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552. THERE ARE EXACTLY 13 CONNECTED, CUBIC,
INTEGRAL GRAPHS*

F. C. Bussemaker and D. M. Cvetkovic**

1. Results. A graph is called integral if its spectrum consists entirely of integers.
Cubic graphs are regular graphs of degree 3.
It was proved in [3] that the set Ir of all connected regular integral graphs of a fixed
degree r is finite. At the same time the search for cubic integral graphs was begun.
Now we complete this work by the following theorem.

Theorem 1. There are exactly 13 connected, cubic, integral graphs. They are displayed
in Fig. I and in Fig. 2 of [3].
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Together with the graphs the corresponding spectra are given in Fig. 1. Ift,1. . . . , As
are distinct eigenvalues of a graph with the multiplicities Xl. . . . , Xs, then the whole
spectrum is represented by At', ..., ),/s.

Note that all connected integral graphs, whose vertex degrees do not exceed 3 and
are not all equal to 3, are known, c. f. [2]. They are displayed in Fig. 1 of [3]. Com-
bining both facts we have the following theorem.

Theorem 2. There exist exactly 20 connected integral graphs whose vertex degrees
do not exceed 3.

The proof of Theorem 1 is rather long. It includes the whole paper [3].
We shall give here only an outline of the proof.

2. Six distinct eigenvalues. Cubic integral graphs have, of course, at most
seven distinct eigenvalues. All such (connected) graphs with at most five distinct
eigenvalues were found in [3]; this are the graphs G1, . . ., Gg from Fig. 2 of [3].
If G is a bipartite connected cubic integral graph with six distinct eigenvalues, than
G has the spectrum of the Desargues graph (the graph G9 on Fig. 1), as was proved
in [3]. Now we have proved by computer that there is, except for G9, exactly one
more graph with the same spectrum. It is represented on Fig. 1 as the graph G10'

The graphs G9 and G10are cospectral but not isomorphic. The order of the
automorphisme group of G9 is 240 and only 48 for G10' But the both graphs have
the same number of circuits of length i for any i = 3, 4, . . . , 20! In the representation
by Fig. 2 b) the graphs G9 and GIO differ only by the fact that the edges between
V2 and V3 form in the first case two hexagons and in the second case a circuit of
length 12! Furthermore the numbers of cocliques of the orders 4, 6, 8, 10 in G9
are 1510, 1320, 115,2, respectively, and the same numbers for G10are 1510, 1320,
Ill, 2.

There are some more interesting facts about these two graphs. As it was mentio-
ned in [3] we have the relations G9= G3/\ Kz=G7 /\ Kz, where /\ denotes the conjunc-
tion (product) of graphs. But GIOhas not such a decomposition with respect to the
conjunction, since in the opposite case a new integral cubic graph on 10 vertices
would exist. In addition, this means, that in any representation of the adjacency
matrix A of GIO in the form

(1)

where N is a (O,I)-square matrix, the matrix N cannot be symmetric with zero dia-
gonal. But still there is a representation of A such that N is symmetric and satisfies
the equation

(2)

where B is the adjacency matrix of the complement of the graph G3 (Petersen graph).
The adjacency matrices of G3 and G7 satisfy the equation (2), too! Further we can
say that every (0,1)-solution of the equation NNT = 3 I+- B by (1) provides either
the graph G9 or the graph GIO'
We shall describe briefly the way of finding GIO' Using the same procedure as in
the case n=24 (see below) we established that the girth was equal to 6 and that
each vertex is on exactly 6 circuits of length 6. Let us fix one vertex x in the graph
(see Fig. 2).
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Let Vi denote the set of the vertices which are at distance i from x. We have I Vo 1=1
I VI 1=3, I V21=6. By consideration of the numbers I Vi I, for i>2, it turned out
that the only possibilities are those of Fig. 2, where in both cases only the edges
between V2 and V 3 are missing. This was sufficient to finish the investigation by a
computer search. The first alternative leads to the graph GIO and the second one
to both G9 and GIO'
For non-bipartite graphs from h with 6 distinct eigenvalues a table of possible
spectra was given in [3] (Table 1). Since these graphs have the least eigenvalue equal
to - 2, they must be, according to [1], either line graphs or complements to regular
graphs of degree 1 (coctail-party graphs) or they are represented by the so called
root system E8.

,q~
VI V2

a)
V. VI V2

b)
Fig. 2

In the first case it can easily be seen that the graphs must be line graphs of some
semi-regular bipartite graphs which are, on the other hand, subdivision graphs of
some cubic graphs (possible with multiple edges). According to [4] the line graph
of the subdivision graph of a regular connected graph is an integral graph if and
only if the starting graph is complete or has two vertices. But in these two cases the
number of distinct eigenvalues is not equal to six.
The second case is obviously impossible and in the third case there again is no solu-
tion. Indeed, connected cubic graphs which can be represented by E8 have at most
10 vertices and all such integral graphs have already been mentioned (they have no
six distinct eigenvalues).
The non-existence of these graphs can be proved also by calculating the number
of circuits of length 4, which we shall carry out for the next class of graphs.

3. Seven distinct eigenvalues. The only (bipartite) graph from h with 7 distinct
eigenvalues and with not more than 12 vertices are the graphs Gll and G12 from
Fig. 1, as was mentioned in [3]. The possible spectra of such graphs with more than
12 vertices are given in Table 2 of [3]. It was also noticed that the graph GI3 from
Fig. 1 has a spectrum of Table 2. We shall show now that there are no other such
graphs.

If Al=r, A2, .. ., An are the eigenvalues of a regular graph G of degree r, then the
number D4 of circuits of length 4 (quadrangles) in G is given by

D4=~ (i v-nr(2r-l)
)

,
8

i=1

which can easily be checked. Applying this formula on hypothetical graphs from
Table 2 of [3], we can establish that they do not exist except for the graphs with the
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spectrum of the form 3, 2x, lY, Oz, - lY, - 2X, - 3 with the following four sets of
parameters:

z D. D.
3 14
3 10
3 6
o 12

n x y
3 3
4 2
5 1
6 3

2
4
6
4

1° 16

2° 18
3° 20
4° 24

In this table n is the number of vertices and D6 is the number of circuits of length 6
(hexagons). The number D6 is calculated by the formula

1
D6= --(a6+b3-2(m-8)D4),

2

where b3= ~ m (m2 - 15 m+58), m is the number of edges and a6 is the coefficient6
of )"n-6 in the characteristic polynomial det ()"I-A) of G, A being adjacency
matrix of G. The above formula holds for cubic graphs of girth 4 and can be derived
from the general procedure of calculating the numbers of circuits of certain size
in regular graphs [5].

Using HOFFMAN'Spolynomial we obtain (c.f. [3]) A6+3A5-5A4-l5A3+4A2+

+l2A =
720

J, where J is the matrix whose all entries are equal to 1. Let (Ik (k=
n

= 1, 2, . . .) be the number of closed walks of length k which start and terminate
at a fixed vertex i. Considering the (i, i)-entries in the last matrix equation we get

(I6-5(I4+4(I2=720,since (Ik=O for odd k (the graph is bipartite). Having in
n

mind that our graphs are cubic and bipartite we have (I2=3 and (I4=15+2 d4,
where d4 is the number of quadrangles containing the vertex i. Hence, we get

720
(I6=-+63 + 10d4.

n
(3)

On the other hand, if the vertex i does not belong to any quadrangle then (I6 is at
least 87 (what can be seen by inspection) and any hexagon containing i increases
that number by 2 and also each circuit of length 4, whose one vertex is adjacent
to i, increases that number by 2.
Now the four cases mentioned above are considered separately.
1° n = 16. We can find a vertex i which is not contained in a circuit of length 4.
Therefore d4=0 and we get, from (3), (I6=108. But (I6must be odd and so the graph
does not exist.
2° n=18. We take again a vertex i with (I4=0 and we get (I6=103. Hence, 103-87=
= 16 of these closed walks contain a quadrangle or a hexagon.
First we shall prove that no 2 of the 3 quadrangles can have a common vertex. Two
quadrangles cannot have only one vertex in common since the graph is regular of
degree 3. Suppose that they have exactly two common vertices. Then the sub graph
from Fig. 3 would appear and there would be 8 vertices in the graph not laying on
quadrangles.
The number of closed walks of length 6 starting and terminating at these 8 vertices
and containing a quadrangle or a hexagon would be 8, 16=128. In order to cons-
truct these 128 closed walks we have at our disposal only 9 hexagons since the hexa-
gon contained in the subgraph from Fig. 3 is of no use. These 9 hexagons can provide
at most 9. 12= 108 closed walks of desired type. Quadrangles of the sub graph from
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Fig. 3 provide 8 such walks and the third quadrangle provides 8 further such walks.
So we have at most 108+8 +8= 124 such walks, which is not sufficient. Hence, the
subgraph of Fig. 3 is impossible.
Suppose now that two quadrangles have three common vertices, then the subgraph
of Fig. 4 would appear.

S
Fig. 3 Fig. 4 Fig. 5

Now we would have 13 vertices with d4=0 and a similar reasoning as above shows
the impossibility of this case.
Hence, the quadrangles are disjoint.
Two quadrangles cannot be joined by more than 1 edge. For example, the situation
on Fig. 5 is impossible because this subgraph already contains 4 hexagons and the
balance of closed walks for vertices outside quadrangles is not possible any more.
Accordingly, the subgraph induced by vertices of quadrangles can take the form of
graphs from Fig. 6.

In the cases b), c), d) one can easily prove that the whole graph contains the subgraph
from Fig. 7.
This subgraph has two eigenvalues greater than 2 and this is impossible since the
whole graph has only one eigenvalue greater than 2.
In the cases e), f) the graph can be completed in a unique way and one can easily
see that the solution does not exist.
So, only the situation a) remains, i. e. two quadrangles cannot be joined by any
edge. In this case the subgraph induced by 6 vertices not laying on quadrangles has
exactly 3 edges. Now, there are a few variants for completing the graph and it readily
follows that in no case we get the desired graph.
Hence, the graph with the spectrum 3, 24, 12, 04, - 12, - 24, - 3 does not exist.

3° n=20. Since D4=3, there are 8 vertices for which d4=0. For these vertices
we have cr6=99. So, 99- 87=12 such closed walks contain a circuit (of length 4
or 6). Further, we have 8 . 12=96 closed walks ofthis type which start and terminate
at one of the mentioned 8 vertices. All these walks are mutually different. On the
other hand, each quadrangle can provide 8 such walks and each hexagon provides
12 of them. Hence, the total number is 8 D4+12 D6= 96, which is in agreement
with earlier facts.
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But, this means that all walks coming out from quadrangles and hexagons must
really be taken into account. First, all vertices which are at distance 1 from quadrang-
les must be contained in the mentioned 8 vertices. It follows from this fact that no
two of the three quadrangles can have a common vertex. Further, no vertex of a
quadrangle is adjacent to any vertex of other quadrangle.
Consider a quadrangle. Let a, b, c, d be its vertices. Consider the vertices e, f, g, h
adjacent to a, b, c, d, respectively, but not laying on that quadrangle. Vertices e, f,
g, h are mutually different and mutually nonadjacent.
But also, all closed walks of length 6 which come out of hexagons must really be
among the closed walks of length 6 which start in our 8 vertices. This means that
all 6 hexagons are contained in the subgraph induced by our 8 vertices which is
impossible since this subgraph contains only 6 edges.

4° n=24. We have (j6 = 93 since d4=O. Hence, 93 - 87=6 closed walks oflength 6,
starting and terminating in a given vertex, come from hexagons passing through
that vertex. This means that each vertex lies in exactly 3 circuits of length 6. This
is in agreement with the total numer of such circuits.
To prove that the only graph with these properties is the graph G13we needed a
long chain of reasoning concerning structural details of the graph. Here we shall
only mention the main facts.
As in the case of Desargues graph, take any vertex x and consider the sets Vi of
vertices which are at distance i from x. It can be proved that the diameter is 4 and
i Vo 1=1, I VI 1=3, 1 Vz 1=6, 1 V3 1=9, and I V4 1=5. Since the graph is bipartite
no pair of vertices from the same set Vi are joined by an edge.
In the next step we established, using the fact that through each vertex there pass
exactly 3 hexagons, that the hexagons are only of the following types:

1° 3 hexagons passing through x;

2° 3 hexagons having 1 vertex in Vb 2 vertices in Vb 2 vertices in V3 and 1 vertex
in V4;

3° 6 hexagons having 1 vertex in Vz, 3 vertices in V3 and 2 vertices in V4.
Consider now the vertices from V4. Two vertices from V4 can have at most one
common adjacent vertex (from V3). Define the graph H whose vertex set is V4 and
in which two verticeE are adjacent if and only if they have a common adjacent vertex.
An important point was to establish that the only possibility for H is the graph on
Fig. 8.
Further construction is straightforward and it leads to the graph G13'
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