmingfrom requirement (3.20)) 

q1" 12 , 13 = 0 for all transitions (t l•t2,t3) eT with t;+ti > 0 forsome i,j e /, i * j. (3.25) 

Unfortunately, Condition 3.1 is rather severe: for all states in the interior, transitions 
may only have positive probabilities, if a positive step in one coordinate is always accom­
panied by negative steps in the other two coordinates, i.e. q1 , ,12, 13 > 0 and I;= 1 for some ie 1 
implies tj = -1 for all j eI\ {i}. In case the coordinates m, n and r represent queue lengths, 
Condition 3.1 implies that for all states (m,n,r) in the interlor only transitions are possible to 
themselves or to states with a lower total number of jobs. Although Condition 3.1 only has 
been derived for the class of random walks described in Section 3.2, the condition is also 
necessary for random walks without the projection property (see also [78]); for these random 
walks the condition may be derived along the same Iines (note that Condition 3.1 follows 
from a requirement with respect to the product factors a", 13v and Yv (see (3.24)), and that 
only the transition probabilities for the interlor are involved in the definition of the product 
factors). The 2 x N switch with N = 3 satisfies the condition, but the other two queueing prob­
Ieros mentioned inSection 3.2 violate the condition; this is verified below. As a consequence, 
we may conclude that the compensation approach possibly works for the 2 x 3 switch, 
whereas this method will not work for the other problems. For the 2 x 3 switch and the three­
dimensional symmetrie shortest queue system the same was already concluded in [77] from 
numerical results. Sirnilar conclusions can be drawn for the N-dimensional case with N > 3. 
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Example 3.1: The symmetrie shortest queue system (continued) 

In Section 3.2, we verified that this system violates the projection property. However, since 
Condition 3.1 is also necessary for random walks without this property, the condition still is 
relevant for the symmetrie shortest queue system. For the three-dimensional case, the posi­
tive transition rates q11 ,12 , 13 for the interior are: 

q1,-1.o = 3p. q-1,1,o =qo,-1,1 =qo,o.-1 = l. 

The first rate is due to an arrival of a job and the other three rates stem from departures of 
jobs. Condition 3.1 is obviously violated and therefore we may conclude that, contrary to the 
two-dimensional case, the compensation approach will not work for the three-dimensional 
shortest queue system. 

Example 3.2: The 2 x N switch ( continued) 

For the 2 x 3 switch, the positive transition probabilities q1 , . 12 , 13 for the interior are: 

q1,-1,-1 =r1,1r2,1. q-1,1,-1 =r1.2r2,2. q-1.-1 ,1 =rl.3'2.3. 

q-l,O,o=r1,2'2,3+r1.3r2,2, qo,-l ,o=rl,l'2.3+rl,3'2.1, 

qo,0,-1 =rt,t'2.2+'1.2'2.t. q-t,-t,o=(l-rt)r2,3+(1-r2)rl,3. 

q-1,0,-1 =(1-r1)r2,2+(l-r2)r1.2, qo,-1,-1 =(l-r1)r2.1 +(l-r2)r1.1, 

q-1,-1,-1 = (l-rt)(l-r2). 

As we see, Condition 3.1 is satisfied for this system. This perfectly corresponds with the 
intuitive interpretation described above. If for the 2 x 3 switch at the beginning of a time unit 
all servers have jobs available (i.e. we are in a state of the interior), then at the next discrete 
time event we will have at least one job 1ess in the system since three jobs are served and will 
leave the system while at most two jobs arrive. 

Example 3.3: The fork and join model ( continued) 

For the three-dimensional version of the fork and jo in model we have 

q1,1.1=À., q-1.o.o=1J.1, qo,-1,o=1!2· qo,o.-1=1!3· 

by which it is concluded that the compensation approach is not suitable for this case (as we 
saw in Section 2.2, the same holds for the two-dimensional fork and join model). 

The assumption that in the sequel Condition 3.1 is satisfied brings on three interesting 
consequences. By Condition 3.1, we find 

q\0 =q1,.:.1,-1. q\2) =q- 1.1.-1. qp> =q-1,-1.1 . 

which because of the assumed irreducibility implies that (see (3.6)) 

ql,-1.-1 >0, q-1.1.-1 >O. q-1.-1,1 >o. 
Since the positivity of these probabilities ensures the irreducibility, we find that, given Condi­
tion 3.1, the inequalities stated in (3.6) are necessary and sufficient for having an irreducible 
and positive recurrent random walk. Another consequence concerns the two-dimensional 
marginal distributions. Condition 3.1 appears to be equivalent to (3.9), and therefore the 
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assumption that this condition is satisfied implies that we can derive explicit formulae for the 
two-dimensional marginal distributions by applying the theory of Chapter 2. This will he 
exploited in Section 3.6. The third consequence concerns the considerable simplification that 
is obtained for the quadratic equation (3.14). Due to this simplification, some useful proper­
ties of the so1utions of (3.14) can he proved by using Rouche"s Theorem (cf. Titchrnarsh 
[71]); see Lemma 3.3. These properties may he exploited for the denvation of a necessary 
condition for the starting solutions of the formal so1utions, as we shall show after having 
proved Lemma 3.3. 

Lemma3.3. 

(i) F or fixed p aruJ y, 0 < I P I < 1 aruJ 0 < I y I < 1, the quadratic equation ( 3.14) has exactly 
one root a with 0 < I al < C 1 I P'fl and C 1 =q\'l /q~1? < 1. The second root a, which 
only exists if 

satisfies I a I > I py I. 

(ii) Forfixedaaruly, 0< lal< 1 andO< lyl < 1, thequadraticequation(3.14)hasexactly 
one root P with 0 < I P I < C 2 I ay I and C 2 = q\2) lq~2( < I. The second root p, which 
only exists if 

l-t 1.)-13 I: q1,.-1.1 3 a 1 * 0, 
(1 1,-1,13)eT 

satisfies I PI > I ayl. 

(iii) For fixed a aruJ p, 0 < I al < 1 and 0 < I pI < 1, the quadratic equation (3.14) has 
exactly one root y with 0 < I yl < C 3 I ap I and C 3 = q\3) !q<:!( < I. The second root y, 
which only exists if 

1-11 Al-r2 I: q1,,1,.-1 a I' * 0, 
(1 1,1,,-I)ET 

satisfies I y I > I ap I. 

Proof. 

We shall only prove part (i); the parts (ii) and (iii) may he proved along the same lines. 

Consider the quadratic equation (3.14) for fixed Pand y, 0< IPI < 1 and 0< lyl < 1. 
After rewriting (3.14) to (3.16), using (3.25), dividing by p2y2 and substituting z = a/(P'f), we 
obtain the quadratic equation 

[ L q-l,t,,l3 P1- 1'Y-13] z2 

(-l,t,,IJ)ET 

- (1-[qo.o.o +qo,-l,oP+qo.o.-IY+qo,-1,-1 py])z + q 1.-1.-1 = 0 . (3.26) 

Let f (z) he the first term of the quadratic function in (3.26) and let g (z) he the remaining 
part. Then we have the following bounds for f (z) and g (z) (for z * 0): 

1/(z)l ~ [ L q - 1,1,,13 IP1-1'y1-13 1] lzl 2 < q0( lzl 2 , 
(-l,t,,IJ)ET 
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lg(z)l ~ lzl-l[qo,o,o+qo,-t ,o~+qo,o.-t"'f+qo.-t.-t~"'f]llzl-qt ,-t,-1 

~ (1- [qo,o.o +qo,-t,o +qo,o.-t +qo,-t,-t]) lz I - q t.-t,-t 

= (l-qfp)lzl-q\1). 
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As we see, these bounds only depend on the absolute value of z. For all z on the circle 
C = {z I lz l=r} withradius r>O, we have 1/(z)l-lg(z)l <h(r), where 

h(r) = q~1( ,2- (1-qbl)) r + q\1). 

Obviously, 1/ (z) I < I g (z) I for all zon C, if ris chosen such that h (r) ~ 0. Since h (r) is a 
convex quadratic function for which h(O)=q 1.-1._1 >0 and h(1)=0, the function h(r) has 
two positive zeros, namely 1 and r = q\1) /q~( (use the rule for the product of the two roots of 
a quadratic equation), and h(r)~O for all r in the closed interval between these two zeros. 
So, Rouché's theorem may be applied for all re[C 1,1], where C 1 =q\1>/q~1( (by (3.6), we 
know that C 1 < 1 ). This theorem tells that the number of solutions of (3.26) in the region 
I z I <ris equal to the number of zeros of g (z) in this region. The linear function g (z) has 
one zero z 0 , which is located in the region I z I < C 1 , si nee 

q1.-l,-1 
I zo I = 

11- [qo,o,o +qo,-t,o~+qo,o.-t"'f+qo,-t.-t ~y]l 

~ ql~l~l 

1- [qo,o.o+qo,-t,o+qo,o.-t +qo.-t.-d 

As a result, applying Rouché's theorem for r = C 1 proves that (3.26) has exactly one salution 
with lz I <C~o i.e. lal <C 1 1~yl (since q 1,-t .-l >0, this salution is a nonnull solution, so 
we also know that I a I > 0). Next, applying Rouché' s theorem for r = I shows that if (3.26) 
has a second root, which is the case if and only if the coefficient of z 2 is not equal to zero, 
then this root must be in the region I z I > I, i.e. I a I > I ~yl. 0 

Part (i) of Lemma 3.3 implies that if the quadratic equation (3.14) for fixed ~ and y, 
0 < I pI < I and 0 < I yl < I, has two roots a, then one root satisfies 0 < I a I < I ~I and the 
other root satisfies I a I > I ~yl; and similarly for the parts (ii) and (iii). Lemma 3.3 is used to 
prove Lemma 3.4, which states that for each relevant salution of the quadratic equation 
(3.14), i.e. for each (a.~.y)eP, exactly one factor is smaller than the product of (some con­
stant C; < I and) the other two factors. Next, with the help of the Lemmas 3.3 and 3.4, we 
will be able to define a path that always leads to a vector v for which one of the factors a,., ~v 
and 'Yv is larger than or equal to I in absolute value (i.e. for which (3.22) is violated). 

Lemma3.4. 

Each solution (a,~. y) e P possesses exactly one of the following three properties: 

(i) lai<C 1 1~yl, l~l>layl and lyl>ltt~l; 

(ii) 1~1 <C2 1ayl, lal> l~yl and lyl > la~l; 

(iii) lyl <C3 1a~l. lal> l~yl and IPI > layl. 
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Proof. 

By Lemma 3.3, each solution (a,p,y) eP satisfies 

( I a I < C 1 I pyl or I a I > I pyl ) 

and ( I PI < C 2 1 ayl or I PI > I ayl ) 

and ( lyl <C3 1a~l or lyl > laPI ). (3.27) 

Since I al < C 1 I P"fl implies that I al < I PI and I al < lyl, and sirnilarly for I pI < C 2 1 ayl 
and lyl <C3IaPI. (a,p,y) satisfies at most one ofthe '<'-inequalities in (3.27). Further, 
since (a, p, y) is a solution of (3 .14), (a,j3, "() satisfies 

0 = 1 fly _ ~ 1-r, n.l-t, 1-13 1 af' ~ q1, , 1,,13 a f' 'Y 
(t 1,t,,ll)eT 

= ql,-1.-1 (lal-lj3yl)+q-l,l,-l (lj31-layl)+q-l,-l,l (lyl-laPI) 

(I 1-1 1 n.l-t, l-Il 
+ I: q,,,,,,, 3 (1af'yl-la f' y I) 

lo,ll , I)E (-1.0} 

~ ql ,-1.-1 (lai-IPyl)+q_l.t,-1 (IPI-Iayl)+q_l.-1,1 (lyl-laPI), 

which shows that (a,p,y) cannot satisfy all three '>'-inequalities in (3,27). So, (a,p,y) has to 
satisfy at least one of the '<' -inequalities. This proves that exactly one of the '<' -inequalities 
in (3.27) is satisfied, which compieles the proof. 0 

Lemma 3.5. 

For each starring solution (a, p, y) e P, there exists a vector v e V such that I a., I ~ l , I Pv I ~ l 
or I'Yv I ~ l. 

Proof. 

Let (a,p,y) e P be a starting solution. Due to the properties stated in the Lemmas 3.3 and 3.4, 
we can construct a path { v<*>} for which the absolute values of the factors a.,c•', Pvc" and 'Yvc" 
are monotonously non-decreasing for increasing k. The path starts with the empty vector 0, 

for which the corresponding sol u ti on ( ae,, p0 , y0 ) = (a, p, y) is an element of P and thus 
satisfies exactly one of the three properties stated in Lemma 3.4. Suppose that property (i) is 
satisfied, i.e. I ae, I < C 1 I P0 y0 I, I P0 I > I ae,y0 1 and I y0 1 > I ae,P0 1. As we know, the vec­
tor (1) has the same P- and y-factor as 0, but a new a-factor <X(I)• which is the campanion 
salution to ae, of the quadratic equation (3.14) for fixed ~=P0 and y=y0 . By Lemma 3.3, 
<X( I) has to be the root which satisfies I a I > I P0 y0 I and thus <X( I) is larger than ae, in abso­
lute value. We find 
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1 1 
10(1>1 > l~o>'Y<1ll = 1~0y0 1 > -ICXc;,l = -c lal. 

C1 I 

If l<l(l) I< 1, then (<l(I)•~(I)•'Y(l)) is also an element of Pand therefore also satisfies one of 
the properties staled in Lemma 3.4. Since la(!) I> l~o)'Y(I) I, it satisfies property (ii) or pro­
perty (üi). Suppose that (ii) is satisfied, then it is useful to consicter the vector (1, 2). This 
vector has the same a- and y-factor as (1), but a new and Jaeger ~-factor: 

1 
I ~(1.2) I > I <l{t,2)'Y(I,2) I = I <l(I)'Y(I) I > ~I ~0) I . 

When comparing the factors of vector (1,2) with the factors of the starting solution, we find 

1 1 1 
10(1,2) I= l<l(l) I> c;-lal, l~o.2> I> ~~~(I) I= ~1~1. ly(1,2) I= ly(l) I= lyl. 

If I ~(1. 2) I < l, then (0(1,2). ~o.2>.'Yo. 2J) e Pand again the construction process may be contin­
ued. 

In general we construct a path { v (kl} with v (O) = 0 and for all k = I, 2, · · · the vector v (l) 
is an element of the offspring of v<l-l), i.e. p (v<kl) = v<k-1), and the last element v~~~li>) of 
v<kl is taken equal to 

{ 

1 if I a"c•-ll I < I ~v<•-ll'Yv<•-1) I; 

vl1~<•>> = 2
3 

if I ~v<'-'> I < I a"c•-1>'Yv<•-1> I; 

if I 'Yv<'-'> I < I <X"<>-1> ~v<>-1> I. 

Here, the construction process is stopped as soon as 

I a"c•> I ~ 1 , I ~v<» I ~ 1 or I Yv<» I ~ 1 (3.28) 

for some k ~ l. In that case (<X"<»,~v<»,'Yv<») is not an element of P, by which the essential 
properties of Lemma 3.4 cannot be used anymore. To complete the proof of Lemma 3.5, it 
suffices to prove that (3.28) always occurs forsome k. 

For each vector v (k), k ~ l, two of the factors (X"1», ~v<» and 'Yv<» are equal to the 
corresponding factors for v<k-l), whereas the third factor is new and may be proved to be 
largerinabsolute value (by using the Lemmas 3.3 and 3.4): 

I <X"<» I > - 1-1 a"c•-1> I , I ~v<» I = I ~v!i-1> I , I Yv<» I = I Yv<•-1> I if v~~~<»J =I; c, 

I <X"<» I = I <X" !i-I> I , I ~v<» I > - 1- I ~v<•-1> I , I 'Yv<•> I = I 'Yv<•-1> I if v~1~<»> = 2; c2 
I (X"!i> I = I <X"<>-1> I , I ~v<•> I = I ~v<>-~> I , I'Yv<» I > -1-1yv1>-~1 I if vl1~<"> =3. c3 

Let n;(k) denote the number Of i-S in the sequence vmo>), . . . , V~~~<»), i.e. in the Vector V(k); 

n;(k)= 1{/1/e{l, ... ,k}andvlkl=i}l, ie/,k~O. 

Then, by induction, it is easily proved that 

la"c•ll ~ [ t-r 1(kl lal, l~v<»l ~ [dJ n,(kl 1~1. IYv<•ll ~ [ d
3 
r,(k) lyl (3.29) 
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for all k ~0. Since all three constanis C; are smaller than I and n 1 (k}+n 2(k}+n 3(k) =k for all 
k, at least one of the right-hand sides in (3.29) bas to become larger than or equal to 1 for 
some k, which proves that (3.28) always occurs forsome k. 0 

Lemma 3.5 shows that the requirement stated in (3.22) is never satisfied by the formal 
solutions as defined in Section 3.3. However, (3.22) can be satisfied by modifying the formal 
solutions such that there is no Jonger a path teading to a vector v for which I a., I ~ 1, I ~v I ;?: 1 
or I Yv I ~ l. This is achieved by compensating the starting solution (a.,~. y) at onl y two of the 
three boundary planes: leave out the compensation at the boundary plane m = 0 if 
I al < I ~yl, at the boundary planen =0 if I~ I < I ayl and at r =0 if lyl < I a.P I. In fact, the 
compensation at this third boundary plane is not needed if the starting solution already 
satisfies the equilibrium equation for this boundary plane. This results in the second neces­
sary condition for a formal solution. Note that this condition is also sufficient to meet (3.22) 
(see also Lemma 3.6 below). 

Condition 3.2 ( condition stemmingfrom the requirements (3.20) and (3.22)) 

A storting salution (a., p, y) EP a lso has to be a salution of the equilibrium equations for one 
of the boundary planes. lt has to satisfy: 

equilibrium equation ( 3.11) for the boundary plane m = 0 if I a. I < I PYI; 

equilibrium equation (3.12)for the boundary planen =0 if I pI < I ayl; 

equilibrium equation ( 3.13) for the boundary plane r = 0 if I yl < I a.~ I. 

From now on we are only interested in formal solutions lxm,n,r(a.,~,y)} for which the 
starting solution (a.,p, y) satisfies Condition 3.2. All these starting solutions belong to one of 
the sets P;, i E /, where P 1 is defined as the set of appropriate starting solutions on the boun­
dary plane m =0, i.e. 

P 1 = { (a.,~,y) EP I ~(3ny is also a solution of (3.11) and I al < I pyl } , 

and P 2 and P 3 are defined as the sets of appropriate starting solutions on n = 0 and r = 0, 
respectively. Due to the projection property, there exists a nice characterization for the ele­
mentsof the sets P;; this characterization wiJl be given inSection 3.6. For each starting solu­
ti~n (a, p, y) EP;, i E /, the corresponding formal solution reduces to a binary tree of product 
forms and it is denoted by {x~;n, ,(a.,(3,y)}, where the superscript (i) denotes on which boun­
dary it starts: 

x~:n.r(a.,~,y) = L (-1)/(v)(l---a.v)a~ 0-Pv)~~ (1-yv)y~ (3.30) 
veV; 

with 

V;= {(v~o . . . ,v1)eVIifv*0then v 1 *i}. 

The following lemma states that for each formal solution {x~:n.r<a..P. y)} all factors a.,, ~v 
and Yv are well-defined (i.e. one always bas nonnull denominators for the tenns /;(·,.)in the 
definitions of these factors) and all (<Xv , f3v.Yv) are elements of P. Part (i) of the following 
lemma may be easily proved with the help of Lemmas 3.3 and 3.4; the other parts follow 
from part (i). 
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Lemma3.6. 

Let ie I and (a,~. y) e P;. Then all product factors a", ~v and 'Yv of the formal solution 
{ x~~n,r( Ct,~."()} are well-defined and they have the following properties: 

(i) For all v e V;. we have 

{
0< let"l <Ctl~v'Yvl 
0< l~vl <C2I<Xv'Yvl 

0< l"fvl <C3I<Xv~vl 

ij V[(v) = 1; 

ij V[(v) =2; 

ij V[(v) =3; 

(ii) For each path { v<kl} in V;, all three factors et"<•J, ~v<•J and Yv<•J are monotonously non­
increasing in absolute value for increasing k; 

(iii) (Ctv.~v•'Yv)ePforallveV;; 

(iv) For each path {v(k)} in V;. at least two of the three factors et"<>J, ~v<•J and "fv<•J tend 
exponentially jast to 0, as k -+ oo. 

We end this section with a brief recapitulation of what we have found for the formal 
solutions generated by the compensation approach in the previous section. We have derived 
two conditions which are needed to satisfy the requirements stated in (3.20) and (3.22). The 
second condition has lead to the modified formal solutions {x~~n,,(a.~.y)}, which consist of 
well-defined solutions (Ctv.~v·'Yv) e P. The first condition, Condition 3.1, in principle has been 
obtained for the formal solutions { Xm,n,,Ct, ~. y)} defined in the previous sec ti on, but it is easily 
verified that this condition is also needed for the absolute convergence of the modified formal 
solutions {x~~n,,(a.~.y) }, i.e. for 

abs(x~~n,,(a.~,y)) = :I; I (-1)/(v)(l-a")a~ (1-~v)~~ (1-yv)y~ I < oo. (3.31) 
VEV; 

In the next section, the absolute convergence is further investigated (under the assumption 
that Condition 3.1 is satisfied). One of the difficulties we have to deal with is that each for­
mal solution { x~~n.r( a,~. y)} is a binary tree instead of a series, by which it is no Jonger 
sufficient for the convergence to prove that the ratio of two successive terms has a limit 
smaller than 1. 

3.5. Absolute convergence of the format solutions 

This section is devoted to the proof of the following theorem, which holds under the assump­
tion that Condition 3.1 is satisfied; from this theorem, it follows among others that the 
modified formal solutions {x~~n,,(a.~.y)} converge absolutely in the larger part of the state 
spaceM. 

Theorem 3.1. 

For all ie I and (a,~. y) e P;: 

(i) x~~n,,(a. ~,y) is absolutely convergentlor all stales (m,n ,r) e Me• where 

Me = { (m,n,r) e M I (m,n,r) e M1 or (m,n,r) e Mf\{j} forsome je I}; 
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(ii) I: lx~~11 . r(a.~.y)l $ I: abs(x~~11.r(a.~,y)) 
(m,n,r)eM, (m,n,r)eM, 

$ abs(xH.>1.1 (a.,~, y)) + abs(x\i_lo,t (a.,~,y)) 
(1-1~1)(1-lyl) (1-lal)(1-lyl) 

abs(x\ilt o(a.~ . y)) abs(x\ilt t (a.~.y)) 
+ ' ' + •• <oo 

(1-lal)(l-1~1) (1-lal)(l-1~1)(1-lyl) 

Part (i) of this theorem states that x~11.r( a,~. y) is absolutely convergent for all states in 
the interlor and on the boundary planes. The set of these states is called the convergenet 
region Me. lt is easily shown that x~~n.r(a.~. y) is not absolutely convergent, i.e. 
abs(x~~ ... r(a.~.y)) diverges, on the axes and in the origin. For example, x~~ ... r(a..~.y) is 
shown to be not absolutely convergent for all states (m, 0,0) by considering the terrns of a 
path { v (k)} in V; with v~~~l E { 2, 3} for all k. For this path <X"<•l =a for all k and I ~val I and 
I Yv<•l I decrease monotonously (see Lemma 3.6), so 

abs(x~~o.o(a.~.y)) ~ :Ë 1(1-a"<•l)a~•l (1-~v<•l)(l-yv<•l)l 
k=O 

-~ (1-1~1)(1-lyl)l:;l(l-a.)aml = oo , 

k=O 

Part (ii) of Theorem 3.1 is needed in the next section; this part gives a useful upper bound for 
the summation of abs(x~~11,r(a..~.y)) over all (m,n,r)EMc and it states that {x~~11.r(a.~.y)} 
can be norrnalized. The properties stated iil Lemma 3.6 constitute the basis of the proof of 
Theorem 3.1. 

For the proof of Theorem 3.1, we shall use a recurrence relation for the sums 
x~~n.r(a.~.y), which, as we know, are binary trees of product forrns. Therefore, we tem­
porarily have to extend the domains for the forrnal solutions { x~~n.r< a,~. y)}, which at the end 
of Section 3.4 only have been defined forstarting solutions (a.~.y)eP;; see (3.30) and the 
definitions of the sets P;. In the remainder of this section, we drop the condition that 
(a.~.y)eP; has to satisfy the equilibrium equation for the i-th boundary plane and we let 
{x~!",r(a.~. y)} be defined for all so10tions (a.~.y) EP[, where 

P{ = { (a.~.y)eP I lal< I ~yl } 

and Pi. and P{ are defined similarly, but with the condition lal< I ~yl replaced by 
I~ I < I ayl and lyl < I a~ I, respectively. As one can easily verify, then the following 
recurrence relation holds for all i E I and (a,~. y) e P [: 

X~~11,r(a.~.y) = (l-a)~ (1-~)~11 (1-y)yr- L x~:~~~(<Xv.~v•Yv). (3.32) 
veV; 
l(v)=l 

We shall use this recurrence relation to prove Theorem 3.1 for all ie/ and (a.~.y)eP[. 
Remark that for all these (a.,~.y) the properties for the factors a", ~v and Yv given in Lemma 
3.6 still hold; this lemma will be used to derive two prelirninary results. 

To prove the absolute convergence of a series, i.e. a 'one-fold' tree, it suffices to show 
that for all k ~ 0 the k-th term is in absolute value smaller than dek for some constants d and 
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C with C < 1; in that case the sum of all terrus is smaller than d/(1-C). The analogue of this 
concept for a binary tree is proving that for all k ;;:: 0 all terms at distance k from the 
rootlorigin are in absolute value smaller than dC1 for some constants d and C with C < 1/2; in 
that case the sum of the terms at distance kis smaller than 21dC1 =d(2C)1 and the sum of all 
terrus is bounded by d/(l-2C). This concept is used to derive a bound for the binary trees 
x~~11,,(1l.~. y) with I a. I, I~ I, I yl < 'l'2. 

Consider a format solution {x~~11, ,(a..~.y)} with iE I and (a., ~.y) E Pf. Let the real con­
stant C satisfy C;;:: max[ I a. I, I~ I, I yl ]. Remark that if i= 1 then I a. I < I f3yl and we have 
max[ I a.l,l ~l,lyl ]=max[ I f31,1yl]; and similarly for the cases i =2 and i =3. With the help 
of (i) and (ü) of Lemma 3.6 (property (ii) implies that I a.,. I, I f3v I, I Yv I < C for all v) and by 
using induction with respect to l(v) one can show that 

I~Yv I::;; cl(v}+2 if Vf(v)= 1, I ~vYvl s cl(v}+J if Vf(v)E/\{ 1}; 

IO.,.'Yvl SC/(v}+2 jf Vl(v)=2, IO.,.yvl ::!>C/(v}+J if Vf(v)E/\{2}; 

IO.,.~viSC/(v}+2 ifvl(v)=3, la.,.~viSC 1 (v}+J ifvl(v)E/\{3}. 

for all v E V;, where v1 (v) :=i for v = 0. This implies that 

I f3v Yv I, I a.,. Yv I, I <Xvl3v I :::;; cl(v}+2 for all VEV;. (3.33) 

As a consequence, I a.:~~y~ I S c 1<v>+2 for all states (m,n,r) with at most one coordinate 
equal to zero, i.e. for all states (m,n,r) E Me, and, if C < %, then we find 

abs(x~~11,,(a.,f3,y)) = L I (-1)/(v)(l-a,.)a.: (l-f3v)f3~ (l-yv)y~ I 
veV1 

vev, veV; 

which proves the following lemma. 

Lemma 3.7. 

Let iel and (a,f3,y)ePf. Further, let the constant C satisfy c;;::max[la.l,lf31, lyl] and 
assume C < %. Then x~~n.r(a.,f3, y) is absolutely convergent in all states (m,n,r) E Me and 

(î) A 8C2 
abs(xm,n,r(a,f-l,y)) S 1_2C 

The upper bound for abs(x~~11,,(a.,f3,y)) given in Lemma 3.7, together with Lemma 3.6(i) 
and the recursion in (3.32), is used to prove the second preliminary result. 

Lemma3.8. 

Let iE I and (a.,f3,y) EP[. Further, assume that min [I f31, I yl] < 1/2 if i= l, min[ I a. I, lyl] < 1/2 

if i = 2 and min [ I a. I, I l3 I ] < 1h if i = 3. Then x~~n,r( a, 13. y) is absolutely convergent in all 
states (m,n,r) E Me. 
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Proof. 

It suffices to prove the lemma for a formal solution x~!n.r(cx.~.y), i.e. for the case i= 1. 
W.l.o.g. we may assume 1~1 :s;; lyl; so 1~1 <Vl. Define the path {v<k)} by v<0>=0 and 
v<k> = (2,1, . . . , 2) if k::?: l and k odd, v<k> =(2,1, ... , 2,1) if k::?: 1 and keven. Further let the 
veetors w<k) for all k::?: 1 be defined by w<k)=(2,1, .. . ,2,1,3) if k odd, w<k) =(2,1, ... ,2,3) 
if keven (w(k) follows from v<k-t) by adding a 3). Then by using (3.32) one can show that 

abs(x~!n.r( ex,~. y)) = i I ( l-ex"<•> )ex~•> (1-13v<» )~~<» 0-"fv<•> )Y~<» I 
k=O 

+ i abs(x~!n.r( <Xw<» ,13w<», Yw<•>)) . 
k=l 

By using Lemma 3.6(i) and induction with respect to k it is shown that 

ICXv<•>l :s;; l~llylk+l and l~v<•>l :s;; l~llylk if k::::O and keven; 

ICXv<•>l :s;; l~llylk and l~v<» I :s;; l~llylk+l if k::::O and k odd, 

(3.34) 

by which one can easily see that the first series on the right-hand side of (3.34) converges for 
all (m,n,r) eMc (so, m+n:::: 1; further, note that Yv<•> =yfor all k): .. 

I', I (l-ex"<» )ex~•> ( 1-~v<•> )~~<•> (1-Yv<» )y~<» I 
k=O .. 

= 11-"(1 lyl r I', I (l-ex"<•> )Cl~» (1-~v<» )~~<»I 
k=O 

:s;; 8 i lex~·~~=<•> I :s;; 8 i<l~llylk)m+n :s;; 8 i l~llylk =~ 
k=O k=O k=O 1-lyl 

Since exwc•> = ave•-» and ~w<~> = ~v<•-» for all k ;;:: l, we have 

max[ I exwc•> I, lj3wc•> I, I Yw<•> I] = max[ I exwc•> I, lj3wc•> I] :s;; lj31 I yl k-l 

for all k;;:: 1. Combining this result with Lemma 3.7 shows that also the second series on the 
right-hand side of (3.34) converges for all (m,n,r) e Me: 

.. .. 81j311ylk-l 
I',abs(x~!n.r(Clwll>,~w 1»,yw<»)) :s;; L k-l 

k=l k=l 1-21j311yl 

< .. 81j311ylk-l - 81êl 
- k~l 1-21131 - (l-21j31)(1-lyl) 

As a result, for all (m,n,r)eMc the sum abs(x~!n,,(cx,j3,y)) is finite, i.e. 
verges absolutely. 

Proof of Theorem 3.1. 

x~!n.r(a.~.y) con-
0 

Now we are able to prove part (i) of Theorem 3.1. Let ie I and (ex, j3, y) e P[. Define the con­
stant C by C = max[ I ex I, lj31, I yl ]. Since C < 1, there is an integer k:::: 0 such that 
cVzk+l < lfz . By repeated application of (3.32), we get 
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abs(x~~n,,(a.~.y)) = L 1(1--a")a~(l-~)~~(1-yv)'y~l 
veV1 

l(v)<k 

+ L abs(x~:~~~(a.~.y)) . 
veV1 

l(v)=lc 

By (3.33), for all V E V; with I (V)= k, we have I ~y 'Yv I ~ ck+2 and therefore 

min[l~yl,lyvl] ~ "clc+2 = c'~>lc+l < %; 
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(3.35) 

and similarly for min[ I <Xv I, I 'Yv I] and min[ I <Xv I, I ~v I]. So, by Lemma 3.8, for all 
(m,n,r) e Me alltermsof the second sum in (3.35) converge. Since this sum, and also the first 
sum in (3.35), consists of only a finite number of terms, we may conclude that for all 
(m,n,r) e Me the sum abs(x~~n,,(a. ~. y)) is fini te, i.e. x~~n,,(a, ~. y) converges absolutely. 
This completes the proof of Theorem 3.l(i). 

Let us now prove the second part of Theorem 3.1. The validity of the first inequality is 
trivia! and the third inequality immediately follows from part (i). The second inequality is 
provedas follows. From the definition of Me, it follows that 

L abs(x~~n,,(a.~.y)) 
(m,n,r)EMc 

U) (") L abs(xd,n,,(a.~.y)) + I: abs(x"',,o,,(a.~.y)) 
(O,n,r)eMJ\1 11 (m,O,r)eM/\121 

+ abs(x~~n. o (a.~.y)) + L abs(x~~n,,(a.~.y)) . (3.36) 
(m,n, 0) e M"131 (m.n .r)eM1 

By using Lemma 3.6(ii), one easily derives the following bound for the first sum on the 
right-hand side of (3.36): 

L abs(x~_ln,,(a,~,y)) = L L L 1(1-a.,)(l-~v)~~ (1-yv)'y~ I 
(O,n,r)eM/\III n=l r=l veV1 

< abs(x~.>t . I (a.~.y)) 
- (1-1~1)(1-lyl) 

(3.37) 

In a similar way one derives bounds for the other sums on the right-hand side of (3.36), after 
which substitution of all these bounds in (3.36) completes the proof. D 

3.6. The equilibrium distribution 

The analysis in the Sections 3.3 and 3.4 has resulted in the definition of the forma! solutions 
{x~~n,,(a.~.y)} and in Condition 3.1, which has been shown to be needed for the absolute 
convergence of these forma! solutions. In Section 3.5, it has been verified that, for the stales 
in the convergence region Me, this condition is also sufficient for the absolute convergence. 

In this section, under the assumption that Condition 3.1 is satisfied, it will be investi­
gated whether we can obtain the equilibrium distribution IPm.n,r) by using the forma! solu­
tions {x~~n,,(a.~.y)). Since these forma! solutions converge absolutely (i.e. are well-defined) 
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in all states of the convergence region Me, which consists of the interlor and the three boun­
dary planes, each format solution {x~~ ... ,( ex, p, y)} satisfies the equilibrium equations for the 
states in Me which have no incoming transitions from states outside of Me (see also the rea­
soning in the last paragraph of Section 3.3). As one can easily verify, the only states in Me 
which have incoming transitions from states outside Me, i.e. from states on the axes or from 
the origin, are the states (m, 0,1), (m, 1,0), (O,n, 1), (1,n, 0), (O,l,r) and (l,O,r). Let M; be 
the set of all states for which the equilibrium equations are satisfied by a format solution. 
Then 

M; = { (m,,m2,m3)eM I mi+mj~2 for all i,je/, i -:t:j}. 

Since each format solution satisfies the equilibrium equations for all states in M;, also 
each linear combination of formal solutions satisfies the equations for this set M;. This gives 
us some freedom in finding a solution which also satisfies the equilibrium equations for the 
stales outside of M;, i.e. in finding the equilibrium distribution IPm.n,r }. Now the question is 
which forma) solutions should be linearly combined, or better, which starting solutions have 
to be selected. 

The analysis in this section is built up as follows. First, due to Condition 3.1, we can 
present explicit expressions for the two-dimensional marginal distributions {p~·{!m 2 } • Next, 
we are able to derive a nice characterization for the starting solutions, from which we learn 
that each set Pi of starting solutions is uncountable. After that, we shall derive the explicit 
formula for the equilibrium distri bution IPm.n,r}, as staled in the Main Theorem at the end of 
this section. lt will be shown that from the unco.u.ntable sets of Cé!Jldidates for starting solu­
tions, only a countable number of starting solutions is needed to obtain a linear combination 
of format solutions which also satisfies the equilibrium equations for the countable set MW;. 
For the selection of the appropriate candidates, and also for the choice of the coefficients of 
the Iinear combination, we shall use the explicit expressions for the two-dimensional margi­
nal distributions {p~·{!m 2 }. In fact, it is at this point that induction hàs to be used to extend 

the expressions found for the equilibrium distri bution IPm,n,r} to the N-dimensional case. 
Note that the problem of selecting the appropriate starting solutions did not appear in the 
two-dimensional case, where we obtained only a finite number of starting solutions, which all 
had to be used for the construction of the equilibrium dislribution. 

Explicitformulaefor the two-dimensional marginal distributions {p~·{!m1 } 

In Section 3.2, we established that for all i,j e /, i < j, the marginal distri bution lp(i;J) } is 
mJoml 

the equilibrium distribution of the two-dimensional, irreducible, positive recurrent, homo­
geneous, nearest-neighboring random walk with the projection property and transition proba­
hilities q~~·!,l2 for the states in the interior. Since Condition 3.1 is assumed to be satisfied, we 

also satisfy the equivalent condition staled in (3.9), which implies that the two-dimensional 
marginal distributions can be deterrnined by applying the compensation approach, as 
described in Chapter 2 for the two-dimensional case. 

For the equilibrium distribulion {p~:;.3l} of the random walk with state space 
{ (n,r) I n,r e IN 0 } and transition probabilities q~7}{ for the stales in the interior (see Figure 

3.3), the use of the compensation approach leads to (see Theorem 2.1; the product factors are 
renumbered to Iet the expressions be better linked up with the expressions for the three-
dimensional case): 
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t 
r 

n-

Figure 3.3. The transition probabilities for the random walk which describes the behavior 
for the components n and r; for all states the transitions to themselves have been left out. 

p~:~3) = Ï,(-l)k(l-p~ll)(p~l))n(l-'Yicl))(yi,ll)' 
k=O 

+ i(-l)k(l-a~ll)(a~ll)n(l-Yi,'l)(Yi,'l)', n.r~O. n+r~ I, 
k=O 

Ph71fl = l - L p~:~J) . 
n.r~O 
n+r~l 

(3.38) 

(3.39) 

Here, the first series in (3.38) is a formal solution starting on the horizontal boundary r =0 
and it satisfies the following properties: 

* AII CP~1 l, yi,1l) are real-valued solutions of the quadratic equation 

R.v = ~ (2.3) r:~l-t, 1-t, 
PJ ~ qt,,t, p y ' (3.40) 

11,1 2 e {-1,0,1} 

which is obtained after substituting the product form P"y' in the equilibrium equation 
for the interior. This quadratic equation is equivalent to the quadratic equation (3.14) 
for fixed ex= 1, which implies that the product of the roots P of (3.40) for fixed y is equal 
to f2(l,y) and the product of the roots yof (3.40) for fixed P is equal to !J(I ,p); 

* CPb1l, "fh1 l) is the unique solution of the equilibrium equations for the interlor and the hor­
izontal boundary r=O: Pb1l is equal to the geometrie factor of {p~2>), i.e. 
Pb'l =q\2> lq~2( = h(J, 1), and "fh'l is the companion solution to I of the quadratic equa­
tion (3.40) for fixed P= Pb1), i.e. "fh'l =hO .Pb'l); 

* For all even k, the factors PVl, and n'l, are chosen such that the sum of the terms with 
indices k and k + l satisfies the equilibrium equations for the interlor and the vertical 
boundary n =0: n'l1 =n'> and p~1l 1 is the campanion solution to pV> of (3.40) for tixed 
y=yi,ll,i.e. p~lll =h(I.Yi,'lyp~'>; 
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• For all odd k, the factors ~~111 and n 111 are chosen such that the sum of the terms with 
indices k and k+ l satisfies the equilibrium equations for the interlor and the horizontal 
boundary r =0: ~~111 =~~I) and n'11 is the campanion soJution to nl) of (3.40) for fixed 
~=~~1). i.e. nl11 =/J(l.~~ll)lyill. 

For the factors ~~I) and n,o, we have the property (see Lemma 2.3(i)) 

l > ~bi) > "fbll = y\l) > ~~I)= ~~I) > i;_ll = ... 

and the ratïos ~~~1~Jrlc1 > for even k and n 1111JW> for ood k decrease monotonousty to 

(1-qfl:tfl)- ~(1-qb7b3)i-4q\::.:';q9ä A I = __ ...;._ ___ --:::-'-:::---..;._-...;._ 
2q~2ä 

and 

(1-qh7lfl)+~(l-qb71f>)2-4q~::?;q~21'.3~ 
A 2 = ---=-'-'-'------....:=:.:-=7:--......:..c:..:.....:....:.......c:.:..:..._ 

2q~2 .. :? 
respectively (see Lemma 2.3(ii) and the remarks at the beginning of Section 2.5). As a result., 

~~112 ! ~ and nl12 ! ~ as k-..+oo. (3.41) 
~~I) A 2 nl) A2 

Since A 1!A 2 < 1, the factors ~~I) and n,o decrease exponentially fast to 0. Similar results 
hold for the second series in (3.38), which is a formal solution starting on the vertical boun­
dary n =0. For this solution the factors ~~I) and Wl are defined by Yb1l =qp> !l:!? = !J(l,1), 
~bi)= f2(l,Yb1l) and for all k ~0: 

~~111 =~~I). W11 =!J(l.~~I)Ynl) if kis even; 

W11 =W>. ~P11 =ho.W>)IJ\~1) if k is octd 

For the other two two-dimensional marginal distributions {p~}l} and {p~;;> }, we 
obtain the following expressions. For {p~;Jl }. we find 

p~}> = :i:<-t)k(t--aF>><a~2>)mo-n,2>)<n2>t 
k=O 

+ :i: (-l)k(l-ti~2l)(a~2l)m(1-i1:2l)(.yf>t , m,r ~0. m+r ~ 1, 
k=O 

where the first series represents the formal solution starting on the boundary r = 0 and the 
second series is the fornial solution starting on the boundary m =0. The factors a~2l. n 2l. 
a~2> and W> are ctefinect by a&2>=t~o.t). yfP=JJ<ab2>,t). r&2>=ho.o. ab2>=t~o.r&2>) 
and for all k ~ 0: 

n 211 =n2>. aF11 =t~o.n2>Ya~2>. a~211 =a~2>. W11 =JJ<aF>.tYn2> ïr keven; 

aF11 =a~2>. n 211 =JJ<aF>.t)lyi2>. W11 =W>. a~211 =t~o.W>);aF> ir k octd 

Finally, for {p~;;>}, we get 

p~;;> = :i:<-llO--afll)(aPl)m(l-Wl)(~~3))n 
k=O 

+ i<-l)k(l-tip>)(ap>)m(l-~p>)(W>t, m.n~O. m+n~l. 
k=O 
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with ab3l = h (1,1), ~b3l = f2(ab3l ,1), Wl = f2(1,1), Ó:b3l =ft <Wl ,1) and for all k ~ 0: 

~~3lt = Wl. a~3lt =ft <Wl ,1)/aPl, ó:~3lt =6:~3). Wlt = f2(ó:~3) ,1)113Pl if k even; 

a~31t =a~3l. Wlt =h<aPl.t)tlWl. Wl1 =Wl. &Plt =ft<Wl.1)/a~3) if k ood 
Just like Pb:lfl, the remaining probabilities Pb~tf) and Pb~b2l follow from the normalization 
equation; cf. (3.39). 

Characterization of the starting solutions (a,~.'() e P; 

Due to the projection property, there exists a simp Ie characterization for the starting solutions 
(a,~. y) e P;. Consider a solution (a,~. y) ePI> i.e. a starting solution on the boundary m = 0. 
Such a solution has to satisfy the equilibrium equations (3.10) and (3.11), i.e. (a.~.y) has to 
satisfy the quadratic equation (3.14) and the equation 

(3.42) 

which is obtained by substituting the product form am ~"y' in (3.11) (see also the definition of 
K(a,p,y) at the beginning of Section 3.3). Multiplying both sides of (3.42) by a and sub­
tracting (3.42) from both sides of (3.14) leads to 

0 = RI-t, 1-t, Rl-t,_J-t 3 I. qt,,,,,,.., y -a I. q-t,,,,,,.., 1 • 
(l,t 1 ,t3)eT (-l,t 2,t3)eT 

which shows that a has to be equal to f 1 (~.y) (cf. (3.17)). Rewriting (3.14) to a quadratic 
equation in a (see (3.16)), dividing all terms by a and next substituting a= ft(~. y) shows that 
~ and y have to satisfy the equation 

(3.43) 

which is equivalent to (3.14) for fixed a= l. Finally, we have to evaluate the condition 
0 < I a I < I pyl. Let (~. y) be a solution of (3.43) with 0 < I PI < 1 and 0 < I yl < 1, then for 
these fixed P and y the quadratic equation (3.14) has two solutions: o.= 1 and o.= f 1 (~.y). 

Since I> I pyl, according to Lemma 3.3(i), the second root o.= f 1 (jl,y) satisfies 
0 < I a I < I~ I. Th is proves part (i) of the following lemma; the other two parts may be 
proved along the same lines. 

Lemma3.9 

(i) (a,~. y) is a starting solution on the boundary plane m = 0, i.e. (a,~. y) e P 1, if and only 
if CP.'() is a salution of the quadratic equation ( 3.14) for .fixed a= I and a is equal to 
a=ft(~.y); 

( ii) (a, p, y) is a starting salution on the boundary plane n = 0, i.e. (a, ~. y) e P 2, if and only if 
(a, y) is a salution of the quadratic equation ( 3.14) for .fixed ~ = I and ~ is equal to 
~=h(a,y); 

(iii) (a.~.y) is a starting salution on the boundary plane r =0, i.e. (a,~. y) e P 3 , if and only if 
( o., ~) is a salution of the quadratic equation ( 3.14) for .fixed y= 1 and y is equal to 
r=h(a,p). 
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Detennination of the equilibrium distribution {Pm,n,r} 

We now are able to derive the explicit formula for the equilibrium distribution {Pm,n,r}, as 
stated in the Main Theorem at the end of this section. It appears to be possible to obtain this 
distri bution by choosing appropriate starting solutions (a, p, y) e P; and linearly combining the 
corresponding forma\ solutions x~~11,,(a.,p,y). The idea for the appropriate selection of start­
ing solutions is obtained from the explicit formulae for the two-dimensional marginal distri­
butions and the characterization of the starting solutions, as described in Lemma 3.9. 

When reading part (i) of Lemma 3.9, we realize the following, Since the quadratic 
equation (3.14) for fixed a.= 1 is equivalent to the quadratic equation for the two-dimensional 
random walk descrihing the behavior for the components n and r (see (3.40) and Figure 3.3), 
all product farms present in formula (3.38) for {p~3>} rnay be extended to starting solutions 
on the boundary plane m =0. From this observation, we obtain the idea that the product 
farms of the marginal distributions {p~·{!m, } have to be used in order to obtain the equili­
brium distribution. This idea is strengthened by the remarkable property of the forma\ solu­
tions {x~~11,,(a.,p,y)} described in the next paragraph. 

Formula (3.30) for {x~~11,,(a.,p,y)} shows that.each forma\ salution is a kind of altemat­
ing sum of product-farm distributions. As a consequence, for each forma\ salution two terrns 
with the same values for two of the three factors a.,, Pv and 'Yv vanish when tak.ing the sum­
mation over the coordinate belonging to the third factor. For example, for a forma\ salution 
{x~}",,(a.,p,'Y)} two terms with the sameP-and y-factor vanish if we take the summation of 
x~!",,(a.,p,y) over m =0 to oo, by which 

~x~!",,(a.,p,y) = ~ [(l~)a.~(l--130)p~(l--y0)'Y0 
m=O m=O 

+ L (-1)/(p(v))((l-<Xp(v))a.;(v) -(1-<Xv)<X~] (1-pp(v))p~(v) (1--'"fp(v))'Y;(v)] 
ve V1\{0) 

Vl(v)=l 

= ( 1-P)P" (1--y)'y' for all n,r ~ I. 

Here, the last equality is found after changing summations, which is allowed by Theorem 
3.l(ii). The first term of x~!",,(a..~.y) does nat vanish when summing over m, since this term 
does not have a campanion term with the same P- and y-factor. When summing over n, all 
terms have a campanion term with the same a.- and y-factor, by which 

~ x~}",,(a..~. y) 
II=Û 

= L L (-1)/(p(v))[(l-Pp(v))p;(v)- (J-I~v)P~l (1-<Xp(v))a.;(v) 0--'Yp(v))'Y;(v) 
n=OveV1\{0) 

"'1(~)=2 

= 0 for all m.r~ 1; 

and similarly when summing over r. This proves Lemma 3.10 for i = 1; the cases with i= 2 
and i = 3 are treated in a si mil ar way. 
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if j =i; 

for all m1 "?. 1, IE 1\{j }. 

Together with the expressions for the two-dimensional marginal distributions {p~·f!m 2 }, 

the results stated in the Lemmas 3.9 and 3.10 suggest whlch starting solutions have to be 
selected and how the coefficients of the linear combination of the corresponding forrnal solu­
tions should be chosen to obtain the equilibrium distri bution IPm.n,r}. 

Combining the results of Lemma 3.9(i) and Lemma 3.10 gives us the idea to define a 
linear combination of all forma! solutions with starting solutions coming from the product 
forms in forrnula (3.38) for the marginal distri bution {p~Vl }. Define ai1l = / 1 <~i1 l, "fi1l) and 
ai1>=t1 <~i1>,W>) for all k"?.O, then, by Lemma 3.9(i), all solutions <ai1 >,~i1 >,-rt•>) and 
(ai1l .~i1 l, Wl) are starting solutions on the boundary plane m =0. Next, defining 

Y~!n.r = i (-l)kx~!n,,(ai•> .W> ,"fi1l)+ i (-l)kx~!n.r<aV> .~i•> ,Wl), (m,n,r) E Me, 
k~ k~ 

gives us a solution {y~!n,r}, for which, by Lemma 3.1 0, 

i Y~!n.r = i(-l)k i x~!n,r(aill.~ill,"fill) + i(-1)* i x~!n.r(akll,~ill,W)) 
m~ k~ m~ k~ m~ 

= p~7~3l for all n, r "?. 1. 

So, when summing {y~!n,r} over the m-component, one gets the marginal distribution for the 
other two components. This indicates that we are on the right track with our search for 
IPm,n,r}, since this is a property which is satisfied by the equilibrium distri bution IPm,n,r} by 
definition (see the definition (3.7) of the marginal distributions {p~·{!m 2 }). Summing {y~!n.r} 
over n or r leads to: 

iY~!n,r = 0 for all m,r"?.l, iY~!n.r = 0 for all m,n "?.1. 
n~ r~ 

As we see, in thls case the result is 0 insteadof a marginal probability; the marginal probabili­
ties p~}l and p~;;> will have to be obtained from linear combinations of forma! solutions 
{x~!n,,(a.~,y)} and {x~!n.r(CX.~.y)} . 

Let 
The definition and properties for {y~!n.r} are easily extended to solutions {y~~n, r} , iE I. 

ai1) = fl <~il) ,"fill), ai•> = fl <~il) .w>); 
W>=h<aF>.n2>), W>=h<aF>.W>); 
n3>=h<aP>.W>). W> =h<aP>.W>). 

for all k "?. 0 and let the solutions {y~~n.r) , iE I, be defined by 
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Y(iJ = ~(-l)kx<i> (afiJ n.fi) • .fi))+ ~(-l)kx<i) (a·(i) 6(i) .t.fi)) ( ) M m,n,r ~ m,n.r k •Pk • Tk ~ m.n,r k •Pk , Jk ' m,n,r E c· 
k~ k~ 

Then for all i,j E 1, k,l e /\{i}. k <l, and all mbmt ~ I, it holds that {p(k,/) lf j'=i · 
~ m •. m, • 
~ y<i) -
.L.i m "m2,m3 -

m1=0 0 ij j *-i. 

Obviously, the solution (Ym.n,r} defined as the sum of the solutions {y~~n.r}, i.e. 

Ym,n,r = LY~~n.r, (m,n,r)EMe, 
iel 

satisfies the desired property: for all ie 1, k,l e /\{i}, k < l, it holds that 

~ y - p<k.t) &or all m m .... l 
L; m1,m 2,m 3 - m,,m1 '' k• I"' · 

m1=0 · 

(3.44) 

(3.45) 

Before continuing, we remark that the solution (Ym,n,r}, so far being defined for all 
states (m,n,r) in the convergence region Me, is well-defined, since all six series constituting 
(Ym,n,r} are absolutely convergent for allstatesin Me: 

:Ë lx~~n,,(a~>.~~>.-&>)1 < oo and 
k~ 

:Ë lx~~n.rCat>.M>;ni))l < oo, (m,n,r)eMe, iel. (3.46) 
k~ 

For l:k'~ x~!n.rCaP> .~kl) ,"f1:1>), the absolute convergence is proved by using the bound given 
in Lemma 3.7 and the property that the factors ~kl) and "f1:1) decrease monotonously and 
exponentially fast (see (3.4 I)); and similarly for the other series. Further, we have to remark 
that the properties stated in (3.44) and (3.45) have been derived after changing summations; 
this was allowed, since 

I: :Ë lx~~n,,(a~>.~~>.-&>)1 < oo and 
(m ,n,r)eMck~ 

i El, (3.47) 
(m,n,r)eMck~ 

which is proved by using (3.46), Theorem 3.1 (ii) and the property that all factors of the start­
ing solutions (a~>.~~> ,yYl) and (a~>.~~>, -w>) decrease monotonously and exponentially fast. 

The solution (Ym,n,r} defined for all states (m,n,r) E Me up to now, satisfies two proper­
ties. In the first place, since {Ym,n,r} is a linear combination of formal solutions, (Ym,n,r} 
satisfies the equilibrium equations for all states (m,n,r) e M;. Secondly, (Ym,n,r} satisfies 
(3.45). Now, define Ym,n,r on the m-axis by 

Ym, 0,0 = P~) - I: Ym,n,r for all m ~I, 
n.r~ 
n+r~l 

and similarly for the n-axis and r-axis. Finally, to obtain a solution for which the probabili­
ties add up to I, wedefine Yo.o.o by 

Yo.o.o = l- I: Ym.n ,r 
(m,n,r) eM\((0,0,0)) 
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(use (3.47) to show the correctness of these definitions, i.e. to show that the series at the 
right-hand sides are absolutely convergent). Then {Ym,n,r} may be shown to satisfy (3.45) 
also for mk ""0 and/or m1 =0 (see Lemma 3.11), after which we are able to show that {Ym,n,r} 
also satisfies the equilibrium equations for the stales outside M;. This willlead to the condu­
sion that the solution {Ym,n,r}, for which the components Ym.n,r already add up to I, is equal 
to the equilibrium distri bution {Pm,n,r} . 

Lemma3.11 

Let iE I and k,/ E /\{i}. k <l. Then 

L Ym,,m,,m, = P~~~~' for all mk,ml ~0. 
m1=0 

Proof. 
The result stated in (3.45) is extended in two steps. In the first step (3.45) is extended to 

i Ym,,m,,m, "" p~;~~' for all mkoml ~0. mk+m, ~ l, (3.48) 
m1=0 

where ie I and k,l E /\{i}, k < l. This extension is proved by rewriting the expressions for 
Ym,n,r on the axes. For exarnple, for the case i= I, sok= 2 and l = 3, we may rewrite Yo,n, 0 

for all n ~ 1 as (use (3.45)) 

YO,n, 0 = P~2) - L Ym.n,r ;:;;; P~2) - i Ym.n, 0- :Ë i Ym,n,r 
m,r~ m=l r=lm=O 
m+r2:1 

- p<2) ~ y ~p(2,3) - p(2,3) "t' y 
- 11 - ~ m.n. 0 - ,LJ n,r - n. 0 - ~ m,n, 0 t 

m=l r=l m=l 

which proves that :t;;;=OYm,n,O""P~:·J> for all n ~I; rewriting Yo.o.r for all r~ I proves the 
extension of (3.45) for the case n = 0 and r ~ l. In the second step (3.48) is extended to the 
result staled in Lemma 3.11; this extension is proved by rewriting Yo.o.o. D 

To show that {Ym,n,r} also satisfies the equilibrium equations for the states outside M;, 
we shall use the bolanee principle: 

the strearn out of a set M' "" the stream into this set M' , M' cM. (3.49) 

Obviously, for a subset M' consisting of a single state the balance principle is equivalent to 
the equilibrium equation for that state. Therefore !Ym.n,r} satisfies (3.49) for all statesof M;. 
Further, by Lemma 3.11, {Ym,n,r} satisfies (3.49) for all subsets of the form 

(3.50) 

where ie I and m1 ~0. je /\(i}, since for such a subset the balance principle is equivalent to 
the equilibrium equation in the state (mt.m1) of the two-dimensional marginal random walk 
descrihing the behavior for the components mk and m 1, k,l e /\{i}, k < /. For exarnple, for the 
subset M'"" { (m,n,r) I m ~ 0} with fixed n,r ~ l the balance principle is equivalent to (take the 
sum of (3.10) over m ~ 1 and add (3.11), after ha ving replaced qb~,l, , ,, by q 0_,, ,,, + q _1,,,,1,) 
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P (2,3) - ~ q<2.3) p<2.3) 
n,r - "'-' 12 ,13 n-t1,r-13 • 

lo,I1E l-1,0,1} 

which is the equilibrium equation for the state (n,r) of the random walk descrihing the 
behavior for the last two components (see Figure 3.3). Now, by considering differences 
M 1 \M 2 with M 2c M 1 of the sets given in (3.50) and sets consisting of stales of M;, !Ym,n,r} 
may be shown to satisfy also the equilibrium equations for the states outside M/. For exarn­
ple, for all m ~ l, (3.49) is satisfied for the set M 1 = { (m,n, l) In~ 0} (see (3.50)), and (3.49) 
is satisfied for the set M 2 = { (m,n, l) In ~l}, since !Ym,n,r} satisfies the balance principle for 
each state of this set. Therefore, !Ym,n,r} also satisfies the balance principle (3.49) for 
M 1 \M 2 = { (m, 0,1)} (since (3.49) for M 1 \M 2 is obtained by subtracting (3.49) for M 2 from 
(3.49) for M 1 ). This proves that !Ym,n,r} also satisfies the equilibrium equations for the states 
(m, 0,1), m ~ l. One can easily check that all other states outside M; may be treated in a 
similar way. Hence we may conclude that IYm,n,r} satisfies all equilibrium equations. By 
using (3.47), it may be shown that ~m.n,r)eM 1Ym.n,r1 <oo, and thus the equilibrium distribu­
tion IPm,n,r} may be obtained by normalizing the solution IYm,n.r}. Since, by the definition 
for Yo.o.o. the Ym.n,r already add up to 1, we finally find that IPm,n.r} is equal to !Ym,n,r }. 

In Theorem 3.2, we have summarized the main results which follow from the analysis in 
the Sections 3.3-3.6 for the class of three-dimensional random walks described in Section 3.2. 

Theorem 3.2 (Ma in Theorem for the case N = 3) 

The equilibrium distribution !Pm.n,r} fora random walk of the class described in Section 3.2, 
can be determined by the compensation approach if Condition 3.1 is satisfied. lf this condi­
tion is satisfied, then the equilibrium distribution !Pm,n,r} is equal to the sum of six alternar­
ing series of alternaring binary trees of pure product-form distributions: 

Pm.n,r = f. [ i:<-O.tx~~n.rCa~>.rW>,-0jl) + i:<-l)kx~~n.r<a~>.~~>.'W>> J . 
i=l k=O k=O 

(m,n,r) e M1uM/\Il)uM/\I21uM/\I3l. (3.51) 

Pm,O,O (·-it] (it]m _ :E Pm,n,r • (m, 0,0) eM lil, (3.52) 
q~l? q~l( n,r<:O 

n+r<:l 

PO,n,O = [ 1 _ qF> ] [ qF> ] m - :E Pm.n,r • (O,n, 0) e M 12! , (3.53) 
q~2( q9? m,r<!:O 

m+r<:l 

Po.o.r [ l - qp> ] [ ~] m :E Pm,n,r • (O,O,r) e M (3}, (3.54) 
q9? q9( m,n<:O 

m+n<:l 

Po.o.o = l - :E Pm.n,r · (3.55) 
(m,n,r) E M\l (0,0,0)} 

Here, thefactors a~>.(l~>. w>. a.~>. M> and w> are defined as described in this section, and 

the sums x~~n.rC·, ·, · )are defined as described in the Sections 3.3 and 3.4. 
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3.7. Refonnulation ofTheorem 3.2 

In this section, we show that, by studying the definitions of the product-form solutions which 
constitute the equilibrium distribution, the formula for the equilibrium probabilities Pm,n,r for 
the interlor and the boundary planes may be rewritten to a considerably more compact and 
simpler formula; and, similarly for the marginal distributions. The alternative formulae 
which we obtain have the advantage that, as we shall see in the next seetion, they can be 
easily generalized to the N-dimensional case. 

Looking in less detail, we can say that the Main Theorem states that the equilibrium dis­
tribution IPm,n,r) is equal to one altemating sum of product-form distributions. All these pro­
duct forms, and also all product forms appearing in the formulae for the marginal distribu­
tions, are solutions of the equilibrium equation for the interior, i.e. of the quadratic equation 
(3.14). By studying the definitions of all product factors, it is easily verified that all these pro­
duct forms are obtained by taking the trivia! solution (a, ~.y) = (1,1,1) of (3.14) and generat­
ing new solutions of (3.14) by letting one factor free each time. The tree of solutions which 
we obtain in this way is depicted in Figure 3.4. Using this tree of product forms enables us to 
give more compact formulae for IPm,n,r), and also for its marginal distributions. 

Let V be thesetof veetors given in Seetion 3.3. Define (cx{l"~0 , y0 ) =( 1,1, 1) and let for 
all other veetors v e V the factors of (CX.".~v•Yv) be defined by 

CX." = /1 (~p(v)• 'Yp(v))/CXp(v) , ~v = ~p(v) , "Yv = 'Yp(v) if VJ(v) =I; 

CXv = <lp(v) • ~v = /2(<lp(v)•'Yp(vj)~p(v) , 'Yv = 'Yp(v) if VJ(v) =2; 

CXv = <lp(v) • ~v = ~p(v), 'Yv = !J(ap(v)•~p(v)Y'fp(v) if VJ(v) =3. 

Then the set of all solutions depicted in Figure 3.4 is given by 

p• = { (CXv,J3v,"fv) I VEV}. 

Foreach solution (CXv.~v·'Yv) in this set, all factors are real numbers in the interval (0,1] and 
therefore p• may be partitioned into the subsets 

Pj = ((a1,a2,a3)eP*Ia;<l for all ieJ and a;=1 for all i~J), Je/. 

For all Je/, J -:1-0, it may be shown that the set Pj ;s equal to thesetof product-form solu­
tions needed for descrihing the equilibrium behavior of the components i e J. 

As one can easily check, for the marginal distribution {p~>) only the unique solution 
(cx.",J3v,"fv)eP* with ex."< I and 13v="fv=1 is needed; and similarly for (p~2)) and {p~3>j. 
Consiclering the formula for {p~:;>) shows that {p~}l) consists of the product forms 
±(1--<X")a~(1-J3v)~~ with (CXv,J3v,"fv)eP* and a.< I, ~v<l and "fv=l, where the sign 
depends on the distance between the node v and the node 0; and similarly for {p~}>) and 
{p~:;>j. Finally, for the equilibrium distribution IPm.n.rl• all solutions (CXv.~v·'Yv)eP* with 
ex." < 1, J3v < 1 and 'Yv < I are needed. These observations lead to the compact and relatively 
simple formulae staled in the following theorem. 
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(1,1,1) 

Figure 3.4. All relevant solutions of (3.14) needed for the equilibrium distribution 

IPm.n.r) and all its marginal distributions. 

Theorem 3.3 (Refonnulation ofTheorem 3.2) 

The equilibrium distribution IPm,n.r) fora random walk of the class described in Section 3.2, 
can be detennined by the compensation approach if Condition 3.1 is satis.fied. IJ this condi­
tion is satisfied, then the equilibrium distribution and its marginal distributions are given by: 

p~l = :E (-1)1M-t (1--a,.)a~, m~O. (3.56) 
(a,..~,.y,)ePjiJ 

and similarly for {p~2l) and {pp>}; 

p~}l L (-1i(v)-2 (1--a,.)a~ (1-~v)~~, m,n ~0. m+n ~ 1, (3.57) 
(a,..~ •• y,)ePj1.21 

Pb~b2) = 1 - L P~:;> . 
m.n~O 
m+n~ l 

and similarly for {p~)l} and {p~:,;> }; 

Pm,n,r = L (-1i(v}-3 (1--a,.)a~ (1-~v)~~ (1-yv)Y~ , 
(a,..~,.y.)ePi 

and the equilibrium probabilities Pm,n,r for the stales in the interior and on the boundary 
planesfollow from (3.52)-(3.55). 
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3.8. N-dimensional random walks 

In this section, the main results derived in the Sections 3.2-3.7 for a class of three­
dimensional random walks are generalized to the corresponding class of N-dimensional ran­
dom walks, where N ~ 2. As the reader can easily check, the results appear to hold also for 
the case N:::;; l. 

Consider an N-dimensional, irreducible, postttve recurrent, homogeneous, nearest­
neighboring random walk with the projection property on the set of states 

M = { (m 1 , . . . , mN) I m; E IN o for all iE I } , 

where N ~ 2 and I := { I, . .. , N}. For such a random walk, all transition probabilities/rates 
are uniquely deterrnined by the transition probabilities/rates for the interior of the state space. 
Let thesetof feasible transitions for the interior states be given by 

T:::;; { (1 1, . . . ,IN) I t;E {-1,0,1} for all ie/}, 

and let the corresponding transition probabilities/rates be denoted by q1,. .. . , 1N. W.I.o.g., we 

may assume that we have discrete time, which implies that ~(1, ..... 1N)eTq1, . .. .. 1N:::;; 1. 

Finally, let the equilibrium distribution be denoted by {Pm,, . . . ,mN }. 

Because of the projection property, all marginal distributions of IPm,, . . . ,mN} can be 
characterized as the equilibrium distributions of lower-dimensional, homogeneous, nearest­
neighboring random walks with the projection property. The one-dimensional marginal dis­
tribution {p~>} for the component m;, i e /, which is defined by 

Pm(i) :::;; "t" p m ~ 0, 
,L" n 1, ••• ,nN • (3.59) 

(n 1, ••• , nN)eM 
n1=m 

is equal to the equilibrium distribution of the one-dimensional random walk with transition 
probabilities 

L q,,, , . . , SN' tE{-1,0,1}. 
(s 1, • •. , sN)eT 

S; =l 

(3.60) 

The full random walk will be positive recurrent if and only if all component random walks 
have negative drifts, i.e. if and only if q~l > q\i) for all iE/. Further, the irreducibility 
implies that both q~l and q\il are positive. This leads to the property that 

q~l > q\il > 0 for all ie/. (3.61) 

To delermine the equilibrium distribution IPm,, .. . ,mN } , one can use the compensation 
approach, which tries to construct a solution of all equilibrium equations by linearly combin­
ing product-form solutions which satisfy the equilibrium equation for the interior: 

Pm 1, •• • , mN = L q1 1, ••• , IN Pm, - 1,, . .. ,mN-1N , m; > 0 for all iE I. (3.62) 
(1 1, ... ,IN) ET 

By substituting the product form n~=t ar' into this equation, it follows that this equation is 
satisfied if and only if (a1, ... , aN) satisfies the quadratic equation 
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N 
na; 
i=l 

(3.63) 

The application of the compensation approach leads to the construction of (N-I )-fold trees of 
product-form solutions of (3.63), which are called forma! solutions. Each forma! solution 
consists of a starting term, which is required to satisfy also the equilibrium equation for one 
of the boundary planes, and a countable set of compensation terms, which all correct an error 
of a previous term at one of the boundary planes. For the absolute convergence of the forma! 
solutions, it appears to be needed that the following conrution is satisfied: 

q1, • . .. ·'N = 0 for all transitions (t t. ... , IN) eT 

with t;+t1 > 0 for some i,j eI, i :F- j. (3.64) 

This may be shown by generalizing the analysis presenled in the Sections 3.3 and 3.4. 

Together with (3.61), condition (3.64) implies that the probabilities q1" . .. ·'N for all tran­

sitions with I;= I forsome i eI and t1 =-! for all je/\{ i I must be positive. Given that (3.64) 
is satisfied, (3.61) represents a condition which is necessary and sufficient for the irreducibil­
ity and positive recurrence of the full random walk. Further, condition (3.64) itself is neces­
sary and suftleient for the property that all marginal clistributions can be deterrnined by the 
compensation approach. 

lt is obvious that condition (3.64) essentially restricts the applicability of the compensa­
tion approach, especially for N ;'2: 3. However, if the conrution is satisfied, then the forma! 
solutions are absolutely convergent, at least in all states (m 1 , . . . , mN) with m; ;'2: 0 for all i eI 
and m; =0 for at most one i, and we obtain very explicit expressions for the equilibrium clistri­
bution and all its marginal distributions. These explicit expressions are given in the next 
paragraph. The absolute convergence of the forma! solutions may be proved by generalizing 
the analysis of Section 3.5. The explicit expressions for the equilibrium and the marginal clis­
tributions are proved by induction with respect to the elimension N. The initia! step, i.e. tbe 
case N = 2, has been treated in Chapter 2. For the induction step from elimension N to climen­
sion N+1, one can generalize the analysis of the Sections 3.6 and 3.7, where the step from 
N = 2 to N = 3 has been treated. 

Suppose that condition (3.64) is satisfied. Then the equilibrium distribution and all its 
marginal distributions are equal to allemaling sums of pure product-form clistributions, where 
all product forrns are obtained by tak.ing the trivia! solution (1 , . . . , I) of the quadratic equa­
tion (3.63) and generating new solutions of (3.63) by letting one factor free each time. Let 
the set of veetors V be defined by 

V = { (v I> .. . , v1) I Ie IN o. if I ;'2: 1 then v 1 eI and vk e /\{ vk-l I for all k ;'2: 2 I . 

Next, de fine ( a 1,0 , . .• , aN, 0 ) =(I, . .. , 1) and let for all other veetors v e V the factors of 

(al,v• ... , aN,v) be defined by 

{
/;(CXt ,p(v)• · · ·, ai-l,p(v)•ai+l.p(v)• · · ·, aN,p(vj)/a;,p(v) 

a· = 
I,V ai,p(v) 

if VJ(v) =i; 

if VJ(v) :F- i, 

where p ( v) and I ( v) are the parent and the length of a vector v and the function 
/;(at. ... , ll;- t.ai+l• ... , aN) denotes the product of the two roots of the quadratic equation 
(3.63) for fixed a 1, . .. ,a;_1,a;+t. .. . ,aN. Then thesetof all relevant product-form solu-
tions is given by 
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p• = { (<ll,v• · · · ,<lN,v) I VEV}. 

lt can be shown that the factors of aJI solutions (cx.1,v, ... , <lN,v) of this set are reaJ numbers in 
the interval (0,1 ). So, P • can be partitioned into the subsets 

Pj = { (cx.~o ... ,<lN)eP• I a.;< 1 for all iel and <X.;= 1 for all i i.l}, Je/. 

The solutions in a set Pj are precisely the ones needed to describe the equilibrium behavior 
of the components betonging to J. 

Theorem 3.4 (Main Theoremfor the case with general N ~ 2) 

The equilibrium distribution for an N-dimensional, irreducible, positive recurrent, homogene­
ous, nearest-neighboring random walk with the projection property on the states 
(m 1, ••• , mN ), where N ~ 2 and m; e UV o for all i, can he determined by the compensation 
approach if condition ( 3.64) is satisfied. IJ this condition is satisfied, then the following for­
mula is found for the equilibrium distribution and the marginal distributions. ut 

{p~::::: :~~}he the equilibrium (marginal) distributionfor the components j 1, ••• ,JL, where 

1 ~L~N and 1 ~}I < ... <JL ~N, and let 1 ={}I, ... ,}N}. then 

(j, •...• h) 
Pm 1, ••• ,mL 

L 
}: (-1)/(v}-L fl (l-a.j,,v)<l%:v (3.65) 

(a1 ••••..• a.v .• )ePj i=l 

for all (m 1, •.• , mL) with m; ~ 0 for all i = 1, ... , Land m; = 0 for at most one i. 

Remark that according to the notation used in this theorem the distri bution IPm, , . . . ,mN} 

for the full random walk is denoted by {p~; ;:: :~~N }. Further, note that all equilibrium proba­

hilities p~::::: :~~ for the stales for which formula (3.65) does not hold, may be determined 

with the help of the marginal distributions of {p~::: :: :~~ }. Of course, they may also be 

determined with the help of the equilibrium equations of the random walk for the components 
}I •.. .• }L. 

A thorough analysis of the structure bebind the solutions (cx.1,v, . .. , a.N,v) e p• , which in 
fact are obtained from one large tree consisting of a root and N, (N-I )-fold subtrees, will be 
required for the computational aspects of the determination of the equilibrium distribution 
and related quantities. This structure will be investigated in Chapter 4 and leads to efficient 
numerical procedures. These procedures may be used for a performance analysis of the 2 x N 
switch, which is in the considered class of random walks and satisfies condition (3.64) (for all 
N~2). 

3.9. Conclusions 

We have applied the compensation approach to the class of N-dimensional, irreducible, posi­
live recurrent, homogeneous, nearest-neighboring random walks with the projection property 
on the stales (m 1 , . .. , mN ), where N ~ 2 and m; e UV 0 for all i. It bas been shown that the 
compensation approach works fora random walk of this class if and only if no transitions can 
be made from the stales in the interior into directions which for some pair of components m; 

and mi of the stateenlarge the distance to the origin, i.e. into directions (t~o . .. ,IN) with 
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t;+tj > 0 forsome i,j e { 1, ... ,N}, i"* j. We believe that this condition is also necessary for 
random walk.s which do not satisfy the projection property and for random walles for which 
the transitions are not restricted to nearest neighbors (see also Chapter 8). 

If the compensation approach works for a random walk of the considered class, then the 
equilibrium distribution and all marginal distributions are equal to alternating sums of 
infinitely many, pure product-form solutions of the equilibrium equation for the stales in the 
interlor of the state space. Simpte, recursive formulae are available for the determination of 
the required product-form solutions. These product-form solutions are in fact obtained from 
one large tree, which appears to have an interesting, geometrie structure; this structure will he 
investigated in Chapter 4, and, among others, it willlead to efficient numerical procedures for 
the computation of the equilibrium distribution and related quantities. 
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Chapter 4 

The Equilibrium Distribution for a Class 

ofMulti-Dimensional Random Walks: 

Structure Analysis 

4.1. Introduetion 

In the previous chapter, we have obtained explicit expressions for the equilibrium distribution 
and the marginal distributions for the class of N-dimensional, irreducible, positive recurrent, 
homogeneous, nearest-neighboring random walks which satisfy the projection property and 
condition (3.64) under which the compensation approach works; see formula (3.65) stated in 
Theorem 3.4. These expressions show that these distributions are equal to altemating sums of 
infinitely many product-farm distributions. The aim of the present chapter is to gain insight 
into the structure of these sums, and, moreover, to use this insight for obtaining error bounds 
for the approximation of these infinite sums by finite (partial) sums. 

Since the marginal distributions are the equilibrium distributions of lower-dimensional 
random walks, it suftlees to pay attention to the equilibrium distribution of the full random 
walk. For the equilibrium distribution {Pm,, .. . ,mN }, by (3.65), we have the formula 

N 
Pm,, .. .. mN L (-1)1 (v}-Nfl(l-a;,v)<l~~. (m,, . .. ,mN)EMc, (4.1) 

(a1 •• , ••• ,aN .• )EP' i=l 

where 

Me = { (m 1, ... , mN) e M I m; = 0 for at most one i eI } 

is the convergence region, which contains all states where the forma! solutions constructed by 
the compensation approach are absolutely convergent (note that it is allowed to sum over all 
solutions (al ,v• ... , aN,v) e p• inslead of over the solutions of the subset Pi consisting of all 
(al,v• ... , <lN,v) e p• with <l;,v < 1 for all ie/, since all (<ll,v• ... , <lN.v) e p•\Pj have a con­
tribution equal to 0). The solutions (a1,v, ... , <lN,v) e p•, and therefore also the termsof the 
infinite sum on the right-hand side of formula (4.1), correspond tothenodes 

v e V= { (v 1, •.• , v1) 1/e IN0 , if 1:?.1 then v1 e/ and vkel\{vk-l} forall k:?.2} 

of the tree for which the root 0 has N successors (viz. (I), . . . , (N)), while all other nodes 
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v=(v 1, ••• ,v1)eV\{0} have N-1 successors (viz. the nodes (v 1, ••• ,v1,v1+1) with 
VJ+l EJ\{VJ }). 

By studying terms corresponding to pairs of connected nodes, it wilJ be shown that, in 
essence, for each node v = (v 1, •.• , v1) E V\{ 0} the contribution of its corresponding term 
on1y depends on the contri bution of the term corresponding to its parent p (v) =(v" . .. , v1_t) 
and the value of its last component v1• Such a behavior is typical for so-called geometrie 
trees. By exploiting the geometrie behavior, we can define error bounds for the approxima­
tion of an equilibrium probability by finite sums in termsof (N-1)-fold, geometrie trees, i.e. 
for geometrie trees for which each node has N-1 successors (more specifically, these (N-1)­
fold, geometrie trees serve as upper bounds for the subtrees of terms which are deleted when 
approximating the infinite sum on the right-hand side of (4.1) by a finite sum). 

An attractive analysis of the geometrie trees constitutes the core of this chapter. This 
analysis is based on matrix algebra, and it will lead to an explicit condition under which the 
sum of all terms of a geometrie tree converges, and to an explicit formula for the sum itself. 
At the end of this chapter, it is shown that these explicit results can be exploited in an 
efficient numerical procedure for the computation of the equilibrium probabilities Pm,, ... ,mN 

in the convergence region Me (the probabilities for the states outside this region may be com­
puted with the help of appropriately chosen equilibrium equations). 

The error bounds which we derive from the geometrie trees and the efficient numerical 
procedure that is developed in this chapter, will appear to be generalizations of the error 
bounds and the efficient numerical procedure described in Section 2.5 for the case N = 2. In 
case N = 2, the sum on the right-hand side of (4.1) reduces to the sum of two alternaring series 
ofproduct-form solutions (cf. formula (2.36) in Theorem 2.1) and the (N-1)-fold, geometrie 
trees reduce to series with exponentially (geometrically) decreasing terms; hence, the case 
N = 2 constitutes a relatively easy case. 

Let us finally present the outline of this chapter. In Section 4.2, we derive error bounds 
in termsof geometrie trees for the approxirnation of the equilibrium probabilities Pm,, ... ,mN 

in the convergence region Me by finite (partial) sums. Next, in Section 4.3, the attractive 
analysis of the geometrie trees is presented. After that, in the Sections 4.4 and 4.5, we 
describe three numerical procedures for the computation of the equilibrium probabilities, and 
we present some numerical results for the equilibrium distribution and related quantities for 
the symmetrie 2 x 3 switch. The conclusions are given in Section 4.6. 

4.2. Error houmis 

This section is devoted to the approxirnation of the infinite sum on the right-hand side of for­
mula (4.1) for the equilibrium probabilities Pm,, ... ,mN for the states (m" ... , mN) in the con­
vergence region Me. We shall first describe the type of finite sums which are used to approxi­
mate the infinite sum, for which the terms are obtained from the tree with nodes v E V. Next, 
we shall focus on error bounds for these approximations, i.e. on upper bounds for the terms 
which are not included in the finite sums. By investigating the product factors a;,v of the 
solutions (a1.v, . .. , aN,v) E p•, we will be able to. obtain explicit upper bounds in terms of 
so-called geometrie trees; see Lemma 4.2 at the end of this section. It is recalled that explicit 
expressions for the geometrie trees itself are derived in the next section. 
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Let (mi> . .. ,mN)eMc and consider formula (4.1) for the corresponding equilibrium 
probability Pm,, ... ,mN· The termsof the infinite sum on the right-hand side of this formula 

correspond to the nodes v e V of the tree emerging from the definition of the solutions 
(a1,v, ... , aN,v) e p•. Therefore, formula (4.1) is equivalent to 

Pm, .... ,mN = I: tm, , ... ,mN(v) • 
veV 

where 
N 

t (v) - (-1)/(v}-N n (1-a· )a'?'; for all VEV. m 1, ..• ,mN - I , V l,V 

i=l 

(4.2) 

As already noted in the introduetion of this chapter, the tree with the nodes v e V has a very 
regular structure. The root 0 has N successors, viz. (1), ... , (N), and each vector v e V\(0} 
has N-1 successors. So, from this point of view, Pm , .... ,mN is equal to the sum of the N 

sums of terms tm,, ... ,mN(v) over the nodes of the (N-1)-fold (sub)trees with roots 

(1), .. . , (N) (note that the term for the root 0 may be neglected in this reasoning, since 
tm,, ... ,mN(0)=0). This property tells that in the case N=2 the equilibrium probabilities 

Pm "m 
2 

are equal to the .sum of two series ( cf. formula (2.36) in Theorem 2. I); in the case 

N = 3 the equilibrium probabilities Pm ,,m,,m
3 

are equal to the sum of the 3 sums over the 

nodes of the binary trees starting at the nodes (I), (2) and (3) (the nodes with solutions 
(q~1l /q~I(, 1, 1 ), ( 1 ,qFl /q~2(, 1) and (1, I ,qp> fql}( ); see Figure 3.4 in Sec ti on 3.7). 

Obviously, the infinite sum on the right-hand side of formula (4.2) cannot be computed 
exactly. But, it may be approximated by finite sums of the terms tm, , ... ,mN(v). We shall now 

describe the type of finite sums which we use. Our choice has been guided by the type of 
finite sums which we used for the two-dimensional case in Section 2.5. 

In the two-dimensional case, we have approximated the two relevant series by partial 
sums, which is equivalent to saying that an equilibrium probability Pm,.m, , (m 1>m2) eMc, is 

approximated by fini te sums Lve v' tm ,,m, (v), where the set V'c V is of the form 

V' = ( 0} u { v e V I I s; l ( v) :<;; k I and v 1 = 2 } u { v e V I 1 s; l ( v) s; k 2 and v 1 = 1 } , 

and k 1 and k 2 are fixed, positive integers; the nodes v e V with 1 s; l ( v) s; k 1 and v I = 2 
correspond to the first k I product forms in the first series on the right-hand side of formula 
(2.36) and the nodes v e V with 1 :<;; l ( v) s; k 2 and v 1 = I correspond to the first k 2 product 
forms in the second series on the right-hand side of formula (2.36). Note that the first terms 
of both series are always included in the approximation. In the N-dimensional case, we shall 
u se fini te sums which constitute a direct generalization of the sums Lve V' tm ,,m, ( v) with V' of 

the above form. In the N-dimensional case, we approximate the equilibrium probability 
Pm, , ... ,mN forsome state (mI , .. . , mN) EMc by finite sums Lve V' tm,, . .. ,mN(v), where V'c V 
is required to satisfy the following conditions: 

(0,(1), ... ,(N)} cV', (4.3) 

ifv=(vl> ... , VJ(v ))E V', v '1: 0, then (vl, ... , vk)E V' for all k= 1, ... , l(v)-1, (4.4) 

ifv e V', then O(v) c V' or O(v)n V' =0 , (4.5) 

where 0 (v) = {we V I p (w) = v} denotes the offspring of a node v e V. 
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Condition (4.3) stales that the root 0 of the whole tree with nodes v e V and the roots 
(I), .. . , (N) of the (N -1 )-fold subtrees into which the whole tree can be divided, must be 
included in the finite set V'. Condition (4.4) states that a node v can only be contained in V', 
if all nodes on the path from the root 0 to v are already contained in V'. This is a sensible 
condition for two reasons. First of all, since the higher a node v is in the tree, the larger its 
contribution tm,, ... ,mN(v) to Pm,, ... ,mN will be in general (this follows from the property that 
for each path { v<kl} in V all factors of the solutions (et1,v<» , ... , CtN,v<•>) are monotonously 
non-increasing for increasing k; cf. Lemma 3.6(ii)). Secondly, because of the recursive for-
mulae for the product-form solutions, the contribution tm., . . . ,mN(v) of a node v can only be 

computed after ha ving computed the product factors et1,w, .. . , etN,w for all nodes w on the 
path to v ; therefore for each node w on the path to v the computation of the contribution 
tm,, ... ,mN(w) requires only little extra computational effort if it is known that v will be 
included in V'. By condition ( 4.5), if one successar we 0 (v) of an element v e V' is included 
in V', then the whole offspring O(v) of v must be included in V'. This condition is mainly 
introduced to simplify the derivation of an error bound for the approximation of an equili­
brium probability by a finite sum. 

Suppose that a finite sum I.vev' tm, , ... ,mN(v) is used as an approximation for the equili­

brium probability Pm,, ... ,mN• where (m 1, .. . ,mN)EMc and V' is a finite subset of nodes 
v e V which satisfies the conditions (4.3)-(4.5). Then the tree of nodes v e V' is obtained by 
deleting all nodes below the nodes v of the set 

B(V') = {veV'IO(v)nV'=0}, 

i.e. by deleting all nodes of the subtree 

S (v) = {we V I l (w) ~ l (v) and wk = vk for all k =I , . . . , l (v) } , 

except the root v itself, for each node v e B(V'). This implies that V\ V'= UveB(V) S (v)\{ v ), 
and the absolute error of the approximation by the finite sum I.ve v· tm 1, • • • ,mN(v) is bounded 

by 

I Pm .... . ,mN- r tml , .. . ,mN(v) I ~ r bml, .. .. mN(v), 
v eV' veB(V' ) 

where the upper bound bm 1 • •• • , mN ( v) must be defined such that 

I L 1m 1, ... ,mN(w) I ~ bm 1, ... ,mN(v) for all v e V\{ 0 }; 
weS(v)\(vJ 

(4.6) 

(4.7) 

note that it is not needed to define an upper bound bm 1, • •• • mN(v) for v = 0, since, by (4.3), the 
node v =0 is never contained in B(V'). Since for all v e V\{0}. the subtree S(v) is an 
(N -1 )-fold tree, in the remainder of this section we can perform a uniform analysis in order 
to find an appropriate definition for the up per bounds bm 1, ••• • mN ( v ). 

The upper bounds bm 1, • • •• mN(v ) must be defined such that they satisfy condition (4.7). 

Further they must be computable and it is desired that they are tight. Since 
N 

ltm, , .. . ,mN(v)l ~ flet~~ for allveV, 
i=i 

the variables bm, , ... ,mN(v) defined by 
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N 

bm,, ... ,mN(v) = L rr a.~;.. for all v e V\{0}, (4.8) 
weS(v)\(v) i=1 

satisfy condition (4.7). Besides, these upper bounds will be tight for nodes v for which the 
factors a.1 •• •.• , a.N v are smal!, i.e. for most nodes v at large distances from the root 0. 
Although the up per bounds b m ,, .... m) v) are not computable, they still are useful. Below, 

we will find that for each node V E V\{0}, the value of the term rrr=1 a.~~ mainly depends on 
the value of the term TJ~=1 CX.~~ (v) for itS parent p (V) and the value Of the Jast component VJ(v) 

of v. This geometrie behavior is established by consictering ratios of the terrns n~1 a.'0- for 
pairs of connected nodes v e V, and it can be exploited to derive tight and computable upper 
bounds bm, .... ,mN(v) in termsof geometrie trees for the initia! upper bounds bm, ... . ,mN(v). 

The ratio of the term corresponding to a node v e V\{0} and the term corresponding to 
its parent p ( v) is gi ven by 

n~=1 a.~~ 
N m; 

rri=1 a.i,p(v) 
(4.9) 

where k=vl(v) and the function hk(·) is defined as the ratio of the smallest root a.k and the 
largest root a.k of the quadratic equation (3.63) for fixed a.1, ... , a.k_1 ,a.k+1, . . .• a.N; let for 
each ke/, the function hk(·) be defined for all (a.t.····a.k_1,a.k+1, ... ,a.N)e(O,l]N-1. 
Now, we first derive an expression for hk(· ), and next we will prove a useful property for the 
functions hk(· ). 

Let k eI and a. i e (0, 1] for all j e /\{kj. We are interested in the roots a.k of the qua­
dratic equation (3.63), which we rewrite to 

[ I1 a.;] a.k = i l: qr" ... ,1,., [ II a.J- I·] a.~-~. 
ie/\(k} t=-l(t 1, ••• ,t,.,)eT ie/\{k} 

This equation is equivalent to the equation 

a1a.{ - a2[ rr a.;]a.k+a3[ rr a.;]
2 

=0 
ie/\[k) ie/\(k) 

with coefficients 
1-1· L ql,, ... ,IN rr a.; ' 

(1 1 .... ;r,.,)eT ie/\(k} 
t,=- 1 

a l - ~ q rr a. -t, 2 ~ 11, .... 1,., i 
(1 1 .... ,IN)ET i e /\(k) 

t1= 0 

a3 = q~k) , 

(4.10) 

and, by using the assumption that condition (3.64) is satisfied, the coefficients a; may be 
shown to be real-valued and positive (to prove that a 2 > 0, one has to use that, by (3.64), for 
all positive rates q11 , ... ,r,., withIk =0 all other coordinates I; are SO). Finally, (4.10) is rewrit­

ten to 

(4.11) 
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with 

z1c = a.1c ( n a.;] -
1 

ie/\(le) 
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The function on the Ie ft -hand si de of equation ( 4.11) is a quadratic function, which is > 0 for 
Zie =0 and :50 for z~e=q\k>;qCf( < 1 and for z~e= 1 (use that a 1 S:q~k(, a 2 ~ 1-qbk) and a 3 =q\lc)) 
and which tends to oo as Zie~ oo. As a consequence, (4.11) has two real-valued, positive 
roots: one root z~l) :5 q\le) lqCf( and one root z~2> ~ 1 (cf. Lemma 3.3). Let the smaller and the 
1arger root of ( 4.1 0) be denoted by a.k1l and a.k2>, respectively, then we find 

C1.kl) Zkl) A 1 

h~e(C1.1, ... ,a.~e-t.CJ.Ic+l• ... ,a.N) = C1.k2) zf> A2 (4.12) 

with 

At =a2-..JI.i, A2 =a2+..JI.i, D =a~-4a 1 a 3 . 
From the properties stated above for the roots Zk1> and zF> of (4.11), we know that the 
discriminantDis positive, A 2 >A 1 > 0 and 0 < h~c(.) :5 q\k) /q~lc( < 1. 

By using expression (4.12), we are able to prove that the function h~c(·) is monotonously 
non-decreasing in each argument; see Lemma 4.1. So, h~c(·) reaches its maximum in case 
a.;= I for all ie/\{ k}; and, as it is easily verified, the maximum value is equal to 
h~c(l •... , l)=q\k) lqCf(. It is iloted that, along the same lines as in the proof of Lemma 4.1, 
one could prove that h~c(.) is also convex in eac~ argument. Finally, we state that h~c(.) ~ 0 
as a.; ~0 for all ie /\{k} incaseN ~ 3; for N =2 the functions h1 (a.2) and h 2 (a.1) appear to 
tend to positive constants as their arguments tend to 0. 

Lemma4.1. 

For all kei and le/\{k}, the function h~c(a.1·· .. ,a.le-l·a.ic+1•· . . ,a.N) is monotonously 
non-decreasing as ajunetion ofa.I e (0,1], where a.; e (0,1]for all ie 1\(k,l }. 

Proof. 

The lemma is proved by showing that the partial derivative of h~c(.) =A 1/A 2 with respect to 
a.1 is larger than or equal to 0. For the derivatives of the variables a; we find 

d I I l-1 
a-la tl L q,,,, .. ·'N n a.;-,+ 2a.l L q,,,, .. ·'N n a.; ' 

C1.J (1 1, .... IN)ET ie/\(k,/) (1 1, ... ,IN)ET ie/\(k,l} 
t,=-1. t,=O ,,~1. ,,~1 

~ 0, 

n -t, 0 L q,,, .. ·'N a.; :s; • 
(1 1 , ... ,IN)eT ie/\{k,/} 

..1..._(a3} = 0. 
iJ a./ 

t,=O,t,~l 

These (in)equalities are used to show that (note that all variables a;, D and A; are positive) 
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""a IAdA2- ""a IA2lA1 
aa.l aa.l 

= [_i_{a2}--1-_i_{D}] (a2+VD)-[_i_{a2}+-1-_i_{D}] (a2-VD) 
aa.1 2Vri aa.1 aa.1 2m aa.1 

= k [ 2D a!l {a2} -a2 a!l {D}] 

= .~ [2<ai-4ala3) ""a {a2}-a2(2a2 aa {a2}-4a3 aa {ad)] 
-v D aa.1 a.1 a.1 

= ~ [a2 a!l {ad-2al a!l {a2}] ~ 0, 

by wh.ich also 

_i_{hk(·)} =_i_{~}= [_i_{AI}A2-_i_{A2}A1] Aî2 
aa.1 aa.1 A 2 aa.1 aa.1 

~ 0. 0 

By exploiting the property that for each path { v<kl} in V the factors a.1.v(", ... , a.N.v!'' 
are non-increasing for increasing k and the non-decreasing behavior of the functions hk (. ), we 
now obtain the upper bounds bm 1, ••• , mN ( v) for the initia! upper bounds b m , .... , mN ( v ). 

Let V E V\{0} and COnsider the Upper bound bm,, ... ,mN(v) and the terros rrr=l a.r;.., 
weS(v). For each path {w(k)} in S(v) all factors a. 1 .w!>~, ... ,a.N,w!'' are monotonously 
non-increasing (cf. Lemma 3.6(ii); note that this property also follows from the fact that hk(.) 

always takes a value in the interval (0, I)). Further, by Lemma 4.1, the functions hk(-) are 
monotonously non-decreasing in all arguments. So, for all w eS (v )\{ v}, we find 

N m; 
ni=l a.;,w 
N m; 

ni=l a.;,p(w) 

wherek=wl(w)· Definethefactorsxk by 

Xk = [hk(Ul,v• · · ·, Uk-l,v•a.k+l,v• · · ·, UN,v)Jm' , k E /, 

and let the terros Yw• w eS ( v ), be defined as follows. Let Yv := I and let 

Yw := XkYp(w) with k=wl(w), weS(v)\{v}. 

Then, by using induction with respecttol (w), one may show that 

nr=l a.~;.. . < 
-N--m-, - Yw 
ni=l a.;,v 

for all weS(v). 

This leads to the following upper bound for bm,, ... ,mN(v): 

N 
bm, ... . mN(v) :s; TI a.r~ L Yw, v e V\{0}. 

i=l weS(v)\{v) 

(4.13) 

(4.14) 
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As one can easily see, the values of the terros y.., only depend on the factors xk. The sum 
of all Yw further only depends on the value of the last component Vt(v) of the starting point v 
of the (N-I )-fold subtree S (v ); the value of v1 (v) delermines which factor xk is not used when 
computing the terros y.., for the successoes w e 0 (v ), and similarly for the successoes of the 
successors we O(v), and so on. Let the sum of all terros Yw of the subtree S(v) be denoted 
by G(k)(XJo . . . ,XN), i.e.Jet 

G(k)(Xt,. · · ,XN) = L Yw • (4.15) 
weS(v) 

where v -:F- 0 and k = v1 (v). Then G (k l (x 1o .. . , xN) is the sum of the terros Yw over the nodes w 
of an (N -1 )-fold tree, where for each path { w (k) } in S ( v) the terros y..,c•> have a geometrically 
decreasing behavior that is determined by the values of the last components of the nodes w (k). 

This tree is also called a geometrie tree, and the notation a<kl(x 1, ••• ,xN) is also used to 
refer to this tree itself. 

The results staled in (4.14) and (4.15) show that upper bounds bm,, . . . ,mN(v) for the ini­

tia! upper bounds bm" . . . ,mN(v) are obtained by defining 

(4.16) 

where the factors Xk are given by (4.13). It is easily seen that by this definition the bounds 
bm" ... ,mN(v) satisfy the condition staled in (4.7). The upper bounds bm,, ... ,mN(v) are 
expected to be tight bounds for most nodes at sufficiently large distances from the root 0. 
Since a simple, explicit forroula can be derived for the sums a<kl(x 1, • •• ,xN), as we shall see 
in the next section (see Theorem 4.1), the bounds bm, , . . . ,mN(v) arealso computable. So, 
apart from the analysis of the geometrie trees, this completes the derivation of appropriate 
upper bounds for the sums as given on the left-hand side of inequality (4.7), and therefore 
also our search for appropriate error bounds for the approximation of the equilibrium proba­
hilities Pm, .... ,mN in the convergence region Me by finite sums E..ev' tm,, ... ,mN(v). In the 
following lemma, the main results found in this section are recapitulated. 

Lemma4.2. 

Let (m 1 , •.• ,mN) eMc and let V' cV be a finite subset which satisfies the conditions (4.3)­
(4.5). Then an upper bound for the absolute error of the approximation of the equilibrium 
probability Pm,, . .. ,mN by the finite sum I:,. e V' tm, .... ,m/v) is given by (4.6). The bounds 

bm, , . .. ,mN(v), which occur in this upper bound, are defined by (4./6), and thefactors Xt and 

the sums G(vH•>)(x 1, ... ,XN) are given by (4.13) and (4.15). 

1t is noted that the geometrie trees a<kl(xi> . .. ,xN) can easily be analyzed for the case 
N = 2. In that case, 

a< 1 \x~ox2) = I +x2 +xlx2 +XIX~+ ... =(I +x2) i (xlx2i' 
i=O 

which shows that aO>(x~ox 2) converges if and only if x 1x 2 <I, and if this condition is 
satisfied, then 

(4.17) 
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and similarly for G (2) (x I> x 2 ). By using these results, it may be verified that for the two­
dimensional case the error bounds as described in this section are equivalent to the error 
bounds which we have derived in Section 2.5. 

4.3. Analysis of the geometrie trees 

This sectionis devoted to the sums/geometric trees c<*>(x 1, •• • ,xN) (recall that the notation 
c<kl(x lt ... ,xN) is used for the sum of the terms Yw over the nodes we S(v), see formula 
(4.15), as wellas the correspond.ing geometrie tree itself). We want to derive an explicit for­
mula for the sums c<*>(xi> ...• xN) in order to complete the denvation of the error bounds 
given in the previous section. We shall first derive a matrix formula for these sums; see for­
mula (4.21). This formula contains a matrix sum I:d'=0 Xd, where X is a special, nonnegative, 
squared matrix of order N. By using the Perron-Frobenius Theorem and exploiting the spe­
cial structure of the matrix X, we will be able to derive three necessary and sufficient condi­
tions for the convergence of a geometrie tree, i.e. for the finiteness of the corresponding sum. 
The last condition is a simple and explicit condition which is appropriate for a quick 
verification of the convergence of a geometrie tree. Finally, by using Cramer's Rule, among 
others, we obtain an explicit formula for the sum of all terms of a convergent geometrie tree. 

Before we start with deriving a matrix formula for the sums c<k>(x 1, ... ,xN), we first 
simplify the definition given by (4.15). A sum c<kl(x~o . .. ,xN) does notdepend on the 
whole vector v, but only on the value of the last component Vt(v)• which is denoted by the k. 
Therefore, instead of the whole veetors w of the subtree S ( v ), it suffices to u se the tails 
(wl(v)+l• ... , WJ(w)) as subindices for the terms Yw· We then obtain the following definition. 
Let k e 1 and Jet x 1, ••• , XN be positive real-valued variables, i.e. x; e (0, oo) for all ie 1, then 
the sum G (k) (x 1 , . • . , xN) is defined by 

G(k)(xl, ... ,xN) = L Yv' 
veV, 

where 

vk = {(vlo····vl)eVIifv~0then vl~k} 
and the terms Yv are defined by y 0 := I and 

Yv :=X; Yp(v) with i= V[(v) 

for all v e Vk\(0}. The veetors v e Vk are the nodesof an (N-1)-fold, geometrie tree with 
corresponding terms Yv• which arealso called the weights. The notation c<k>(x~o ... ,xN) is 
also used to refer to this geometrie tree itself. In Figure 4.1, we have depicted an example of 
a geometrie tree. 

To find an expression for the total weight c<k>(x 1, • •• , xN), wedefine g;(d) as the sum 
ofthe weightsyv over all nodes v with /(v)=d(i.e. at depth d) and with v1<v> =i: 

g;(d) := 
veV, 

l(v)~d. vH•)~; 

Yv• d~l. iel; 

further, g;(O) is defined by g;(O) :=0 for all ie 1\(k} and gk(O) := I (si nee fortheroot v =0 the 
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Figure 4.1. The geometrie tree G<k>(x~o ...• xN) of terros Yv for N =3 and k = l. 

k denotes which factor xk is not used for the computation of the weights for its successors). 
Due to the relatively simple definition of the terms Yv· g;(d) can be expressed as a function of 
the sums 8i-l (d) of weights at depth d-1: 

g;(d) = Xj L gj(d-1)' d;o: I, i El. 
je/\{i} 

Writing this recurrence relation in matrix notation leads to 

g(d) = g(d-l)X, d;o: 1, 

where g (d) = (g 1 (d), ... , 8N(d)) for all d;:: 0 and the matrix X is defined by 

0 x2 XJ XN-1 XN 

XI 0 XJ XN-1 XN 

XI X2 0 XN-1 XN 
x = 

XI X2 XJ 0 XN 

XI x2 XJ XN-1 0 

By ( 4.18), we find 

g (d) = g (O)Xd = ekxd. 

(4.18) 

(4.19) 

(4.20) 

where ek is the k-th unit vector, i.e. ek=(O, . .. ,0,1,0, . .. ,0) with the 1 on the k-th position. 
The total weight at depth dis given by g (d)e 7 , where e = (1, ... , 1 ). Finally, by taking the 
sum of g (d)e Tover all d;:: 0 and substituting (4.20), we find the matrix formula 

G(k)(Xt•··· • XN) = ek[ ixd]eT. (4.2)) 
d=O 

Th is forrnula shows that the sum G (k) (x 1 , . •• , xN) is equal to the sum of the elements in the 
k-th row of the matrix sum I.d'=0 Xd, and it constitutes the basis of the analysis in the 
remaioder of this section. 
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Before we derive an explicit, closed-fonn fonnuJa for the sum of all teems of a 
geometrie tree, we fust focus on conditions for the convergence of a geometrie tree. A simple 
condition which is sufficient for the convergence, can easily be given; see Remark 4.1 at the 
end of this section. However, we are interested in conditions which are necessary and 
sufficient. Three of such conditions are given by Lemma 4.3. 

Lemma4.3. 

Let k e /, x; e (0, oo) for all i e /, and let the nonnegative matrix X be defined by ( 4.19 ). Then 
the following Jour conditions are equivalent: 

(i) G(k)(XI, .. . ,XN) is convergent; 

(iiJ l:d'=0 xd < oo; 

(iii) p(X) < I ; 

(iv) det(JN-X)>O, 

where the notations p(.) and det(.) are used to denote the speetral radius and the deter­
minant of a matrix. The squared matrix IN denotes the N x N unit matrix. 

We prove Lemma 4.3 by showing that condition (ii) is equivalent to (i), that (iii) is 
equivalent to (ii), and that (iv) is equivalent to (iii). The equivalence between (i) and (ii) is 
shown by using the matrix fonnula (4.21). The equivalence between (ii) and (iii) is shown 
for an arbitrary, nonnegative, squared matrix by using the Perron-Frobenius Theorem. To 
prove the equivalence between (iii) and (iv), we among others derive an explicit fonnula for 
the characteristic polynomial det(ÀlN-X). Due to this explicit formula, condition (iv) is 
appropriate for quickly verifying whether a geometrie tree converges, or not. 

lt is easily verified that for N = 2 the convergence conditions (ii)-(iv) of Lemma 4.3 
reduce to the condition x 1x 2 < 1, which we derived at the end of the previous section. 
Further, it is noted that, after the proof of Lemma 4.3, for convergent geometrie trees the 
matrix formula (4.21) can be transformed into the explicit, closed-form formula as given in 
Theorem 4.1 by substituting the formula l:d'=0 Xd = (/N-X)- 1, which holds if condition (ii) is 
satisfied, into the formula (4.21) and next explicitly determining the inverse (IN-X)-1• 

Proof ofthe equivalence between the conditions (i) and (ii) of Lemma 4.3 

By the matrix formula (4.21), a geometrie tree c<k>(x 1, • • • ,xN) converges if and only if the 
elements in the k~th row of the matrix sum l:d'=0 Xd are fini te. From this property it immedi­
ately follows that condition (ii), which states that all elements of the matrix sum l:d'=0 Xd are 
fini te, is suftkient for the convergence of a geometrie tree c<k>(x 1, • .. , xN ). That condition 
(ii) is also necessary is shown by also using the recurrence relation 

c<k>(x 1, . .. ,xN) = 1 + l: x; cu>cx~> ... ,xN), (4.22) 
ie/\(k} 

which follows from the property that G (k) (x 1, •.• , xN) is equal to the sum of the contribution 
Yv = 1 of the root v = 0 and the contributions of the N -1 subtrees starting at the nodes v e Vk 
with l(v)= l. By combining the matrix formula (4.21) and the recurrence relation (4.22), we 
obtain the property that if a geometrie tree G (k) (x 1 , ••. , xN) converges, then not only the ele­
ments in the k-th row of the matrix sum l:d'=0 Xd are fini te, but also the elements in the other 
rows with indices i E 1\{ k} are fini te ( otherwise it would hold that G U> (x 1 , ... , xN) = oo for 
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one of the indices iE/\{ k} ). This compieles the proof of the equivalence between the condi­
tions (i) and (ii) of Lemma 4.3. 

Proof of the equivalence between the conditions (ii) and (iii) of Lemma 4.3 

The equivalence between the conditions (ii) and (iii) is proved for an arbitrary, nonnegative, 
NxN matrix A by using the Perron-Frobenius Theorem for so-called irreducible, nonnega­
tive matrices (see Seneta [64], Theorem 1.5). Suppose that A is irreducible (for completeness, 
we note that our matrix X has this property). Then, by the Perron-Frobenius Theorem, the 
speetral radius p(A) itself is a positive, real-valued eigenvalue of A, and the left and right 
eigenveetors associated with the eigenvalue p{A) are strictly positive. Let y be a strictly posi­
tive Ie ft eigenvector associated with À= p(A ). Then 

y [ i Ad] = i y Ad = i Àd y = [ i À d] y , 
d=O d=O d=O d=O 

and thus, l:d'=0 Ad < oo, if and only if l:j=0Àd < oo, i.e. if and only if À= p(A) < 1. This com­
pieles the proof for an irreducible matrix A. Fora matrix A which is not irreducible, the proof 
that l:d'=0 Ad < oo if and only if p(A) < 1, is given as follows: the 'only if -part follows from 
the Perron-Frobenius Theorem for an arbitrary nonnegative matrix (see [64], Exercise 1.12); 
the 'if -part may easily be shown by exploiting that p(A) < l implies that there exists a 
slightly modified matrix A such that A is irreducible, A ~A and p(A) < I. 

Proof ofthe equivalence between the conditions (iii) and (iv) of Lemma 4.3 

By using two elementary properties, we can prove for an arbitrary N x N matrix A with real­
valued elements that 

p(A) < l ~ det(/N-A) > 0. (4.23) 

The first property we need tells that all eigenvalues of a squared N x N matrix A are zero 
points of the characteristic equation det(Àl N-A)= 0, and vice versa. The second property we 
need is the property that the coefficient of ÀN of the characteristic polynomial det(Àl N-A), 

which is a polynomial in À of degree N, is equal to I. This second property implies that 
det{ÀlrA)~oo, as À~oo. So, if det(ÀIN-A)~O for À= I, then the equation det(ÀIN-A)=O 
has a real-valued root in the interval [l,oo), and, by the first property, we find that p(A)~l. 
This proves (4.23), and it implies that condition (iv) of Lemma 4.3 is necessary for having a 
speetral radius p(X) < 1 fora matrix X defined by (4.19). To prove that condition (iv) is also 
sufficient for this, we shall first derive an explicit expression for the determinant det(ÀIN-X) 
(see Lemma 4.4), and subsequently, by using Rouché's Theorem, it is shown that all roots of 
the characteristic equation det(ÀIN-X) = 0 are lying inside the unit disk if det(ÀIN-X) > 0 for 
À= 1 (it is noted that an alternative proof may be given by using the explicit expression for 
det(ÀIN-X) with À= l and applying Theorem 2.2 of [64]). 

Lemma4.4. 

Let the variables x; be arbitrary (possibly complex) variables for all iE/, and let the matrix X 
be defined by (4.19). Then 

N . 
det(ÀIN-X) = ÀN- L (i-I)ÀN-t L n Xj. ÀE c. (4.24) 

i =2 Je/ jeJ 
IJ l=i 
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Proof. 
Formula (4.24) is derived by using the definition of the determinant. In this proof the matrix 
ÀIN-X is denoted by A ;;;;(a;,1). By definition, we have 

det(A) ;;;; L s(cr) n ai.a(i) • (4.25) 
aeSN iel 

where SN denotes thesetof all permutations of I;;;; (I, . . . ,N}, and s(cr) denotes a sign func­
tion of SN, i.e. s : SN ~ { -1, 1 } . A permutation cr e SN may he denoted by a vector 
(cr( 1 ), ... , cr(N)), where cr(i) denotes the image of i. Here, the e1ements cr( 1 ), . . . , cr(N) have 
to constitute a sequence of N dis ti net numbers out of the set I;;;; ( 1, ... , N}. The permutation 
which depiets each element of ( 1, ... , N} to itself is denoted by ( 1, ... , N) and it is known 
that each permulation (cr(l), ... ,cr(N))eSN may he obtained by repeatedly interchanging 
two elements of the sequence 1, ... , N. Therefore we can di vide the set SN into two disjunct 
subsets: the set EN of even permutations, which may he obtained out of ( 1, ... , N) by per­
forming an even number of interchanges of two elements, and the set F N of odd permutations, 
which are obtained by an odd number of interchanges. The sign function s(cr) is defined as 
follows: 

s(cr) = { _: 
if cr eEN (i.e. cr is even); 

if cr e F N (i.e. cris odd). 

Let us consider the contribution of s(cr) D;er a;,a(i) of an arbitrary permulation cre SN. 

By the definition of the matrices X and A, we find that a;,a(i ) ;;;; À. if cr(i);;;; i and a;, a(i) =-x a(i) 
if cr(i) "1:- i. Further, the value of D;e r a;,a(i) appears to he the sa me for all permutations for 
which the same elements of { 1, ... ,N} are depicted to themselves. Let for all Je/, 
SN(J) cSN denote thesetof permutations which depiet all elements i~ J to themselves and all 
elements ie J toother elements, then formula (4.25) may he rewritten to 

det(A) = L L s(cr) À. N-IJl n (-Xa(j)) ;;;; L L s(cr) À.N-IJI n (-xj) 
Je/aeSN(J) jeJ Je/aeSN(J) jeJ 

;;;; i À.N-i (-li L [ L s(cr)] n Xj . 
i=O Je/ aeSN(J) jeJ 

IJ l=i 

Let S[, i ~ 1, denote the set of permutations of { I, ...• i} for which no element is depicted to 
itself, then for each J with IJ I =i each permulation cr e SN(J) is equivalent to a permulation 
cr' eS[ and vice versa. Further, it is obvious that the permulation (I, ... , N) is the only ele­
ment betonging to SN(0), and we find 

det(A) = À.N +i À.N- i (- li L [ L s(cr')] n Xj 
i=l Je/ a'es; jeJ 

IJ l=i 
N 

= À.N + :1: À. N-i c-t)i (IEfl- IFfl) :1: n Xj. 

i=l Je/ jeJ 
IJI=i 

(4.26) 

where E[ c sr denotes the set of even permutations of I I, ...• i} which depiet no element to 
itself, and Ff c S[ denotes the corresponding subset of odd permutations. Now, the only prob­
Iem left is counting the elements of E[ and Ff for i = I, ...• N. 
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For smal! i, I E[l and I F[l are easily verified by checking the whole set S; of permuta­
tions of { 1, ... , i}. For i = 1 and i = 2, we find 

S 1 = { ( 1)} , I EJI = 0 , I F(l = 0 ; 

S2={(1,2),(2,1)}, IE21=0, IF21=1. 

For larger i we can derive simple recurrence relations for IE[ I and I F[ I . Let i ;?:: 3 and let us 
consider the pennutations cr E E[. Each of these permutations satisfies exactly one of the fo1-
lowing two properties: 

(i) cr(l)='j, wherej e {2, ... ,i}, andcrU)= 1; 

(ii) cr(1)=j, wherej E {2, ... ,i}, and crU)~ 1. 

If creE[ satisfies (i), then (0"(2), ... ,crU-1),crU+1), ... ,cr(i)) is an odd permutation of 
{ 2, ... , j -1 ,j + 1, . .. , i} which depiets no element to itself. As a consequence, for each j 
there are I F[ _2 I permutations cr e E[ satisfying (i); and, the total number of permutations 
creE[ satisfying (i) is equal to (i-1)1F[_2 1, since there are i-1 values possible for j. If a 
permutation 0" e E[ satisfies (i i), then cr(2), ... , cr(i) is a sequence of distinct numbers of 
{ 1, .. . , i }\{j}. Replacing the 1 in this sequence by j gives a sequence 0"'(2), ... , cr'(i) of 
distinct numbers of {2, ... , i}, and, if cr e E[, then (cr'(2), .. . , cr'(i)) is an odd pennutation of 
{2, ... , i} which depiets no element to itself. Therefore, the total number of permutations 
cr e Ef satisfying (i i) is equal to (i -1) I Ff_1 I. Adding this number to the total number of per­
mutations satisfying (i) shows that 

IE[I = (i-1)(1F;_fi+IFf_21), i;?:3. 

Similarly, one may show that 

IF[I = (i-1)(1E;-li+1Ef_21), i;?:3. 

The recurrence relations for I E[l and I F[ I are used to prove by induction with respect 
to i that 

IE[I-IF/1 = (-1)i+1(i-1), i;?:l. (4.27) 

It is easily verified that ( 4.27) holds for i = 1 and i = 2. Now let i ;?:: 3 and suppose that ( 4.27) 
holds for 1, ... ,i-1, then 

IE[I- IF[I = (i-1)(1F[_1 1 + 1Ff-21)-(i-1)(1E[_1 1 + IEf-21) 

= -(i-1)[( IE[_1 1-IF[_, I)+ (IE/-21-IFf-21)] 

= -(i~1) [(-Ii(i-2) + (-1)i-1(i-3)] 

= (-1i+1(i-1)' 

by which (4.27) also holds for i. 

Finally, substituting (4.27) into (4.26) completes the proof. 0 

Let x; e (0, oo) for all ie I and Iet the matrix X be defined by ( 4.19). Further, assume that 
det(/N-X) > 0, which means that the characteristic polynomial h (À.) := det(À./ N-X) is positive 
for À.= 1. By using formula (4.24) and Rouché's Theorem, we can show that the assumption 
h(1) > 0 implies that all (possibly complex) zero points of the characteristic polynomial h(À.) 
are smaller than 1 in modulus, i.e. that p(X) <I. Define g(À.) :=Ä.N for all Ä.e C and let Î(Ä.) 
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be equal to the remairring part of h()..), i.e. (see (4.24)) 

Î(A.) := -f(i-1)ÀN-i L IJxi. 
i=2 Je/ jeJ 

IJI=i 

Then for all Àe Cwith IÀI = 1, we have 
• N N 

lf(À)I !'> l:(i-1) IÀIN-i L IJxi = l:(i-1) 
i=2 Jet jeJ i=2 

IJ l=i 

lg(À)I = 1. 

L IJxi 
Je/ jeJ 
IJI=i 
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1-h(l)<1, 

So, IÎ(À)I < lg(À)I for all À with IÀI = 1, and therefore, by Roucluf's Theorem (see Titch­
marsh [71]), h(À)=Î(À)+g(À) has the same number of zeros inside the unit disk as g(À), 
where all zeros have to be counted according to their multiplicity. Since g(À) has N zeros 
inside the unit disk (À=O with multiplicity N), this means that also allzerosof h(À) are lying 
inside the unit disk. This completes the proof of the equivalence between the conditions (iii) 
and (iv) of Lemma 4.3 and of Lemma 4.3 itself. 

By condition (iv) of Lemma 4.3 and the explicit formula (4.24) for det(/JN-X), we find 
the following simple, necessary and suftleient condition for the convergence of a geometrie 
tree G(k)(x 1, ... ,xN): the expression on the right-hand side ofequation (4.24) must be posi­
tive for À= 1; see the first part of Theorem 4.1. Further, if it is known that a geometrie tree 

converges, then, by condition (ii) of Lemma 4.3, r:;;=O Xd = (/N-X)-1 (the sequence 
{l:~=0 Xd}1~0 is monotonously non-decreasing and, by condition (ii) of Lemma 4.3, also 
bounded; therefore the sequence {l:~=0 xd IJ<:o converges, and its limit may be shown to be 
equal to (/N-x)-1), and substituting this result into the matrix formula (4.21) leads to 

G(k)(X), ... ,XN) = ek(/N-xr1 eT. (4.28) 

This formula shows that fora convergent geometrie tree, the sum G(k)(x 1, . . . ,xN) of all 
terms Yv is equal to the k-th row sum of the inverse (IN-xr1. An explicit, closed-form for­
mula for the SUm G(k)(X~o ... ,XN) is obtained by deterrnining first the inverse (/N-X)-l itself 
(by applying Cramer' rule and using Lemma 4.4) and subsequently its k-th row sum. This is 
shown in the proof of Theorem 4.1, in which the main results for the geometrie trees are sum­
marized. lt is noted that formula (4.30) for the case N = 2 and k = 1 is equivalent to formula 
( 4.17), which we found at the end of the previous section. 

Theorem4.1 
Let k eI and x; e (0, oo) for all i e /. Then the geometrie tree G (k) (x 1 , •.• , xN) converges if 
and only if 

N 

D(xl>·· · ·xN) = 1-l:(i-1) L nxj > 0 . 
i=2 Je/ jeJ 

IJ l=i 

lf this condition is satis.fied, then 

(k) - 1 . G (XI···. ,XN)- n (l+x,) . 
D(xl•· .. ,XN) iel\[kJ 

(4.29) 

(4.30) 
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Proof. 

The first part follows from the reasoning given in the paragraph prior to the theorem. 

For the second part of the theorem we first have to derive the inverse of IN- X. Denote 
IN -X by A and (IN -X)-1 by B = (b;,1). Further, assume that condition (4.29) is satisfied. So, 
det(A) = D(x 1, ... ,xN) * 0, and therefore Bis the unique solution of BA =IN. As a conse­
quence, the i-th row b; of B is the unique solution of b;A =e;, where e; is the i-th unit row 
vector, and, by using Cramer's Rule, we find that 

(-1)i+Jdet(A .. ) (-1)i+Jdet(A .. ) 
b . 1,1 _ J,l . • I 
ij = - , 1,) E , 
' det(A) D(x I• . .. ,xN) 

(4.31) 

where A1,; is the (j,i)-th minor matrix of A. For all i and j the matrix AJ,i is a squared matrix 
of order N -1 which is obtained by deleting the j-th row and the î-th column of A. 

Up to multiplying factors, the determinants det(A1,;) appear to be equal to determinants 
of matrices of the type IN-I -X', where the squared matrix X' is of the same type as the 
matrix X given by ( 4.19), but of order N -1 and with factors x; , ... , xf.J _1 : 

0 I 

XN-2 XN-l X2 

x; 0 XN-2 XN-l 

X' 
x; x2 0 XN-1 

x; x:l 
I 0 XN-2 

Define D'(xl, . .. ,xf.J_1) :=det(/N-I -X'), then, by applying Lemma 4.4 fora squared matrix 
of order N -1 , we obtain 

N-1 
D'(x;, ... ,xf.J-1) = 1- I: (i-1) I: ITxJ• 

i=2 Je/' jeJ 
IJ l=i 

where I':= { 1, . .. , N -1) (note that, if N = 2, then X'= (0) and D'(xl) = 1). This explicit for­
mula leads to explicit formulae for the determinants det(A;,1). 

Let i,j eI. If j =i, then it is easily verified that 

det(A1,;) = det(A;,;) = D'(xl> ... ,x;_1,x;+l • . .. ,xN). (4.32) 

If j * i, then, by dividing the elements of the j-th column by -x1 and rearranging columns, 
one may show that 

_ { -x1 (-l)i-j-l D'(x I> .. . ,x1_1,xj+l> . .. , x;-1>-l,x;+t. ... , xN) if j <i; 
det(A1,;) - i-J-t D'( l ) -x1(-l) x 1, ... ,X;_1,- ,Xi+l• . . . ,Xj-J•Xj+l• . . . ,XN if j>i. 

For arbitrary factors xl, . .. , xf.J _1 with x;" = -1 for some m eI', we find 

D'(x;, ... ,xf.J_,)=t-NI.l<n-1)[ I: nxf+ L nxt] 
n=2 Je/' leJ Je/' /eJ 

IJ l=n, mfJ IJ i=n, me} 

N-2 N-1 
t- I: <n-1) I: Tixf- x;" I: <n-t) I: flxf 

n=2 Je/'\[m)leJ n=2 Je/'\[m}leJ 
IJI=n IJI=n-1 
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by which 

N-2 N-2 
1- L (n-1) :E IJxf + :En L IJxf 

n=l Jc/'\{m}leJ n=l Jcl'\{m}leJ 
IJ l=n IJ l=n 

N-2 

= L :E IJxf 
n=O Jcl'\{m} lel 

IJ l=n 

rr (1 +x/). 
lel'\{ mi 

det(Aj,;) = (-1)i-j Xj IJ (1 +x1), j '*i. 
Ie 1\{i,j} 
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(4.33) 

Substituting (4.32) and (4.33) into (4.31) completes the proof of the following formula for the 
elements b;,j of the inverse B =(IN-X)-1: 

h;.j = 

D'(x 1, • •• ,x;-J,Xi+l• ... , xN) 

D(XJ, • . . ,XN) 

1 -=-----x· IJ (I +x1) 
D(Xt. ... ,xN) J le/\{i,j} 

if j=i; 

if j ·:~:i. 

To find the explicit formula (4.30) for G(k)(xt> ... ,xN), by (4.28), we have to compute 
the k-th row sum of B. We find 

(k) - N . G (XJ, ... ,XN) - :E bk,j 
j=l 

= D 1 [ D'(x I• • •• ,Xk-t.Xk+l• .. . , XN) + :E Xj rr (1 +xl) ] . (4.34) 
(Xt, · · · ,XN) je/\{k} le/\{k.j} 

The second term of the part in parentheses may be rewritten to 

L Xj rr (l+xl) = :E rr (l+xl)- :E rr (l+XJ) 
je/\{k} le/\{k,j) je/\{k} le/\{k} je/\{k} /e /\{k,j} 

N-1 N-2 
= eN-I) :E :E rr x1 - I: <N-i-1) :E rr x1 

i=O Jcl\{kl jeJ i=O Jc/\{k} jeJ 
IJ l=i IJ l=i 

N-1 

= :E i :E rr x1 • 
i=l Jcl\{kl je] 

IJI=i 

where the second equality follows from 
N-2 

I: rr o +x1> = :E cN-i-1) :E rr Xj • 
je/\{k}/e/\{k,j} i=O Jc/\{k} jeJ 

IJI=i 

(4.35) 

which is easily verified by working out the expression on the left-hand side and counting for 
each Jcl\{k) the number of times that the term njeJXj occurs. Subsequently, by using the 
formula for D'(x}. .. . , x/v_1) and (4.35), it is shown that 
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D'(xi·····Xk-!oXk+l·····XN)+ I: Xj n (l+xl) 
je/\{k) le/\(k,j) 

N-1 N-1 
= 1- .1: u-1) 1: n Xj + 1: i .1: n Xj 

i=2 Jc/\(k) jeJ i=l Jc/\{k) jeJ 
IJ l=i IJ l=i 

N-1 

= .I: I: flxi 
i=O Jc/\(k} je} 

IJl= i 

= n (l+xj). 
je/\(k) 

Finally, substituting this result into (4.34) completes the proof of the second part of Theorem 
4.1. (] 

Remark 4.1. (a sufficient conditionfor the convergence of a geometrie tree) 

There is one situation for which one can immediately see that a geometrie tree 

G(k)(x~o ... ,XN) converges. lt directly follows from the definition that a<k>(x~o ... ,xN) 

converges if 

.I: x; < 1 for all k El, (4.36) 
ie/\(.1:) 

i.e. if for each node v the sum of the weights of its successors is smaller than the weight of v 
itself; in that case the total weight is bounded by 

a<k>(x!· ··· ·XN) = Ï,g(d)eT ~i[ rnax L x;]d < 00 • 

d=O d=O kef ie/\[k) 

It is noted that, since according toa corollary of the Perron-Frobenius Theorern (see Tbeorem 
1.5 and Corollary 1 of Tbeorern 1.1 of [ 64 ]), the speetral radius of an irreducible, nonnegative 
matrix is bounded by its maximal row sum (and also by its maximal column sum), condition 
(4.36) implies that p(X) < 1. This shows that condition (4.36) is a stronger version of condi­
tion (iii) of Lemma 4.3. 

Remark 4.2. (geometrie trees with arbitrary rea/-valuedfactors x;) 

Tbe whole analysis in this section for the geometrie trees a<k>(x 1, ... ,xN) has been res­
tricted to the case in which all real-valued factors x; are positive. The reason is that this case 
suffices for obtaining error bounds for the approximation of equilibrium probabilities by fini te 
sums; see Lemma 4.2. However, the geometrie trees a<k>(x 1, . .. ,xN) can also be defined for 
the case with arbitrary real-valued factors x;. Cases with zero factors x; may be reduced to 
'lower-dimensional' cases. For the case with x; E /R\{0) for all i El, the main results derived 
in this section may be generalized as follows. For the sum a<k>(x ,, ... ,XN) of all terms Yv 
we still obtain the matrix formula (4.21). For the absolute sum of all terms Yv · we obtain the 
expression 

I: lyvl =ek[Ï,IXId]eT, 
vev. d=O 

where lXI is identical to the matrix X given by (4.19), but with the factors x~o .. .. xN 
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replaced by their absolute values I x 1 I, ... , I XN I. By applying Lemma 4.3, we find that the 
following four conditions are equivalent: (i) a<kl(x 1, ... ,xN) is absolutely convergent; (ii) 
I:j'=()IXId <oo; (iii) p(IXI)< 1; (iv) det(IN-IXI)>O. The fourth condition can easily be 
verified by using the formula given in Lemma 4.4. The third condition implies that p(X) < I. 
This follows from the property that for each matrix A the speetral radius p(A) is smaller than 
or equal to the speetral radius p( I A I) of the matrix I A I obtained from A by taking the abso­
lute value for each element (this property may be proved by using the formula 

p(A) = lim 11 A n ~ 1111 , 
"_._ 

as given by Dunford and Schwartz [27], p. 567, and showing that IIA"II~IIIA 1"11 for all n). 
Next, the property p(X) < 1 implies that the inverse (/N-X)-1 exists and is equal to I:j'=() Xd 
(use Jordan's canonical form to show that Xd ~ 0 as d ~ oo, and apply Lemma B.1 of Seneta 
[64]). As a consequence, we find that the formulae (4.28) and (4.30) also hold for the case 
with x; E IR\{ 0} for all iE/. So, we obtain the following generalization of Theorem 4.1 (it is 
noted that although the cases with factors x; = 0 reduce to 'lower-dimensional' cases, the same 
main resu1ts are still valid forthese cases): 

Let k E /, x; E JR for all i EI and let the function D(x 1 , ... , xN) be defined by ( 4.29 ). 
TIJen the geometrie tree a<kl(x 1, ••• ,xN) converges absolutely if and only if 
D( I x 1 I, ... , I XN I)> 0. And, if this condition is satisfied, then for the sum 
G(k)(X I• ••• ,XN) thejonnula staled in (4.30) is obtained. 

4.4. Three procedures for the computation of the equilibrium distribution 

The explicit results which we found in the previous section for the sums/geometric trees 
a<kl(x~o ... ,XN) (see Theorem 4.1), enable us to use the error bounds derived inSection 4.2 
(see Lemma 4.2) in numerical procedures for the computation of an equilibrium probability 
Pm,, ... ,mN for a state (m 1, • •. , mN) in the convergence region Me (note that for the stales 
outside this region, the equilibrium probabilities can be computed from appropriately chosen 
equilibrium equations). In this section, we wiJl describe three numerical procedures for the 
computation of an equilibrium probability within an arbitrary desired accuracy. In one of 
these procedures empirica] upper bounds for the errors of the approximations by finite sums 
are used, whereas in the other two procedures the hard upper bounds of Section 4.2 are 
exploited to decide when the computation process can be stopped. The procedure with the 
empirica! upper bounds is a simple procedure which serves as a reference for the evaluation 
of the quality of the other two procedures. 

Let (m~o .. . ,mN)EMc and suppose that the equilibrium probability Pm, .... ,mN has to 
be computed within a given absolute or relative accuracy. The probability Pm, . . . . ,mN is equal 
to the infinite sum on the right-hand side of formula (4.2), and appropriate approximations for 
Pm,, ... ,mN are given by fini te sums I:,. e V' tm , .... ,mN(v), where V' is a fini te subset of V and 
satisfies the conditions (4.3)-(4.5). Since it is expected that, in genera!, the contribution of the 
terms tm,, .. . ,mN(v) is the largest forthenodes v E V which are close totheroot 0, it seems to 
be appropriate to take V' equal to the subsets 
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V(d) = {veVIl(v):s;d), deiN. 

A node v e V is said to be Iying at a depth l ( v) in the tree of all nodes v e V, and a subset V (d) 
consists of all nodes at the depths 0, ... , d. Let the corresponding approximations for 
Pm 1 ••.. , mN be denoted by 

Pm 1, ... ,mN(d) = L lm 1, ... ,mN(v). (4.37) 
v e V(d) 

1t is obvious that the approximations {Pm" ... ,mN(d) ld e IN constitute a sequence which con­

verges top,;, 1, •• • ,mN as d tends to infinity. Therefore the probability Pm 1, • •• ,mN may be deter­

mined by successively computing Pm 1, • • • • mN(d) ford= 1,2, · · · . This computing process 
should be stopped as soon as forsome d the relative or absolute error of Pm 1, • •• ,mN(d) with 
respect to Pm 1, ••.• mN is sufficiently smal!. 

Whether the error of an approximation Pm,, ... ,m)d) is sufficiently small can be esta­
blished by using the error bounds derived in Section 4.2. Applying Lemma 4.2 shows that 

lpm .. . .. ,mN -Pm ...... mN(d)l :s; L bm,, ... ,mN(v) • 
veV 

l(v}=d 

(4.38) 

where the bounds bm,, . .. ,mN(v) are defined by (4.16); bere, a bound bm,, . .. ,mN(v) is said to 

be equal to oo in case the geometrie tree dv"''>(x 1, • • • ,xN) on the right-hand side of (4.16) is 
not convergent. Note that from this upper bound for the absolute error of Pm,, .. . ,mN(d), one 
can also obtain an upper bound for the relative error. The upper b_9unds given by (4.38) are 
used in a procedure which is called the simple procedure with hard bounds. In this pro­
cedure, the computation of the finite sums Pm,, .. . ,mN(d) is stopped as soon as it can be 

guaranteed on the basis of the hard upper bounds given by (4.38) that Pm ,, . .. . m/d) approxi­
mates Pm 1, ••• ,mN within the given accuracy. 

Inslead of using the hard upper bounds given by (4.38), we can also use empirical upper 
bounds, which are obtained as follows. The approximations Pm,, .. . ,mN(d) are the partial 

sums ofthe convergentand altemating series rr=O am, , ... • m/k), with 

am, , ... ,mN(k) = I, tm, , ... ,mN(v), k~O 
v e V 

l(v)=k 

(that this series is altemating follows from the property that for all v all factors a 1,v , ... , aN,v 

are in the interval (0,1]). The convergence of the series rr=Oam, , . .. ,mN(k) implies that 
am,, ... ,mN(k) ~ 0 as k ~oo. Further, it seems to be reasonable to assume that, at least in the 
long run, the terms am,, . .. ,mN(k) are monotonously non-increasing in absolute value. 

Assume that 

lam,, ... ,mN(k+i)l :s; lam,, ... ,mN(k)l for all k~do. 

where doe IN 0. Then, since the absolute value of an alternating series for which the terms 
are monotonously non-increasing in absolute value, is bounded by the absolute value of the 
first term, we find that 

I f am, ..... mN(k) I :s; lam, .. .. ,m/d)l 
k=d+l 

(4.39) 
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for all d~do; note that am,, ... ,mN(d) denotes the difference between Pm,, ... ,mN(d) and 

Pm,, .... m/d-1). On this result, we base the empirica] upper bound 

{ 
1
00

am,, ... ,mN(d)l if lam,, ... ,mN(d)l < lam,, ... ,mN(d-1)1; 

otherwise (4.40) 

for the absolute errors of the approximations Pm,, ... ,mN(d) with respect to Pm, , .. . ,mN· This 
bound is used in the so-called simpte procedure with empirica[ bounds. lt is noted that by 
definition the lowest value for d at which this procedure stops is larger than or equal to N + 1, 
since am, .... ,".N(d)=O for all d=O, ... ,N-1 (which is due to the property that for all v e V 

with l (v) S.N -1 at least one of the factors cr1,v, ... , crN,v is equal to 1). 

In both simple procedures, the selection of new nodes v E V, which are added to the set 
V' in order to obtain a better approximation, is based on their di stances l ( v) to the root 0. In 
the sophisticated procedure, which is the third and last procedure we describe, new nodes 
veVare selected in a more sophisticated way. This procedure computes the sum on the 
right-hand side of (4.2) within a given absolute accuracy by truncating subtrees at different 
depths. The procedure keeps track of a set W to of nodes where the computing process still 
has to be continued. This set is initiated by the set of n6des at depth I. For each node one 
stores the salution (cr1,v, ... ,ClN,v) and the bound b". 1, ... ,m)v) given by (4.16), i.e. the 

upper bound for the sum of the weights of all nodes, except v itself, of the subtree starting at v 

(here, again the bound b".,, ... ·"'N(v) is said to be equal to oo if the geometrie tree on the 

right-hand side of (4.16) is not convergent). Further, we store the absolute accuracy with 
which the subtree starting at v has to be computed. In the initialization step the initial 
allowed inaccuracy is divided among the N nodes at depth 1 proportional to their values of 
bm,, . .. ,mN(v) (provided that each node gets at least a given, fixed percentage; take 5% in case 

N = 3, for exarnple). In each next step, one selects a node v from the set Wand computes· the 
contribution of the corresponding term. Subsequently, it is checked whether the subtree start­
ingat v may be truncated below v, i.e. whether bm,, ... ,m)v) is smaller than or equal to the 

inaccuracy allocated to v. If so, then one can continue with another element of W, otherwise 
one first has to add the N -1 successors of v to the set W. Here, again the inaccuracy allocated 
to v is divided among its successoes proportional to their val u es of bm, . . .. . mN ( v) (provided 

that each successor gets at least the given, fixed percentage). The procedure ends as soon as 
the setWis empty. Remark that an equilibrium probability Pm,, . .. . mN fora state in the con­

vergence region Me may be computed within a given relative accuracy by applying the 
sophisticated procedure for decreasing values of the allowed absolute inaccuracy. 

We have applied all three procedures to the symmetrie 2 x 3 switch, which is modeled as 
a three-dimensional random walk (so N = 3) which satisfies all required properties. The sym­
metrie 2 x 3 switch is defined as the 2 x 3 switch (see Example 2.2 of Chapter 2 and Exarnple 
3.2 of Chapter 3) with equal arrival rates r 1 = r2 = r, where re (0, I], and r j,i = 1/3 for all 
j = 1, 2 and i e /. In Table 4.1, the three procedures are compared on the basis of their perfor­
mance for the computation of the equilibrium probability Po. I . I. For all cases an absolute 
accuracy of 10-6 has been required. In the first two columns the range of chosen values of r 
and the corresponding values of Po. I,! are depicted. In the fourth column the number of com­
puted terms of the sum in (4.2) is given, and in the fifth column the number of computed 
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procedure depth 
relevant error absolute 

r PO, I, I tenns 
bound tenns error 

simple 0.01 0. ()()()()()() 4 46 24 6.9.10-25 0 
procedure 0.2 0' ()()()()()() 4 46 24 1.0. w-11 2.1 . w-16 

with 0.4 0.000020 4 46 24 1.6. 10--8 6.1.10:-12 
empirica) 0.6 0.000323 5 94 66 3.4.10-9 7.6. w-12 

bounds 0.8 0.002593 5 94 66 4.2·10-7 3.4·10-9 
1.0 0.013901 6 190 156 6.4·10-7 1.6. 10--8 

simpte O.ot 0. ()()()()()() 3 22 6 2.8·10-15 6.9.10-25 

procedure 0.2 0. ()()()()()() 3 22 6 2.1. w-7 J.o.10-11 

with 0.4 0.000020 4 46 24 3.1.10-7 6.1· w-12 

hard 0.6 0.000323 5 94 66 5.o.w-7 7.6· w-12 

bounds 0.8 0.002593 7 382 342 u. 10-7 2.7·10-13 

1.0 0.013901 9 1534 1482 1.5. 10-7 3.3·10-13 

sophis- 0.01 0. ()()()()()() 2 10 0 2.5. 10-10 2.8· w-15 

ticated 0.2 0. ()()()()()() 3 14 2 6.5· w-1 2.3·10-7 

procedure 0.4 0.000020 5 34 12 2.1. w-8 J.6. 10--8 
0.6 0.000323 6 54 26 4.8· w-8 1.3· 10-9 
0.8 0.002593 7 78 46 3.7· w-7 1.6.10-7 

1.0 0.013901 9 134 92 5.5·10-7 2.2. w-7 

Table 4.1. Performance characteristics for the computation of Po.1,1 within absolute 
accuracy 1 0~ for the symmetrie 2 x 3 switch. 

relevant terms, i.e. the number of computed terros for which a1 .v.~.v.a3,v < 1, is depicted. 
The maximum depth reached during the computing process, i.e. the maximum length of the 
indices v of the computed terms, can be found in the fifth column. For both simple pro­
cedures, this vaJue is equaJ to the smallest d for which po, 1,1 (d) approximates po, 1.1 within 
the required accuracy. The sixth column gives the upper bound for the absolute accuracy 
with which PO, I,! has been computed. Of course, for the simple procedures these va1ues are 
equal to the bounds given by (4.38) and (4.40), respectively, with d equal to the depth dep­
icled in the third column. For the sophisticated procedure this value is equal to the bound 
bm,,m,,m3 (v) summed up over all v where subtrees have been truncated. Finally, inthelast 

column the absolute accuracy itself has been depicted. These values have been computed 
after having detennined p 0•1, 1 with a higher absolute accuracy. 

Table 4.1 shows that for the simple procedure with hard bounds more (relevant) terrns 
have to be computed than for the sophisticated procedure, especially for high values of r, i.e. 
for high workloads. This seems to be caused by the roughness of the upper bound used for 
the absolute accuracy (compare the values in the Jast two columns), which is mainly due to 
the use of the bound bm,.m,.m/v) at nodes v for which at least one of the factors of 

(a1.v,a2.v,a3.v) is equal to 1. Subtrees starting at such nodes v have infinitely many nodes w 

with a 1.w. a2.w or a3.w equal to 1. Since the contribution of these terrns is equal to 0 for 
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3 m, • 
Pm.,m,,m,• but equal to TI;=t a;,w for bm ,,m 2,m3 (v) (see (4.8)), and therefore even larger for 

bm,,m2,m3 (v) (since the bounds bm, , .. . . mN(v) also are upper bounds for bm,, . . . ,mN(v), see 
(4.14)-(4.16)), the use of the upper bound bm,.m,,m 3 (v) causes a large gap between the 

guaranteed upper bound for the absolute accuracy and the absolute accuracy itself, especially 
when we are at a nodevat a low depth (i.e. with a smalllength l (v)). The sophisticated pro­
cedure overcomes the problem caused by the roughness of the bounds bm,,m,,m, (v) for nodes 

v with at least one of the factors a;,v equal to 1, by going deeper inthetree at such nodes than 
at other nodes. As a consequence, the sophisticated procedure perfarms much better than the 
simple procedure with hard bounds. The results in Table 4.1 also show that in the simple pro­
cedure with empirica! bounds the empirica! upper bound given by (4.40) appears toserve as a 
good upper bound for the absolute accuracy of Pm ,,m,,m, (d). Therefore also this procedure is 
an appropriate procedure for the computation of the equilibrium probabilities. 

It is obvious that all three procedures are efficient. Nevertheless, we do see the follow­
ing ordering. The sophisticated procedure perfarms the best, and, in genera!, the simple pro­
cedure with empirica! bounds perfarms better than the simple procedure with hard bounds 
(however, for smal! values of r, in the simple procedure with hard bounds the computing pro­
cess may be stopped for d = 3, while, by definition, the value at which the simple procedure 
with empirica! bounds may stop always is larger than or equal to 4). From this it may be con­
cluded that the sophisticated analysis which has led to the error bounds and the explicit 
expressions for them, must be accompanied by a sophisticated use of these error bounds in 
order to obtain a better procedure than the simp Ie procedure with the simp Ie empirica] bounds 
given by (4.40). 

4.5. Comparison of the 2 x 3 switch to a system with independent servers 

Except for the equilibrium distribution, the procedures described in the previous section may 
also be used for other quantities. For the 2 x 3 switch, for example, we can also determine 

k k k 
moments of queue lengths (however, note that for the moments /EL 1' L 22 L3\ where L; 
denotes the length of the queue at server i, it suffices to analyze a 2 x 2 switch in case one or 
more of the powers k; are equal to 0) and the distribution of the number N of non-empty 
queues at the beginning of a time unit. Denote the probability that N equals k by p (k). By 
using (4.1), we find that 

p(3) = L L L Pm 1,m 2,m 3 

m 1=1 m 2=1 m 3=1 

- ~ 1 (-1)1<v>-3 a a a - ~ {a1_,a,_,a3_,<ll l,v 2,v 3,v• (4.41) 
veV 

where 1 {a,_,a,_,a,_, < 11 is equal to 1 if all three factors al.v•a1.v•a3,v are smaller than 1 and 
equal to 0 otherwise. A similar expression may be found for p(2), while p(O)=Po.o.o and 
p(l) follows from the property that the probabilities p(i) add up to l. The sum in (4.41) may 
be computed in the same way as the sums for the equilibrium probabilities given in (4.2) and 
we may even use the same error bounds. 
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system r p(O) p(l) p(2) p(3) ~(N} a(N) vc(N} 

2x3 O.Gl 0.9801 0.0198 0.0001 0.0000 0.02 0.140 7.024 
switch 0.2 0.6302 0.3397 0.0299 0.0002 0.4 0.548 1.371 

0.4 0.3345 0.5336 0.1294 0.0025 0.8 0.659 0.823 
0.6 0.1302 0.5549 0.2997 0.0152 1.2 0.671 0.559 
0.8 0.0245 0.4091 0.5084 0.0580 1.6 0.636 0.398 
1.0 0.0000 0.1732 0.6536 0.1732 2.0 0.589 0.294 

inde pen- 0.01 0.9801 0.0198 0.0001 0.0000 0.02 0.141 7.047 
dent 0.2 0.6510 0.3004 0.0462 0.0024 0.4 0.589 1.472 

servers 0.4 0.3944 0.4302 0.1564 0.0190 0.8 0.766 0.957 
0.6 0.2160 0.4320 0.2880 0.0640 1.2 0.849 0.707 
0.8 0.1016 0.3485 0.3982 0.1517 1.6 0.864 0.540 
1.0 0.0370 0.2222 0.4445 0.2963 2.0 0.816 0.408 

Table 4.2. The distribution of the number of working servers during a time unit for the 
symmetrie 2 x 3 switch; the second part gives the distri bution for independent servers. 

From the distribution of N, one can easily compute the distribution of the number N of 
working serversduringa time unit. In Table 4.2, this distribution (fi(k).denotes the probabil­
ity that N equals k), and also its first moment, standard deviation and coefficient of variation, 
are given for the symmetrie 2 x 3 switch. In the second part the same is depicted for the 
corresponding system with independent servers, i.e. the system consisting of three, parallel 
servers where each server has two Bernoulli streams of arriving jobs with rate r/3. The 
results in Table 4.2 show that, for all r, the 2 x 3 switch has a smaller variability in the number 
of working servers than the system with independent servers, which, of course, is due to the 
(negative) correlation between the streams of arriving jobs. For high workloads r this correla­
tion has a considerable impact, while for low workloads r the impact is al most negligible. 

4.6. Concluslons 

In this chapter, we have performed a structure analysis of the equilibrium distribution for the 
class of multi-dimensional random walks for which explicit results were obtained in the pre­
vious chapter by applying the compensation approach. For the infinite, alternating sum of 
product-form solutions which describes the equilibrium behavior of a random walk of this 
class, we have established a behavior which is typical for so-called geometrie trees. An 
extensive analysis for these geometrie trees has led to explicit upper bounds for the absolute 
errors of the approximations of the equilibrium probabilities by finite, alternating sums of 
product-form solutions. The error bounds have been exploited in efficient numerical pro­
cedures for the computation of the equilibrium distribution and related quantities within a 
given accuracy, and numerical results have been presenled for the symmetrie 2 x 3 switch. 
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Chapter 5 

The Preeedenee Relation Metbod 

for Deriving Flexible Bound Models 

5.1. Introduetion 

As we have stated in the introductory chapter, the objective of this monograph is the develop­
ment of methods for the analysis of queueing systems for which the behavior is described by 
multi-dimensional random walks/Markov processes on state spaces which are infinite in each 
component. The Chapters 2-4 have been devoted to the compensation approach. By using 
this approach, we have been able to derive explicit formulae for the equilibrium distribution 
for a restricted class of multi-dimensional random walks. Besides the class of product-farm 
networks (see Basken et. al. [15]), up to now, this class is the only other class of multi­
dimensional random walks which can be solved analytically. This indicates that in general it 
will be hard to so1ve a multi-dimensional problem in an analytica! way, and therefore it is 
desired to have alternative methods. One alternative method is the power-series algorithm 
(see Blanc [18]), with which the equilibrium distribution and the corresponding relevant per­
formance measures can be determined within a given accuracy, provided that the correspond­
ing requirements with respect to the computational efforts are met. Another alternative is 
constituted by the use of solvable truncation models which can approximate the original 
model or Markov process as accurately as desired. This latter property may be obtained by 
defining the truncated state space such that its size depends on one or more truncation param­
eters. Truncation models with this property are calledflexible truncation models. Truncation 
roodels in fact lead to approximations for the equilibrium distribution of the original model, 
and therefore also to approximations for the relevant performance measures. Of a particular 
interest are ftexib1e truncation models which produce bounds for the relevant performance 
measures. Such models arealso calledflexible bound models. The second part of this mono­
graph, consisting of the Chapter 5-7, will be devoted to a systematic method, called pre­
eedenee relation method, with which such roodels may be derived. This method will be 
deve1oped in this chapter, and after that, in the Chapter 6 and 7, it will be applied to two par­
ticular queueing systems, viz. the Symmetrie Shortest Queue System (SSQS), with N'?.2 
servers, and to the generalization of this system as described in Section 1.2. 

The preeedenee relation metbod can be used for proving monotonicity results between 
performance measures of two Markovian systems, where the state space of one system is a 
subset of the state space of the other system. These monotonicity results are derived by com­
paring the costs in the two corresponding Markov cost models. The main idea of the 
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preeedenee relation method is that this comparison may be simplified by first deriving pre­
eelknee pairs for the Markov cost model with the larger state space, i.e. by first proving for 
pairs of stales of the Markov cost model with the larger state space that they satisfy a certain 
preeelknee relation which denotes that the first state of a pair is more attractive with respect 
to the costs than the second state. 

In this chapter, we shall mainly focus on the comparison of performance measures for 
truncation models to the corresponding performance measures for the original model. Due to 
the introduetion of the preeedenee relation, we will find extremely simple, sufficient condi­
tions for obtaining truncation models which produce lower and upper bounds for the relevant 
performance measures of a given original model. This direetly leads to a simple method with 
which we can derive (or construct) bound models, and especially jlexible bound models, 
which can be used to approximate the original model as accurately as desired. The method 
for the denvation of the flexible bound models will also be called the preeedenee relation 
method. An attractive property is that, after having derived the preeedenee pairs for the origi­
nal model, this method may easily and quickly produce a whole set of sensible flexible bound 
models. 

In Seetion 1.4 of the introductory chapter, on the basis of two fiexible truncation for the 
SSQS with N = 2 servers, we have described globally how the preeedenee relation method 
proves that a particular (flexible) truncation model is a bound model. In this chapter, the 
two-dimensional SSQS is used to illustrate how the preeedenee relation metbod lkrives fiexi­
ble bound models. We will obtain six, solvable, fiexible bound models: four lower bound 
models and two upper bound models. Among these bound models are the two roodels 
presenled inSeetion 1.4, and also the truncation models given in the papers by Conolly [24] 
and Rao and Posner [60]. In Chapter 6 (see also [2]), the preeedenee relation method is 
applied to the N-dimensional SSQS with general N ~ 2; in that chapter we will generalize the 
two bound models of Seetion 1.4 (which for the two-dimensional case will appear to produce 
the tightest bounds for the mean waiting time, see Seetion 5.5). The present list of systems 
for which the preeedenee relation method has appeared to lead to appropriate, fiexible bound 
models, further contains the shortest queue system with a job-dependent parallelism (which 
has been described in Seetion 1.2 and which will be treated in Chapter 7), and the symmetrie 
longest queue system (see [1]); it is our conviction that this list can be extended with several 
other systems. 

For both the preeedenee relation metbod as used for proving monotonicity results and 
the preeedenee relation method as used for deriving flexible bound models, there exist some 
related methods in the literature. For proving monotonicity results between Markovian 
(queueing) systems, there are basically four methods available, of which the sample path 
teehnique seems to be the best known one; fora short overview of these methods, see Van 
Dijk and Van der Wal [76]. The preeedenee relation metbod originates from the technique 
used in the papers by Van der Wal [72], Van Dijk and Van der Wal [76]. and Van Dijk and 
Lamond [75]. A typical property of the preeedenee relation method is the explicitly defined 
preeedenee relation for the stales of the original model. The strength of the preeedenee rela­
tion method, as used for proving monotonicity results, is that in general, it willlead to simpler 
and intuitively clearer proofs than other methods (it seems that many monotonicity results 
which can be proved by the preeedenee relation method, may also he proved by using other 
methods). A more important feature of the preeedenee relation metbod is that it can be used 
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for deriving monotonicity results. 

As a method for deriving flexible bound models, the preeedenee relation metbod is 
related to the methods developed by Van Dijk [74] and Stepanov [66]. In his book [74], Van 
Dijk advocates the use of a metbod for modifying an original non-product-form system into 
product-form systems (by repairing station balance, for example) in order to obtain a first 
indication on the orders of magnitude of the relevant performance measures (such indications 
may be useful for measures like blocking and loss probabilities in communication systems, 
which in many situations are hard to determine). He further claims that in general it will be 
intuitively clear whether a modification leads to lower or upper bounds; and, in several cases, 
forma! proofs of the bounds can be given by using the teehnique of the papers [72, 75, 76]. In 
[66] (see also [65, 67]), for a number of queueing systems with repeated calls, Stepanov also 
describes an approach for deriving flexible bound/truncation models. His approach bears 
some similarity with the preeedenee relation metbod in the sense that it also constrocts bound 
models by redireeting transitions ending in states outside the truncated state space to 
morelless attractive states inside the truncated state space. However, in his approach the con­
cept of 'attractiveness' is only basedon intuitive arguments. The way in which forma! proofs 
are given (see [67]) appears to be totally different (and much more complicated). 

This chapter is organized as follows. In Section 5.2, we describe a general original Mar­
kovian system, for which we want to derive flexible bound models. Next, the preeedenee 
relation metbod is presented in Section 5.3, and it is shown how truncation models should be 
defined in order to lead to lower and upper bounds for the relevant performance measure(s) of 
the original model. In Seetion 5.4, an extensive treatment is given of the derivation of pre­
eedenee pairs, which tums out to be the essential step of the preeedenee relation method. 
Seetion 5.5 is devoted to a discussion on the quality of the flexible bound models derived by 
the preeedenee relation method; at the end of th seetion, we shall discuss some other mono­
tonicity results than between original and truncation models, which can be proved by using 
the preeedenee relation method. Fina!Iy, Seetion 5.6 is devoted to the conclusions. 

5.2. The original model 

In genera!, the relevant performance measures of a given Markovian queueing system may be 
determined by defining appropriate Markov cost models and computing the average costs. 
This property is exploited by the preeedenee relation method, which in the next section is 
developed for the comparison between the average costs of an original Markov cost model 
and the average costs in a related truncation model. In this seetion, we describe the original 
Markov cost model. To ensure that in the next section simple comparisons can be made 
between the so-called t-period costs for different (starting) states, we assume that we have 
discrete time. Note that this assumption can be made w.l.o.g., since (under some mild condi­
tions) continuous-time Markov processes may be transformed to equivalent discrete-time 
Markov processes by using the uniformization teehnique (as described in Tijms [70], for 
example). 
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Consider a discrete-time, irreducible and positive recurrent Markov process with a state 
space M consisting of N-dimensional veetors m = (m 1, • •• , mN ). Let the transition probabili­
ties be given by qm,n and let {Pm} denote the equilibrium distribution, which is characterized 
as the unique normalized salution of the equilibrium equations. Suppose that direct costs 
c (m) are incurred for each period that the Markov process is in state m. Then the correspond­
ing average costs g per period are given by 

g = L Pm c(m); 
meM 

(5.1) 

note that the average costs do not depend on the starting state of the Markov process. In the 
next paragraph, it is indicated how to define the direct costs c (m) such that the average costs 
g are equal to a certain performance measure of interest. 

Suppose that we have a Markov process which describes the behavior of a queueing sys­
tem consisting of N queues, and that each component m; of a state describes the length of a 
particular queue. In that case, the average costs g are equal to the k-th moment of the total 
number of jobs L in the system, if c (m) is defined by c (m) = cr.r=l m; )k; and, all probabilities 
/P(L ~ l) are obtained by letting c (m) be equal to I if l:r=l m; ~ l, and to 0 otherwise. Simi­
larly one may obtain information on particular queues, or on shortest or longest queues. Note 
that for most performance measures it is possible to define the cost function c (m) such that 
c (m) is non-decreasing in each component. 

Imagine that we want to delermine (analytically or numerically) the average costs g in 
the original model, but that it is not possible (or not attractive) to use formula (5.1), since it is 
not possible (or very hard) to determine the equilibrium distribution (Pm }. Then it is quite 
customary to use truncation roodels to obtain some valuable information on g. In the next 
section, we shall investigate how truncation roodels should be defined in order to obtain lower 
or upper bounds for g. But first we discuss a system which is appropriate for serving as an 
example of the original model. 

Example 5.1: Tbe symmetrie shortest queue system 

Consider the symmetrie shortest queue system, as described in the previous chapters. For 
completeness, we repeat the description. The symmetrie shortest queue system (SSQS) con­
sists of N ~ 2 parallel servers, which all have their own queue. Jobs arrive according to a 
Poisson stream with intensity À> 0, and an arriving job always joins the shortest queue (ties 
are broken with equal probabilities). All service times are exponentially distributed with 
parameter 1-1. > 0. For simplicity, we assume that time is scaled such that À+ NI-I.= I. In order 
to have an ergodie systern, the workload p =À!( NI!) is assumed to be smaller than 1. 

Since we want to use the SSQS as an illustration model for the preeedenee relation 
method, in this chapter the SSQS is modeled as a discrete-time inslead of a continuous-time 
Markov process. Further, we choose a slightly different state description which will appear to 
be more appropriate for the present analysis. The SSQS is modeled as follows. 

Assume that the servers always work, but that a service completion is only accompanied 
by a departure of a job if there is a job present in the corresponding queue (note that this is 
equivalent to uniformizing the time intervals between jump moments, as done by the uni­
formization technique). Then the behavior of the system may be described by the discrete­
time Markov process on the time instants right after job arrivals and service completions, and 
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with states (m 1 , ••• , mN ), where m; denotes the length of the i-th shortest queue. 

The most interesting performance measure for the SSQS is the mean W of the normal­
ized waiting time. The normalired waiting time is defined as the ratio of the waiting time and 
the mean service time of a job (= 1/)l), and has the attractive property that it only depends on 
N and p. By Little's formula, we find that Wis equal to 

W=~ 
Np • 

(5.2) 

where Lw denotes the mean of the total number of waiting jobs in the system. As a conse­
quence, it suffices to determine I_. To ensure that Lw is equal to the average costs g. we 
define the direct costs c (m) by 

N 
c(m) = L max.{ m;-1,0}. (5.3) 

i=l 

For the SSQS with N ~ 3, it is not known how to delermine the equilibrium distri bution 
by an analytica! or a standard numerical method. Therefore we would like to derive solvable 
bound models in order to obtain information on Lw. i.e. on the average costs g. For the sake 
of clarity, in this chapter the various bound roodels will he described for the case witb N = 2 
servers; bowever, all bound models may also be defined for general N. Note that for N = 2 the 
state space is given by 

M ={mI m=(mJ.m2) with O:s;m, ;S;m2}, 

where m 1 and m 2 denote the lengths of the shortest and the longest queue, the transition rates 
qm,n are as depicted in Figure 5.1, and the direct costs are given by 

(5.4) 

5.3. The preeedenee relation metbod 

This section contains the core of this chapter. lt is devoted to the description of the pre­
eedenee relation method, which in principle is a metbod for the comparison of the average 
costs in two related Markov cost models, of which the state space of one model is a subset of 
the state space of the other model. We shall mainly focus on the comparison between the ori­
ginal model of tbe previous section and truncation models. The main result is that simpte, 
sufficient conditions are found for obtaining truncation roodels which produce bounds for the 
average costs g in the original model. Tbis result enables us to present a simpte metbod for 
the derivation of ftexible bound models. 

Let us consider a truncation model of the original model described in the previous sec­
tion. A truncation model is obtained by first defining a truncated state space M' cM (M' is 
usually defined such that it contains the stales where most of the probability mass is present), 
and next modifying tbe transitions of the original model such tbat the states outside M' 
become transient (initially, all transition probabilities q'",,n for the truneation model are taken 
equal to the transition probabilities Qm,n for the original model). Tbis means that each transi­
tion startingin a statem inside M' and ending in astaten outside M', must he redirected toa 
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Figure 5.1. The transition probabilities for !he discrete-time Markov process for !he 
symmetrie shortest queue system with N = 2 servers. 

state n'(m,n) inside M' (the probability q'",," is set equal to 0 and q;","'(m,n) is increased by 
qm,"). 

The truncation model is assumed to be irreducible and positive recurrent, and its equili­
brium distribution is denoted by {p'", }. Further, the direct costs c'(m) in the truncation model 
are assumed to be equal to the direct costs c (m) in the original model, i.e. c'(m) = c (m) for all 
meM'. Finally, the average costs in the truncation model are denoted by g': 

g'= l: p;,.c(m). (5.5) 
meM' 

Suppose that the truncation model is expected to lead to a bound for the average costs g 

in the original model, say toa lower bound: 

g' :s; g. (5.6) 

To prove this monotonicity result between the original and truncation model, we use the so­
called t-period cost functions for both models. 

Let v1(m) and v;(m) denote the expected t-period costs in the original and truncation 
model, respectively. This means that v1(m) denotes the expected costs in the original model 
in the next t periods when starting in state m e M; so, 

v0(m) = 0 for all meM, 

and for all t <:: 0, we have the recurrence relation 

v1+1 (m) = c (m) + L qm,n v1(n) for all meM; 
neM 

(5.7) 

(5.8) 

and, sirnilarly for the costs v;(m) in the truncation model. Because of the assumed irreduci­
bility in both models, we have the property that 
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lim v,(m) 
g = t~oo and 

, lim v;(m') 
g = t ~oo--t-' 
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(5.9) 

where m and m' may be arbitrary states in Mand M', respectively. As a consequenee, to 
prove (5.6), it suffices to show that for some m E M and m' E M', 

v;(m') ~ v1(m) for all t ~0. (5.10) 

Beeause of the resemblance between both models, it seems reasanabie to try to prove that 
(5.10) holds forsome states mEM and m' eM' with m =m'; further, if it holds forsome state 
m E M' that v;(m) ~ v1(m) for all t ~ 0, then probably this also holds for all other states of M'. 
Therefore, we shall focus on trying to prove (5.6) by showing that 

v;(m) ~ v1(m) for all meM' and t~O. (5.11) 

The inequalities stated in (5.11) may be proved by using the preeedenee re lation 
method. The main idea of this metbod is that the comparison of the t-period costs v;(m) in 
the truncation model to the corresponding t-period costs v,(m) in the original model may be 
simplified by first perfonning a preliminary step, in which on the basis of a preeedenee rela­
tion for the t-period costs v1(m) an ordering for the states of the original model is derived. 
The preeedenee relation methad consists of the following two steps: 

1. Derive a set P consisting of preeedenee pairs (m,n) of states m,n E M, which satisfy the 
preeedenee relat.ion 

v1(m) ~ v,(n) for all t ~ 0. (5.12) 

This relation stales that in the original model , state m has preeedenee over state n with 
respect to the t-period casts, or equivalently, statem is more attractive than n, or nis less 
attraetive than m; 

2. Exploit the preeedenee pairs derived in step I to show that (5.11) holds. 

Both steps are further explained below. 

Step 1 is treated in detail in the next section. Here, it suffices to make some general 
remarks. Step 1 may be performed by first defining a set P which is expected to consist of 
preeedenee pairs, and next proving by induction with respect to t that the preeedenee relation 
(5.12) is satisfied for all pairs (m,n) of this set P. Si nee v 1 (m) = c(m) for all mEM, all pairs 
(m,n) EP must satisfy the condition that e (m) ~ e (n ), i.e. all pairs (m,n) EP must at least be 
preeedenee pairs for the direct costs e (m ). So, if the direct costs e (m) are explicitly defined 
fora given Markov cost model, then the values for c(m) indicate which preeedenee pairs may 
(or, better: cannot) be derived. The definition of P may further be based on intuitive and/or 
numerical insight obtained by computing (and comparing) the values of the t-period costs 
v1(m) forsome smal! t. Typical preeedenee pairs that can be derived in case the states mEM 
represent queue lengths, are pairs of the type (m,m+e;). where e; is the i-th unity vector. 

Step 2 appears to be quite simple; contrary to step I, it can be performed in general 
terms. It appears that the inequalities stated in (5.11) can easily be proved by induction with 
respect tot, if the truncation model satisfies the following simple condition: 

for all mEM' and n eMW' with qm,n > 0, the state n'(m,n) to which the transition 
from m ton has been redirected, is more attractive (has smaller t-period costs) than 
the staten, i.e. for n'(m,n) and n it holds that (n '(m,n),n)E P. 
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The inequalities staled in (5.11) hold fort =0 by definition (see (5.7)). For all other t ~0. 
they follow from the induction step, which reads as follows (note that the condition for the 
redirections is needed for the second inequality in the following denvation): 

v;+l(m) = e(m)+ I: qm,,.v;(n)+ I: qm,"v;(n'(m,n)) 
neM' neM\M' 
q...,.>O q..,.>O 

~ e (m) + L qm,n v,(n) + I, qm,n v1(n'(m,n)), 
neM' neM\M' 
q~.>O q..,.>O 

~ e (m) + L qm,n v1(n) + I, qm,n v1(n), 
neM' neM\M' 
q,._.>O q,.,.>O 

Vt+l (m), meM'. 

This completes the descnption of the preeedenee re1ation method as used for proving the 
monotonicity result staled in (5.6). 

An important result of the analysis above is that we have found a simple, suftleient con­
dition under which a truncation model can be guaranteed to lead to a lower bound for the 
average costs g in the onginal model. A similar condition must be satisfied in order to obtain 
a truncation model which leads to an upper bound for g. This leads to the following eonclu­
sion (note that for the denvation of these conditions, we did not use the positive recurrence of 
the onginal and truncation model): 

The average eosts g' of an irreducible truneation model eonstitute a lower bound 
(upper bound) for the average eosts g in the corresponding, irreducible, original 
Markov eost model, if the truneation model has been eonstrueted sueh that eaeh 
transition starting in a state m inside the truneated state spaee M' and ending in a 
staten outside M', has been redireeted toa state n'(m,n)eM' whieh, aceording to 
eertain preeedenee pairs that can be derivedfor the original model, is more attrac­
tive (less anractive) than the staten. 

The result stated above providesus with a simple method for the derivation (or construc­
tion) of bound models, and especially for the denvation of flexible bound models, with which 
the onginal model can be approximated as accurately as desired; flexible bound roodels may 
be obtained by defining truncation roodels with a flexible truncated state space which depends 
on one or more truncation parameters. This method is also called the preeedenee relation 
method, or, more specifièally, the preeedenee relation method for deriving flexible bound 
models. lt consists of the following two steps (note that step 2 is a constructive step in this 
case): 

1. The denvation of a set Pof preeedenee pairs for the original model, i.e. the denvation of 
a set P consisting of pairs (m,n) of stales m,n e M which satisfy (5.12); 

2. The definition of flexible lower and upper bound models: to obtain a flexible lower 
(upper) bound model, first a flexible truncated state space M' must be defined, and next 
each transition from a state m e M' to a state n E M\M' must be redirected to a state 
n'(m,n) e M' which, according to the preeedenee pairs denved in step 1, is more (less) 
attractive than the staten. 
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It must be noted that it is not possible to obtain a lower (upper) bound model for each choice 
of the truncated state space M', since there do not always have to be more (less) attractive 
states inside M', to which the transitions ending in the states outside M' can be redireeted (for 
example, if we have only preeedenee pairs of the type (m,m+e;)• then it may be impossible to 
obtain an upper bound model for a finite truncated state space M' consisting of the states 
(m 1, ... , mN) with the smallest components m 1 , ... , mN ). 

An attractive property of the preeedenee relation metbod is that, once the set of pre­
eedenee pairs has been derived, a whole set of ftexible bound roodels can be obtained. 
Further, it is obvious, that the best truncation models can be derived, if in step 1 as many pre­
eedenee pairs are derived as possible. In fact, it will mainly depend on the preeedenee pairs 
derived in step I, whether it is possible to obtain bound roodels which lead to tight bounds. 
This shows the essence of step 1, and therefore we will extensively treat this step in the next 
seetion. 

From a practical point of view, it is mainly interesting to use the preeedenee relation 
metbod for the denvation of ftexible bound models which are solvable, i.e. bound models for 
which the equilibrium distribution {Pm} can be determined analytically or in an efficient way 
by a standard numerical technique, and for which the bound g' can be determined by using 
formula (5.5). Below, by applying the preeedenee relation method, we wiJl derive six, solv­
able, ftexible bound roodels for the two-dimensional SSQS. 

Example 5.1: The symmetrie shortest queue system (continued) 

For the SSQS with two servers and the cost function c (m) defined by (5.4), i.e. the cost func­
tion c (m) which ensures that the corresponding average costs g are equal to the mean number 
of waiting jobs Lw, one can prove that for all t ~ 0, 

v1(m 1,m2) :s; v1(m1+1.m2) forall (m1.m2)eM, m1 <m2; 

v1(m 1,m 2 ) :s; v1(m 1,m2+1) forall(m~om 2)eM; 

v1(m~om 2) :s; v1(m 1-1,m2+1) forall(m~om2)EM, m 1 >0. 

(5.13) 

(5.14) 

(5.15) 

The inequalities in (5.13) and (5.14) state that it is more attractive to be or tostart in a state 
with one job less at one of the two servers. The inequalities in (5.15) state that it is more 
attractive to be in a state with more balance, i.e. a state with a smaller difference between 
both queue lengths; the intuitive explanation of these inequalities is that from states with 
more balanee, it is less likely to arrive in one of the so-called 'bad' states {O,m 2 ), m 2 ~ 2, 

which correspond to the situation that one server is idle while there still are waiting jobs at 
the other server. Note that the inequalities in (5.13)-(5.15) also hold for the cost function 
c(m) as defined by (5.4). All these inequalities may be proved by induction with respecttot 
(see [2]). Alternative proofs will be given in the next section. In Figure 5.2, the ordering for 
the states (m 1,m1) eM, as obtained from (5.13)-(5.15), bas been depicted graphically. 

Let the set P consist of all preeedenee pairs corresponding to (5.13)-(5.15), i.e. 

P = {((m~om2),(m,+1,m2))IO:s;m,<m2l 

u { ((m~om2),(m 1 ,m 2+1)) I O:s;m, :s;m2} 

u { ((m 1,m2),(m 1-1,m2+1)) I O<mt :s;m2}. (5.16) 

Note that, since the binary operator 'bas preeedenee over' is reflexive and transitive (i.e. m 
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Figure 5.2. A graphieal representation of the preeedenee pairs for the symmetrie shortest 
queue system with two queues and the eost funetion given by (5.4). Each arrow pointstoa 
more attractive state. 

has preeedenee over m for all m e M, and, if m has preeedenee over n and n has preeedenee 
over r forsome m,n, reM, then m has preeedenee over r), this set P may be completed to the 
following set P • of preeedenee pairs: 

p• = { (m,n) I m=(m~om2)eM, n=(n~on2)eM, 

(5.17) 

When defining bound models, it seems sensible to choose the truncated state spaee such 
that it contains the states where most of the probability mass is present, since then it may be 
expected that the behavior of the modified model closely approximates the behavior of the 
original model. In Table 1.1, it has been shown how the probability mass is distributed 
among the different states for the case p = 0.6 (note that in Chapter 1, a slightly different state 
description has been used). The probability mass is concentraled around the origin and, due 
to the shortest queue routing, around the other states corresponding to situations with equal 
queue Jengths. Good bound roodels should contain these states. We shall consider the fol­
lowing six, fiexible bound models, which are depicted in Figure 5.3: 

• Finite Buffers (FB): 
The simplest, modified model is obtained by truncating all stales for which the number 
of jobs at the longest queue exceeds some threshold parameter T'?. 1. The truncated state 
space is equal to 

M' = { (m 1om2) I O~mt ~m2 ~T) 

and the only transition from a state inside M' to a state outside M' is the transition from 
(T,n to (T,T+1), which is caused by a new arriving customer. This transition is 
redireeted to (T, n. which means that the new customer is rejeeted. As one can easily 
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see, this modified model is equivalent to a shortest queue system with finite buffers of 
size T-l, and therefore this model will be called the Finite Buffers (FB) model. Since 
the transition to (T, T + 1) is redirected to a more attractive state according to the pre­
eedenee pairs, the FB model gives a lower bound for the average costs g, i.e. for the 
mean Lw of the total number of waiting jobs in the system. 

• Central Buffer (CB): 
A more sophisticated, modified model is obtained, when we add the states around the 
diagonal to the truncated state space. Wedefine 

M' = { (m 1.m2) I O~m 1 ~m2 ~ T) u { (m1,m2) I T$m 1 $m2 and m2 Sm 1 +1 } , 

where T is a threshold parameter again, T~ l. For all m 1 ~ T, the transition pointing 
from state (m 1 ,m 1 + 1) to (m 1-l,m 1 + 1 ), which is due to a service completion at the 
shortest queue, is redirected to the more attractive state (m 1 ,m 1 ). This model is a lower 
bound model and it is equivalent to the symmetrie shortest queue system with finite 
local buffers of size T -1 at each server and an infinite central buffer in front of the local 
buffers. This model is called the Central Buffer (CB) model. In the CB model, each 
arriving job is assumed to join one of the queues at the servers, if not all loc al buffers are 
full, otherwise the job queues up in the central buffer. Further, jobs in the central buffer 
are immediately sent to a local buffer if a place becomes available there due to a service 
completion. It is easily checked that the CB system may be modeled by the modified 
Markov process which we just described. Note that forT= I, the CB model reduces to 
the M I M 12 queueing system. 

• Threshold Jockeying (TJ): 
Models for which the equilibrium distribution has a matrix-geometrie form, may be 
obtained by truncating all states for which the imbalance, i.e. the difference between the 
longest and the shortest queue length, exceeds some prescribed maximum level T ~ 1. 
Then the truncated state space is equal to 

M' = { (m 1om2) I OSm 1 Sm2 and m2 $m 1+T} 

and the only transitions from stales of M' to stales outside M' are the transitions from the 
states (m 1 ,m 1+T) to (m 1-l,m 1 +T), where m 1 ~ l. In the Threshold Jockeying (TJ) 
model these transitions, which are due to a service completion at the shortest queue, are 
redirected to the more attractive stales (m 1,m 1 +T -1 ). The physical interpretation is 
that a job jockeys from the longest queue to the shortest queue in case the difference 
between the longest and the shortest queue exceeds T. Also the TJ model is a lower 
bound model. Although for T = 1, the TJ model is not identical to the MI M 12 queueing 
system (= CB model forT= 1), it does lead to an equivalent Markov process and there­
fore to the sarne valueslbehavior for several performance measures, among which the 
total number of waiting jobs in the system. 

• One lnfinite Buffer (OIB): 
Another model for which the equilibrium distribution has a matrix-geometrie form, is 
obtained by truncating all states for which m 1 exceeds some threshold parameter T~ 1. 
De fine 

M' = { (m 1,m2) I O$m1 ~m2 and m1 ST}, 

and, for all m 2 ~ T +1, redirect the transition pointing from state (m .,m 2 ) to (m 1 + l,m 2 ), 



136 

Finite Buffers 
LowerBound 

mi 
One Infinite Buffer 

UpperBound 

Central Buffer 
LowerBound 

Threshold Killing 
LowerBound 

5. The Preeedenee Relation Method 

mi 
Threshold Jockeying 

LowerBound 

mi 
Threshold Blocking 

UpperBound 

Figure 5.3. Si x flexible bound models, all with threshold parameter T = 3, for the 
symmetrie shortest queue system with two queues and the cost function given by (5.4). 
The dashed arrows denote transitions of the original model to states outside the truncated 
state space and the corresponding uninterrupted arrows show how these transitions are 
modified. 
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which is due to an arrival of a new job, to the less attractive state (m 1 ,m 2+ I). This 
modified model will give an upper bound for g =Lw. and it appears to be equivalenttoa 
shortest queue system for which one buffer has infinite sire and the other buffer has 
fini te sire T -1. Therefore, this model is called the One Infinite Buffer (OIB) model. In 
this model, each arriving job joins the shortest queue if there is a place free, otherwise 
the infinite sire queue is joined. 

* Threshold Killing (TK): 
The last two bound models both have the same truncated state space as the TJ model, 
but the transitions to states outside the truncated state space are redirected in a different 
way. Let the truncated state space be defined by 

M' = {(ml,m2)IO:Sm1:Sm2andm2:Sm1+T} 

and Jet the transitions from the stales (m 1 ,m 1 +T) to (m 1-l,m 1 + T), where m 1 ~ 1, be 
redirected to more attractive states (m 1-l,m 1 +T -1). This means that, if a service com­
pletion at the shortest queue causes a too large difference between the longest and the 
shortest queue, then this service completion is accompanied by a destructien or killing 
of one job at the longest queue. Therefore, this model, which gives a lower bound, is 
called the Threshold Killing (TK) model. 

* Threshold Blocking (TB): 
Por the last model the truncated state space is also detined by 

M' = { (m 1,m2) I O:Sm 1 Sm2 and m2 :Sm ,+T}, 

but for all m 1 ~1. the transition from the state (m 1,m 1+T) to state (m 1-1,m 1+T) is 
redirected to the state (m 1,m 1+T) itself, which is less attractive than (m 1-l ,m 1+T). 
This means that, if the difference between the Jongest and the shortest queue has al ready 
reached its maximum value T, then a service completion at the shortest queue is not 
accompanied by a departure and the job in service has to he served once more. It is 
easily seen that (because of the memory-less property of the exponential service times) 
this is equivalent to letting the server at the shortest queue be blocked as long as the 
difference between the longest and the shortest queue is equal to its maximum value T. 
This model is an upper bound model and it is called the Threshold Blocking (TB) 
model. 

This compieles the description of the si x, flexible bound models. 

Por each of the six bound models, we denote the resulting bound for Lw by L~(T), where 
tr is FB, CB, TJ, OIB, TK or TB. The corresponding bound W1r(T) for the mean normalired 
waiting timeWis detined by W1,(T)=L~(T)/(2p) (cf. (5.2)); by applying Little's formula, for 
each tr model, it follows that by this definition W1,(T) is precisely the mean normalired wait­
ing time in the tr model. 

All six, flexible bound models have been defined such that they are expected to give 
tight bounds, especially for large T, and that they can be solved numerically. Por the FB 
model the state space is finite, by which the equilibrium distribution can be computed by 
applying some standard method, for example the method of successive substitutions. The CB 
model may be solved by the same metbod after having embedded the Markov process on the 
set of states (m 1,m2) with OSm 1 :Sm2 :ST. The other four models may be solved by apply­
ing thematrix-geometrie approach as described in Neuts [58]. 
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1t must be noted that, besides the bounds for Lw and W, the described bound roodels also 
lead to bounds for several other performance measures of the SSQS. The pairs of the set P 
defined by (5.16), and therefore also all pairs of the corresponding completed set p• given by 
(5.17), can be proved to be preeedenee pairs for the whole class of cost functions c (m) which 
satisfy the condition that c (m) s; c (n) for all (m,n) e P (this class appears to be the class of 
weak Schur convex functions; see Hordijk and Koole [44], p. 507). This implies that for each 
of the bound models, the total number of waiting jobs is stochastically smaller/larger than in 
the original SSQS; and similarly for the total number of jobs (waiting and in service) and for 
the length of the longest queue. For the FB, TK and TB model, even more monotonicity 
results hold. To show that these three roodels are bound models, in fact only the preeedenee 
pairs corresponding to the inequalities in (5.13) and (5.14) are needed. These inequalities can 
be proved to hold for all cost functions c (m) which are non-deereasing in each component. 
As a result, for the FB, TK and TB model, we find among others that also the length of the 
shortest queue is stochastically smallernarger than in the original SSQS; this is an extra 
interesting property, since, for the original SSQS, a stochastically smallernarger distri bution 
for the length of the shortest queue can be exploited to obtain a stochastically smallernarger 
distribution for the normalized waiting time ofthe original SSQS. 

Further, it is noted that since, as we already observed, the CB model with T= 1 is identi­
cal totheM IM 12 queueing system, some interesting monotonicity properties between the 
SSQS and the M I M 12 queue are obtained as a side result. The above analysis has formally 
shown that the SSQS performs worse than (or at most equally good as) the corresponding 
M I M 12 queue with respect to the total number of (waiting) jobs (which is stochastically 
larger than fortheM IM 12 queue) and the mean normalized wailing time. Intuitively, it is 
clear that this worse performance of the SSQS is caused by the existence of the so-called 
'bad' states in the SSQS (i.e. by the situations in which one server is idle, while there still are 
jobs waiting at the other server). 

Finally, it is noted that some of the described bound roodels have been studied in the 
üterature; for the sake of completeness, we repeat that all six bound roodels described here, 
and all corresponding results, can be generalized to the case with general N ~ 2. The FB 
model, with N = 2 servers, has been studied by Conolly [24] and the OIB model, with N = 2 
servers, has been analyzed by Rao and Posner [60]. Further, the TJ model has been studied 
by Gertsbakh [35] and Adan et al. [9] for the case with N = 2 servers, and by Adan et al. [13] 
for the case with N ~ 2 servers; for the restricted case with T = 1, the TJ model has been stu­
died by Haight [38] for N = 2 and by Disney and Mitchell [26], Elsayed and Bastani [28], Kao 
and Lin [48] and Zhao and Grassmann [83] for N~2. In some of these papers, the model 
under consideration was mainly introduced to approximate the original shortest queue system 
(with possibly non-homogeneous servers). But, in none of them, it has been proved that (at 
least in the symmetrie case) the model under consideration produces bounds for the main per­
formance measures of the original shortest queue system. With the help of the preeedenee 
relation method, we have given one proof for all truncation roodels together. Reeently, in [2], 
the preeedenee relation metbod has been used for proving that the TJ model and the TB 
model are bound models. 
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Remark 5.1. (on the preeedenee relation methodfor proving monotonicity results) 

Up to now, we only have described the preeedenee relation method for the comparison 
between an original Markov cost model and a truncation model. However, if the second 
model is not a truncation model, but another Markov cost model with state space M' cM 
(M' =Mis allowed), then the preeedenee relation method still may work for proving that the 
average costs g' in the seeond model constitute a bound for the average costs g in the original 
model. The only difference is that we obtain new conditions which must ensure that step 2 
again can be performed in general terms by using induction with respect to t. It can be 
proved that g' ~ g, if the second model satisfies the following conditions: 

(i) e'(m)~e(m)forallmEM'; 

(ii) if v1(m) ~ v1(n) for all (m,n) EP • and some fixed t ~ 0, then 

l: q'",,,. v;(m) ~ 
neM' 

q:.._/1>0 

l: qm,n v,(m) 
neM 

q,.,.>O 

for all m E M'. 

The first condition states that the direct costs e'(m) in the second model may not exceed the 
direct costs e (m) in the original model. The second condition stales that in the second model 
for each state mEM' the expected future costs must be smaller than in the original model; 
this condition is satisfied if, according to the preeedenee pairs derived in step I, in the second 
model the states to which trans i ti ons are made from an arbitrary state m E M' are more attrac­
tive than the corresponding stales in the original model. The conditions which are sufficient 
for showing that g'~g are obtained by replacing the ·~·-signs by ·~·-signs in the above two 
conditions. The preeedenee relation method, in its more generalized form as described here, 
may be used, for example, for some of the monotonicity results mentioned at the end of Sec­
tion 5.5, and for proving the intuitively clear result that the SSQS performs better than or at 
least equally good as the corresponding system consisting of two independent M I M I I 
queues (the SSQS has a stochastically smaller number of (waiting) jobs and a smaller or equal 
mean normalized waiting time). 

Remark 5.2. (on the preeedenee relation (5.12)) 

That the preeedenee relation method leads to simpte and clear proofs for monotonicity results, 
and that, furthermore, this method can be used for deriving monotonicity results, is mainly 
due to the introduetion of the preeedenee relation (5.12) for the t-period costs in the original 
model. An interesting observation is that a similar relation has proved its usefulness for prov­
ing and deriving optimal strategies (optimal routing and service strategies, for example) in 
certain Markov decision problems; see Hordijk and Koole [43, 44], and the references therein. 

5.4. The derivation of preeedenee pairs 

In the previous seetion, we have seen that the first step of the preeedenee relation method, 
consisting of the derivation of preeedenee pairs for the original model, is essential for obtain­
ing flexible bound models which might lead to tight bounds for the relevant performance 
measures of the original model. Therefore, this section will be devoted to a detailed treat­
ment of this first step. First, for a given set P which is conjectured to consist of preeedenee 
pairs, we shall derive two conditions which are sufficient to confirm that P indeed consists of 
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preeedenee pairs. One of these two conditions concerns the direct costs c (m) and can easily 
be verified. The other condition is more complicated. Among others, we shall show that its 
satisfiability is related to the existence of feasible flows in the corresponding transportation 
problems. The theory ofnetwork.flow problems will be applied to obtain a simple, necessary 
and sufficient condition under which the feasible flows exist; this simple condition is hoped to 
lead to extra insight into the question which preeedenee pairs can be derived fora given Mar­
kov cost model. 

Consider the original Markov cost model described in Section 5.2, and let P consist of 
pairs of states (m,n ), m,n e M, for which m is expected to have preeedenee over n; reeall that 
the definition of the set P may be based on intuitive and/or numerical insight obtained by 
computing the t-period cost functions v1(m) forsome smal! t. Then we must prove that 

v1(m) S v,(n) for all (m,n)eP and r;;::o. (5.18) 

Sinee v 1 (m)=c (m) for all meM, it immediately follows that (5.18) can only hold if 

c(m) S c(n) for all (m,n)eP, (5.19) 

i.e. if the pairs (m,n) e P are at least preeedenee pairs for the direct costs c (m ). By trying to 
prove (5.18) by using induction with respect to t, we shall obtain a second condition, which 
together with the necessary condition (5.19) is sufficient for proving (5.18). 

Since v0(m)"'O for all meM, (5.18) trivially holds for t"'O. Now consider the induc­
tion step. Assume that (5.18) is satisfied for some, arbitrary, fixed t ;;::o. Then, by the 
recurrence relation stated in (5.8), (5.18) also holds fort+ i, if 

c(m)+ I: qm,rv1(r) :S: c(n)+ I, qn,rv1(r) for all (m,n)eP. 
reM reM 

q,.,,,>O q",,>D 

Assume that the necessary condition (5.19) is already satisfied, then the induction step can be 
made if, under the assumption that (5.18) holds for some fixed t, we can show that for all 
(m,n)eP, 

I, qm,r v,(r) :s;; I, qn,r v,(r)' (5.20) 
reM reM 

qM,,>O q.,,>O 

i.e. that for all (m,n) e P, the expected future costs for state m are smaller than for state n. In 
the next paragraph, this condition is slightly refined. 

The second condition states that the inequality in (5.20) must be shown to hold for all 
(m,n)eP, under the assumption that v1(m):S:v,(n) for all (m,n)eP, where r;;::o is fixed. 
However, before starting to prove (5.20) for all (m,n) e P, by using the reflexivity and transi­
tivity of the preeedenee relation as defined by (5.12), the available information may be com­
pieled to v1(m) :s;; v1(n) for all (m,n) e P •, where P • is defined by 

P • = { (m,n) I m "'n, (m, n) e P or for some I ~ I there exist stales r 1 , ••. , r1 

such that (m,r 1 ),(r 1 ,r2), ... , (r1 ,n) e P } ; 

P • is called the compiered set corresponding toP. If (5.18) has been proved for all (m,n) e P, 
then we also know that m has preeedenee over n for all (m,n) e P • . Note that choosing 
another P for which the corresponding compieled set P • is the same, leads to the same result. 
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Therefore, to minimize the work to be done, it is sensible to reduce P as much as possible 
under the restrietion that p• remains the same. The following lemma gives the precise condi­
tions under which it can be guaranteed that the set P indeed consists of preeedenee pairs. 

Lemma 5.1. 

A setPof pairs of states (m,n) of the state space M, and also the corresponding completed set 
P*, can be guaranteed to consist of preeedenee pairs if the following two conditions are 
satisfied: 

(i) c (m) ~ c (n)for all (m,n) e P; 

(ii) if v1(m):S;v1(n) for all (m,n)eP* and some fued t~O. then (5.20) holds for all 
(m,n)eP. 

In the remaioder of this section, it is assumed that some set P consisting of pairs (m,n ), 
m,n e M, is given. Suppose that we want to apply Lemma 5.1 to prove that this set P and also 
the corresponding completed set P • consist of preeedenee pairs. If the direct costs c (m) are 
explicitly defined, then it can easily be verified whether condition (i) is satisfied; if they are 
not explicitly defined, then condition (i) imposes a restrietion on the cost function c (m ). The 
verification of condition (ii) requires much more work. In the remaining part of this section, 
we will derive two stronger conditions for condition (ii), which both can be verified rather 
easily. 

We first derive a stronger condition for condition (ii) of Lemma 5.1 for the special, but 
relevant case, in which the original Markov cost model, for which we want to derive the pre­
eedenee pairs, satisfies the following property: 

for all states meM the outgoing transitions are caused by the same events e e E 
(such as job arrivals and service completions), where Eis a finite or countable set, 
and for all stalesmeM these events e e E occur with the same probabilities qe. 

It is noted that this property is satisfied by many queueing systems, among which the SSQS. 
If this property is satisfied, then the expected costs as given on both sides of inequality (5.20), 
may be rewritten as 

l: qm,r v,(r) 
reM 

q,._,>O 

l: qe v,(re(m)). meM, 
eEE 

where re(m) denotes the state to which a transition is made if the Markov process is in state m 
and event e occurs (it is noted that for a given state meM and different events e e M, the 
stales re(m) may be the same). Consequently, condition (ii) of Lemma 5.1 simplifies to (let P 
be a set consisting of pairs of states (m,n ). m,n e M, and Iet P • be the corresponding com­
pieled set): 

if v1(m) ~ v1(n) for all (m,n) e P • and some fixed t;::: 0, then 

l: qe v1(re(m)) ~ l: qe v1(re(n)) for all (m,n) EP. 
eeE eeE 

This condition obviously is satisfied, if for all (m,n) e P the stales re(m) to which transitions 
are made from state m are more attractive than the corresponding stales re(n) to which 
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transitions are made from staten, i.e. if (re(m)),re(n))eP• for alle eE and (m,n)eP. This 
results in the following lemma. 

Lemma 5.2. (on condition (i i) of Lemma 5.1) 

Condition (ii) of Lemma 5.1 is satisfied ij: 

a. there is a discrete distribution { qe} eeE on a finite or denumerable set of events E such 
th.at in the original Markov cost model, for all states m e M transitions are made from 
statem to certain stales re(m) according to the probabilities qe, e e E; 

b. (re(m ), re(n )) e P • for alle e E and (m,n) e P. 

Example 5.1: The symmetrie shortest queue system (continued) 

We apply the Lemmas 5.1 and 5.2, to prove the inequalities stated in (5.13)-(5.15), i.e. to 
prove that the set P given by (5.16), and also the corresponding completed set p• given by 
(5.17), consist of preeedenee pairs. It is easily verified that all pairs (m,n) e Pare preeedenee 
pairs for the cost function c (m) defined by (5.4); so, condition (i) of Lemma 5.1 is satisfied. 
Condition (ii) of Lemma 5.1 may be shown to he satisfied by exploiting Lemma 5.2. 

In the two-dimensional SSQS, for each state meM, the outgoing transitions are caused 
by a job arrival, a service completion at the shortest queue or a service completion at the 
longest queue, and they occur with probabilities À, f.1 and f.l, respectively. Let E={0,1,2}, 
q 0 =À, q 1 = f.1 and q 2 =IJ.. Then we have the property that from each state m e M a transition 
is made to state 

{
(mt+l,m2) 

ro(m) = ro(mt,m2) = (mt.mt+l) 
if O:Sm1 <m2; 

if O:Smt =m2 

with probability À, to state 

r 1(m) = rt(mt.m2) = (max{m.-l,O},m2) 

with probability IJ., and to state 

{ 
(mt.m2-l) 

r2(m) = r2(m1,m2) = (max{mt-l,O}.mt) 
if O:Smt <m2 ; 

if O:Sm1 =m2 

with probability IJ.. This means that we satisfy condition a. of Lemma 5.2, and thus, to show 
that condition (ii) of Lemma 5.1 is satisfied, it further suffices to prove that 

(re(m),re(n))eP• for all eeE and (m,n)eP. (5.21) 

Let us first prove (5.21) for the pairs (m,n)eP of the first type, i.e. for the pairs (m,n) 
with m =(m 1,m 2), n =(m 1+1,m2), m2 ~I andO:Smt :Sm2....;l. In this case, we find 

{
(mt+2,m2) ifm1<m2-l; 

ro(m) = (mt+l,m2), ro(n) = (m 1+1,m 2+1) if m 1=m 2-l, 
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and it is obvious that (re(m),re(n)) E p• for all three elements e E E. The proof of (5.21) for 
the pairs (m,n) EP of the two other types is si mil ar and is left to the reader. 

The example shows that Lemma 5.2 may lead to a rather simple proof of the 
satisfiability of condition (ii) of Lemma 5.1. However, Lemma 5.2 cannot be applied, if the 
orjginal Markov cost model does not have the property stated in condition a. Therefore, we 
now return to the question how the satisfiability of condition (i i) of Lemma 5 .I can be proved 
in general. 

Let t<!:O be fixed, assume that v1 (m')~v1(n') for all (m',n')EP•, and let (m,n) be an 
arbitrary, fixedelement of P. Then condition (ii) of Lemma 5.1 stales that it must be proved 
that inequality (5.20) holds. The only way to prove this inequality seems to consist of com­
bining v1(r)'s for stales r for which qm,r > 0 with v1(r)'s for states r for which qn,r > 0. For 
such a combination we know that v1(r)-v1(r)~O if (r,r)EP* ; if (r,T)èP*, then nothing is 
known about v1(r)-v1(r). Each combination should get some weight x,,;.. Further, for each r 
with qm,r > 0 the total weight I:;. x,,;. should be equal to Qm,ro and for each r with Qn,T > 0 the 
total weight I:, x,,; should be equal to Qn,r. What we in fact obtain is the following transpor­
lation problem, which is known to be a special case of afeasible flow problem (see for exam­
ple Abuja et al. [14], p. 7 and 169). 

Let V 1 denote all states r for which Qm,r > 0, give each state a weight a,= qm,ro and 
renurnher the states from I, ... , I V 1 I. Let V 2 denote all stales r for which qn,r > 0, give 
each state a weight b, = qn,r• and renurnher these states from I V 1 I + I, ... , I V 1 I + I V 2 I . 
The stales in V 1 are called the supply nodes and the stales in V 2 are the demand nodes. Note 
that a state can be in V 1 as well as in V 2 (this keeps the notations simple); the renurnbering 
indicates that in such a case the state in V 1 wiJl he considered to be different from the same 
state in V 2 . Since the total supply I:;e v, a; is equal to the total de mand I: je v, bj (they both 
are equal to 1 ), there exist nonnegative variables x;,j, with iE V 1 and jE V 2 , which satisfy 

L x;,j =a; for all iE V1 , L x;,j = bj for all j EV2 . (5.22) 
jeV1 ieV1 

Each nonnegative salution {x;,j} of (5.22) is called an allocation or a flow. For each flow, we 
obtain that 

L qm,r v,(r)- L qn,r v1(r) = L a; v1(i)- L bj v,U) 
reM reM ie V1 je V2 

q..,,>O q.,,>O 

L L x;,j v,(i) - L L x;,j v,U) 
ieV1 jeV2 je V2 ieV1 

= L L x;,j [v1(i)-v1U)1. (5.23) 
ieV1 jeV2 

For each flow, the variabie x;,j denotes the weight for the difference v1(i)-v1U). which is 
only known to be ~ 0 for pairs (i,j) EP •. De fine the set of arcs A by 

A= {(i,j)liEV1,jEV2 and(i,j)EP*}. 

If we can find a nonnegative solution {x;,j} for which x;,j =0 for all arcs (i,j) whieh are not 
in the set A, then the inequality stated in (5.20) can easily be proved (use (5.23)): 
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L qm,r v,(r)- L qn,r v1(r) = L x;,j [v1(i)-v1U)J S 0; 
reM 

q.,,,>O 
reM 

q.,,>O 
(i,j)eA 

if such a salution cannot he found, then (5.20) cannot be proved along this way. This com­
pletes the proof of the following lemma. 

Lemma 5.3. (on condition (ii) of Lemma 5.1) 

Let t ~ 0, (m,n) EP, andfurther suppose that v1(m)~ v1(n)for all (m,n) E p• , Then inequality 
(5.20) holds, iffor the corresponding transportation problem there exists a nonnegative solu­
tion { x;,j} (i,j)eA whieh satisfies the following equations: 

L x;,j =a; for all iE V 1 , L x;,j =bi for all je V2 • (5.24) 
jeV2 ieV1 

(i,j) eA (i,j) eA 

A nonnegative solution satisfying these equations wil/becalled afeasible flow. 

Example 5.1: The symmetrie shortest queue system (continued) 

We now apply the Lemmas 5.1 and 5.3 to prove that the set P given by (5.16) and the 
corresponding completed set p• given by (5.17) consist of preeedenee pairs. We have 
already seen that all pairs (m,n) e P are preeedenee pairs for the cost function c (m) defined 
by (5.4), and thus, according to Lemma 5.1, it remains to prove (5.20) for all (m,n)eP and 
some, arbitrary, fixed t ~ 0, while it is given that v1(m) ~ v1(n) for all (m,n) e P • . 

Let us first prove (5.20) for the pairs (m,n) e P of the first type, i.e. for the pairs (m,n) 
with m=(m~om2), n=(m1+1,m2), m2~ I and OSm1 Sm2-l. To prove (5.20), we have to 
compare the outgoing transitions for the states m and n. Because of the homogeneity in the 
Markov process (see Figure 5.1 ), we can partition the state space M into a finite number of 
subsets consisting of states which all have the same outgoing transitions: 

M1 = {(m1,m 2)IO<m 1 <m2} (interior) 

Mv = { (O,m2) I m 2 >0} (vertical boundary) 

Mo 

Mo 

{(m~om1)lm1>0} 

{ (0,0) } 

( diagonal) 

( origin) 

To prove (5.20) for all pairs (m,n) e Pof the first type, by Lemma 5.3, it suffices to define the 
corresponding transportation probieros and to show that they have feasible ftows. Due to the 
homogeneity, we only have to distinguish 4 situations (see Figure 5.1): 

1. meM/andnEMJ(i.e.m2~3and l~m1~m2-2): 

In this case, the supplying and demanding nodes are given by 

V1 = { l=(mt-l.m2),2=(ml,m2-1),3=(ml+1,m2)}, 

V2 = { 4=(m Iom2), 5=(ml+1,mr1), 6=(mt+2,m2)}, 

the supplies and demands are given by 

(a1,a2,a3) = (b4,b5,b6) = (l.q.L,À.), 

and for the set of arcs we find 
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A = { (1,4), (1,6), (2,4), (2,5), (2,6), (3,6)}. 

For this instance, the solution {x;,j }(i,j)eA with 

X1,4=X2,5=1.J., XJ,6=À., Xt,6=X2,4=X2,6=0, 

appears to be a feasible flow, which completes the proof for this situation. 

2. m eMv and n eM1 (i.e. m2 ~2 and m 1 =0): 

In this case, we have 

V1 = { 1=(0,m2),2=(0,m2-1),3=(1,m2)}, 

v2 = { 4=(0,m2). 5=(1,m2-1), 6=(2,m2)}. 
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and the suplies a;, demands bj and set of aces A are the same as for the previous case. 
As a consequence, the flow of the previous case is also feasible for this case. 

3. m eM1 and n eMD (i.e. m2 ~2 and m 1 =m 2-1): 

In this situation, we have 

V1 { 1 =(m2-2,m2), 2=(mz-1,mz-1), 3=(mz,mz)}, 

v2 { 4=(m2-1,m2). 5=(mz,m2+1)}. 

(a1.az,a3) = (J!,IJ.,À.). (b4,b5) = (21J.,À.), 

A = { (1,4), (1,5), (2,4), (2,5), (3,5) } , 

and a feasible flow is given by the variables 

x1.4=x2.4=J.1., x3,s=À., x1 ,s=x2,s=O. 

4. m eMv and n eMD (i.e. m2 =I and m 1 =0): 

In this situation, we have 

v 1 = {1=(0,1),2=(0,0),3=(1,1)}, v2 = {4=(0,1),5=(1,2)}. 

and the remaining variables for the transportation problem are the same as in case 3, and 
consequently the same feasible flow can be given. 

This compieles the proof of (5.20) for all pairs (m,Ti) EP of the first type. The work to be 
done for the pairs of the other two types is similar and is left to the reader. 

From the example we learn the following. First of all, also Lemma 5.3 can easily be 
applied to prove the satisfiability of condition (ii) of Lemma 5.1. Secondly. in case one has 
homogeneity in a Markov model (which usually is the case for queueing models), then, to 
prove (5.20) for a large or infinite set P, it possibly suffices to solve (i.e. to find feasible flows 
for) only a small number of corresponding transportation problems. 

When trying to prove that condition (ii) of Lemma 5.1 is satisfied, Lemma 5.3 is useful, 
if all required feasible flows can be found. However, if for some transportation problem, the 
required feasible flow cannot be found, then it is desirabie to have a tooi for showing why 
such a feasible flow cannot be found. For that purpose, we can present a simple condition 
which is necessary and sufficient for the existence of a feasible flow. 

Consider the transportation problem mentioned in Lemma 5.3. For all subsets U cV 1 

consisting of supply nodes, we let the set f/ (U) = { j E V 2 I (i,j) E A for some i E U } denote 
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the demand nodes to which the supplies of the nodes i e U may be transported according to 
the set of arcs A. lt is obvious that for the existenee of a feasible flow, it is required that, for 
each U c V 1, the total supply l:; e u a; of the nodes of U does not exceed the maximum 
amount r.je~(U) bj that can be received by the nodesof ö+(U). This shows the necessity of 
the condition stated in Lemma 5.4. From this lemma, it follows that this condition is also 
sufficient. The lemma may be proved by first transforming the transportation problem to a 
maximum-flow problem and next applying the well-known rnax-flow min-cut theorem (see 
[14], p. 185), or altemative1y by directly applying Theorem 6.12 of Ahuja et al. [14]. Note 
that an equivalent, necessary and sufficient condition can be obtained by interchanging the 
roles of the supply nodes and the demand nodes. 

Lemma5.4. 

There exists a feasible flow for the transportation problem mentioned in Lemma 5.3 if and 
only ifforall U cV l• 

l: a; :s; l: bj. (5.25) 
ieU jef>•(U) 

where ö+(U) = (je V2 I (i,j)eA for some ie U). 

Example 5.1: The symmetrie shortest queue system (continued) 

It is easily verified that condition (5.25) is satisfied for the transportation problems which are 
obtained for the inequalities stated in (5.13)-(5.15), which we have proved earlier in this sec­
tion by giving an examp1e of a feasible flow for each transportation problem. 

Example 5.2: A homogeneous, nearest-neighboring random walk 

Apart from showing why in some cases a required feasible flow does not exist, Lemma 5.4 is 
also useful for deriving conditions for the existence of eertaio preeedenee pairs for a two­
dimensional, homogeneous, nearest-neighboring random walk as depicted in Figure 1.6. For 
many queueing systems which can be modeled as such a random walk, the coordinates of the 
states (m 1,m2) represent queue lengths, and it seems reasonable to expect that each state m 

has preeedenee over all states which are Iarger or at least equal in each coordinate. Applying 
Lemma 5.4 immediately results in the conditions under which this is true. 

Suppose we want to prove that the set P • given by 

p• = { (m,n) I m =(m 1,m2)eM, n =(n 1,n2)eM. m, :S:n, and m2 !>n2} 

consists of preeedenee pairs; for this P •. the set P may be taken equal to 

P = ((m,m+e 1 )1meM}u {(m,m+e2)lmeM}, 

where e 1 =(1,0) and e 2 =(0,1). Let us investigate which conditions have to be satisfied for 
proving that P • indeed consists of preeedenee pairs. 

According to Lemma 5.1, in the first place, all pairs (m,n) e P • have to be preeedenee 
pairs for the cost function c (m ). Next, we have to prove (5.20) for all (m,n) e P and some 
fixed t ~ 0, where it is known that v1(m) :s; v1(n) for all (m,n) e P •. Suppose we want to prove 
(5.20) forsomemeM and n =m+e 1 eM. We have to distinguish 4 situations. If mis an ele­
ment of the interior or the horizontal boundary, then all inequalities given by (5.25) reduce to 
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trivialities, which implies that the required feasible flows exist, and (5.20) holds. If m is an 
element of the vertical boundary, then defining the corresponding transportation problem and 
applying the Lemmas 5.3 and 5.4 shows that (5.20) can be guaranteed to hold if the following 
inequalities are satisfied: 

v,,, ~qo,,+q,,,, vo,,+v,,, ~q-l,l+qo,l+q,,l, 

v !,o+vl,l ~qo,o+qo,l+q 1,o+q 1,1 , vo.1+v 1,o+v 1,1 ~q-1,1+qo.o+qo,1 +q 1,o+q 1,1 • 

vo,o+vo,l+v 1,o+v1,1 ~q-l,o+q_,,,+qo,o+qo,l+q l,o+q 1.1 , 

vl,-1+v1.o+v 1,1 ~qo,-l+qo,o+qo,!+q 1.-1+q 1.o+q 1.1 • 

vo,1 +v 1.-1 +v 1.o+v 1.1 ~ q-1.1 +qo,-1 +qo,o+qo,1 +q 1.-1 +q 1.o+q 1.1 • 

vo,o+vo.l +v 1,-1+v1,o+v 1.1 ~q-1,o+q-l,l+qo,-1+qo,o+qo,1+q 1.-1+q 1.o+q 1.1 . 

These inequalities state that it may not be much easier to go to the north and/or east when 
starting in a state at the vertical axis than when starting in a state in the interior. Similar ine­
qualities for the rates o;,j and h;,j are obtained for the case that m is equal to the origin. 
Further, similar conditions are required for proving (5.18) forsomemeM and n =m+e 2 eM. 

All conditions are easily seen to be satisfied if we have a random walk with the projec­
tion property (as defined in Chapter 2). This explicit result can easily be generalized to the 
N-dimensional case (for the proof, it is advised to exploit Lemma 5.2). Since the projection 
property is satisfied for several queueing systems, this confirms that in many cases pre­
eedenee pairs of the type (m,m+e;) can be derived. 

5.5. On the quality of ftexible bound models 

The previous sections have been devoted to the preeedenee relation method, which mainly 
bas been developed for the denvation of flexible bound models for a given, original Markov 
cost model. In this section, we shall focus on the usefulness of the produced flexible bound 
models for the deterrnination of the average costs in the original model. 

The flexible bound models derived by the preeedenee relation method are truncation 
models with the following two properties: 

(i) They produce lower and upper bounds for the average costs g in the original Markov 
cost model; 

(ii) They have state spaces depending on one or more truncation parameters which enable us 
to approximate the original model as accurately as desired. 

However, in order to be appropriate for the determination of the average costs g in the origi­
nal model, the flexible bound/truncation models must also have the following two properties: 

(iii) They are salvabie (analytically or numerically); 

(iv) They lead to tight bounds (compared to the computational effort which is required for 
solving the bound models). 

These two properties are further discussed below. 

Property (iii) stales that a truncation model must be solvable, which means that it must 
be possible to delermine its equilibrium distribution {p;"}, and thus, by using (5.5), also the 
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corresponding average costs g', in an analytica! way or by an efficient numerical method. In 
the most favorable case, a truncation model can be solved purely analytically, and then it 
might be possible that the average costs g in the original model can be determined also purely 
analytically by writing them as a limit of the average costs g' in the truncation model. How­
ever, in genera!, we will already be satisfied if a truncation model can be solved sufficiently 
efficient by some other method; for example, by the matrix-geometrie approach or by a stan­
dard numerical technique for the determination of the equilibrium distribution of a Markov 
process with a fini te state space. In that case, the determination of the bound produced by the 
truncation model requires a certain computational effort, and the corresponding computation 
times usually will strongly depend on the values of the truncation parameters. It is obvious 
that then property (iv) becomes important. 

The higher the computational effort required to solve a truncation model, the more 
important it is that the truncation model leads to tight bounds for already smal! sizes of the 
truncated state space (which is determined by the truncation parameters). This is reflected by 
property (iv), which stales that a truncation model must lead to a tight bound compared to the 
computational effort required to solve the model. The tightness of a truncation model will 
mainly be determined by: 

the fraction of periods that a redirection occurs in the truncation model; 

the impact of each redirection. 

From this observation, we obtain a couple of rules of thumb for how a truncation model 
should be defined. The fraction of periods that a redirection occurs may be kept low by 
defining the truncated state space such that it contains the states where most of the probability 
mass is present. Further, the way in which the transitions to stales outside the truncated state 
space are redirected influences the impact of the redirections. The impact of a redirection 
from a state n outside the truncated state space to a state n' inside the truncated state space 
consists ofthe direct impact on the costs, for which the difference between c(n) and c(n') is 
an appropriate measure, and the indirect impact on the costs in later periods. For a particular 
model, one usually will be able to estimate the impact of a redirection by using its physical 
interpretation. In general we can say that it is sensible to redirect toa staten' which is rather 
closeton according to the preeedenee pairs and for which the difference of c(n') with respect 
to c (n) is as smal! as possible. 

The properties (iii) and (iv) delermine the quality of a flexible bound model. Models of 
a sufficiently high quality can be used to determine the average costs g of the original model. 
In genera!, an appropriate way for the determination of the average costs g, within a given 
absolute or relative accuracy, is constituted by solving a lower and an upper bound model for 
increasing sizes of the truncated state space; here, the mean of a lower bound and an upper 
bound and half of their difference may serve as an approximation for g and an upper bound 
for the absolute inaccuracy of this approximation. To minimize the total computational 
effort, it is important to select the lower bound model and the upper bound model which lead 
to the tightest bounds compared to the computational efforts needed for solving them. For 
this selection, it is required to have some information on the tightness of the different bound 
models. This information may be obtained from: (i) intuitive insight, (ii) numerical results 
for smal! instances, and (iii) monotonicity results between the different bound models, which 
also can be derived by using the preeedenee relation method. 
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Below, we shall investigate the quality of the six, solvable, fiexible bound models, 
which we have derived for the symmetrie shortest queue system in Section 5.3. Numerical 
results will indicate which ordering there exists between them with respect to the tightness. 
At the end of this section, in Remark 5.3, we shall explain that a large part of this ordering 
can be proved by using the predence relation method, and that this metbod can also be used to 
prove some other monotonicity results that are suggested by the numerical results. 

Example 5.1: The symmetrie shortest queue model (continued) 

In Section 5.3, by using the preeedenee relation method, we have derived six fiexible trunca­
tion rnadeis which lead to bounds for the mean Lw of the total number of waiting jobs and the 
mean normalized waiting time W for the SSQS with two servers. We now determine the 
bounds W,,(n, and campare the gaps between them and W itself for varying values of the 
threshold (truncation) parameter Tand the workload p. It will also be investigated to what 
extent these gaps can be explained by the fraction of time that a redirection occurs and the 
impact of each redirection. Since for the same value of the threshold (truncation) parameter 
T, all six bound rnadeis require camparabie computation times for solving them, the results 
obtained for the tightness of the bounds W,,(D. can be used to establish which bound rnadeis 
are the best. 

Befare we explain the numerical results presenled in the Tables 5.1 and 5.2, we have to 
introduce some notation. For each bound model, the fraction of periods that a redirection 
occurs is denoted by Prd and the direct impact of a redirection is denoted by ird· For the FB 
model, Prd is equal to the fraction of time p[fT> that we are in state (T, n. multiplied by the 
probability À for making the transition from (T, D to (T, T +I) and back to (T, n. The frac­
tions for the other rnadeis are derived similarly. For the FB model, and also for the TK 
model, each redirection physically means that one job is removed from the system, and the 
direct impact is said to be equal to i,d =-I. For the TB model each redirection is equivalent 
to keeping one job extra in the system, and i,d = 1. For these models, each redirection also 
has a considerable indirect impact, but for this indirect impact it is difficult to give a good 
measure. For the CB, the TJ and the om model, each redirection physically means that a job 
is moved from one queue to the other queue, and obviously has no direct impact, i.e. i,d = 0. 
The quality of these rnadeis is determined by the indirect impact of the redirections, which 
make it less or more easy to visit one of the 'bad' states (O,m 2 ), m2 ~ 2. 

In Table 5.1, numerical results are presented for a series of examples with fixed p = 0.9 
and varying values of the threshold parameter T. For this value of p, the mean normalized 
waiting time of the original model is equal to W =4.475. This value may be computed by 
solving a lower bound model and an upper bound model fora large value of T (or e.g. by 
using the compensation approach). For each bound model, in the first column the absolute 
difference !labs= W"(D-W is given. To explain the value of the absolute difference !labs• in 
the second and third column the values of Prd and i,d are denoted. In case for some bound 
model each redirection would have the same (direct and indirect) impact on the average 
number of jobs in the system, and therefore also on the mean normalized waiting time, flws 

would be equal to Prd multiplied by some constant c,d; c,d = llabsiPrd represents the average 
impact of a redirection and is denoted in the fourth column. In Table 5.2, the same informa­
tion is given for a series of examples with varying values of p and fixed T = 3. Note that, due 
to the destruction of capacity, the TB model may benon-ergodie for large values of p and/or 
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T 
FB model CB model TI model 

l1ohs i,d l1ohs ird l1ohs i,d 

1 
2 
3 
4 
5 
6 
7 
8 

Prd e,d Prd e,d Prd e,d 

-4.475 0.173613 -1 -25.8 -0.212 0.106284 0 -1.99 -0.212 0.106284 0 -1.99 
-4.096 0.092218 -1 -44.4 -0.093 0.088178 0 -1.05 -0.093 0.023205 0 -4.00 
-3.682 0.057333 -1 -64.2 -0.040 0.072213 0 -0.558 -0.037 0.006109 0 -6.01 
-3.285 0.038810 -1 -84.6 -0.018 0.058784 0 -0.298 -0.013 0.001679 0 -8.02 
-2.916 0.027668 -1 -105 -0.008 0.047722 0 -0.159 -0.005 0.000467 0 -10.0 
-2.577 0.020404 -1 -126 -0.003 0.038694 0 -0.0854 -0.002 0.000130 0 -12.0 
-2.269 0.015403 -1 -147 -0.001 0.031357 0 -0.0458 -0.001 0.000036 0 -14.0 
-1.991 0.011822 -1 -168 -0.001 0.025404 0 -0.0246 -0.000 0.000010 0 -15.8 

T 
Offimodel TKmodel TB model 

l1ohs Prd i,d e,d i1abs Prd i,d e,d l1ohs Prd Îrd e,d 

I 00 - 0 - -3.420 0.078785 -1 -43.4 00 - 1 -
2 18.000 0.234974 0 76.6 -1.844 0.022728 -1 -81.1 25.719 0.041851 1 615 
3 2.261 0.163541 0 13.8 -0.761 0.006855 -1 -111 1.500 0.009438 I 159 
4 0.738 0.122032 0 6.04 -0.263 0.002012 -1 -131 0.349 0.002425 1 144 
5 0.288 0.094547 0 3.05 -0.083 0.000575 -1 -145 0.096 0.000656 1 147 
6 0.121 0.074774 0 1.61 -0.025 0.000162 -1 -156 0.028 0.000181 1 154 
7 0.052 0.059805 0 0.871 -0.008 0.000046 -1 -167 0.008 0.000050 1 162 
8 0.023 0.048122 0 0.474 -0.002 0.0000 13 -I -178 0.002 0.000014 I 171 

Table 5.1. Overview of the quality of the six bound models for the symmetrie shortest 
queue system with 2 servers and workload p=0.9. For this workload the mean normalired 
waiting time of the original model is equal to W = 4.475. 

smal I values of T, in which case L~8 (D = WrB(D = ~bs = oo; similarly for the OIB model, 
where the 'bad' states are more often visited than in the original model. 

The numerical results show that for each bound model the quality of the bound for W, 
which is measured by I ~bs I, increases for increasing values of T (see Table 5.1) and 
decreases for increasing values of p (see Table 5.2). This behavior is partly explained by the 
behavior of Prd· Further, studying the values of c,d, shows that in general I c,d I is Iarger for 
the models for which the . direct impact i,d is equa1 to -1 or 1 than for the models for which 
i,d = 0. This confirms the thought that both the fraction of periods in which a redirection 
occurs and the direct impact of a redirection will give an indication for the quality of a bound 
model. The diversity of the values of c,d for varying values of Tand p shows that Prd and i,d 

sure1y do not give more than an indication. 

The numerical results also indicate that for a fixed T, the TI model always produces the 
best 1ower bound for Wand the TB almost always produces the best upper bound (for the case 
T=2 in Table 5.1, the bound produced by the OIB model is slightly better than the bound 
produced by the TB model, but they bothare worse). Since for the same value of T, all six 
bound models require comparab1e computation times for being solved, this implies that the TI 
model and the TB model are the most appropriate models for being used in an algorithm for 



5.5. On the quality ofjlexible bound models 151 

w FB model CB model TJ model 
p 

LiaJ,, Prd i,d c,d LiaJ,, Prd i,d crd L\.bs Prd i,d c,d 

0.2 0.066 -0.000 0.000015 -1 -21.6 -0.000 0.000008 0 -3.89 -0.000 0.000002 0 -16.4 
0.4 0.259 -0.019 0.001121 -1 -16.9 -0.001 0.000666 0 -1.60 -0.001 0.000097 0 -9.13 
0.6 0.682 -0.198 O.ot 0084 -I -19.7 -0.007 0.007573 0 -0.929 -0.006 0.000873 0 -6.96 
0.8 1.956 -1.246 0.036737 -1 -33.9 -0.025 0.038345 0 -0.641 -0.022 0.003581 0 -6.15 
0.9 4.475 -3.682 0.057333 -1 -64.2 -0.040 0.072213 0 -0.558 -0.037 0.006109 0 -6.01 
0.95 9.487 -8.661 0.069069-1 -125 -0.051 0.095903 0 -0.527 -0.046 0.007733 0 -5.99 
0.98 24.494 -23.653 0.076536-1 -309 -0.057 0.112668 0 -0.510 -0.053 0.008831 0 -5.99 
0.9949.497 -48.650 0.079071 -1 -615 -0.060 0.118715 0 -0.505 -0.055 0.009218 0 -6.02 

w OIB model TKmodel TB model 
p 

LiaJ,, Prd i,d c,d L\.bs Prd i,d c,d L\.bs Prd i ,d c,d 

0.2 0.066 0.000 0.000003 0 4.45 -0.000 0.000002 -I -19.2 0.000 0.000003 I 3.2C 
0.4 0.259 0.001 0.000605 0 2.33 -0.001 0.000100 -I -14.1 0.001 0.000164 I 5.65 
0.6 0.682 0.023 0.010734 0 2.13 -0.016 0.000932-1 -16.0 0.017 0.001403 1 11.8 
0.8 1.956 0.309 0.075453 0 4.10 -0.153 0.003956 -I -38.8 0.227 0.005577 I 40.6 
0.9 4.475 2.261 0.163541 0 13.8 -0.761 0.006855 -1 -111 1.500 0.009438 I 159 
0.95 9.487 23.842 0.232074 0 103 -2.909 0.008739 -I -333 10.345 0.011920 I 868 
0.98 24.494 00 - 0 - -13.125 0.009798 -I -1310 00 - I -
0.99 49.497 00 - 0 - -34.685 0.009798 -I -3312 00 - I -

Table 5.2. Overview of the quality of the six bound models for the symmetrie shortest 
queue system with 2 servers. For all cases the parameter T has been taken equal to T = 3. 

the deterrnination of W within a given accuracy. The TJ and TB model may be expected to 
produce also the best bounds for the SSQS with N ~ 2 servers; therefore, in the next chapter, 
we shall generalize precisely these two bound models. 

Remark 5.3. (more results which can be proved by the preeedenee relation method) 

To show the diversity of the monotonicity results that can be derived/proved by the pre­
eedenee relation method, below we list all results that can be derived by the preeedenee rela­
tion methad for the mean normalized waiting time W in the SSQS and the bounds W,,(T) pro­
doeed by the six bound models. lt will be obvious that equivalent results hold for Lw and the 
bounds I_(D; further, several monotonicity properties will also hold for other variables and 
performance measures (see also the remarks at the end of Example 5.1 in Section 5.3). 
Among the results below are almost all monotonicity properties suggested by the numerical 
results in the Tables 5.1 and 5.2. We distinguish three types of results. 

The first type of results concerns monotonicity results for varying values of T. We 
al ready proved that each of the six defined truncation rnadeis leads to bounds for W: 

WFB(D ~ W, WcB(T) ~ W, Wr1(T) :S W, 

W018(D ~ W, WTK(D :S W, Wr8 (D ~ W for all T~ 1. 
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For each of the bound models, by considering the bound model with threshold parameter T as 
a truncation model of the bound model with threshold parameter T + 1, it moreover can be 
shown that the quality of the bounds is non-deereasing for increasing values of T: 

WFs(D~WFs(T+1), Wcs(D~Wcs(T+1), WTJ(D~WTJ(T+1), 

Wms(D~WoJB(T+1), Wrx(D~Wrx(T+l), Wrn(D~Wrs(T+l) foraliT~l. 

Si nee further the bounds W1r(D will tend to Was T-+ oo, we thus obtain that 

WFs<ntw. Wcs<ntw. Wr1<ntw. 

w 01s<D J, w. Wrx<n t w. Wrs<n J, w as T-+ oo. 

Seeondly, some monotonicity results between the different bound modelscan be proved. 
By exploiting that the FB model represents a truncation model of all three other lower bound 
models, it can be shown that 

WFs<D~WcB(D . WFs(D~WTJ(D. WFs(D~Wrx(D forallT~l. 

Further, by comparing the CB model to the TJ model, we find that 

Wcs<n ~ WrJ(D for all T~ 1. 

Subsequently, by using the preeedenee relation metbod as described in Remark 5.1, it can be 
proved that 

Wrx<n ~ WTJ(D for all T~ 1. 

It appears that, except for T = 1, it cannot be proved that the CB model produces a better 
lower bound than the TK model, atleast nol by using the preeedenee relation method (for the 
proof, preeedenee pairs of the type (m,m-e 1 +e 2) would be needed for the TK model, but the 
preeedenee relation does not seem to hold for such pairs). From the above results, we obtain 
the following ordering between the four lower bound models: 

WFB(D ~ min{WcB(n, Wrx(D} ~ max{Wcs(D. Wrx(D} ~ WTJ(D for all T~ 1. 

This ordering proves that the TJ model always leads to the best lower bound. 

The third and last type of results concerns intuitively trivia! monotonicity results for 
varying values of the workload p. By using the preeedenee relation metbod as described in 
Remark 5.1, it can be shown that the average costs in the Markov cost model for the SSQS 
are larger than or equal to the corresponding costs in the modified system which is obtained 
by replacing the arrival intensity/probability À. by a smaller value ).' = À.-e, 0 < e:::; À., and for 
all m e M adding a transition from state m to m itself with probability e (for the states 
m=(O,m 2), m2 ~0. this means that the transition probability for the transition from m to m 

itself is increased by e). Since the latter system corresponds to a SSQS with a smaller work­
load, this proves that the mean normalized waiting time Wis non-decreasing as a function of 
p. Similarly, it can be shown that for each of the bound models, the bound W,,(D is non­
deereasing as a function of p. 
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5.6. Conclusions 

This chapter has been devoted to the development of the so-called preeedenee relation 
method, which in principle is a methad for proving a monotonicity result between the average 
costs of two, discrete-time, irreducible Markov cost models, where the state space of one 
model is a subset of the statespace of the other model. We have mainly focused on how the 
methad can be used for deriving fiexible bound models for a given, originat Markov cost 
model. As such, the methad consists of a prelirninary step, in which so-called preeedenee 
pairs for the originat model are derived, and a second step, in which several, fiexible lower 
and upper bound rnadeis may be defined; in this seeond step, a fiexible lower (upper) bound 
model is obtained by first defining a truncated state space M' with a fiexible size and next 
redireeting all transitions ending in states outside M' to states inside M', which are more 
(less) attractive according to the preeedenee pairs derived for the original model. The denva­
tion of the preeedenee pairs in the prelirninary step is essential for obtaining fiexible bound 
models which accurately approximate the original model for already small sizes of the trun­
cated state space, and therefore this step has extensively been treated in a separate seetion. 

The practical use of the preeedenee relation methad is that its application may lead to 
flexible bound models which can be solve efficiently and which produce tight bounds for the 
relevant performance measures of a given originat Markovian (queueing) system. Solving 
such flexible bound rnadeis for increasing sizes of the truncated state space constitutes an 
exact methad for the deterrnination of the relevant performance measures of the originat sys­
tem, which may be very useful if the original system itself is very hard to solve or even not 
solvable at all. 

The preeedenee relation method, as used for deriving flexible bound models, can easily 
and quickly be applied to several Markovian (queueing) systems. In this chapter, the methad 
has been applied to the symmetrie shortest queue system with two parallel servers, mainly to 
illustrate how the method works for a particular model. In the next two chapters, the methad 
will be applied to the N-dimensional symmetrie shortest queue system and to a generalized 
system, called the shortest queue system with a job-dependent parallelism. 
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Chapter 6 

Flexible Bound Models for the 

Symmetrie Shortest Queue System 

6.1. Introduetion 

The Symmetrie Shortest Queue System (SSQS), with N?.2 parallel servers, a Poisson arrival 
process and exponentially distributed service times, is a classica! queueing system, which, 
after its introduetion by Haight [38] in 1958, has been studied extensively in the literature. 
Despite of its resemblance to the relatively simp Ie M I M IN queueing system, the determina­
tion of the equilibrium distribution and the relevant performance measures for the SSQS 
appears to he a hard problem. Since many methods have been applied to the SSQS, this sys­
tem seems to be an appropriate system for testing new methods. The objeetive of this chapter 
is to investigate how well the SSQS can be analyzed by usingjlexible bound models derived 
by tbe preeedenee re lation method. 

That the SSQS is hard to solve is expressed, among others, by the fact that analytica! 
results for the SSQS have only been obtained for the case with N = 2 servers. Analytica! 
results for mainly the generating function of the equilibrium distribution of the two­
dimensional SSQS, have been obtained by Kingman [49] and Flatto and McKean [33], who 
developed the uniformization technique, and by Cohen and Boxma [23] (see also Fayolle [29] 
and Iasnogorodski [45]), who applied the boundary value method. By applying the compen­
sation approach, Adan et al. [8] have generated explicit formulae for the equilibrium distribu­
tion itself (see also Section 1.3). This approach has also led to explicit formulae for the 
equilibrium distribution of the asymmetrie shortest queue system, which is obtained if the 
servers work at different speeds, and for the system with Erlang distributed service times and 
shortest expected delay routing, which is more sensible in that case; see [6, 10]. Knessl et al. 
[50] have derived asymptotic expressions for the stationary queue length distribution. 

On the two-dimensional SSQS, also several numerical studies have appeared in the 
literature. In Schassberger [62], an iteration method has been used to obtain approximations 
for the queue length distribution. Further, Foschini and Salz [34] presenled heavy traffic dif­
fusion approximations, and, by using linear programming, Halfin [39] obtained upper and 
lower bounds for the mean and the distribut ion of the total number of jobs in the system, and 
thus also for the mean waiting time. Zhao and Grassmann [84] derived a numerically stabie 
algorithm for the computation of the queue length probabilities by exploiting some results of 
Flatto and McKean [33]. 
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Other numerical studies concern ftexible truncation models, with which the original 
SSQS can be approximated as accurately as desired. For the case with N = 2 servers, such 
models have been derived by Grassmann [36], Gertsbakh [35], Conolly [24], Rao and Posner 
[60], and Adan et al. [9]. For each of these models, one can determine the equilibrium distri­
bution by using a standard numerical technique or by applying the matrix-geometrie 
approach, as described by Neuts [58], and therefore these models may be exploited in numeri­
cal procedures for the determination of the relevant performance measures for the original 
SSQS withln an arbitrary, given accuracy. For each of the ftexible truncation models, the 
model itself and the analysis can easily be generalized to the case with general N ~ 2. The 
model stuclied by Gertsbakh [35] and Adan et al. [9], is called the Threshold Jockeying (TJ) 
model, and its generalization has been described in [13]. For a fixed threshold parameter 
equal to 1, thls generalized TJ model reduces to a non-ftexible truncation model for whlch the 
behavior of the total number of (waiting) jobs is identical to the behavior of this quantity in 
the corresponding M I M IN queueing system; this non-flexible truncation model has been stu­
clied by Disney and Mitchell [26], Elsayed and Bastani [28], Kao and Lin [48], and Zhao and 
Grassmann [83], and for N = 2 also by Haight [38] . It is noted that, by using the preeedenee 
relation method, the TJ model as well as the models studied by Conolly [24] and Rao and 
Posner [60] may be proved to lead to bounds forsome relevant performance measures, among 
which the mean waiting time (see the remarks at the end of Example 5.1 in Section 5.3). 

Some recent studies have led to the most interesting results for the SSQS with N servers 
and general N ~ 2. Blanc [ 17] applied the power-series algorithm to the asymmetrie shortest 
queue system, with which all equilibrium probabilities as well as all relevant performance 
measures may be computed (withln a given accuracy). Lui et al. [54] (see also [53]) 
developed two flexible approximation models fora generalization of the SSQS, viz. the asym­
metrie system with servers working at different speeds and with shortest expected delay rout­
ing instead of shortest queue routing. One of these two approximation models is a kind of 
truncation model with some extra states added to it and has been proved to lead to a lower 
bound for the mean response time, and thus also for the mean waiting time, while the other 
model is a pure truncation model, which produces an upper bound for the mean 
response/waiting time. Both in Blanc [17] and in Lui et al. [54], numerical results have been 
presented for the SSQS. By using a numerical procedure based on their ftex.ible lower bound 
models, Lui et al. [54] have been able to delermine quite accurately the mean 
response/waiting time for systems with up to N = 8 servers and workloads up to p = 0.9 (for 
the instanee with N=8 and p=0.9, they reach an absolute accuracy of 0.008 for the mean 
normalized waiting time, i.e. for the mean of the waiting time normalize9 by the mean service 
time); in Blanc [17], for the SSQS with workload p=0.9 numerical results are presented for 
systems with up to N = 12 servers (for N = 12 and p = 0.9, Blanc reaches an absolute accuracy 
of about 0.5· l0-4 for the mean normalized waiting time). 

Finally, there is a recent study by Nelson and Philips [57] (see also [56]), who have 
developed two simple, closed-form approximation forrnulae for the mean waiting time for the 
SSQS: one approximation forrnula for the case with generally distributed interarrival and ser­
vice times and an improved formula for the case with exponential interarrival and service 
times. They show among others that for all instances with up to N = 8 servers (and workloads 
p up to about 0.98), the improved approximation forrnula for the pure exponential case leads 
to relative errors smaller than 0.5 percent for the mean response time (note that somewhat 
larger errors would have been obtained for the mean waiting time). 
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In this chapter, we apply the preeedenee relation method to the SSQS with N;;:: 2 servers. 
We derive two flexible truncation models, of which one model leads to lower bounds for the 
rnean normalized waiting time and the other model produces upper bounds. These two flexi­
ble bound models are generalizations of the TJ model and the TB model, as described in Sec­
tion 1.4 and in the previous chapter. Due to the structure of the transitions in the two flexible 
bound models, they both can be solved very efficiently by the matrix-geometrie approach, 
and therefore they lead to an efficient numerical procedure for the determination of the mean 
normalized waiting time within a given, absolute or relative accuracy. As a result, we will be 
able to determine the mean normalized waiting time within an absolute accuracy of 0.005 for 
systerns withuptoN = 50 servers and workloads up top =0.95 (it is noted that for all compu­
tations, a standard SUN workstation is used; further, to make a rough comparison to Blanc's 
results, it is noted that for an absolute accuracy of o.s.J0-4 and a workload of p =0.9, we can 
determine the mean normalized waiting time also for systerns with up toN= 50 servers). 

The contents of this chapter willlargely coincide with the contents of the paper [2], but 
there are some differences: an alternative proof of the bounds, a slightly different TJ model 
and a slightly different bound produced by the TB model (see also Remark 6.2). 

The analysis of this chapter is started with a description of the model for the SSQS; see 
Section 6.2. Next, the preeedenee relation method is applied in Section 6.3 and the salution 
of the bound models is described in Section 6.4. In Section 6.5, some numerical results are 
given. The conclusions are drawn in Section 6.6. 

6.2.Model 

In this section, we present a discrete-time, irreducible Markov cost model, which describes 
the behavior of the SSQS with N;;:: 2 servers. Further, it is denoted how to choose the direct 
costs such that the corresponding average costs can be exploited to obtain the mean normal­
ized waiting time for the SSQS. The presented model is identical to the model described in 
Example 5.1 of Section 5.2. 

We first describe the SSQS itself. The SSQS consists of N;;:: 2 parallel servers, which all 
have their own queue. Jobs arrive according to a Poisson stream with intensity À> 0, and an 
arriving job always joins the shortest queue (ties are broken with equal probabilities) . All ser­
vice times are exponentially distributed with parameter J.l > 0. For simplicity, we assume that 
time is scaled such that À+ NJ.l = I. In order to have an ergodie system, the workload 
p = IJ(NJ.l) is assumed to be smaller than I. 

For the application of the preeedenee relation method, it is required that the SSQS is 
modeled by a discrete-time, irreducible Markov process. Assume that the servers always 
work, but that a service completion is only accompanied by a departure of a job if there is a 
job present in the corresponding queue. Then the behavior of the system may be described by 
the discrete-time, irreducible Markov process on the time instanis right after job arrivals and 
service completions, and with stales (m 1 •••• , mN ), where m; denotes the length of the i-th 
shortest queue, i eI := { l, ... , N}. This Markov process has a state space 

M = { m I m = (m 1 , • . • , mN) with 0 ~ m 1 ~ • · • ~ mN } , 
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and it has the property that for all states m e M the outgoing transitions are caused by the 
sarne events k e E := { 0} u /, where event 0 refers to an arrival of a new job and for all k eI 
the event k refers to a service completion at the server corresponding to the k-th component 
mk of the state m. For all m e M and k e E, let rk(m) denote the state to which a transition is 
made if the Markov process is in state m and event k occurs (note that, if mk = m1 for two dif­
ferent k,l e /, then the states rk (m) and r1(m) are the same ). The corresponding transition pro­
bahilities are denoted by qk: q 0 =À and qk = 1.1 for all k e /. 

The direct costs in our Markov cost model are given by an arbitrary function c (m) and 
the corresponding average costs are denoted by g. We finally show how to choose the direct 
costs c (m) such that the mean W of the normalized waiting time can be obtained from g. The 
normalized waiting time is defined as the ratio of the waiting time and the mean service time 
of a job (= lf!l), and has the attractive property that it only depends on N and p. By Little's 
formula, we find that Wis equal to 

Lw 
W =Np' (6.1) 

where Lw denotes the mean of the total number of waiting jobs in the system. So, it suffices 
to deterrnine Lw. It is ensured that the average costs g are equal to this measure Lw. if the 
direct costs c (m) are taken equal to 

N 
c(m) = I, max{ mi -1,0}. (6.2) 

i=l 

This completes the description of the discrete-time, irreducible Markov cost model. 

6.3. Application of the preeedenee relation metbod 

In this section, we apply the preeedenee relation metbod in order to obtain one flexible lower 
bound model and one flexible upper bound model. The two models which we derive are gen­
eralizations of the TJ and TB model, which in the previous chapter were derived for the SSQS 
with N = 2 servers. The reason that we derive generalizations of precisely these two models is 
that they have appeared to lead tothebest lower and upper bounds for the mean normalized 
waiting time for the case N = 2 (see Section 5.5) and that they may be expected to lead also to 
the best lower and upper bounds if N = 3. 

The first step of the preeedenee relation metbod consists of the derivation of preeedenee 
pairs (m,n), m,n eM, for the original Markov cost model. Fora cost function c(m) as given 
in (6.2), we expect that we can prove preeedenee pairs of the type (m,m+ei) and of the type 
(m,m+ei-ej) with i > j, where ei denotes the i-th unity vector. This means that we expect that 
it is more attractive to be in a state with one job less at one of the servers, and that it is more 
attractive to be in a state with more balance. Define 

P = { (m,n) I m,n eM and n =m+ei forsome ie/} 

u { (m,n) I m,n eM and n =m+ei-ej forsome i,j e/, i> j}, 

and let p• denote the corresponding completed set: 

(6.3) 
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p• = { (m,n) I m=(mt •... ,mN)eM, n=(n~o ... ,nN)eM and 

r.r=k m; $ I.f'.,k n; for all k EI } . 
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(6.4) 

From the following lemma, which will be proved by applying the Lemmas 5.1 and 5.2, it fol­
lows that P and P • consist of preeedenee pairs for all cost functions for which the pairs of P 
represent preeedenee pairs; the direct costs c (m) as given in (6.2) satisfy this latter condition. 

Lemma6.1. 

The set P tk.fined by (6.3) and the corresponding completed set p• given by (6.4) consist of 
preeelknee pairsjor all costfunctions c (m)for which c (m) :Sc (n)for all (m,n) e P. 

Proof. 

Applying the Lemmas 5.1 and 5.2 immediately shows that it suffices to prove that 

(rk(m),rk(n))eP• for all keE and (m,n)eP, (6.5) 

i.e. that for all (m,n) e P and k e E, the state rk(m) to which a transition is made from state m 
if event k occurs is more attractive according to the set p• than the corresponding state rk(n) 
for staten. 

For the proof of (6.5) we introduce the notation :SP,: we say that m $pr n if state m has 
preeedenee over staten according to the set p•, i.e. if (m,n)eP•. We first prove (6.5) fora 
pair (m,n) e P of the first type, i.e. for a pair (m,n) e P with m,n e M and n = m+e; for some 
i el. Note that iE {j Ij =Nor U e /\{N} and m1 < mJ+l) }. Let j be the smallest index of 
this set. Then we have j:Si, and ro(m)=m+e1. To prove that (r0 (m),r0(n))eP•, i.e. 
r 0(m) :Spr ro(n), we distinguish two cases: 

- j=i: Then we find ro(m)=m+e;=n S.p,ro(n). 

- j <i: Then ro(n)=n+ej, and we find ro(m) =m+eJ S.pr n+e1 = ro(n). 

To prove that (rk(m),rk(n)) e p•, i.e. that rk(m) :Spr rk(n), where k e E\(0} =I, we distinguish 
two main cases: 

"' mk = 0: Then k $i, and we have two subcases: 

- k=i:Thenrk(m)=m=n-e;=rk(n). 

- k <i: Then m1=n1=0 for all j $k and we lind rk(m)=m S.P,n =rk(n). 

"'mk>O: Then rk(m)=m-e1, withh=min(jlje/andm1=mk} and rk(n)=n-e1, 

with h =min ( j I je I and n1 = nk }. and we distinguish three subcases: 

- k <i: Then m1 =n1 for all j :Sk, j 1 =hand rk(m)=m-e1, :Spr n-e1, =rk(n). 

- k =i: Then h =k =i, and we find rk(m) =m-e1, S.pr m =n-e; = rk(n). 

- k >i: Then mj=nj for j =i+1, . . . ,k. If mi+ I=· ·· =mk and m;=m;+1-1, then 
h =i+1, h =i and rk(m)=m-e}, :SP,m =n-e; =rk(n), else j 1 =h and rk(m)= 

m-e1, S.p,n-e1, =rk(n). 

This compieles the proof of (6.5) for the pairs (m,n) EP of the first type. For the pairs 
(m,n) e P of the second type, the proof of (6.5) may be given along the same !i nes and is left 
to the reader. 0 



160 6. The Symmetrie Shortest Queue System 

The second step of the preeedenee relation method consists of the definition of flexible 
bound models. By using the preeedenee pairs given by p•, we ean define the following two 
flexible bounds models: 

* Threshold Joclreying (TJ): 
Since for the N-dimensional SSQS, the probability mass is concentraled around the 
states corresponding to situations with equal queue lengths, we let the truncated state 
space M' consist of all states for which the difference between the longest and the shor­
test queue length is at most equal to some threshold T ':i!. l: 

M' = (m lm=(m~o ... ,mN)withO~ml~ ··· ~mNandmN~m1+T}. (6.6) 

Then the only transitions from states of M' to states outside M' are the transitions from 
the states m=(ml, ... ,mN)eM' with m1 >0, mN=m 1+T, to n=(m 1-I,m2, ... ,mN), 

which are due to a service completion at one of the shortest queues at a moment that the 
difference between the longest and the shortest queue length has already reached its 
maximum value. Such a transition occurs with probability j)l, where j denotes the 
number of shortest queues: j = max ( i I i eI and m; = m 1 } . Suppose that we want to 
derive a lower bound model, then these transitions must he redirected to more attractive 
states inside M'. To obtain a truncation model that approximates the original model as 
accurately as possible, we want each of these transitions to he redirected to a more 
attractive staten' eM' which is as closeton as possible, i.e. we want each of these tran­
sitions to be redirected toa staten' such that there is nostater e M' with (n',r) e p• and 
(r,n)eP" (otherwise redirecting tor would he better). Let the indices k 1 and k 2 be 
equal tok 1 =max( i I ie/ and n; ~nN-2} and k 2 =min( i I ie/ and n; =nN}. then we 
can start with redirecting to the more attractive state n'=n+ek,-ek1 , which means that a 
job of one of the longest queues is allowed to jockey to the ciosest queue where at least 
two jobs less are present. For the larger part of the states n as characterized above, it 
will hold that nN-I ~n,.-2, in which case k 1 =N-1, k 2 =N, and a job jockeys from the 
(unique) longest queuetoa second longest queue. If n' E M', then we may stop, el se we 
have to perform one or more extra steps; the procedure for the deterrnination of n' is for­
mally described in Figure 6.1. The resulting truncation model is called the Threshold 
Jockeying (TJ) model, and it is obvious that this model leads to a lower bound for the 
average costs g in the original Markov cost model if the direct costs c (m) are chosen 
according to (6.2), i.e. it leads to a lower bound for the mean Lw of the total number of 
waiting jobs in the original SSQS. 

* Threshold Blocking (TB): 
Consider the TJ model, but let the transitions from the states (m 1, . •. , mN) with m 1 > 0, 
mN=m 1+T, to (m 1-I,m2 •... ,mN), be redirected to (m1, . . . ,mN) itself. This means 
that if the difference mN- m 1 between the longest and the shortest queue has already 
reached its maximum value T, then a service completion at a non-empty, shortest queue 
is not accompanied by a departure, and the job in service has to be served once more. It 
is easily seen that (because of the memory-less property of the exponential service 
times), this is equivalent to letting the servers at the shortest queues be blocked as long 
as mN-m 1 = T, and therefore this modified model is called the Threshold Blocking (TB) 
model. Since the states (m 1, . .. ,mN) are less attractive than (m 1-l ,m2 •... ,mN). the 
TB model produces upper bounds for Lw. 



6.3. Application ofthe preeedenee relation method 

r :=n; 
repeat 

k 1 :=max{ i I ie/ and r; ~rN-2 ); 
k2 :=min{ i I i eland r; =rN ); 
r := r+ek,-ek, 

until r,.r 1 ~ T; 
n':=r 

Figure 6.1. The procedure for determining the staten' to which a transition from a statem 
inside the truncated state space M' to a state n outside M' is redirected in the TJ model. 
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The TJ and TB model produce lower and upper bounds for the mean Lw of the total 
number of waiting jobs in the original SSQS. Let these bounds be denoted by L~1 en and 
L~B (n, and let the corresponding bounds for the mean normalized waiting time W be defined 
by ecf. e6.1)) 

L;! en L TB en 
wTJeD = -- and W <n = -"'--Np TB Np (6.7) 

Since these forrnulae in fact represent LittJe's forrnula for the number of waiting jobs in the 
TJ model and the TB model, respectively, WT1<n and WTB(T) are precisely equal to the 
mean norrnalized waiting times in the TJ and TB model (where also for the TJ and TB model 
the normalized waiting time is defined as the waiting time divided by 1/j.l, i.e. divided by the 
mean of one single service time). 

In the previous chapter, we have mentioned a whole variety of monotonicity results that 
can be derived for the two-dimensional SSQS and the corresponding bound models. The TJ 
and TB model, as described here for the N-dimensional case, have been defined such that all 
monotonicity results conceming the two-dimensional SSQS and the TJ and TB model of the 
previous chapter, can be generalized to the N-dimensional case. We repeat some results 
which concern the mean normalired waiting time W and the corresponding bounds WTJ(D 

and Wm(D. 

By deriving preeedenee pairs of the types (m,m+e;) and (m,m+e;-ej). i> j, for the TJ 
model, and consictering the TJ model with threshold parameter Tas a truncation model of the 
TJ model with threshold parameter T +I, it can be shown that WTJCn :5: WTJ(T +I) for all 
T~ I. Similarly, by deriving preeedenee pairs of the type (m,m+e;) for the TB model, and 
consictering the TB model with threshold parameter Tas a truncation model of the TB model 
with threshold parameter T+l, it can be shown that WrB(T)~ WrB(T+I) for all T~ I. 
Further, both WTJ(n and WTB(n will tend to W, as T~oo, since for T=oo both truncation 
roodels are identical to the original SSQS. So, we find that 

WTJ(D Î W and WrB<n! W, as T ~ oo. (6.8) 

This result shows that the mean norrnalized waiting time W can be determined as accurately 
as desired by computing the bounds WTJ(D and WrB(T) for increasing values of T, where for 
each T, the mean (WTJ(D+WrBeT))/2 of the bounds is used as an approximation for Wand 
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half of the difference between both bounds serves as an upper bound for the corresponding 
inaccuracy. The next section will be devoted to the only remaining problem: the computa­
tion ofthe bounds WrJ(D and WrB(D itself. 

Remark 6.1. (on bounds which are obtained by using alternative formulae for W) 

For formula (6.1), which we use for the detennination of the mean normalired waiting time 
W of the SSQS, there are two alternative formulae. By applying Little's formula, it may be 
shown that the mean normalized response time is equal to L/(Np), where L denotes the mean 
of the total number of jobs in the system (including the jobs in service). This leads to the 
alternative formula 

W=....!:._-1. 
Np 

Further, it is obvious that 

W = Lsq, 

(6.9) 

(6.10) 

where Lsq denotes the mean of the length of the shortest queue. The TB model can be proved 
to produce also upper bounds for Land L59 , and therefore also the formulae (6.9) and (6.10) 
could be used to define the corresponding upper bound for W. It may be verified that, due to 
the fact that in the TB model some jobs are served more than once, using formula (6.9) would 
leadtoa slightly worse upper bound for Wand using formula (6.10) would leadtoa slightly 
better upper bound for W (however, numerical results have pointed out that the differences 
become negligible as soon as the bounds are getting close to W). The TJ model can be proved 
to produce also an upper bound for L, but in this case using formula (6.9) would lead to the 
same bound for Was the bound Wu(D defined by (6.7). 

Remark 6.2. (on the bounds used in [2}) 

In [2], also a TJ model and a TB model have been used to compute W within a given accu­
racy, however for both models the bounds obtained are slightly worse. The bounds in [2] 
stemming from the TB model are the bounds which we would obtain when using formula 
(6.9) for the definition of Wr8 (D instead of formula (6.7). For the TJ model in [2], another 
type of jockeying has been used. Jockeying from the longest to the shortest queue has been 
used, when jumping to a state outside the truncated state space, instead of the jockeying as 
defined by the algorithm in Figure 6.1, which may be characterized as jockeying from the 
longest to the second longest queue (differences between both types of jockeying occur if 
N ~ 3 and T ~ 2). This means that there are transitions to states outside the truncated state 
space which are redirected to more attractive states than necessary. As a consequence, for 
this alternative TJ model the preeedenee pairs of the type (m,m+e;-ej) with i> j cannot be 
derived anymore, and hence it cannot be guaranteed that the bounds are monotonously non­
decreasing for increasing values of T. Besides, for the TJ model presented in this chapter, one 
can prove that it leads to a better bound than the generalization of the Centralized Buffer 
(CB) model as presented in the previous chapter for the two-dimensional SSQS, whereas this 
does not hold for the alternative TJ model (instances have been found for which the CB 
model gives a better bound than the alternative TJ model). 
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6.4. Solving the ftexible bound models by the matrix-geometrie approach 

For both the Tl model and the TB model, the structure of the state space and the transitions 
(with the corresponding transition probabilities) is such that they both can be solved by apply­
ing the matrix-geometrie approach, as described by Neuts [58]. By using this method, we 
can check whether a bound model is positive recurrent (which is needed for the TB model), 
and if so, then we can compute the equilibrium distribution, which may be exploited to deter­
mine the bound for the mean normalized waiting time W. The main part of this section con­
sists of showing that, due to the special structure of the transitions, for both bound models, the 
equilibrium distribution may be deterrnined very efficiently by the matrix-geometrie approach 
(the rate matrix R has only one row with nonnull elements, if the state space is appropriately 
partitioned into levels). After that, we shortly discuss the computation of the bounds for W 
and the order of magnitude of the computation time. 

Determination ofthe equilibrium distributionfor the TJ and TB model 

Assume that the number of servers N, the workload p and the threshold parameter T are 
given, and that N ~ 2, 0 < p < I and T ~ 1. Then for both bound models, we have an irreduci­
ble, discrete-time Markov process. The truncated state space M' is given by (6.6), and the 
transition probabilities and equilibrium probabilities are denoted by q!:;,n and p!:;. respec­
tively. Here, the indices tr may be replaced by TJ or TB, in case we are discussing a particu­
lar bound (truncation) model. 

Application of the matrix-geometrie approach requires a partitioning of the state space 
into subsets M/, I~ 0, which are called levels. lt appears to be appropriate to partition the 
state space on the basis of the number of jobs present at the longest queue. We de fine 

M/ = { m E M' I mN =i } for all i ~ 0. 

Let the states be lexicographically ordered within each level M/ , let the probability vector pj' 
contain all equilibrium probabilities p!:; corresponding to the stales mEM/, and let the proba­
bility vector p 1' be equal to (plf,p'{, · · · ). Next, for simplicity we put together the levels 
Mó •. . . ,M]-_1, which have a less regular behavior, into one level Mó·. Then, for this parti­
tioning, plf =(plf, . . . ,plf_, ), p 1' =(plf ,plf,plf+t, · · · ), and the transition matrix P" is of 
the form 

Bo·o· Bo·t 0 0 0 

Bto· Bil Ao 0 0 

P" = 0 A2 At Ao 0 (6.11) 

0 0 A2 At Ao 

Here, all submatrices are nonnegative and real valued; A o. A 1, A 2 and B 11 are a x a matrices 
(it is noted that for the TB model, B 11 is equal to A 1 ), and B o·o·, B 0• 1 and B 10• are of the 
size b x b, b x a and a x b, respectively, where a is the number of stales for each of the levels 
M/ with l ~Tand b is the number of states for level Mó·. lt is easily verified that a and b are 
equal to 
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_ [N+T-1] 
a- T • 

T-1 [N+l-1] 
b==I. l . 

1=0 

The matrix P1' is said to be block tridiagonal, and the Markov process is called a quasi­
birth-and-death process. 

For the existence of the equilibrium distri bution {p::;}, it is required that we qave a posi­
live recurrent (i.e. ergodic) Markov process. Therefore, we fust describe a simple, necessary 
and suftleient condition for the positive recurrence. De fine the matrix A by A :==A o+A 1 +A 2• 

Then A is obviously a stochastic matrix, and si nee two statesof levels Mj with l > T can reach 
each other via paths not passing through levels Mj with l ~ T, A is also irreducible. So, A is 
the transition matrix of a finite, irreducible, discrete-time Markov process, and the 
corresponding equilibrium vector 1t== (1t" ... ,1t0 ) is the unique solution of the system of 
linear equations 

1tA = 1t, 1te = 1 , 

where e is an a-dimensional column vector consisting of all ones. The probability 1t; denotes 
the probability to be in the i-th state, under the condition that we are at some level Mj, where 
lis very large. Now, the Markov process with transition matrix P 1' may be shown to be posi­
live recurrent if and only if 

(6.12) 

(cf. Theorem 1.3.2 of [58]). This means that, for the levels far away from the origin, the drift 
into the direction of the higher levels must be smaller than the drift into the direction of the 
lower levels. 

Suppose that condition (6.12) is satisfied. Then the equilibrium vector p 1' is character­
ized as the unique solution of the linear equations 

p 1' P" == p 1' , p" e == 1 . 

Writing out the first of these two equations suggests to look fora sol u ti on for which 

Pl' == plf RI-T for all/~ T, 

where the a x a matrix R must be a solution of the quadratic matrix equation 

R =A0 +RA 1 +R2A 2 • 

(6.13) 

(6.14) 

To obtain an equilibrium distribution which can be normalized, it is required that the speetral 
radius sp (R) of R is smaller than 1. Let R be defined as the minimal nonnegative solution of 
(6.14). Then, since we have a positive recurrent Markov process, it may be shown that sp(R) 
indeed is smaller than 1, and that the equilibrium distribution has the miltrix-geometrie struc­
ture as denoted by (6.13) (see Theorem 1.5.1 of [58]). The matrix R is called the rate matrix 
and may be obtained by performing successive substitutions in (6.14), where R == 0 is used as 
starting matrix. 

Due to our choice for the partitioning of the state space, for all l ~ 0, the only transition 
pointing from a state of level Mj to a state of level Mi+!, is the transition from the state 
(l, ... , /) to (l, ... ,l,l + 1 ). This transition is due to an arrival of a new job in a situation that 
all queue lengtbs are equal; the corresponding transition rate is equalto À. So, the matrix A o 
is equal to 
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where x= (0, ... , O,À.,O, ... , 0) with À. on the (a -(N -1))-th position. This implies that the 
condition for the positive recurrence, as stated in (6.12), simplifies to 

À.1ta-(N-I) < 1tA 2e . (6.15) 

But, what is rea11y important, is the simplification that is obtained for the rate matrix R. As 
one may derive from the successive substitutions scheme for the determination of R, each 
zero row of A 0 corresponds to a zero row of R (this also follows from the probabi listic 
interpretation of R as described in Section 1.2 of [58]). So, R also has the form 

R = [~], (6.16) 

wherey=(y 1, ... ,ya), by which the formu1ae (6.13) and (6.14) simplify considerab1y. Since 
R 2 = YaR and plf R =p('T ..... n y, formula (6.13) reduces to 

P"-p" yi-(T+Ily foralll<!T+l. I - (T ..... n a (6.17) 

Here, the factor Ya is smaller than I, since Ya is equal to sp (R). By insertion of the special 
forms of Rand A 0 , the quadratic matrix equation (6.14) simplifies to 

y = X+ y (A 1 +yaA2). (6.18) 

Note that this equation still is quadratic. The vector y may be obtained by successive substi­
tutions, where y = 0 is used as starting vector. 

Now, the most natural way for exploiting the matrix-geometrie structure as denoted by 
(6.17) in order to obtain the equilibrium distri bution {p::;} seems to consist of substituting 
formula (6.17) into the equilibrium equations for the stales of the levels Mó • ... , M'r and into 
the normalization equation, and subsequently solving the resulting system of linear equations 
of order a+b (note that the equilibrium equalion for one of lhe stales may be left out). How­
ever, due to the structure of the transitions in both bound models, we can determine the 
equilibrium probabi !i ties p::; for the stales of lhe levels Mó, ... , M'r in a much more efficient 
way. This is described below. 

The result stated in (6.17) is exploited for the determination of an unnormalized equili­
brium distri bution {p~}, which afterwards only has lo be normalized in order to obtain {p::;}. 
Let P"(r, .... n =I and Jet the veetors P"l' for all/"<! T +I be given by (6.17). Then the remain­
ing unnormalized probabilities at the levels M'r, ... , Mó may be obtained recursively. In the 
next paragraph we discuss how the equilibrium probabilities for level M/ may be obtained 
from the equilibrium probabilities for level M/ + 1 , where 0 $/ $ T. 

Let 1 $[:'>Tand suppose that the unnormalized probability vector P"l: 1 is known. Up to 
some multiplicative constant, Pi' is equal to the equilibrium probability vector of the Markov 
process restricted to level M/ (i.e. excursions to other levels are not considered). Let the tran­
sition probabilities for the restricted Markov process be denoted by tÎm,n• with m,n eM/. The 
rate tÎm.n is given by q::;,", plus the rate due to excursions to other levels starting in m and 
ending in n. An excursion to the lower levels Mó •. . . ,M/_1 always endsin (l-1, ... ,l-!,1) 
and an excursion to the higher levels M/+1,M/+2 , · · · always starts at (/, ... ,L) and ends 
with probability z" in state n of level M/, where z" is given by (note that the unnormalized 
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equilibrium probabilities p~ for the states of level MI+! denote relative frequencies with 
which the states at that level are visited) 

L p~q:;;,n 
meM~.1 

Zn 
l: iJ!:; l: q:;;,, 

meMi+l reMj 

Hence, for two states m and n of level M/, we find 

• {l:reMj_,q:;;,r ifn=(l-1, ... ,1-1,1)} {À.Zn ifm=(l, ... ,I)} 
q - q'r + + 

m,n - m,n 0 otherwise 0 otherwise · 

Thus, an unnormalized probability vector iJt for the states of level MI can be obtained, once 
we have the unnormalized probability vector iJl:, for the states of level MI+! available. 
Since we want to derive an unnonnalized solution which satisfies all equilibrium equations, 
we scale the unnormalized vector iJl' such that we satisfy the equation stating that the flow 
from level MI toMI+! is equal to the flow from level MI+! to M/. i.e. 

À. pi/ ... . ,I) = L P:;; L q::;,n 
meMj+1 n eM~ 

(if I = T, then it suffices to scale p!' such that Pit . .... n = 1). 

Starting with iJlr ..... n = 1 and p~ + 1 given by (6.17), we can u se the approach sketched 
above to recursive1y compute the veetors p~ .... ,pt, The unnormalized equilibrium distri­
bution is completed by tak.ing the only equilibrium probability iJló .... ,O) for level Mó such 
that the equilibrium equation for the origin (0, ... , 0) is satisfied, i.e. by taking 
p(Ó ..... 0) = (J.I/À.) iJ(ó ..... o. 1). Finally, the des i red equilibrium distri bution {p::;} with total 
probability equal to 1 is obtained by dividing all probabilities p!:; by the normalizing constant 

T -
C = L P~ = L I. ~ + L Y~-{T+l)ye 

meM' I={) meMj I=T+l 

-i. ~ -Ir 1 = 4.. 4.. Pm + --ye · 
/={)meMj 1-ya 

(6.19) 

This comp1etes the description of the procedure for the determination of the equilibrium dis­
tribution, which works for both the TJ and TB model. We finally show that the procedure 
may be slightly simplified for the TJ model. 

For the TJ model, the condition p < 1 may be shown to be necessary and sufficient for 
the positive recurrence, by which the check of condition (6.12) can be sk.ipped and the com­
ponent Ya of the vector y can be found explicitly. This is shown by using the following bal­
ance argument (see also [13]). Let V1 be thesetof states with m 1 + · · · +mN=l and let 
P (V1) be the equilibrium probability for the set V1. By balancing the flow between the sets V1 
and Vt+l it follows that for all/~ (N -l)T 

À.P(VI) = N~P(VI+!), 
and by applying this relation N times, we obtain 

P CVt+N) = PN P CVt) for all/~ (N -1)T, (6.20) 
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which proves that the TJ model is positive recurrent if and only if p < I. A similar formula 
may be found by using (6.17). By (6.17), for all states meM' with mN ~ T + 1 

P(m 1+l, ...• m~l) = YaP(m 1, ... ,mN) • 

from which it follows that 

P(VI+N) = YaP(VI) for alll>NT. 

Combining (6.20) and (6.21) yields 

Ya =pN · 

As a result, the quadratic equation ( 6.18) for y simplifies to the linear equation 

y = x + y (A 1 + PN A 2) • 

(6.21) 

(6.22) 

(6.23) 

from which the vector y can be obtained more efficiently. since this equation forms a contrac­
tion scheme. A convenient metbod to solve such schemes is the iteration metbod presenled in 
Van der Wal and Schweitzer [73]. This metbod has the advantage that it provides upper and 
lower bounds for the vector y. 

Detennination of the bounds for the mean normalized waiting time 

For both bound models, the bounds WTJ(D and WT8 (T) for W can be obtained from the 
equilibrium distri bution {p::; } by first computing the corresponding bounds L~1 (D and 
L~8 (D for the mean Lw of the total number of waiting jobs, and subsequently using the for­
mulae stated in (6.7). For both the TJ and TB model, the bound L~(D itself may be deter­
mined as follows. Let for all m e M' the direct costs c (m) be defined by (6.2), then the bound 
L~(D is precisely equal to the corresponding average costs. Next, let the column vector c1, 

l ~ 0, contain the direct costs c (m) for all states m of level M/. For these veetors c1, we have 
the property that 

c1 = cT+l +(l-(T+1))Ne foralll~T+l, 

by which we find that 
T 

L''<D = ~p''c + ~ p'' yi-<T+lly(c +(l-(T+1))Ne) w .LJ I I L; (T, ... , n a T+l 
I:IJ I=T+l 

- ~ tr c + Ir [ _1_ c + . Nya e J 
- .L..PI I P(T, .... n 1_ Y T+l (I )2 Y 

I :IJ Ya - Ya 

1 [ T -Ir [ 1 Nya J] =- LPI cl+ --ycT+l + 2 ye . 
C I:IJ 1-ya (1-ya) 

(6.24) 

Note that both the normalizing constant C and the part in brackets in formula (6.24) may be 
computed simultaneously with the computation of the equilibrium distribution; so, by using 
formula (6.24) for the determination of L~(T), it is provided that during the computation of 
the vector y and the unnormalized probability veetors ji~ •... ,ji0, in each step only the last 
computed vector has to be kept in memory. 
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Order of magnitude of the computation time 

Let us finally discuss the order of magnitude of the computation time for solving the TJ or TB 
model. For both models, the main computational éffort consists of solving systems of equa­
tions of order a. Systems ofthis order have to be solved to deterrnine the equilibrium distri­
bution 1t on behalf of the verification of condition (6.15) for the positive recurrence (only for 
the TB model), the vector y, and the unnorrnalized probability vector ji~ for the stales of level 
M'-,. For the computation of the unnorrnalized equilibrium probabilities at the lower levels, 
one has to solve a number of smaller systems of equations, for which the computational effort 
may be ignored (especially when Nis large). For the computation of the vector y, when solv­
ing the TB model, we will use successive substitutions. Here, Gauss-Seidel iterations are 
used to decrease the number of iterations required to deterrnine the vector y within a given 
accuracy. In all other cases, we use the iteration metbod presenled in Van der Wal and 
Schweitzer [73]. 

Let us consider the computation of the vector y. Independently of the iteration metbod 
used, the computation time is proportional to the number of iterations multiplied by the 
amount of work in each iteration. To decrease the amount of work in each iteration, and also 
the required memory space, only the nonnull elements of the sparse matrices A 1 and A 2 are 
stored. Then the amount of work in each iteration is mainly deterrnined by the number of 
multiplications, and therefore the work per iteration is proportional to the total number of 
nonnull elementsin A 1 and A 2• Since each nonzero element corresponds toa transition pos­
sibility from one state to another, for each row the number of nonnull elements in A 1 and A 2 

is given by 1 (an arrival) plus min{N,T+l} (service completions), and the total number of 
nonnull elements is obtained by multiplying this expression by a. Hence, we may conclude 
that the order of magnitude Oc1 of the computation time for the deterrnination of y is given by 

Oc1 = (l +min { N, T + l}) a· (number of iterations) . (6.25) 

For all other systems of a equations which we have to solve, we also find this order of magni­
tude for the computation time. An indication of the number of iterations, an expression for 
the order of magnitude of the total computation time for solving a bound model and the com­
putation times itself, are discussed at the end of the next section. 

6.5. Numerical results 

This section is devoted to some numerical results, which are obtained by a numerical pro­
cedure that is developed for the deterrnination of the mean normalized waiting time W in the 
N-dimensional SSQS and that is based on the fiexible bounds WTJ(T) and Wr8 (T) produced 
by the TJ and TB model. 

The results of the previous two sections lead to the following procedure, with which, for 
given values of the number of servers N and the workload p, the mean norrnalized waiting 
time Wis deterrnined within a given, absolute accuracy Eabs. By exploiting the results of Sec­
ti on 6.4, we compute both the lower bound WTJ(T) and the upper bound Wr8 (T) for 
T= 1,2, · · · (both bounds may be assumed to be deterrnined exactly, i.e. they are computed 
within a sufficiently high numerical accuracy, viz. an absolute numerical accuracy of at least 
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w-2 Eab5 ). For each value of the threshold parameter T, the mean (WTJ(T}+W18(D)I2 of the 
Iower and upper bound is used as an approximation for W, and half of the difference between 
both bounds, i.e. A(D = (WrB(D-WTJ(D)I2. is used as an upper bound for the absolute inac­
curacy of this approximation. The computation process is stopped as soon as A(D ~ Eabs for 
some T. Note that a similar procedure can he used for the determination of W within a given, 
relative accuracy. 

In Table 6.1, we have Iisted some numerical results which have been obtained by the 
above procedure. For varying values of p and N, which are given in the first two columns, we 
have determined the mean normalized waiting time W within absolute accuracy Eabs =0.005. 
The third column denotes the smallest value of T for which this accuracy is reached, and the 
fourth column denotes the value of the size a of the largest systems of equations that have to 
he solved for this T. In the fifth and sixth column, the bounds WTJ(D and W18(T) are Iisted, 
and in the last two columns the corresponding approximation for W and the corresponding 
value for A(D are given (it is noted that for A(T) the values obtained by rounding off upwards 
are given). 

The results of Table 6.1 show that already small values of T are suftleient to approxi­
mate W within the desired accuracy; even for high workloads p, this appears to hold. 
Besides, the required value for T to reach the desired accuracy appears to be decreasing as a 
function of the number of servers N (an equivalent property is that for a fixed value of T the 
absolute accuracy, and also the relative accuracy, are decreasing as a function of N; see the 
values inthelast column of Table 6.1). From these observations, we may condude that, at 
least with respect to the mean normalized waiting time, the original SSQS is accurately 
approximated by the TJ and TB model for already small values of the threshold parameter T, 
and that this especially holds for SSQS-s consisting of many servers. We note that further it 
may he verified that fora fixed value of T, the original SSQS is more accurately approximated 
by the TJ model than by the TB model (see also the results presenled in Table 1.8 and Figure 
1.9 for the SSQS with N = 2 servers). 

The results in the last but one column of Table 6.1 show that the mean normalized wait­
ing time Wis strongly increasing for large values of the workload p, and that Wis decreasing 
as a function of the number of servers N. It is noted that the behavior of the mean normalized 
waiting time Win the SSQS can he shown to he quite similar to the behavior of the mean nor­
malized waiting time WMtMtN in the corresponding M lM IN queueing system (recall that 
WM tM IN is equal to the mean normalized waiting time WTJ(T) in the TJ model with T= l, 
and study the values of W-WTJ(l); for the case with N=2 servers, some results for this 
difference are depicted in the second column of Table 1.8). This similarity can he exploited 
to obtain a simpte, closed-form approximation formula for W (and, possibly, also to further 
improve the approximation formula for the purely exponential case, which bas been presenled 
by Nelson and Philips [57]). 

There are two reasons for the fact that we have been able to delermine the mean normal­
ized waiting time W within the desired accuracy for systems with up to N = 50 servers and 
workloads up to p = 0.95. The first reason is that the bounds W11(T) and W18(D accurately 
approximate W for al ready smal! sizes of T, especially for large N, which provides that the TJ 
and TB model only have to be solved for relatively smal! sizes of the truncated state space. 
The second reason is that, as we already noticed in the previous section, the TJ and TB model 
can he solved very efficiently. This Jatter property is further discussed in the next paragraph. 
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p N T a Wu(D WTB(D w ö<n 
0.8 2 6 7 1.9552 1.9587 1.9570 0.0018 

5 4 70 0.7541 0.7581 0.7561 0.0021 
10 3 220 0.3557 0.3589 0.3573 0.0017 
15 3 680 0.2203 0.2206 0.2204 0.0002 
20 3 1540 0.1513 0.1514 0.1514 0.0001 
25 2 325 0.1098 0.1150 0.1124 0.0027 
30 2 465 0.0826 0.0843 0.0834 0.0009 
35 2 630 0.0637 0.0642 0.0640 0.0003 
40 2 820 0.0501 0.0502 0.0502 0.0001 
45 2 1035 0.0399 0.0400 0.0400 0.0001 
50 2 1275 0.0322 0.0322 0.0322 0.0001 

0.9 2 7 8 4.4744 4.4831 4.4787 0.0044 
5 5 126 1.7974 1.8049 1.8012 0.0038 

10 4 715 0.9130 0.9171 0.9151 0.0021 
15 4 3060 0.6155 0.6160 0.6158 0.0003 
20 3 1540 0.4636 0.4686 0.4661 0.0025 
25 3 2925 0.3702 0.3717 0.3710 0.0008 
30 3 4960 0.3063 0.3068 0.3066 0.0003 
35 3 7770 0.2595 0.2597 0.2596 0.0001 
40 3 11480 0.2237 0.2237 0.2237 0.0001 
45 3 16215 0.1953 0.1953 0.1953 0.0001 
50 3 22100 0.1722 0.1722 0.1722 0.0001 

0.95 2 9 10 9.4865 9.4914 9.4890 0.0025 
5 6 210 3.8269 3.8358 3.8314 0.0045 

10 5 2002 1.9571 1.9605 1.9588 0.0017 
15 4 3060 1.3349 1.3435 1.3392 0.0044 
20 4 8855 1.0223 1.0245 1.0234 0.0012 
25 4 20475 0.8330 0.8336 0.8333 0.0004 
30 4 40920 0.7053 0.7055 0.7054 0.0002 
35 3 7770 0.6127 0.6212 0.6169 0.0043 
40 3 11480 0.5422 0.5467 0.5445 0.0023 
45 3 16215 0.4864 0.4889 0.4877 0.0013 
50 3 22100 0.4411 0.4425 0.4418 0.0007 

Table 6.1. The results which are obtained for the detennination of the mean norrna1ized 
waiting time W within an absolute accuracy of Eabs =0.005 for varying values of the 

workload p and the number of servers N. 

For both the TJ and the TB model, the computational effort mainly consists of the deler­
mination of the veetors lt, y and p'f (rt only has to be deterrnined for the TB model), for which 
systems of equations of order a have to be solved. At the end of the previous section, we 
have established that the order of magnitude of the computation time Oc1 for solving these 
systems is equal to the expression given by (6.25). By studying the numbers of iterations for 
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p N T a 
Comp. Time 
(h:min:sec) 

0.8 10 3 220 0:00:08 
0.8 30 2 465 0:00:41 
0.8 50 2 1275 0:03:17 
0.9 10 4 715 0:00:55 
0.9 30 3 4960 0:14:35 
0.9 50 3 22100 2:04:13 
0.95 10 5 2002 0:03:56 
0.95 30 4 40920 4:26:37 
0.95 50 3 22100 3:00:51 

Tab1e 6.2. Computation times on a SUN werkstation forsome instances of Table 6.1 . 

the different systems of a equations that we had to solve for the results listed in Table 6.1, we 
empirically find that (for a fixed value of the absolute numerical accuracy with which the sys­
tems of equations are solved) for all these systems the number of iterations is proportional to 
N/(1-p), and thus we find that 

Oe1 = (l+rnin{N,T+l})a __!!____. (6.26) 
l-p 

For sufficiently large values of N, the computation time required to solve the other systems of 
equations may be neglected. As a result, we find that for sufficiently large N, the expression 
for Oe1 as stated in (6.26), also denotes the order of magnitude of the computation time for 
solving the whole TJ or TB model, and thus for the determination of WTJ(T) andlor WT8 (D. 
and it also denotes the order of magnitude of the computation time for the numerical pro­
cedure for the deterrnination of the meao normalized waiting time W within a given fixed 
accuracy. To give an impression of the computation times itself of the numerical procedure 
for the deterrnination of W, for some of the instances of Table 6.1 we have listed in Table 6.2 
the computation times which we obtained on a stanqard SUN workstation. It is finally noted 
that this machine had a memory space of 24 Megabyte, which has appeared to be about two 
or three times as much as needed for the instances of Table 6.1, but which will not be 
sufficient in case bound models with much larger values for N and T have to be solved. 

6.6. Conclusions 

In this chapter, we have applied the preeedenee relation metbod to the Symmetrie Shortest 
Queue System (SSQS) with N;::: 2 parallel servers, in order to obtain flexible truncation 
models which produce lower and upper bounds for the meao normalized waiting time. Due 
to the shortest queue routing, which causes a strong drift to the states with equal queue 
lengths, we have been able to construct a flexible lower bound model, called the Threshold 
Jockeying (TJ) model, and a flexible upper bound model, called the Threshold Blocking (TB) 
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model, which produce tight bounds for already small sizes of the truncated state space. Si nee 
besides, as we have seen, both flexible bound models can be solved very efficiently by the 
matrix-geometrie approach, the TJ and TB model are very appropriate for being exploited in 
a numerical procedure for the detennination of the mean normalized waiting time of the ori­
ginal SSQS within an arbitrary, given, absolute or relative accuracy. By developing such a 
procedure, we have been able to detennine this performance measure quite accurately for sys­
tems with many servers and high workloads (up to N = 50 servers and workloads up to 0.95). 
lt is noted that also for all other relevant performance measures it will be possible to deler­
mine them efficiently by exploiting flex.ible bound models derived by the preeedenee relation 
method. 
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Chapter7 

Flexible Bound Models for 

the Shortest Queue System with 

a Job-Dependent Parallelism 

7.1. Introduetion 

In Section 1.2 of the introductory chapter of this monograph, we have presented a multi­
dimensional queueing model stemming from the production of Printed Circuit Boards by a 
flexible assembly system. We have called this model the Shortest Queue System with a Job­
Dependent Parallelism (SQS-JDP), and we established that this model represented a generali­
zation of the Symmetrie Shortest Queue System (SSQS). The latter model was known to be 
al ready a hard problem, and therefore we focused on the SSQS first. Si nee the analysis of the 
previous chapter has pointed out that the SSQS can successfully be treated by exploiting 
flexible bound models derived by the preeedenee relation method, we may now return to the 
SQS-JDP to investigate whether this system also can be analyzed successfully by using flexi­
ble bound models. This constitutes the main objective of this chapter. 

It is noted that we would like to exploit flexible bound models for the SQS-JDP in a 
numerical procedure to determine the response times for a given assignment of components, 
which have to be mounted on the Printed Circuit Boards, to the parallel insertion machines of 
the flexible assembly system. Such a procedure could be a useful tooi for the selection of 
good assignments of the components; see also Section 1.2. 

As already noted in Section 1.2, the SQS-JDP or similar systems have hardly been stu­
died in the literature, despite the fact that they occur in several practical situations. To our 
knowledge, the SQS-JDP itself has only been studied in Adan et al. [7], in which approxima­
tions are given for the mean waiting times for all different job types. Further, models similar 
to the SQS-JDP have been studied by Schwartz [63] (see also Roque [61]), who also gives 
approximations for the mean waiting times, and by Green [37], who derives flexible trunca­
tion models which can efficiently be solved by the matrix-geometrie approach; see also Sec­
tion 1.2, where we have discussed these papers more extensively. Finally, Hassin and Haviv 
[40] have studied a two-dimensional SSQS (with Threshold Jockeying), where an arriving job 
has to pay a fixed amount of money if he wants to have inforrnation on which queue is the 
shortest This leads to a model, where an arriving jobs joins the shortest queue with 
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probability p and it joins a randomly chosen queue with probability 1-p. This model in fact 
is a generalization of the Threshold Jockeying model which we obtained as a bound model for 
the SSQS, and, in case the threshold parameter T is equal to infinity, it constitutes a special 
case of the SQS-JDP with N = 2 servers. 

In this chapter, we apply the preeedenee relation metbod to the SQS-JDP. We shall 
derive a flexible lower bound model, called the Threshold Killing and Rejection (TKR) 
model, and an upper bound model, called the Threshold Blocking and Addition (TBA) model, 
which produce bounds for many performance measures, among which the distributions, and 
thus also the means, of the normalized waiting times for all different job types and for all job 
types together. The TBA model is a generalization of the Threshold Blocking model, which 
in the previous chapter bas been used as an upper bound model for the SSQS, and the TKR 
model is a generalization of the Threshold Killing model, which in Chapter 5 bas been 
presented as one of the four lower bound models for the SSQS with N = 2 servers. Both the 
TKR and TBA model can be solved by the matrix-geometrie approach again (but, in this 
case, we obtain full rate matrices R, and therefore they cannot be solved as efficiently as the 
TJ and TB model of the previous chapter). The TKR and TBA model are exploited in a 
numerical procedure for the determination of the mean normalized waiting times in a SQS­
JDP with N = 2 servers, and numerical results will be presented to show how well the original 
SQS-JDP can be approximated by its bound models. 

The organization of this chapter is as follows. InSection 7.2, we describe the model for 
the SQS-JDP. The flexible bound models are derived in Section 7.3, and after that the solu­
tion of these models is discussed in Section 7.4. In Section 7.5, some numerical results are 
presented, and finally the conclusions are given inSection 7.6. 

7.2.Model 

The objective of this section is to describe a discrete-time, irreducible Markov cost model for 
the SQS-JDP, where direct cost functions are defined such that the corresponding average 
costs are equal to the mean normalized waiting times for the different job types. A side result 
that is obtained, is a condition for the ergooicity of a SQS-JDP. By a simple argument, it is 
shown that this condition is necessary for the ergodicity; after that, by studying a system 
which is identical to the SQS-JDP, but which bas a static routing insteadof the dynamic shor­
test queue routing, it is made plausible that this condition is also sufficient. Further, we shall 
define in which case a SQS-JDP is said to be balanced and/or symmetrie. 

Description ofthe Markov cost modelfor the SQS-JDP 

The SQS-JDP consists of N ~ 2 servers, which all have their own queue, and there are several 
types of jobs which must be served by the SQS-JDP. Because of technica! reasons, for ·exam­
ple, each server can only serve a restricted set of job types. It is assumed that all service 
times are exponentially distributed with the same parameter J.1 > 0; note that this implies that 
the service times are independent of the job type and that all servers work equally fast. Furth­
ermore, it is assumed that for each job type, the jobs arrive according to a Poisson stream, and 
that each arriving job joins the shortest queue of all queues where the job can be served (ties 
are broken with equal probabilities). In Figure 7.1, we have depicted a SQS-JDP with N=2 



7.2. Model 175 

AB 

AC 

Figure 7.1. A SQS-JDP with N =1 servers and 3 job types. 

servers and three types of jobs: jobs of type A, which arrive with intensity ÀA and which can 
be served by both servers, jobs of type B, which arrive with intensity À8 and which can only 
be served by server I, and jobs of type C, which arrive with intensity Àc and which must be 
served by server 2. 

We introduce the following notations. The servers are numbered 1, ... , N and the set 1 
is defined by 1 := { 1, ... ,N}. Let the set J contain the job types. For each j EJ, we let lU) 
denote the set of servers which can serve the jobs of type j. Assume that each job type can be 
served by at least one server and that each server can handle at least one job type; so, 1 U) t:. 0 
for all jE J, and u j el I U)= 1. Further, for each jE J, the arrival intensity of the Poisson 
stream of the jobs of type j is given by Àj > 0, and À:= r.j eJ Àj denotes the total arrival inten­
sity. For simplicity, we assume that time is scaled such that À+ Nll = 1. Finally, the average 
workload per server is given by p = ÀI(Nil); it is obvious that we at least must satisfy the con­
dition that p < 1 in order to have an ergodie system. 

For the application of the preeedenee relation method, it is required that the SQS-IDP is 
modeled as a discrete-time, irreducible Markov process. This is done as follows. Assume 
that the servers always work, but that a service completion is only accompanied by a depar­
ture of a job if there is a job present in the corresponding queue. Then the behavior of the 
SQS-IDP may be described by the discrete-time, irreducible Markov process on the time 
instanis right after job arrivals and service completions, and with states (m 1, • •• , mN ), where 
m; denotes the length of the queue at server i, i EI Uobs in service are included). So, the state 
space is equal to 

M = { m I m = (m 1, ... , mN) with m; E IN o for all i EI } . (7.1) 

Let the transition probabilities be denoted by qm,n . In Figure 7.2, we have depicted the transi­
tion probabilities for the SQS-JDP of Figure 7 .1. 

The performance measures we are interested in are the mean normalized waiting times 
W(j) for all job types j EJ, and the mean normalized waiting time for all job types together, 
which is equal to 

À· 
w = 1: - 1 wu>; (7.2) 

jeJ À 

here, the normalized waiting time is defined as the waiting time divided by the mean service 
time. lt is obvious that for each j E J, 
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À.éÀ.B Jl / 
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,/ \12Ä.A+À.B Jl À.B 

Figure 7 .2. The transition probabilities for the discrete-time, irreducible Markov process 
for the SQS-JDP depicted in Figure 7 .I. 

WUl =LUl 
sq ' (7.3) 

where LCjJ denotes the mean of the shortest queue length of the queues at the servers ie I(}) . 
We thus find that wU> is equal to the average costs corresponding to the direct cost function 
c Ul (m) defined by 

cU>(m) = min mi for all m=(m 1, ••• ,mN)eM, }el. 
ie/U) 

This completes the description of the Markov cost model for the SQS-JDP. 

A simple, necessary condition for the ergodicity of the SQS-JDP 

(7.4) 

By studying the routing of the jobs, we obtain a simple, necessary condition for the ergodicity 
of the SQS-JDP. For each subset 1' c J, J * 0, jobs of the types j e J' arrive with an intensity 
equal to I:.j el' Àj and they must be served by the servers u j el' I(}). This shows that the 
SQS-JDP can only be ergodie if the following condition is satisfied: 

l: Àj < I u I(j) I J.l. for all J'cl, 1' * 0. (7.5) 
jeJ' jeJ' 

Note that for 1' = J, this inequality is equivalent to p < I. For the SQS-JDP of Figure 7 .I, 
condition (7.5) states that for the ergodicity at least the inequalities /...8 < Jl, Àc < 1.1 and À< 2J.l. 
(or p < 1) must be satisfied. 

Condition (7.5) is expected to be also sufficient for the ergodicity of the SQS-JDP. This 
is argued by consictering so-called corresponding static systems. 

A corresponding static system is a system that is identical to the SQS-JDP, but which 
uses a static routing instead of the dynamic shortest queue routing to route the arriving jobs to 
the servers. Such a static routing is described by discrete distributions fxPllie/Ul• }el, 
where for each je J and ie I(}), the variabie xP> denotes the probability with which an 
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arriving job of type j is sent to server i. Under a static routing, for each je J the Poisson 
strearn of arriving jobs of type j may be divided into Poisson strearns with intensities 
Xj.i = Ájxp>, iE I (j), for arrivals of jobs of type j which join server i, and we obtain that the 
queues at the servers i EI constitute independent M I M 11 queues with identical mean service 
times equal to l.tll and with arrival intensities r.j eJ, (j,i)eA Xj,i• where 

A := { (j,i) Ij E J, iE I and ie I (j)} . 

As a result, we obtain a simple necessary and sufficient condition for the ergodicity of a 
corresponding static system, viz. 

l: Xj,i < I! for all i el. 
j eJ 

(j,i)eA 

The observation that in situations with many jobs in the system the shortest queue rout­
ing will balance the queue lengths better (or at least equally good) than any static routing 
(more specifically, the shortest queue routing will better control the maximum queue length), 
leads to the conjecture that if there is a corresponding static system which is ergodic, then the 
SQS-JDP itself will also be ergodic. Further, from Lemma 7.1 stated below it follows that 
condition (7.5) guarantees that there exists a corresponding static system which is ergodic. 
By combining these two results, we find that it is reasonable to expect that condition (7.5) is 
not only necessary but also sufficient for the ergodicity of the SQS-JDP. 

Lemma 7.1. 

Condition (7.5) is necessary and sufficient for the existence of a corresponding static system 
which is ergodic. 

Proof. 
The necessity follows by the same argumentsas used when deriving condition (7.5) for the 
SQS-JDP. For the sufficiency, we prove that condition (7.5) implies that there exists a nonne­
gative solution {xj,i }(j,i)eA• with the set A defined as above, of the following equations and 
inequalities: 

L xj,i = Áj for all jE J, L xj,i < IJ. for all ie/; (7.6) 
ie/ jeJ 

(j,i) eA (j,i) eA 

the equalities in (7.6) guarantee that the solution {xj,i }(j,il eA corresponds to discrete distribu­
tions {xp> }; e/(j) which describe a static routing, and the inequalities in (7.6) must be satisfied 
for the ergodicity. 

Assume that condition (7.5) is satisfied. To prove that there exists a nonnegative solu­
~on {xj,i }(j,i)eA of (7.6), A we consider ~ transpor/ation problem with supply nodes 
V 1 =Ju {0}, demand nodes V2 =I, and arcs A= Au { (O,i) I ie I} (supply node 0 denotes an 
extra type of jobs, which may be served by all servers). De fine the supplies a j by a j = Áj for 
all je V1 \{0} and ao =NIJ.-Á-NE, where 

min I U j el' I (j) I Jl - r.j eJ' Áj 
E := J'cJ . 

r~ 0 IUj eJ'I(j)l 

(from (7.5), it follows that E > 0, and ao ~0 since by taldog J' =]we obtain the inequality 
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E$(N~-À)/N). Further, wedefine the demands b; by b;=J.L-E for all ieV2 ; note that 
l:jeV, .. aj=l:;ev1 b;. For this transportation problem, we satisfy condition (5.25) stated in 
Lemma 5.4 (distinguish between the two cases Oe U and Oe: U, to verify this). So, we find 
that there exists a feasible flow for the transportation problem, i.e. there exists a nonnegative 
solution {x j,;} U.i) eÄ of the equations 

~ xi.i =ai forallje\ÎI, I;_ xj,i = b; forallie\Î2• 

ieV1 jeV1• 

U.i)eÁ U.i)eA 

It is easily seen that then the solution {xj,;}U,i)eA defined by xj,;=xj,i for all U,i)eA, is a 
nonnegative solution of (7.6), which compieles the proof. 0 

Balanced and symmetrie systems 

From a practical point of view, for a SQS-JDP it is desirabie that the job-dependent structure 
is such that the workloads for the different serverscan be balanced. Formally, we say that a 
SQS-JDP is balanced, if there exists a corresponding static system for which the queues at all 
servers constitute M I M I I queues with equal workloads. This means that there must exist 
discrete distributions {x~illie/U) such that for each server ie/, the arrival intensity 
l:jeJ,(j,i)eAXj,i is equal to ÀIN=pJl, where Xj,;=Àjxp> for all jeJ and ie/U) and 
A = { U. i) I jE 1, iE I and ie I U) } . Such discrete distributions exist if and only if there 
exists a nonnegative solution { xj.i} (j,i) e A of the equations 

L xj,i = Àj forallje1, L xj,i = 2:_ forall ie/. (7.7) 
iel jeJ N 

(j,i)eA (j,i)eA 

These equations are the equations which must be satisfied by a feasible flow for the transpor­
talion problem with supply nodes V I =1, demand nodes V2 =I, arcs A, supplies ai =À. i for all 
jE V I and demands b; = À/N for all ie V 2 . Applying Lemma 5.4 shows that a necessary and 
sufficient condition for the existence of a nonnegative solution of (7.7), and thus also for a 
SQS-JDP to be balanced, is given by: 

L Àj $ I u /U) I 2:_ for all 1'cJ. (7.8) 
jeJ' jeJ' N 

Note that for J' =0 and J' =1, this condition is satisfied by definition. Further, it follows that 
a balanced SQS-JDP satisfies condition (7.5) if and only if p < I. So, for a balanced SQS­
JDP, the simple condition p < l is not only necessary for the ergodicity, but it may be 

expected to be also sufficient. 

If a SQS-JDP is balanced, i.e. if there exists a static routing under which the workloads 
for the servers of the system are balanced, then this does not necessarily mean that these 
workloads are also balanced under the shortest queue routing. This can be seen by consider­
ing the SQS-JDP depicted in Figure 7.1. According to condition (7.8), this SQS-JDP is bal­
anced if and only if 1..8 $ 1hÀ. and Àc $ 1/zÀ., i.e. if and only if 1..8 $ ÀA + Àc and Àc $ ÀA + 1..8 . 

This condition is obviously satisfied if we take Àc = À.A + 1..8 . For this case, equal workloads 
for both servers can only be obtained if all jobs of type A are sent to server I. But, under the 
shortest queue routing, there always will occur situations in which jobs of type A are sent to 
server 2, and therefore server 2 wil! have a higher workload than server I . Nevertheless, it is 
expected that for a balanced SQS-JDP, the shortest queue routing at least ensures that the 
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workloads for all servers will not differ too much. 

A subclass of balanced systems is constituted by the symmetrie systems. A SQS-JDP is 
said to be symmetrie, if 

À(/1) = À(/2) for alllt.I2c./ with l/1l = l/2l, 

where 

À(/') := L Àj ' I' c.I. 
jeJ 

IU)=l' 

(7.9) 

So, a SQS-JDP is symmetrie, if for all subsets I' c.J with the same number of servers I I' I , the 
arrival intensity À(/') for the jobs which can be served by precisely the servers of I', is the 
same. The SQS-JDP of Figure 7.1 is symmetrie if "A.8 ="A.c. 

For a symmetrie SQS-JDP, all queue lengtbs are equally distributed which implies that 
all servers have equal workloads. The behavior of a symmetrie SQS-JDP may be described 
by a Markov process with states (m 1, ... , mN ), where m; denotes the length of the i-th shor­
test queue, ie/. In this case, we can derive preeedenee pairs of the type (m,m+e;-ej), i> j. 
As a consequenee, by using the preeedenee relation method, it can be shown that a symmetrie 
SQS-JDP has a stochastically smaller number of jobs, and thus also a smaller mean normal­
ized waiting time for all job types together, than the corresponding system consisting of N 
independent M I M 11 queues with workload p (see also Remark 5.1 ). So, it may be con­
cluded that p < 1 is a neeessary and suftkient condition for the ergodicity of a symmetrie 
SQS-JDP. Further, it can be shown that fora symmetrie SQS-JDP, the shortest queue routing 
minimizes the total number of jobs in the system and thus also the mean normalired waiting 
time (this may be done by the technique used by Hordijk and Koole [43,44]). 

7.3. Application ofthe preeedenee relation metbod 

In this section, we apply the preeedenee relation metbod to the Markov cost model for a gen­
eral SQS-JDP. We shall derive two ftexible truncation models, which lead to lower and upper 
bounds for the mean normalired waiting times wU> for the different job types je J, and, by 
(7.2), also to lower and upper bounds for the mean normalized waiting time W for all job 
types together. 

The first step of the preeedenee relation method consists of the derivation of preeedenee 
pairs (m,n), m,n eM. For the cost functions cU>(m) given by (7.4), which all are nondeereas­
ing in each component, we can derive preeedenee pairs of the type (m,m+e;) (it is noted that 
for a general SQS-JDP, we cannot derive preeedenee pairs of the type (m,m+e;-ej), with 
m; ';;!mi, also not in case the cost functions cU>(m) would be defined such that 
cU>(m) ~ cU>(n) for pairs (m,n) of this type). Wedefine 

P = { (m,n) I m,n eM and n =m+e; forsomeiel) , (7.10) 

and the corresponding completed set P • is given by 

p• = { (m,n) I m,n eM and m s;n), (7.11) 

where the inequality m s; n for two veetors m and n means that m must be smaller than or 
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equal to n in each component. That the sets P and P • consist of preeedenee pairs is proved 
by applying Lemma 5.1. 

Lemma 7.2. 

The set P defined by (7. 10) and the corresponding completed set P • given by (7. 11) consist of 

preeedenee pairs for all cost Junelions c (m) which are nondecreasing in each component. 

Proof. 

Consider the Markov cost model with direct cost function c (m ), and assume that c (m) is non­
decreasing in each component. Further, let the functions v1(m) denote the r-period costs 
Applying Lemma 5.1 shows that we must prove that 

L Qm,rV1(r) ~ L Qn,rV1(r) for all (m,n)EP, (7.12) 
rEM 

q"'·'>O 
rEM 

q"_,>O 

where it is known that v1(m) ~ v1(n) for all (m,n) EP • and t is a fixed nonnegative integer. 

In the Markov cost model for the SQS-JDP, for each statemeM all outgoing transitions 
are due to service completions and arrivals of jobs, and it holds that 

I L Qm,r v,(r) = L ll v,(r;(m)) + L À.j L 
rEM iEl jEJ iEIU;m) 

1/(j;m)l v,(m+e;) • (7.13) 

qiiiii,,>O 

where r;(m) denotes the unique state to which a transition is made if a Markov process is in 
state m and a service completion at server i occurs, and I (i ;m) denotes the set of states to 
which transitions may be made if the Markov process is in state m and a job of type j arrives 
at the system, i.e. I (i ;m) denotes the servers of I (i) for which the corresponding queues are 
the shortest: 

l(j;m) = { ie/(j) I m;= min mk}. (7.14) 
kEIU) 

Exploiting (7.13) shows that for the proof of (7.12) it suffices to prove that for all (m,n) EP, 

v1(r;(m)) ~ v1(r;(n)) for all i el; (7.15) 

1 I L l/(j·,m)l v,(m+e;) ~ I, v,(n+e;) foralljeJ. 
iEIU;m) iEIU;n) 1/(j;n)J 

(7.16) 

Let (m,n)eP with n=m+e1 forsome lel. We first prove (7.15) fora given ie/. lt 
suffices to show that r;(m) ~ r;(n), since, according to the set p•, this implies that 
v1 (r;(m))~v1 (r;(n)). We distinguish three cases: 

- m;=Oandi=l: Thenr;(m)=m=n-e;=r;(n). 

- m;=Oand i'* l: Then alson;=O, and r;(m)=m ~n =r;(n). 

- m; > 0: In this case, we find r;(m)=m-e; ~n-e; =r;(n). 

The proof of (7 .16) fora given je J is slightly more complicated. We again distinguish 
three cases: 

- l û (i ;m ): Then I (i ;n) =I (i ;m ), and the inequality stated in (7 .15) immediately fol­
lows from the property that m+e; ~n+e; for all ie /(i ;m). 
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- l E I U ;m) and I/ U ;m) I = 1: In this case, we find that 

1 1 I: . 1 v1(m+e;) = v1(m+e,) = v1(n) :s; L v1(n+e;). 
iel(j;m) IIU;m) iel(j;n) IIU;n)l 

- leiU;m)and IIU;m)l <?:2: TheniU;n)=lU;m)\{l},and 

~ .1 ( ) .LJ _ ___:. __ v1 m+e; = 
iel(j;m) IIU;m)l 

1 1 
. v1(n) + L . v1(m+e;) 

IIU;m)l iel<J;n> IIU;m)l 

1 1 
:s; L . . v1(n+e;) + I: v1(n+e;) 

ie/(j;n) IIU;m)IIIU;n)l iel(j;n) IIU;m)l 

1 
I: IIU;n)l v,(n+e;). 

i e/(j;n) 

Thîs compieles the proof of Lemma 7.2. 
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The second step of the preeedenee relation method consists of the definition of ftexible 
bound models. By using the preeedenee pairs given by p•, we derive the following two flexi­
ble bounds models: 

* Threshold Killing and Rejection (TKR): 
Because of the shortest queue routing, in general there will be a drift to the states with 
equal queue lengths. Therefore, we define the truncated state space M' by 

M' = {meM I m =(m~o ... ,mN) and m; ;S;min(m)+T; for all i El}, (7.17) 

where min(m) :=min; e 1 m; and T 1 , ••• , T N are positive integers. The definition of M' 
shows that a state m e M is contained in the truncated state space M' if and only if for 
each i EI the length m; of the queue at server i is at most T; larger than the length of any 
other queue. The variables T; are called the threshold parameters and they are contained 
in the threshold vector T = (T 1 , ••• , T N ). 

For the truncated state space M' defined by (7.17), there are two types of transitions 
pointing from states inside M' to states outside M': transitions due to service compie­
tions and transitions due to arrivals of new jobs. Let m = (m 1 •••. , mN) e M' be a state 
for which the set I' = { i eI I m; = min(m) + T; } is not empty. If min(m) > 0, then a ser­
vice completion at one of the servers or queues-keI with mk = min(m) leads to a transi­
tion from m to state n =m-ek ~M'. This transition occurs with probability J.l and is 
redirected to the staten'= m-ek-l:.i el' e;, which is more attractive than staten according 
to the set P •. Further, an arrival of a new job at one of the queues iE I' leads toa transi­
tion from m to the state n =m+e; f.M'. This transition occurs with probability 
l:.j el IJ U ;m) 1-1 Àj I {i e/(j;m)J, where I U ;m) is defined by (7 .14) (note that this proba­
bility may be equal to 0), and this transition is redirected to the more attractive state 
n' =m itself. 
The physical interpretation of the redirections of the first type is that a departure of a job 
at a non-empty shortest queue is accompanied by a destruction or killing of one job at 
each of the queues iE I', for which the difference with respect to the shortest queues has 
already reached its maximum value T;. The physical interpretation of the redirections of 
the second type is that a new job arriving at one of the servers i EI' is rejected. There­
fore, the truncation model obtained by these redirections, is called the Threshold Killing 
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and Rejection (TKR) model. Since all transitions ending in states outside M' have been 
re,directed to more attractive stales inside M', the TKR modelleads to lower bounds for 
all average costs corresponding to direct cost functions c(m) which are nondecreasing in 
each component. 

* Threshold Blocking and Addition (TBA): 
To obtain an upper bound model, the same truncated state space M' is taken as for the 
TKR model, but the transitions ending in states outside M' are redirected to less attrac­
tive states. For each m = (m 1, . • . , mN) E M' with I'= { iE I I m; = rnin(m )+ T; } :;t 0, the 
transitions from state m to stales n outside of M' are redirected as follows. If 
rnin(m) > 0, then the transition from m to n =m-ek ~ M', which is due to a service com­
pletion at a serverkEI with mk =rnin(m), is redirected to the less attractive staten' =m 
itself. This means that if for some queues the difference with respect to the shortest 
queues has already reached its maximum value, then a service completion at a non­
empty shortest queue is not accompanied by a departure, and the job in service has to be 
served once more; (because of the memory-less property of the exponential service 
times) this is equivalent to saying that then the servers at the shortest queues are 
blocked. Further, for each iel', the transition from statem to state n=m+e;~M', 
which is due to an arrival of a new job at queue i, is redirected to the less attractive state 
n'=m+e;+:Ekeloq ek with lsq = { ke/1 mk=min(m) }. This means that an arrival of a 

new job at one of the queues for which the difference with respect to the shortest queues 
has al ready reached its maximum value, is accompanied by the addition of one extra job 
at each of the shortest queues. The upper bound model that js obtained by these redirec­
tions, is called the Threshold Blocking and Addition (TBA) model, and it leads to upper 
bounds for all average costs corresponding to direct cost functions c (m) which are non­

. decreasing in each component. 

In Figure 7.3, we have depicted the lower and upper bound model which are obtained for the 
SQS-FDP of Figure 7 .1. 

Since the TKR and TBA model are bound models for all cost functions c (m) which are 
nondecreasing in each component, they lead to lower and upper bounds for the distribution 
and all moments of the shortest queue length of the queues at the servers i eI U). where je J. 
As a result, it may be shown that they also lead to lower and upper bounds for the distribu­
tions and all moments of the norrnalized waiting times for the different job types je J and for 
all job types together. However, in this chapter we only focus on the bounds for the means of 
the norrnalized waiting times. 

For the cost function cUl(m) given by (7.4), the TKR and TBA model produce bounds 
for the mean normalized waiting time wUl for job type j el, which are denoted by WYtR(Î") 
and wYJA (Î"), where T = (T 1 , .. . , T N) is the threshold vector which delermines the si ze of the 
truncated state space M'. The corresponding bounds for the mean norrnalized waiting time 
W for all job types together are given by (cf. (7.2)) 

WrxRCD = k { WY)R(t) and WTBA(Î") = k ~ WYJA(t) . (7.18) 
jeJ JE} 

lt is noted that the lower bounds WY)R(Î") and WrxR(Î") are somewhat larger than the normal­
ized waiting times (i.e. the waiting times divided by the mean 11}! of one regular service) in 
the TKR model itself, and that the upper bounds WYk<D and Wr8A(Î") are somewhat smaller 
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Figure 7.3. The redirections for the two ftexible bound models which are obtained for the 
SQS-JDP depicted in Figure 7.1. For both models, the threshold vector has been taken 
equal to T=(3,3). 

than the nonnalized waiting times in the TBA model itself; see also Remark 6.1. 
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By deriving preeedenee pairs of the type (m,m+e;) for the TKR and TBA model itself 
and applying the preeedenee relation method, it may be shown that the lower · bounds 
WYfR(Î') and WTKR(Î') are monotonously non-decreasing and the upper bounds WYÀA(Î') and 
WTBA(Î') are monotonously non-increasing for increasing values of one or more threshold 
parameters T;. Since besides the bounds WYtR(Î') and WYÀA (Î') will tend to wU> for all jE 1 
and the bounds WTKR(Î') and WTaA(Î') will tend to Was T; ~oo for each i el, i.e. as 
T=(T~o ... , TN)~(oo, ... ,oo), we find that 

WYtR(Î') î wU> and WYÀA (Î') J.. wu> for al~ je 1, (7 .19) 

(7.20) 

as T ~ (oo, ... , oo). This shows that the mean nonnalized waiting times wU> and W can be 

determined as accurately as desired by computing the corresponding Jower and upper bounds 
for increasing values of the parameters T; of the threshold vector t. In Section 7 .5, it wiJl be 
investigated whether this leads to an efficient procedure; the efficiency is expected to depend 
mainly on how well the TKR and TBA model approximate the original model for the SQS­
JSP, i.e. on the strength of the drift to the states with equal queue lengths (note that, to obtain 
a sufficiently strong drift to these states, a SQS-JDP must at least be balanced). But first, in 
Sec ti on 7 .4, we discuss the computation of the bounds itself. 
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7.4. Solving the ftexible bound models by thematrix-geometrie approach 

Just as the two ftexible bound models which we derived for the SSQS in the previous chapter, 
the TKR and TBA model can be solved by the matrix-geometrie approach. Therefore, the 
bounds produced by the TKR and TBA model can be computed quite efficiently. However, 
since in this case we obtain full rate matrices R, unfortunately, they cannot be computed as 
efficiently as the bounds for the SSQS. 

Assume that the model parameters for the SQS-JDP and the threshold vector f = 
(T 1, ... , T N) are given. Then we have a discrete-time, irreducible Markov process for the 
original model, and similarly for the TKR and TBA model. Next, assume that condition (7.5) 
is satisfied, by which it may be expected that the Markov process for the original model is 
positive recurrent (= ergodic), and thus also that the Markov process for the TKR model is 
positive recurrent. 

For both the TKR and TBA model, the truncated statespace M' is given by (7.17). The 
transition probabilities and equilibrium probabilities are denoted by q::;,n and p::;, respec­
tively, where the indices tr may be replaced by TKR oe TBA . 

On bchalf of the application of the matrix-geometrie approach, the state space M' is par­
tioned into levels M/: 

M/ = { m e M' I rnin(m) = l ) for all/ ~ 0. 

It is easily verified that each level M/ contains 

a= L n T; = Il(T;+l)-IlT; 
/'cl if.l' 

l'-#121 
i e l ie/ 

states; note that a = 1 + T 1 + T 2 if N = 2. Within each level M/ the states are lexicographically 
ordered, the vector pt denotes the equilibrium probabilities p::; for the states m of level M/, 
and p tr is equal to (pl{,p'{, · · · ). The transition matrix P'r is of the form 

Bl Ao 0 0 0 

A2 Al Ao 0 0 
ptr = 0 A2 Al Ao 0 (7.21) 

0 0 A2 Al Ao 

where A 0 , A 1, A 2 and B 1 are squared, real-valued, nonnegative matrices of order a. 

For the existence of the equilibrium distribution (p::;}, it is required that we have a posi­
tive recurrent Markov process. The Markov process with transition matrix P" may be shown 
to be positive recurrent if and only if 

(7.22) 

where n: = (n:1, . • . ,11:0 ) is the unique equilibrium distribution of the fini te, discrete-time, 
irreducible Markov process with transition matrix A :=Ao+A 1+A 2 (cf. Theorem 1.3.2 of 
[58]). Condition (7.22) provides us with a simple, necessary and suftleient condition for the 
positive recurrence. Although, under the assumption that condition (7.5) is satisfied, the TKR 
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model is expected to be positive recurrent, we nevertheless advise to check whether condition 
(7.22) is satisfied for this model. lf condition (7.22) is not satisfied, then the bounds w~P<D 
and W,,(Î) may be taken equal to oo, else they can be obtained from the equilibrium distribu­
tion {p::; }, as described below. 

Now, suppose that condition (7.22) is satisfied. Then, by applying Theorem 1.3.2 of 
[58], we find that 

pj' = p[) R 1 for alll ~ 0, (7.23) 

where the a x a matrix R is the minimal nonnegative solution of the quadratic matrix equation 

R = A 0 +RA 1 +R2A 2 • (7.24) 

The matrix R is called the rate matrix and has a speetral radius sp (R) smaller than 1; it is 
noted that R may be obtained by performing successive substitutions in (7.24), where R =0 is 
used as starting matrix. By thematrix-geometrie result stated in (7.23), all equilibrium proba­
hilities are known, once the probability vector p[) is determined. The vector p[) is character­
ized as the unique solution of the linear equations 

p[) = p[) (8 1 +RA2). p[) (l-R)-1e = l, (7.25) 

which are obtained by substituting (7.23) into the equilibrium equations for the states of level 
Mó and into the normalization equation. 

After having determined the rate matrix R and the probability vector p[), we can com­
pute the bounds w,t>ci) and W"(Î) as follows. For each j e J, the bound w,t>ci) is equal to 
the average costs corresponding to the direct cost function cUl(m) given by (7.4). Let the 
column vector cp> contain the direct costs c Ul (m) for all states m of level MI. Then 

cp> = cU> + l e for all/ ~ 0, 

and, by using this result and thematrix-geometrie result stated in (7.23), we find that 

wU>ci) = Ï:.P!'cfi> = Ï:,p[)R1(cY>+le) 
1=0 1=0 

(7.26) 

The bound W"(Î) follows from its definition given in (7 .18). 

Contrary to the rate matrices R for the bound models which we derived for the SSQS in 
the previous chapter, the rate matrices R for the TKR and TBA model have almost no zero 
rows. As a consequence, for both the TKR and TBA model, the determination of the rate 
matrix R requires a large computational effort, and it constitutes the main part of the compu­
tation time required for the determination of the bounds wjtJ(Î) and W"(Î). For that reason, 
it is important that R is determined as efficiently as possible, and therefore we shall use the 
algorithm 'Ex', as developed by Latouche and Ramaswami [52], instead of the metbod of 
successive substitutions. This algorithm provides that, for a given threshold vector 'Î, the 
order of magnitude of the computation time Ocr is restricted to Ocr =a 3; note that Ocr does 
notdepend on the workload p. 
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7 .5. Numerical results 

In this section, we present some numerical results obtained by a numerical procedure which 
we have developed for the determination of the mean normalired waiting times for the SQS­
JDP depicted in Figure 7 .1, and which has been based on the bounds produced by the TKR 
and TBA model. The main purpose of this section is to investigate how the values for the 
threshold parameters T 1 and T 2 which are needed to approximate the mean normalized wait­
ing times within the desired accuracy, depend on the model parameters. In particular, we are 
interested in the dependenee on the model parameters which determine the drift to the states 
with equal queue lengths. 

The procedure that we have developed for the SQS-JDP of Figure 7 .1, determines for a 
given instanee satisfying condition (7.5), all mean normalired waiting times wUl for the job 
types jel={A,B,C) and the mean normalized waiting time W for all job types together 
within a given, absolute accuracy Eabs· Condition (7.5) is a necessary condition for the ergo­
dicity of a SQS-JDP. Up to now, the numerical procedure has always found a threshold vec­
tor T for which the TBA model is positive recurrent(= ergodic), which supports the conjec­
ture that condition (7.5) is not only necessary but also suftleient for the ergodicity of a SQS­
JDP. Under the assumption that this conjecture indeed is true, the TKR model is positive 
recurrent for all threshold veetors f. and thus it always produces finite bounds WYtR(Î) and 
WrKR(Î). In the case that we have this latter property, the numerical procedure works as fol­
lows. 

By exploiting the results of the previous section, the lower bounds wY)R(Î) and 
WTKR(Î) and the upper bounds wYJA(Î) and W 18A(Î) are computed for increasing values of 
the threshold parameters T 1 and T 2 of the vector T = (T 1 , T 2 ), where initially T = ( l, l) is 
taken. For each vector 'Î', the mean CWY)R(Î)+WYJA(Î))/2 and half of the difference, i.e. 
~U)(Î)=(WYÀA('Î')-WY)R(Î))/2, are used as an approximation for wUl and an upper bound 
for the corresponding absolute inaccuracy, where jE J, and similarly (WrKR(Î)+W18A(Î))I2 
and ~(Î)=(W18A('Î')-WrKR(Î))I2 are used as an approximation and an upper bound for the 
corresponding absolute inaccuracy for W. Here, all means and upper bounds ~Ul(i) and ~(Î) 
are taken equal to oo, if the TBA model is not positive recurrent. If for some T each of the 
upper bounds ~Ul(f) and ~(Î) is smaller than or equal to Eabs• then the computation process 
is stopped, otherwise the procedure continoes with the computation of improved bounds and 
approximations for a next threshold vector T with increased values for at least one of the 
threshold parameters T 1 and T 2• In the latter case, the decision on how to increase the thres­
hold parameters is based on the fractions of redirections Prd( 1) and Prd(2); this decision is 
described in the next paragraph. 

The variabie Prd( I) is used to denote the fraction of periods in which a redirection occurs 
on the boundary m 1 =m2+T 1 of the truncated state space. If for the present threshold vector 
T only the TKR model is positive recurrent, then we let p1,(1) denote the fraction for this 
TKR model, else we let p1,( 1) denote the mean of the fraction found for the TKR model and 
the fraction found for the TBA model. Similarly, p1r(2) is used to denote the fraction of 
periods in which a redirection occurs on the boundary m 2 = m 1 + T 2 of the truncated state 
space. Both fractions can be computed in a similar way as the bounds for the mean normal­
ized waiting times wvl. The higher the values of Prd(l) and Prd(2), the more important it is 
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to increase the values of T 1 and T 2 , respectively. If it is established that for the present thres­
hold vector T the desired accuracy for the approximations for the mean nonnalized waiting 
times wUl and W is not reached yet, then in our numerical procedure, the value of T 1 is 
increased by l if PtrC I)> Prd(2), the value of T 2 is increased by I if P1r(2) > Prd( I), and both 
T 1 and T 2 are increased by 1 unit if PtrCl) = Prd(2). No te that for a symmetrie SQS-JDP, the 
fractions PtrCl) and P1r(2) will always be equal, by which the numerical procedure wil! com­
pute the bounds and approximations for wUl and W for the successive threshold veetors 
T=C1,1),(2,2), · · ·. 

The numerical procedure described above has been applied to three series of instances 
for the SQS-JDP of Figure 7.1. For all instances, the absolute accuracy Eabs has been taken 
equal to Eabs =0.005. Further, the instanee with 

(7.27) 

(note that J.1 is uniquely determined by the assumption that À.+2J.1= 1) has been taken as a basic 
instance. Since 1..8 = À.c. this instanee represents a symmetrie SQS-JDP. 

The following three series of instances have been considered. In the first series, we have 
varied the workload p of the basic instance. All instances of this series represent a symmetrie 
SQS-JDP, and the corresponding results obtained by the numerical procedure are presenled in 
Table 7.1. The first column of this table denotes the chosen values for p, while the second 
column depiets the values of the parameters T 1 and T 2 of the first threshold vector 
T = (T 1o T 2) for which the desired absolute accuracy Eabs was reached; note that T 1 = T 2 

because of the symmetry. In the third, fifth and seventh column, we have listed the approxi­
mations which for this threshold vector T have been obtained for W(A), w<Bl = W(C) (because 
of the symmetry, also the waiting times for the types B and Care equal) and W; and, in the 
fourth, sixth and eighth column, we have listed the upper bounds t:.<Al(f), tJ,.<8 l(Î")=ti.(C)(Î") 

and tJ.(Î") for the corresponding absolute inaccuracies (it is noted that for these variables the 
values obtained by rounding off upwards are given). In the second series of instances, we 
have varied the fraction p of the arriving jobs which can be served by both servers. Also the 
instances of this series represent symmetrie systems, and the numerical results for this series 
are presenled in Table 7.2. The third series concernsinstances for which the SQS-JDP is not 
symmetrie, but still balanced. In this series, we have varied the values of 1..8 and À.c, under 
the restrietion that 1..8+À.c='l'2À.. We have taken À.8 = 1l2pÀ. and À.c= 1h(l-p)À., where p is 
varied from 0.0 up to 0.5; cases with p > 0.5 have nÖt been considered, since they lead to the 
same results as the cases with p < 0.5, but with the roles of the types B and C interchanged. 
The results obtained for this third series have been presenled in Table 7.3. The Tables 7.2 
and 7.3 contain about the same information as Table 7 .I, and therefore these tables need no 
further explanation. 

The results in Table 7.1 show that, as expected, the threshold parameters T 1 and T 2 

which are needed to approximate the mean norrnalized waiting times within the desired abso­
lute accuracy, are increasing as a function of the workload p. Further, the results in the 
Tables 7.2 and 7.3 show how the required values forT 1 and T 2 depend on the strengthof the 
drift to the states with equal queue lengths, i.e. to the states on the diagonal. In Table 7.2, a 
smaller value for p corresponds to a weaker drift to the stales on the diagonal. From this 
table, it follows that the weaker the drift to the diagonal, the larger the required values for T 1 

and T 2 • We also see that very large values for T 1 and T 2 are needed, if the drift to the diago­
nat is very smal!. In the extreme case with p =0.0, in which the corresponding SQS-JDP 
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p T1 =T2 w<A> !:J.<"'>cn w<B>=w<c> I:J.O('Î) w I:J.(i) 

0.1 2 0.0146 0.0006 0.1059 0.0007 0.0603 0.0006 
0.2 3 0.0558 0.0006 0.2282 0.0008 0.1420 0.0007 
0.3 3 0.1281 0.0034 0.3746 0.0043 0.2514 0.0038 
0.4 4 0.2351 0.0030 0.5577 0.0038 0.3964 0.0034 
0.5 5 0.3966 0.0034 0.7977 0.0042 0.5971 0.0038 
0.6 7 0.6468 0.0018 1.1337 0.0021 0.8902 0.0019 
0.7 8 1.0723 0.0039 1.6532 0.0044 1.3628 0.0041 
0.8 11 1.9222 0.0027 2.6142 0.0029 2.2682 0.0028 
0.9 15 4.4516 0.0032 5.2782 0.0033 4.8649 0.0033 
0.95 18 9.4729 0.0048 10.3800 0.0048 9.9265 0.0048 
0.98 23 24.4883 0.0032 25.4495 0.0032 24.9689 0.0032 
0.99 26 49.4939 0.0031 50.4742 0.0031 49.9841 0.0031 

Table 7.1. The mean nonnalized waiting times wU> and W detennined within an absolute 
accuracy of Eabs = 0.005 for the SQS-JDP of Figure 7 .I for increasing values of p and with 
À= 2pj.l, t..,.. = 1/2/.., /..8 = Àc = '14/... 

consists of 2 independent M I M 11 queues, T 1 and T 2 have to be equal to 85 in order to reach 
the desired accuracy, while in the other extreme case with p = 1.0, in which we have a pure 
SSQS as studied in Chapter 6, T 1 and T 2 only have to be equal to 8. In Table 7.3, a smaller 
value for p corresponds to a stronger drift to the diagonal in the region m 1 $ m 2 , but to a 
smaller drift to the diagonal in the region m 2 $ m 1 (see Figure 7.1 ). As a result, for decreas­
ing values of p, we find a decreasing behavior for the parameter T 1 of the first threshold vec­
tor f = (T 1, T 2) for which the desired accuracy is reached by the numerical procedure, while 
an increasing behavior is found for the parameter T 2• However, for small values of p, the 
increasing effect for T 2 is much Iarger than the decreasing effect for T 1 • In the extreme case 
with p = 0.0, in which we have the behavior of a pure SSQS in the region m 1 $ m 2 and the 
behavior of two independent M I M I I queues in the region m 2 $ m 1, we find a value for T 1 

that is almost equal to the values obtained for T 1 and T 2 in Table 7.2 for p = 1.0 and we find a 
value for T 2 that is al most equal to the values obta.ined for T 1 and T 2 in Tab ie 7.2 for p =O.O. 
In a similar way, also for the other cases depicted in Table 7.3, the values found for T 1 and 
T 2 can be explained on the basis of the val u es obtained for T 1 and T 2 in Table 7 .2. 

From the results for the threshold parameters T 1 and T 2 which are needed to approxi­
mate the mean normalized waiting times within the desired accuracy, it may be concluded 
that the TKR and TBA model only lead to tight bounds, if the drift to the stales with equal 
queue lengths is sufficiently strong. This will also hold for a general SQS-JDP with. N ~ 2 
servers. It is noted that the existence of a certain drift to the stales with equal queue lengths 
has been a point of departure when we constructed the TKR and TBA model. So, if there is 
only a weak drift to the stales with equal queue lengths, then the probability mass will nol be 
concentraled around these states, and one should focus on bound roodels with alternative 
truncated state spaces. 



7.5. Numerical results 189 

p 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

p Tt=T2 w<Al tJ.(Á)("Î) w<B>=w<c> tJ.O(i) w ll.("Î) 

0.0 85 4.2648 0.0024 8.9976 0.0046 8.9976 0.0046 
0.1 43 4.3594 0.0038 6.8002 0.0046 6.5561 0.0045 
0.2 29 4.4027 0.0041 6.0435 0.0045 5.7154 0.0044 
0.3 22 4.4266 0.0040 5.6619 0.0042 5.2913 0.0041 
0.4 18 4.4414 0.0033 5.4320 0.0034 5.0357 0.0034 
0.5 15 4.4516 0.0032 5.2782 0.0033 4.8649 0.0033 
0.6 13 4.4589 0.0027 5.1682 0.0028 4.7426 0.0028 
0.7 11 4.4645 0.0034 5.0856 0.0035 4.6509 0.0034 
0.8 10 4.4688 0.0025 5.0212 0.0025 4.5793 0.0025 
0.9 9 4.4722 0.0021 4.9697 0.0021 4.5220 0.0021 
1.0 8 4.4751 0.0022 4.9275 0.0022 4.4751 0.0022 

Table 7.2. The mean normalized waiting times wU> and W detennined within an absolute 
accuracy of Eabr=0.005 for the SQS-JDP of Figure 7.1 with p=0.9, À.=2p1J., À.;.=pÄ, 
À.s = À.c =%(l-p )À., and varying p. 

(T1,T2) w<"'> tJ.(Á)("Î) w<s> t::.<B>ch w<c> /l.<C>cn w ll.(Î) 

(7,90) 4.2756 0.0017 4.3427 0.0017 13.0498 0.0047 8.6627 0.0032 
(8,44) 4.3744 0.0034 4 .5244 0.0034 8.5221 0.0048 6.2484 0.0041 
(9,30) 4.4175 0.0037 4.6754 0.0037 6.9337 0.0043 5.4497 0.0040 

(11,22) 4.4386 0.0038 4.8365 0.0038 6.1181 0.0041 5.0861 0.0039 
(12,18) 4.4487 0.0042 5.0294 0.0043 5.6185 0.0044 4.9158 0.0043 
(15,15) 4.4516 0.0032 5.2782 0.0033 5.2782 0.0033 4.8649 0.0033 

Table 7.3. The mean normalized waiting times wU> and W detennined within an absolute 
accuracy of Eabr=0.005 for the SQS-JDP of Figure 7.1 with p=0.9, À.=2p1J., Ä;.='l'>À., 
À.s = lf2pÀ., À.c = 11>(1-p)À., and varying p. 

The values presented in the Tables 7.1-7.3 for the mean normalired waiting times itself, 
also deserve some attention. The results in Table 7.1 show that the behavior of the waiting 
times as a function of the workload p is similar to the behavior found for the pure SSQS (see 
Table 1.8). Further, we observe only a smal) difference between the waiting times for the 
types B and C and the waiting time for type A, even for high workloads p. From the results 
in Table 7.2, it follows that the mean normalired waiting time W for all job types tagether is 
more than proportionally decreasing as a function of the fraction p of jobs which can be 
served by both servers. A similar behavior is observed in Table 7.3 for the mean normalized 
waiting timeWas a function of p. In this table, small values of p correspond to situations in 
which, under the shortest queue routing, the workloads for the servers 1 and 2 are badly bal­
anced; for smal i p, there wiJl be several jobs of type A which join server 2 while they better 
could join server 1 in order to repair the asymmetry in the job-dependent structure. Due to 
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this behavior, forserver 2 a significantly higher worldoad is obtained than forserver I and the 
mean normalized waiting time W becomes relatively large. 

From the results of the Tables 7.2 and 7.3, we may conclude the following for the pro­
duction situation of Printed Circuit Boards by a flexible assembly system, as described in Sec­
tion 1.2. The results in these tables point out that, in order to obtain small mean waiting times 
for the given total work.load, the assignment of the components to the insection machines 
should be such that the resulting job-dependent structure for the corresponding SQS-JDP 
leads to a strong drift to the stales with equal queue lengtbs in all regions. 

The results presenled in the Tables 7.1-7.3 have been computed on a standard SUN 
workstation. For the instances of Table 7 .1, the computation times consumed by the numeri­
cal procedure as described in this section, varled from a negligibly smal! time for p = 0.1 to 
about 3 minutes for p =0.99; for Table 7.2, they varled from 2 seconds for p = 1.0 toabout 5 
hours for p =0.0, and for Table 7.3, they varled from 18 seconds for p =0.5 toabout 1 hour 
for p =O.O. The largest computation time, viz. about 5 hours for the case p =0.0 in Table 7.2, 
concerns the total time needed for the computation of the lower and upper bounds for all 
threshold veetors T = (1,1),(2,2), ... , (85,85), for which we had todetermine rate matrices R 
of the orders a =3,5, ... ,171. Since the computation forthelast vector T=(85,85) costed 
only about 14 minutes, it is obvious that we could have obtained a much smaller total compu­
tation time for this case by increasing the threshold parameters T 1 and T 2 by say 5 or 10 units 
instead of 1 unit aftereach step; and, similarly for all other cases for which we obtained large 
computation times. We repeat that for a given threshold vector T, the computation time for 
solving the TKR and TBA model has an order of magnitude equal to Oc1=a 3 ; this order has 
been confirmed by the values which we found for the computation times . 

. The following may be concluded on whether the TKR and TBA model are appropriate 
for being used for the analysis of a general SQS-JDP with N;::: 2 servers. Let us focus on the 
question whether they can be used to obtain sufficiently accurate approximations for the mean 
normalized waiting times for a given instanee of a SQS-JDP. We can say that the TKR and 
TBA model are at least appropriate for all systems with N = 2 servers. For larger systems, 
with say up to N = 5 servers, they will also be appropriate, but then, because of the limitations 
stemming from the computational efforts, it will only be possible to obtain accurate approxi­
mations for instances with a sufficiently strong drift to the stales with equal queue lengths. 

Finally, we comment on whether the TKR and TBA model are appropriate for analyzing 
the production situation of the Printed Circuit Boards by a flexible assembly system; see Sec­
tion 1.2. As we observed, the condition that there is a sufficiently strong drift to the states 
with equal queue lengths, must be satisfied by each sensible assignment of the components to 
the insection machines. Therefore, the TKR and TBA model will be appropriate for evaluat­
ing each SQS-JDP corresponding to a sensible assignments. For a bad (or non-sensible) 
assignment, the TKR and TBA model will not be appropriate to delermine accurate approxi­
mations for the mean normalized waiting times in the corresponding SQS-JDP, but then it 
may be expected that still sufficiently light lower bounds are obtained in order to classify the 
given assignment as a bad assignment. So, the TBA and TKR model seem to be appropriate 
for selecting a restricted set of assignments which lead to the lowest waiting times. For com­
pleteness, we reeall that these assignments represent the best assignments for the simplified 
model of the SQS-JDP as studied in this chapter, and that a simulation study for a more gen­
eral model could be used to delermine the 'real' quality for each of these assignments. 
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7.6. Concluslons 

This chapter has been devoted to the so-called Shortest Queue System with a Job-Dependent 
Parallelism (SQS-JDP), which consists of N :Z. 2 parallel servers and which constitutes a gen­
eralization of the Symmetrie Shortest Queue System (SSQS) studied in the previous chapter. 
The SQS-JDP has been encountered in Chapter 1, when studying the mounting of com­
ponents of Printed Circuit Boards by a flexible assembly system consisting of a number of 
parallel insection machines. 

By applying the preeedenee relation method, we have derived a flexible lower bound 
model, called thè Threshold Killing and Rejection (TKR) model, and a flexible upper bound 
model, called the Threshold Blocicing and Addition (TBA) model, which produce lower and 
upper bounds for the mean normalized waiting times for all different job types and for all job 
types together. Both the TKR and the TBA model have been constructed such that they can 
be solved by the matrix-geometrie approach. Numerical results for a SQS-JDP with N = 2 
servers have shown that the TKR and TBA model lead to tight bounds for not too large sizes 
of the truncated state space if and only if in the original model there is a sufficiently strong 
drift to the states corresponding to situations with equal queue lengths. lf this latter condition 
is satisfied, then the TKR and TBA model will be appropriate for the determination of the 
mean normalired waiting times for systems with up to about 5 servers (and workloads up to 
0.95). 

The numerical results for the SQS-JDP with N = 2 servers also have pointed out that for 
the production problem of the Printed Circuit Boards, in order to prevent too large waiting 
times, each sensible assignment of components to the insection machines must be such that 
the resulting job-dependent structure for the corresponding SQS-JDP leads to the required 
strong drift to the states with equal queue lengths. As a result, the TKR and TBA model seem 
to be appropriate for selecting a restricted number of assignments which lead to the best per­
formance characteristics. 
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Chapter 8 

Conclusions and Suggestions 

for Future Research 

Many queueing systems can be modeled as Markov processes on multi-dimensional state 
spaces, which are discrete and infinite in each component. The relevant performance meas­
ures of such a queueing system usually may be obtained from the equilibrium distri bution of 
the corresponding Markov process. However, the determination of the equilibrium distribu­
tion of a multi-dimensional Markov process for which the state space is infinite in each com­
ponent, is a hard problem in generaL In this monograph, we have described two new 
approaches for this problem: the compensation approach, which is a direct approach for the 
determination of the equilibrium distribution, .and the preeedenee re lation method, which can 
be used for the denvation of ftexible truncation models which produce approximations for the 
equilibrium distribution of the original model or Markov process such that bounds for the 
relevant performance measures are obtained. For both approaches, we describe below the 
main conclusions and some suggestions for future research. 

Conclusions and suggestions for future research for the compensation approach 

The components m; of the stales (m 1o • • • , mN) of a multi-dimensional Markov process 
descrihing the behavior of a queueing system, usually represent quantities such as queue 
Iengths, which often leads to a certain homogeneity in the transition probabilities/rates. In 
that case, a Markov process is also referred to as ~ random walk. A well-known class of 
homogeneous random walks is the class of product-fonn networks, for which the equilibrium 
distribution is a product-form distribution, i.e. the equilibrium distribution can be written as a 
product of powersof fixed factors (see Baskett et al. [15]). These fixed factors are obtained 
by substituting a product-form solution in the equilibrium equations and solving the remain­
ing system of non-linear equations. The class of product-form networks seems to be the only 
class of multi-dimensional Markov processes for which the equilibrium distribution can be 
determined this easily and this explicitly. 

Recent research by Adan et al. [12] (see also [3]) bas suggested that, beside the 
product-form networks, there exists another class of homogeneous random walks for which 
the equilibrium distribution can be determined explicitly. Adan et al. [12] have developed the 
so-called compensation approach, which bas enabled them to delermine the equilibrium dis­
tribution fora class of two-dimensional, homogeneous random walks on the stales (m 1,m 2) 

with m 1, m 2 e IN 0• The ma in idea of the compensation approach is to characterize a set of 
product-form solutions which satisfy the equilibrium equations for all states in the interior of 
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the state space and next to construct a linear combination of these product-fonn solutions 
which also satisfies the equilibrium equations for the states at the boundaries and the origin. 
If thls approach works for a given problem, then it is proved that the equilibrium distribution 
may be written as a linear combination of possibly infinitely many product-fonn solutions, 
and explicit expressions are obtained for all coefficients and product factors of this linear 
combination. Obviously, the main idea of this approach can also be applied to higher­
dimensional problems, and therefore the analysis of [12], bas led to the conjecture that there 
e~ists a class of N(~ 2)-dimensional problems for which the equilibrium distri bution can be 
determined explicitly by the compensation approach, or, better, by an extended version of it. 

In the Chapters 2-4 of this monograph, we have applied the main idea of the compensa­
tion approach as developed in [ 12], and extended the method itself, to the class of N­
dimensional, irreducible, positive recurrent, homogeneous, nearest-neighboring random walks 
with the projection property on the states (mI, ... , mN ), where N ~ 2 and m; e IN 0 for all 
ie/:={1, ... ,N). The main results have been stated in Theorem 3.4 and were proved by 
induction with respecttoN in the Chapters 2 and 3. We have shown that fora random walk 
of the considered class, the equilibrium distribution can he detennined by using the compen­
sation approach if and only if 

qt,, . .. ,1N = 0 if t;+tj > 0 for some i,j e/, i -:t j, (8.1) 

where for each direction (tI , ... ,IN), the variabie q11 , ... ·'N denotes the transition probabi­
lity/rate for a transition from a state (m I , .. . , mN) in the interior of the state space to the state 
(mI +I I> •.•• m,.+tN ). This condition sterns from convergence requirements for the linear 
combinations of product-fonn solutions constnicted by the compensation apprÖach, and it 
states that no transitions can be made from the states in the interior into directions which lead 
to a larger sum of the components m; and mj of the state for some indices i,j e /, i -:t j. 
Further, we have proved that if condition (8.1) is satisfied, then the equilibrium distribution 
may be written as an alternaring sum of in.finitely many, pure product-fonn distributions, 
which constitute solutions for the equilibrium equations for the stales in the interior of the 
state space; and, similarly for all marginal distributions. 

For the determination of the product factors of all product-fonn distributions required 
for the equilibrium distribution and all marginal distributions of a random walk satisfying 
condition (8.1 ), we have presented simple, recursive formulae. These product-fonn distribu­
tions are in fact obtained from a certain tree, which bas appeared to have an interesting, 
geometrie structure; see Chapter 4. A detailed analysis of this geometrie structure has led to 
explicit expressions for upper bounds for the absolute errors of the approximations of the 
equilibrium probabilities by finite, altemating sums of product-fonn solutions. The error 
bounds have been exploited in efficient numerical procedures for the computation of the 
equilibrium distribution and related quantities within some desired accuracy. 

Condition (8.1) implies that for each state (m~o . . . ,mN) in the interior, an outgoing 
transition which leads to a positive step for one component m;, i e /, may only have a positive 
probability/rate, if it leads to negative steps for all other components mj, je/\{ i}. lt is obvi­
ous that this condition restricts the applicability of the compensation approach, especially for 
N ~ 3. A queueing system which satisfies condition (8.1 ). also for N ~ 3, is the 2 x N buffered 
switch; numerical results for this system have been presenled in the Chapters 2 and 4. 
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Condition (8.1) constitutes an extension ofthe condition obta.ined by Adan et al. [12] for 
the class of two-dimensional, irreducible, positive recurrent, homogeneous, nearest-neigh­
boring random walks, which do not necessarily satisfy the projection property. They found 
that for this class, the necessary and suftkient condition under which the compensation 
approach works, is given by 

(8.2) 

which means that for the states in the interior no transitions to the North, East and Narth-East 
are allowed. Problems which are in this class and satisfy this condition, are the Symmetrie 
Shortest Queue System (SSQS) with two parallel servers, a multiprogramming queues sys­
tem, and, of course, the 2 x 2 buffered switch. 

A generalization of both condition (8.1) and condition (8.2) is obta.ined when consider­
ing the class of N-dimensional, irreducible, positive recurrent, homogeneous, nearest-neigh­
boring random walks, which do not necessarily the projection property. We conjecture that 
the equilibrium distribution of a random walk of this class may be determined by using the 
compensation approach if and only if for all J c /, 

q{,, .. . ,IN = 0 if t;+t1 > 0 for some i,j e J, i* j, (8.3) 

where the variables q{,, .. . , 1N denote the probabilities/rates for the outgoing transitions from 

the states (m 1, ••• , mN) with m; > 0 for all i e J and m; = 0 for all i e: J (note that the variables 
q{" ... ,1N correspond to the variables q1" •. . , 1N, which occur in the conditions (8.1) and (8.2)). 
Condition (8.3) is satisfied by definition for all Je I with IJ I~ I, by which (8.3) reduces to 
(8.2) for the case N = 2, and it follows from the definition of the projection property that (8.3) 
is equivalent to (8.2) fora random walk with the projection property. A second conjecture is 
that condition (8.3) also represents the necessary and sufficient condition under which the 
compensation approach works, if, beside the projection property, also the nearest-neighboring 
property, i.e. the property that only transitions to nearest neighbors occur, is omitted. Both 
conjectures should be confirmed by future research. 

Another interesting topic for future research is constituted by homogeneaus random 
walks on multi-dimensional state spaces which are infinite in exactly two components. A 
problem in this class is the SSQS with two parallel servers and a Markovian arrival process. 
The behavior of this system is described by a Markoy process with states (m 1 , m 2, m 3 ), where 
m 1 denotes the length of the shortest queue, m2 denotes the difference between both queue 
lengths and m 3 denotes the state of the Markovian arrival process; so, m 1 ,m 2 e IN 0 and 
m 3 e ( l, ... , K}, where K is the number of states for the Markovian arrival process. A 
numerical experiment has indicated that the equilibrium distribution for this system consists 
of a linear combination of solutions of the form 

where a= (a 1, ••• , aK) is a K-dimensional row vector with components a; that do not depend 
on m 1 and m 2 . Future research has to reveal whether the equilibrium distribution indeed 
consists of solutions of this form, and whether linear combinations of solutions of this form 
also lead to the equilibrium distribution for similar problems. 

Another interesting topic for future research is to return to the class of two-dimensional 
random walks as studied by Adan et. al. [ 12], and to investigate what kind of structure the 
equilibrium distribution has if condition (8.2) is not satisfied. Here, assume that the random 
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walksalso have the projection property, which implies that each of the two marginal distribu­
tions is equal to a simple product-form distribution. Numerical results, which we obtained 
from truncated random walks, have indicated that for random walks which violate condition 
(8.2), the equilibrium distribution seems to have a more complicated structure than a linear 
combination of product-form distributions (except for the case in which we precisely have a 
product-form network). More information on the structure may be gained by further investi­
gating why both the compensation approach and the uniformization technique fail if condition 
(~.2) is violated, and by studying the expressions which are obtained for the generating func­
tion of the equilibrium distri bution by applying the boundary value method. 

Conclusions and suggestionsfor future researehfor the preeedenee relation method 

For many multi-dimensional Markov processes for which the state space is infinite in each 
component, it is not possible to determine the equilibrium distribution in an analytica! way, 
and then alternative methods are needed. One alternative metbod is the power-series algo­
rithm (see Blanc [18]), with which the equilibrium distribution and the corresponding 
relevant performance measures can be determined within a given accuracy, provided that the 
corresponding requirements with respect to the computational efforts are met. Another alter­
native is constituted by the use of solvable truncation morleis which can approximate the ori­
ginal model or Markov process as accurately as desired. This latter property may be obtained 
by defining the truncated state space such that its size depends on one or more truncation 
parameters. Truncation models with this property are called flexible truncation models. 
Truncation models in fact lead to approximations for the equilibrium distri bution of the origi­
nal model, and therefore also to approximations for the relevant performance measures. Of a 
particular interest are flexible truncation models which produce bounds for the relevant per­
formance measures. Such models are also called jlexible bound models, and they may be 
derived by the so-called preeedenee re lation method, which we have developed in Chapter 5 
of this thesis. 

In principle, the preeedenee relation metbod is a metbod for proving a monotonicity 
result between the average costs of two, discrete-time, irreducible Markov cost models, of 
which the state space of one model is a subset of the state space of the other model. The main 
idea of the preeedenee relation metbod is that the proof of such a monotonicity result may be 
simplified by first deriving so-called preeedenee pairs of stales of the model with the larger 
state space; such pairs must satisfy a certain preeedenee relation which denotes that the first 
state of a pair is more attractive with respect to the costs than the second state. We have 
rnainly focused on how the preeedenee relation metbod can be used for deriving flexible trun­
cation models which lead· to bounds for one or more of the relevant performance measures of 
a given, original Markovian (queueing) system. Such modelscan be derived by performing 
the following two steps. In the first, preliminary, step, one must derive preeedenee pairs for 
the original model. After that, in the second step, one can easily define one or more flexible 
bound models: a flexible lower (upper) bound model is obtained by first defining a truncated 
state space M' with a flexible size and next redireeting all transitions ending in states outside 
M' to states inside M', which are more (less) attractive according to the preeedenee pairs 
obtained for the original model. The denvation of the preeedenee pairs in the preliminary 
step is essential for obtaining flexible bound models which accurately approximate the origi­
nal model for already smal! sizes of the truncated state space. 
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The preeedenee relation metbod can be applied to any Markov process, but it depends 
on the structure of the state space and the transition probabilities/rates of a particular model 
whether it is possible to derive ftexible bound models of a good quality. The quality of a 
ftexible bound model is detennined by the ratio of the tightness of the bounds and the 
efficiency with which the truncation model itself can be solved. 

In the Chapters 6 and 7 of this monograph, we have applied the preeedenee relation 
metbod to the Symmetrie Shortest Queue System (SSQS) and to a generalization of it, which 
we called the Shortest Queue System with a Job-Dependent Parallelism (SQS-JDP) and 
which sterns from a production situation of Printed Circuit Boards by a flexible assembly sys­
tem (see Chapter l). For the SSQS, we have been able to derive a flexible lower bound 
model and a flexible upper bound model, which both produce tight bounds for the mean nor­
malized waiting time for already smal! sizes of the truncated state space, and which both can 
be solved very efficiently by the matrix-geometrie approach, as described by Neuts [58]. 
These bound models have been exploited in an efficient numerical procedure, with which the 
mean normalired waiting time has been detennined quite accurately for systems with many 
servers and high workloads. For the SQS-JDP, the application of the preeedenee relation 
method has led to similar tl.exible bound models as for the SSQS. Also for this system, the 
obtained flexible bound models have appeared to be appropriate for numerically determining 
the mean waiting times, and possibly several other performance measures, within a given 
accuracy. 

The research of the Chapters 5-7 gives rise to several interesting topics for future 
research. First of all, it should be investigated for which other queueing models than the 
SSQS and the SQS-JDP, the preeedenee relation metbod leads to flexible bound models of a 
good quality. It is noted that in [I], the preeedenee relation method has led to flexible bound 
models with which the symmetrie longest queue system has been analyzed efficiently. 
Seeondly, by using flexible bound models, one can gather numerical data for interesting per­
formance measures, after which these data may be exploited for obtaining good approxima­
tion formulae for the corresponding performance measures. For example, by using the flexi­
ble bound models derived for the SSQS, one can gather numerical data for the mean normal­
ized waiting time, after which comparing these data to the corresponding data for the 
M I M IN queue may lead to a simple and new approximation formula for this most interest­
ing performance measure for the SSQS. A third topic concerns how well the ftexible bound 
models derived by the preeedenee relation metbod can be used for the determination of the 
transient behavior of a queueing model. Finally, the last topic that we mention, is the applica­
tion of the main idea of the preeedenee relation metbod to other types of models than Markov 
cost models; for example, to Markov deeision models. 
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Samenvatting 

Dit proefschrift is gewijd aan de ontwikkeling van twee methoden voor het bepalen van 
evenwichtsverdelingen, en met behulp daarvan de relevante prestatiematen, van wachtrijsys­
temen waarvan het gedrag beschreven wordt door multi-dimensionale Markov modellen. 
Deze methoden hebben we respectievelijk de compensatiemethode en de precedentierelatie 
methode genoemd. Van beide methoden beschrijven we hieronder in het kort de belangrijkste 
aspecten. 

Voor vele wachrijsystemen wordt het gedrag beschreven doorN(";?. 2)-dimensionale Mar­
kov modellen met toestanden (m 1 , .•• , mN ), waarbij de componenten m; grootheden zoals 
lengten van wachtrijen representeren. Dit leidt tot een toestandsruimte die oneindig is in 
iedere richting, en vaak ook tot een zekere vorm van homogeniteit in de overgangskansen. 
Multi-dimensionale Markov processen waarvan de toestandsruimte oneindig is in iedere 
richting, zijn in het algemeen nauwelijks of niet expliciet oplosbaar. Echter, een bepaalde 
homogeniteit in de overgangskansen kan er voor zorgen dat het afleiden van expliciete for­
mules voor de evenwichtsverdeling wel mogelijk is. Het is bekend dat voor de klasse van 
produktvorm netwerken, de evenwichtsverdeling gelijk is aan een produktvorm oplossing, en 
dat deze oplossing kan worden verkregen door het substitueren van een produktvorm oplos­
sing in de evenwichtsvergelijkingen en vervolgens het resterende stelsel van niet-lineaire ver­
gelijkingen op te lossen. In de hoofdstukken 2-4 van dit proefschrift zijn wij er in geslaagd 
om voor een tweede, en tot nu toe enige andere, klasse van multi-dimensionale Markov 
modellen waarvan de toestandsruimte oneindig is in iedere richting, expliciete formules voor 
de evenwichtsverdeling af te leiden. Deze expliciete formules konden worden afgeleid door 
gebruik te maken van de zogenaamde compensatiemethode. 

De compensatiemethode is oorspronkelijk ontwikkeld door Adan, Wessels en Zijm voor 
een klasse van twee-dimensionale, homogene Markov modellen. Het basisidee achter de 
methode is dat men voor homogene Markov modelÏen de evenwichtsverdeling kan bepalen 
door eerst een klasse van produktvorm oplossingen te definiëren, die voldoen aan de 
evenwichtsvergelijkingen voor de toestanden in het inwendige van de toestandsruimte, en 
door vervolgens lineaire combinaties van deze produktvorm oplossingen te construeren, die 
ook voldoen aan de evenwichtsvergelijkingen voor de toestanden op de randen van de toe­
standsruimte. 

In de hoofdstukken 2-4 hebben wij het basisidee van de compensatiemethode toegepast 
op, en de compensatiemethode zelf uitgebreid naar, de klasse van N-dimensionale, irreduci­
bele, positief recurrente, homogene Markov modellen met de zogeheten projectie eigenschap 
en de eigenschap dat vanuit iedere toestand alleen overgangen naar buurtoestanden worden 
gemaakt. Met behulp van inductie naar de dimensie N, hebben we in de hoofdstukken 2 en 3 
laten zien dat de evenwichtsverdeling voor een Markov model van deze klasse kan worden 
bepaald met behulp van de compensatie aanpak dan en slechts dan als er geen overgangen 
kunnen worden gemaakt vanuit toestanden (m 1 , • . . , mN) in het inwendige van de 
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toestandsruimte in richtingen die leiden tot een verhoging van de som van de componenten m; 

en mi voor zekere indices i,j e { 1, ... , N}, i -:;:. j. Deze conditie vormt een generalisatie van 
de conditie die door Adan e.a. werd verkregen voor de door hen onderzochte klasse van 
twee-dimensionale Markov modellen. Het is duidelijk dat deze conditie de toepasbaarheid 
van de compensatiemethode beperkt, zeker voor drie- en hoger-dimensionale Markov model­
len. Een wachtrijsysteem dat ook voor hogere N aan de conditie voldoet, is het zogenaamde 
2 x N switch systeem. 

Voor een Markov model van de onderzochte klasse, waarvoor aan de genoemde conditie 
wordt voldaan, leidt de toepassing van de compensatiemethode tot zeer expliciete resultaten. 
Het leidt tot het bewijs dat de evenwichtsverdeling kan worden geschreven als een alter­
nerende som van aftelbaar veel pure produktvorm verdelingen, en dat dit tevens geldt voor 
alle marginale verdelingen. Voor het bepalen van alle benodigde produktvorm verdelingen 
zijn eenvoudige, recursieve formules beschikbaar. Verder hebben we in hoofdstuk 4 door het 
bestuderen van de struktuur achter deze recursieve formules eenvoudige foutengrenzen 
afgeleid voor het benaderen van de evenwichtskansen door eindige sommen van produktvorm 
verdelingen. Deze foutengrenzen hebben geleid tot efficiënte procedures voor het berekenen 
van evenwichtskansen en van de bijbehorende prestatiematen. Deze procedures zijn gebruikt 
voor het berekenen van enige interessante, numerieke resultaten voor het 2 x N switch sys­
teem. 

Voor vele multi-dimensionale wachtrijsystemen en Markov modellen is het niet 
mogelijk om de evenwichtsverdeling, en de relevante prestatiematen, expliciet te bepalen met 
behulp van een analytische methode. Voor zulke modellen kan het gëbruik van flexibele 
truncatie-modellen een geschikt alternatief vormen. Flexibele truncatie-modellen zijn 
truncatie-modellen die het oorspronkelijke systeem of model willekeurig dicht kunnen 
benaderen. Zulke modellen kunnen worden verkregen door de grootte van de afgeknotte toe­
standsruimte af te laten hangen van bepaalde truncatieparameters. Ze leiden tot benaderingen 
voor de evenwichtsverdeling van het originele model en ze zijn extra interessant indien ze 
leiden tot grenzen voor de relevante prestatiematen van het oorspronkelijke model. In dat 
laatste geval, noemen we ze ook wel flexibele grensmodellen. In hoofdstuk 5 van dit proef­
schrift hebben we de zogenaamde precedentierelatie methode ontwikkeld, die zeer geschikt 
blijkt te zijn voor het afleiden van flexibele grensmodellen. 

De precedentierelatie methode is in principe een methode voor het vergelijken van de 
gemiddelde kosten in twee Markov kostenmodellen, waarbij de toestandsruimte van het ene 
model een deelverzameling is van de toestandsruimte van het andere model. Het basisidee 
van de precedentierelatie methode is dat deze vergelijking kan worden vereenvoudigd door 
eerst voor paren van toestanden van het model met de grootste toestandsruimte te laten zien 
dat ze voldoen aan een bepaalde precedentierelatie die aangeeft dat de eerste toestand van 
een paar aantrekkelijker is met betrekking tot de kosten dan de tweede toestand. Paren die 
aan de precedentierelatie voldoen heten precedentieparen. Wij hebben ons vooral gericht op 
het gebruik van de precedentierelatie methode voor het verkrijgen van flexibele truncatie­
modellen die grenzen voortbrengen voor één of meerdere relevante prestatiematen van een 
gegeven, origineel Markov (wachtrij-)systeem. Zulke grensmodellen kunnen worden afgeleid 
via de volgende twee stappen. In de eerste, voorbereidende, stap dient men precedentieparen 
voor het originele model af te leiden. Daarna kunnen in de tweede stap eenvoudig flexibele 
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grensmodellen worden verkregen: een flexibel ondergrensmodel (resp. bovengrensmodel) 
verkrijgt men door eerst een flexibele afgeknotte toestandsruimte M' te definiëren, en vervol­
gens alle overgangen die eindigen in toestanden buiten M' terug te koppelen naar toestanden 
binnen M', die aantrekkelijker (resp. onaantrekkelijker) zijn volgens de afgeleide preceden­
tieparen voor het originele model. Het zal duidelijk zijn dat het afleiden van de preceden­
tieparen in de voorbereidende stap essentieel is voor het kunnen verkrijgen van flexibele 
grensmodellen die reeds voor kleine afgeknotte toestandsruimten leiden tot nauwkeurige 
grenzen voor de relevante prestatiematen van het originele model. 

De precedentierelatie methode kan in principe worden · toegepast op ieder multi­
dimensionaal wachtrijsysteem of Markov model. Maar het zal met name van de struktuur 
van zowel de toestandsruimte als de mogelijke overgangen met de bijbehorende over­
gangskansen afhangen of deze methode kan leiden tot flexibele grensmodellen van een vol­
doende hoge kwaliteit. De kwaliteit van een flexibel grensmodel wordt bepaald door de 
verhouding tussen de nauwkeurigheid van de geproduceerde grenzen en de efficiëncy waar­
mee het grensmodel zelf kan worden opgelost. 

In de hoofdstukken 6 en 7 van dit proefschrift hebben we de precedentierelatie methode 
toegepast op het als zeer lastig bekend staande symmetrische kortste rij systeem en op een 
generaliseerd systeem dat wordt verkregen indien er meerdere klanttypen zijn en elk klant­
type door (slechts) een deelverzameling van alle parallelle servers bediend kan worden. Voor 
het symmetrische kortste rij systeem hebben we een flexibel ondergrensmodel en een flexibel 
bovengrensmodel afgeleid, die allebei al voor kleine afgeknotte toestandsruimten tot 
nauwkeurige grenzen voor de gemiddelde wachttijd leiden en die allebei efficiënt zijn op te 
lossen met behulp van de matrix-geometrische methode. Deze twee grensmodellen hebben 
dientengevolge geleid tot een efficiënte numerieke procedure voor het berekenen van de 
gemiddelde wachttijd binnen een gegeven, gewenste nauwkeurigheid. Met behulp van deze 
procedure zijn we in staat gebleken om de gemiddelde wachttijd tamelijk nauwkeurig te bere­
kenen voor systemen bestaande uit vele parallelle loketten en hoge werklasten. Voor de 
generalisatie van het symmetrische kortste rij systeem heeft de precedentierelatie methode 
geleid tot soortgelijke grensmodellen als voor het symmetrische kortste rij systeem zelf. Ook 
voor dit systeem zijn de verkregen grensmodellen geschikt gebleken voor het berekenen van 
de relevantie prestatiematen (in dit geval, de gemiddelde wachttijden voor ieder soort klanten 
apart en voor alle soorten klanten tezamen). Een de_rde wachtrijsysteem waarvoor inmiddels 
gebleken is dat de precedentierelatie methode leidt tot bruikbare grensmodellen voor de pres­
tatieanalyse, is het symmetrische langste rij systeem. 
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STELLINGEN 
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Geen-Jan van Houturn 

In de operations research kunnen numerieke experimenten zeer waardevol zijn voor het ver­
schaffen van extra inzicht in een bepaald probieem en voor het vinden van de juiste weg om 
een probleem analytisch op te lossen; zie bijv. hoofdstuk 1 van dit proefschrift, waarin 
getoond wordt hoe een eenvoudig numeriek experiment de sleutel aanreikt voor de 
analytische oplossing van het befaamde symmetrische kortste rij systeem met twee parallelle 
servers. Numerieke experimenten zouden daarom meer aandacht moeten krijgen in de vakli­
teratuur. 

Stelling 2. 

In [1-3] worden drie verschillende flexibele truncatie-modellen beschreven voor het sym­
metrische kortste rij probleem met twee parallelle servers. Met behulp van de precedentiere­
latie methode, zoals beschreven in hoofdstuk 5 van dit proefschrift, kan men op een een­
voudige manier bewijzen dat de twee truncatie-modellen van Conolly [I] en Gensbakh (2) 
leiden tot ondergrenzen voor de gemiddelde wachttijd in het oorspronkelijke kortste rij sys­
teem en dat het truncatie-rnodel van Rao en Posner [3) leidt tot bovengrenzen voor deze 
relevante prestatiemaat. Deze resultaten kunnen ook worden bewezen voor direkte generali­
saties van de drie truncatie-rnodellen voor het geval dat men twee of meer parallelle servers 
heeft; ook voor dit algemenere gevaJ kan het bewijs eenvoudig worden gegeven met behulp 
van de precedentierelatie methode. 

I. CONOLLY, B.W., "The.autostrada queueing problern," J. Appl. Prob., vol. 21, pp. 394-
403, 1984. 

2. GERTSBAKH, 1., "The shoner queue problern: a numerical study using the rnatrix­
geometrie solution," Eur. J. Oper. Res., vol. 15, pp. 374-381, 1984. 

3. RAo, B.M. AND POSNER, M.J.M., "Algorithrnic and approximation analysis of the 
shoner queue model," Naval Res. Lng., vol. 34, pp. 381-398, 1987. 



Stelling 3. 

De optimaliteit van aanvulstrategieën (Base Stock policies) is bewezen voor bepaalde multi­
echelon voorraadsystemen met een pure assemblage- of convergente struktuur (zie bijv. [1-
3)) en, onder de zogenaamde balansaanname, voor bepaalde multi-echelon voorraadsystemen 
met een pure distributie- of divergente struktuur (zie bijv. [2,4)). Met behulp van de aanpak 
zoals beschreven in [4], en onder de balansaanname, kan de optimaliteit van aanvul­
strategieën worden bewezen voor algemenere multi-echelon voorraadsystemen met een wil­
lekeurige convergente struktuur tussen de externe leveranciers en een bepaald centraal voor­
raadpunt en een willekeurige divergente struktuur tussen het centrale voorraadpunt en de 
eindvoorraadpunten. 

I. CLARK, A.J .. AND SCARF, H., "Optima! policies for a multi-echelon inventory prob­
lem," Management Science, vol. 6, pp. 475-490, 1960. 

2. LANGENHOFF, L.J.G., AND ZUM, W.H.M., "An analytica! theory of multi-echelon 
production/distribution systems," Statistica Neerlandica, vol. 44, pp. 149-174, 1990. 

3. VAN HOUTUM, G.J., AND ZUM, W.H.M .• "Computational procedures for stochastic 
multi-echelon production systems," Int. J. Prod. Econom., vol. 23, pp. 223-237, 1991. 

4. VAN HOUTUM. G.J., AND ZIJM. W.H.M .• "Theoretische en numerieke analyse van 
multi-echelon voorraadsystemen met distributiestruktuur," Worlc.ing paper, Eindhoven 
University ofTechnology, Dept. of Math. and Comp. Sci., 1992. -

Stelling 4. 

Onder de balansaanname, wordt in I I) een aanvulstrategie afgeleid die de gemiddelde 
(voorraad)kosten minimaliseert in een distributiesysteem (divergent multi-echelon voorraad­
systeem) bestaande uit één centraal depot en een willekeurig aantal lokale vemen. De karak­
terisering van deze optimale aanvulstrategie laat zien dat men in het centrale depot geen 
tussenvoorraad hoeft aan te houden, indien de toegevoegde voorraadkosten voor de lokale 
vemen gelijk aan 0 zijn (d.w.z. indien de voorraadkosten per produkt voor de lokale vemen 
even groot zijn als voor het centrale depot). Deze eigenschap zal niet worden verkregen, 
indien de balansaanname niet wordt gemaakt. In feite impliceert de balansaanname het kos­
tenloos vervoer van produkten tussen de diverse lokale vemen. 

I. LANGENHOFF, L.J.G., AND ZIJM. W.H.M., "An analytica! theory of multi-echelon 
productionldistribution systems," Statistica Neerlandica, vol. 44, pp. 149-174, 1990. 



Stelling 5. 

In de literatuur over cyclische codes beperkt men zich gewoonlijk tot codes over alfabet TF9 

en ter lengten waarbij ggd(q,n) =I, d.w.z. waarbij n relatief priem is t.o.v. q. Deze gewoonte 
lijkt gerechtvaardigd te zijn op basis van het in [1-3] uitgevoerde onderzoek dat heeft 
aangetoond dat codes over alfabet lFq en met een lengte n waarvoor ggd(q,n) > I in het 
algemeen slechter zijn dan codes met een lengten waarvoor wel geldt dat ggd(q,n) =I. 

I. BLOEMEN, A.A.F., VAN HOUTUM, G.J.J.A.N., AND VERHAEGH, W.F.J., "Over 
cyclische codes over alfabet TFq en met lengte q*n," Working paper, Eindhoven 
University ofTechnology, Dept. of Math. and Comp. Sci., 1989. 

2. CASTAGNOLI, GUY, MASSEY, JAMES L., SCHOELLER, PHILIP A., AND VON SEEMANN, 
NIKLAUS, "On repeated-root eyclic codes," IEEE Trans. lnjonn. Theory, vol. 37, pp. 
337-342, 1991. 

3. VAN LINT, J.H., "Repeated-root cyclic codes," IEEE Trans. lnform. Theory, vol. 37, 
pp. 343-345, 1991. 

Stelling 6. 

Het bepalen van de relevante prestatiematen van een moeilijk oplosbaar wachtrijsysteem via 
relatief eenvoudig te analyseren flexibele onder- en bovengrens modellen, zoals beschreven in 
de hoofrlslUkken 5-7 van dit proefschrift, is in feite equivalent aan de volgende aanpak voor 
het uit het hoofd bepalen van de waarde van een wortel. Bijvoorbeeld, voor {Ï verkrijgt men 
onmiddelijk de grenzen I ~ {Ï ~ 2 door te bedenken dat het niet-quadratische (niet-oplosbare) 
getal 2 tussen de kwadraten I en 4 ligt; vervolgens vindt men via de observatie dat het getal 
200 tussen de kwadraten 196 en 225 ligt, de nauwkeurigere grenzen {Ï?. ~ = 1,4 en 
{Ï S'h25 = 1,5; enz. 

Stelling 7, 

De doorsnee speler van het spel Blackjack, zoals dat gespeeld wordt in de Holland Casino' s, 
speelt dit spel volgens een strategie waarbij geen rekening wordt gehouden met de reeds 
getrokken kaarten. Bekend is dat zo'n strategie een negatieve verwachte winst per eenheid 
inzet oplevert (zie [ 1]), en derhalve zal de geldvoorraad van de doorsnee speler zich gedragen 
volgens een één-dimensionale stochastische wandeling (random walk) met een negatieve drift 
(d.w.z. met een drift naar de positie 0). 

I. VAN DER GENUGTEN, B.B., Blackjack in Holland Casino's: hoe de dealer te verslaan!, 
Tilburg University Press, Tilburg, 1993. 

Stelling 8. 

Huisvrouwen of -mannen die bij hun wekelijkse bezoek aan een supermarkt precies die spul­
len kopen die in de afgelopen week zijn opgegaan, hanteren in feite het uit de voorraadtheorie 
bekende Kanban-systeem. 



Stelling 9. 

Ter bevordering van de kwaliteit van de verschillende studierichtingen, en tegelijkertijd ter 
bestrijding van studierichtingen met goedklinkende namen maar een slechte inhoud, zou de 
Nederlands overheid moeten besluiten om in de toekomst de universiteiten niet af te rekenen 
op basis van de aantallen afgestudeerden, maar op basis van de aantallen afgestudeerden die 
in staat zijn om binnen een afzienbare tijd een baan te vinden met de genoten opleiding. 

Stelling 10. 

Omdat het bij een voetbalwedstrijd vooral gaat om de mate waarin een relatief klein aantal 
kansen wordt benut, is er sprake van een vrij sterke invloed van de stochastiek (het toeval) op 
de einduitslag. Met name voetbaljournalisten en andere pseudo-voetbalkenners willen die 
invloed nogal eens onderschatten en vertalen een uitslag liever met behulp van termen als 
vorm en lekker in de wedstrijd zitten. 

Stelling 11. 

Een bekende Eindhovense voetbalvereniging heeft de oudere en relatief duurdere werknemers 
aan de kant gezet en tegelijkertijd geïnvesteerd in jonge en relatief goedkope krachten om een 
ommekeer in de neergaande spiraal te bewerkstelligen. Een bekende Eindhovense 
onderzoeks- en onderwijsinstelling dreigt de tegenovergestelde weg te gaan bewandelen. 
Beide organisaties Jijken daarmee een verre van optimale strategie te (gaan) volgen. 


