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Abstract

In every finite-state leavable gambling problem and in every finite-state

Markov decision process with discounted, negative or positive reward crite-

ria there exists a Markov strategy which is monotonically improving and

optimal in the limit along every history. An example is given to show that

for the positive and gambling cases such strategies cannot be constructed

by simply switching to a "better" action or gamble at each successive

return to a state.
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§ 1. Introduction.

Suppose you are in a casino with a number of dollars you wish to gamble.

You may quit whenever you please, and your objective is to find a strategy

which will maximize the probability that you reach some goal, say $ 1000.

In formal gambling-theoretic terminology, since there are only a finite

number of dollars in the world, and since you may quit and leave whenever

you wish, this is a 6~e-~tate leavable gambling p~oblem [4], and the

classical results of Dubins and Savage [4, Theorem 3.9.2.] says that for

each E > a there is always a stationary strategy which is uniformly e-opti

mal. That is, there is always a strategy for betting in which the bet you

place at each play depends only on your current fortune; and using this

strategy your expected fortune at the time you quit gambling is within E of

the most you could expect under any strategy. In general, optimal stationary

strategies do not always exist, even in finite-state leavable gambling pro

blems [4, Example 3.9.2.] although they do if the number of bets available

for each fortune is also finite [4, Theorem 3.9.1.], an assumption which

certainly does not hold in a casino with an odd6ma~~ (someone who will let

you bet any amount on practically any future event - he simply sets odds he

considers favourable to the house). An e-optimal stationary strategy is by

definition quite good, but it does have the disadvantage that it is not get

ting any bett~, and in general always remains e away from optimal at some

states.
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The purpose of this paper is to introduce the notion of a strategy which

is monotonically improving and optimal in the limit, and to prove that such

strategies exist in all finite-state leavable gambling problems and in all

finite-state Markov decision processes with positive, negative, and dis-

counted pay-offs; in fact even M~kov strategies [6] with these properties

are shown to exist. The questions of whether monotonically improving limit-

optimal (MILO) strategies exist in non-leavable finite-state gambling pro-

blems, in finite-state average reward Markov decision processes, or in

countable state problems (with various pay-offs) are left open.

~lis paper is organized as follows : Section 2 contains preliminaries in-

eluding notation and the definition of MILO strategies; and Section 3, 4 and

5 establish the existence of MILO strategies in the discounted, negative,

and positive dynamic programming cases, respectively. The existence of MILO

strategies in finite-state leavable gambling problems follows from the cor-

responding result for the positive case.

§ 2. MILO Strategies.

A finite state Mankov dec~~on P~OcC6~ [8,12J can be characterized as a

quadruple (S.A,p,r) where : S is a finite set representing the state space;

A is a function which associates to each i E S a non-empty set A(i) (the

actions available at state i); p is the trasition probability function with

a
Pij the probability of a transition to j when in state i action a is taken

and r is a function from S to ~, where r(i) represents the reward incurred

at state i.

(As in [9], the main results in this paper carryover easily to the case

where r depends on the action as well as state.)
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A ~tnate9Y is a function n from partial histories (i
O
,i1 , ••• ,i

n
) to actions

collection of all strategies will be denoted by TI, and M and F will be

the sets of all Mankov and ~tatiOnahY strategies respectively (see e.g.

[3, 4, 8, 12J for formal definitions). The eonditional ~tnate9Y n given that

For each initial state i, a strategy n induces a probability measure P.
1,n

~

on the Borel sigma algebra of subsets of S (S endowed with the discrete

topology), expectation with respect to P. is denoted E. • X is a ran-1,n 1,n n

dom variable denoting the state at time n.

The value 06 a ~tnate9Y n is, for the discounted case

~

and for the positive and negative (i.e., r ~ 0 and r ~ 0) cases,

~

v(n) E I r(X),
n n=O n

where omitting the argument i means that a column vector notation is being

used.

Similarly, the value 06 ~tate i is, for the discounted case

VS(i) = sup va(i,~)
nEll

and for the positive and negative cases

v*(i) = sup v(i,n).
nEll

Assumption: Throughout this paper, it will be assumed that -~ < v* < ~.
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The que'stion of existence of optimal or nearly optimal strategies of various 

types (e.g., stationary, Markov) has been studied extensively, for example 

in [1, 2, 3, 4, 8, 9, 12J. However, as mentioned above, even a stationary 

strategy which is only E-optimal is not getting any better, and in general 

remains E away from optimal at some states. Thus it seems natural to ask if 

there exist strategies which are steadily improving, and optimal in the limit. 

Definition 2.1. : A strategy ~ is (everywhere) monotonieatty ~p~oving (MI) 

00 

if for all i E 8, all (i
O
,i

1
, .•• ) E 8 , and all n > 0, 

(discounted case) ; 

and 

v ( i , ~ [i
O 

' ••• ,i , i 1 J) ~ v ( i , ~ [i
O 

' ••• ,i J) 
n n+ n 

(positive and 

negative cases). 

A strategy is (everywhere) lim~-op~al (L0) if for all i E S and all 

lim VS(i,~[iO,···,inJ) 
n-+oo 

and 

lim V(i,~[iO,···,inJ) 
n-+oo 

Vs (i) 

v* (i) 

(discounted case) ; 

(positive and 

negative cases) • 

Remarks. 

(i) The notion of a MILO strategy does not require the introduction of 

an 'external parameter' E, in contrast to most other notations of 

'good' strategies. 
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(ii) Stnictiy monotonically improving strategies do not exist in general

(for example in problems where there is only one strategy).

(~) Every stationary strategy is monotonically improving (in a trivial

sense, since only weak inequality was required).

(iv) A stationary strategy is MILO if and only if it is optimal.

(v) Optimal stationary strategies do not always exist, (even in finite

state leavable gambler's problems, recall), so in general MILO strate

gies, if they exist, mU4~ be non-~tationany.

(vi) A strategy is limit optimal if and only if it is 'eventually' persis

tently E-optimal rs] for all E > O.

(vii) An optimal strategy need not be MILO (simply because it need not be

conditionally optimal, or even good), as the following examples shows.

Example 2.1. S = {1,2,3}, A = {1,2}. State 3 is absorbing, r(3) = 0,

p(3,a,3) = 1. State 2 is reflecting, r(2) = 1, p(2,a,3) = 1. In state 1,

r(l) = 0 and p(1,1,2) = 1 and p(1,2,3) = 1. The strategy which uses action 1

initially at each state, and then uses action 2 at all later times and states

is optimal, yet not MILO (although in a rather trivial sense).

(v~) A MILO strategy may be bad initially (consider Example 2.1. with

action 2 used at time 1 and action 1 thereafter at all states). Of

course, one may easily obtain an arbitrarily good MILO strategy from

any MILO strategy, by just 'starting' it late.

(iX) MILO strategies need not exist if r is unbounded (and hence S neces

sarily infinite), even in leavable gambling problems with countable

state spaces (and countably additive gambles).
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In fact the following example even shows that limit-optimal strate-

gies need not exist in positive dynamic programming problems (under

either the additive notion of £-optimality given above, or the multi-

plicative notion used in [5J.

Example 2.2. (Modification of an example of Dubins and Sudderth

[5, Example lJ). S = {O,±l,±2, ••. }, A = {1,2,3}; r(m) = ° if m ~ 0,

-m
2 - 1 if m < 0; p(m,l,m) = 1, p(m,2,-m)

1
1, p(m,3,O) = ~ = p(m,3,m+l)

if m > 0, p(m,a,O) = 1 for all m < 0. As in [5J it may be shown that no stra-

r (m)

tegy is persistently ~ -optimal at state 1, so (via Remark (V,<-) it is easy

to see that no strategy is limit-optimal (or even limit-optimal on a set

of histories of positive measure) •

Whether MILO strategies exist for unbounded r if a multiplicative notion of

£-optimality is used (as in [5J) is not known to the authors; the proof

given below depends very heavily on the finiteness of the state space.

(X) MILO strategies cannot always be constructed by simply switching to

a 'better' action at each successive return to a state - one is for-

ced to use some action for extremely long periods, then discard them

for actions to be used even longer, and so on.

Example 2.3. (Modification of Example 3 in [7J). S = {1,2,3}, A = {1,2,3, ••• }.

State 3 is absorbing, r(3) = 0, p(3,a,3) = 1. State 2 is reflecting

r(2) = 1, p(2,a,3) 1.

-a -a -a -a
In state 1, r(l) = 0 and p(l,a,2) = 2 , p(l,a,3) = 3 , p(l,a,l) = 1-2 -3 •

Clearly v*(l) = 1, and by Ornstein's result (Proposition 5.3. below) there

is a stationary strategy with value 1-£ at state 1;
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-a -a -a ,to find it simply choose an action a satisfying 2 /(2 +3 ) ~ 1 - €,

and always use action 'a' at state 1. But such a strategy is not limit-

optimal, and hence not MILO. The stationary strategy using action a+1 at

state 1 is strictly better than the one using a, so in some sense a+1 is a

'better' action than a, but a MILO strategy (the existence of which is

guaranteed by Theorem 5.1.) cannot be constructed simply by switching to

'better' actions each time one remains at state 1, for the following reason.

Suppose ~ is a strategy which uses no action at 1 more than N times. Then ~

is, and remains, less than €-optimal, i.e.,

v(l,~) ~ 1 - € and v(l,~[l,l,••• ,l]) ~ 1 - £,

00

where Probe (never leave state 1) ~ €:= IT (1_2-a _3-a )N > O.
a=l

§ 3. Discounted Dynamic Programming.

The main purpose of this section is to prove the following theorem.

Theorem 3.1. In every finite-state discounted Markov decision process a

monotonically improving limit-optimal Markov strategy exists.

Recall that S E (0,1), and let LS(f)v = r + SP(f)v, where f is any map from

S into A satisfying f(i) E A(i), P(f) is the transition matrix corresponding

to f, and, as before, omission of the argument i means that vector notation

is being used.

The proof of Theorem 3.1. will use several lemmas, the first of which is

just the optimality equation of Bellman.
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Lemma 3.1. sup LS(f)VSfEF

Lemma 3.2. Let TI = (f
O
,f

1
, ••• ) (f

k
E F) be a Markov strategy satisfying

LS(fk)vS ~ Vs - Eke for each f k • Then

00

T
(Here 'e' represents the vector (1,1, ••. ,1) ).

Proof. v S(TI) lim LS(f0) LS(f 1) ••• LS (fk) Vsk+oo

~ lim L
S

(fa) Ls(f
1

) •.• L
S

(fk_ 1) (vS- £ e)
k

k+oo

~ lim LS(fO) .••LS(fk_l)v~ - £ e
k+oo k

~ ~ lim [v* - (£0 + ... + £k)e]
k+oo S

00

v* - L Eke. I
S k=O

(k)
For a Markov strategy TI = (f

O
,f

1
, ••. ), let TI denote the Markov strategy

(k)
TI = (fk ,f

k
+1 , •.• ). Then a Markov strategy TI is (S-discounted) monotoni-

cally improving if V
S

(TI(k+1» ~ VS(TI(k», and is limit-optimal if :

lim VS(TI(k» = vs.k+oo

Recall that action 'a' is called (S-discounted) ~o~~v~ng in state i [4,8,12]

if r(i) + Stp~.v~(j) = v~(i). Let So c S be the set of all states in which
j ~J fJ P

a conserving action exists, and for each i E SO' let a(i) be a conserving

action in state i.
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Further, let Fa C F be the subset of policies with f(i) = a(i) for all

i E SO. (Since the a(i) need not be unique, Fa need also not be unique).

Lemma 3.3. sup va(f) = v~.

tEFO

Proof. Choose E > a and let f E Fa be such that La(f)V~ ) va - Ee, which

is possible by Lemma 3.1. and the definition of F
O

• Then for the stationary

-1
strategy f, va(f) ~ ve- £(1-a) e. Since € was arbitrary,

-1
sup va(f) ~ sup (v~ - E(1-S) e) =

fEFO E>O

Proof of Theorem 3.1.

•

If So =S, then by Lemma 3.3. it is easy to see that any stationary strategy

f E FO is op~, and hence by remark (iv) in § 1, MILO. Suppose So ~ S,

let EO = 1, and for k = 0,1,2, ••• pick a policy f
k

E Fa and define numbers

ok and Ek+1 > a such that

It will now be shown that the Markov strategy ~ = (f
O
,f

1
, ••• ) is MILO.

To see that ~ is LO, observe first that ok ~

implies that E
k

+
1
~ E

k
/2 ~ ••• ~ 2-(k+1)E

O

Ek for all k, which, by (iii),

2-(k+1) , and that



- 11 -

Then (i) and Lemma 3.2. imply that

( (k»
Vs 11" ~ v*

S

00

L
j=k

C" e ~ v*
<-j S

-k+1v* - 2 e,
S

which shows that 11" is limit-optimal (by the observation following the proof

of Lemma 3.2.).

To show that 11" is MI, the states in So and in s\sO will be treated separately.

Ca.6e.. 1.

since

i E S\sO. Then

and

00

V
S

(i,11"(k+1» ~ V;(i) - L
j=k+1

00

E.
J

6 ~
k L

j=k+1
E,

J •

Ca.6e.. 2.

Then

i E SO. Define t to be the hitting time (first entry time of S\SO.
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where the .tnequ.ali~y follows easily from CMe 1 since Xt E S\8
0

for

t < 00 and since st = a if t = 00, and the second equality follows since

(k)
and

(k+1)
to time t.1T 'IT agree up

Together, CMe4 1 and 2 imply that 1T is monotonically improving.

§ 4. Negative Dynamic Programming.

Theorem 4.1. In every finite~state negative (dynamic programming) Markov

decision process a monotonically improving limit-optimal Markov strategy

exists.

Recall that r ~ 0, and let L(f)v = r + P(f)v.

The proof of Theorem 4.1. is an exact parallel of that of Theorem 3.1. and

only the statements of the key steps will be given.

Lemma 4.1. sup L(f)v* v*.
fEl"

Lemma 4.2. Let 1T = (fO,f
1

, ••• ) be a Markov strategy satisfying

L(fk)v* ~ v* - Eke for all f k E F. Then V(1T) ~ v* - I==o Eke.

Action 'a' is called (negative dynamic programming) conserving in state i

[8,12J if r(i) +

those in Section

LP~.v*(j) = v*(i). Let So' a(i) and Fa be the analogs of
. 1.J
J
3. Further, let MO be the subset of all Markov strategies

using policies in Fa only i.e.,

0,1,2, ••• }.
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Lemma 4.3. sup v(~) v*.
~EMO

The construction of a negative dynamic programming MILO strategy

~ (f
O
,f1 , ••• ) is then essentially the same as for the discounted case.

§ 5. Positive Dynamic Programming.

Recall that for positive dynamic programming, it is assumed that r ~ 0 and

that v*(i) < 00 for all i E S. The main purpose of this section is to prove

the following theorem.

Theorem 5.1. In every finite-state positive (dynamic programming) Markov

decision process a monotonically improving limit-optimal Markov strategy

exists.

The essential difference between this case and the discounted and negative

cases is that in those cases, one may select any conserving action at a

state, and use that action always when the process is in that state, without

sacrificing any optimality ... such is not the case in general for conser-

ving actions in positive dynamic programming problems. Therefore a somewhat

different argument is needed.

The proof of Theorem 5.1. is based on several propositions and lemmas.

Again, let L(f)v = L
1 (f)v = r

m m-l
+ P(f)v and for m > 1, let L (f)v =L(f)L (f)v

and let v (~)
m

m

E I r (X ).
~ n=O n
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Proposition 5.2. (Ornstein [9], Proposition B). If there is an optimal

strat~9¥ at each i E S, then there is an f E F with v(i,f) = v*(i) for

all i E S.

Proposition 5.3. (Blackwell [2], Ornste~n [9]). If S is finite, then for

each ~ > 0 there is an f E F with both v(i,f) ~ v*(i) - £ and

v(i,f) ~ O.,.£)v*(i) for all i E S.

For the remainder of this section, (S,A,p,r) characterizes a fixed Markov

decision process with I S I < co.

Let B:= {i E S; v* (i) = a};

c;= {i E S: there is a 1T E II with v(i,1T) v* (i) };

0;= {i E s; I A(i) I = 1 ; and

T;= S\D.

Further it is assumed that there is no state outside D in which the action

set can be restricted to a singleton without changing v*, that is,

(1) If i E T then for each a E A(i), sup{v(i,1T); 1T E II

with 1T(i) = 1T(i
O

, ••• ,in ,i) = a for all iO, ••• ,in E S} < v*(i}.

First it will be shown that this assumption can be made without any loss

of generality.

To see this, first observe that an easy modification of Proposition 5.2.

implies the existence of a stationary strategy f which is optimal for all

states in C; so for all i E C the action set A(i) can be reduced to the

singleton {f(i)}.
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On S\C there still may be states in which the action set can be restricted

to a singleton. Pick one of those states and reduce its action set to such

a singleton. Continuing, one ends up with a Markov decision process satis-

fying (1) which has the same value as the original one, and any MILO strate-

gy in the restricted problem is MILO in the original one. Note however that

this construction of D need not be unique.

Example 5.4. S = {1, 2,3,4}; A(3) = A(4) = {1}, p (3,1,4) = p (4,1,4) 1;

A(1) = A(2) = {0,1,2, ••• }, p(1,O,2) = p(2,0,1) 1, p(1,n,3)

1 - p(1,n,4) = p(2,n,3) -1
1 - p(2,n,4) = 1 - n ; r(1) = r(2) r(4) = 0,

r(3) = 1. Clearly v*(1) v*(2) = 1, and action 0 is good in both states

1 and 2, but not simultaneously. The construction of D may lead to either

{1,3,4} or {2,3,4}.

Lemma 5. 5 . ¢ =f B c C CD.

Proof. B o together with I s I < '" implies the existence of a 0 > 0

so that v*(i) ~ 0 for all i E S, which by Proposition 5.3. would imply the

existence of a stationary strategy f with v (i,f) ~ 0/2 for all i E S.
n

But then vnk(i,f) ~ kO!2 for all k and i E S, so v(i,f) '" for all i which contra-

dicts v* <"'; hence B =f 0. On B all strategies are optimal so B C C; and the

conclusion C CD follows as in the first part of the justification of (1) ••

Let t E be the hitting time of E E S.

Lemma 5.6. There exist policies f
1
,f

2
, ••• E F satisfying

(i) fn(i) = f 1 (i) for all i E D and all n;

(ii) v(i,f) ~ (1 - 2-n )v*(i) for all i E S;
n
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(iii) Pi,f (ta <~) ~ 1 for all i E S and all n; and
n

(iv)
f (i)

P.~
1J

f
1

(i)

> 0 ... p. : > 0 for all i,
1J

j E S and all n.

p,roof. Conclusion (i) follows since on 0 there is only one policy, and

(ii) follow~ from Proposition 5.3. For (iii), fix n and let k be SO large

probability transition matrices. •

0, which

pk(f )v* ~ v* - v (f ) ~ (1 - o)v*.
n k n

But this implies lim pm(f )v* ~ lim pkj(f )v* ~ lim (1 - O)jv*
. . JIt+OO n j~ n j~

proves (iii). Finally, (iv) follows by taking subsequences of the finite

that vk(f
n

) ~ ov* for some 0 > O.

Clearly Vk(f
n

) + pk(fn)V* ~ v*, so

corollarx 5.7. Let f
1
,f

2
••• be as in Lemma 5.6. Then all policies f E F

with f(i) ~ f
k

(i) for some k. satisfy pn(f)v* ~ 0 as n ~ *.
. 1
1

Proof.

of B.

Immediate from Lemma 5.6. (iv) and (iii), and the definition

•
Definition 5.8. For any two Markov strategies ~1 ~ (gl,9

2
, ••• ) and

k
~2 = (h

1
,h

2
,···) the strategy ~1 0 TI

2
denotes the Markov strategy

(gl ,92"" ,9k ,h1 ,h2 ,···)·

...
Lemma 5.9. Let f 1,f

2
, ••• , be as in Lemma 5.6. and let TI,TI E IT. Then

(i) v
k

(i,TI) t v(j"TI) as k ~ 00 for all i E s;
k

'"( ii) vk(i,~) ~ vCi,TI 0 ~) for all k~ 0, i E s and all ~ E IT,

and

(iii) Lk(f )v(;) ~ v(f ) as k ~ 00 for all; E IT and all n.
n n
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(i) follows from the assumption that r ~ 0 and the monotone
k

convergence theorem, (ii) by r ~ 0 and the definitions of v
k

and n 0 TI,

and (iii) from Lemma 5.6. (iii).

kLemma 5.10. Fix f E F and n E IT. If L(f)v(n) ~ v(n) then L (f)v(n) is

knon-increasing in k. Similarly, if L(f)v(n) ~ v(n), then L (f)v(n) is

non-decreasing in k.

I

Proof. Immediate from the monotonicity of L(f) . I

Lemma 5.11. For each n ~ 1 there is an m> n satisfying

L(f )v(f ) < v(f ) on T.
n m m

m > n there is an i E T satisfying
m

Proof. Fix n ~ 1 and suppose, by way of contradiction, that for each
1

v(i,f 0 f ) ~ v(i ,f ).
m n m m m

Since ITI < 00, this implies there is an i E T so that for infinitely many m

(2)
1

v(i,f 0 f ) ~ V(i,f )
n m m

It will now be shown that i must be in D, thereby contradicting the fact

that T n D = 0. To show i E D, it is enough to show that for each E > 0 and

each i E S there is a strategy n E IT using only f (i) at i which is E-optimal
n

at i (since then, without loss of generality, A(i) = {f (i)}, and so by
n

(1) i E D). Fix E > O.

By Lemma 5.6. (ii) it is possible to choose m satisfying (2) and also

v(i,f A

) ~ V*(i) - E for all i E S. Define f E F by f(i) = f (i), and
m n
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ay Lemma 5.10 f satisfies

(3)
N ..,

L (f)v(fm) ~ v(fm) for all N ~ 1.

By Lemmas 5.6 (iv) and 5.9 (iii), (3), and the &~optimality of fro for
N

all i € S follows v(i,f) = lim v(i,r Q f..,) ~ v(i,f... ) ~ v*(i) - & for all
N~ m m

i € s. Since f uses only f (i) at i, this completes the contradiction. •
n

For the remainder of this section let f
1
,f

2
•••• be a sequence of policies

satisfying Lemma 5.6 and also

(4) L(f l)v(f) < v(f ) on T for all m.
m- m m

(Sa)

(5b)

< -m6 . 2 ; and
m

L(f l)v(f) ~ v(f ) - 26 v* on T,
m- m m m

where (5b) is possible by (4).

Next, let n
1

< n 2 < ... be sufficiently large integers such that

(6a)

(6bl

v(f ) - v (f) ~ 6 v*; and
m n m m

m

n
p m(f )v* ~ 0 v*,

m m

where (6a) is possible by Lemma 5.9 (iii), and (6b) by Corollary 5.7.
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LelTlIlla 5.12. If n
1

,n
2

, ... satisfy (6a - b), then for all m > 1,

Proof. On T,

L(f l)Lnm(f)V ~ L(f ) [v(f ) + pnm(f )v*]
m- m m-l m m

~ L(f l)v(f) + P(f )6 v*m- m m-l m

~ L(f l)V(f) + 0 v*m- m m

~ v(f ) - 20 v* + 0 v*
m m m

~ v (f ) + 0 v* - 26 v* + 0 v*
n m m m m

m

v (f ) ~ Lnm(f )v
n m mm

where the first inequality follows since v ~ v* and since r ~ 0; the second

by (6b); the fourth by (5b); the fifth by (6a); and the last inequality

since v ~ o. I

It will now be shown that ~

lelTlIllas are needed.

n
3

f
3

0 ••• ) is MILO; first two more

(Note that (Sa) has not yet been used; it will be needed for LelTlIlla 5.14.)

LelTlIlla 5.13. For all m, all j < m, and all n,
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Proof. Fix m. ClearlY L(f )v* ~ v*, so
m

(7) L
n

+
1

(f )v* ~ Ln(f )v* for all n •
m m

First consider (i) for j = m - 1. That (i) holds on T follow~ from Lemma

5.12. On p, f = f 1 (Lemma 5.6 (i», so by (7)m m~

on D •

combining the results on T and D yields (i) for j = m - 1. Next, (ii) for

j = m - 1 follows by the order preserving prOperty of L(f) (0). ay induc-

tion one easily establishes both results for all j < m; only the argument

for the case j = m - 2 will be given. On T, (i) holds again by Lemma 5.12,

and. on D f
m-2

f
m

_1 , so using (ii) for j = m - 1,

Then (ii) with j m - 2 is immediate from (i) for j m - 2 as before. •
Lemma 5.14. For all j and all n

1 ; '" Ln (f ) Ln j +1 (f ) Lnm(f ) v*u:: j j+l ... . m

Proof. For all j, all n, and all m,

n n j +1 n j +2
v(f

j
0 f

j
+1 0 f

j
+2 0 ••• ).

n n. 1J+
V(f. 0 f. 1 0 ••• ) ,

J J+
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so

To obtain the reverse inequality, note that by Lemma 6.6 (ii), (Sa) and

(6a) one has

(8) -m-l
~ v(f ) - 2 v*

m+l

Thus
n n j +1

v (f
j

0 f
j

+
1

0 ••• )

-m-l -m-l
~ (1 - 2 ) v* - 2 v* -m

(1 - 2 ) v* .

~ Ln (f . ) Lnj +1 (f . ). . . Lnm(f ) v* _ 2 -mv* ,
J J+l m

so

which completes the proof. I

n
1

n
2

Proof of Theorem 5.1. The strategy TI = (flo f
2

0 ••• ) is MILO. To see this,

first note that by Lemmas 5.13 and 5.14, for all j and n

1 n. 1 n. 2 n. 1 n. 2J+ J+ J+ J+
V(f j 0 f j + 1 0 f

j
+2 0 ••• ) ~ V(f

j
+

1
0 f

j
+

2
0 ••• ) and

n+l n. 1 n. 2 n n. 1 n. 2
J+ J+ J+ J+

V (f. 0 f. 1 0 f. 2 0 ••• ) ~ v (f. 0 f
J
. +1 0 f. 2 0 ••• ) ,

J J+ J+ J J+

so TI is MI. That TI is also LO is immediate from (8). I
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~y paralleling the proof of Theorem 5.1 in a gambling-theoretic frame

work, or simply by rewriting a finite-state leavable gambling problem as

a finite-st.ate total reward problem, one has the following stronger version

of Theorem 1 of [7].

Corollary 5.15. In eVery finite-state leavqble gambling problem there is

a m9notontcallY tmpr9ving limit-optimal strategy.
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