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MECHANICAL AND TEXTURAL PROPERTIES OF
PELVIC TRABECULAR BONE*

M. DALSTRA,T R. HUISKES; T A. ODGAARD§ and L. VAN ERNINGI]

tBiomechanics Section, Institute of Orthopaedics, University of Nijmegen, Nijmegen, The Netherlands;
§Biomechanics Laboratory, Orthopaedic Hospital, University of Aarhus, Aarhus, Denmark; and
[Institute of Diagnostic Radiology, St Radboud University Hospital Nijmegen, Nijmegen, The Netherlands

Abstract—So far, virtually nothing is known about the mechanical properties of pelvic trabecular bone. In
this study, several techniques have been used to establish some insight in these properties. Dual-energy
quantitative- computer tomography (DEQCT) was used to look at the distribution of bone densities
throughout the pelvic bone and nondestructive mechanical testing was used to obtain Young’s-moduli and
Poisson’s ratios in three orthégonal directions for cubic specimens of pelvic trabecular bone. The same
specimens were then used for stereological measurements to obtain volume fractions and the spatial
orientations of the mean intercept lengths. The combined data on the mechanical tests and the stereological
measurements made it possible to calculate Young’s moduli and Poisson’s ratios for the specimens’

principal material axes.

DEQCT showed-that bone densities within a pelvic bone are mgmﬁcamly higher in the superior part of
the acetabulum, extending to the sacroiliac joint area and, secondly, in the area of the pubic symphysis.
Volume fractions found for the specimens did not exceed: 20%. This may be considered rather low when
compared to valués reported in the literature for trabecular bone of femoral or tibial origin, but the values
do lie in the same range as vertebral trabecular bone. With the volume fraction as its primary. predictor,
values of Young’s moduli were also low. For most specimens these values were not higher than 100 MPa,
with an occasional peak of 250 MPa. Looking at the ratio of the highest and lowest Young’s modulus or at
the components of the:fabric tensor, it can be concluded that pelvic trabecular bone is not highly
anisotropic. On an average, Poisson’s ratio was found to be closer to 0.2 rather than 0.3, which is in -
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INTRODUCTION

Being part of the hip joint, the pelvic bone, like its
femoral counterpart, frequently appears in finite ele-
ment studies. However, apart from the obvious ana-

between the femur and the pelvic bone. Mechanical
properties of femoral bone are well documented, but it
is' somewhat surprising that on the mechanical prop-
erties of pelvic bone virtually no data exist. The pelvic
bone mainly consists of frabecular bone covered by
a thin layer of cortical bone: Young’s moduli used in
arious finite element studies of pelvic trabecular

ese values were based on experimental data of tibial
d femoral origin. Only Vasu et al. (1982) and Rap-
perport et al. (1985) used density observations from
roentgenograms to estimate Young’s moduli. In all
the studies, bone was assumed to be isotropic. Vasu
et. al. (1982), Pedersen et al. (1982) and Rapperport
et al. (1985) made a differentiation in the values. of
Young’s modulus, based on density distributions,
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tomical differences, there is another striking difference -

bone vary from 40 to 3000 MPa. For the most part, -

accordance with other studies on Poisson’s ratio -of trabecular bone.

whereby near the acetabulum the density was found
to be the highest and decreasing in value furthcr away
from the acetabulum. In most finite element studies,
the Poisson’s ratio for® pelv1c trabecular bone. was
taken as 0.2. Only Goel et al. (1978) and Pedersen
et al. (1982) assumed a value of 0.3. Again, however,
measurements for this value were never made. ‘
Because of its sandwich construction, the overall
mechanical behavior of the pelvic bone is to some
extent insensitive to variations of the mechanical
properties of its trabecular - bone (Dalstra and
Huiskes, 1990). However, if stresses and strains in the
trabecular bone itself are the subject of study, accurate
values of its material properties will be a prerequisite.
Therefore, the purpose of the present study was-to
obtain a better insight into the material properties. of
pelvic trabecular bone. To achieve this, three different
techniques were used. With dual-energy quantitative
computer tomography, trabecular bone densities were
quantified throughout the pelvic bone. This was ne-
cessary as the dimensions. of the specimens used for
mechanical testing limit harvesting to only those areas
which have sufficient bone stock. Mechanical testmg
of pelvic trabecular bone specimens was performed in
three orthogonal directions; thus, not only providing
values of Young’s moduli and Poisson’s ratios, but
also information about the degree: of anisotropy.
Finally, using a three-dimensional reconstruction
technique, stereological measurements were per-
formed on the same specimens used for mechanical
testing, in order to identify the material’s principal
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directions and, together with the data from the mech-
anical tests, to calculate the elastic constants in those
directions.

METHODS AND MATERIALS

Material »
For dual-energy quantitative computer tomogra-

phy (DEQCT), six right pelvic bones were available:

one of a 78-year-old male and five of females, ranging
from 77 to 87 years. Being embalmed, these bones
were not used for mechanical testing. For this pur-
pose, two fresh right pelvic bones were used; one of
a 82-year-old female and one of a 72-year-old male.
None of the donors was known to have a history of
bone or joint disease. From each bone, as many cubic
specimens as possible were taken. Due to its-smaller
size, the bone of the female donor yielded no more
than 18 specimens. From the other bone, 39 speci-
mens could be obtained. Due to insufficient bone
_stock in ‘both bones, no specimens could be taken
from the superior iliac crest, nor from the connection
between ischial and pubic bone. All cubes were cut
according to a Cartesian coordinate system defined
by a plane over the rim of the acetabulum (the xy-
plane, the x-axis bisecting the angle between the
ischial and pubic bones) and the z-axis as the normal
to this plane, pointing into the acetabulum. The cubes
were machined - on a cutting—grinding ° system
(EXAKT cutting-grinding system). Different colors-of
dye were used to mark the orientation of the faces of
the' bone cubes. These cubes had sides of about
6.5 mm; the exact dimensions of each individual speci-
men were measured with a caliper. After cutting, the
specimens were stored in'a wet state at —18°C until
testmg

Quantitative computer tomography
“The “*bones: “were  scanned - with ~a = CT-scanner
(Siemens, SOMATOM DR3) using dual energy mode,
i.e-at 85 and<125 kVp Using the same definition of
the coordmate axes as mentioned above, scans were
taken ‘parallel to ‘the yz-plane. Slice thickness was
8 mm and the distance between two consecutive scans

“was 10 mm. This resulted in 21 or 22 scans per bone,

dependmg upon the size. Together with the bones,
was scanned m order to be able to relate the X- ray
* absorption.values with their Ca-equivalents. Post-
processing the CT-data, calcium images were recon-
structed, which were used for further evaluation. Via

a nietwork, the digital images were transferred to a PC.,

Using a PC-based image-analysis system (TIM, Difa
Measuring Systems, Breda,” The Netherlands), the
“areas of trabecular bone in each scan were marked
and the average Ca-equivalents for those areas were
calculated, thus providing a global mapping of tra-
becular bone densities throughout a pelvic bone. Fur-
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" then the two elastic moduli were averaged. This was

‘submerged in an alcohol/acetone solution for 2 days:

thermore, Ca-equivalents were measured locally at:
the same places where the cubic specimens had bee
harvested, which should give information about the
relation between apparent density and Ca-equivalent
density. i

Mechanical testing

Unconstrained compressive mechanical testing was
performed on a 4302 model Instron materials testing
machine (INSTRON Ltd., High Wycombe, Bucks.,
UXK.). As several tests had to be performed on one:
specimen in order to obtain the material properties in.
the three directions of the cube, a nondestructive test
procedure was used (Linde et al., 1988). All tests were.
performed at a strain rate of 0.1% s~! up to a max
mal ‘strain of 0.8%. Before the actual test cycle, the
bone samples were conditioned to viscoelastic steady
state by uniaxial cyclic compression between preloads,j
of 2N (defined as 0% strain) and 0.8% strain:
‘Usually, 5-10 cycles were necessary to reach steady:
state. During the actual test, the longitudinal defor-:
mation was recorded by an extensometer, fixed to the:
anvils as close to the specimen as possible, and the
deformation in one of the transverse directions was
recorded by a pair of LVDTs, placed opposite to.one
another. In measuring the transverse deformation, the
surfaces were covered by a plastic foil. After one test
cycle, the specimen was rotated 90° around its longit-
udinal axis and tested once more to measure the other
transverse deformation. This procedure was repeated
for the longitudinal axis set to each of the three
directions, resulting in a total of six test cycles for each
specimen. The order in which each axis was chosen to
be the longitudinal axis (xyz) was the same for each:
specimen, although this does not seem to have a ma-
_]or effect on the stiffness values (Linde et al., 1990b

Load and’ de;formatxon data weré recoided during
testing and sent to a PC, where they were converted
intostress and strain values. A 5th-degree polynomial
ﬁttmg routine was performed on the stress data as
a function of the longitudinal strain and on the trans-
verse strain data as a function of the stress. Then the.
stress and ‘the accompanying' transverse strain were
calculated at a longitudinal strain of 0.7%. The elastic
modulus was defined as the tangent of the stress curve
at a longitudinal strain of 0.7% and Poisson’s ratio as
the ratio between the transverse strain and the longit-
udinal strain. For the second test in the same longit-
udinal direction, the sanie routine -was followed and’

performed for all there directions of the cube, finally
résulting in three elastic moduli and six Poisson’s
ratios for a single specimen.

After testing, the marrow was removed. from the
specimens by air jet and subsequently specimens were .

After a final air jet cleansing and a one day evapor-
ation time, thé specimens were weighed. The apparent
density of a specimen was then calculated from the
weight of the specimen and its volume. ;
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Stereological measurements

Data from the mechanical tests, by itself, are not
sufficient to calculate all elastic constants, as before-
hand, unlike for the trabecular bone in the proximal
tibia, no information is available on the direction of
the material’s principal axes. However, assuming that
the axes of the mean intercept length (MIL) ellipsoid
coincide with the principal axes of the material (Harri-
gan and Mann, 1984), it becomes possible to recon-
struct the elasticity {or comphance) matrix in its prin-
cipal directions. The only flaw in this assumption is
that if the principal axes should happen- to coincide
with the directions in which mechanical testing was
performed the calculated values for the shear moduh
will not be very good.

To be able to perform true three-dimensional MIL
measurements, a three-dimensional series reconstruc-
tion technique was used (Odgaard et al.,; 1990). Due to
technical ‘reasons, only the specimens of the male

pelvic bone were used for the MIL measurements. Of
the ongmal 39, six cubes failed during the embedding

- process, leaving 33 cubes for stereological analysis.

Figure 1 shows the locatlons on the pelvic bone from
where  these spemmens were taken. The specimens

were imbedded in a black epoxy resin under vacuum. -

Using a standard hard tissue microtome, the speci-

‘mens were sectioned, whereby an image of the section

was digitized by'a CCD camera mounted on the
microtome. Depending upon the exact size of the
specimen, around 300 images of the individual sec-
tions.were thus obtained and their binary information
was stored after segmentation. From  these -files,

0 ~1 N B W N =

Fig. 1 Locations on the pelvic bone where the 33 specimens,

used for combined mechanical testing -and - MIL

Ineasurements, were taken. The dotted areas denote the

locations from which no specimens could be obtained due to
lack of bone stock.

a three-dimensional array consisting of voxels repres-
enting either bone or “air’, could then be reconstruc-
ted.

The volume fraction of bone was calculated simply
by dividing the number of voxels representing bone by
the total number of voxels. The MIL was measured by
defining 222 uniformly random sets of equally spaced
parallel lines passing through the reconstructed speci- -
men. For each set of lines, the number of intersections
were counted, and the MIL was defined as the total
line length divided by the number of intersections.
Using multiple regression, the components of the

'MIL matrix M, describing the MIL ellipsoid (Harri-

gan and Mann, 1984), were found. Assuming that the
eigenvalues of the MIL matrix have the same stan-
dard deviation as its components, classification of the
material was done by putting either a 90, 95 or a 99%
confidence interval around the middle eigenvalue of
the MIL matrix. The presence of the other two eigen-
values in the confidence interval decided whether or-
thotropy, transverse isotropy -or isotropy was
assumed. The eigenvectors of M give the directions of
the axes of the ellipsoid, relative to the original coor-
dinate system and thereby the assumed principal di-
rections of the material were known: .

Calculation of the elastic constants

Tensor transformation was performed on the stress
and strain tensors obtained for the mechanical test
procedure to the principal directions obtained from
the stereological measurement. As mentioned above,
depending upon the statistical uniqueness of the eig-
envalues of ‘M, orthotropy, transverse isotropy or
isotropy ‘was assumed, which set the restrictions for
the twelve nonzero components-of the compliance
matrix.S: In cas¢ of orthotropy, the following equa-
tion should apply:

l_el‘ —I Si1 Si2 Si3 0. 0 0 [ -I
€. Slz :Szz S23 0 0 0 (23
€3 ) Si3 823 Sas 0 0 0 g3
g | 1O 0 0 S4 O 0 [
&s 0 0 0 0 ::Ss5- .0 o5
&6 0 0 0 0 0 SGG O¢

For each specimen, ‘three mechanical tests had been

~ performed, so, for each ¢; and o; in the equation above,

three values weré known. In order t0 force-fit these
data to a. thermodynamically sound compliance
matrix, separate singular value decompositions were
then applied to the stress submatrices of the systems,
given (in case of orthotropy) by the first three, the
fourth, the fifth and the sixth rows of the above equa-
tion, respectively. The obtained pseudo-inverse stress
matrices were multiplied by the respective strain sub-
matrices, yielding the nine independent ‘components
of S. For isotropy and transverse isotropy, similar
calculations were made, taking into-account that for
those casés, S contains only two and five independent
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components, respectively. A more detailed descrip-
tion of the above procedure is given in
Appendix L. :

Depending upon the type of material behavior,
Young’s moduli, shear moduli and Poisson’s ratios
were calculated from the data of the mechanical tests
and the MIL measurements according to Appendix L
Finally, for each confidence level considered to deter-
mine uniqueness of the eigenvalues of the MIL matrix,
the calculated Young’s and shear moduli were corre-
lated to both the apparent density alone and a combi-
nation of apparent density and fabric components
(Cowin, 1985), using nonlinear curvefitting.

RESULTS

Dual-energy quantitative computer tomography

Ca-equivalents for pelvic trabecular bone found
with DEQCT varied between 0.04 and 0.22 gem™>. It
appeared that the average Ca-equivalent value of the
male bone was slightly, yet significantly (p=0.05)
higher than the values ' of the female bones
(0.13 gem ™3 vs 0.09-0.11 gem™3). Figure 2 shows the
average Ca-equivalents at the respective scan levels,
averaged over the six pelvic bones. Statistical analysis
(ANOVA) of this data revealed four areas where

0.08 (0.02)
0:10 (0.01)
0.09.(0.02)
0.09 (0.02)

0.11 (0.04)
0.08 (0.02) —
0.10 (0.05) -

0.15 (0.03)
0.13 (0.02) —f
0.08 (0.02)
0.08 (0.03)
0.10 (0.05)

X

Fig. 2. Average Ca-equivalent densities and standard deviations (in g cm~3) at every scan level and the
identification of the areas between which the average Ca-equivalent densities were significantly different,
. based on six pelvic bones. (Those slices for which Ca-equivalents are indicated on the left side as well, had
such a thin connection between the anterior and posterior trabecular bone mass (or even none) that

: separate anterior and posterior measurements were made.) :

M. DALSTRA et al.

- 0.18 (0.02)
- 0.17-(0.04)

Ca-equivalents were significantly different (p=0.0
from each other; these being the ala of the iliac bon
(1), the superior part of the acetabulum and the corpu:
of the iliac bone (2), the inferior part of the a
abulum, the ischial bone and the pubic—ischial jun
tion (3) and, finally, the crista and the superior ramu;
of the pubic bone (4) (Fig. 2). Average values and
standard deviations of the Ca-equivalents in thes
four areas are summarized in Table 1.

Mechanical testing

The average values of the apparent densities of th
specimens were 0.345 gem™> (S.D. 0219 gem™3) i
a range from 0.109 to 0.959 gcm ™2 for the femal
bone and 0.195 gem ™3 (S.D. 0.054 gecm ™ 3) in a rang
from0.114 to 0.314 gcm ~ 3 for the male bone. It ma
seem surprising that the female bone displayed a high
er average bone density. This was mainly due to fo
of the female specimens with an apparent density
over 0.5 gem ™3, which were taken from the superio
acetabular area. When these four specimens were ex
cluded as being subchondral bone rather than tr
becular bone, the average apparent density for th
female bone decreased to 0248 gem™3 (S.D
0.105 gcm ™ 3). Although still higher, this average den:
sity is not significantly different from the one found
for the male bone. For both bones, the highest densi
ies were found in the superior/anterior area of th

0.08 (0.02)
0.11 (0.03)
0.08 (0.02)
0.08 (0.02)
0.08 (0.03)
0.08 (0.02)
0.09 (0:02)
0.10 (0.01)
0.10.(0.02)
0.12 (0.03) .

0.13 (0.04)
0.10 (0.03)
0.11 (0.02)
0.12 (0.03)
0.12 (0.04)
0.12 (0.04)
0.13 (0.04)
0.12 (0.03)
0.09 (0.02)
0.08 (0.02)
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Table 1. The mean values and standard deviations of the
Ca-equivalents in the four areas with statistically different
bone densities of a pelvic bone

Mean Ca-equivalent S.D. Ca-equivalent

Area (gem™3) (gcm™3)
1 0.09 0.02
2 0.17 0.03
3 0.10 0.04
4 0.14 0.03

acetabular wall, while the lowest densities were found
in the ischial bone.

Although, for the combination with the results of
the MIL-measurements, only the stress and transverse
strains at a longitudinal strain of 0.7% were needed,
the elastic moduli in x-, y- and z-direction were cal-
culated. In Fig. 3, these properties are represented as
functions of the apparent density. The average elastic

moduli in the x- and y-direction were not statistically ..

different between both bones, the average elastic

modulus in the. z-direction for the female bone was -

slightly higher.

Stereological measurements

The low density of the specimens was reflectéd in
the volume fractions (Vy), found by voxel counting:

The average volume fraction was 10.8% (S.D. 3.6%).

Correlating the apparent density to the volume frac-
tion resulted in papp=1.75Vy (R*=0.99).

Visual representation of the three-dimensional
specimen reconstructions showed a wide range of
trabecular structures. There were specimens with an
apparently direction-independent strut configuration,
but also specimens with a well-defined texture of par-
allel plates (Fig. 4). A plate-like structure could be
identified in about 70% of the-cases. In none of these
cases were the plates positioned parallel to the xy-
plane, meaning that the plates were always found to
be more or less perpendicular to the cortical shells.

Calculation of the elastic constants

Calculation of the clastic constants is dependent on
the type of material behavior. Table 2 shows the
distribution of the various types of material behavior,
depending upon the confidence level used -to deter-
mine statistical uniqueness of the eigenvalues of the
MIL matrix found for the 33 specimens. It is obvious
that a wider confidence interval implies that more
specimens will be classified as isotropic. One of the
specimens (no. 14) was actually classified differently at
each of the three considered confidence levels. For this
patticular specimen, the actual procedure of calculat-
ing its elastic constants is worked out in Appendix IL.
Values of the elastic moduli; Poisson’s ratios, the
components of the fabric tensor and the ratio between
the maximal and minimal Young’s moduli (this being
a measure for the degree of anisotropy) averaged over
all 33 specimens together with the respective standard
deviations are given in Table 3.

elastic modulus in x-direction (MPa)

300
+ m., 72y.
o f., 82y.
200+
+ o
+ o
100+ iy * o
N
%++dr+(-)f+"++ °
+
0 0.1 0.2 0.3 0.4 0.5

éppargnt density (g/cm?)

00 elastic modulus in‘ y-direction (MPa)

+ m., 72y. ‘ *
o f., 82y.
2001
o
+
1001 O£+ o 0o
T+
e +?— o%
+ 5+ + .0
. el B
0 0.1 0.2 0.3 0.4 0.5

apparent density (g/cm?)

elastié modulus in z-direction (MPa)

300
+ m., 72y.
o f., 82y.
200+ .
' .
040, L :
100} gl ® °
S #6094 o
@++: *+~9++ + ¥
. st TR e
1] 0.1 0.2 0.3 0.4 0.5

apparent depsity (g/cm?)

Fig. 3. ‘Elastic moduli of the specimens from both the male
and female donors in the x-, y- and z-direction as functions
of the apparent density.

Returning to the four specimens shown in Fig. 4;
their material behavior was classified, respectively, as
oblately transversely isotropic (Ey=E; =43.8 MPa,
E5=20.7 MPa), isotropic (E;=E,;=E3 =23.6 MPa),
orthotropic (E1=167.0 MPa, E;=64.6 MPa,
E;=158.9 MPa) and prolately transversely isotropic
(E;=96.0 MPa, E,=E;=49.7 MPa) at a confidence
level of 95%.

Having information about the magnitudes and the
directionality of the elastic properties of the tested
specimens, it becomes possible to transpose this data
back to the pelvic bone. Again fora confidence level of
95%, Fig. 5 shows the projections of the eigenvectors
of the MIL ‘matrix together with the calculated
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Table 2. Occurrence of the various types of material behavior, depending upon
- the confidence level used to determine uniqueness of the eigenvalues of the' MIL
matrix for the 33 specimens

M. DALSTRA et al.

Confidence level

90% . 95% 99%
Orthotropy (E;, > E;> E3) 16 9 2
Prolate transversely isotropy (E, >E,=Ej;) 5 3 3
Oblate transversely isotropy (E;=E,>E3) 9 13- 15
Isotropy (E;=E,=E3) 3 8 13
Table 3. Average values and standard deviations (between . confidence level 99%: '
brackets) of Young’s moduli - E; (MPa), shear moduli : 233 2
G;; (MPa), Poisson’s-ratio v, fabrlc components H; and the E;=1958.6 p2;p (R*=0.57),
ratlo between. E; and E; depending upon the confidence : ' 2.34 £71.37 2
level used to determine uniqueness of the eigenvalues of the E;=9162.7 pip Hi ,(R =0.62),
MIL matrix for the 33 specimens Gij=919, 4 pf‘;? ( R2=0. 61),

Confidence level

90% 95% 99%
E, 61.6 (48.2) 59.8 (45.2) 59.8 (44.9)
E, 42.4(29.1) 50.1 (41.5) 57.3 (44.6)
E, | 31.0422.5) 38.3 (39.1) 432 (39.9)
Gas 18.4 (12.9) 20.8 (17.1) 226 (172)
Gy 23.4 (17.8) 23.5 (18.3) 22.6 (17.1)
Gis 257 (19.8) 252 (17.8) 26.0 (19.1)
Var 0.17 (0.12) 0.17 (0.10) 0:17 (0.10)
Via 0.24 (0.17) 0.20 (0.12) 0.18 (0.11)
Vap 0.14 {0.07) 0.15 (0.08) 0.16 (0.07)
Vis 027 (0.17) 0.26 (0.16) 024 (0.14)
Vaz 0.20 (0.14) 0.19 (0.13) 0.14 (0.09)
Vas 0.28 (0.21) 0.27 (0.21) 0.21 (0.16)
H, 0.390 (0.035) 0377 (0.038) 0365 (0.035)
Hsy 0.334(0.024) 0341 (0.026) . 0.346 (0.029)
H, 0276 (0.031) ~ 0.282(0.036)  0.346 (0.040)
Ei/E; 200000 . 17(08) 1.4 (0.6)

Young’s moduli for a number of specimens at their
original locations in the pelvic bone. :

Correlating Young’s and shear moduli to apparent-

_ density and fabric components resulted in the follow-
- ing set of relations: " -

“confidence level \90.%: '
=0.58),

E;=2017.3 p%%¢ (R2
E;=15098.5 p%46 H}8° (R?=0.69),
- Gy=1012.1 p%i* (R*=0.62),
Gi;=2049.1 24+ (H,+ H)*"2  (R*=0.65),
confidence level 95%:
E=1751.0 p%3? (R*=0.54),
E;=122619 pZ;3° H} ™ (R*=0.64),
G, =938.8 p238 ' (R2=0.61),
Gyy=15340 p%3° (H;+ H)™'7  (R*=0.62),

" Gy;=1084.2 p23% (H;+ H)*° (R*=0.61).

Looking at the values of R?, it can be seen that using .
only the apparent density as its predictor, the sheas
modulus shows a slightly better correlation than
Young’s modulus. However, adding the fabnc com
ponents results. in the opposite.

DISCUSSION

The purpose of this study was to find values for the
elastic properties of pelvic trabecular bone. Assuming
orthotropy as. the highest degree of anisotropy, mul
tiple tests on a single specimen would be required
This dictated the use-of cubic specimens, even though
the authors were well aware of the disadvantages and
inaccuracies-associated with this approach (Ashman
et al; 1989; Evans and King, 1961; Linde et al., 1990a;
Odgaard and-Linde, 1991), causing ‘an underestimas
tion' of Young’s modulus relative to specimens with
a larger ‘length-to-area ratio. Bearing this in mind
nondestructive compressive tests were performed in
three directions. However, it is not possible to obtain
the shear moduli from these data. A solution for this
could be to cut a'smaller cube from the original under
different angles and test this as well. Transformation
of this second set of data into the directions of the first, :
makes it possible to find the values for the shear
moduli (Snyder et al., 1989). However, in our case an
additional problem was the fact that the material’s
principal axes were not known beforehand. Cutting -
one smaller cube from the original would, therefore;
not be sufficient and at least a third cube would be -
needed as well. But this would mean that the original
specimens should be rather big. In fact, too big for -*
trabecular bone specimens to be taken from the pelvic
bome. Therefore, another approach was chosen. MIL -
measurements were performed on a digitized three- -
dimensionally reconstructed geometry of the speci-
mens after mechanical testing. The axes of the MIL
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Fig. 4. Different appearances of pelvic trabecular structure in specimen no. 3 (a), specimen no. 4 (b),
specimen no. 17 (c) and specimen no. 33 (d).
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ellipsoid were assumed to be the same as the mater-
ial’s principal axes and the data from the mechanical
tests were transformed in these directions. Using sin-
gular value decomposition on the relations for either
orthotropic, transversely isotropic or isotropic behav-

ior yielded three Young’s moduli, three shear moduli’

and six Poisson’s ratios.

Although none of the donors was known to have
any history of bone or joint disease, their ages
(72-87 yrs) alone contributeto the fact that low bone
densities and consequently low elastic constants were
found. However, as.a part of the purpose of this study
was to compare pelvic trabecular bone with trabecu-
lar bone from femoral and tibial origin, this aspect
should have no effect. For the two pelvic bones used
in this study for mechanical testing; trabecular bone
with relatively low apparent densities was found. To
support this finding, six other pelvic bones were used
for bone densitometry measurements with a DEQCT
method. The average Ca-equivalent densities at each
scan level did not vary much between these six bones.
The variation within a bone per scan level was such
that four areas could be identified where Ca-equiva-
lents were significantly different from adjacent areas
(Fig. 2). The fact that the two high-density areas
(upper part of the acetabulum to the sacroiliac joint
area and the middle part of the pubic bone) coincide
with the areas of major load transfer may, from a bone
remodeling point of view, not come as a surprise. The
apparent densities found for the two other bones,
which were used for mechanical testing, suited well
with these findings. Relating these apparent densities

to the average Ca-equivalent densities locally meas-.

ured to the six other bones, resulted in a positive
correlation: pe,.eq=0.626 p,y, (RZ=0.87).

The values of the Ca-equivalent densities found in
this study (0.04-0.22 gcm™3) are quite similar to
values of vertebral Ca-equivalent densities found by
Lang et al. (1988) and Kalender et al. (1989). Other
evidence for the resemblance between pelvic and ver-
tebral trabecular bone are the values of the apparent
densities -of - vertebral trabecular bone found by
McBroom et al. (1985), lying in a range of
0.10-0.25 gcm ™3, These kind. of values were also
found in this study for the two pelvic bones used for
mechanical testing. The ‘average densities found for
both male and female donors were not statistically
different. These are indications- that the “densities
found in this study are not exceptionally low, at least
for donors in thé age range used in this study
(72-87 yr).

With apparent density (or volume fraction) as thelr
primary predictor, the elastic constants that were
* found were low as well. For the majority of the speci-
mens, ‘the highest Young’s modulus did not exceed
100 MPa. To some extent, this may be attributed to
the methodology of mechanical testing. In the first
place, cubic compression is known to underestimate
Young’s modulus, as already mentioned above. Fur-
thermore, the fact that the specimens were. tested
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unconstrained does also result in lower stiffnesses, bu
constrained testing would only have increased th
stiffness by about 20% (Linde and Hvid, 1989). Mul
tiple testing of the specimens, however, should no
have had any major effect on the stiffness (Linde et al
1990b). But even taking these aspects into accoun
the elastic constants were significantly lower tha
values reported for specimens from the femoral hea
(Snyder et al, 1989) or from the proximal tibi
(Turner et al., 1990), although it must be stated that i
these studies the average age of the donors was lowe
(65 and 55 yr, respectively). However, our values fo
Young’s moduli are again similar to values for verte
bral trabecular bone (Lang et al., 1988).

Looking back at the values assumed for Young’
moduli for cancellous bone in various pelvic F
models, it appears that in most cases the values wer
too high. Pedersen et al. (1982) and Huiskes (1987
used values ranging from 1000 to 3000 MPa. Oonish:
et al. (1983) used 1000 MPa in one study, while i
another study 300 MPa was used (Oonishi et dl
1986). Goel et al. (1978) also used a value of aroun
300 MPa. Only Vasu et al. (1982) and Rapperport e
al. (1985) have used values which correspond to ou
findings, although -their upper limits (1025 an
600 MPa, respectively) where high as well. It is wort|
noting that they were the only ones to base thei
Young’s moduli on density distributions of actua
pelvic bone (roentgenograms). The assumed value of
0.2 for Poisson’s ratio of trabecular bone in nearly al
studies mentioned above was shown by our study t
be a good estimate. A Poisson’s ratio of 0.2 was als
found  in other. studies of trabecular bone from
locations other than the pelvic bone.

Visual representation of the specimens that under
went the three-dimensional serial reconstruction, re
vealed a wide range of trabecular structures. In more~
than half of the specimens, a plate-like trabecular’
structure could be observed, whereby the plates wer
always more’ or less oriented perpendicular to th
cortical shells. From a mechanical point of view, thi
is quite understandable, because as core material in
a sandwich construction, pelvic trabecular bone wil
predominantly have to withstand shear-loading
modes, against which a plate-like structure is the bes
resistance. Quantifying the degree of anisotrop
depended on the statistical uniqueness of the eigen
values of the MIL matrix. The smaller the confidenc
were classified: @s orthot

OTunOe

130 +ha
uuuL, 18 more Spe\'nueus wore C

ropic. A rise in confidence level from 90 to 99%
showed a decrease from 48 to. 6% occurrence of or
thotropic specimens. In case of transverse isotropy
the variant with two high-level moduli and one low-
level modulus (oblate) was seen more often than the
variant with one high-level modulus and two low
level moduh (prolate). This confirms the visual obser-
vation of the frequent occurrence of the plate-like
structures. The two high-level moduli lie in the plane -
of the plate, while the low-level modulus is found in
the connection rods. With this, pelvic trabecular bone




* distinguishes itself from direct weight bearing (e.g.
tibial) trabecular bone, where prolate transverse iso-
tropy is found (high-level modulus in the weight bear-
ing direction and the low-level moduli in the trans-
verse directions). The ratio between the maximal and
minimal Young’s moduli (Table 3) reveals that pelvic
trabecular bone is not highly anisotropic. This is con-
firmed by a minimal value of 0.315 for the second
invariant of the fabric tensor, a measure of the degree
of textural anisotropy, suggesting a maximal ratio of

1.9:1 between the major and minor orientation axes.”

The statistical correlations between mechanical and
textural properties are not as strong as reported in
other studies (Hodgskinson and Currey, 1990; Snyder
et al., 1989; Turner, 1992 and Turner et al., 1988,
1990). The exponent of the apparent density in the
relations with both Young’s modulus and the shear
modulus varies between 2.3 and 2.5. With regard to
the work of Gibson (1985), these values may be con-
sidered somewhat high. He points out that for low-
density bone (open-celled structure) this relationship
should be quadratic. In this study, however, despite
the low densities, plate-like structures (closed-celled
- structure with a cubic relationship) were found rela-
tively often, which might be the reason that the €xpo-
nent lies between 2 and 3. For the fabric components
this exponent shows a.much broader range (04-1.8)
and is strongly dependent on the confidence level used
to determine uniqueness of the eigenvalues-of the MIL
matrix. This is plausible, as a higher confidence level
implies relatively much isotropic behavior and for
perfect isotropy the fabric components can not pro-
vide anymore relevant information. This can also be
seen by the decreasing portion added to the R? when
the fabric components are added in the correlations at
increasing confidence levels. At a confidence level of
90%, adding H; explains an extra 11% of the variance
in Young’s modulus, while at a level of 99% this
percentage is reduced to 5%. For the shear modulus
at 99%, even nothing scems to be gained by adding
fabric components in the correlation. The fact that
pelvic trabecular bone is not highly anisotropic and,
therefore, does not show much variance in its fabric
components, is the reason why, unlike Turner (1992),
‘no higher exponents -for the fabric components than
1.8 were found. The relatively high variances in the
values of the elastic properties itself in combination
with the wide range of observed bone structures seem
to suggest that other textural properties than fabric or
MIL are also needed in order to improve relations
between elastic and textural properties. '

Not having a direct weight bearing function, it can
be concluded that pelvic trabecular bone consists of
lower-density bone than trabecular bone in the fem-
oral head or the proximal tibia. Consequently, the
mechanical stiffness and strength (although the latter
was not investigated here) will be lower. Its architec-
ture displays a wide range of structures, although the
predominant appearance is one of parallel plates. This

accounts for the fact that transverse isotropic behav-
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jor with two high-level moduli and one low-level
modulus is found relatively often.
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APPENDIX 1

One of the general descriptions of Hooke’s law can be
written as £€=Se, with S being the material’s compliance
~ matrix. From this, S can be solved if sufficient sets of € and
¢ afe available. Singular value decomposition is a standard

means to, calculate the pseudo-inverse of a nonsquare matrix -

(Strang, 1986), in this case 6. Multiplying ¢ and ¢~ ! should
‘ yield S: However, in this particular case, only three sets of
stresses and strains are available, which is not enough to
solve the 21 unknown components of S. But, assuming the
anisotropic material behavior to be either orthotroplc, trans-
verse isotropic or isotropic, already a lot about S is known,

namely. .

Si1 80 85 00 0 -
‘Sys 8358330 0. 0 -l
S {51 Si Ss o000
ortho 0 0 0 544 0 0 »
0

0:-0 00§

3
0

0 0 0 .0:0 366J
Si1 842 8,2 0 0 0
Si2 S22 Sa3 0 0 0
s |8 Ss s 0 0 0
=0 0 0. Sy 0O
0-0 0 0 S50 J

0 0 0 0 0 S
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or _
Sii S12 Si3 00 0
Si2 811 Sis 0 0 O
S . = Si3 S13 S;3 00 0.0
- 1so 0 0 0 S;u O 0
0 0 0 0 Su 0
0 0 0 0 0 Se
and
Si1 S;2 82 00 0
S12 811812 0 0 0
o _|S2 S S, 0 0 o0
=10 0 0 Su 0 0
0 0 0 0 Seu O
0 0 0 0 0 S,

For transverse isotropy, two separate cases are considere
In the first, the material is supposed to have one high-lév
Young’s modulus and two equal low-level Young’s modu|
(prolate). In the second one, it is just the other way aroun
namely, two equal high-level moduli and one low-lev
modulus (oblate).

In the following, only the orthotropic case will be worke
out further. For transverse isotropy and isotropy simila;
equatlons can easily be derived, which will be less elaborat
because in these cases, S has less independent component
As already stated above, singular value decomposition wi
not be'used on the total system, but 1nstead on our subsy
tems, these being = -

&1 Si1 S12 Sis Ty
& =182 8 S |}02
&3 Si13 S23 Sis O3

and s
& —S,,a' for i=4-6.

The ﬁrst can be rewritten as

€1 ‘ ‘0'1 03 - O3 0 0 0 .I
& =0 o5 0 o0, 03 S
&4 10 0 6, 0 6, o3 Su
23
S33

In this equation, the ‘extra’ two sets of ¢ and ¢ are addec
rowwise, in the three other equations, the extra sets ar
added columnwise. Labeling the three séts of ¢ and ¢ with
a,b and c, respectively, the following sets of equation
remain to be solved:

—sla = ala O2q O3a G Y 6 =

- €24 0 ‘ Cia 0 T2q O3 0 S
€34 0 0 06y 0.6, 03, S“
e1p 01 62 63 0 0 0 Su
&2 = 0 06y 0 03 05 0 ‘S13
€3p 0 0 gy 0 0y o3 Szz
‘ 81c Gic O3 03 0 0 0 S23
‘SZr: -0 G1c 0 O2c O3 0 33

e L. 0 0 oy 0 o5 03

and’

[2i e &l =Si[0: o 0;] - for i=4-6.
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Singular value decomposition applied to the matrices, con-
taining the stress components in the above equations, will
give their pseudo-inverses. Multiplying these by the respect-
jve strain matrices will yield the components of §, based on
a2 multidimensional least-squares fit. In Appendix II, a nu-
merical example of the above exercises will be given, using
actual data of one of the specimens.

APPENDIX I

The calculation of the Young’s and shear moduli and
Poisson’s ratios in the material’s principal directions from
the data of the mechanical tests and the MIL measurements
for specimen no. 14 will be shown here as an example. This
specimen happens to be classified as orthotropic at a 90%
confidence level, transverse isotropic at 95% and isotropic at
99%. From the mechanical tests of this particular specimen
follow the three pairs of stress and strain tensors (¢ in MPa
and & in microstrain): ’ :

-0.172 —7000
890

193

Q
"
i

0

0
S T 1868
—7000
1286

0
0

0 0

0 o |
0

0

o Coooo

1428
647
~7000
o | 0
0 0
0 0

The MIL measurements and subsequent . ellipsoid-fitting
produced the following material anisotropy tensor M:

0912 - 0016 —0.126
0.016 . 1.002 -—0.026 |.
L —0.126 —0.026 - 1.160

M=

The standard deviation in its components was 0.017. Eigen-
values and eigenvectors of M are

[ —0923 7
41 =0859, v;=| 0033
: | —0384 |

[ 00237
—0.990 |,
| —0.140 |

[—0.385 )
—0.138 |
| 0913 |

2,=0.998, V,=

Ja=1217, va=

With a 90% confidence interval based on a standard devi-
ation of 0.017 around 4, all three eigenvalues are distinct; so,
then orthotropy is assumed. With a 95% confidence interval,
K} becomes trapped: so, here, transverse isotropy with two
high-level moduli and one low-level modulus is assumed.

Finally, with a 99% confidence interval also 2 is trapped
and now isotropy is assumed.

The material’s principal directions are defined by the
eigenvectors of M. Transforming the above stress and strain
tensors into these directions, results in

™ —0.026 7] - —859
—0:000 873
o —0.146 e —5930
*=1. 0004 | 256 |’
—0061 | —5114
0.002 _| | 316 _|
[ —0.007 7] T 1216 7]
—0.337 6835
. —0.000 | 172
v 0011 |- ¥ 518 |
: 0.002 488
| —0.047 | | —2266 _|
T —0.617 7] [ —5608 ]
| —0.014 499
o | —0109 e | 18
== —0040 ° ¥ | —852 P
0.260 5915
| —0.094 _] | 1934

In case of orthotropy, tﬁése tensors are substituted in the

- appropriate equations as given in Appendix I. For the trans-

verse isotropic and isotropic cases, similar sets of equations
can be derived. Applying singular-value decomposition to
obtain the, pseudo-inverses of the stress submatrices, and
multiplying these with the respective strain submatrices yield
the values of S;;. Having these values, the Young’s and shear
moduli and the Poisson’s ratios are easily found using the
relations worked out by Cowin and van Buskirk (1986).
Their values are given in Table AL

Despite the fact that the equations describing the material
behavior -were thermodynamically correct, it is due to the
nature of the solution process using pseudo-inverse matrices
(multidimensional least squares) that - anomalies -like
G,3> G, may occur.

Table Al. Values of Young’s moduli E; (MPa), shear moduli

G;; (MPa) and Poisson’s ratios v,;, depending upon the

confidence Ievel used to determine uniqueness of the eigen-
values of the MIL matrix for specimen no. 14

Confidence level

90% 95% 99%
E, 964 792 754
E, 49.1 792 75.4
E, 252 254 75.4
Gss 423 386 32.1
Gs, 38.5 386 321
2 384 37.1 321
vy 0.06 0.07 0.18
Vi 0.12 007 0.18
Vas 017 016 0.18
Vis 064 0.51 0.18
Vas 0.12 016 . 0.18
Vo 0.24 ©051 0.18




