

Modelling industrial systems : theory and applications

Citation for published version (APA):
Koster, G. J. P. (1993). Modelling industrial systems : theory and applications. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR407641

DOI:
10.6100/IR407641

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR407641
https://doi.org/10.6100/IR407641
https://research.tue.nl/en/publications/2834abe3-f36d-48a4-9dad-b60758869cf9

Modelling Industrial Systems:

Theory and Applications

ModeHing Industrial Systems:

Theory and Applications

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE

TECHNISCHE UNIVERSITEIT EINDHOVEN, OP GEZAG VAN

DE RECTOR MAGNIFICUS, PROF.DR. J.H. VAN LINT,

VOOR EEN COMMISSIE AANGEWEZEN DOOR HET COLLEGE

VAN DEKANEN IN HET OPENBAAR TE VERDEDIGEN OP

WOENSDAG 22 DECEMBER 1993 OM 16.00 UUR

DOOR

Gillis Johannes Pieter Koster

GEBOREN TE ZAAMSLAG

Dit proefschrift is goedgekeurd door

de promotoren

prof.dr. M. Rem

en

prof.dr.ir. J.E. Rooda

en de copromotor

dr.ir. W.E.H. Kloosterhuis

The investigations were (partly) supported by the Foundation for Computer Science
in the Netherlands (SION) with financial support from the Netherlands Organization
for Scientific Research (NWO).

Aan Marie-Anne

Denn das Talent, meine Herren und Damen
dort unten, weithin im Parterre, das Ta
lent ist nichts Leichtes, nichts Tändelndes,
es ist nicht ohne weiteres ein Können. In
der Wurzel ist es Bedürfnis, ein kritisches
Wissen urn das Ideal, eine Ungenügsamkeit,
die sich ihr Können nicht ohne Qual erst
schafft und steigert. Und den GröBten, den
Ungenügsa.msten ist ihr Talent die schärfste
GeiBel ... "

From Thomas Mann's narrative "Schwere
Stunde," 1905.

Acknowledgements

First of all, my thanks are due to Martin Rem, who gave me the opportunity to do
the research and supervised me throughout the preparation of this thesis.

Many credits are due to Wim Kloosterhuis, who zealously checked the theory and
applications, and pointed out various mistakes and omissions. His enthusiasm and
expert knowledge of parallel computations have been of paramount importance to
me; therefore, my special thanks.

For the implementations made, Johan Lukkien is acknowledged for generously
supporting me with bis expertise in the field of implementing parallel programs.
I very much appreciate his interest and help.

Finally, my grateful thanks go to my wife Marie-Anne, for her never-ceasing en
couraging during all stages of the work and, especially, reminding me of much more
important things in life than doing research.

Contents

Preface

1 Introduetion
Overview
Notation .

2 Programs and their semantics
2.1 Actions and alphabets
2.2 Time . . .
2.3 Schedules
2.4 Enabling structures .
2.5 Generic actions and programs
2.6 Abstract specifications
2. 7 Systems . . .

3 Communication and values
3.1 Communication
3.2 Parameterized and generic programs
3.3 Asynchronous communication

3.4 Pictures
3.5 Example: the dining philosophers

3.5.1 Philosophers and forks
3.5.2 The supervisory control

3.6 Example: a turntable
3.6.1 The processes in the system

4 Distributed discrete-event simulation
4.1 Absence of choice
4.2 Presence of choice
4.3 Some optimizations
4.4 Example: buffer-size determination

4.4.1 Specification . . .
4.4.2 Simulation results

xiii

1
3
4

7
8
8
9

11
20

32
35

37
38
45

48
49
51

52
53
54

55

59
60
61
65

69
69
71

x Contents

5 A flow-shop factory
5.1 A single shop ..
5.2 The factory and its environment .
5.3 Simulation results

6 A lift system
6.1 System description

6.1.1 Up and down buffers
6.1.2 Lifts
6.1.3 Control and system .

6.2 Control strategies
6.2.1 Static assignment ..
6.2.2 Dynamic assignment

6.3 Simulation results
6.4 Time-critica! behaviour . . .

7 Jump-cutted reai-time simulation
7.1 Real-time approach ..
7.2 Validating the results .

8 A job-shop factory
8.1 Preliminaries
8.2 The processes in the system
8.3 Control process and resulting system

8.3.1 The variables of the control process
8.3.2 The possible reactions
8.3.3 A first strategy
8.3.4 The system

8.4 A concrete instanee . .
8.5 Feasibility studies . . .

8.5.1 The current capacity
8.5.2 Yet another strategy
8.5.3 More distribute robots

9 A traffic-light system
9.1 The control and the periphery

9.1.1 A first start
9.1.2 Simultaneous access.
9.1.3 Closing idle lanes

9.2 Towards a dosed system ..
9.3 A particular instanee
9.4 A comparison of techniques

73
74
76
78

83

84
85

86
90
92
94
94

95
100

103

104
107

109

110
112
115
115
116

118
119

120
122
122
124
125

131

132
132
134

137
138
141
143

Contents Xl

10 Condusion 147

Bibliography 151

Index 155

Summary 157

Samenvatting 159

Curriculum vitae 161

xn Contents

Preface

In 1879 the Hungarian pianist and composer Franz Liszt mentioned in a letter to
his friend Ba.roness von Meyendorff the 9th symphony of Ludwig van Beethoven, the
"Choral," as one of the supreme monuments of human culture. The symphony, which
consists of four movements, is an immense complex musical structure comhining or
chestra, chorus, and soloists. It is the result of precise, unwearying work. Of course,
conditions like inspiration and creativity had to be satisfied, but above all (like most
great works) perseverance was an essential prerequisite. The first ideas of the 9th
were already formed when drafting his 7th symphony in 1811. In the end, due to his
deafness, Beethoven was no longer able to study at his piano the harmony of the var
ious tunes and accompaniment, though he managed in completing his master-piece.
Eventually, on May 7, 1824, the first public performance of the final score of the
symphony was given in Vienna.

In order to express his musical thoughts, Beethoven (like most other composers)
wrote the score in a staff-notation, a kind of written musicallanguage. The complete
score of a symphony consists of such a program for each instrument taking part,
whereas each musician in an orchestra gets only that part of the score that applies
to the instrument played. A staff-notation tells a musician when, what, and how to
play. As a consequence, the concept of time is of paramount importance.

There is a lot of communication going on between musiciaas in an orchestra.
Musicians adjust their playing by listening to and looking at each other. In order to
supervise the playing of a somewhat larger orchestra, a conductor is needed. Without
supervision a cacophony of sounds will he heard, because each player has a personal
interpretation of the music. After some rehearsals a fine archestra is ahle to play the
piece of music. Nevertheless, the actual performance is stilllargely influenced by the
response from the audience.

Franz Liszt had the profoundest admiration for the symphonies of Beethoven and
transcribed them all for the piano. An intimate musical knowledge is needeel to suc
ceed in doing the job. Captnring all facets of a symphony into the score of a single
instrument is almost impossihle, though Liszt managed in doing so. The transcribed
pieces of music demand expert musical scholarship of the performing pianist, and as
a consequence they are playable only by a happy few.

This thesis addresses the rnadelling of industrial systems. Although the compar
ison may he a bit crude, the modelling of industrial systems has some resemhlances
with the creation of music. An idea is formeel and, in order to have a written ex-

xiv Preface

pression, we need a rnadelling language. Such a specification of a system enables
reasoning about the design. Similar to the creation of music, the specification of a
factory will need several revisions of the original scheme until it satisfies the intended
idea. A possible, natura! rnadelling approach is formed by separately descrihing the
way in which each mechanism of the system behaves. The colledion of all descriptions
specifies the whole system. Every now and then, a mechanism has to synchronize
with others, for example to exchange information. Like all relevant actions, such an
interaction between mechanisms requires an explicit modelling. Another important
aspect of the specification language is the incorporation of time. A proper modelling
requires a statement about the moment and lengthof the relevant actions. Hence, a
specification states when what action happens.

Often, there is a supervisory control present among the mechanisms in a system.
The control acts as a kind of conductor: by means of communication the behaviour
of the other mechanisms is supervised. As a result, the behaviour of a mechanism
may depend on its environment.

Just like a piece of music, we want to study the harmony in the design of an
industrial system, before it is actually built. Repairing a dissonant in a concrete
system will he hard and expensive (compare it toa recorded performance). In order
to validate whether the specification, the conceptual system, is in accordance with
the concrete system required, an executable or prototype is made to simulate the de
scribed behaviour in combination toa certain environment (a kind of rehearsal). We
might think of building a compiler which translates the specification into aso-called
discrete-event model, a single description capturing all aspects of the whole system
(like a piano transcription). An advantage of this approach is the ease of obtaining a
simulation model, once the correctness of the translation procedure has been shown.
We will, however, not do so. Our aim is to devise a scheme in which the distributed
nature of the specification is preserved; this results in a distributed discrete-event
simulation model (a kind of orchestra approach).

Chapter 1

Introduetion

The design of industrial systems, such as machines and factories, requires a formalism
to specify or model the systems. Suitable formalisms are based upon a mathematica!
theory, which permits the correctnessof the specified system to he validated. Typical
correctness criteria are primarily concerned with the functional behaviour, which is
the achieved relation between the system's inputs and outputs, and reai-time perfor
mance requirements. Since more complex systems require an automated validation,
we aim for a small distance between the abstract specification and its conesponding
implementation in terms of an executable programming language.

We look u pon a system as a collection of parallel operating mechanisms, also called
processes. The parallel approach to a system is reflected by its specification, which is
formed by the parallel composition of the specifications of the individual mechanisms.
The mechanisms cooperate, and tagether they accomplish the desired functional and
real-time performance objectives. The cooperation requires interactions among the
mechanisms to exchange the necessary information. This data exchange is achieved
by means of communications between the participating mechanisms. Unfortunately,
the parallel operation of mechanisms often involves complicated performance require
ments. The behaviours of the interacting mechanisms should harmonize, otherwise a
deadlocldng state is likely to occur.

Reasoning about the reai-time behaviour of a system requires time to be a basic
notion of the formalism. A reai-time behaviour analysis is ~ased upon the specifica
tion, which entails a precise statement about the timing of the activities taking part.
For each activity in the system, there is a moment when it begins and a moment when
it ends. The interval between these moments corresponds to the time consumption
of the activity. Apart from the notion of time, the formalism must he rich in the
sense that we ca.n use it to describe a large variety of mechanisms. The expressive
power, however, should not make the forma.lism unmanageable. In fa.ct, a balance
between the two is needed: on the one hand the formalism must be kept as simple
as possible, a.nd on the other hand it must not exclude on beforehand too many
interésting solutions. A basic requirement of the formalism is that we are able to
specify mechanisms whose behaviour depends on interactions with its environment.
This requirement relates to the preserree of deterministic external choice to express
dependendes on the environment. Apart from deterministic external choice, weneed

2 Chapter 1 Introduetion

non-deterministic internal choice to describe a certain variety in the behaviour of a
mechanism. Internal choice serves, furthermore, as a kind of abstraction technique.
The abstraction expresses a certain design freedom in the implementation of the spec
ification. Due to the parallel nature of a system and its proposed partial specification
approach, parallel composition is needed to define the conesponding system.

Once a system has been specified completely, the question remains whether the
specified conceptual system is in accordance with its required concrete equivalent.
The specification may contain some parameters that need to be chosen in such a
way that the operation of the system is optimized with respect to certain design
goals. For complex systems, the value of such parameters will be hard to foretell or
to approximate by analytica! means. A solution to the validation problem is given by
implcmenting the specified system in terms of an executable programming language.
Of course, a prerequisite of such an implementation is that it satisfies its specification.
In fact, the implementation serves as a kind of prototype of the system. With the
use of the implementation we simulate a possible behaviour of the system. On basis
of the simulation outcomes we conclude whether the specification is suitable or not.
As a consequence, it may be necessary to repeat the procedure a number of times.
Typical requirements imposed on the implementation are: it should be easily derived
from the specification and take short execution times.

The basic specification formalism we use is the enabling model [24], a mathe
matica! theory defining the requirements previously stated. The specification of a
mechanism is given by its set of enabling structures. The possible behaviours of
a mechanism are described in terms of the possible activities which are events or
actions. These actions are so-called atomie actions, which means that the actions
happen instantancons and have no duration. Behaviours are captured in so-called
schedules: a schedule gives a mapping of the actions to moments in time. The en
abling of an action depends on the schedule of other actions. Once an action has been
enabled, it remains enabled until it is performed. An enabling structure distinguishes
between internal and external actions. lnternal actions happen as soon as they are
enabled; external actions can happen only when the environment has enabled the
action as well. Consequently, externa.l actions may be delayed by the environment,
whereas internal actions cannot.

As a more convenient wa.y of specifying the beha.viours of mechanisms we in
troduce programs. In order to define their semantics, programs are related to the
enabling model. We define an initial set of primitive programs and, subsequently,
more complex programs are built by applying composition rules like sequentia.! and
parallel composition, bounded and unbounded recursion, and internal and external
choice.

By far the easiest way of obtaining an implementation of the specification is hav
ing a compiler do the job [41]. Although such a compiler can be built, we refrain
from doing so. Instead, we devise a general scheme to translate a specification into
its required implementation format. Unlike other approaches, which choose a sin
gle discrete-cvent implementation [13, 37], we preserve the parallel structure of the
specification in its implementation, by which we obtain a distributed discrete-event

3

simulation. The target hardware is formed by a parallel computer, aso called MIMD
machine (multiple instructions, multiple data) [14]. The computer is equipped with a
number of identical processors that interact by means of communication via hardwired
links. In our case, the computer is a reconfigurable Transputer network consisting of
50 Transputers (IMS T800-25) [21, 22, 27]. Typical network configurations are the
ring and the torus [36]. An implementation problem of such a distributed approach
concerns the mapping of the intended implementation to the available hardware [15].
A related problem is the degree of parallelism. Choosing for maximal parallelism
does not necessarily result in the fastest implementation possible: there may be a
trade-off in computation and communication times [39, 40]. Apart from the dis
tributed discrete-event approach, we also look at the possibility of using a reai-time
programming language like Occam [20, 23] or Transputer Pascal [25]. Such a lan
guage provides the opportunity of an almost literal translation of a specification into
its implementation.

The applicability of the developed theory is tested on some examples of industrial
systems that have a close relationship to the area of mechanica! engineering. Some
applications are concerned with the problem of Jactory contml [1, 8]. A rough classifi
cation of possible factories is basedon the factory layout andresultsin flow-shop and
job-shop factories [38]. A flow-shop factory corresponds toa process-oriented layout:
the machines performing the subsequent operations are ordered in a sequence and
the product flow between them is fixed, though bypassing a resource is allowed. A
functionally oriented layout corresponds to a job-shop factory in which the machines
are grouped with respect to their functionality and the product flow is flexible. In
case of a job shop, cyclîc routes are possible, whereas in a flow shop they are not.
Usually, the machines in a job-shop factory are of a more universa! kind. Due to the
larger degree of freedom, the design of a control architecture for a job-shop factory
is more difficult than for a flow-shop factory. Exploiting the potential flexibility of a
job shop commonly involves a complex planning strategy.

Overview

The theory in this thesis is described in Chapters 2, 3, 4, and 7. The various appli
cations are presented in Chapters 5, 6, 8, and 9.

In Chapter 2 the enabling model is defined. First, we introducesome basic notions
like actions, alphabets, time, and schedules. Afterwards, we add enabling structures
to specify a mechanism and parallel composition to describe concurrent operation.
The basic model defines the semantics of programs that are introduced next. Pro
grams are added to give a more convenient way of specification.

In Chapter 3 we extend the specification approach that is defined in the previous
chapter. Communication between cooperating mechanisms happens via channels,
and we distinguish between active and passive communications. In order to describe
more complex mechanisms, we allow a kind of parameter passing mechanism in the
definition of a mechanism. For asynchronous (buffered) communication, we give an

4 Cha.pter 1 Introduetion

abstraction of the actual description in terms of basic synchronous communication.
Since we will often use pictures that give an overview of a system, we explain their
meaning.

In Chapter 4 we describe how to transfarm a specification into an implementation
in terms of a programming language. We distinguish between systems with a.nd sys
tems without external choice: tbe first class being simple, the second one requiring
some more effort. We also discuss some optimizations to the basic scheme of imple
menting a system's specification. In order to give some of the flavour of the approach,
an example in which we optimize a buffer size is studied.

In Chapter 5 we describe a case study of a flow-shop factory, whose control is
based on the order levels of its buffers: when the number of products in a buffer
becomes less than a certain level, it orders new products. We present a general ap
proach and implement a specific instance. It turns out that the implementation is
easy to obtain. Various properties of the system are shown, and we also consider
some implementation issues.

In Chapter 6 we a.ddress a larger example, a. lift system. We specify the system
and define some control strategies. We show the effect of the strategies in a certain
situation and vary the number of parallel operating lifts. We discuss various imple
mentation aspects and study the time-critical behaviour of the lifts.

In Chapter 7 we consider the use of areal-time programming language. Insteadof
a network of processors, we devise an execution scheme that uses only one processor
to execute the implementation in a concurrent fashion. We describe the details and
explain how the validity of the simulation outcomes is checked.

In Chapter 8 we use the single processor implementa.tion in the study of a job-shop
factory .. Just as in the other case studies, we develop the specification and simulate
the effect of variotts control strategies in a specific instance.

In Chapter 9 we give a last casestudy, the design of a traffic-light system. Starting
from a simple specification, we successively add more features to get a satisfactory
description. We implcment the system and again show the simulation results. The
example is used to campare the different implementation techniques.

Notation

Although most of the notations we use are well known, some deviate a bit from the
more or less standard notation and are, therefore, shortly explained. Most of the
deviations are suggested by [11].

A first remark concerns the use of functions. A fundion defined in A ~ B has
doma.in A and range B. Besides the traditional notation f (x) for function application,
we use f.x as weli. Furthermore, fundions are also defined by stating the set of
relevant pairs. By j[x := yj, with :r iu the domain of j, we denote the function equal

to f except that x's image is y:

f[x y](z) if z =x -t y
D z ::/:-x -t f(z)
fi

For both quantifications and constructions, we use the following general pattern:

(quantifier I constructor) {dummies) : (predicate) : (expression)

5

enclosed by a pair of delimiters. Typical quantifiers are V, 3, 2::: , # , min, and max,
where # expresses 'the number of,' which are delimited by parentheses. For exa.mple,
an number p, p > 1, is called prime if it is divisible only by 1 and itself:

(# x : 1 < x < p : p mod x = 0) = 0

Set construction is denoted by {x : P : B }, where the constructor is omitted and the
delimiters are braces. An example is given by set S consisting of all prime numbers
up to and including N, with N 2:: 1,

S { x : 1 < :r .S:: N 1\ (V y : 1 < y < :r : x mod y ::/:- 0) : x }

The cardinality of a set S is denoted by
equals:

7'(S) = { T : T Ç S : T }

and the powerset of S, denoted by 'P(S),

Apart from the mentioned quantifications and construction, we use others as well;
when necessary, their meaning is explained when they are introduced.

Besides sets, another data structure we frequently use is the sequence or list. For
set S* denotes the set of all finite-length Ests of elements frorn S. The empty list
is denoted by t, and ILI is used to denote the size or length of list L. In order to
dissect nonempty lists L, we use hd.L and tl.L to select, respectively, the head and
tail of list L. The head of L is the first element, and the tail is the whole list but the
he ad.

A last remark concerns the notation of simple data types. The set of integer
numbers is denoted by Int, the set of natura! numbers including 0 is denoted by
Nat, and the set of boolean valnes { true, false} is abbreviated to Bool. The interval
{x : a :5 x < b : x}, where the type of x (integer or real) depends on the context, is
denoted by [a .. b); the three other variations are [a .. b], (a .. b], and (a .. b), which need
no further cornment.

6 Cha.pter 1 Introduetion

Chapter 2

Programs and their semantics

In this chapter we define programs as a means to specify the behaviours of mecha
nisms. The semantics of programs are defined in a suitable formalism, the enabling
model. The basics of the enabling model have been developed by W.E.H. Kloost
erhuis [24]. Originally, the purpose of the formalism was to have a mathematica!
theory for camparing the performance of a restricted class of concurrent mechanisms.
In our case, we use the enablîng model only as the basic semantic model underlying
the programs. Not all the richness of the model is needed; we adopt a subset and
change it to meet our needs. We see to it that the rnodifications do not affect the
correctness of the theory.

The enabling model is an appropriate rneans to describe the timed-behaviour of
mechanisms. A mechanism is described by a set of so-called enabling structures. The
possible behaviours that a mechanisrn may show are captured in dependenee func
tions. A dependenee function expresses the enabling of actions in terros of actions
performed in the past. Internal actions are private to a mechanism and happen as
soon as they are enabled. The interactions between rnechanisms take place via ex
ternal, shared actions. An externa.l action may be delayed by the environment and
happens when both the mechanisrn and the environment have enabled the action.

In basic form, enabling structures are still rather inconvenient to be used in the
specification of mechanisms. Therefore, we add an extra layer on top of the model
in which we specify the possible behaviours of rnechanisms. This additional layer
is formed by programs that are constructed by composing primitive programs. A
mechanism is fully specified by its program structure which distinguishes between
input and output actions. A simplification in the description of mechanisms that are
composed of a number of sub-mechanisms is given by the notion of systems.

Throughout this chapter we rnaintaio some naming conventions. In order to have
a clear denotation, new conventions are preceded by symbol '• '.

In Sections 2.1, 2.2, and 2.3 we introducesome basic notions used in the enabling
model: for example, we define actions, alphabets, time, and schedules.

In Section 2.4 we define enabling structures to describe mechanisms. Parallel
composition of enabling structures is introduced to descri he the concurrent operation

8 Chapter 2 Programs and their semantics

of mechanisms.

In Section 2.5 actions of the same kind are captured by their generic represen
tative. We introduce program structures as a more convenient means to specify
mechanisms and distinguish between input and output actions.

In Section 2.6 abstract specifications are described; these programs make high
level specifications possible, in which the notion of time is preserved.

In Section 2. 7 we introduce the concept of systems to specify mechanisms built
up from a number of smaller mechanisms.

2.1 Actions and alpbahets

When modeHing a mechanism, we select the events or actions that we want to incor
porate in the model. Each individual action is given a name, a symbol. We denote
the set of all symbols by n. A set of actions, which is a subset of n, is called an
alphabet. In order to have a clear distinction between actions and alphabets, we use
the following naming conventions.

• a, b, c, and d denote actions.

• A denotes an alphabet.

Note that we allow the sameaction to be given different names. So, it is possible that
narnes a and b identify the same event, which yields a = b. In other words, narnes are
variables. However, in the examples to come we assume that actions with different
narnes denote distinct events. Furthermore, we want to stress that a name is assigned
to each individual action instead of kinds of action. For example, actions a and b may
denote a similar activity, with a and b derroting the first and the secoud occurrence
of the activity respectively. As a consequence, similar actlvities of a mechanism are
discriminated by their name.

2.2 Time

Actions occur at a certain moment in time and happen instantaneously, which means
that they have no duration. When a proper modelling requires that an activity lasts
a certain time interval, it is modelled by two actions: the first action denoting the
beginning and the secoud one denoting the end of the activity. The interval between
both adions corresponds to the time required to execute the activity. Just ignoring
the actual timing of actions has the advantage of simplifying both the modeHing ap
proach and the reasoning a.bout the model afterwards. However, we want to make
statements about time or speed like 'the mechanism consumes :r time units to pro
duce a product' or pose questions like 'how many products will be produced during
interval y ?' As a consequence, we have to incorporate the notion of time into the
modelling approach.

2.3 Schedules 9

Our notion of time is described by a single, conceptual, global doek, with a dense
time-domain. We choose the non-negative real numbers as the time-domain [2, 9, 32)
and add value oo to it. When an action happens at moment oo, it expresses that the
action does not happen at all.

Definition 2.1
The time-domain T is defined by: 1

T = [O .. oo)

0

Taking the non-negative real numbers as our time-domain is no sine qua non: instead
of the real numbers, one could consider the natural numbers for example. For the
time being, we stick to the real numbers because they correspond with our notion of
time; in Section 2.6 we will use the natural numbers.

The addition of oo to the real numbers requires an extension of the arithmetic.
Without being complete, a clear apprehension of how to use oo in a calculation is
obtained by the following computation rules.

{
x + 00 = 00 if x ~ 0
X*OO=OO ifx>O

In the sequel, we will use the following convention.

• M and N denote moments in time.

2.3 Schedules

The actual assignment of actions to a moment in time is described by a schedule,
a mapping of actions to the time-domain. By giving such a mapping we define a
possible operation of the corresponding mechanism.

Definition 2.2
A function s in A ----) T is called a schedule over A. We denote the set of all schedules
over alp ha bet A by S .A.
0

For schedules we will use the following naming convention.

• s and t denote schedules.

1The time-domain we have chosen is a subset of the time-domain (-oo .. oo] used in [24]. As a
result, we can express only so-called 'initiated enabling.'

10 Chapter 2 Programs and their semantics

Since schedules are functions, we can compare them by using the partial order ' :5 '
that is defined for functions. By s :5 t we express that s schedules all actions at least
as early as t does.

Amongst the possible schedules over a certain alphabet, there is one schedule
that describes the nonoccurrence of any activity from the alphabet. This partienlar
schedule is called the empty schedule.

Definition 2.3
The empty schedule over A, which is denoted by êA, schedules all actions on oo:

(V a : a E A : e A .a oo)

0

Usually, not all schedules represent proper operations of a certain mechanism; a
mechanism imposes restrictions upon the scheduling of its actions. Therefore, the
description of a mechanism is formed by taking only those schedules that apply to
its possible operations.

Definition 2.4
A schedule set is a set of schedules over the same alphabet. A non-empty schedule
set is called a process.
0

Note that a mechanism with alphabet A, that does not allow any action to happen,
restricts all possible schedules to one, namely êA. A proper description of such a
mechanism is given by process {eA} and not by the empty set 0.

We extend the set of naming conventions introduced thus far by adding the fol
lowing one for processes.

• P and Q denote processes.

Example 2.5
We consider schedule setsPand Q given by:

P = {{(a,1),(b,2),(c,oo)},{(a,4),(b, 7),(c,8)}}
Q = { s : s E S({a, b}) 1\ s.a 2:: 0 1\ s.b 2:: s.a + 1 : s }

It is obvious that Pand Q are processes. In order to form an idea about the programs
we will use later on, the program that corresponds to process Q is as follows. (In
fact, the correspondence in this and some following examples is still incomplete.)

a;6(1);b

The operation of the mechanism starts at moment 0, on which it wants to do action a.
Action b can take place only after the scheduling of a and an additional delay of size 1
which is denoted by 6 (1). The order between the actions is expressed by the sequentia}
composition operator';'.
0

2.4 Enabling structures 11

As a general concept we introduce the notion 'alphabet of' For arbitrary X, aX
denotes the set of actions in X. For example, the alphabet of action a, which is
denoted by aa, equals {a}; for alphabet A we have aA =A; and for process P, aP
is the domain of its schedules.

A kind of abstraction technique is provided by projection. The projection of
schedule s on alphabet A hides the actions in s that are not in A. The corresponding
result is obtained by omitting from s all pairs with an action not in A.

Definition 2.6
The projection of schedule s on alphabet A, which is denoted by s fA, hides the actions
in s that are not in A:

si A = { a : a E as n A : (a, s.a) }

For process Pand alphabet A, process PIA equals:

PfA = { s : sE P: sfA}

The projection of set of processes X on alphabet A is defined by:

XfA={P:PEX:P\A}

0

Note that a(s fA) as nA and, for a E a(s fA), we have (s r A).a s.a.

Example 2.7
Schedule sis given as follows:

s = {(a,l),(b,oo),(c,2)}

Possible abstractions are:

0

s\{a,b} = {(a,l),(b,oo)}
s\as s
s 10 = s r { d} = €0

2.4 Enabling structures

In the enabling model, a mechanism is described by a set of enabling structures.
The enabling of the actions is given in terms of causality relations which express the
relation or dependenee between cause and subsequent effect. A mechanism is willing
to do a certain action, an effect, only when the oorresponding cause has taken place.
Cause and effect happen at different moments in time, in between there elapses a
certain (causa!) delay. With the intention of keeping the descriptions simple, we
assume that the delays are positive.

A forma! definition of the dependenee relation between cause and effect is given
in terms of similarity. The similarity of two objects is the maximal moment in time
up to which they are indistinguishable.

12 Cbapter 2 Programs a.nd tbeir semantics

Definition 2.8
For Af and N in T, we define

sim(M,N) = if M N -+ oo
D M =f. N -+ M min N
fi

For s and t schedules over the same alphabet, and quantifier glb meaning the greatest
lower bound, we define

sim(s, t) = (glb a : s.a =f. t.a : s.a min t.a)

where the greatest lower bound of an empty range equals oo.
0

Property 2.9 (without proof)

1. sim(s, t) ;:: 0

2. sim(s, t) = oo s

3. sim(s, t) = sim(t, s)

0

For a moment, consider a mechanism that can perform the two actions a and b.
The mechanism is willing to do effect b only when a delay Ç, Ç > 0, has elapsed
after the scheduling of cause a. Phrased differently, for a given schedule s, b is
enabled at moment s.a + Ç. When function 4> expresses the enabling of b-in this
case <f>.s = s.a + Ç-we call 4> the dependenee function of b. Note that the enabling
of b depends on a schedule s: different schedules may give distinct enabling times.

Definition 2.10
For fundions </> E S.A-+ Tand A non-empty, the delay d<P of 4> is defined by:

d</> = (glb s, t : s, t E S .A As =f. t : sim(tfo.s, </>.t) - sim(s, t))

A dependenee function is such a fundion <P with dif> > 0.
0

Note that restrietion d1> > 0 resembles a kind of physical limitation of mechanisms:
between two successive actions there elapses a certain amount of time.

Example 2.11
We consider the following functions in S.A-+ T.

<f>t.S=s.a-1
1>2.s = s.a + 0.5
4>3.s = if s.a < 1 -+ oo

0 s.a ;:: 1 -+ s.a + 2
fi

2.4 Enabling structures 13

Function </>1 is not a dependenee function because d</>1 = -1. On the other hand, .
both </>2 and </>3 are dependenee functions, with d</>2 ;;;;: 0.5 and d</>3 = 2.
0

Example 2.12
A mechanism performs actions a, b, c, and d. Action a is enabled at moment 0;
actions band care enabled after the scheduling of a and a delay of size 5; actiondis
enabled after the scheduling of both b and c, and a delay of size 2. The dependenee
functions of these actions are:

tPa·S 0
tPb·s s.a + 5
tPc·s = s.a + 5
tPd·s;;;;: (s.b max s.c) + 2

All these functions are dependenee functions, because the corresponding delays are
greater than 0: d<f>a oo, d<Pb ;;;;: d<Pc = 5, and d<f>d = 2. The program that
corresponds to this behaviour is:

a; 6(5); b, c; 6(2); d

where operator ' , ' expresses parallel composition of the actions b and c, which binds
stronger than sequentia} composition.
0

Instead of giving the dependenee functions separately, we collect them into one com
pound function in S.A ---+ S.A. For the example above, the compound function
is:

<f>.s.a = 0
<f>.s.b = s.a + 5
<f>.s.c s.a + 5
<f>.s.d = (s.b max s.c) + 2

A possible behaviom· of a mechanism is described by giving the (compound) depen
denee function. As a result, a mechanism is partly specified by giving its alphabet and
a behaviour description. However, we use two alpbahets instead of one: we distin
guish between intenwl actions which are strictly private and exter·nal actions which
can be shared withother mechanisms as a means to interact. Moreover, mechanisms
can be delayed due to the need to interact.

Definition 2.13
A structure Eis a triple (A.,, Ai, X), with

A.,nAi 0
X E S.A---+ S.A, where A = A., U A;

14 Chapter 2 ProgramB and their semantics

For structure we define its external alphabet, internal alphabet, and behaviour by:

eE Ae , iE = A; , f E X

The alphabet of E is aE = eE U iE. For scbedules s, the enabling of the actions
fE.s is abbreviated to E.s.
0

Example 2.14
Structure E describes a mechanism with only one behaviour and has external alpha
bet eE = {a, c} and internal alphabet iE = {b}. The behaviour of the mechanism
reads as follows:

E.s.a 0 , E.s.b = s.a + 1 , E.s.c s.b + 2

Expression E.s.a defines that, given an arbitrary schedule s, the mechanism enables
action a at moment 0; E.s.b defines that b is enabled after the scheduling of a and
a delay of size 1. Note that this single behaviour allows many possible schedules to
happen. For example, a possible schedule and enabling of the actions is:

s = {(a,l),(b,2),(c,5)} , E.s = {(a,O),(b,2),(c,4)}

and another possible combination is:

s = {(a,O),(b,l),{c,3)} , E.s = {(a,O),(b,l),(c,3)}

However, notall schedules are allowed: for example, schedule s {(a, 0), (b, 1), (c, 2)}
causes c to be scheduled before it is enabled. Another impossible schedule is given by
s = {(a,O),(b,2),(c,4)}: internal actions happen as soon as they are enabled; only
external actions can be delayed by the environment.
0

A structure specifies only one behaviour. In genera!, a mechanism may show many
behaviours instead of one. Therefore, we describe a mechanism by a set of structures
over the same internal and externaJ alphabet. 2 The choice between the possible
structures is made internally and is non-deterministic. In other words, the internal
choice is left unspecified and describes a kind of freedom in the design or the operation
of the mechanism. However, not each structure is alegal representation of a possible
behaviour: we require a positive delay between cause and effect.

Definition 2.15
For structures E, the delay dE is defined by:

dE= (glb s, t: s, tE S.A 1\ s :ft : sim(E.s, E.t)- sim(s, t))

An enabling strttctw-e is a structure E with dE > 0. A closed enabling structure is
an enabling structure with an empty external alphabet. An enabling function is an
enabling structure with an empty internal alphabet. The set of all enabling structures
over (Ae, Ai) is denoted by E(Ae, Ai)·
0

All''-'"'"' possibility is to ada.pt Definition 2.13 in such a way that a structure describes a set of
behaviours. In order to retain the correspondence with [24], we opt fora set of structures.

2.4 Enabling structures 15

We introduce the following naming conventions.

• E and F denote enabling structures.

• C and D denote non-empty sets of enabling structures over the same internal
and external alphabet.

Remark 2.16
Enabling structure E is capable of performing only those schedules s in S(aE) that
satisfy

{
s.a = E.s.a if a E iE
s.a 2 E.s.a if a E eE

In a sense, this remark is a bit premature and is a consequence of Definition 2.24,
in which the possible schedules of enabling structures are defined. Note that it has
already been used in Example 2.14. We return to this remark in Property 2.25.
D

Example 2.17
An example of a mechanism with more than one behaviour is described by set {E, F},
where enabling structures E and F have external alp ha bet {a, c} and internal alpha
bet { b}. The behaviours are:

E.s.a 0 , E.s.b s.a + 1 , E.s.c = s.b + 1
F.s.c = 0 , F.s.b = s.c + 2 , F.s.a s.b + 1

Although schedule {(a, 0), (b, 1), (c, 2)} is not allowed by F, it is a valid schedule
because it is allowed by E. The corresponding program looks like:

a; 6(1); b; 6(1); c I c; 6(2); b; 6(1); a

The non-deterministic internal choice is reflected by composition operator' I', whose
binding power is less than that of sequentia} composition.
D

Example 2.18
The set containing enabling structures E and F, with external alphabet {a, c} and
internal alphabet {b}, describes a mechanism that is controlled by the environment.
The possible beha.viours are as follows:

E.s.a = E.s.c = 0
E.s.b = if s.a ::::; s.c -+ s.a+ 1

0 s.a > s.c -+ 00

fi

F.s.a F.s.c = 0
F.s.b = if s.a < s.c -+ s.a + 1

0 s.a 2 s.c -+ 00

fi

16 Chapter 2 Programs and their semantics

The difference between enabling structures E and F involves the choice when actions
a and care scheduled at the same time. Since external actionscan he delayed hy the
environment, the enabling of b is controlled by the environment. Later on we will
also introduce a program construct to describe choices that are determined by the
environment.
0

As noted before, external actions may he delayed by the environment. For each
behaviour there is a schedule that coincides with its enabling, namely the schedule
that is not delayed hy the environment. In Example 2.14 this delay-free schedule is
given hy:

{(a,O),(b,l),(c,3)}

Note that there is only one such schedule for each behaviour, because the enahling
of an action is fully determined by the scheduling of its cause. We cal! the schedule
'that coincides with its enahling the history of the enahling structure.

Definition 2.19
For enabling structure E, the history of E, which is denoted by hE, is defined as the
unique schedulc s that satisfies equation

s E.s

0

Example 2.20
The histories of the enabling structures in Example 2.17 are given by:

hE= {(a, 0), (b, 1), (c, 2)}
hF = {(c,O),(b,2),(a,3)}

For the enabling structures in Example 2.18 we have the following histories:

0

hE {(a,O),(c,O),(b,l)}
hF = {(a,O),(c,O),(b,oo)}

The definition of the history of an enabling structure is the first step towards the
definition of the pmcess of an enabling structure. Before we can give that definition,
we need to introduce parallel composition of enabling structures.

Composing enabling structures in parallel entails the enahling of the actions in
the composition. Internal actions are strictly private and cannot be delayed. In case
of external actions, an action in the composite is enabled only when the mechanisms
that share the action have enableJ the action.

2.4 Enabling structures 17

Definition 2.21
For schedules s and t, wedefine schedule s max tover as U at by:

0

(s max t).a if a E as\at -T s.a
U a E as n at -T s.a max t.a
U a E at\as -T t.a
fi

Not any colleetien of enabling structures can be composed in parallel: we require the
internal actions to be strictly private and the external actions to appear in at most
two external alphabets. In the result, the shared actions are made internal.

Definition 2.22
Two enabling structures E and F are composable if their internal alphabets are mu
tually private:

iE n aF = 0 and iF n aE = 0

A set of enabling structures is composable if the enabling structures are pairwise
composable and each external action appears in at most two external alphabets.

For composable enabling struct.ures E and F wedefine the parallel composition,
which is denoted by E IX! F, in

&(eE ..;-. eF, iE u iF U (eEn eF))

(E lXI F).s E.(s\aE) max F.(sfaF)

Similarly, sets of enabling structures C and D are composable if their internal alpha
bets are mutually private. Wedefine their parallel composition as follows:

C IX! D = { E, F : E E CA FE D : E IX! F}

0

When we apply parallel composition, composability of the enabling structures is
implicitly assumed. Note that the parallel composition of two enabling structures
yields an enabling structure again. For any composable E and F we have:

d(E 1><1 F) ~ dE min dF > 0

Furthermore, for enabling structures with a delay of at least ~' ~ > O, this property
generalizes to infinite sets of enabling structures: the result will always have a delay
of at least ~.

3In fact, this form of parallel composition 'M' is a combination of the parallel composition ' 11 '

and masking used in [24].

18 Chapter 2 Programs and their semantics

Example 2.23
Consicier enabling structures E in E({b},{a}) and Fin E({b},{c}):

E.s.a = 0
F.s.b = 3

E.s.b s.a + 2
F.s.c s.b + 1

The corresponding programs are:

E: a; 8(2); b
F: 8(3); b; 8(1); c

For the parallel composition of these behaviours we easily compute the enabling of
the internal actions a and c:

(E ~ F).s.a = 0, (E ~ F).s.c = s.b + 1

With respect to action b we find:

(E ~ F).s.b (s.a + 2) max 3

In the parallel composition, all actions are internal. As a consequence, the possible
schedules are restricted to just one, namely the history of E ~ F which equals:

{(a,O),(b,3),(c,4)}

0

For enabling structure E, process pE consists of all schedules it is willing to par
ticipate in. With respect to the environment, which consists of a set of enabling
structures, we assume that there is a dosed connection: the external alphabet of the
composition is empty.

Definition 2.24
The process pE of enabling structure E is the set of all schedules it may engage in
when placed in a closed conneetion to any composable environment. With construc
tion (~ F : R. : F) derroting the parallel composition of all F in range R, pE is
defined by:

pE = {X : : h(~ F : F E X u { E} : F H aE}

For set of enabling structures C, the process set pC is defined by:

pC = { E : E E C : pE}

0

Since pE contains schedule hE, pEis non-empty and is indeed a process.

2.4 Enabling structures 19

Property 2.25 (without proof)

pE = { 8 : 8 E S(aE) 1\ s 2:: E.8 1\ sriE (E.8)1iE: s}

As aresult of this property, Remark 2.16 holds.
0

Example 2.26
A mechanism is described by enabling structures E and Fin t:({a,c},{b}). The
behaviours of E and F are:

E.8.a 0 , E.s.b::;; 8.a + 1 , E.8.C s.b + 1
F.s.b = 1 , F.8.a = 8.b + 1 , F.8.c = s.a + 2

In program terms, the specification of this mechanism is:

a ; 8(1) ; b ; 8(1) ; c I 8(1) ; b; 8(1) ; a ; 8(2) ; c

Process set p({ E, F}) is given by:

0

{ { s : sE S({a, b, c}) 1\ s.a 2:: 01\ s.b = s.a +lA s.c 2:: s.a + 2 : s },
{ s : s E S({a, b, c}) 1\ s.a 2:: 2 1\ s.b lA s.c 2:: s.a + 2 : s} }

Example 2.27
Consider enabling fundions E and E', with external alphabet {a, b }, which are de
fined by:

E.s.a = 0 , E.s.b = s.a + 1
E'.s.a = 0 E'.s.b 0

The mechanism described by the set consisting of E and E' has process set

p({ E, E'}) = { { s : 8 E S({a, b}) 1\ s.a 2:: 0 1\ 8.b 2:: s.a + 1 : 8},
{ s : 8 ES({a, b}) 1\ 8.a 2:: 01\ s.b 2:: 0 : s}}

Suppose the environment is described by enabling fundion F:

F.8.b = 0 , F.8.a s.b + 1

The process set of the parallel composition equals:

{ {e:{a,b}},{{(b,O),(a,1)}}}

Note that the result can deadlock, which is apparent from the process set.
0

20 Chapter 2 Programs and their semantics

As a means to compare mechanisms and their behaviours, we introduce the notion
of equivalence. Mechanisms are called equivalent when they can be substituted for
each other.

Definition 2.28
Enabling structures E and F are equivalent if the internal and external alpbahets are
the same

iE = iF , eE = eF

and if they exhibit the same external process:

pEfeE pFfeF

Similarly, sets of enabling structures C and D are equivalent if the internal and
external alpbahets are the same and if they have the same external process set:

pCfeC pDfeD

0

Example 2.29
Enabling structure E with external alphabet eE ={a, c}, internal alphabet iE {b},
and behaviour

E.s.a 0 , E.s.b s.a + 1 , E.s.c = s.b + 2

is equivalent to enabling structure F with external alphabet eF
alphabet iF = {b}, and behaviour

F.s.a 0 , F.s.b = s.a + 2 , F.s.c = s.b + 1

0

2.5 Generic actions and programs

{a, c}, internal

Descrihing a mechanism by a set of enabling structures can be very tedious, espe
cially when the mechanism shows an everlasting behaviour. Therefore, we introduce
programs as a more convenient means to specify all potential behaviours of mecha
nisms. A program is built up from a number of smaller programs. An action is an
example of a simple program. Since in the enabling model actions happen at most
once, repetitive behaviours require infinitely many symbols to denote the activity.
However, in programs we denote actions of the same kind by the same representa
tive, their generic action. As a consequence, a behaviour induced by a program is
described in terms of occurrences of the generic actions. The use of such generic
actions is captured in the following conventions.

2.5 Generic actions and programs 21

• The set containing all occurrences of a generic action a is a subset of n, and is
given by {i :i~ 0 : ai}.

• An alphabet contains either all occurrences of a generic action or none.

• An enabling structure respects the order of the occurrences of the same generic
action. For enabling structure E, with a E aE, this implies that every s E pE
satisfies s.ai+l > s.ai or s.ai+1 = oo.

• We abbreviate the notation of alpbahets by mentioning the generic actions only.

We build programs from a set of elementary programs and use composition rules
to join them into larger programs. With program S we associate alphabet aS and
execution-tree set tS. The alphabet contains the generic actions that occur in the
program; a program has external actions only. The execution trees, which can be
infinite, describe the possible behaviours of the mechanism, as each execution tree is
related to an enabling function. An execution tree is a binary tree (u x v), with left
subtree u, root x, and right subtree v. The possible roots are: elementary programs
and composition operators. To reduce the number of angular brackets, x is used
as short for ((} x ()) . The construction of programs and conesponding execution
trees, or shortly trees, is given at the same time.

The elementary programs are called primitive programs. The primitive programs
capture the basic notions of enabling structures, which are actions and delays. For
example, generic action a is a primitive program, and a delay of size M, M ET, is
described by primitive program S(M).

Definition 2.30
The primitive pmgmms S and their conesponding alphabet aS and tree set tS are
defined as follows.

- For MET, delay 8(M) is a program, with a8(M) = 0 and t8(M) = {S(M)}.

Action a is a program, with aa ={a} and ta {a}.

0

Two special delays are denoted by e and ..L: program e, called the empty pmgram,
equals 8(0); and program ..L, called the stop program, equals S(oo).

With respect to programs and trees we use the following conventions.

• S, T, and U denote programs.

• u, v, and w denote execution trees.

The execution order of compound programs is expressed by the composition operators
that are used. As a first composition operator we introduce sequential composition,

22 Cbapter 2 Programs iilld tbeir semantics

which is used to combine programs into a sequence. The sequentia! composition of
programs S and T, which is denoted by

S;T

expresses that T happens after S. When T may not happen immediately after S
but only aftera delay of size M, M > 0, program o(M) is added in between, which
yields S; 8(M) ; T. Since in the enabling model we require a positive delay between
cause and effect, the sequentia! composition of actions a and b is always of the form
a ; 8(M) ; b. The elements in the tree set of the sequentia! composition of programs
S and T have: root ';',a left subtree from tS, iilld a right subtree from tT.

Definition 2.31
For programs S and T, sequential composition S; T is a program, with

a(S ; T) = aS U aT
t(s; T) = {u, V : u E tS A V E tT : (u ; V} }

0

The dass of programs that can be constructed by using sequential composition only
is too restrictive, because a sequence imposes a total order on the execution of the
programs. In order to express that some programs are unordered and may happen
simultaneously, we introduce par·allel composition of programs. Parallel composition
of programs S and T is denoted by:

S,T

Notall combinations of S and T are allowed: we require that aS naT 0. For actions
a, b, and c, program a; o(M); (b, c) expresses that after cause a and a delay of size M
both b and c can happen simultaneously. Furthermore, the program terminates only
when b and c have taken place. The elements in the tree set of a parallel composition
are obtained in a way similar to sequentia! composition.

Definition 2.32
For programs S and
with

with aS n aT = 0, parallel composition S , T is a program,

a(S, T) = aS U aT
t(s' T) = {u, V : u E tS A V E tT : (u , V) }

0

With the composition rules introduced thus far we Ciill describe mechanisms that ex
hibit just one behaviour. A set of programs suffices to describe multiple behaviours.
Instead of using a set, we add choice as a composition operator to denote the possibil
ity of multiple behaviours. The non-deterministic internal choice between programs
S and T is denoted by:

SjT

The tree set of S I T is formed by the uni on of tree sets tS and tT. Internal choice
cannot be influenced by the environment: the choice reflects freedom in the imple
mentation or operation of the mechanism.

2.5 Generic a.ctions a.nd programs 23

Definition 2.33
For programs S and T, non-deterministic internul choice SI T is a program, with

a(S I T) = aS U aT
t(s I T) tS u tT

D

Besides internal choice we add a choice construct that is controllable by the environ
ment, namely deterministic external choice. Action a that guards program S causes
S to be delayed until the environment enables action a. The selected alternative of
an external choice is determined by the enabling of the actions in the guards. For
program S guarded by action a, and program T guarded by action b, we denote the
external choice by:

(ä ...-. S <l b ...-. T)

The choice results in the execution of either S or T, though S is preferred when the
environment enables both actions at the same time. Since the act of passing a guard
causes the execution of its alternative, the alternative must start with a delay.

Definition 2.34
For programs S and T, and actions a and b, deterministic external choice denoted by
(ä ...-. S <l b ...-. T) is a program, with

a(a---.S <l b-tT)={a,b}uaSUaT
t (a ...-. s <l b -t T) = { u, v : u E ts 1\ v E tT : (u (ä <l b) v } }

D

Usually, we do not want to denote a preferenee for the left alternative in an external
choice. For that reason, we introduce a non-deterininistic variant which uses symbol
'0' insteadof symbol '<l 'and means:

(ä ...-. s 0 b- T) = (a...-. s <l b -t T) 1 (b ...-. T <l a- S)

Writing out the program of a mechanism with a repetitive behaviour by using only
the introduced composition operators is hard to do; therefore, a kind of abbreviation
rule is needed. We use recursion for this purpose. A mechanism that perfarms an
unbounded number of times program T is recursively specified by program

S=T; S

Unfolding the recursion yields:

S=T; T; T; ...

Since we do not want to give a meaning to programs like S = S, we require that
T is a productive program, which means that each tree of T contains at least one
action. The alphabet of S equals the alphabet of T, and the tree set is recursively
defined as the smallest set X of trees with root '; ', left subtrees from tT, and right
subtrees from X. In general, recursion looks like 8 = U(S), where U(S) expresses
the dependenee of U on S-in the above example, U(S) T; S. The tree set is the
smallest set that satisfies the conesponding recursive tree-set equation.

24 Chapter 2 Programs and their semantics

Example 2.35
For productive program T, S recursively defined by unbounded recursion S = T ; S
is a program, with alphabet

aS=aT

and tree set tS which is defined as the smallest solution of

X : X { u, v : u E tT A v E X : (u ; v) }

0

Apart from unbounded recursion, we will often use a form of bounded recursion that
is controlled by the environment. For programs T and U, and actions a and b, such
a recursive definition looks like:

S = (ä -+ T; S <1 b-+ U)

The corresponding mechanism repeats program T as long as the environment is will
ing to do an a. When the b-guarded alternative is selected, the recursion finishes.

Example 2.36
For programs T and U, S defined by bounded recursion S (ä -+ T; S <I b -+ U)
is a program, with alphabet

aS = {a, b} U aT U aU

and tree set tS which is defined as the smallest solution of

X : X {u, v, w : u E tT A v E X 1\ w E tU : ({u ; v) (ä <I b) w)}

0

The set of all programs is denoted by IT. In order to limit the necessity to use brackets
in our programs, we define that sequence

, ; I <1 IJ

denotes the symbols in decreasing order of binding power. As a rule of thumb, more
ink relates to a smaller binding power. Furthermore, the operators associate to the
right.

Example 2.37
Program S is given by:

S = (a ; 8(1)), 6(5) ; (bI ê) ; 8(2) ; c

The alphabet of S contains the actions that appear in the program:

aS {a, b,c}

2.5 Generic actions and programs 25

Due to the internal choice, the corresponding tree set consists of two elements:

tS = { ({ {a; 8(1)) , 8(5)) ; { b; (8(2) ; c)) }
({ (a i 8(1)) , 8(5)) ; (e ; (8(2) ; c))) }

The program expresses that action a0 is enabled at moment 0, and the choice between
bo and e is postponed until moment (s.a0 + 1) max 5. The enabling functions E and
F, which correspond to the trees, have external alphabet {a,b,c} and behaviours

E.s.a0 = 0 , E.s.b0 = (s.a0 +I) max 5 , E.s.c0 = s.b0 + 2
F.s.a0 0 , F.s.b0 ;;;;: oo , F.s.c0 ((s.a0 + l) max 5) + 2

The enabling of the actions with an index greater than 0 is defined at oo:

(V i, x: i> 01\ x E {a,b,c}: E.s.x; F.s.xi oo)

Note that the incompleteness mentioned in Example 2.5 concerns the difference be
tween generic actions used in programs and occurrences used in enabling structures
and schedules. Furthermore, the programs we consider have no internal actions.
0

Example 2.38
Consicier programs S and T:

T = a ; 8(2) ; b, c i 8(1)
S T; S

The characteristics of program T are:

aT {a, b, c}
tT = { (a ; (8(2) ; ((b , c) ; 8(1)}})}

The alphabet and tree set of program S are:

aS=aT
tS = { (u ; (u ; (u ; ...))) }

where u denotes the tree in tT. ProgramS is properly defined because T is produc
tive. The alphabet of S is equal to the alphabet of T, and its tree set consists of a
single tree which is related to enabling fundion E, with external alphabet {a, b, c}
and behaviour

0

E.s.a, = if i 0 ~ 0
n i> 0 ~ (s.bi-1 max s.q_l) + 1
fi

E.s.b, = s.a; + 2
E.s.e; = s.a; + 2

26 Chapter 2 Programs and their semantics

A program describes the enabling of actions relative to the moment of initiation 0.
Between successive actions we require the preserree of a positive delay. For example,
program a; 8(1) ; b maps the enabling of a to moment 0 and the enabling of b to
moment s.a + 1. Before we can give a formal definition of how a tree relates to
a certain enabling function, we need to introduce some new concepts to define the
meaning of programs that contain external-choice constructs.

We distinguish between generic ·input and generic output actions. Consequently,
an action is either input or output. An output action may never be used in a guard,
whereas 'an input action may be. Both alphabets are added to the program that
specifies the mechanism, thereby forming a triple, a program structure. In a collection
of program structures we require shared actions to be of different types.

Definition 2.39
A program structure V is a triple (Ao,Ar,X), with

Ao nAr= 0
X E II, and aX = Ao U Ar

and all guards in X contain only actions from Ar.
For program structure V, the output alphabet, input alphabet, and program are:

Vo = Ao , Vr = Ar , V". = X

The alphabet of V is a V= Vo U Vr.
D

We use the following convention for program structures.

• V and W denote program structures.

Selecting the alternative of an external choice depends on the readiness of the en
vironment to do the actions in the guards. In order to determine this readiness,
we associate with each generic action a an extra generic action a of the same type,
which is called the probe action of a. In the notation of alphabets, the probes are
omitted. The interpretation of a probe action depends on whether the action is input
or output. For output action a, probe a is a request to do the action and, for input
action b, probe b denotes whether the request to do b has been received. As a result,
output request a is enabled at the same time as action a. Probe action b is enabled
when it is possibly needed, namely a certain positive delay after the scheduling of
the previous occurrence of action b. In order to describe this enabling, we assume a
minimum delay Ç, Ç > 0, between successive actions. Consequently, enabling func
tions of programs have a delay of at least Ç. The definition of enabling function Eu,
which corresponds to tree u, is now given in two steps: first we define the enabling
of probe actions, and second we define the enabling of the other actions.

Definition 2.40
For program structure V, tree u in tV". is related to enabling function Eu, with

eEu = a V , i Eu = 0

2.5 Generic actions and programs 27

The enabling of output probe ä E Vo is defined by

and for input probe b E V[we define

0

Eu.s.oo = 0
E,..s.bi+l == s.bi + Ç

In order to complete the relation between a tree and its enabling function, we have
to define the enabling of the remaining actions. Before the definition is given, we
comment on the use of recursion. For example, consider programs S and T:

S = a; ó(Ç); S
T = S; ó(Ç); a

An anomaly happens in program T: after all a actions have been used up in program
S, program T wants to do another a. Although the extra a action does not take
place because of the minimum delay between successive actions, it must be avoided.
Furthermore, when an infinite number of actionscan happen within a limited amount
of time, we want the extra a action to be impossible too; this situation may arise
in case of abstract specifications which are discussed in the next section. We choose
for the following solution: after the execution of an infinite number of actions, the
remaining actions are neglected and c)o not happen. As a result, the execution of an
infinite number of actions does not terminate. In the examples described in following
chapters, this anomaly does not occur.

Definition 2.41
For program structure V, with tree u E t V71", the enabling of the actions in u, say
Eu.s t,.., is recursively defined over the structure of u by function en. Function
application of en looks like en(u, s, (r, I, t)), where T denotes the current time; func
tion I, the index function, gives for each action the number of previous occurrences
in the tree; and schedule t denotes the enabling of the actions in the inspected part
of the tree. The outcome of en(u, s, (r,I, t)) is a new triple (r,J, t). An initial callof
function en satisfies:

T 0 , (V a : : I.a = 0) , t eav

When en(u, s, (0, ! 0 , eav)) (r, .. ,Ju, tu), where Io satisfies the initial requirement, the
enabling of the actions in u is E,...s = tu. The definition of en is as fellows, with I
such that (Va: : l.a < oo):

en(li(M),s,(r,I,t)) = (r+M,I,t)

- en(a, s, (r, I, t)) = (s.ar.a, I[a :=].a+ 1], t[ar.a := r])

28 Chapter 2 Programs and their semantica

1f en(u, s, (r,I, t)) (r,.,I,., t ..) then

en({ u; v),s,(r,I,t)) =
if (3 a : : I ... a oo) ---+ (r,.,l,., t,.)
0 •(3 a : : I ... a oo) ---+ en(v, s, (r,.,I,., t,.))
fi

Note that the unfolding terminates when an infinite number of actions has
happened in u.

If en(u,s,(r,I,t)) = (r,.,I .. ,t,.) and en(v,s,(r,I,t)) (rv,lu,tu) and u and v
have no common actions, au n av = 0, then

en((u, v },s, (r,l,t)) (r,. max r", I,.+ l",t .. mint")

Since the parallel composition finishes only when both parts have been com
pleted, the maximum of the time values is taken. Due to the absence of common
actions in both parts of the composition, the number of occurrences in the com
posite is obtained by taking the sum of 1,. and Iu, and the resulting enabling is
got by taking the minimum of tu and t.,.

For input actions a and b,

en((u (a <I b) v),s,(r,I,t)) =
if (r max s.af.a)::; (r max s.bu) ---+ en(u,s,(r max s.aJ ... ,I,t))
D (r max s.aJ.a) > (r max s.bf.b) ---+ en(v,s,(r max s.b[.b,I,t))
fi

As we want to ignore possible orderingsin the past, the current timer is taken
into account when comparing the probe actionsof the guards. Note that probe
action ä1.a belongs to the next a action.

For a set of trees X, the set consisting of the corresponding enabling fundions is
denoted as EF(X).
0

The generalization to external-choke constructs with more than two alternatives, or
just one, is straightforward. Note that a ---+ S is short for (a ---+ S <1 a ---+ S).
Guards composed of a conjunction or disjunction of probe actions cause no problems
either: in case of a conjunction, the maximum of the scheduling times of the probes
is taken, whereas in case of a disjunction the minimum applies. An extension that
we illustrate with an example consists of using guards that are pairs formed by an
action and a time value. These guards may be passed when the current time is at
least the last schedule of the action plus the time value. Consicier program S, with
programs T and U, and input actions a and b:

S = (ä---+ T <1 (b,5)---+ U)

For vEtTand wE tU, tree u EtS is of the form:

u= {v (a <I (b,5)) w)

2.5 Generic actions and programs 29

We define the enabling of the actions in u by:

en(u,s,(r,I,t)) =
if (r max s.iiJ.a) $ (r max (s.bl.b-t + 5))

-j. en(v,s,(r max s.äJ.a,I,t))
U (r max s.äJ.a) > (r max (s.bl.b-l + 5))

-j. en(w,s,(r max (s.bl.b-l +5),/,t))
fi

Similarly, we may add time values to probe actions. When adding positive values,
we may drop the requirement that each alternative starts with a delay. Observe
the different indexing scheme of actions and probes: an action refers to the last
occurrence, whereas a probe belongs toa next occurrence.

Example 2.42
An example of a program with (non-deterministic) external choice reads:

S = (ä -j. ó(l) ; a
D b -j. ó(l) ; b
)

where a and b are input actions. The alphabet and the tree set of program S are:

aS= {a,b}
tS = {{ (8(1); a) (a <1 b) (6(1); b)), ({8(1); b) (b<1 a) {8(1); a})}

The trees are related to enabling fundions E and F in t:({a, b}, 0):

E.s.äo = E.s.b0 = 0
E.s.ao if s.äo $ s.bo -j. s.äo + 1

D s.ä0 > s.bo -00

fi
E.s.bo if s.ä0 $ s.bo -00

D s.ao > s.bo - s.bo + 1
fi

F.s.ä0 F.s.bo = 0
F.s.a0 if s.ä0 < s.bo -s.äo + 1

IJ s.ä0 2: s.bo -j. 00

fi
F.s.b0 = if s.a0 < s.bo -j. 00

IJ s.ä0 2: s.bo -j. s.bo + 1
fi

The non-probe actions with index greater than 0 are enabled at moment oo.
0

30 Chapter 2 Programs and their semantics

Now that we have defined the meanings of programs, we formulate some properties.
The equality used expresses that the corresponding sets of enabling functions are the
same.

Property 2.43 (without proof)
Internal choice is symmetrie, idempotent, and assoeiative:

1. SIT=TIS

2. SIS s

3. sI (TI U)= (SI T) I u

Consequently, non-deterministic external choke is symmetrie:

4. (ä -+ s D b-+ T) = (b-+ T IJ ä -+ S)

Parallel composition is symmetrie and associative:

5. S, T T, S

6. S, (T, U)= (S, T), U

Sequentia! composition is assocîative:

7 S · (T · U) = (S · T) · U
~ ' ' ' '

0

Property 2.44 (without proof)
Sequentia! composition distributes through internal and external choice:

1. S;(TIU)=(S;TIS;U)

2. (TI U); s (T; sI u; S)

3. (ä S <l b-+ T); U= (a-+ S; U <l b-+ T; U)

Consequently,

4. (ä-+ S 0 b-+ T) ; U= (a-+ S; U 0 b-+ T; U)

0

Property 2.45 (without proof)
For programs S we have:

1. ê; s S; c = S

2 . .::, S s, c s

2.5 Generic actions and programs 31

With respect to delays we find:

4. ö(M) i S(N) = S(M + N)

5. 8(M), S(N) S(M max N)

0

When using program structures for specifying mechanisms, care should betaken with
respect to processes. The environment is now a set of program structures and, hence,
only enabling functions that correspond to programs are relevant. For example,
consider the possible schedules of an output action and its probe action: in case of
programs the probe action cannot happen after the action, whereas in case of enabling
functions it can.

Definition 2.46
The process set p V of program structure V is defined by:

pV = {E:E E EF(tV)
:{X: : h(1X1 F: FE EF(X) u {E}: F)laV}}

where X is a set of trees which yields a closed connection.
0

The history of the enabling function of a tree is still a valid schedule. To make this
clear, we consider the maximally cooperative program (environment) of alphabet A,
which is denoted by MCP(A). For actions a, the maximally cooperative program is:

MCP(a) =a; 8(Ç) i MCP(a)

The maximally cooperative program of alphabet A = {al, a2, ... , an }, n 2: 1, consists
of the parallel composition of the maximally cooperative programs of the actions:

MCP(A) MCP(al), MCP(a2), ... , MCP(an)

We conclude this section by stating the equivalence of program structures.

Definition 2.47
Program structures V and W are called equivalent if the .input and the output al
phabets are the same

and if they have the same process set:

pV pW

0

Determining the equivalence of program structures on basis of the above definition
requires all possible environments to he taken into account. In general, verifying the
equality of the process sets is therefore difficult. Resolving this problem is beyond
the scope of this thesis.

32 Chapter 2 Programs and their semantics

2.6 Abstract specifications

In the enabling model, we assume a positive delay between cause and effect. However,
on a higher level of abstraction, we often want to express only the order of actions and
refrain from the delay in between. This requires the possibility to schedule ordered
actions at the same moment. For example, consider the (still invalid) programs S
and T, with a, b, and c being output actionsin S and input actionsin T.

S=(a;b),c
T = a , (b-+ b <l c-+ c)

In the parallel composition of S and T, actions a, b, and c are internal and, hence,
happen as soon as they are enabled. To give a meaning to these programs, we could
think of adding implicit delays to enforce the delay required between successive ac
tions. For example, this is achieved by adding minimum delay Ç to each sequentia}
composition and each guard in the programs. When doing so, we find the follow
ing scheduling: actions a0 , ä0 , and Co are scheduled at moment 0, and action bo is
scheduled at moment Ç. Since action b0 is scheduled af ter action Co, alternative c is
chosen in program T. However, on a more abstract level, this is undesired: we want
alternative b to he possible too, because band care not causally related. In fact, we
need a zero delay after the a action has been scheduled.

A first step in the formal description of zero delays consists of choosing a dif
ferent time-domain, namely the two-dimensional domain Nat x Nat extended with
value oo [19]. Just like before, actions that are scheduled on moment oo do nothappen
at all. These time-moments are called micro-moments. For micro-moment (x, y), we
refer to the x-value as its macro-moment and we call x's domain the macro-domain.
The idea is that real time steps happen in the macro-domain. Furthermore, on the
same macro-moment, any number of actionscan happen in sequence. Because of min
imum delay Ç, Ç > 0, this property cannot be realized in case of a one-dimensional
time-domain.

Definition 2.48
The time-domain T' is defined by:

T 1 =(Nat x Nat) U {oo}

In order to compare (micro-) moments (x0 ,y0) and (xt,yt) inT', we use the lexi
cografical ordering:

(xo,yo)<(xl,Yl) xo<x1
V (xo = x1 1\ Yo < Yl)

0

Note that when the macro-domain is too course grained, a division of the domain by
a sufficiently large natura! number makes it apt; in other words, the macro-domain
is scaled. The reasou for choosing the natural numbers as our macro-domain is that

2.6 Abstract specifica.tions 33

the consequences on the enabling model are small; it is straightforwardly generalized,
whereas in case of reals it is not. In the new time-domain, the smallest possible time
step is (0, 1) and, hence, the minimum delay is e = (0, 1). To illustrate the arithmetic
of this time-domain, we give the addition of micro-moments:

{
(xo, Yo) + (xhYI) = (xo + x1, Yo + Yl)
(xo, Yo) + oo = oo

Even though we can use zero delays between successive actions, the choice in the
example above still persist in choosing the c alternative. In order to enforce the
possibility of the b alternative, we could think of evaluating the guards only on basis
of the macro-momentsof the schedule of the actions. This idea turns out to he wrong
because the order between successive actions may be lost. For example, consider the
parallel composition of programs (a ; b) and (b --> b <l ä --> a). When a and b
are scheduled at the samemacro-moment and the choice inT takes only the macro
moment into account, the balternative is chosen; this is definitely not what we want.

We opt for the following solution: before each action, there happens an arbitra.ry
positive number of implicit Çs. As a result, the order between a.ctions is preserved
but the delay is not fixed. Note that the possible delays all have the same macro
moment. A small change concerns the schedule of the probe actions as defined in
Definition 2.40. Actions cannot happen before moment Ç because each action is
preceded by at least one Ç. To retain the maximally cooperative environment, input
probes with index 0 are enabled at moment e instead of 0:

For the example gîven at the beginning of this section, possible trees of the programs
with explicit delays are as follows:

S : { { { ó(e) ; a) ; { S(Ç) ; b)) , (6(3Ç) ; c)}
T : ({ 8(Ç) ; a} , ({ 8(Ç) ; b} (6 <l c) { ó(Ç) ; c)) }

Composing their enabling functions in parallel yields the following (partial) history:

{(ao, Ç), (äo, Ç), (bo, 3Ç), (ho, 20, (eo, oo), (Co, 3Ç)}

As a result of the arbitrary delay before each action, a single action yields infinitely
many trees. Therefore, we have to re-define the tree set of actions as given in Defini
tion 2.30: the tree set of action a in case of abstract specifications is

ta {x : x > 0 : { ó(x * Ç) ; a)}

In the remainder, we stick to abstract specifications. To enhance readability, we write
for example s.a0 + 3 insteadof s.a0 + (3, 0) and 8(5) instead of8((5, 0)). Furthermore,
minimum delay Ç does not occur in programs; only natural numbers are allowed.

34 Chapter 2 Programs and their semantics

Example 2.49
We consider programs S and T, with a and b being output actions in S and input
actions in T.

S =a; b
T = (a---? a D b-+ b)

In their parallel composition, the a alternative is always chosen in program T.
0

Example 2.50
Programs S and T are:

S =(a; 8(5); c), (b; 8(5); d)
T = a , b ; (c -+ c Q d -+ d)

where T consists of input actions only. In the parallel composition of S and T,
both alternatives in the choice in T are possible. To denote the similarity between
operators 'D' and '<1' in case of abstract specifications, we also consider program T':

T' a, b; (c---? c <1 d---? d)

Composing S and T' in parallel reveals the possibility of the c and d alternative, too.
However, the operators are discriminated when the probe actions have happened in
the past. For example, in the parallel composition of S and T",

T" =a, b; 8(6) ; (c--+ c <l d-+ d)

only the c alternative is possible.
0

The use of guards consisting of an action and a time value needs some further expla
nation. To illustrate the point of concern, consider programs S and T:

S a; b
T a , b ; ((a, 1) --+ c

u (b, 1) -+ d
)

Intheir parallel composition, the a and b actions happen at the same macro-moment.
As a result, we want bothalternatives c and d to be possible. The guards are, however,
evaluated on basis of the micro-moments which yields only the calternative because
a happens before b. In fact, an evaluation on basis of macro-moments is required.
We reconsider, therefore, the meaning of trees of the form

u {v (a <1 (b,5)) w)

With truncation l(x,y)J = (x,O), wedefine the enabling of the actionsin u by:

- en(u,s,(-r,I,t)) =
if (T max s.ar.a) S (T max l(s.br.b-1 + 5)J)

-+ en(v,s,(-r max s.ar.a,I,t))
D (T max s.ar.a) > (T max l(s.br.b-l + 5)J)

-+ en(w, s, (T max l(s.br.b-1 + 5)J, I, t))
fi

2. 7 Systems 35

Note that the alternative following guard (b, 5) is preferred when s.ar.a and s.br.ó-l +5
have the samemacro-moment after T. Because of the truncation, the associated time
values must he positive: otherwise, causality-related prohlems may arise.

A last remark concerns the equivalence of program structures. Defining equiva.
lence of program structures as the equality of the process sets is rather strong: we
want to consider di:fferences in the macro-domain only. When defining equivalence a.s
the equality of the process sets restricted to the macro-domain, it is possihle that pro
gram structures are equivalent, while they can be discriminated by an environment;
this violates the idea of equivalence. We take the following: program structures V
and W are equivalent when they cannot he distinguished in the macro-domain by an
environment; in other words, the sets of histories restricted to the macro-domain are
the same in any environment. Of course, the alpbahets of V and W have to be the
same. With ls J denoting schedule s restricted to the macro-domain, and

h(X, V)= {E: E E EF(tV): lh(t><! F: FE EF(X) u{E}: F)J}

equivalence of program structures V and vV in case of abstract specifications is:

(V X : : h(X, V) h(X, W))

In fact, the usefulness of this notion of equivalence is lirnited because of its complexity.

2.7 Systems

The operation of a mechanism that is built up from a number of smaller mechanisms is
defined by the parallel composition of the conesponding sets of ena.bling structures.
Instead of writing down this parallel composition, we want to give only the set of
programs that descrihe the sub-mechanisms. Therefore, we introduce the concept of
system.s. Not all mechanisms can be joined into systems: we require that the related
sets of enabling functions are composable, a.nd that the pairwise intersection of input
and output alphabets is empty. Furthermore, an interaction requires an action to be
in both an input and an output alphabet.

Definition 2.51
A system X is a set of program structures, which satisfies: each action appears in at
most two program structures

(Va,V:VEXI\aEaV
: ..,(3 W, W1

: W, W1 E X\{V} 1\ W =/= W': a E aW n aW'))

36 · Chapter 2 Programs and their semantics

and the input and output alphabets are disjoint

(V V, W : V, W E X /1. V :f:. W : VI n WI = 0 /1. V0 n Wo = 0)

The external alphabet of system X consists of all input actions that do not appear in
any output alphabet and vice versa. The internal alphabet contains all actions that
appear in both an input and an output alphabet.

eX = (U V : V E X : VI) + (U V : V E X : Vo)
iX = (U V : V E X : VI) n (U V : V E X : V0)

A closed system is a system with an empty external alphabet.
0

The parallel composition of two systems is easy to define. In fact, the composition
requires that the union of both sets yields a system again.

Definition 2.52
For systems X and Y, with X n Y = 0 and X U Y a system, the parallel composition
of X and Y, denoted by X ~ Y, is defined as the uni on of X and Y:

X~Y=XUY

0

Example 2.53
We consider system X that consistsof program structures V and W, with V0 = {a, b},
VI= Wo = 0, and WI = {b, c}. The programs v'!l' and w'!l' are:

\1'11' =a; 8(3); b; Vw
WT = b; 8(5); c; WT

In the greedy enabling structure E of system X, each action is preceded by a single
impHeit Ç. The behaviour of E in E({a,c},{b}) is:

E.s.a, = if i = 0 -+ Ç
u i > 0 -+ s.bi-1 + e
fi

E.s.bi if i = 0 -+ s.a, + 3 + Ç
D i> 0 -+ (s.Cj_1 + Ç) max (s.a, + 3 + Ç)
fi

E.s.ct = s.bi + 5 + Ç

The enabling of the probe actions needs no further comment.
0

Chapter 3

Communication and values

The specification of a mechanism as presented in the previous chapter describes the
behaviours of a mechanism in termsof input and output actions. Later on, we use a
mechanism's specification as the starting-point for obtaining its implementation. In
order to narrow the gap between specification and subsequent implementation, we
extend our programs with so-called communications.

The operational meaning of programs becomes clearer when the specification for
malism contains constructs that correspond to physical concepts or implementation
methods. Programs that are easily understood simplify reasoning about them and,
consequently, modelling becomes easier. As a way to clarify their meaning we in
troduce, for descrihing the interactions between mechanisms, the concept of 'com
munication via channels.' A communication involves the exchange of data between
the two participating mechanisms; one partner performs an input and the other an
output communication. Sometimes, a communication is coupled with an explicit re
quest to communicate. In order to abstract from these communication requests, we
distinguish between active and passive communications. Detecting pending commu
nications is accomplished by the probe function, which is defined on passive channels
only. A process can be suspended due to a communication. When this is undesired,
buffered or asynchronous communication is used. Another abstraction is needed for
the possible data transferred in a communication; therefore we use variables.

Adding variables to our programs requires a more powerful program notation.
For that reason, we introduce the notion of a pammeterized program which describes
a whole range of programs. An instantiation of a parameterized program selects a
certain program from the range. To specify similarly behaving mechanisms, we add
the concept of a generic program.

In the remainder, we (ab)use the word 'process' to refer to the mechanism that
corresponds to a specification; for example, for program structures V, we mean by
process V the specified mechanism.

InSection 3.1 we introduce communication via channels, and distinguish between
active and passive communications. Due to the incorporation of data, we have to
extend the definition of programs.

38 Chapter 3 Communication and values

In Section 3.2 we introduce parameterized programs, which are functions that
range over the set of programs, and generic programs to avoid duplicates in the spec
ification.

In Section 3.3 asynchronous communication is described in terrus of the available
synchronous communication.

In Section 3.4 we introduce pictures as a means to give the conneetion diagram
of the processes in a system.

Finally, in both Sections 3.5 and 3.6 the specification approach is illustrated by
giving an example.

3.1 Communication

All interesting mechanisms interact with their environments, because interactions are
necessary to exchange information between the participating mechanisms. We look
upon an interaction between mechanisms as a communication which happens via a
certain medium, aso-called channel [16, 17]. The communications are accomplished
by sending and receiving messages. In the underlying model, communication actions
are described by pairs (a, m), where a denotes the channel name and m the message.
Each channel can convey messages of a certain type only; this is called the channel
type. For channel a, we refer to its channel type by type(a). Communication actions
arealso occurrences of a generic action: for generic action (a, m), the ith occurrence
is denoted by (a, m);. Consequently, communication actions have a probe action; for
example the probe that belongs to action (a,m) is (a,m).1

The use of channels is limited by some regulations. We confine ourselves to sys
tems with channels that appear in at most two alphabets, thereby restricting the
linking of channels to point-to-point connections. A kind of physical limitation is
reflected by the requirement that, along the same channel, at most one communi
cation can happen at the same time. Therefore, we strengthen the precondition in
Definition 2.32 to the absence of common channels in the participating programs.

A consequence of the incorporation of data is the inevitable external choice be
tween the possible input actions that belong to a channel. An illustration of this is
given in the next example.

Example 3.1
An inverter, with channels a and bof type {0, 1 }, alternates between communications
along a and b, and starts with a. The communications via a are input actions, whereas
the communications via b are output actions. Hence, the possible inputs are (a, 0)
and (a, 1), and the possible outputs are (b, 0) and (b, 1). The inverted value of an a

action is communicated in the subsequent b action. The behaviours of the mechanism
are described by program Inverter:

1Intuitively, one would expect a single probe action for each channel. This approach is possible
but requires more effort.

0

lnverler = ((a,O}-+ (a,O); (b, 1}
D {a,l} -+ (a, 1} ; {b, 0}
)

; lnverler

3.1 Communication 39

In communication, the information transport is directed from sender to receiver,
where the sender executes an output communication and the receiver performs the
matching input communication. The allocation of sender and receiver remains the
same for all communications via a channel. As a result, a channel is directed and
used by a connected process for either input or output communica.tions. We say that
a channel is an input cha.nnel for the receiving process and an output channel for
sending process.

Instead of explicitly stating the input and output alphabet that belong to a pro
gram, we a.dd a notation to discriminate input and output communications: excla
mation mark '!' is added to output actions, whereas question mark '?' is added to
input a.ctions. Consequently, the input and output alphabet can he determined from
the program, as we will do. Furthermore, we assume that the type of each channel is
given in the context. The output of the value of expression e on channel a is denoted
by a!e and, fora of type {0, 1}, means:

ale = if e = 0 -+ {a, 0}
IJ e=l-+ (a,l)
fi

The input of a message from a channel entails the external cboice between all possible
actions that cortespond to the input channel. Writing down this choice can he rather
elaborate or virtually impossible. For that reason, we abstract from the actual values
by using a variabie to store the received message; for exa.mple, we write a? x where x
is a variabie of type type(a). Program a?x is interpreted as the reception of a value
via cbannel a and the assignment of that value to variabie x. For a of type {0, 1},
a?x means:

a?x = ({a,O) -+ {a,O) ; x:= 0
D (a,l} -+ (a,l); x:= 1
)

The use of variables is not restricted to input communications only. When a variabie
occurs in an output expression, we mean its value and take care of a proper initial
ization. In general, when a variabie is used in an expression, its value is meant. The
evaluation of expressions takes zero time. When proper modeHing requires that time
is spent, a delay 6 is added. For simpHeity's sake, in the specification of a process we
relinquish from an explicit statement a bout the type of the variables and take care of
a consistent type usage. Whenever necessary, we explain the meanings of variables
in advance.

40 Chapter 3 Communication and values

The introduetion of variables requires an extension of the definition of programs.
We do not work it out completely, but roughly indicate the changes involved; a simi
lar extension is thoroughly described in [42]. For input channel a and variabie x, a?x
is a program and, for expression e and output channel a, ale is a program. An input
a? x contributes the value of x toa substitution function. This substitution function
is needed for evaluating expressions that contain variables. Another extension to
programs is the assignment which for variables x,, 1 :5 i :5 N, and expressions e,
looks like:

An assignment is not an action and consumes zero time; it only contributes to the
substitution function. We restriet ourselves to the parallel composition of programs
that have no shared variables.

Example 3.2
Process And has input channels a and b, and output channel c, all of type {0, 1}.
The process repeatedly reads an input from both a and b, and afterwards it sends
the 'logica! and' of the input values to c.

And = a?x , b?y
;c!(x*y)
; And

In basic program terms, the corresponding specification is:

0

And ((a,O} _,. (a,O}; x:= 0
0 (a,l} _,. (a, 1) ; x := 1
)

, ((b,O) _,. (b,O}; y := 0
0 (b,Ï) _,. (b, 1} ; y := 1
)

; (c, x* y}
; And

In order to describe possible data-dependent continuations, weneed another extension
of our programs. We introduce the selection construct,

in which the guards Bi, 1 :5 i :5 N, are boolean expressions and the Si are programs.
We assume that there is no time spent in the evaluation or passage of a guard. When
several alternatives are possible, a non-deterministic choice is made.

3.1 Communicatjon 41

Example 3.3
In terms of the newly-introduced notations, a possible specification of the inverter in
Example 3.1 is:

lnverter = a?x
; if x 0 -t b!l
0 x= 1 -t b!O
fi

; lnverter

The same process is specified by program lnverter' as follows:

lnverter1
:::: a?x

; b!(l- x)
; lnverter'

Yet another possible specification of the same inverter is:

D

lnverter11 a?x
; x:= 1- :z:

; b!x
; lnve1'ter11

Example 3.4
Process Filter, with input channel a and output channel b, both of type Int, filters
out all negative numbers that are received via a. The specification of the process is
given by the following program:

Filter a?x
; if x :2: 0 -t b!x
Ux<O-te
fi

; Filter

Using basic program terros only, the specification of this process is a stiff job. Note
that the channel use or communication behaviour of process Filter is influenced by
the values read from channel a.
D

It is possible to choose between communications from different input channels. To
have a more convenient notation for denoting the possible probe actions, we use the
probe function which is applica.ble to input channels only [28]. For input channel a
of type {0, 1}, the probe on a, which is denoted by ä, equals:

ä=(a,O)v(a,l)

An illustration is given in the next example.

42 Chapter 3 Communication and va.lues

Example 3.5
Process Converge sends values that are read from either input channel a or input
channel b to output channel c. We assume that all channels are of type Int.

Converge = (a -+ a?x ; c!x
u b -+ b?y ; c!y
)

; Converge

Note that because of the guards, there is no extra suspension in the actions a?x
and b?y. In fact, there is no real need to use two variables, just one suffices. The
same process is specified by:

Converge1

0

(ä -+ a?x
0 b -+ b?x
)

; c!x
; Converge1

Sometimes, we use a channel to transmit only one kind of message. Such a commu
nication serves to synchronize the processes. We say that these channels are of type
Signa!, and we omit the message, say '-./',in the input and output expression: a?
denotes an input, and a! denotes an output communication. Similarly, communiea
tion action {a, y') is abbreviated to a.

Although we have a controllable choice construct at our disposal, the choice is
restricted to input actions only. As an extension we introduce a type of choice on
output by extending the communication protocol. For that purpose, we discrimi
nate between active and passive communications [29], with the restrietion that active
inputs are connected to passive outputs and vice versa. An active communication
starts with a request to communicate and, as soon as the passive partner has read the
request, the communication happens; meanwhile, the execution is suspended. Note
that only active inputs and passive outputs require an extension of the communiea
tion protocol: for passive inputs and active outputs, the probe action belonging to
the output action serves as a communication request. For each channel, the alloca
tion of active and passive side remains unchanged during execution. Hence, either
the sender or the receiver activates all communications. When the sender takes the
lead, the type of communication is called data driven, otherwise it is called demand
driven. With respect to synchronization channels there is no need to add an extra
request: we can choose the input and output side of the channels.

In the underlying model, communication requests are explicitly modelled: active
input and passive output channels a are paired with an additional channel a1 of type
Signal, which runs in the opposite direction, from active to passive. Hence, a1 is an
input channel for the passive side and an output channel for the active side. Since we
want to avoid explicit requests in our programs, we introduce an abbreviation rule

3.1 Communica.tion 43

for the communications: we add symbol ' • ' as a superscript to the channel name of
active communications, whereas the passive equivalents get symbol 'o' [4, 5]. As a
result, for channel a with request channel a1

, we have the following four possibilities:

a'?x = a'! ; a?x
a0 ?x = a?x
a'!e = a!e
a0 !e = a'? ; ale

In fact, there is no need for a communication to wait for the scheduling of its request
and, hence, request and communication action may he enabled at the same time.
Note that request channel a1 has a probe action, namely a 1•

Example 3.6
A specification of the inverter, with demand-driven communications, is given by the
following program:

lnverter a'?x
; b0 !(1 x)
; lnverter

The meaning of the program in basic terms, with explicit communication requests,
IS:

0

Inverter = a1! ; a?x
;b'?; b!(l-x)
; lnverter

Example 3.7
A choice on output is performed by process Diverge, with demand-driven communi
cations along its channels a, b, and c, a.ll of type Int.

0

Diverge = a'?x
; (b' -t b0 !x

D ë' -+ c0 !x
)

; Diverge

Instead of using a separate notation for derroting the guards in an external-choice
construct, the guards are integrated with those of a selection construct. Since we do
not want the request channels to occur in the programs, the applicability of the probe
function is extended to passive channels. As a result, the probe on passive output
channel a is denoted by ä insteadof ä1

• The probe on passive channel a evaluates to
true as soon asthereis a pending communication on input channel a or a1

; otherwise

44 Chapter 3 Communication and values

the probe returns false. An operational interpretation of a probe-containing selection
is: when none of the guards equals true, the operation is suspended until at least one
of the guards evaluates to true. As an illustration, oonsider the following program
with boolean expressions X and Y, noprobes in X and Y, precondition X V Y, and
data-driven communications.

if X A ä-!- S
UYAb-l-T
fi

The meaning of the program in basic terms is:

if X A ..,y -!- (ä -!- S)
U Y A -.X -!- (b -!- T)
D X A Y -!- (a -!- s U b -!- T)
fi

Example 3.8
Process MixedCopy performs data-driven communications along input channels a and
b, and output channels c and d, all of type Int. The environment chooses between a
and b, and the process copies the inputs from a to c and the inputs from b tod.

D

MixedCopy = if ä -l' a0 ?x ; c•!x
0 b -!- b0 ?x; d•!x
fi

; MixedCopy

Thus far, we have not given any meaning to the negation of pro bes. In order to do
so, we consider the following program, with data-driven communications:

if a A -.ïJ -!- s
U b- T
fi

In basic terms, the meaning of this program is:

(b -!- T <l ä - S)

As a result, we can use negated probes for assigning priorities to the alternatives in
a choice construct.

The suspension period before a probe-containing selection is not bounded up
wardly; it is determined by the environment and may last for ever. Sometimes,
however, we want a kind of timeout after which an alternative is selected. For that

3.2 Parameterized and generic programs 45

reason, we add 7 as a fundion which gives the value of the global doek. The returned
value of 7 is the time at which the preceding program has been finished, as defined in
Definition 2.41. Before a choice, we look upon the execution as if it were suspended
until r reaches a value that causes a guard to evaluate to true. We do not restriet the
use of 7 to guards. A timeout happens when the doek reaches a predefined value.
Often, this value depends on the schedule of an action. We denote the schedule of
the last communication via channel a by cr.a; if there is no previous communication,
cr.a evaluates to 0.

Example 3.9
An example of the use of timeouts is given by the following process, with input
channel a and output channels b and c, all of type Int and passive. The process
copies valnes from a to b or c: the one being selected is (partly) determined by the
environment.

TimedCopy = a0 ?x
; if b 1\ 7 < cr.a + 5 -4 b0 !x
u 7 :2: O".a + 5 - C

0 !x
fi

; TimedCopy

The meaning of the selection is:

0

((a,5)-Joc0 !x
<1 b -Jo b"!x
)

3.2 Parameterized and generic programs

Due to the incorporation of data into programs, we need to generalize our programs
to describe processes whose behaviours depend on the past, for example an N-place
buffer, a stack, or even a simple variable. With respecttoa variable, once it has been
initialized, its future behaviour depends on the value it contains. We express such
dependendes by parameterized programs, programs in which the relevant part of the
past is captured in a set of program variables. A parameterized program is a fundion
that ranges over the set of programs II; the domain depends on the information that
we want to record. An application of a parameterized program, which is called an
instantiation, selects a program from the range.

Example 3.10
We consider variabie Var, with input channel a and output channel b, both of type
Int and passive. New values are read from a, and upon request the current value is
written to b.

Var a0 ?x
; Var'(x)

46 Chapter 3 Communication and values

When process Var has been initialized, it behaves like process Var1(x), which is an
instantiation of Var1 with variabie x.

0

Var1 E Int --+ II, with
Var'(x)= if a--+ a0 ?x

D b--+ b0 !x
fi

; Var1(x)

As we have seen in the previous example, an instantiation involves a kind of parameter
passing. We will use the following convention: a constant in the fundion callis treated
as a value parameter, and a variabie as a variabie parameter. As a consequence, a
process instantiated with a certain variabie may change the value of that variable,
whereas a value initializes a new local variable.

In the following two examples, the domain of the parameterized program consists
of a list which is used for recording input values.

Example 3.11
An N-place buffer, with N > 0, has input channel a and output channel b, both of
type Int and passive. The specification of the buffer with contents L E Int"' is given
by process BufferN(L).

BufferN E Int* --+ II, with
BufferN(L) = if ä 1\ ILI < N--+ a0 ?l; L := Ll

0 b 1\ ILI > 0 --+ b0 !(hd.L) j L := tl.L
fi

; BufferN(L)

Instead of explicitly stating the assignments to L, we use the following program
notation:

BufferN(L) if a 1\ ILI < N--+ ao?l; BufferN(Ll)
0 b 1\ ILI > 0 --+ b0 !(hd.L); BufferN(tl.L)
fi

An initially empty N-place buffer is described by process BujJe1·N(t).
0

The specification of an infinite stack, which is given in the next example, looks very
much like the buffer in the previous example. New values are added to the front end
of the list instead of the back end, and there is no limit imposed on the number of
values it may contain.

3.2 Parameterized and genericprograms 47

Example 3.12
A stack, with input channel a and output channel b, both of type Int and passive, is
specified by:

D

Stack E Int* -+ II, with
Stack(L) = if a -+ a0 ?l; Stack(ZL)

0 bA ILI > 0 -+ b0 !(hd.L); Stack(tl.L)
fi

Often, a system contains a number of similarly behaving processes. We specify such
processes by a generic representative, a generic program. An occurrence is obtained
by indexing the program name and all its channels. In order to illustrate this, we
consider a system which contains M N-place buffers that are initially empty. This
system is described by set

{i : 0 :=::;i< M : BufferN[i](E)}

where occurrence BufferN[i](L) equals

BufferN[i](L) = if a[i]A ILI < N-+ a0 [i]?l; BufferN[i](Ll)
0 b[i]A ILI > 0 -+ b0 [i]!(hd.L); BufferN[i](tl.L)
fi

Sometimes, we will define generic programs that are connected to a range of chan
nels. For example, consider program lvfixerN which copies values received via passive
channel a[k], 0 :=::; k < N, to active channel b[N- 1 - k]. In the program, the N
guards and subsequent alternatives are abbreviated to just one.

MixerN = if k: 0 :=::; k < N: a[k]
-+ a0 [k]?x ; b"[N- 1- k]!x

fi
; Mixe1'N

For N = 2, unfolding the selection in the program yields:

Mixer 2 = if a[O] -+ a0 [0]?x; b"[1]!x
0 a[1] -+ a 0 [1]?x; b"[O]!x
fi

; Mixer2

For occurrences of programs like MixerN, we adopt the following convention: for
passive channels, the new index is added before the one already present in the pro
gram; and for active channels, the new index follows the other. The usefulness of this
convention is illustrated in Figure 3.1. Occurrence i of program MixerN reads:

48 Chapter 3 Communication and values

MixerN[i] = if k: 0 S k < N: ä[i,k]
- a0 [i, kJ? x ; b•[N -1-k, i]!x

fi
; MixerN[i]

If the above ways of indexing do not apply, the substitutions for the channels in the
generic program are explicitly denoted between square brackets. For example, the
ith occurrence of an initially empty N-place buffer, with explicit substitutions, is
denoted by:

BufferN[a :=a[iJ, b b[i]J(t)

3.3 Asynchronous communication

A communication happens in both participating processes at the same time, namely
as soon as both have enabled the action. This type of communication is called syn
chronous communication. As aresult of the enabling model underlying our programs,
all communications are synchronous. Sometimes, however, we want to define a pro
cess that can do an output irrespective of the readiness of the corresponding input,
which means that the output may he scheduled before the matching input. We call
this more liberal form of communication asynchronous. Of course, an asynchronous
input cannot happen before the conesponding output has happened. Since a passive
output waits for the active input, in case of asynchronous communications, data
driven communication is implicitly assumed.

The way in which we describe asynchronous communication in our synchronous
model is accomplished by adding a sufficiently large FIFO-buffer in the 'asynchronous
channel' between the inputting and the outputting process. Consequently, all com
munications via the buffer are asynchronous. The buffer should always he ready to
accept another output from the environment and, when not empty, be willing to
supply the environment with the first element. We restriet ourselves to asynchronous
communication in which a one-place buffer suffices, otherwise we will explicitly model
the required processes. Note that, in order to avoid buffer overflow, this form of asyn
chronous oommunication requires a kind of feedback from the receiver to the sender.

As an illustration, consider processes Pand Q which communica.te a.synchronously
via channel a, where a is directed from P to Q. In fact, the preserree of the one-place
buffer gives rise to two a channels, say ap for the conneetion with P and aq for the
conneetion with Q. The buffer is described by process AsynBuf:

AsynBuf = ap?x
; aq!x
; AsynBuf

In our specifications we abstract from the underlying solution. In order to denote
asynchronous communication, we use the same channel name and the same sym
bols for input and output as in the synchronous case, but put the symbols upside

3.4 Pictures 49

down: symbol ' l. ' for input and symbol ' i ' for output. Although we assume data
driven communications, we add the active or passive sign to keep the comn:mnication
expressions uniform.

Example 3.13
Process Merge has input channels a and b, and output channel c, all of type Int. We
assume that both sequences of values from a and b are ascending. The specification
of Merge, with asynchronous communication, is:

0

Merge a0 l.x, b0 l.y
; Merge'(x,y)

Merge' E Int x Int -+ II, with
Merge'(x,y) = if x:::; y -+ c•ix, a0 l.z; Merge'(z,y)

0 x 2:: y -+ c•iy , b0 l.z ; Merge1(x, z)
fi

3.4 Pictures

When descrihing a whole system, a picture that shows the conneetion diagram of the
processes is often indispensable. Such a picture gives an overall view of the structure
of the system, without going into too much detail. Therefore, we introduce some
graphical symbols and explain their meaning.

We represent processes by reetangles and put their narnes inside. For example,
process P is depicted by:

A channel is represented by an arrow that indicates the direction of the communica
tions. Wh en a channel is used for synchronization only, w hich means that the channel
is of type Signal, we use a line to depiet the channel. Close to each channel we put
its name. In order to distinguish between the active and passive side of a channel,
we add symbol ' • ' at the active side and symbol ' o ' at the passive side. This yields
the following picture for processes P and Q which communicate synchronously via
channel a, directed from P to Q, with a being active to P and passive to Q.

50 Chapter 3 Communication and values

P[l]

Q[l]

P[2]

Q[2]

P(3]

=

P[i] r
a[i,j] ·{~

Figure 3.1: An example of a picture and its abbreviation, 1 ::; i ::; 3 and 1 ::; j ::; 2.

When the communication via a channel happens asynchronously, we indicate this
by ad ding symbol '•' in the arrow or line. Hence, asynchronous communication via
channel a between processes P and Q looks like:

p

When a system contains a number of occurrences of a generic program, we denote, if
desired, only a single occurrence. An example is shown in Figure 3.1.

Example 3.14
Suppose a one-place buffer between processes P and Q is insufficient, and a buffer
with infinite capacity is required. This is accomplished by adding both an infinite
buffer Buf and a buffer-handler BufH. An overview of the interconnections is:

3.5 Example: the dining philosophers 51

The buffer Buf is: passive in all possible communications; always willing to accept
a new value from P; and, when not empty, ready to deliver the first value to the
handler. The buffer-handler is active in all communications; it repeatedly asks the
buffer for a new value and, afterwards, sends the value to Q. For integer channels,
the buffer is specified by:

Buf E Int* ~ IT, with
Buf(L) = if b ~ b0 ?l; Buf(Ll)

D cA ILI > 0 ~ C
0 !(hd.L); Buf(tl.L)

fi

The buffer-handleris a special kind of one-place buffer:

BufH c•?x
; d"!x
; Bufll

0

3.5 Example: the dining philosophers

A classica! control example is the problem of the dining philosophers [10]. Usually,
the problem is used to demonstrate the applicability of some (new) synchronization
primitives. Unlike prevailing solutions that devise a sort of distributed control scheme,
we will simplify matters by giving a solution with a supervisory controL

There are M, M 2 2, philosophers sitting around a table, and each of them
alternately thinks and eats. lnitially, all philosophers are thinking. In between two
neighbouring philosophers there is a fork on the table. A philosopher can eat only if
he possesses both his leftand his right fork. As a consequence, each fork is shared by
two philosophers. After his eating session, a philosopher spends some time thinking.
There are no further restrictions imposed on the thinking sessions.

When all philosophers have picked up their left fork and wait for their neighbour
to put down the grasped fork, a so-called deadlock occurs. In order to avoid the
occurrence of such an undesired state, a philosopher asks the supervisory control for
permission to piek up both his left and right fork. When receiving the permlssion,
the forks must be available on the table. After the philosopher has finished eating
and has put back both forks, he synchronizes with the control again. Philosopher i,
0 ::; i < M, which is described by process Phil[i], interacts with the control process
Control via channel a[i]; the interactions with his left fork Fork[i] and his right fork
Fork[i + 1] happen via channels l[i] and r[i] respectively. A picture of the system
is given in Figure 3.2. Throughout this example, addition and subtradion are in
roodulo M arithmetic.

52 Chapter 3 Communication and values

Control

a[i]

Fork[i]
l[i]

Phil[i]
rl:iJ

,Fork[i+ 1]1

Figure 3.2: The dining philosophers, with 0 S i < M.

3.5.1 Philosophers and forks

A fork is either on the table or possessed by one of its two neighbouring philosophers.
Because two philosophers have access, picking up the fork is described by a commu
nication via channell and by a communication via channel r. Putting down the fork
is described similarly. In its initial state, the fork lies on the table.

Fork = if Ï --. zo? ; zo?
0 f --7 r0 ? ; r0 ?
fi

; Fork

A first impulse to the specification of process Philiooks as follows, where think and
eat correspond to a thinking and an eating session:

Phil think
; a•!
; t•! , r•!
; eat
; [•! , r•!
; a•!
; Phil

Note that in the absence of control, a deadlocking state is likely to occur. When
all thinking sessions have the same length, the philosophers are not prohibited from
picking up their left fork. This may result in a situation in which all wait for their
right fork to become available, which never happens.

Because the philosopher is active in a, the controller to he designed can choose
a suspendeel communication on one of its a channels. We say that the eating and
thinking sessions start at the moment on which the control answers the a request.
Hence, a communication via a changes the state of the philosopher from eating to
thinking or the other way around.

3.5 Example: the dining philosophers 53

The activities think and eat need some further elaboration. The only thing about
the eating and thinking sessions we want to model is their time consumption. When
the required time is constant for a philosopher, say T for the thinking sessions and
E for the eating sessions, the activities are properly described by é(T) and é(E).

The required delay times may, however, vary. We describe such variations by
drawing the delay from a certain statistica[distribution. The actual drawing is de
scribed by a distribution function which we will denote by V. We assume that
subsequent calls yield a 'quasi-random' sequence of numbers. Moreover, we do not
consider the initialization of such functions and assume that the same distribution
function yields distinct sequences of numbers in similarly instantiated programs.

In this case, we describe the eating and thinking sessions by a uniform-distribution
function over a certain interval, say function 'DT for thinking and 'DE for eating. The
resulting specification of process Phil reads:

Phil = ó(VT)
; a•!
; t•! , r•!
; ó(VE)
; l"! , r•!
; a•!
; Phil

3.5.2 The supervisory control

The task of the control process is to arrange a non-deadlocking scheduling of the
eating sessions of neighbouring philosophers. Requests to start eating and to restart
thinking arrive via channels a[i]. A request from philosopher i to eat may be answered
only when both neighhours i + 1 and i 1 are thinking.

In order to record the current states of the philosophers, we introduce variabie
think of type [O .. M)----+ Bool, where think[i], 0::; i< M, expresses that philosopher i
is thinking. For such an array variabie we use think[i] as alias for think.i.

In the description of philosopher i we stated that his state changes after a syn
chronization with the controL As an invariant property of the variabie think we state
the absence of conflicts by:

(V i: 0 :<Ç i< MA -,think[i]: think[i 1] A think[i + 1])

The control process Control chooses between several alternatives, which are guarded
by a probe on input a[i], and maintains the invariant property. Consequently, the a
channels have to be passive for the controL Pending requests are considered as soon
as possible; when there are several possihilities, a non-deterministic choice is made.
In the specification of Control, we gather similar guarded alternatives into one by
explicitly denoting the dummy and its range.

54 Chapter 3 Communication and values

Control E ([O .. M) ---+ Bool) ---+ II, with
Control(think) =

if i: 0 ~i< M: think[i -I] A think[i]A. think[i + l]A ä[i]
---+ a0 [i]?; Control(think[i := false])

D i : 0 ~ i < M : --,think[i]A ä[i]
---+ a 0 [i]?; Control(think[i := true])

fi

The corresponding system, say DPM, is given by the set containing a proper instan
tiation of all programs. Since initially all philosophers are thinking, we take:

DPM = {Control([O .. M)---+ true)}
u {i : 0 ~ i < M : Phil[i]}
u{i: 0 ~i< M: Fork[l := l[i],r := r[i 1]]}

In the resulting system, a deadlock is impossible because a philosopher gets permis
sion to eat only when his neighbours are thinking.

The control strategy suffers from so-called individual starvation: it is not guaran
teed that each philosopher gets his turn. A strategy which enforces a fair scheduling
scheme is not difficult to design: introduce for each philosopher a variabie denoting
whether he has had his 'next' eating session.

3.6 Example: a turntable

In this section we specify a system that drills a hole in a block and tests whether the
drilling has been done successfully. A similar system is described in [33]. The system
consists of five processes: a loader, a driller, a tester, a remover, and a turntable. In
order to understand their specific tasks, we describe the processing of a single block.
The loader takes a block from the environment and puts it on the turntable. The
turntable turns clockwise over ninety degrees and brings the block to the driller that
drills a hole in it. After another turn of the table, the block arrives at the tester.
The tester checks the drilled hole and reports the outcome of the test to the control
process. The turntable turns again, and the block is brought to the remover. The
control instructs, on basis of the outcome of the test, where the remover has to put
the block: on the pile of the correctly or faultily drilled ones. A sketch of the layout
of the concrete system is given in Figure 3.3.

Instead of only one block, there can be at most four blocks on the table. Hence, in
order to increase the throughput of the system, we aim for parallel processing of four
blocks. The blocks that are simultaneously processed by the loader, driller, tester,
and remover process are distinct. A turn of the turntable, however, moves all blocks
on the table and requires the other processes to have completed their interaction with
the blocks. The control process has the obligation to take care of a proper scheduling
of the operation of the processes.

3.6 Example: a turntable 55

TurnTable

+•

Figure 3.3: A sketch of the turntable and the position of its periphery, where
L = Loader, D = Driller, T = Tester, and R = Remover.

The conneetion diagram of the processes in the system is given in Figure 3.4.
We close the system by adding a description of the environment, which consists of
the programs specifying the input pile and the two output piles. Tbe cbannels a
through d are used to pass tbe blocks between the processes where it may reside.
The others, boolean channels ct and er, and synchronization channels cl, ctt, and
cd, are needed for the controL We assume the presence of type Blocks wbich gives
a proper representation of the blocks. In the current example, the assignment of
activeness and passiveness is immaterial; this sterns from the fact that there is no
external choice in the system.

b
Loader ----.a

cl
ctt

c

er

Figure 3.4: The drilling system with input and output piles, with 1 :S i :S 2.

3.6.1 The processes in the system

We continue with a description of the processes. The interaction of a process with the
table is controlled by enclosing the conesponding actions between communications
with the controL The first communication controls the access, the second serves as
a report of its completion. Some interactions consume time; their modeHing consists

56 Chapter 3 Communication and values

of: an action for derroting the beginning, an action for derroting the end, and a delay
for the interval in between. However, if the interval is fixed, the action derroting the
end may be omîtted, as we will do.

The input pile supplies the loader with new blocks via channel a and has an infinite
number of blocks available. In its description Pileln, this is described by assuming
the presence of function newBlock which generates new blocks of type Blocks. The
specification of the input pile is:

Pileln = a0 !newBlock
; Pileln

The loader, which is specified by process Loader, gets a new block via a, and moves
the block in the right position to put it on the table; this move costs TL time. After
obtaining permission to access the table, which is described by synchronizing via cl,
the blockis handed over to the turntable via b, which takes T1 time. Next, the loader
reports to the control the completion of the interaction and moves back to its original
position at the input pile.

Loader = a•?x
; 8(TL)
; cze! ; b•!x; 6(TI); cl•!
; ö(TL)
; Loader

The behaviour of the remover resembles that of the loader. The main difference is
caused by the dependenee on the control which reports the target pile of a block after
the interaction with the table.

Remover= er•?; c"?x; 8(TI); cr•?target1
; b(TR)
; if targetl -t d•[l]!x
0 -.target1 -+ J•[2]!x
fi

; h(TR)
; Remover

The tester synchronizes with the control via channel ct. The actual test of a drilled
hole consumes TT time. We assume that the outcome of the test is determined by a
distribution function 'DT and a certain threshold C.

Tester= ct•!; h(TT); ct"!('DT < C)
; Tester

The driller communicates with the control process via channel cd, and needs TD time
for drilling a hole.

Driller = cd•! ; h(TD) ; cd•!
; Driller

3.6 Example: a turntable 57

The turntahle, which is initially empty, needs to be initialized before it may start its
repetitive hehaviour. The four hlocks that can he present on the table are represented
by array variabie x E [1..4] -+ Blocks. The loader operates on x[l], the driller on x[2],
the tester on x[3], and the remover on x[4]. After each turn coating TTT time, the
blocks are shifted one place up. The turntable is described by:

TurnTable = b"?x[l] ; 8(Tr)
; cW! i 8(TTT) i x[2] := x[l] i cW!
i b"?x[l] ; 8(Tz)
; cW!; 8(TTT); x[3],x[2] := x[2],x[l]; cW!
i b"?x[l] i 8(TI)
; TurnTable'(x)

TurnTable' E ([1..4] -+ Blocks) -+ II, with
TurnTable 1(x) = cW! i 8(TTT); x[4],x[3],x[2] := x[3],x[2),x[l]; ctt•!

; b0 ?x[l], c"!x[4]; 8(Tz)
; TurnTable'(x)

All processes but the control and the output piles have been described. We omit the
description of the output piles, because it is straightforward. A description of the
control is given next.

The control process is easy to develop; it takes care of a proper access to the table.
As we have seen, all control actions come into pairs, the first one denoting the start,
and the second one the completion of the operation. The outcome of the test is kept
in variabie v of type Bool, which is used in the next cycle. In the specification, we
abbreviate for example (cl0 ? ; cl0 ?) to cZ0? 2• Ju st like the turntahle, the operation
of the control begins with a startup phase.

Control cl"?2 i ctt"? 2

; cl"?2
, cd"?2 ; ctt"?2

; cl"?2
, cd"?2

, (ct"? ; ct"?v)
; Contml1

(v)

Contml' E Bool -+ II, with
Control1

(v) = ctt"?2

; cl"?2 , cd"?2
, (ct"? ; ct"?w) , (cr0 ! ; cr0 !v)

; Control'(w)

Now that we have specified all processes, the resulting system TS is described by the
set of all processes ta.king part:

TS = { Loader, Remove1', Teste1', Driller, Turntable, Control,
Pileln, PileOut[l], Pile0ut[2]}

58 Chapter 3 Communication and values

Chapter 4

Distributed discrete-event
simulation

The specification of a complicated system is often hard to fathom and, therefore,
reasoning about the design can still be rather difficult. In order to simplify matters,
it is rather common practice to build a kind of small-scale model or prototype. We
opt for a computer simulation.

The construction of a large industrial system will usually involve a lot of money.
Because of the growing complexity, the amounts tend to increase. Therefore, being
precise during the development of the specification, the conceptual system, is not
enough: certainty is needed that the specification is in accordance with the concrete
system required. However, giving a complete specification in advance can he virtu
ally impossible. For example, when the system comprises a complex control process,
the resulting consequences may he hard to foresee. Moreover, the fiexibility of the
system is very important. We want to know how the system wil] react upon cha.ng
ing market demands, which entails changing the environment. For this purpose, an
implementation which simulates the system and its environment is a big help. The
implementation enables us to get a profound knowledge about the system's charac
teristics in relation to possible parameter settings. As a consequence, we are able to
validate the specification and, when necessary, change it to meet the requirements
that have been imposed.

Typical conditions an implementation must satisfy are: it must he fast and easy
to construct. In obtaining an implementation, we benefit from the specification in
terros of programs; the program constructs come close to that of existing parallel pro
gramming languages. However, implementations do not have the active and passive
communication abstractions. Furthermore, implementations are deterministic. The
discussion of the implementation approach assumes the maximal parallelism model,
in which each process is assigned to a processor of its own. In practice, however,
a single processor may execute an arbitrary number of processes. Our implemen
tation approach is transparent in the sense that the distinction between processes,
which is made in the specification, is also visible in the implementation. We do not
choose for the construction of a compiler which transforms the specification into an
undistributed, discrete-eventbased simulation, but devise a translation scheme which

60 Chapter 4 Distributed discrete-event simulation

yields a distributed, event-ba.sed network implementation. The rea.son for doing so is
that we try to exploit the capabilities of a processor network. It turns out that the
implementation of externa.l choice, or shortly choice, is difficult.

In Section 4.1 we introduce the implementation approachfora subset of systems,
namely those without choice.

In Section 4.2 we extend the range of implementable systems with those contain
ing choice, which is achieved by descrihing how to implement the choke construct.

In Section 4.3 we discuss some optimizations of the implementation that speed
up the simulation.

In Section 4.4 our ideas are illustrated by a small example in which we determine
the size of a buffer connecting two sub-systems placed in series.

4.1 Absence of choice

Basically, the implementation of a system computes a history up to a specified mo
ment in time. From the resulting history we can derive the statistics required. In
general, we are not interested in all actions of the history, but only in those actions
that contribute directly to the simulation outcomes. Since we want to know how
systems react upon their environment, we assume that the environment is taken into
account by incorporating its specification. Consequently, the systems considered are
closed.

Due to our aim of a distributed implementation, we exclude the notion of the
global doek from the implementation. lnstead, each individual process computes its
own timeT, which is initially zero. As a result, we obtain an event-based simulation
approach. In order to ease the computations on T, the effect of the implicit unit
delays Ç on the value of T is neglected. As a consequence, T contains the current
macro-moment. In the absence of choice, the primitive programs and the sequentia!
and parallel composition operators remain.

The consequences of a delay are easy to implement. In Definition 2.41 we defined
the time consumption of ó(M) equal to M, where M ;::._ 0. Hence, its implementation
consists of a simple increase of T by M:

T := r+M

A communication action happens in both processes at the same time. As a conse
quence, their times are aligned afterwards. In order to realize this postcondition,
the processes have to exchange their local times. Afterwards, the postcondition is
validated by assigning to each local T the maximum of the time values. The time
exchange is accomplished by adding a time stamp to each message and the introdue
tion of an additional channel for communication in the reverse direction. The reverse
channel associated with channel a is denoted by à. When a process ha.s performed an
input via a, by means of which it obtains the time in the outputting process, the local

4.2 Presence of choice 61

time is sent via channel a. For processes P and Q, the annotated implementation of
a communication via a looks like:

P: {r =X}
a!(V, T) j G,?r1

r := r max r'
{r =X max Y}

Q: {r = Y}
a?(w, r 1

); à!r
r := r max r 1

{r =X max Y}

As a result of the order imposed on the a and a communications, each implemented
communication consists of two steps and is completed only when the second step
has taken place. In fact, in the absence of choice, the sequentia! composition of the
communications can he replaced by parallel composition. ilowever, in the presence
of choice the order is significant.

There remains to descri he the effect of sequentia! and parallel composition on r.
No further attention is paid to these operators, because their effect is given in Defi
nition 2.41.

These minor translations are sufHeient to obtain an event-based implementation
of systems that are free from external choice. Of course, some further optimizations
are possible. For example, in case of passive outputs and active inputs, there is no
need to introduce the additional channel because two-way communication is already
possible. More interesting systems wil! be choice holding. Implementing external
choice is discussed in the next section.

4.2 Presence of choice

Unfortunately, the implementation of external-choice constructs requires some more
effort. From Definition 2.41 follows that the scheduling times of the probe actions are
needed to select a proper alternative. These times may be difficult to determine, be
cause it is not guaranteed that the probe actions have been scheduled yet. The exact
scheduling time is, however, not always needed. Often, it suffices to know that some
actions do not happen before a certain moment. We use this idea in the development
of a general strategy to implcment choice constructs. The strategy requires the pro
cesses to be interdependent: when the execution of a process is locked, all processes
become locked eventually. In short, processes are locked before every external choice
and befare the input step of every communication. After a while, all processes are
locked due to the interdependence, and a key is determined to unlock the processes
that may continue. To clarify the discussion about the strategy, specifications with
data-driven communications are assumed. A further simplification consists of con
siclering sequentia} processes only.

External choice is restricted to input channels. For simplicity's sake, we assume
that the guards consist of: a boolean expression in terros of variables, in conjunction
with just one non-negated probed channel. A generalization to more complex guards
is relatively easy to obtain. Furthermore, we assume that fundion r does not appear
in the boolean expressions. As a result, we have so-called stabie guards. In order to

62 Chapter 4 Distributed discrete-event simulation

describe timeouts, we introduce variabie timeout which contains the moment when
the alternative associated with the timeout becomes valid. Variabie timeout is not
used in the boolean expressions and, in the absence of a timeout, timeout equals oo.
The alternatives that need to be considered for continuation have boolean expressions
that evaluate to true. The narnes of the channels that belong to these valid boolean
expressions are gathered in set F. Note that F contains input channeis only.

In order to determine a valid alternative, we need to know the times of the probe
actions belonging to the channels in F. Due to the two-phase protocol in the imple
mentation, we can perform the input step of input communications without complet
ing the communications as a whole. As a result of the time stamp added to every
message, the input steps give the times required. To record the input communications
of which the input step bas happerred but the subsequent output step has not, each
process maintains local set E:

E Ç {a, m, t : a E A Am E type(a) At ET : (a, m, t)}

where A is the set of input channels of the process. Initially, no communications
have taken place and, hence, E equals the empty set 0: For e E E we use e.a and
e.t to denote the input channei and the time stamp respectiveiy. The set of channels
currently in Eis denoted by aE:

aE = { e : e E E : e.a}

Some chokesneed no further elaboration: for those with an F which satisfies F Ç aE,
we can determine an alternative to continue. This situation can be achieved when
the environment is willing to communicate via all channels in F. The next chapter
describes an example in which this idea is applicable to all choice constructs, at any
time. In some cases, however, condition F Ç aE is not needed to select a valid
alternative: when there is a triple e in E such that e.a E F and e.t S T, there is also
a legal guard to pass.

In genera!, the previous conditions do not hold. To determine a proper alterna
tive, processes enter a special mode of operation bef01·e every choice, after they have
determined their F and timeout; such processes are called locked. When locked, a
process computes on basis of the current triples in E, the channels in F, and the
value of timeout, the next moment minTime when it regains activity:

minTime = timeout min (mine : e E E A e.a E F : e.t)

Possibly, processes try to communicate with a locked process. Thus, there can he
pending communications on the input channels of a locked process which influence
the value of minTime. Locked processes are, therefore, willing to communicate via
the input channels in their F set and, when an input step has happened, set E and
minimum minTime are updated. As soon as minTime is less or equal to process
time r, or when F Ç aE, the locked state can be left, because there is a valid guard
available. These conditions are not guaranteed to happen but are used to optimize the
strategy. In order to restart its operation, a locked process wants to advance process

4.2 Presence of choice 63

timeT to minTime. However, the advancement may happen only when the value of
min Time will not become less than the current value owing to other communications.
This requires that the times of the processes in the environment are at least min Time
or can be advanced to minTime.

Without any further regulations, a deadlocking state is likely to occur. After
a while, processes are either locked or suspended in a communication. To prevent
processes from being suspended in input steps, a loek is also added before everyinput
step. We look upon the input steps as if they were choices with just one alternative;
for example, input step a?(w,r') has F = {a} and timeout = oo. Furthermore,
instead of communicating via channels in F only, locked processes are willing to
communicate via all input channels. Consequently, the suspension in output steps is
avoided. Note that reading all input channels may happen because of the two-phase
communication protocol. In fact, only processes locked before a reverse input step
have to take the reverse channel into account. In order to have only one kind of
message around, we assume that value ' vf' is added to time values sent via reverse
channels. Moreover, the range of E is straightforwardly extended to record reverse
inputs.

\Vhen a locked process reads one of the input channels, the process performing
the corresponding output becomes locked too, except for reverse inputs. Eventually,
the computation may reach a situation in which all processes are locked. To reeover
from this situation, the processes with minimum minTime are restarted by advancing
their times to min Time. In order to have access to the processes, they are linked into
a token ring; this is accomplished by the introduetion of additional input and output
channels [7, 12]. The ring passes through another process, namely the TokenHandler,
which initializes the token in the ring. A sketch of the idea is given in Figure 4.1.

Figure 4.1: An overview of the ring between processes Pi, with 1 ~i~ N, and token
handler TH.

Process TokenHandler is depicted by a circle to distinguish between processes in the
specification and the implementation. The channels forming the ring are denoted
by plain arrows. In order to avoid deadlock, communication via the ring happens
asynchronously, except for the channels connected to the token handler which serves
already as a special kind of one-place buffer. The token is used for the following
purposes: first, to find out whether all processes are locked and, at the same time,
to determine the first moment on which a process can continue; second, when all

64 Chapter 4 Distributed discrete-event simulation

processes are locked, to restart the processes with minimum minTime. As will be
apparent later on, reeavering from an overall loek costs at least three tours of the
token through the ring: at least two are needed to verify whether all processes are
locked, and an extra tour is needed to distribute the extracted minimum.

The token is a triple (phase, allLocked, time), with

phase E {1, 2} , allLocked E Bool , time ET

The phase denotes the use of the token. Wh en phase equals 1, the token is used to
detect whether all processes are locked and to determine the minimum restart time.
When receiving the token back, the token handler inspects allLocked to find out
whether all other processes are locked. When positive, the token is used for phase 2:
restart the processes with minimum restart time time. Otherwise, the procedure is
repeated. The specification of the token handler with input channel q and output
channel c0 , both of type equal to that of the token, is:

TokenHandler
C0 !(1, true, oo)

; q ?(phase, al!Locked, time)
; if -,alfLocked -+ e
0 allLocked -t c0 !(2, allLocked, time)

; q ?(phase, allLocked, time)
fi

; TakenHandier

When the token is used in phase 2, the allLocked field is superfluous. The processes
react upon the receipt. of a token with phase 2 by advancing, if necessary, the
process time to time.

The operation of locked processes is described by pseudo code S. The code con
tains boolean variabie passed which is used to determine the locked state of the whole
computation: passed records whether the token has passed in this locked state. The
ring channels c, and C0 denote the input channel and the output channel, and the
other input channels connected to the process are a[i], 0 :::; i < M, where M will vary
per process.

S passed := false
; minTime := timeout min (mine : e E E A e.a E F : e.t)
; dor < minTime

od

if F Ç aE ---+ r := minTime
I] F ~ aE -+ if i: 0:::; i< M: a[i] -+ S1(i)

0 e; -+ s2
fi

fi

Procedure S1(i) reads the pending input on channel a[i], after which a new triple is
added to E and min Time is updated.

4.3. Some optimizations 65

81 (i) = a(i]?(m, t)
; E :=EU {(a[i], m, t)}
; minTime := timeout min (mine : e E E 1\ e.a E F : e.t)

Procedure 8 2 describes the reaction upon receiving the token, which depends on the
token 's phase. In order to speed up the processing of the token, it is sent further
through the ring as soon as possible.

82 = q?(phase, allLocked, time)
; if phase 1
~ C0 !(phase, allLocked 1\ passed, time min minTime)

; passed := true
U phase = 2

fi

--+ C0 !(phase, allLocked, time)
; T := rmaxtime

Note that when a process is activated by the token, it may wake others before the
token has reached these processes. As a consequence, the token may he delayed for
some time. The delay causes no errors but we want to avoid it. This is one of the
subjects addressed in the next section.

A process locked before a choice leaves its locked state with T such that there
is a valid guard to pass. The remaining selection between the alternatives, which is
denoted by program T, is straightforward: take an e E E with e.a E F and e.t ~ r,
or select the alternative following the timeout when suitable. With T1(e) descrihing
the alternative belonging to probed channel e.a E F, and with T2 the alternative
following the timeout, selection T is as follows:

T = if e: e E E 1\ e.a E F: e.t ~ r --+ T1 (e)
U timeout ~ r --+ 12
fi

When T1 (e) completes the communication via e.a, e has to he removed from E.

In (30] another approach is described. lnstead of adding a ring, the processes send
additional time messages to inform their environment about their process time. We
did not choose this strategy hecause it is difficult to implement.

4.3 Some optimizations

With the use of a ring structure we accomplish the implementation of choice-holding
computations. As we have mentioned before, an important aspect of implementations
is the time needed to compute the information required. Valîdating the specification
is an interactive process and, hence, a fast feedback is essential. Furthermore, a
simulation consists of several simulation runs with different initia! data. In order to
speed up the distributed implementation, we optimize the token transport through

66 Chapter 4 Distributed discrete-event simulation

the ring. We describe several possibilities of which the actual gain in speed may he
considerable.

When a token activates a process, the process may activate others and so on.
As a consequence of such a 'chain-reaction,' the token might get stuck in a buffer
of the ring structure until the next process is re-locked. Although such a temporal
delay in the token transport is not erroneous, the activation of other processes may
he delayed. The hold-up of the token is easily avoided: add instead of a ring an extra
layer on top of the processes, which takes care of the token transport. A picture of the
structure is given in Figure 4.2. To obtain the token, each process P;, 1 .:::; i.:::; N, has

Figure 4.2: The situation m which each process P;, 1 < < N, has its private
entrance PE; to the ring.

a private entrance PE; to the ring, which is a kind of one-place buffer. A token with
phase 1 passes the P process before it is sent to the next entrance. Upon receiving
a token with phase 2, each entrance passes the token immediately to its successar in
the ring. The specification of a private entrance is given by process PrivateEntrance,
with ring channels t; and t 0 , and channels e; and c0 to establish the conneetion with
the process.

PrivateEntrance = t;?token
; if token.phase = 1 -+ c0 !token; c;?token

; to!token
D token.phase = 2 -+ t0 !token , c0 !token

; e;?token
fi

; PrivateEntrance

Note that entrances make no use of a re-received token with phase 2 from the linked
processes. A voiding this superfluons communication requires a minor update of the
processes. The actual gain of this scheme depends on the behaviour of the computa
tion. When there is often the need to activate several processes, the implementation

4.3 Some optimizations 67

will certainly benefit from it. A drawback of the scheme is the higher communication
costs. A tour in the original ring structure between N processes costs 2N commu
nications, in which each asynchronous communication is counted twice. In the new
scheme, a tour of a token with phase equal to 1 takes 3N + 1 communications; whereas
a token with phase 2 requires only N communications to return to the token handler.

In the original ring structure, the token traverses sequentially through all pro
cesses. In the preceding discussion on the delayed token we already applied the idea
of copying the token to speed up the implementation. We use the same idea to deter
mine an overall loek. The colledion of processes is divided into a number of smaller
groups. Each group has its local sub-ring and an entrance to the global ring which
connects the groups. An overview of this structure is given in Figure 4.3.

Figure 4.3: A conneetion diagram with Ilocal rings, where k * l = N.

Splitting a group of N processes into VN groups of VN processes yields alocal ring
of size 2VN. The entrance processes serve as a kind of local token handler. They
initialize the tokens in the local rings and, afterwards, the resulting tokens are added
to the token in the global ring. With channels ei and c0 being part of the local ring,
and channels ti and to forming the conneetion with the global ring, the specification
of the local token handler is:

GraupEntrance = (C0 !(1,true,oo); q?(phase,allLacked,time))
, ti ?taken
; if taken.phase = 1

-t t0 !(taken.phase, taken.allLacked 1\ allLacked,
taken.time min time)

0 taken.phase = 2
-t t 0 !taken

, (C0 ! taken ; Cï? taken)
fi

; GroupEntrance

68 Chapter 4 Distributed discrete-event simulation

When the tours in all groups happen simultaneously, it costs 2../N communications
to compute the local tokens, and another v'N + 1 to collect the local tokens into
the global token. In practice, instead of splitting N processes into v'N groups, the
processes that are mapped on the same processor are linked in a local ring.

There is no need to restriet ourselves to ring structures only, though they are
easy to implement. Another possibility is the use of a tree structure on top of the
processes. A picture of such a configuration is given in Figure 4.4.

Figure 4.4: A tree structure on top of 4 processes.

Each branch B; copies a token received from above to its sub-trees and combines
the results from its sub-trees. The specification of a branch is given by pseudo code
Branch, in which the connections to above, left, and right are established by channels
t, l, and r respectively. We assume that the leaves do notreturn tokens with phase 2.

Branch= t;?token
i lo!token' ro!token
, if token.phase = 1 ---+ if l;. ---+ U(l;, r;., t 0)

0 f; ---+ U(r;, l;, to)
fi

U token.phase = 2 --+ e
fi

i Branch

Procedure U assumes the possibility of using channels as a parameter in procedure
calls. Unfolding the first procedure call yields:

U(li, r,, t 0) = l, ?tokenL
; if tokenL. allvalid

-+ ri ?tokenR

4.4 Example: buffer-size determination 69

; tokenR.time := tokenL.time min tokenR.time
; to!tokenR

D, tokenL. all va lid
-t tol tokenL

, r,?tokenR
fi

Note that when a sub-tree reports an invalid overall loek, the token of the other sub
tree is not needed to compute the result. Due to the logarithmic nature of trees, for a
small number of processes, the speedup obtained by using a tree will he comparable
to that of the use of sub-rings. Since the number of processes in the examples we
consider is not very large, we will use a sub-ring structure because it is easy to
implement.

Although the previous discussion may suggest otherwise, it is not always necessary
to link all processes of a system into a ring or tree structure. Sometimes, it is possible
to add more than one ring (or tree) structure. The example described in the next
section illustrates the use of two rings, with some processes being excluded from both
rings.

4.4 Example: buffer-size determination

We consider a simple system that consists of two similar sub-factories which are con
nected by an N-place buffer, N ~ 1. An overview of the system and its environment,
which consists of the producer and the consumer of products, is given in Figure 4.5.

Figure 4.5: An overview of the whole system.

The products that enter the system are processed in both factories, in a fixed order.
The buffer is needed to align the operation of the factories: due to some variations
in their processing times, the intervals between successive product outputs may vary.
We are interested in the throughput per hour as a function of the buffer size.

4.4.1 Specification

The specification of the system requires a closer look at the structure of a factory. A
factory consists of two parallel machines that are fed by a single dispatcher. A merge
process accepts the processed products from both machines. The contents of factory

70 Chapter 4 Distributed discrete-event simulation

a

!-------------------
' '

: c[2]

@r--------------- c__ _ ____,

-------------------- ·1!1

~ Me~er ~~ b ~o
---------------- ---li

Figure 4.6: The contents of Factory, with the dashed lines indicating the ring struc
ture.

Factory are depicted in Figure 4.6. The dashed lines indicate the ring structure that
is added in the implementation. The labelled channels are of a proper product type,
say Product. We continue with a description of the processes.

The machines are specified by program Machine. The behaviour is straightfor
ward: a product is read from input channel c and, after a processing step of size Vp,
the processed product is sent to output channel d.

Machine = c0 ?x
; S('Dp)
; d"!x
; Machine

A dispatcher gets the products from the producer or the buffer. Instead of sending
the product to the first free machine, the dispatcher is a bit clumsy and alternatea
between the two machines.

Dispatcher = a•?x
; c"[l]!x
; a•?x
; c"[2]!x
; Dispatcher

Unlike the dispatcher, the merge process opera.tes in a smart way. It waits for a
machine to report the process completion and the product is accepted and sent to
the buffer or the consumer via output channel b.

Merger = if J[l) --+ d0 (:i.]?x
0 d[2] --+ d"[2]?x
fi

; b"!x
; Merger

4.4 Example: buffer-size determination 71

The specification of the N-place buffer neecis no further explanation, it bas already
been given in the previous chapter. The specifications of the producer and the con
sumerare not given either. We assume that the environment is maximally coopera
tive: the producer bas an infinite number of products available and is always willing
to supply one via its output channel a; the consumer is always greedy to receive
processed products via its input channel b.

The resulting system, with an initially empty buffer, is described by the following
set of processes:

{Producer, Buffer N(é), Consumer} U Factory [1] U Factory[2]

where Factory[i], 1 :=:; i :=:; 2, equals

{Dispatcher[i], Merger[i],
Machine[c := c[l, i], d := d[i,

4.4.2 Simulation results

Machine[c := c[2, i], d := d[i, 2])}

We have implemented the system and have used for each factory a ring construct,
whose structure is indicated by the dashed lines in Figure 4.6. The ring is needed to
implement the choice in the merge process. In fact, the ring is a consequence of the
clumsy behaviour of the dispatcher. To make this clear, forget about the ring and
suppose the dispatcher is always ready to supply each machine with a new product.
Then, the machines are ready to do the next d communication when the previous one
has been completed and a new product has been obtained via c. In this situation, the
choice inthemerge processis easy to implement, because thesetof partial completed
communications E can be updated such that F Ç E. As we have described, when
F Ç E, a valid alternative can be determined. This idea is used in the implementa
tion of the buffer. The operation of the factories is mutually independent and, hence,
each is given a ring of its own.

In the specification we assumed the existence of type Products. The implemen
tatien requires an explicit denotation of the structure of this type. Usually, we take
the time domain to model the products in a system, because in the resulting com
putation it is easy to determine the time taken to pass the system. The information
we want to extract from the current system does not require the creation time of a
product. Therefore, the representation of type products may be a singleton, Signal
for example.

Apart from the buffer size N, there is still one parameter left unspecified, namely
the processing time generated by distribution function 'Dp. We describe the pro
cessing time of products in the machines by a uniform distribution over the interval
between 0 and 100 time units.

For different val u es of N, the out co mes of the various simulation runs are given
in Figure 4.7. The hour mentioned corresponds to a period of 3600 time units. The
depicted throughput perhouris the average over the simulated period which started
after a startup phase. The maximum of 121.1 is first reached for buffer size 24.

72 Chapter 4 Distributed discrete-event simulation

~
122 ~

i: • • • "" • "" • ~ 120 • E..
;I
c 118 • ...c::e
E..

"" ~ 116 -;I
~

...c::e

~ 114
e

...c::e - 112

110

1 5 10 15 20 25 30 35

buffer size N

Figure 4.7: The average number of products produced per hour as a fnnction of the
buffer size.

On the average, a machine is capable of producing every 50 units a product. As
a conseqnence of the clumsy operation of the dispatcher, the loss in throughput is
approximately

2 * 3600/50 121.1 ~ 23 products per hour

which corresponds to a deercase in the throughput of about 12%.

We stuclied several mappings of the system on a network topology. Running all
processes concurrently on a single processor consumed 2.8 secouds of execution time.
The line structure of the system in Figure 4.5 suggests an implementation on a line
topology, in which a factory is mapped on a single processor. The resulting imple
mentation required 2.2 secouds t.o execute a run. Assigning each of the machines,
dispatcher, merge, and token handler to a private processor yields no improved im
plementation: a single run took 7.5 secouds of execution time. From the resulting
figures for various topologies we deduce that, for this example, there is not much to
gain from a distributed implementation over many processors, just a few is sufficient.
The system is small and does not contain sufficient parallelism to benefit from a
distributed implementation.

Chapter 5

A flow-shop factory

· A special kind of production facility is described by the class of flow-shop factories.
This paradigm serves as a somewhat larger example to illustrate the modeHing ap
proach. As will be shown later on, the simulation model is easily obtained from the
specification, because there is no need to introduce a ring structure to implcment
choice constructs in the processes.

Although there is no precise definition of this type of production facility, an unmis
takable characteristic of a flow-shop factory is its process-oriented layout. A flow-shop
factory consistsof a chain of processing units, called shops. Without loss of generality,
we assume that the factory is made up of N shops which are consecutively numbered
from 1 to N, with N ~ 1. Each shop perfarms an elementary production step: a
semi-finished product drawn from stock is joined with another product supplied by
its predecessor in the chain. After process completion, the shop sencis the processed
product to its successar in the sequence. Typical examples of flow-shop factories are
found in mass production, for example the production of ca.rs or television sets.

Well-known control strategies for flow-shop factories are based on either order
levels ortheuse of cards, so-called kanbans [1, 33, 34]. We restriet ourselves to order
level control, which is a kind of distributed control scheme. The order level refers to
the buffers in the system, which are needed to absorb temporary mismatches between
successive processing units. The objective of order-level control is to minimize the
number of products in the whole production line, so as to have the response to a
market demand happens just in time (the so-called JIT-principle). As soon as the
number of products in a buffer falls below its predetermined order level, the buffer
issues an order for new products to the relevant supplier. As a consequence, a pro
cessing unit manufactures new products only when it has received a request to do
so. This type of factory is known as a pull-oriented factory, which is opposite toa
push-oriented factory that 'pushes' products onto the market. A major disadvanta.ge
of a push factory is the effect a. stagnating market has: an accumulation of the unsold
products in the buffers.

In Section 5.1 we develop the specification of a shop. Each shop consists of a
processing unit, called the work station, and both an input and an output buffer.

In Section 5.2 we link up the shops into a complete factory by adding robots and

7 4 Chapter 5 A flow-shop factory

stores. In order to simulate the system, we close it by adding a description of the
market. ·

In Section 5.3 the free parameters of the system are set and the effect on the
performance is studied. To mention one of these performance studies, we vary the
order level and look at the corresponding response times of the factory. Moreover,
we address a specific implementation issue: mapping processes onto processors. We
cluster some processes on a single processor and observe how it affects the execution
time of the simulation.

5.1 A single shop

A shop describes a basic unit in the production line and performs an elementary
operation. In order to keep the specification of the factory simple, we describe the
behaviours of all shops by a single generic program. A shop obtains semi-finished
products from its predecessor and delivers the outcome of its processing step to the
successar in the sequence. Both predecessor and successar may he other shops or
the environment of the factory. We a.ssume that the processing of a product is of a
stochastic nature. As a result, successive shops are not attuned to each other and,
therefore, need some buffering of the products to align their behaviours. Instead of
adding a single, sufticiently large buffer in between each two successive shops, we
choose to distribute such a linking buffer over the shops. As a result, each shop has
an input buffer, an output buffer, and a processing unit which is called the work
station. The work station takes products from the input buffer and joins them with
some extra parts obtained from stock; the stock is in the environment of the shop.
Afterwards, the processed products are put in the output buffer. An overview of a
shop is given in Figure 5.1. The product flow takes place via channels b, c, J, and g.
The extra parts are supplied via channel d.

d

a e

J InBuf I_ _I Wstat [J OutBuf
----~~ b---~~ ----~~ P---~~

b c f 9

Figure 5.1: A shop in the flow shop factory.

The output buffer controls the operation of the work station. When due to some
deliveries via g the number of products in the output buffer drops below a predefined
number, which is called the order level, an order for new products is issued via
channel e. The work station reacts upon the order by assembling some new products.
Analogously, the input buffer orders new products via channel a. Since the supplier

5.1 A single shop 75

of the input buffer may be reluctant for some time to accept an order from a, the
input buffer orders new products in an asynchronous way. Each buffer has at most
one outstanding order.

A work station is busy only when it has an order of the output buffer. The receipt
of an order triggers its operation, and the station collects the required ingredients
for a new production cycle. Instead of processing only one product at a time, the
operation happens batchwise. The batch size of a work station is given by constant W.
The deliveries of products and extra parts have the same batch size. The stochastic
behaviour of the processing step is described by a delay of a variabie size generated
by distribution fundion 'Dws. To represent the possible products in the system, we
assume type Products. The type of the channels c, d, and f is given by the set of all
possible lists of length W of type Products. The specification of the work station is:

WorkStation = e0 ?
; c•?prods , d•?parts
; b('Dws)
; r!prods
; W arkStation

Note that we do not model the outcome of assembling the extra parts and the semi
finished products. Sirree our interest is the JIT-principle, it suffices to describe the
time consumption only. However, when we want to study the time needed by certain
parts to pass through the sequence of shops, an update of the specifica ti on is required.

The input buffer maintains list I., of semi-finished artides, and operates accord
ing to the 'first in first out' principle. The order level of the input buffer is given
by constant Level. Due to an outstanding order, the environment will deliver the
requested products via channel b. Just like the deliveries to the work station, we
assume that the incoming products are dustered in batches of size R. As a result,
when R -::f. W, the type of b differs from the type of c. In order to avoid the issue of a
new order while the previous one is still unanswered, we introduce boolean variabie
ordered. The interaction with the work station cannot take place unconditionally. A
request to supply a batch of W products can be answered only when there are enough
products available, which means ILI 2:: W. Note that this condition requires that the
batch size of the work station is at most the order level, W :::; Level. The resulting
specification of the input buffer is:

lnBuffer E Products• x Bool---+ II, with
lnBuffer(L, ordered) =

if ILI < Level A -.ordered
---+ a•i; InBuffer(L, true)

D b
---+ b0 ?X; lnBuffer(LX,false)

D L', M ::cAL M L' A IMI = w
---+ c0 !M ; lnBuffer(L', ordered)

fi

76 Chapter 5 A flow-shop factory

The last guard in the previous program yields at most one possibility; the L' and M
are introduced to dissect L.

The specification of the output buffer looks very much like the specification of the
input buffer. Instead of introducing another order level, we take the same constant
Level to determine its order condition. In contrast to the input buffer, incoming
batches of the output buffer have size W, whereas outgoing batches have size R.
Note that this gives rise to requirement R :::; Level. Another difference concerns the
synchronous way in which orders are sent to the supplier, which is the work station.
Since the work station is idle in the absence of an order, it is immediately willing to
accept a new order from the output buffer. The specification of the output buffer
reads:

OutBuffer E Products"' x Bool -+ TI, with
OutBuffer(L, ordered) =

if ILI < Level A -.ordered
-+ e•! ; OutBuffer(L, true)

D !
-+ r?Y; OutBuffer(LY,false)

D L1,M::gAL=ML'AIMI=R
-+ g0 !M; OutBujJer(L', ordered)

fi

We combine the processes of a shop into a subsystem. With respect to the initial
state of the buffers we assume that they are empty and have not yet issued an order
for new products. As a result, the corresponding subsystem is:

Shop = { lnBuffer(t:, false), WorkStation, OutBuffer(t:, false)}

5.2 The factory and its environment

The flow-shop factory is made by linking N shops together, with each shop given its
own local store containing the extra parts. The actuallink between successive shops
is accomplished by a robot. A robot transports the product batches from the output
buffer of the producing shop to the input buffer of the consuming shop. Robots do
not appear between shops only, the connections with the environment of the factory
are also made with the use of robots. A picture of the factory and its environment,
which consists of the producerand the consumer of products, is given in Figure 5.2.

Initially, a robot resides at the output buffer and waits for the arrival of an order
of the input buffer to bring a new batch of size R. After receiving the order, the
robot picks up the batch (modelled by a communication via g), moves totheinput
buffer, and hands the batch over totheinput buffer (modelled by a communication
via b). When the number of products in the output buffer is too sma.ll, picking up
the batch is suspended for some time. The move of a robot is described by a delay
of size move. After delivering the batch to the input buffer, the robot returns, with
the same cost, to its initial position at the output buffer.

5.2 The factory and its environment

Store[l] Store[N]

d[l] d[N]

b[1] b[N] b[N+l]
Prod. ,-c Shop[1] ~ Shop[N] ,-c Gons.

g(O] g[1] g[N]
a[N+

~ Robot[!] p- ~ - Robot[N] o- ~ Rbt[N+l] p-
al [J g[N- J 1 aN [l

Figure 5.2: An overview of the flow shop factory, N ;:::: 1.

Robot= a0 i..; g•?X
; c5(move)
; b•!X
; c5(move)
; Robot

77

1]

Although it is easily avoided, during the backward move to its original position the
robot is unwilling to read an order from its a channel. In order to prevent the input
buffer from being unnecessarily suspended, the communications via the a channel
happen in an asynchronous way.

The description of a store is kept simple. We assume that it has an infinite number
of parts available and is always ready to supply the work station with a new batch.
The generation of a batch of size Wis described by fundion newParts E Productsw.

Store = d0 lnewParts
; Store

In a sense, the stote is superfluons in the simulation, because the effect of the parts
on the products is not modelled and, as there is no explicit delay added, the time
needed to supply the parts is neglected in the specification. We have mentioned the
store in the description of the flow-shop factory because it forms an essential part in
the description of the product flow in the factory.

The specification of the flow-shop factory is given by the set consisting of all
processes that are part of the system.

Factory = (U i : 1 ::; i ::; N : Shop[i])
U {i : 1 ::; i ::; N : Store[i]}
U {i: 1::; i::; N+l : Robotii]}

78 Chapter 5 A flow-shop factory

A simulation requires the environment to he taken into account. The environment of
the factory consists of a product producer and a product consumer. Both producer
and consumer are adjusted to the robots in the factory, which means that they also
deal with batches of size R. The producer is maximally cooperative: it never fails to
supply Robot[l] with a new batch. In the description of the producer, we assume that
a new batch of products of size R is generated by function newProds E ProductsR.
The resulting specification is:

Producer= g0 [0]!newProds
; Producer

Market demands are ordered in the time-domain. The interval between two successive
demands issued by the consumer is generated by distribution function 'De. lnstead
of buffering the demands, we simplify the description by keeping track of the moment
upon which the next demand will be issued. As soon as the demand has been fulfilled,
the moment of the next demand is generated. In the specification of the consumer,
we record the moment of the next demand in variabie t.

Consumer E T -+ II, with
Consumer(t) = li((t- r) max 0)

; a•[N + l]i
; b0 [N + l]?prods
; Consumer(t +'De)

In the instanee we consider, the first market demand is issuedat moment 0. Collecting
the descriptions of the factory and the environment into a dosed system yields:

Factory U {Producer, Consumer(O)}

5.3 Simulation results

The description developed in the previous section serves as the starting point for the
study of a concrete situation. For this purpose we have to transform the specification
into its conesponding implementation and substitute speci:fic values for the remaining
free system parameters.

Although the descriptions of the input and the output buffer both contain a
choice construct, the introduetion of a ring structure to implement the choices is
not really needed; at any time a valid guard can he determined. In order to make
this simplification apparent, we have a closer look at the speci:fication of the input
buffer. Aftera while, the work station will ask for new products and, hence, the time
upon which the probe on c eva.luates to true becomes availa.ble. The robot, however,
supplies new products only when it has got a.n order to do so. As a consequence, the
value of ordered tells whether the probe on b has to he taken into account. When
products have been ordered, the probe on b will eventually become true. For tha.t
reason, in the specification of the input buffer we strengthen guard b to ordered 1\ b,
which gives:

InBuffer E Products" x Bool ---t TI, with
InBuffer(L, ordered) =

if ILI < Level/\ ...,ordered
---t a•i; InBuffer(L, true)

0 ordered 1\ b
---t b0 ?X; lnBuffer(LX,false)

U L',M :: ëi\L = ML' 1\ !MI= W
---t C

0 !M; lnBuffer(L', ordered)
fi

5.3 Simulation results 79

As a result, we can compute a valid alternative to continue the execution. Since an
analogous reasoning applies to the output buffer, the implementation of the external
choices requires no ring structure.

A remaining question is how to implement type Products. The implementation
depends on the kind of information that we want to retrieve from the system. Since
we are interested in the JIT-principle only, a single value suffices to represent the
products. To study the time a product needs to traverse the system, T is a proper
choice. As a result of descrihing the products by the time upon which they entered
the system, it is easy to determine the time needed for the traversal.

The instanee we study has the following characteristics. The factory consists of
N = 50 shops. A work station operates on batches of size W = 2, and its process
ing time is uniformly distributed over interval (0 .. 10). The batch size of the robot
is R = 5, and a move from the output to the input buffer takes move 1. With
respect to the environment we assume that the market demands are described by a
Poisson arrival process, with an average of 20 between two successive demands.

In order to determine the effect of the order level on the 'just in time' require
ment, we study the average response time of the system as a function of the order
leveL The response time is the amount of time that elapses between the creation of a
demand and obtaining the batch of products. The simulation outcomes are depicted
in Figure 5.3. Because of the requirement R :::; Level the search starts at level 5.
As expected, a larger order level decreases the average response time. Due to the
transport time of the robot that is connected to the consumer, the response time of
the factory is at least 1.

Suppose that 4 .is an adequate average response time of the system. Then, for the
ctlrrent market, the order level must he at least 15. An interesting study concerns the
sensibility of the system to variations in the market demand. Therefore, several other
market demands have been filled in and the conesponding response times are shown
in Figure 5.4. With respect to t.he JIT-principle, a stagnating market is harmless:
the response tirnes are better than actually needed. On the other hand, a growing
market is rather problematic. It appears that only small variations are allowed.

The implementation requires a mapping of the processes onto the available pro
cessors. The structure of the system induces a line or ring topology of the network.
Processes that are mapped on the same processor are executed in a time-sliced fash
ion. Communication between processes on different processors is more expensive

80 Chapter 5 A :flow-shop factory

~ 16
~
"' ~ 14
~ • "' .5 12
"' • <I)

.::: 10 0

~ •
~ 8 •

•
6 •

• •
4 • • • • • • 2 • • • • • •
0

5 7 9 11 13 15 17 19 21 23 25

order level

Figure 5.3: The average response time as a function of the order level, for mean time
between market demands equal to 20.

~ 12
!;:>) • ~
"' ~ 10 ~

"' i: 8 •
"' <I) • ~ 6 0

~ • ~ 4 • • • • 2 • •
0

15 17 19 21 23 25

mean time between market demands

Figure 5.4: The relation between the market and response time, where Level= 15.

5.3 Simulation results 81

than between processes on the same processor. However, the number of processes
on a single processor should not become too large, because otherwise the sequentia!
time-sliced mode of operation consumes too much time. For the given problem size
N = 50, we want to determine the number of processors that yields an optima! per
formance.

We have clone some experiments in which we varied the number of processors
used. In all implementations, the N shops of the factory are equally distributed over
the available processors; for p processors, the fi.rst N mod p processors are given one
shop more. The order level of the buffers is set to Level= 15. Note that for N = 50
there are 304 processes in the system (N stores, N + 1 robots, 3N processes in the
shops, the producer and the consumer, and N + 1 buffers to accomplish the asyn
chronous communication). The various outcomes are depicted in Figure 5.5. Each
run simulated 2000 demands, which corresponds to a period of size 2000 * 20. The
optimum is found for the distribution over 11 processors.

30 <>
{§
~
0
<,.) 28 ..,
(I)

-~ .., 26
.§,
~ 24 <> .:;:;,
;;l
<,.) 22 ..,
f.l ..,

<> <>
20

<> <>
18

<> <>
<>

<> <> 16 <> <> <><> <><><> <> <>
<>o

14
0 5 10 15 20 25 30 35 40 45 50

number of processors

Figure 5.5: The execution time for various numbers of processors.

Usually, the performance of a parallel implementation is expressed in terms of
speedup and efficiency [26]. The speedup compares the execution time of a many
processor implementation to the computing time of the single-processor case. The
speedup fundion does not express the quality of the parallel algorithm: although
the speedup is good, the performance may be bad. There is a subtie difference be
tween execution and computing time, namely the execution time is the total amount
of time spent on: computing, communicating, and being idle. For each processor

82 Cbapter 5 A flow-shop factory

in the many-processor implementation, the execution time is the same. In case of
a single-processor implementation, the idle time equals zero, but some time will be
consumed by internal communications. Since our primary concern is the time the ex
ecution takes, we use the execution time insteadof the computing time. Besides the
dependenee on the number of processors used, the speedup is also a function of the
problem size-in the running example the problem size is N. With T(p, n) denoting
the time p processors need to execute an algorithm solving a problem of size n, the
speedup s is a function of p and n, and is defined by:

T(l,n)
s(p,n) = T(p,n)

The efficiency is a measure for the effective use of the processors taking part and is
defined as the speedup per processor:

e(p,n) = s(p,n)
p

For the current example, we compute a speedup of 50.18/15.06 = 3.3 for 11 proces
sors; the corresponding efficiency equals 30%. In Figure 5.6 the speedup and efficiency
are depicted for N = 50.

§' 4 0 1.00 ;::"
\,j

~ .-:
</,;) </,;)
~ 'ö
~ 0 •• ~ 11 •• ••••• • • • • 3 • 0.75 11

0 • • 0 • • •
• •

• 0
2 0.50

• 0
0

0
0

0

1 • 00 0.25
Ooo

0 0 0
0

0 0 0 0 0

0 0.00
0 5 10 15 20 25 30 35 40 45 50

number of processors

Figure 5.6: The speedup and efficiency as a function of the number of processors,
with N = 50; they are denoted by symbols '•' and 'o' respectively.

Chapter 6

A lift system

Nowadays, almost all multistory buildings have one or more lifts totransport people
or goods from one floor to another. The lifts work simultaneously to reduce the wait
ing times and to improve the throughput of the system. In this chapter we develop
a description of such a parallel-operating lift system [3, 6, 31]. With the use of the
corresponding implementation we look at the effect of various control strategies on
the performance of the system and study some implementation issues.

We consider a system that consists of M lifts, M :;:: 1. Each lift has the capacity
to transport C people simultaneously. The lifts move between N + 1 floors, with
N :;:: 1. The floors are consecutively numbered from 0 to N and the lifts from 1
to M, where fl.oors 0 and N are the bottorn and the top floor respectively. We as
sume that the lift shafts are situated side by side and that they are numbered from
left to right. People can arrive at every floor and they join either the 'up-wanting'
or the 'down-wanting' queue. It speaks for itself that both the top and the bottorn
floor have only one waiting queue. In order to form an idea about the structure of
the system, the people flow through the system is depicted in Figure 6.1.

On each floor, for both directions up and down, there is a button to signal the
control of the lifts that there are people waiting. Inside each lift there is a button for
each floor. A person whoenters a lift presses the button that signals the destination
floor to the controL The control supervises the operation of the lifts and reacts on
basis of: the received signals, the status of the lifts, and the imposed control strategy.
Although compleJo;; control strategies have been devised, we keep the ones we study
relatively simple. We have no intention to describe a lift system with a lot of features;
we restriet ourselves to the essentials.

In Section 6.1 we develop the specification of the lift system. We start with a
description of the up and down buffers. Afterwards, we discuss the behaviours of the
lifts and conclude with a (partial) description of the control process.

In Section 6.2 we consider some possible control strategies. They can be substi
tuted in the control process in order to complete its specification.

In Section 6.3 we study the simulation outcomes. We consider in particular the
latency and the throughput of the system as fundions of the number of lifts. Fur-

84 Chapter 6 A lift system

in Up[i]

Lift[kj out

Figure 6.1: The people flow in the lift system, with 0 ~ i < N, 0 < j ~ N, and
1 ~ k ~ M.

thermore, we address some implementation issues.

In Section 6.4 the specification of the lifts is changed so as to include an up
per bound on the time taken by an interaction with the controL We compare the
performance of the resulting system with the original one.

6.1 System description

Before we specify the processes, we have a closer look at the system as a whole
and discuss briefly the interactions. An overview of the lift system together with its
environment is given in Figure 6.2. Generators Genu[i] and GenD[.j], which are part
of the environment, produce new people: Genu[i] generates the up-wanting people
on floor i and GenD[j] generates the down-wanting people on floor j. The waiting
queues are described by FIFO-buffers Up[i] and Down [.i]; they model the queues with
up-wanting and down-wanting people on floors i and j respectively. We consider the
behaviour of Up[i]. The presence of waiting people is signalied via channel u[i]; these
signals are called external requests. When the control coneindes that there are no
waiting people left, it sends a signal via channel p[i]. Note that the communication
via p[i] happens asynchronously. The condusion of the control can be wrong. In
that case, the waiting people react by renotifying their presence by a communication
via u[i]. People leave the buffer via x[i, k] and enter lift k which is described by
Lift[k]. The destination floors chosen inside lift k, which are called internal requests,
are reported to the control via channel w[k]. Every now and then lifts require from
the control a new direction to move in. For that reason, channel v[k] is introduced.
Eventually, the people leave the lift via channel z[l, k] and re-enter the environment
which is partly modelled by process Out[l]. A similar description applies to the down
buffers Down[.j]. In the following sections we fill in the remaining details about the
processes.

6.1 System description 85

[l az [k] x z,

Genu[i] Up[i]

u[i] p[i]
w[k]

z[l, k]

Control Lift[k] Out[~

v[k] l
d[j] q[j]

GenD[j] Down[j]
b . [j] 'k Y[J,]

Figure 6.2: An overview of the system, with i, j, and kas before and 0:::; l:::; N.

6.1.1 Up and down buffers

Apart from the connected channels, up and down buffers have the same behaviours.
Therefore, we restriet ourselves to developing a generic program for the buffers con
taining the up-wanting people. Buffer process Up maintains an ordered list of people
which are handled on a first come first serve basis. At most one person enters or
leaves the buffer at the same time. Besides the list of people, the buffer process keeps
track of whether the control is aware of the preserree of people in the buffer. For
that purpose we introduce boolean variabie called, where called = true means that
the control has been informed. When a person enters the buffer via the a channel,
and the control has not been informed about waiting people in the buffer, a signalis
sent via channel u: The control cancels this awareness as soon as a lift picks up some
people from the buffer. In order to inform the buffer about the cancellation, a signal
is sent via the p channel. When receiving a signal from p, the buffer is not necessarily
empty and can react by sending a signal via u. The withdrawal of people from the
buffer takes place via one of the x channels, which one depends on the number of
the lift. For simplicity's sake we introduce the notion of the empty person. When
there are no waiting people left and a lift asks for another person, the reply of the
buffer consists of the empty person. In a more advanced system specification, there
will be a timeout in the description of the lifts to determine the absence of people. In
order to represent people, we assume type People, in which empty denotes the empty
person. The specificatien of process Up is as follows.

86 Chapter 6 A lift system

Up E People*xBool -+ TI, with
Up(L, called) =

if a -+ a0 ?l
; if •called -+

U called -+

fi
U k :: x[k] -+ if L = E

0 L # E

fi
U k :: p[k] -+ p0 [k]i

u•! ; Up(Ll, true)
Up(Ll, true)

-+ x0 [k]!empty ; Up(L, called)
-+ x0 [k]!(hd.L); Up(tl.L, called)

; if L = E -+

u L=j;E-+
fi

Up(L, false)
u•! ; Up(L, true)

fi

6.1.2 Lifts

A lift is moving up or down between floors, or it has stopped at a certain floor. With
each lift we associate a floor and a direction it is moving in. The floor of a stopped
lift equals the floot where it resides. For a moving lift, its floor equals the next floor
that will be reached. The set of all possible directions is given by DIR, with

DIR= {D, 6., 'ï7, IZSI, r:ill}

Direction 'D' indicates that the lift has stopped at a certain floor and waits for a new
move. Directions '/::;.' and ''ï7' tell that the lift is moving up and down respectively.
The two remaining directions 'IZSI' and 'r:i2l' are in a sense a combination of two: the
lift has stopped and is still present at that floor, but when its has taken in the up or
down-wanting people its next move will be up in case of a 'IZSI' and down in case of a
'r:i2l '. The reason for introducing direct i ons 'IZSI' and 'r:i2l' is found in the con trol: when
the lift has taken in new passengers, the control reports to the buffer the assump
tion that no more people are present in the queue. Not all possible changes in the
direction of a lift are allowed; the legal changes are denoted in Figure 6.3, where the
initial direction 'D' is explicitly indicated by the sourceless arrow. For example, an
upwards moving lift has tostop before it may start moving in the opposite direction.

When moving up or down, we assume that there is a point between each two
consecutive floors at which lifts require a new direction indicating whether they have
to move on or to stop. For new directions '6.' and ''ï7' the concerning lift keeps
moving on; for new direction 'D' the lift stops at the floor it is heading for. This
specific point is reached some fixed time after starting from or passing the previous
floor. The timings of the various possibilities are depicted in Figure 6.4. When a lift
starts from floor x and moves up to floor x+ 1, point p., is reached after t 3 time units.
A stop at floor x + 1 takes t 2 time units extra to reach that floor, whereas passing
floor x + 1 consumes t 1 additional time units before point p.,+l is reached. Due to
some starting-up and slowing-down factors we assume that t1 ::=; t 2 + t 3 • When the
difference between t 1 and h + t3 is considerable, the performance of the system will

6.1 System description 87

Figure 6.3: Legal changes in the direction of a lift.

x+l

P:e

x

Figure 6.4: The travel times of an up-moving lift approaching floor x + 1, with
t1 ::::; t2 + ta.

88 Chapter 6 A lift system

certainly benefit from avoiding unnecessary stops.

Besides the floor and the direction of a lift, the people inside the lifts have
to be taken înto account. Therefore, we introduce for each lift an array R in
[O .. N] -4 P(People), where R(i] gives the set of people with destination floor i.

The specification of the generic lift consists of a case analysis of the current di
rection and the possible new directions. At the beginning of its specification, the lift
requires a new direction and, hence, it is at a point p., or it has stopped at a certain
floor.

Lift E [O .. N] x DIR x ([O .. N] -4 P(People)) ---+ II, with
Lift(floor,dir,R) =

v•?newDir
; if dir E {~,V'} ---+ St

D dir = 0 -4 Sz
0 dir E { ~, IQJ} ---+ Sa
fi

The description of S1 starts frorn a situation in which the lift is moving up or down.
In Figure 6.3 we see that the only possible new directions are: '~' in case of an
up-rnoving lift, '\7' in case of a down-maving lift, and '0'. In case of an onwards
move the reaction is: the next floor is passed, the floor of the lift is updated, and
after t1 time units a new direction is required. In case of a stop, the next floor is
reached after t2 time units, and we add an extra delay of size doorOpen to describe
the opening of the door of the lift. As soon as the door is open, the people with this
specific destination floor are sent out to the environment.

S1 = if newDir = ~ ---+ 8(tt) ; Lift(floor + 1, ~. R)
U newDir = \7 ---+ 8(t1) ; Lift(floor- 1, \7, R)
U newDir = 0 ---+ 8(t2) ; 8(doorOpen)

fi

; Di8embark(R[floor], floor)
; Lift(floor, O, R)

A person takes some time to leave the lift. This time consumption is described by
a delay of size leave. The set of people that want to leave is denoted by S in the
following program.

Di8embark E 'P(People) x [O .. NJ ---+ II
Di8embark(S, floor)

if s = 0 -4 ê

D 8 :: 8 ES ---+ 6(1eave)
; z•[jloor]!8
; Di8embark(S\{8},jloor)

fi

When the lift has stopped, it asks for a new direction. The possible continuations
are described in S2• Receiving new direction 'O' causes no change in the current

6.1 System description 89

state. Directions '~' and 'IQ!' indicate a fortbeaming move up and down respectively.
The lift reacts on the latter two directions by picking up people from the buffer that
corresponds to the direction in which the move will be. As a result, a stopped lift is
always willing to take new passengers before it moves on.

S2 = if newDir = D -+ e
D newDir f. D -+ Embark(fioor, newDir, R)
fi

; Lift(ftoor, newDir,R)

The capacity of the lift is limited to a maximum of C people. A lift picks up as
many people as possible; the actual number depends on: the capacity, the number
of people already inside, and the number of people in the buffer. A person who
enters the lift needs some time to get in. This time consumption is modelled by a
delay of size enter. Inside the lift, each person selects its target fioor by pressing
the button that corresponds to the destination fioor. In order to select a person's
destination fioor, we choose a uniform-distribution function 'DT applied to a certain
interval. For the up-going direction the interval is [fioor + l..N], and for the down
going direction the interval is [O .. fioor- 1], where fioor denotes the current location
of the lift. When there are no other people inside the lift who have already selected
the same destination fioor, the target fioor chosen is reported to the control by a
communication via channel w. Apart from this use of the w channel, the lift uses
it for another purpose as well: when the number of passengers equals the maximum
capacity, a special value Juli is cornmunicated via w. As a shorthand for the number
of passengers in the lift we use IRI, IRI = (En: 0 :5 n :5 N: IR[n]l), where IR[nJI
denotes the nurnber of people with destination fioor n. Picking up new passengers is
now described by:

Embark E [O .. N] x DIR x ([O .. N]-+ P(People)) -+ II, with
Embark (fioor, newDir, R)

if IR! = C -+ w•!jull
u IRI < c

fi

-+ if newDir = ~ -t x•[fioor]?person
U newDir = IQ! -+ y•[fioor]?person
fi

; if person = empty
D person f. empty

-+ 8(enter)
; if newDir
0 newDir
fi

~ -+ m := 'DT(fioor + l,N)
IQ! -+ m := 'DT(O,fioor- 1)

; if R[m] = 0 -+

0 R[m] f. 0 -t e
fi

; Embark(fioor, newDir, R[m := R[m] U {person}])
fi

90 Chapter 6 A lift system

We a.re left with the description of continuation S3• The lift has possibly taken up
new passengers and adopts the subsequent direction up or down. After closing its
door, the lift moves for t 3 time units in its new direction and reaches the point at
which it requires a new direction again.

s3 = ó(doorGlose); ó(t3)
; if newDir 1:::. -+ Lift(ftoor + 1, t:., R)

D newDir V -+ Lift(ftoor - 1, V, R)
fi

6.1.3 Control and system

The control process supervises the behaviours of the lifts by supplying the new di
rections. In order to determine the new directions to move in, the control records in
a number of variables the necessary information about statea of the buffers and lifts.

A communication via channel u[i] reports the presence on floor i of at least one
person who wants to be transported up. To keep track of these up-requests, we in
troduce set U of type 'P([O .. N 1]), which contains the floors with a request that has
not yet been answered by a visit of a lift. Analogously, we introduce set D of type
'P([l..N]) to record the unanswered down-requests.

The states ofthe lifts arecaptured in variabie I of type [l..M]-+ 'P([O .. N]U{full})
and variable Lof type [l..M] -+ ([O .. N] x DIR). For lift k, I[k] contains the destina
tion floors that have been selected by the people inside the lift. When the number of
people in lift k equals C, the special value full is also in /[kj. The current floor and
the current direction of lift k are described by pair L[k].

In order to compute new directions for the lifts, we use control strategy f which
depends on the information in U, D, I, and L.

f E 'P([O .. JV- 1]) x 'P([l..N})
x ([l..M] -+ [O .. N] u {jull})
x ([l..M] -+ ([O .. N] x DIR))

-+ ([l..M] -+ DIR)

Function application f(U, D, I, L) yields an array of length Mof which the kth value
denotes the new direction for lift k. We assume that subsequent directions computed
by strategy f satisfy the constraints shown in Figure 6.3. The details of the control
strategy are given in the next section.

Control process Control(U, D, I, L) consists of a select statement whose guards
are formed by a probe on the input channels. The reactions that are made as a
consequence of the internal and external requests via channels u[i], d[j], and w[k],
involve a simple update of the relevant set. Some more effort is required for handling
the communications via v[k]. We have to avoid sending direction 'D' toa lift that
has stopped: it leaves the state of the lift unchanged and results in the possibility of
'infinite chatter' between lift and controL For that reason, requests that stem from
a stopped lift are answered only when the new direction causes a change in the state

6.1 System description 91

of the lift. With a domain similar to the one of control strategy J, the speci:fication
of the control process is:

Control(U,D,I,L) =
newDirs := f(U,D,I,L)

; if i :: ü[i]
---t u 0 [i]?; Contml(UU{i},D,I,L)

IJ j :: J[j]
---t d0 [j]?; Control(U,D U {j},I,L)

D k :: w[k]
---t w 0 [k]?x; Contml(U,D,I[k := I[k] U {x}],L)

D k :: v[k] A --.(L[k].dir = o A newDirs[k] = o)
---t v0 [k]!newDirs[k]; S4

fi

After supplying a lift with its new direction, the state information of the lift has to
be updated, which is clone in S4 • The update depends on both the current and the
new direction of the lift. Most of the possibilities are straightforward, though some
need some further explanation. A rnaving lift which is instructed to stop at the next
floor, will deliver the passengers who have that floor as their destination. The control
cancels the internal request posed for that floor, because it is answered. Furthermore,
the control assumes that the maximum capacity is no longer taken. If the assumption
is false, it is corrected when the lift is ordered to take in new passengers: the lift will
communicate value full. For the situation described in Section 6.4 this may occur.
Another explanation concerns the updates of sets U and D. Removing a value from
one of these sets is preceded by a signal to the relevant buffer, which reports that
the awareness of the external request is cancelled. Since the communication via the
p and q channels happens asynchronously, the control is never suspended in these
output communications.

S4 = if L[k].dir = !:::. A newDirs[k] = !:::.
---t Control(U, D, I, L[k := (L[k].fioor + 1, !:::.)])

IJ L[k].dir = 'V A newDirs[k] = 'V
---t Control(U, D, I, L[k := (L[k].fioor- 1, 'V)])

IJ L[k].dir E {!:::.,'V} A newDirs[k] = 0

---t Control(U, D, I[k := I[k]\{L[k].fioor,Jull}], L[k := (L[k].fioor, o)])
0 L[k] .. dir = 0

---t Contml(U, D,I, L[k := (L[k].fioor, newDirs[k])])
0 L[k].dir = ~

---t p•[fioor]i; Control(U\{L[k].fioor}, D, I, L[k := (L[k].fioor + 1, !:::.)])
0 L[k].dir = ~

---t q•[fioor]i; Contml(U, D\{L[k].fioor}, I, L[k := (L[k].fioor -1, 'V)])
fi

Apart from the description of the control strategy, all processes in the lift system
have now been speci:fied. lnitially, we assume that all buffers are empty and have not
sent external requests to the controL With respect to the lifts we assume that they

92 Chapter 6 A lift system

a.re all present at floor 0, they all have direction 'D', and there are no people inside.
Furthermore, no internal requests have been signalled to the con trol. Hence, sets U,
D, and all sets I are empty. The resulting lift system LS is given by the following
set.

LS = {i: 0:::; i< N: Up[i](t:,false}
U {j : 0 < j:::; N: Down[j](t:,false)}
U { k : 1 :::; k:::; M: Lift[k](O, D, ([O .. N] - 0))}
u {Control(0,0,{[1..MJ- 0),([1..M]- (0, o)))}

6.2 Control strategies

The specification of the control process assumes control strategy f. Until now, the
only requirement that has been imposed on the strategy is that it computes legal new
directions, but there are more requirements. First of all, floors with external requests
should be visited by a lift which transports the people in the required direction. Lifts
that have stopped, with surplus capacity, are willing to piek up people that want to
travel in the direction intended. Once the people have put the internal requests, the
destination floors have to be taken into account. In order to improve the performance
of the system, we require that the lifts do not stop unnecessarily. This means that
lifts stop only at floors that are internally requested or that contain waiting people.
Furthermore, when the maximum capacity of a lift is being used, the next stop is at
the nearest destination floor.

In order to distribute the work over the lifts, we associate with lift k two sets
of floors, namely Fu[k] of type P([O .. N)) and Fn[k] of type P((O .. N]). These sets
denote the buffers for which the lift is responsible: Fu[k] gives the floors of its up
buffers, and Fn[k] gives the floors of its down buffers. As a consequence, external
requests affect the behaviours of only those lifts k that are responsible. For every up
and down buffer we require that at least one of the lifts is responsible for the requests:

(Uk : 1 :::; k :::; M : Fu[k]) = [O .. N)
(Uk : 1 ::::; k ::::; M : Fn[k]) = (ü .. N]

Later on we will change the control strategy by varying the assignment of floors to
these sets.

A lift keeps moving in the same direction as long as there are destination floors
to be reached in that direction, or when it will reach a floor with an external request
for which it is responsible. The description of the control strategy is given in terms
of variables Fu and FD, and is presented as a case analysis of the current direction
of lift k.

When the current direction of the lift equals '!?SI', there is only one possible new
direct ion, namely 'D. '.

f(U,D,I,L)[k]=ifL[k].dir=I?SI- D.

6.2 Control strategies 93

An analogous definition applies when the current direction is 'fill'. For up-moving
lift k we introduce g(k) as a shorthand for 'there is an external request on one of the
floors above L[k].floor and lift kis responsible.' Formally,

g(k)::::: (3 i : i> L[k].floor : iE Fu[k] nU V iE Fv[k] n D)

Up·moving lifts stop when the floor approached is internally requested or when there
is a relevant external request. A non-fulllift moves on when the next floor has no
external request in its direction or when it is not responsible for the request. Full
lifts take, however, only internal requests into account and move on if the next floor
is not among them, thereby disregarding external requests. There must he a reason
for the onward move, which can he: g(k) holds or a higher floor has been requested
internally. In all other situations, lifts are instructed to stop.

f(U,D,I,L)[k] =
if L[k].dir = 6
~ if L[k].floor E J(k] ~ D

U L[k].floor t/. I[k]
~ if full E J[k] ~ 6

0 full fj_ I[k]
~ if L[k].ftoor E Fu[k] nU ~ D

D L[k].floor fj_ Fu[k] nU
~ if II[k]l > 0 V g(k) ~ /),.

0 II[k]l = 0 A -,g(k) ~ D
fi fi fi fi

Note that other liftscan affect g(k) and, hence, situation JI[kll = QA-,g(k) is possible.
Determining the new direction of a down·moving lift is similar to the definition above.
When a lift has stopped, it is restarted if there are still internal requests or relevant
external requests. With min(I[k]) short for (min i : iE I[k] : i), we define:

f(U,D,I, L)[k] =
if L[k].dir D
~ if J(k] 0 A Fu[k] nU 0 A Fv[k] n D 0 ~ D

0 J[k] 0 A Fu[k] nU#:- 0 ~ h(Fu[k] nU, L[k].floor)
0 I[k] = 0 A Fv[k] n D #:- 0 ~ h(Fv[k] n D, L[k].ftoor)
IJ I[k] #:- 0

fi

-;+ if L[k].ftoor < min(I[k]) -+ ~

U L[k].floor > min(I[k]) -+ l'ill
fi

where, for set offloors X, h(X,jloor) is defined by:

h(X,ftoor)=if(3x:xEX:x2ftoor)-+ ~
U (3 x : x E X : x :5, floor) ~ l'ill
fi

Next, we consider some possible assignments of floors to variables Fu and Fv. A
further distinction is made between static and dynamic assignments.

94 Chapter 6 A lift system

6.2.1 Static assignment

In case of a static assignment, sets Fu[k] and FD[k] are fixed subsets of [O .. N]. Hence,
their contents is independent of the state of the lifts. We try to avoid the situation
in which severallifts head for the same buffer. For that reason, we choose the sets in
such a way that each buffer appears in exactly one set:

(Vi,j: 1 Si <iS M AX E {U,D}: Fx[i] nFx[i] =0)

The static assignments are made under the assumption that the number of lifts is at
most the number of floors, M S N + 1. We define two static assignments: one in
which we spread the floors, and another one in which we take consecutive floors. As
a result we obtain two control strategies, which are called ft and / 2 •

Strategy /1 :
Fu[k] = {i : 0 Si <NA i mod M = k- 1 : i}
FD[k] = {i : 0 < i S NA i mod M k 1 : i}

With m = (N + 1) div M and n (N + 1) mod M, we define the following assignment
in which the first n lifts are given m + 1 consecutive floors and the others m.

Strategy !2 :
Fu[k]=ifksn-+ [(k l)*(m+1) .. k*(m+1))

0 k>n-+ [n*(m+l)+(k 1-n)*m ..
(n * (m + 1) + (k - n) * m) min N)

fi
FD[k]=ifksn-+ [lmax((k-l)*(m+l)) .. k*(m+1))

0 k>n-+ [lmax(n*(m+l)+(k-1-n)*m) ..
n * (m + 1) + (k- n) * m)

fi

Note that in both strategies f1 and h the up and down buffer of the same floor are
assigned to the same lift.

6.2.2 Dynamic assignment

Unlike a static assignment, a dynamic assignment depends on the state of the lifts
and, therefore, varies. Consequently, the descriptions of Fu and FD are given in
terms of variabie L. We choose an assignment in which the sets contain consecutive,
non-overlapping sequences of floors.

We look u pon the trajectory of a lift as if it were a cirde, where the only possible
direct i ons are { 0, t:., ~}. Each buffer gives rise to a floor; since both the top and the
bottorn floor have only one buffer, there are 2(N + 1)- 2 = 2N floors in total. The
'up floors' are numbered from 0 toN- 1 and the 'down floors' are numbered from
N to 2N - 1. No te that the difference between directions 't:.' and '\1' and between

6.3 Simula.tion results 95

directions 'e':l' and '~' is given by the fioor of the lift; for example, state (~,i) is
translated to (e':l,2N- i). A lift with direction 'D' and fioor i, i f:. 0 and i f:. N,
resides at 2 fioors, namely floors i and 2N z.

For fioors iE [0 .. 2N) and directions rE {D, f:.., e':l}, we introduce G(i,r) which
gives the set of lifts with state (i, r):

G(i,r) {k: l:s;k:s;Mt\L[k].dir=rt\
((rE {D., ~} t\ L[k].ftoor =i) V
(r D t\ (L[k].floor i V L[k].ftoor = 2N i)) : k}

The assignment of floor i to a lift is recursively defined by fundion H(i). When
severallifts with distinct states are present at the same floor, the order of preferenee
is given by sequence

When there are severallifts with the same state, the one with lower number is chosen.

H(i) if G(i, ~) f:. 0 -+ min(G(i, ~))
D G(i, ~) = 0 t\ G(i, o) f:. 0 -+ min(G(i, o))
0 G(i, ~) = 0 t\ G(i, D) 0 t\ G(i, !:.) f:. 0 -+ min(G(i, D.))
U G(i,e':l)=0AG(i,D) 0AG(i,f:..)=0-+ H((i-1)mod2N)
fi

Control strategy fa operates on basis of this dynamic assignment. In order to com
plete the definition of fa, we state for lift k the contentsof Fu[k] and Fn[k].

Strategy fa :
Fu[k] = {i : 0 ::; i< N t\ H(i) = k : i}
Fn[k] = {i : N::; i< 2N t\ H(i) = k : 2N i}

For N 10 and M = 5, an example of the dynamic assignment is shown in Fig
ure 6.5. The directions of the lifts are straightforwardly denoted; for example, lift 1
has stopped at floor 2, and lift 2 is moving down towards floor 5. The arrows in the
picture denote the contents of the Fu and Fn sets. The up-pointing arrows refer to
Fu and the down-pointing arrows refer to Fn. A lift with no arrows in its column
has an empty Fu·and an empty Fn set; lift 4 is an example of such a lift. For lift 1
we find: Fu[l] = [0 .. 5] and Fn[l] = [1..2]; and for lift 3 we have: Fu[3] = 0 and
Fn[3] = [6 .. 8].

6.3 Simulation results

We close the system by adding a description of the environment. Processes Out[l]
are maximally cooperative and, hence, do not delay the lift system. The arrival
of new people, which is accomplished by processes Genu[i] and Genn[jJ, is de
scribed by a Poisson arrival process with an average mean time of 100 between

96 Chapter 6 A lift system

10 : : : : :}
9

~--r--~--i--i
I I i I I

s [~~r~I~~~I~~I~
7 : : : : : ·--+--+--+--+-
6 I I I I A I

l I I !Uf'

5 [~~I1~~I~~r-I~~l 4 : : : : : :
·--·--·--· -+---1

3 : : : : : :
~---·- ·--+--+--of

2 : : : : : :
.. -•--+--+--+--i

1 I il I I I I I I I I J I
.. +--+--+--+---1

0 : : : : : :

1 2 3 4 5

lifts

Figure 6.5: An example of the assignment of floors in dynamic mode.

two successive arrivals. The specifications of these processes need no further com
ment. The various timings in the system are taken as follows. The travel times
of the lifts are equal: t 1 = t 2 = t3 4. Both opening and closing of the door
takes doorOpen doorClose = 3, and a person who enters or leaves consumes
enter = leave 2 time units. We take a building with N = 10 floors and vary the
number of lifts in the simulation runs. Each lift has a capacity of C = 15 people.

As a first study we determine the effect of the various control strategies on the
latency. The latency of a system is defined as the time needed to pass through the
system. For a person in the lift system we take the latency to he the time which
elapses between the moment of entering the buffer and the moment of leaving the
lift. The latency figures of the different control strategies are given in Figure 6.6. As
could he expected, increasing the number of lifts reduces the latency. From the sim
ulation outoornes we deduce that, with respect to the latency, the strategy with the
dynamic assignment results in all cases in a better control scheme than the strategies
with static assignments. The differences are, however, small. In the other perfor
mance studies of the system we will use control strategy fa.

Next, we consider the throughput of the system, which is the number of peo
ple handled during a certain time interval. For a varying number of lifts, we also
vary the capacity and observe how the throughput is affected. The outcomes are
depicted in Figure 6.7, where the hour mentioned represents 3600 time units. Not
very surprisingly, increasing the number of lifts and the capacity results in a larger
throughput. The cut-off at throughput 720 is easily explained: for N equal to 10
there are 2N = 20 person generators which generate 36 people per hour ea.ch, which
results in a total of 720. Configurations that reach this maximum throughput operate
in a kind of saturation: there is an excess of productive capacity.

6.3 Simulation results 97

Figure 6.6: The latency as a function of the number of lifts M, where the outcomes
of strategies ft. !2, and f 3 are denoted by symbols 'o', '•', and 'ó' respectively.

x102

7 ó
ó • • • • • • ~ * 0

~ 0 E ó * 0 <U 6 "' ~ 0

1... * • • ;:!! 5 0
~ • ~

ó • 1... • <U 4 >:>.. 0 •
* ;;:l • .ê' 3 • ~

;;:l 0
~ •

':5 2

•
1

0
0 1 2 3 4 5 6 7 8 9 10

capacity per lift C

Figure 6.7: The throughput as a function of the capacity, where the situations with
1, 2, 3, and 4 lifts are respectively given by '•', 'o', '*', and 'ó'.

98 Chapter 6 A lift system

In order to implement tbe choice constructs in the specification of the system, a
ring construct with local rings bas been added. We did some experiments with the
implementation: we varied tbe problem size by cbanging the number of lifts, and
we also looked at the effect of using 6 and 7 processors in the implementation. The
simulation results are shown in Figure 6.8.

~
3.0 •

..,
2.8 • ..,

~ • • • 2.6 • • • • • •
2.4 • • •
2.2

2.0

1.8 •
• 0 0 0 0 0 0

1.6 0 i 0 0 0 0 0 0

• 0 0

1.4
0 0

1.2

1.0
2 4 6 8 10 12 14 16 18 20

number of lifts M

Figure 6.8: The speedup figures as a function of tbe number of lifts, where the 6
processor implementation is denoted by 'o' and the use of 7 processors by '•'.

Altbough a large number of lifts bas no practical relevance, the numbers have been
added to denote the performance of the implementations. From the results follows
that, for a small number of lifts, the implementation using 6 processors is slightly
faster than the one using 7 processors. Increasing the problem size M shows a dear
impravement in the performance of the implementation on 7 processors, whereas
the performance of the implementation on 6 processors remains roughly the same.
An implementation that uses more tban 7 processors yielded no impravement of the
speedup. When using n processors, the maximum speedup that can he obtained is
also n: the work is spread evenly over the n processors and can happen at most n

times faster. Usually, the speedup is smaller because of the communication between
the processors. Anotber cause that reduces the speedup is an imbalanced workload;
this results in idle times of the processors.

The execution time of a simulation run is determined by the speed in which the
events are handled. As a measure of this speed we look at the average number of
time-jumps per second, which is counted in the token handler of the ring construct.

6.3 Simulation results 99

Note that a time-jump occurs when the phase of the token changes from 1 to 2. The
results are shown in Figure 6.9. Apart from the number of time-jumps performed by
the implementations on 6 and 7 processors, we also looked at the numbers that are
achieved without the use of local rings; for both implementations without local rings
the results are about the same. From the results it is obvious that the introduetion
of local rings results in a faster implementation. For the implementation on 7 pro
cessors, the local rings improve the speed by a factor of about 2.

'"'1:::1 225
!;:!
c
<.,) • q,) 200 <I)

!.. 0
<U
~ IJ>
<I) 175 0

~ 0
;s

150 • 0
'-0- 0

• 0
!..

00 q,) 125 .c • s: 0
;s • oo
!;:! 100 00 •

0 • oo
75 0 • • oo

0
0 • • 0 0 • • • • 50 0

0 0 0
0 0 • •

0 0 0 0 0 0

25

0
2 4 6 8 10 12 14 16 18 20

number of lifts M

Figure 6.9: The number of time-jumps as a fundion of the number of lifts, with '•'
and 'o' denoting the 6 and 7 processor implementation respectively; for both cases
'o' gives the numbers in the absence of local rings.

Although the introduetion of local rings speeds up the implementation, the num
ber of time-j umps· per second is rather low. In order to get an idea a bout the execution
time, the implementation on 7 processors takes 140 secouds to simulate 8 lifts dur
ing 3600 time units. Probably, an undistributed discrete-event implementation will
perform better. The poor performance is caused by the lack of parallelism in the
algorithm. Due to the dense time domain, on every moment there will happen at
most one event. As a consequence, a token with phase 2 restarts only one process;
the others simply wait for their turn to come. Selecting the next event via the ring
construct takes a lot of comrnunications, whereas in the sequentia! undistributed
discrete-event approach the next event is obtained by taking the first element from
the ordered event list maintained. The arnount of time spent in maintaining the event
list determines whether or not the distributcd approach is faster.

100 Chapter 6 A lift system

6.4 Time-critical behaviour

We end this chapter with a small change in the specification of the lift system and
study the effect on the throughput. The change concerns the time-critica} action
v•?newDir, where time critica} means that the action must happen within a limited
amount of time after it has been enabled. When the lift has stopped, the input action
may take an arbitrary amount of time. However, an upwards or downwards moving
lift needs the new direction within a certain time interval; otherwise there may be a
shortage of time left to stop. This problem is solved by the introduetion of a so-called
watchdog timer [18]. The idea is as follows: when the new direction is not in time, a
stop is chosen as the new direction of the lift.

Instead of one v[k] channel between lift k and the control we now use three of
them, as depicted in Figure 6.10. Lift k asks the controlfora new direction by sending

u[i] p(i] x[i k]
'

w[k]

! Vt[k] ~ z[k, i]

I Control Lift[k] :·
v2[k] I T
vs[k]

d[i] q[J] y[j,kJ

Figure 6.10: The new conneetion scheme of Control and Lift[kJ.

a signal via v1[k]. The subsequent answer is supplied via channel v2[k]. When the
answer arrived too late and the lift has stopped, the lift still has the obligation to
read the answer of the controL A possible consequence is the introduetion of an
inconsistency between the lift information maintained in the control and the actual
state of the lifts. For example, the control instructs to move on but the lift has
chosen a stop. In order to reconcile the lift information in the control with the state
of the lifts, we add another v channel, namely v3 of type Signal. When the direction
supplied by the control differs from the new direction of the lift, a signal is sent via
v3 to inform the control about the discrepancy.

In the specification of the lift we replace action v•? newDir by a more complex
selection construct which depends on the current direction of the lift. When a lift
is moving up or down, the answer of the control may take at most t time after the
request has been sent. No te that the requests are asynchronous communications and,
hence, they happen immediately. We introduce variabie timedout to record whether
the reply of the control arrived in time.

6.4 Time-critical behaviour 101

if dir (j_ {~, \7} -+ v;i; v2l.newDir
D dir E {~, \7}

-+ vii
; if ii2 A 7 < a.v1 + t -+ v2l.newDir ; timedout := false
U 7 2:: a.v1 + t -+ timedout, newDir := true, 0
fi

fi

Further changes in the specification of the lift are confined to St, the situation in
which the lift is moving and has got a new direction. When the new direction has
been obtained in time and indicates an onward move, the only change concerns delay
6(t1): it is replaced by 6(t1 (a.v2 - a.vi)) to take the time consumption of the reply
into account. A stop is something more elaborate. The time left over to stop depends
on the value of timedout: when true, the maximum amount t has been consumed and
otherwise just a portion. Irrespective of the reason of the stop, a lift opens its door
and gives the passengers the opportunity to leave. Afterwards, when timedout equals
true, the lift reads the direction supplied by the control and, if necessary, reconciles
with the control via v3 .

if newDir = ~-+ 6(h-(a.v2-a.vt)); Lift(ftoor+l, ~,R)
D newDir = \7 -+ 6(h-(a.v2-a.vt)); Lift(ftoor-1, \7, R)
U newDir 0 -+ if timedout -+ 8(t2-t)

fi

0 ...,timedout -+ 8(t2-(a.v2- a.vt))
fi

; 6(doorOpen)
; Disembark(R[ftoor],ftoor)
; if --,timedout -+ e
0 timedout -+ v2l.newDir1

fi
; Lift(ftoor, 0, R)

; if newDir = newDir1
-+ e

0 newDir :/:- newDir' -+ v;t
fi

The remairring changes concern the specification of the control process. The control
requires some time between the receipt of a request via a v1 channel and the subse
quent reply via the corresponding v2 channel. We model this time consumption by a
delay of variabie size; distribution function 'Dw generates the size of the delay.

if v1 [k] A -,(L[k].dir = 0 1\ newDir[k] = o)
-+ vr[k]l.; li('Dw); v;[k]inewDir[k]; S4

Note that the control is never suspended in an active communication: they all happen
asynchronously.

Handling reconcilements from channels v8 causes no real problems. A reconcile
ment happens when the new direction of the lift is not in accordance with the reply

102 Chapter 6 A lift system

x102

Q:i' 7 ~ • •
<::r, 0

i: •
"'

0
;;,

0 -..::.. 6 •
... 0 • ;::!
0

..:::: 5 ... 0 •
"' ~
;::!

4 ~ 0 • '"§,
;::!

e
3 ..:::: •

0

2

•
1

0

0 1 2 3 4 5 6 7 8 9 10

capacity per lift C

Figure 6.11: The influence of the watchdog timer, where the case without and with
the watchdog timer are marked by 'o' and '•'. The number of lifts equals M = 2.

of the controL This means that the control instructs to move on and the lift has
chosen a stop as its new direction. Apparently, there are no internal requests for this
floor and, hence, the destination :floors recorded in I are still valid. The only change
involves the floor of the lift.

if ïis[k] -+ vg[k]?
; if L[k].dir = !:::. -+ Control(U,D,I, L[k := (L[k].fioor-1, o)])

U L[k].dir = 'V -+ Control(U, D, I, L[k := (L[k].floor+l, o)])
fi

As promised before, we conclude with the effect of the watchdog timer on the through
put of the system. The results concern the situation in which there are 2 lifts, and
the other parameters are taken as before. Furthermore, the lifts require a new direc
tion within t = 0.1 time units, and the time needed by the control is drawn from a
uniform distribution over time interval (0 .. 0.5). The simulation results are given in
Figure 6.11. From the figures it is clear that for small capacities there is a consider
able reduction in the throughput of the system. For larger capacities the penalty is
minimaL The reason is that the lift had to stop anyway, because it had some capacity
left and there were waiting people on that floor.

Chapter 7

Jump-cutted1 real-time simulation

As described in Chapter 4, external choice can be implemented at the expense of an
additional structure, but it requires some effort to do so. A totally different, near
effortless implementation method is described in this chapter; we introduce a sort of
approximation technique by using a real-time programming language.

In the enabling model we use the idea of a conceptual global doek. The doek
has been implemented in Chapter 4 with the use of local variables a.nd extra commu
nications to align the local times of processes when interacting. Another approach
is to abandon the time updates and to presurne the presence of a real global doek
which shows the time that has elapsed after the simultaneons start of the execution
of all processes. Hence, the notion of time is in fact the elapsed execution time. The
execution of the processes proceeds conform the specification. A delay suspencis the
process for the specified amount of time. At first sight, this idea may seem rather
strange: the execution of each instruction in the execution code consumes some pro
cessor time, which adds an erroneous contribution to the time. As a result of that,
a discrepancy arises between the time in the specification and the time in the im
plementation. Apart from the errors, another problem faced with is the length of
a simulation run: simulating a period of length X consumes an execution time of
about X. For small X this may be acceptable, but when a reasonable simulation
period has to be covered this results in an undesirably long execution time.

Notwithstanding the foregoing drawbacks, somereal-time programming languages
like Occam [20] and Transputer Pascal [25] come very close to our notion of programs
and, therefore, we will try to exploit their use. Note that these languages oontain a.n
external-choice construct and the possibility to describe delays. In order to form an
idea about the validity of the simulation outcomes, we have to study the infiuence
of the introduced errors. A way to make the erroneous time consumptions relatively
small is obtained by enlarging the time unit of the computation; this varying of the
computation time is called sealing. Ho wever, a consequence of a larger time unit in
the computation is an even longer execution time. In order to reduce the execution
time, we introduce so-called jump-cuts: when no activity happens for a while, the

1Jump-cut: Film an abrupt change from one shot, scene, or sequence to another, caused by the
absence of intennedia.te or transitional a.ction, effects, etc. [Webster's New World Dictionary]

104 Chapter 7 Jump-cutted real-time simulation

clock is advanced to the next moment of interest. This yields a kind of mixed ap
proach: on the one hand we have the real-timebased execution, and on the other
hand we have a sort of event approach.

In Section 7.1 we introduce the implementation metbod and indicate, without
going into details, how it is realized on a single processor.

In Section 7.2 we discuss the validity of the outromes that are obtained by this
implementation technique. As a means to improve the validity of the results we
introduce sealing of the computation time.

7.1 Reai-time approach

The power of an event-based simulation lies in the fact that the execution sort of
'jumps' from event to event; the uninteresting periods between successive events are
skipped. The simulation time is recorded in a variabie and time updates consist of
simple assignments to that 'time variabie.' As a result the simuiation will be fast,
provided that determining the next event consumes only a minor amount of execution
time. The latter is essential for this simula.tion technique.

Programming languages like Occam and Transputer Pascal include the notion
of a doek. This sterns from the presence of a doek in the hardware of the target
processor, which is a Transputer [21, 22]. The doek has been added to support the
applicability of the processor in reai-time applications. If we are able to use this built
in doek for the time in a process, the gap between specification and implementation
heromes small. The constructs in these programming languages come very close to
our program constructs which yields the possibility of an almost literal translation.
This also holds for external choices and delays. We do not point out the corresponding
constructs of our programs in these languages, but note that similar ronstructs exist.

lnstead of using a variabie to eneode the time in a simulation, we (ah)use the
processor doek for this purpose. Similar to function r in our specifications, we obtain
a function which returns the processor time. The doek in a processor is started at
the moment of initiating the execution code and shows the elapsed execution time.
Note the difference between our conceptual global doek in the underlying model and
the reai-time processor doek. The conceptual doek is a set of time values on which
actions can he mapped, whereas a processor doek is a physical device showing the
elapsed execution time. Each action in the specification is encoded by a sequence
of instructions, and the execution of each instruction requires a certain amount of
processor time. As a consequence, the idea of timeless actions is unrealizable. Every
time when the execution requires more time than the specified amount of time, an
error is introduced. This error will he significant if computationally intensive tasks
are involved. In fact, we want the processor to be infinitely fast, therehy causing the
erroneous time consumptions to he negligible small.

7.1 Real-time approach 105

Example 7.1
Consider the closed system which consists of processes S, T, and U. Process S
contains an external-choice construct in which the guards are probed input channels
a and b.

S = if ä ~ St
u b ~ 82
fi

The behaviours of processes T and U are similar: process T performs computation
X and afterwards communicates via channel a; process U does computation Y and
next communicates via channel b. We assume that computations X and Y are free
from delays and communications.

T =X; a•!
u= y j b•!

Both computations X and Y consume processor time, say tx and ty. The choice inS
is determined by the length of tx and ty. When we want to avoid this, we explicitly
model the time consumptions of X and Y. Suppose we want X to consume x time
and Y to consume y time. In order to achieve this, X and Y are replaced by X , 8(x)
and Y, li(y). For tx s x and ty s y, a valid choice inS is made.
0

Apart from the erroneous time consumptions, we are faced with another problem as
sociated with this idea of real-timehased simulation. As mentioned before, simulating
a period of length X requires an execution time of about X. Since the implementation
will he used for many simulation runs, short execution times are needed. Unfortu
nately, the length of simulation periods tend to he long. In order to accelerate the
simulation, we want to skip uninteresting periods: when certain conditions hold, the
processor doek is advanced to the next moment of interest. To express the precon
dition of the advancement, some terminology is introduced. A process is called idle
if it is suspended in a communication or if it is suspended due toa delay ó(M); oth
erwise we say that a process is active. As long as there are active processes, fruitful
work is being clone. In situations in which all processes are idle, at least one process
is suspended in the execution of a delay; otherwise the computation would he in a
deadlocking state, assuming that no processes terminate.

In fact, the periods in which all processes are idle are uninteresting: nothing real
happens until the moment when one of them regains activity. We skip these periods
from the execution by performing so-called jump-cuts: when all processes are idle,
the doek is advanced to the next moment upon which a process suspended in a delay
regains activity. Note that for simulations in which all processes are idle most of the
time, the speedup obtained by this advancement scheme will he significant.

Verifying the ad vancement condition of the doek requires the state of all processes
and, in case of all processes being idle, the next moment when activity is regained. In
the absence of a sort of shared bookkeeping, acquiring all the necessary information

106 Chapter 7 Jump-cutted real-time simulation

from a collection of processes is difficult. Another problem may stem from a possible
hardware deficiency: each processor has its own local doek and there is no global one
available. For the time being, suppose that we have easy access to the required infor
mation and that there is a global doek present. We assume boolean fundion Allldle
to denote the overall idle situation. In case of Allldle = true, function NextActive
Moment gives the next moment when a process becomes active. In order to advance
the processor doek, which we denote by r, we introduce process Arbiter. Under the
assumption that there is always suflident time left to determine the outcome of the
fundions and to advance the doek, the specification of process Arbiter is:

Arbiter if -,Al/Idle
- Arbiter

0 Allldle

fi

- if NextActiveMoment = oo - ê

U NextActiveMoment < oo - T := NextActiveMoment
; Arbiter

fi

In theory, this looks all very nicebut we still have to come up with a practical real
ization. There is, however, one situation in which the required information is easily
obtained, namely in the case of a single-processor implementation executing the pro
cesses is a time-sliced manner. A single Transputer provides a global doek and easy
access to the state of the processes. Without going into too much detail, we mention
that a Transputer is equipped with a process list, a timer list, and an adjustable
doek. The process list contains the processes whose executions may be scheduled
after a deschedule of the current one being executed; we say that these processes are
queued. The timer list contains the idle processes that are suspended because of a
delay. Once the delay has elapsed, the process is added to the process list and its state
becomes 'queued.' A simple inspeetion of the relevant list suffices to determine the
outoornes of functions Allldle and NextActive Time. The maintenance of the process
and timer list is clone in hardware and happens, therefore, very fast. An overview of
the state transitions of a process is given in Figure 7.1, where the idle state is split
into pending and delayed; they denote the suspension caused by a communication
and a delay respectively. The initia! state of processes is set to 'queued.'

Although a single-processor implementation enables easy access to the required
information, the newly introduced state 'queued' causes another error because of the
time spent in the process list. Note that the effect on the processor time is negligible
small if the processor is infinitely fast and, consequently, the time spent in the list
may be disregarded. Another remark concerns the idle time of the processes: when
all processes are idle most of the time, the execution happens in an almost parallel
way.

Accelerating the simulation requires the addition of process Arbiter only. Never
theless, it would be nice if the hardware could be set in such a way that it takes care
of the time advancements, as soon as the advancement condition holds.

7.2 Validating the results 107

Figure 7.1: State diagram of the execution of a process.

7.2 Validating the results

Due to the errors described, care should be taken when interpreting the simulation
outcomes acquired. In fact, the results are useless if we have no idea about the in
duced effect; hence, we have to determine the validity of the outcomes, which needs
to be simple.

The size of the errors depends on the processor speed: for an infinitely fast pro
cessor the errors are infinitely small. An infinitely fast processor is, however, purely
hypothetical; a normal processor runs at a fixed finite speed. For this reason, we
need another way to obtain an imaginary faster execution device. This is achieved
by means of sealing the time unit in the computation: sealing-up yields a larger time
unit, and sealing-down results in a smaller time unit. When the simulation outcomes
do not change significantly after a reasonable increase of the time unit then we may
neglect the errors. Otherwise a further increase of the time unit is needed to validate
the last-obtained results. Note that sealing-up the computation results in an increase
of the percentage of time in which all processes are idle. Furthermore, sealing the
computation time does not affect the execution time of the simulation.

In order to illustrate the effect of sealing, we consider system Factory which is
given by:

Factory ={Producer, Worker, Consumer}

The processes of the system are specified as follows.

Producer = a0 !prod ; Producer
Worker = a•?prod; 8(t) ; b•!prod; Worker
Consumer = b0 ? prod ; Consumer

Suppose we are interested in the time that elapses between successive a and b com
munications. Due to the delay of size t and an erroneous overhead of size say {3,
we find that the elapsed time equals t + ,8. As a result of sealing the time in the

108 Chapter 7 Jump-cutted real-time simulation

computation with factor a, the elapsed time beoomes a* t + (3. Since the processor
overhead remains the same, sealing back to the original time size yields t + ((3 /a).
For sufficiently large a, the effect of the errors beoomes negligible small and converges
to 0. Note that the scale factor is limited when the doek can reach a maximum value:
for maximum time value maxTime and simulation period sim Time, the factor a is at
most maxTimef sim Time.

According to the jump-cutted principle, we have made an implementation of sys
tem Factory, with delay size t = 1. The average of the measured t values is shown in
Figure 7.2, as a function of scale factor a. Apparently, for this system the overhead
(3 is about 1 as well.

<U 2.00 ..::
<::! ;:,

..... 1.75
l
;l

~ 1.50 •
s: •

1.25 • • • • • • • •
1.00

1 3 5 7 9 11

scale factor a

Figure 7.2: The measured t values, for different scale factors a.

In order to form an idea about the speed of the simulation, we have counted the
number of jump-cuts that are performed during a certain interval. For the current
example, the counted (average) number is 1.78 x 104 persecondof execution time.

Chapter 8

A job-shop factory

In the introductory chapter we mentioned the rough classification of industrial sys
tems into flow-shop and job-shop factories. Both types are illustrated by an example:
Chapter 5 contains the description of a flow-shop factory, a.nd in this chapter we ad
dress the problem of modelling a job-shop factory. After the development of a rather
general specification of the job shop, we study the performance of a specific instance.
The implementation is obtained by applying the jump-cutted real-time approach de
scribed in the previous chapter. At the end of this chapter, we study the realized
number of jump-cuts per second of execution time.

Just like a flow-shop factory, a job-shop factory consists of a number of shops.
Each shop can perform a certain operation or processing step on a product. Several
shops may he of the same type, which means that they perform the same operation.
Unlike a flow shop, a job shop has no imposed process layout. The execution path
of a product depends on the specHic treatment required and the presence of other
products in the shops. lnstead, the layout is based on the function of the shops: shops
that perform the sameprocessing step are grouped together. In order to exploit the
full production capacity of such factories, the control of the variabie product flow is
usually based on a complex planning strategy. For reasons of simplicity, the strategies
we look at are kept relatively simple.

Not all products require the same processing. Therefore, each product is accom
panied by a so-called job which gives the necessary information about the processing
requirements of the product. The job is passed to the control and serves as an indis
pensable ingredient to determine the route through the system. For more complex
assemblages, for example those in which the end products are composed of a number
of semi-finished input products, the jobs are issued separately and also state the in
put products needed. A typkal example of a job-shop factory is an IC-manufacturing
system, where the wafers are processed in various shops. Detailed descriptions of such
systems are given in (35, 38).

Section 8.1 contains some preliminary observations of the job-shop factory. To
mention a few, the product flow through the system is illustrated, and there is a
concise explanation of the fundion of the processes in the system.

110 Chapter 8 A job-shop factory

In Section 8.2 we present a complete overview of the system and the environment,
which includes the information flow. The specifications of all processes but the con
trol of the factory are discussed.

In Section 8.3 the control process is described and the initia! contiguration of the
system and the environment is given.

In Section 8.4 we consider a specific instanee of the closed system and study the
relevant performance characteristics which in this case are throughput and latency.

In Section 8.5 we add a maximally cooperative environment and perform some
feasibility studies: other control strategies are tried out, and the effect of a larger
routing capacity is examined.

8.1 Preliminaries

In the job-shop factory we aasurne the presence of N shops, N 2:: 1, which are
numbered from 1 to N. Since we do not allow parallel processing of several products
in the same shop, a shop processes at most one product at a time. We also abandon
simultaneous processing of the same product by different shops. The types of the
shops are represented by integers; thesetof all possible types is given by [l..T], with
T denoting the number of different shop types. The type of a shop remains the sa.me:
it is impossible to put a shop in a different mode of operation. We aasurne that
function ;;, E [l..N] ---+ [l..T] gives the type of the shops. Furthermore, we aasurne
that each type is represented in the factory. As a consequence, the number of shop
types is at most the number of shops, T :5 N, and function ~is surjective:

(Vt : 1 :5 t :5 T: (3j : 1 :::; j :::; N: ~(j) = t))

The required treatment of a product is given by a sequence of shop types. The types
of the successive shops visited by a product must satisfy the order in its treatment.
Instea.d of a single sequence, a more libera.l form is given by a set of sequences that
all yield the desired end product; though, for simplicity's sake, we wiJl not do so.
As a result, treatments are statie. All relevant treatments are captured in a recipe
hook R E [l..M] ---+ [l..T]*, with M denoting the number of entries, M 2:: 1. Each
product that enters the system carries a label which shows the entry in the recipe
hook, thereby indicating the desired treatment indirectly.

In order to form an idea a bout the processing in the job-shop factory, an overview
of the product flow is given in Figure 8.1. Products enter the system via input pile
Pileln which stacks the products and jobs that are supplied by the environment. The
supply robot Robot1 transports the products from the inputpile toa one-place buffer
Buffer[i], with 1 :5 i :::; B and B the number of these buffers. Once a product haa
been put in a buffer, it is a candidate to be processed. The various operations are
executed in the available shops Shop[:i], 1 s j :5 N. When all required processing
steps have been completed, products leave the system via output pile PileOut. The

8.1 Preliminaries 111

- Pileln

Robot1 Buffer(i] Robot2 Shopf:i]

FileOut

l
out

Figure 8.1: The product flow in the job shop factory, with 1 ~i~ Band 1 ~ j ~ N.

product transport between buffers, shops, and outputpileis accomplished by another
robot, the distribute robot Robot2• Both Robot1 and Robot2 are capable of transport·
ing at most one product at a time.

According to its treatment, a product is moved between various shops. The pro
cessing of the shops is mutually independent and, in order to enlarge the throughput
of the system, several products can be present in the shops. A shop consists of a
single work station and has no additional buffering; hence, each shop contains at
most one product. After process completion, the processed product is removed from
the shop and, if possible, transported to a next free shop of suitable type. When
there are no free successors, we could choose to leave the product in the shop until a
successor becomes available. However, without any further restrictions on the possi
bie treatments, aso-called deadlocking state is likely to occur. For example, consider
a factory that contains 2 shops, and the set of possible recipes is {12, 21 }. When
shop 1 processes a product with treatment 12 and shop 2 processes a product with
treatment 21, a deadlock will arise. In order to avoid deadlocks, we restriet the num
ber of products in the buffers, Robot2 , and shops to the number of buffers B. Then,
it is possible to assign to each product an input buffer of its own. After the com
pletion of a processing step, and when all shops capable of performing the next step
are occupied by other products, the product can be put back in its buffer, thereby
releasing the shop where it resides. Obviously, in order to achieve the most fa.vourable
performance, a parameter to be determined is the number of buffers B to engage.

112 Chapter 8 A job-shop factory

8.2 The processes in the system

In order to regulate the product flow, there is also information flow in the system.
The cha.nnels introduced to accomplish the information flow are connected with the
control process. A complete picture of the system and the environment is given in
Figure 8.2, in which the removal of products from the output pile bas been omitted.

Gen
g

Pileln

h

a
m[j]

Robot1 Control

b

q[i] s

d[i] v[j]
Shop[j] i Buffer[i] Robo~

c[i] w[j] .

p

PileOut

Figure 8.2: An overview of the job shop factory and environment.

Robot1 needs to know the destination buffer of new products that enter the sys
tem. For that reason, it is equipped with channel bof type [LB]. We assume that
Robot1 is capable of reading the entry on the product label; the outcome is reported
to the control via channel a of type [l..M]. When the control receives a communiea
tion request via channel s, it informs Robot 2 about the souree and destination of a
product move. In order to report to the control the completion of the processing of
a product, shops use the m channel of type Signal.

As we have done before, we assume suitable product type Products. All product
flow, except for channels g and h, happens via channels of type Products. For commu
nications via channels g and h, the product label is also part of the communication.
As soon as the product has been put in its buffer, the label is no longer needed and
therefore omitted. The time taken by all interactions in which a product is involved

8.2 The processes in the system 113

is explicitly modelled by ad ding a delay of size Tr. For time-consuming interactions
with a fixed delay, we will put the delay after the communication. As a result of that,
the cornmunication denotes the beginning of the interaction. We continue with the
specification of all processes but the control; the specification of the control process
is given in the next section.

The input pile has an infinite capacity and maintains list L of products and
their entries. New products enter the input pile via channel g and leave via chan
nel h. Since the label is part of these cornmunications, the type of the channels
is Froducts x [l..M]. The behaviour of the pile consists of a choice between these
channels, where answering a request from h requires L to he non-empty.

File In E (Froducts x [l..M])* -+ 11, with
Fileln(L) = if g -+ g0 ?(prod, entry); ó(Tr)

; Fileln((prod, entry)L)
U h 1\ L #- E -+ h0 !hd(L); ó(Tr)

; Fileln(tl(L))
fi

When the last processing step of a product has been completed, it is transported
to the output pile. The output pile has input channel p from which it accepts the
completely processed products. Sirree we do not model the removal of products from
the output pile, it repeatedly reacis its p channel.

FileOut = p0 ?prod; ó(Tr)
; FileOut

Both robots interact with the buffers: Robot1 supplies new products, and Robot2

moves the products between buffers and shops. The operation of the buffers is de
scribed by their generic representative which alternates between inputs and outputs
consuming Tr time. Initially, we assume that the buffer is empty and, hence, the
buffer is willing to read one of its input channels.

Buffer = if ij -+ q0 ?prod
IJ ë -+ C

0 ?prod
fi

; ó(Tr)
; d0 !prod; ó(Tr)
; Buffer

A shop starts its processing cycle with the receipt of a product via v. The processing
of a product is described by a delay of size Tp. When processing has been completed, a
signal is sent via channel m. Eventually, Robot2 reports its preserree and the product
is handed over via w which completes the processing cycle. Note that we restriet
ourselves to treatments in which successive steps require different shop types.

114 Chapter 8 A job-shop factory

Shop= v0 ?prod i 8(T1)
i ó(Tp)
;m•!
i W

0 1prod i S(TI)
; Shop

The initial location of Robolt is at the input pile, and the robot is suspended in an
interaction to obtain a labelled product from the pile. When the interaction bas been
completed, the robot needs to know the destination buffer before the move to the
buffer location can start. Therefore, the control supplies via channel b the destination
of the newly-obtained product. The subsequent move of the robot is described by a
delay of size TM. When the product bas been put in its buffer, the robot reports to the
control the entry readon the attached label; this is accomplished by a communication
via channel a. Simultaneously with the a communication, the robot moves back to
its initial position at the input pile. Note that the a communication happens when
the interaction with the buffer bas been completed and, hence, the communication
indicates that the product can he moved to a shop.

Robot1 = h•?(prod, entry); S(TI)
; b•?i
; 8(TM)
; q•[i]!prod ; ó(TI)
; a•!entry, ó(TM)
; Robot1

The task of the distribute robot is to take care of the transport of products between
buffers, shops and output pile. For each transport, the robot is told where to piek
up the product and where to drop it. In order to denote both souree and destination
of a move, we assign to each process a distinct address: buffer i is given address i,
shop j is given address B + j, and the output pile has address B + N + 1. On basis
of a 'source-destination' pair

(src, dest) E [l..B + N] x [l..B + N + 1]

the robot can determine the moves to he made. When the transport job bas been
received, the robot moves from its current position to the souree location and picks
up the product. Afterwards, the robot moves towards the destination and drops the
product in the right position. The time of a move between two addresses depends on
the location of souree and destination. To determine the amount of time consumed,
we assume the presence of function transp Time,

transpTime E [l..B + N + 1] x [l..B + N + 1] --l- T

The location of the distribute robot is recorded in variabie loc of type [1 .. B + N + 1].
After a product transport, the current location of the robot equals the address of
the process where it resides. lnitially, the robot is suspended in the receipt of a new
transport job from the controL

8.3 Control process and resulting system 115

Robot2 : {LB + M + 1} -+ II, with
Robot2(loc) = s•?(src, dest)

; 8(transp Time (loc, src))
; if 1 :5 src :5 B -+ d•[src]?prod
0 B < src :5 B + N -+ w•[src]?prod
fi

; 8(T1 + transpTime(src, dest))
; if 1 :5 dest :5 B -+ c•[dest]lprod
0 B < dest :5 B + N -+ v•[dest]lprod
0 de st = B + N + 1 -+ p•! prod
fi

; 8(Tr)
; Robot2(dest)

8.3 Control process and resulting system

Thus far, we have encountered a.lready a few basic control requirements: a shop
reports its process completion; the distribute robot asks for a new move; and the
control should regulate the entrance of new products. With respect to a new move,
the destination process must he willing to accept a product and, when the destination
process is a shop, it must he suitable to execute the next step in the treatment of
the product. The reaction of the control process depends on the current situation in
the factory. Before we discuss the possible reactions of the control, we describe the
variables in which we record the relevant information. The control unit is described by
process Control(E, F, H, L, P, W), which consistsof a choice on the possible inputs.

8.3.1 The variables of the control process

A product, which has been assigned to a buffer, claims the buffer as long as there
is at least one processing step to be clone. As a result, when all shops capable of
performing the next processing step are occupied by other products, the product in
a shop ca.n he brought back to its buffer, thereby releasing the shop. We name the
products that are in the buffers, in the shops, and in Robot2 by the address of their
buffer place. The claimed buffers are described by set P of type P([LB]).

The entries received via channel a are recorded in array E of type [l .. B] -+ [LM],
with E[i] denoting the entry of the product that has claimed buffer i most recently.
For product i E P, application R(E[i]) yields the required treatment. Variabie E
describes a partial function: its application makes sense only for products in P.

The next processing step of a product depends on the on es that have been executed
already. For that reason, we introduce array H of type [LB] -+ [LT]* to keep track
of the completed steps. Function H is also a partial function which is applicable to
productsin P only. For product i E P, the sequence of executed steps H[i] is a prefix
of the whole treatment R(E[i]):

(Vi: iEP: (:Ju: u E [LT]*: H[i]u = R(E[i])))

116 Chapter 8 A job-shop factory

Hence, with the use of H[i] and R(E[i]) we are able todetermine the next processing
step of productiE P, namely hd(u) if u is non-empty and <: otherwise.

A shop is either busy or free. We say that a shop is free when it is suspended in the
receipt of a product; otherwise a shop is said to he busy. Hence, an interaction with
Robot2 changes the state of a shop. We record the freeshops in set F of type 'P([l..N]).
The products in busy shops are recorded in array W of type [B + l..B + N] --t [l..B],
where application W[B + j] requires j f'/. F. Note that, because of displacement B in
the domain, W applies to addresses of busy shops. Obviously, the range of Wis a
subset of P. The next shop type required in the treatment of the product in shop j,
with address B + j, is determined from H[W[B + j]] and R(E[W[B + j]]).

In order to be moved to somewhere else, the products in the buffers and shops
need the assistance of Robot2• To obtain a fair scheduling scheme in the assignments
of this robot, we introduce list L of type [l .. B + N]*, which contains the addresses of
the processes with a. transportable product. We will see to it that new requests are
added to the end of the list, on account of which the longest waiter is considered first
when a new transport job has to be determined. As an invariant property of list L
we maintain the uniqueness of its elements:

(Va, u, v : L uav A 1 ::=;a ::=; B + N : ..,(3 x, y : x -:/- u : L = xay))

The domaio of the control process is now straightforward: it consists of the Cartesian
product of the types of the variables. The description of the reactions on the possible
inputs is given next.

8.3.2 The possible reactions

As we have mentioned before, shop j reports process completion via channel m(j].
These messages have to be answered by Robot2 and are therefore added to list L. In
order to update the processing information of product W[j] in shop j, the sequence
of executed treatments H[W[j]] is extended with step ~'>(j).

if j : 1 :::; j :::; N : m[j]
-+ mo[j]?

; Control(E, F, H[W[B + j] := H[W[B + j]J~'>(j)J, L(B + j), P, W)

Note that the shop remains busy; it is settofree only when the processed product is
taken away by Robot2 •

New products are allowed to enter the system when there is a free buffer. This
condition holds if there is a buffer i, 1 ::=; i ::=; B, which has not been claimed, i f'/. P.
If so, a request from Robot1 is answered by sending via b the address of an arbitrary
free buffer. After the move and subsequent interaction with the destination buffer,
Robot1 reports via a the entry leading to the required treatment in the recipe hook.
The consequences on the variables are: the selected buffer is claimed; the sequence of
completed treatments of the new product is set to empty; and the entry is recorded.
The reaction of the control could be as follows:

if i : 1 '5, i '5, B A i ft P : b
-+ b0 !i

; a0 ?v

8.3 Control process and resulting system 117

; Control(E[i := v],F,H[i := e],Li,P u {i}, W)

The move of a product from the input pile to its buffer takes TM time. As a result,
adopting the above reaction would suspend the control between the b and a commu
nication for TM time. However, a suspended control processis undesirable because
as a side effect the shops and distribute robot may become suspended as well. In a
sense, the environment has too much influence on the control, which is avoided by
handling the a and b communications separately. For the b communications we take:

if i : 1 '5, i '5, B A i ft P : b
-+ b0 !i

; Control(E,F,H,L,P, W)

In fact, weneed an extra variabie to record the selected buffer i. We are, however, a
bit sloppy, and leave the selected buffer implicit; we simply use i in the reaction on
the subsequent a communication. As we have seen, the a communication indicates
the completion of the move, and the relevant updates may happen.

if ä -+ a0 ?V
; Control(E[i := v],F, H[i e], Li,P u {i}, W)

The control of the distribute robot requires some more effort. Upon a request from
Robot2 , the control has to determine whether or not there is a move to he clone. If
so, the control determines, according to a certain control strategy, a new transport
job. A processed product that resides in a shop is always transportable: either it is
put in its buffer or it is moved to a shop that can perform the next step. Moving a
product from its buffer to a shop requires the shop to he of suitable type. In order
to formalize these conditions, we define for product i E P the next treatment suc(i),
with suc(i) E [l..T] U {e}, as follows:

suc(i) = if H[i] R(E[i]) -+ e
0 t, u : 1 '5, t '5, TA u E [l..T]* : H[i]tu = R(E[i]) -+ t
fi

The addresses of all processes that have a movable product are recorded in list L.
A formal statement of the phrase 'there is a transportable product in one of the
processes' is given by expression C:

C=. (3l:lEL:B<l5,B+N)
V (31 : l E L A 1 S l '5, B : (3 j : j E F : K,(j) = suc(l)))

When condition C holds, we can apply control strategy f to select a souree address
from list L. For the time being, we assume that f yields a proper source-destination
pair in range [l..B + N] x [l..B + N + 1]. A description of f is given in the next
section.

118 Chapter 8 A job-shop factory

For lists L, with L = uxv and 1 :::; x :::; B + N, wedefine L\x =uv. Note that
such a uv is uniquely defined, hecause each element appears at most once in L. Using
condition C and control strategy f, we specify the reaction of the control process on
a request from Robo~ :

if 8 AC
-+ (x,y) := f

; s0 !(x,y)
;if1::;x::;B

-+ Control(E,F\{y- B},H,L\x,P, W[y :=x])
0 B<x::;B+N

fi

-+ x':= x- B
;ifl::;y::;B

-+ Control(E,Fu {x'},H,(L\x)y,P, W)
0 B<y::;B+N

--t Control(E, (F u {x'})\{y- B}, H, L\x, P, W[y := W[x]])
D y=B+N+1

--t Control(E, H, F u {x'}, L\x, P\{W[x]}, W)
fi

Note that a completely processed product is never put back in its buffer; it is trans
ported from the shop that performed the last step to the output pile. As a result, for
the product in buffer i, suc(i) always yields a shop type and never é.

8.3.3 A first strategy

A simple control strategy, described by ft, selects pair (x,y), with x the first element
in L whose product can be moved; y is a possible free destination. When x is a buffer
address, the destination is a free shop of suitable type. For x a shop address, several
possibilities have to be taken into account. When the product in the shop has been
processed completely, it is moved to the output pile. Otherwise, if there is a suitable
shop ava.ilable the product is moved to such a shop, and else the product is put
back into its buffer. Given that condition C holds, wedefine ft(xu), for address x,
1 :::; x :::; B + N, a.nd sequence of a.ddresses u, u E [l .. B + N]*, as follows.

{
ft(xu) = ft(u) if 1 :::; x:::; BA •(3j :jE F: ~(j) = suc(x))
ft (x u) = (x, y) otherwise, with y defined by:

if j : j E F A 1 :::; x :::; B : ~(j) = suc(x)
--t y=B+j

0 B<x::;B+N
--t if suc(W[x]) = é

-+ y=B+N+l
11 j : j E FA ,;;(j) suc(W[x])

--t y=B+j

8.3 Control process and resulting system 119

0 (V j :jE F: ""(j) =ft suc(W[x])) 1\ suc(W[x]) =ft t

-+ y = W[x]
fi

fi

Note that the choke of afreeshop is non-deterministic. Several factorscan he used to
influence the actual choice made, for example by choosing one with minimal transport
time.

8.3.4 The system

The description of the factory is closed by adding the generator of new products
and jobs. For the creation of products and jobs we assume the presence of function
newProd, newProd E Products x { 1.. M}. The time between two successive arrivals
is given by distribution function 'DG E T. In order to record the next moment when
a new product has to be delivered, we parameterize the speci:fication with variabie t,
tE T.

Generator : T
Generator(t)

-+ II, with
ó((t- r) max 0)

; g•!newProd; ó(Tr)
; Generator(t +'DG)

The specification of the whole system requires an instantiation of the parameterized
programs, which describes the initia! situation. We choose the following configuration.
The input pile is initially empty and, concerning the distribute robot, we assume
that it resides at the output pile having address B + N + 1. With respect to the
environment, the first labelled product is generated at moment 0. Next we choose
the instantiation of the control process. In the initia! state of the factory there are
no products present, hence P = 0. As a consequence, the initial value of the entries
in E and partial treatments in H is an arbitrary value from their range, which is
denoted by symbol ' @ '. Furthermore, the absence of products yields a situation in
which all shops are free, F = [L.N], and the initia! values in W do not matter either.
Yet another consequence of the absence of products is the emptiness of list L. As a
result we have:

{ Generator(O)}
u { Control([l..B] -+ @, [l..N], [l..B] -+ @, t, 0, [B + l..B + N] -+ @)}

U {Roboit, Robot2(B + N + 1)}
U {Pileln(E),PileOut}
u {i : 1 ::; i::; N : Shop[i]}
U {i : 1 ::; i ::; B : Buffer[i]}

120 Chapter 8 A job-shop factory

8.4 A concrete instanee

In the remairring sections we study a concrete instanee of the factory. An overview of
the instanee we consider is given in Figure 8.3. The buffers, shops, and output pile
are put in a row, in this specific order from left to right, with the addresses forming
an increasing sequence. The input pileis put apart, in such a way that the distauces
to all buffer places are about equal. The areas in which the robots move are indicated
by the arrows in the picture. We take 4 shop types, and each type is represented by
2 shops; hence, T = 4 and N = 8. In the row, the shop types form an ascending
sequence, when read from left to right.

IE+ NI

- Robot1 -

~
~

Figure 8.3: An overview of the instance, with N and B still to be determined. The
input pile has address 0, the buffers have addresses 1 to B, the shops have addresses
B + 1 toB+ N, and the output pile has address B + N + 1.

The possible treatments of this job-shop configuration are sequences from [1..4]*.
However, not all possibilities are allowed; we restriet the possible treatments to the
subclass which contains the sequences that are: non-empty, each type appears at
most once, and the types are in increasing order. This yields a recipe hook with
its number of entries M equal to 24

- 1 = 15. Note that for this restricted set of
treatments the buffer places are not really needed. Because of the increasing order
in the treatments, a deadlock as described in the beginning of this chapter does not
happen when the products stay in the shops until a next one becomes free. Later
on, in Section 8.5.1, we study the performance of the system when controlled by
a strategy in which products stay in the shops and are not brought back to their
buffer. We first study strategy f 1 because putting partially processed products back
intheir buffer releases the shops and, if the moves happen fast, the performance may
benefit.

8.4 A concrete instanee 121

Several timing parameters and distribution fundions are still to he chosen. New
jobs arrive according to a Poisson process, where the average time between two suc
cessive arrivals is 60. The entries in the recipe hook are randomly taken from [1..15].
Interactions in which a product is involved take T1 = 1, and Robot1 needs TM = 5
to travel from the input pile to a buffer or vice versa. The processing time of each
shop type is Tp = 60. Robot2 requires 1 time unit to move between two successive
processes in the row, which yields:

(Vi,j : 1 :5 i,j :5 B + N + 1 : transpTime(i,j) = li- jl)

The non-determinism in strategy f1 , the choice of a free shop, is implemented by
choosing the one with minimum address. As a result, products are transported to
the nearest shop of suitable type. The reaction of the control process upon new prod
ucts entails the selection of a free buffer place; in the implementation the one with
maximum address is chosen.

With the use of the implementation we determine the average throughput per
24 * 3600 time units (called a day) and the average latency, both as a function of
the number of buffers B. The throughput is derived from the number of products
that arrive at the output pile per interval, and the latency is the time that elapses
between the removal from the input pile and the arrival at the output pile. Since
weneed the elapsed time for each product, type Produels has been implemented by
time-domain 'T.

The simulation outcomes are depicted in Figure 8.4. From the results follows that
for B in [3 .. 12] the throughput is maximaL In fact, the throughput equals the number
of jobs that arrive in the same period, namely 60 * 24 = 1440. As a consequence, for
these B values there is no accumulation of jobs in the input pile. When we take 13 or
more buffer places, the throughput becomes less. The presence of more products in
the system causes a higher occupation degree of the shops and, as a result, products
are moved back to their buffer places more often. Furthermore, the travel times of
Robot2 depend on the locations of the processes: more buffers yield a higher average
transport time.

In Figure 8.4 we see that when increasing the value of B, the latency decreases
untill B is 4 and afterwards it increases. An explanation can be found in the intro
duetion of more parallelism in the operation of the factory. For B = 1, a new product
can be taken by Robot1 only when the previous one has been moved to the output
pile. When there are more products allowed, the average time a product spends in
the supply robot becomes less. Due to the same reasous that cause the throughput
to decrease, a further increase in the number of simultaneously processed products
causes the latency to increase.

Selecting an appropriate B value on the basis of these results is difficult: with
respect to the throughput, there is a whole range left to choose from. In fact, this
also holds for the latency.

122 Chapter 8 A job-shop factory

x102

~ 16
~
lU 0
;::.

14 • • • • • • ~ • • • • 0 • ;::" • <:;! • 0
'"':l 12 • 1- 0 • ., • 1:1. • - 10 0

;::!

.ê' 0

~ 8 e
...ce

0 -
11 6 • 0 •
;::;; 4 0

" ~ 0 0
lU 0 0 0 0 0 ~ 2 0 0

11
0 0

0 2 4 6 8 10 12 14 16 18

number of buffers B

Figure 8.4: The simulation results of the instance, where the average throughput is
denoted by '•' and the average latency by 'o'.

8.5 Feasibility studies

In this section we perform some feasibility studies of the instanee described above. We
determine the production capacity and study the effects of other strategies. Finally,
we update the system in such a way that more distribute robots are allowed, by which
a larger transport capacity among shops and buffers is obtained.

8.5.1 The current capacity

In order to determine the maximum throughput of the system, we need the preserree
of at least one job in the input pile when the supply robot asks for one. For that
reason, we remove the Generatorand take an input pile that has an infinite number
of jobs available. The updates needed speak for themselves.

The simulation results are shown in Figure 8.5. It is obvious that the optimum
throughput is reached for B = 6. For B in [5 .. 12], we findan increase in the latency
when compared to the previous results. Since the input pile is always capable of
delivering a new job, there are more products present in the factory, which causes
the latency to increase.

As discussed above, instead of moving products back to their buffer, this class
of treatments permits a strategy in which the products stay in their shop until a

8.5 Feasibility studies 123

x102

~ 20 • <::!') • !: •
Q,)
;::>

18 • ~ •
;::" • <::l

16 "<::l •
I- • Q,) 0
l:l.. • • 14 ;:l • 0

..ê' • <::!')
12 • 0

;:l • 1: 0 • ~ • • 10 0

• 0
;:;; 8 0 <.:>
~
Q,) 0

..::1 6 0 • 0

0 4 0

0
0

0
0 0 0 0

2

0
0 2 4 6 8 10 12 14 16 18

number of buffers B

Figure 8.5: The performance charaderistics of the job shop factory, with a never-
empty input pile.

next shop becomes free. This strategy, which is called / 2 , requires a different work
condition, say C', because a processed product is moved only when there is a suitable
shop free to perform the next processing step. Nothing has to change for productsin
the buffers.

C' := (3l : l E L A 1 :S l :S B : (3 j : j E F : ~~:(j) = suc(l)))
V (3l: lEL AB< l :S B+N

: suc(W[l]) = E V (3 j : j E F : ~~:(j) = suc(W[l])))

Strategy f 2 searches for the first address in L whose process has a movable prod
uct. Given that condition C' holds, wedefine f2(xu), for address x and sequence of
addresses u:

{

!2(xu) = f2(u)
!2(xu) = f2(u)

/ 2(xu) =(x, y)

if 1 :S x :SB A (V j :jE F: ~~:(j)-:/; suc(x))
if B < x ::::; B +NA suc(W[x]) -:/; E

A (Vj: jE F: ~~:(j)-:/; suc(W[x]))
otherwise, with y defined by:

124 Chapter 8 A job-shop factory

if j: j E F 1\ 1 5 x 5 B: ~t(j) = suc(x)
--+ y B+j

U B<x5B+N

fi

--+ if suc(W[x]) = t:
-+ y=B+N+l

U j : j E F: ~t(j) = suc(W[x])
--+ y=B+j

fi

The performance of the system when controlled by stra.tegy h is depicted in Fig
ure 8.6. There is a.n obvious gain in the throughput of the system and a rednetion
in the latency. Apparently, transporting products back to the buffers is too expen
sive. In the next section we study another strategy, namely f 3 , and we try to beat
strategy f2.

8.5.2 Yet another strategy

Strategy ft determines a new move on the basis of the movability of the products at
the addresses in L. When also the current position of the robot is taken into account,
the system will probably yield a better performance.

We distinguish 4 possible moves of the distribute robot: a product is moved from
its buffertoa shop, or a product is moved from a shop to the output pile, a shop, or
its buffer place. Respecting the order in L, we introduce 4 sea.rch routines on L, for
which we introduce the following notations, with 1 5 i 5 B:

nextFree(i) = (::lj : j E F : ;;;(j) = suc(i))
fullyProcessed(i) = suc(i) E

Each routine searches for the first x E L which satisfies its specific search condition.
The conditions of the routines are:

1. 1 5 x 5 B 1\ nextFree(x)

2. B < x 5 B + N 1\ fullyProcessed(W[x])

3. B < x 5 B + N 1\ nextFree(W[x])

4. B <x 5 B + N 1\ •nextFree(W[x]) 1\ •fullyProcessed(W[x])

Although a routine ma.y fail to find the x it looks for, when condition C holds at least
one of the routines succeeds.

Strategy fs incorporates these search routines a.nd its outcome depends on the
actual place of the distribute robot. When the robot resides at a buffer place and
condition C holds, a new transport is computed by applying the routines in the
order: 1 2 3 4. The search is stopped when a routine succeeds. In the other case,
when the robot resides at a shop, the applied order of the search routines is: 2 3 4 1.

11 12
•
éi 10
;:
<U,

...:: 8
11
0 6

4

2

0

•

•

•

•

0 2 4

8.5 Feasibility studies 125

• • • • • • • •
• • • • • •

0
0

0
0

0
0

0
0

0
0

0

6 8 10 12 14 16 18

number of buffers B

Figure 8.6: The charaderistics of the job shop when the control uses strategy / 2•

The small dots denote a. copy of the chara.cteristics of / 1 •

By imposing these orders, we try to reduce the moves of the robot between shops
a.nd buffers in which it does not transport a. product.

The results obta.ined with strategy fs are shown in Figure 8.7. We see that the
new strategy realizes a larger throughput and a smaller latency than / 1 , especially
when there are more products present in the system. However, the performance
figures of / 2 are still better than those of fs·

8.5.3 More distribute robots

It goes without saying tha.t there are much better strategies. We will not try to
imprave our strategy fs any further, but we do study the effect of a.n additional
distribute robot. For that reason we need to update the factory model, where we

126 Cha.pter 8 A job-shop factory

11

•
e' 10
~

"'
~ 8

11
0 6

4

2

0

•

0

• • • •
!

.
•

•

•

Q

2 4 6 8

• • •

Q
0

• • •
• • •

0
0

10 12 14 16 18

number of buffers B

Figure 8.7: The charaderistics of the joh shop when the control uses strategy f 3 .

The small dots denote the characteristics of hoth f 1 and f 2 (see also Figure 8.6).

now assume the presence of K, I< 2: 1, distrihute robots. An overview of this new
situation is given in Figure 8.8.

Apart from Pileln and Robot1 , the presence of I< distrihute robots requires a
modification of the processes in the system. We do not descrihe all modifications
completely, hut we point out the most important changes to the control process.

For the situation with only one distrihute robot, a shop is set to free when the
robot is instructed to piek up the processed product at the shop. However, the actual
moment upon which the shop becomes free is after the interaction with the robot.
As a consequence, when two or more distribute robots are present, a robot may be
instructed to put a product in a shop which is still occupied. In order to avoid these
conflicts, a shop is added toF only when the 'take-away' interaction with a robot has
happened. The shop signals its emptiness to the control via channel n. The reaction
of the control on inputs from n[j] is straightforward:

8.5 Feasibility studies 127

a nJ
Pileln

h
Robot1 Control

[']

b m{j]

q[i] r[k] s[k]

d[i, kl v[k,j]
Buffer[i] Robot2[k] Shop{j]

c[i, k] w[k,j]

p[k]

FileOut

Figure 8.8: The job shop factory with /{ distribute robots, 1 ~ k ~ K.

if j: 1 ~ j ~ N: n{j] ~ n°[j]?
; Control(E, F u {j}, H, L, P, W)

Another problem is caused by the products that are moved back to the buffers. In the
presence of at least two distribute robots, the addition of a buffer address toL requires
the product to he in its buffer; otherwise a robot may be instructed to move an absent
product. Such anomalies are avoided when the completion of each product move to
a buffer is signalied to the controL Therefore, we add to each distribute robot an
additional output channel, namely channel r of type Signal. When distribute robot k
has put the product back in its buffer and the interaction has been finished, a signa}
is sent via r[k]. The control keeps track of the instructed moves and, when receiving
a completion signal from an r channel, the destination address of the corresponding
move is added to L. Let us assume that the destination address of the last transport
job given to robot k is recorded in variabie z[k]. The reaction of the control is then
as follws.

if k : 1 ~ k ~ /{ : r[k] ~ r 0 [k]?
; Control(E,F,H,Lz[k],P, W)

As a last update of the control process we mention the reaction on a request via an
s channel. With the previous discussions in mind, the reaction is straightforward.

if k : 1 ~ k ~ KA c : s[k]
----+ (x,y) f

; s 0 [k]!(x,y)
; if 1 ~x~ B

----+ Control(E, F\{y- B}, H, L\x, P, W[y :=x])

128 Chapter 8 A job-shop factory

x102

Q.:i' 28 •• • • • • • ~
. . .

~ ' 26 • ' ' "" "' ~ •
;;:" 24
{;

22 •
"" ~ 20
~ • ~
~ 18
!:

16 ~
11 •
• 14
;:;;

12 "' ;:e

""
10 • ..:=

11
0 8

6 (!) 0

• 0 0
0

4 0 0
0

0
" (i) ®

®

2 @ G> (;) G> (i)

0
0 2 4 6 8 10 12 14 16 18

number of buffers B

Figure 8.9: The performance characteristics of the system with 2 distribute robots,
for control strategies h and fa. The throughput and latency of fa are given by '•'
and 'o' respectively; the throughput and latency of h are shown by the small dots.

D B<xS.B+N
-+ if 1 5:. y 5:. B

fi

-+ Control(E,F,H,L\x,P, W)
0 B<yS.B+N .

-+ Control(E, F\{y- B}, H, L\x, P, W[y := W[x]])
0 y=B+N+l

-+ Control(E,H,F,L\x,P\{W[x]}, W)
fi

We have simulated the instanee with K = 2 distribute robots. The outcomes of
various simulation runs are given in Figure 8.9. As expected, the doubled transport
capacity between the processes shows an increase of the throughput and a decrease
of the latency. From the results we infer that, in case of strategy Ja, the maximum

8.5 Feasibility studies 129

throughput is obtained for B = 10 and the minimum latency for B = 4. Suppose Bis
set to 10, then an interesting observation is the consequence of a mechanica! defect in
one of the distribute robots. In Figure 8. 7 we see that for strategy fs and B = 10 the
throughput is still close to the optimum. Figure 8.9 gives also the results for strategy
h, when two distribute robots are present. This time we are lucky, fs is marginally
better than h,. Due to the larger transport capacity it becomes interesting to move
partly processed products back to their buffer.

As promised in the beginning of this chapter, we end with a short study to the
average number of jump-cuts performed by the simulation model per second of ex
ecution time. The numbers for strategy fs and both K = 1 and K 2 are given
in Figure 8.10. Apparently, the case with two buffers instead of one shows a larger
average. As a consequence of increasing the number of processes, which in this case
is obtained by enlarging B and K, the processor load increases and the performance
gets worse. Due to the numerous communications, an additional distribute robot has
much more impact on the performance than an additional buffer place.

x103

~ 10 ~ • 0 • <.,) • .., • "' 9 ~ • ..,
~ •
"' 8 • ~
<:,) • I • ~ 7 • • ~ • • • • • 'Q> • •

6 0
~

0 0 0 ..,
0 ...:,

t: 0

~ 5 0

~ 0
0

4 0
0

0
0

0 0 0 0 3 0

2
0 2 4 6 8 10 12 14 16 18

number of buffers B

Figure 8.10: The average number of jump-cuts per second of execution time, as a
function of the number of buffers B. Both curves are obtained with strategy fa, with
'•' and 'o' denoting that the number of distribute robots is 1 and 2 respectively.

130 Chapter 8 A job-shop factory

Chapter 9

A traffic-light system

A nice example of a system consisting of a number of processes that want access
to the same resource is given by a junction of roads. Cars arrive via several lanes,
enter the crossing, and leave via another lane. In order to avoid the possibility of a
collision, the entrances of the crossing are controlled by a traffic-light system. The
underlying principle is not confined to this application only: similar lines are found in
industry, where different product flows require a treatment by the same machine. We
develop the specification of a traffic-light system and, fora specific instance, we study
the waiting times incurred. This example is also used to compare the performance
of the implementations that are obtained by the techniques described in the earlier
chapters.

The lanes that meet at the junction are of certain types, which is either incom
ing or outgoing. Each incoming lane produces cars which pass the crossing via the
same path leading to an outgoing lane. Different paths can cross each other. A lane
produces or consumes at most one car at a time. The number of incoming lanes is
denoted by N1 , N1 2: 2, and the number of outgoing lanes is given by N 0 , N 0 2: 1.
Furthermore, we assume that there is at least one path to each outgoing lane, which
implies N1 2: N 0 . In order to name the lanes, both the incoming and the outgoing
lanes are numbered from 1 upward. The junction allows simultaneous access of cars
from different lanes. However, to avoid the possibility of a collision, simultaneous
access is restricted to incoming lanes with non-intersecting paths. We do not limit
the number of cars in a path on the crossing. An example of a junction is given in
Figure 9.1, in which there are 6 incoming and 3 outgoing lanes, Nr = 6 and No = 3.
For the sake of clearness, the numbering of the outgoing lanes has been omitted.
For this junction, the maximal sets of nonconflicting incoming lanes are: {1, 2, 6},
{2,3,4}, {2,4,6}, and {4,5,6}.

In Section 9.1 the control process is developed in a number of steps. The periph
ery of the control is also described.

In Section 9.2 the system obtained is closed by modelling the arrivals and depar
tures of cars. In order to suit its environment, the periphery of the control requires
a slight modification.

132 Chapter 9 A traffic-light system

Figure 9.1: A junction of 6 incoming and 3 outgoing lanes. The dots represent the
intersections of the paths in the junction area. The numbering of the outgoing lanes
has been omitted.

In Section 9.3 a concrete instanee is specified and a corresponding implementation
is used to get an idea of the waiting times of cars.

InSection 9.4 we discuss various implementations and consider their performance,
which is the time needed for a simulation run.

9.1 The control and the periphery

For the time being, we focus on the control process and the required periphery. The
modeHing of lanes and their junction is given in Section 9.2. We start with a simple
description and successively add more 'features' which remove certain imperfections.

9.1.1 A first start

Since collisions must he avoided, the entrance of cars needs to he controlled. For
that purpose, a light is positioned above each incoming lane. The lights guard the
entrance to the crossing, and each of them has a changeable colour which is red or
green. Of course, the cars in front of a red light are not allowed to enter and have to
wait until the light becomes green. In case of a green light, the cars that have been
waiting or that arrive enter the crossing one after another, in such a way that their
order of arrival is preserved. This entering continnes until the light is reset to red.
We call an incoming lane open when its light is green; otherwise we say it is closed.
The behaviours of the Nr lights are described by generic program Light which has
passive input channel a of type Signa!. Inputs from a cause a change in the colour of
the light; the colour is recorded in variabie col of type Colour, Colour = {red, green}.
Program Light reads:

Light E Colour --+ II, with
Light(col) = a0 ?

9.1 The control and the periphery 133

; if col = green --+ Light(red)
0 col = red --+ Light(green)
fi

A simple control strategy consists of successively opening the lanes for a certain
period, say Topen. After each admission interval we impose an entrance-free period
of size Tclose, which is needed to empty the crossing. Control process Control1

operates on basis of this idea and, in order to realize the control, it is connected to
channels a[i], 1 :::; i :::; N1 .

Cantrolt = a"[1]!; 8(Topen); a"[J]!; 8(Tclose)
; a"[2]!; 8(Topen); a"[2]!; 8(Tclose)

; a"[NI]! ; 8(Topen) ; a"[NI]! ; 8(Telase)
; Cantrolt

For the situation shown in Figure 9.1, we have already seen that some combinations
of lanes may he open at the same time. A simple control scheme which exploits this
is given by process ControlFig:

Control Fig =
a"[1]! , a"[2]! , a"[6]!

; Control~;9

Control~;9 =
8(Topen); a"[1]!, a"[6]!; 8(Tclose)

a"[3]! , a"[4]! ; 8(Topen) ; a"[3]! 8(Telase)
a"[6]! ; 8(Topen) ; a"[2]! 8(Telase)
a"[5]! ; 8(Topen); a"[4]!, a"[5]!; 8(Tclose)
a"[1]!, a"[2]!
Control~;g

Note that in program ControlFig we avoid the closing and re-opening of lanes that
appear in successive admission periods.

It is rather awkward to spend Topen+ Telase time on a car-free lane. Therefore,
the first shortcoming of Cantrolt we resolve is its unawareness of the absence and
presence of waiting cars in incoming lanes.

In order to report the presence of a waiting car, we add an informer to each
incoming lane. An informer observes the first place in its lane and reports via output
channel b the preserree of a waiting car. An overview is given in Figure 9.2. To record
the current occupation of the first place, we introduce variabie occ of type Bool. As
b is used to signal the preserree of a waiting car, communications via b happen only
when the value of occ changes from false to true. Informers are specified by:

134 Chapter 9 A traflic-light system

lnform[i]
b[i]

Control2
a[i]

Light[i]

Figure 9.2: An overview of the control and periphery, with 1 ~ i ~ Nr.

/nformer E Bool -t TI, with
/nformer(occ) { wait until the accupation of the first place differs from occ}

;if occ -t ê

0 ..,occ -t b•!
fi

; lnformer(-.occ)

A precise statement of the phrase 'wait until the accupation of the first place differs
from occ' is postponed until we have specified the lanes. The information supplied
by the informers is used in Control2•

Control2 = if i : 1 ~ i ~ N1 : b[i]

ti

-t a•[i]! , b0 [i]?
; Admission(i,r+Topen)
; a•[i]!
; ó(Tclose)
; Control2

In process Admission(i, r+ Topen) new reports via b[i] are read until the entrance
period of size Topen has elapsed.

Admission E [l..N1] X T --+ TI, with
Admission(i, T) if b[i] A.,.< T

-t b0 [i]?; Admission(i,T)
0 .,. ?. T

-tê

fi

A major drawback of Control2 is the absence of liveness: the control is not prohibited
from choosing the same 'car-containing' road all the time. Yet another deficiency is
the absence of simultaneons access of non-confl.icting lanes. In the next section we
resolve both shortcomings.

9.1.2 Simultaneous access

In order to enlarge the throughput of the crossing, we allow, as has al ready been
illustrated by program ControlF\g, simultaneons accessof lanes with non-intersecting
paths in the junction area. For a more general control description, we assume the
presence of function collision E [LN1] x [LN1] -> Bool, with

9.1 The contraland the periphery 135

collision(i,j) 'opening lanes i and j simultaneously can result in a collision'

where collision(i, i) equals false. The collision function that belongs to the junction
of Figure 9.1 is captured by the following symmetrie matrix, in which true and false
are denoted by 1 and 0 respectively:

0 0 1 1 1 0
0 0 0 0 1 0
1 0 0 0 1 1
100000
1 1 1 0 0 0
0 0 1 0 0 0

For X a set of lanes, we say that X is collisian-free, which is denoted by cf(X), if
the danger of a collision is absent:

cf(X) = ...,(3i,j: i,j EX: collision(i,j))

The control records in variabie A of type 'P([LN1]) the lanes that are currently open;
this set is called the admission set. As an invariant property of A we maintain cf(A).
Thesetof dosed lanes is determined by the symmetrie set difference A+ [l..NI]·

Wh en informer i, i ~ A, reports the preserree of a waiting car, and cf (A U {i})
holds, we may open lane i without creating the possibility of a collision. In case of a
conflicting lane, its number is added to the end of refusal list R of type [LNI]*. We
see to it that a lane appears at most once in R. Note i E R means that i is in list
R. Vl/e also maintain the property that A cannot be extended with elements from R,
without violating the collision-freeness of A.

(Vi: iE R: -,cj(AU{i})

In order to give each lane the opportunity to pass its cars to the crossing, a new
admission set A is computed from R after each admission period. For this purpose
we introduce control strategy f which inspects the elements in R in the order of
addition. When the element being inspected and the newly formed admission set are
collision-free, the element is added to the new set. Formally, strategy f satisfies

and is defined as follows, with x E [LNI]:

{

/(f,X) =X
f(xL,X)=f(L,X) if...,c/(Xu{x})
f(xL,X) = f(L,X u {x}) if cf(X u {x})

Note that a new admission set is determined by .f(R, 0).

136 Cbapter 9 A trafflc-ligbt system

The control is performed by process Control3(Tstart, R, A) which retains the fol
lowing invariant:

Variabie Tstart is used to record the beginning of the current admission period. In the
specification of Contro/3 we use construct (par i : P : E), where P a predicate and
E a program, for denoting the parallel composition of all possible instantiations of E.
In case of an empty range, the construct yields the empty program e. We denote by
R\i the list equal to R except that element i bas been removed; the removal of a
whole set Sofelementsis denoted by R\S.

Control3 E T x [l..Nr]* x 'P([l..Nr]) -+ IJ, with
Control3 (Tstart, R, A) =

if i : 1 ::::; i ::::; N1 1\ A = 0 : b[i]
-+ a•[i]! , b0 [i]? ; Control3 (r, f, {i})

0 A# 0

fi

-+ if i : 1 ::::; i ::::; N1 1\ i f/. R 1\ r < Tsta1'i + Topen : b[i]
-+ if iE A

-+ b0 [i]? ; Control3 (Tstart, R, A)
D if/_A/\-,cf(AU{i})

-+ Control3 (Tstart, Ri, A)
0 if/_A/\cf(AU{i})

-+ a•[i]!, b0 [i]?; Control3(Tstart,R,AU{i})
fi

0 T ~ Tstart + Topen

fi

-+ (par i : i E A : a•[i]!)
; b(Tclose)
; A1 := /(R,0)
; (par i : i E A1

: a•[i]! , b0 [i]?)
; Control3 (r, R\A1

, A')

During delay 8(Tclose), the control is reluctant to receive information of the in
formers. It is easy to change the specification in such a way that these reports are
added to R. A possible realization consists of replacing delay 8(Tclose) by process
Pass(T + Tclose, R). The specification of processes Pass is:

Pass E T x (l..NI]• -+ IJ, with
Pass(T,L) = if r ~ T

-+ê

D i : 1 s i ::::; Nr 1\ i f/. L 1\ r < T : b[i]
-+ Pass(T, Li)

fi

9.1 Tl1e control and the periphery 137

9.1.3 Closing idle lanes

In Control3 , a lane retains its admission until a new admission set has to he com
puted. As a consequence, an opened lane, which shows no activity after a while,
may unnecessarily prevent others from entering the crossing; this is an undesirable
situation. We overcome this shortcoming by taking the activities in the lanes into
account.

In a sense, the activities in the lanes are reported to the control hy the informers.
When the informer of an opened lane signals sufficiently often the presence of another
car, it is attractive to keep the lane open. In order to give a meaning to 'sufficiently
often,' we introduce the notion of an idle lane: we say that an opened lane heromes
idle when during a period of size Tidle its informer did not signal the arrival of a
new car. More precisely, for opened lane i, the lane is set to idle when r has expired
a(b[i]) + Tidle. Upon reaching its idle state, the lane is closed and, hence, no Jonger
in the admission set.

To record idle lanes we introduce set I of type 'P([l..NI]) and we maintain cf(AUI)
as an invariant. When removing an element from I, we extend the admission set
with lanes from R. However, opening other lanes requires the removed lane to he
idle for a period of at least Tclose. For idle lane i, this condition is expressed by
r ;::: a(a[i]) + Tclose: after the light has been set to red, a period of Tclose has
elapsed. The extension of the admission set is determined by:

f(R, A U (I\{i})) \(A u (I\{i}))

The informer belonging to an idle lane can signa! the arrival of a new car; these
reports are added to R. As a consequence, it is possible that the admission set can
be expanded by elements from R. Therefore, we change the invariant which expresses
the non-extensibility of the admission set with elements in R into:

(Vi: iE R: -,cf(AUIU{i})vi EI)

Note that AnI = 0, but that not necessarily In R 0. The control process sees to
it that A U I f:- 0 V R e is never violated.

Contro/4 ET x [l..NI]* x ('P([l..NI])) 2 __. II, with
Control4(Tstart, R, A, I)

if i : 1 s; i s; NI A A U I::::: 0 : b[i]
- a•[i]! , b0 [i]? ; Contro/4(r, e, {i}, 0)

0 AUJf:-0
- if i : 1 s; i s; NI/\ i (/. RA r < Tstart + Topen : b[i]

- if iE A
__. b0 [i]? ; Contro/4(Tstart, R, A, I)

0 iE I
- Control4 (Tstart, Ri, A, I)

0 i(/.AUI/1.-,cf(AUIU{i})
__. Contml4 (Tstart, Ri, A, I)

138 Chapter 9 A traflic-light system

fi

0 i{tAUll\cf(AU!U{i})
-+ a•[i]! , b0 [i]? ; Control4 (Tstart, R, A U {i}, I)

fi
D i :i E A: o-(b[i]) + Tidle ::;; T < Tstart + Topen

-+ a•[i]!; Control4(Tstart,R,A\{i},I U {i})
0 i : i E I : u(a[i]) + Tclose ::;; T < Tstart + Topen

-+ A':= f(R,A U (1\{i})) \(A U (I\{ i}))
; (par j : j E A' : a•[j]! , b0 [j]?)
; Control4(Tstart, R\A', A U A', 1\{i})

0 T 2::: Tstart + Topen

fi

-+ (parj: jE A: a•[j]!)
; Pass(T + Tclose, R)
; A':= /(R,0)
; (par j : j E A' : a•[j]! , b0 [j]?)
; Control4(r, R\A', A', 0)

9.2 Towards a closed system

In order to obtain a description of the whole system, we add the environment which
consists of the incoming lanes and their junction only. There is no need to model the
outgoing lanes. An overview of the closed system we aim at is given in Figure 9.3.
Ohviously, the periphery needs to he adapted to the environment: channels c and d
have to he taken into account.

Control4
a[i]

Light[i]

b[i] c[i]

lnforml:iJ
d[i]

Lane[i]
e[i]

Crossing

Figure 9.3: The closed system, with 1 :::; i :::; N1.

A first modification concerns the inspeetion of the colour of a light. For that
purpose, the lights are extended with channel c of type Bool. A light is willing
to answer an inspeetion only when its colour is green, thereby causing a possible
suspension of its inquiring lane. The answer of a light via the c channel consists of
a boolean which indicates whether the colour of the light was red at the moment
of inspection. Therefore we add variabie wait of type Bool to the description of the

9.2 Towards a closed system 139

lights; the variabie records whether the colour of the light was red at the moment of
inspection. In order to prevent the control from being suspended, communica.tions
via the a channel are given a higher priority than communications via the c channel.

Light E Colour x Bool ---? II, with
Light(col, wait) =

if -.ä 1\ ë 1\ col green

- C
0 !wait

; Light(col,false)
0 -,(j 1\ ë 1\ col = red 1\ ..,wait

---? Light (col, true)
D a

-4 ao?

fi

; if col= green- Light(red, wait)
0 col= red - Light(green, wait)
fi

The informer waits until the accupation of the first place in the lane differs from the
recorded state in occ. We assume that the lanes report these state changes via their
d channel to the informers. Moreover, cars are controlled by the traffic lights only,
and they are not held up by the informers. In order to achieve this, communications
via d must be possible at any time. We solve this by splitting the informer process
into two processes, namely processes State and Reporter. An overview is depicted in
Figure 9.4.

•• _d _ __,, State ~--:--l!j Reporte+le--b -----<o

Figure 9.4: The contentsof an informer.

Process State has variabie occ which denotes the accupation of the first place of the
lane; a communication via d changes the recorded value. The process is willing to
read the v channel when the first place is unoccupied; otherwise it is willing to read
the w channel.

State E Bool - II, with
State(occ) = if J -4 d0 ?; State(..,occ)

D V 1\ """10CC- V
0 ?; State(occ)

0 w 1\ occ -4 W
0 ?; State(occ)

fi

The reporter repeatedly does: a communication via w, after which it reports via b the
occupation to the control, and then it performs a v communication which succeeds
when the place is free again.

140 Chapter 9 A trallic-light system

As a result, the informer of a lane with an initially unoccupied first place reads:

lnformer = {State (false), Reporter}

The environment interacts with the developed periphery. We omit the specification
of the crossing, because it is simply but effectively modelled by reading all possible
input channels. The contents of the lanes is illustrated in Figure 9.5. The generator
creates new cars which are sent via channel p to a buffer with infinite capacity. The
first place in the queue is explicitly modelled by process First, a special kind of one
place buffer. Cars enter process First via channel q and leave via channel e. The
traffic flow happens via channels of type Cars. The purpose of the c and d channels
has been described before.

e

p
Buffer

q c
Gen First

d

)

Figure 9.5: The contentsof a lane.

The cars in the lanes arrive one after another. The time between two successive
arrivals is generated by a distribution function. Similar generators have been used
in previous chapters and, for that reason, we omit the program that specifies their
behaviours.

When entering the buffer, the behaviour of a car depends on the presence of
others. If there are no other cars present and process First is willing to accept a
car, the car leaves the buffer immediately. Otherwise, the car takes position at the
end of the queue and is given a restart delay when leaving the buffer. The imposed
restart delay varies and is generated by distribution fundion VR. The contents of
the FIFO-queue is described by variabie L of type Cars*.

Buffer E Cars* --+ II, with
Buffer(L) = if p

--+ po?x
; if ij A L t --+ q0 !x ; Buffer(t)
0 -.q V L # t --+ Buffer(Lx)
ft

IJ ijAL-j.€
~ 8('Dx)

j q0 !(hd.L)
; Buffer(tl.L)

fi

9.3 A particular instanee 141

Note that restart delay S('Dx) may suspend the arrival of new cars. A way to avoid
this is analogous to the introduetion of process Pass in the specification of the control
process.

The one-place buffer First takes the next car from the buffer and reports its
accupation via d. Afterwards, it inspects the light and it is suspended until the
colour is green. If the light was red at the moment of inspection, which is indica.ted
by the answer of the light, the car is given a restart delay. Next, the ca.r is sent to
the crossing and the change in its accupation is reported via d.

First = q•? car ; d•!
; c•?wait
; if wait ~ S('Dx)
0 ...,wait ~ e
fi

; e•!car; d•!
; First

Initially, we assume that there are no cars present in the system. Hence, a lane is
spedfied by:

Lane = { Gen(O), Buffer(€), First}

Furthermore, all lanes are closed in the initial state. As a result, the admission set
and the idle set of the control process are empty. Yet another consequence of the
absence of cars is an empty refusal list R. Gatbering the described processes yields
the following description of the closed tra.ffic-light system:

{ Control4(0, €, 0, 0)}
U {i: 1 ::; i::; M: Light[i](:red,false)}
U {i : 1 ::; i ::; M : Informer[i] }
U (U i :1 ::; i ::=; M : Lane[i])
U {Crossing}

9.3 A partienlar instanee

Now that we have a reai-time description of the traflic-light system, we use it to
study a partienlar instance. First we formulate the instance, and next we show the
simulation results.

142 Chapter 9 A traJiic-light system

9 8 7

) ! l t
....,___

6 - - 5

10 ___j(
~ 4

11 - -
12 ~

! I t r
1 2 3

Figure 9.6: A sketch of the site.

A sketch of the instanee we consider is given in Figure 9.6. There are 12 incoming
and 4 outgoing lanes, with the desired direction of each incoming lane indicated by an
arrow. The corresponding collision function speaks for itself. For example, opening
lanes 1, 6, 7, and 12 is allowed, but adding another one results in an undesired situ
ation. The arrival of cars is described by a Poisson arrival process, with an average
of 5 between two consecutive arrivals. Lanes are open for at most Topen = 100, and
the time needed to empty a path on the crossing is Telase = 10. The restart time of
a car is also described by a Poisson process; the average restart time is set to 0.1.

We use the implementation to determine the average waiting time Twait of a car,
as a function of Tidle. The waiting time is the amount of time spent in processes
Buffer and First. The simulation outcomes are shown in Figure 9.7. Since the cross
ing looks the same from each direction, north, east, south, and west, the average
waiting times of only lanes 1, 2, and 3 are given. It turns out that the figures for
lanes 1 and 2 are about equal. This is not very surprisingly, because their paths
on the crossing area are about equally demanding. Conform our expectations, the
waiting times of lane 3 are shorter than the waiting times of the other lanes; this
sterns from a smaller number of intersections on the crossing.

When we start with Tidle = 102 and successively shorten it, we find a reduc
tion in the waiting times for Tidle = 101.2. Up to this point, the waiting times are
determined by Topen. The minimum average waiting times are found to be near

2.0

1.5

1.0
0

•

• • • •

0

0

oo o

• •

0

0

1

9.4 A comparison of techniques 143

• • • • •

0 0 0
0

0

2
logtoTidle

Figure 9.7: The average waiting time a.s a function of Tidle, with Trestart 0.1.
Lanes 1 and 2 are denoted by symbol '•' and lane 3 by 'o'.

Tidle = 10°·5 . Making Tidle even shorter causes a very rapid increa.se of the waiting
times. This is caused by the fact that Tidle approaches Trestart: a slow start is
interpreted by the control a.s the absence of other cars and consequently doses the
lane. As a result of this, not all waiting cars will he pa.ssed to the crossing which
causes a prolonged stay in the buffers. The optimum is situated very close to the
critica} region. Hence, setting the idle time equal to the optimum allows very little
variation in the restart time; it is probably better to choose Tidle less well-timed.

Obviously, increasing the restart times causes the waiting times to increase. The
simulation results for Trestart = 0.5 are given in Figure 9.8. Oomparing these out
comes with the ones in Figure 9.7 reveals a significant shift up of the minimum waiting
times.

9.4 A comparison of techniques

We use the traffic-light system to compa.re the speed of the implementations that are
obtained by the techniques described in the previous chapters. We have also made a
'traditional' undistributed discrete-event implcmentation of the system [13, 37].

144 Chapter 9 A traflic-light system

.....
~ •
~

0 ...
bO • ..9 • • ••• 2.0

0

1.5 0

0
00

00

1.0
0

• • •

0
0

0

1

• •

0 0

2
log10 Tidle

Figure 9.8: The average waiting time as a function of Tidle, now with Trestart = 0.5.
Again, lanes 1 and 2 are denoted by symbol '•' and lane 3 by 'o'.

In the distributed implementation, a ring structure with local rings has been
added. For varying numbers of processors, the speedup figures are shown in Fig
ure 9.9. All processes mapped on a single processor are linked in a local ring. The
lanes are spread over the available processors but one, where the other processes run.
Note that the case of 6 processors is not included because 5 is not a divisor of 12.
The loss in performance when using 2 processors insteç,d of 1 is a consequence of the
communication introduced between the processors; all processes in the lanes are still
on a single processor. From the results follows that the optimum is found for the
distribution over 5 processors.

The measured simulation times are given in table 9.1, where 'undistributed' de
notes the undistributed discrete-event simulation. The distributed implementations
are given with the number of processors on which the computation has been mapped.
It is obvious that the undistributed implementation performs much better than the
others. Only the jump-cutted approach comes rather close. In fact, there is hardly
any parallelism in the traftic-light system, which is reftected by the figures. As a
result of the dense time domain, the events are all ordered, and the communication
associated with selecting a next event via the token ring proves to be too much time
consuming. The jump-cutted implementation has been obtained most easily.

9.4 A comparison of techniques 145

•
§- 2.0
~ • '<)

'<)

1.8 • .",

"'
1.6

•
1.4

1.2

1.0

•
0.8

1 2 3 4 5 6 7

number of processors

Figure 9.9: The speedup figure of the distributed implementa.tion.

method execution time in secs.
undistributed 4.5
jump-cuts 7.9
distributed, using 1 proc 101.8
distributed, using 5 procs 49.4

Ta.ble 9.1: The execution times of different methods a.pplied to the sa.me problem
instance.

146 Chapter 9 A traflic-light system

Chapter 10

Conclusion

The challenge that gave rise to the research presented in this thesis sterns from a
combined interest from the areas of computing science and mechanica! engineering,
especially industrial automation: 'how can formal methods assist the rnadelling of
industrial systems?' The answer has been given by descrihing a possible rnadelling
approach suggested by the following point of view. We look upon a.n industrial sys
tem as a collection of parallel-operating mechanisms that interact with each other. In
this approach, the mechanisms ta.king part are distinguished and modelled separately
by processes. The parallel composition of the processes specifies the entire system.
Instead of restricting ourselves to the underlying formalism, we have described the
whole path from developing a theoretica.} framework for cooperating mechanisms to
the construction of corresponding computer programs that simulate the specified be
haviours. The path taken is fa.r from unique: other basic formalisms, other simulation
programs, and other pa.ths are a.lso possible. In order to illustrate the power of the
approach, it is applied to several industrial systems taken from the realm of factory
controL

We have chosen the Enabling Model as our basic formalism to describe the timed
behaviour of cooperating mechanisms, which supports the specification of true con
currency. Although the original incentive to the design of the Enabling Model evoked
from the need for performance analyses of choice-free concurrent mechanisms, the
model proves to he even more powerful. Without causing any serious difficulties, the
model can he used to describe internal and external choice, which are introduced
for specifying certain freedoms of operation and dependendes on the environment,
respectively. A drawback of the model is its complexity. We need, however, only a
small part of the theory, which is, due to a number of simplifications carried through,
more manageable and comprehensible than the original full-bodied version.

Since the Enabling Model in its basic form turns out to he less suitable for rnad
elling more complex systems~it tencis to he too laborious-we have added a spec
ification language with its semantics defined in the basic formalism. This language
consists of primitive programs and composition operators to make more interesting
programs. The operators are: serial and parallel composition, internal and external
choice, and bounded and unbounded recursion. A possible further extension con
cerns so-called interrupts. Although we have not described it, the extension ca.n he

148 Chapter 10 Condusion

achieved. Basically two possibilities have to be taken into account: an interrupt
caused by a moment in time, and a.n interrupt caused by an action.

In order to give more abstract specifications in which ordered actions can happen
at the same moment, the Enabling Model has been extended with the possibility to
model zero delays. The extension embroiders on the original model. A disadvantage
of the course taken is the resulting complexity: verifying the equivalence of programs
becomes even more difficult. An extension based on a partial-order semantics will
probably not suffer from this shortcoming, though it will he difficult to accomplish.

The interactions of mechanisms are described by data communications, by which
the gap between specifica.tion and implementation language is narrowed. To abstract
from explicit communica.tion requests in specifications, active and passive commu
nications are distinguished: one side of the channel is active and the other side is
passive. The actual assignment of the active and passive side is often at choice.
Hence, we could consider the introduetion of another type of communication, namely
indifferent communication.

Just plain theory is not very rewarding; examples are needed to illustrate its use
and capabilities. In our case, the expressive power of the specification language is
exemplified by a number of case studies in the field of factory controL Often, such
systems comprise a central control unit which regulates the machines present. The
behaviour of the control may vary, but most of the time it consists of a large external
choice among the possible inputs, possibly strengthened by the conjunction of extra
conditions. When answering requests from the environment, suspension periods are
often undesirable. A more complex control process operates according to a certain
strategy. The effect of a strategy is often difficult to foresee. For that reason, sev
eral alternatives are tried out in computer simulations, and their performances are
determined from the outcomes. Another important aspect of the implementation is
its use for valida.tion purposes, ascertain whether the specified concept corresponds
to the concrete equivalent it models.

In the implementation approach, we try to exploit the use of a parallel com
puter, a processor network. Therefore, the parallelism present in the specification is
straightforwardly implemented, which yields a distributed discrete-event simulation.
Problems are caused by the external choice: the selection of a valid alternative re
quires a proper evaluation of the guards, which is solved at the expense of adding
a token ring or more efficient structures to the implementation. It turns out tha.t
the communications via the token ring consume a considerable amount of time and,
hence, should not happen too often. In the examples we looked at, there occur no
real concurrent, computationally intensive tasks from which the potential parallelism
of the implementation device could benefit. Usually, the operations are scheduled
successively in time, thereby causing a more or less sequentia} nature of the im
plementation. As a result, the distributed implementation approach appears to he
expensive, though it is easily obtained from its specification. In order to exploit the
full capabilities of a parallel computer, more parallelism and, hence, less synchroniza
tion between the processes is required.

149

Problems we did not address, but which are certainly important to pay attention
to, are related to the actual mapping of the implementation on the available proces
sor network. In order to realize the actual execution of the implementation, some
basic tools like routing and multiplexing software are indispensable. The assignment
of processes to processors has been clone manually, taking the communication and
computation costs into account. A fully automatic translation scheme from specifica
tion to subsequent parallel implementation is possible, but probably results in a poor
implementation. Another interesting research topic is to vary the granularity of the
implementation, that is to look at the effect of a mixed distributed and undistributed
approach which is obtained by combining a number of parallel processes into a single
sequentia! one. We could, for example, combine the processes with an interleaved
execution behaviour and retain those with inherent parallelism.

A fast implementation is achieved by using the approximation technique yielding
a simulation on just one processor. As a consequence of the single processor, the ex
ecution happens in a sequentia! way. As indicated by the word 'approximation,' care
should be taken with respect to the outcomes, and a validation by means of sealing
the computation time is required. A drawback of sealing the computation time is the
limited simulation period due to the maximum time value. Therefore, the technique
is applicable to only relatively simple cases requiring just a small scale factor. A
major advantage of this method is the almost literal translation of specification to
implementation; just one process, which takes care of advancing the doek, has to
be added. However, it would be nice to have a dedicated processor doing the time
advancements, since in that way an even faster implementation can be obtained.

In conclusion, we do not claim that the approach presented is final or complete.
Nevertheless, our approach is an adequate means in the design of industrial systems.
The rnadelling of industrial systems can be clone in a clear and concise way by a
method based on a formal theory.

150 Chapter 10 Condusion

Bibliography

[1] J.H.A. Arentsen. Factory Control Architecture: A Systems Approach. PhD The
sis, Eindhoven: Eindhoven University of Technology, 1989.

[2] J.C.M. Ba.eten and J.A. Bergstra. Real-time process algebra. Pormal Aspectsof
Computing 3(1991); pp. 142-188.

[3] G.C. Barney and S.M. Dos Santos. Lift Traffic Analysis Design and Control.
Stevenage: Peregrinus, 1977. (lEE Control Engineering Series: vol. 2)

[4) C.H. van Berkel, C. Niessen, M. Rem and R.W.J.J. Saeijs. VLSI programming
and silicon compilation. In: Proc. International Conf. Computer Design (!CCD).
New York: IEEE Computer Society Press, 1988; pp. 150-166.

[5] C.H. van Berkel. Handshake Circuits: An Intermediary between Communicating
Processes and VLSI. PhD Thesis, Eindhoven: Eindhoven University of Technol
ogy, 1992.
C.H. van Berkel. Handshake Circuits: An Asynchronous Architecture for VLSI
Programming. Cambridge: Cambridge University Press, 1993. (Cambridge In
ternational Series on Parallel Computation: to appear)

[6) M. Broy. An Example for the Design of Distributed Systems in a Forma! Setting:
The Lift Problem. Technica! Report MIP-8802, Passau: Passau University, 1988.

[7] K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Reading,
M.A.: Addison-Wesley, 1988.

[8] R.B. Chase and N.J. Aquilano. Production and Operations Management: A Life
Cycle Approach. Homewood: Irwin, 1992.

[9] J. Davies. Spècification and Proof in Reai-Time CSP. Cambridge: Cambridge
University Press, 1993. (Distinguished Dissertations in Computer Science)

[10] E.W. Dijkstra. Hierarchical ordering of sequentia! processes. Acta Informatica
1(1971); pp. 115-138.
E.W. Dijkstra. Hierarchical ordering of sequentia! processes. In: Operating Sys
tems Techniques; ed. C.A.R. Hoare and R.H. Perrott. New York: Academie
Press, 1972; pp. 72-93.

[11] E.W. Dijkstra. A Discipline of Programming. Englewood Cliffs: Prentice-Hall,
1976.

152 Bibliography

[12] E.W. Dijkstra, W.H.J. Feijen and A.J.M. van Gasteren. Derivation of a termina
tion detection algorithm for distributed computations. lnformation Processing
Letters 16(1983); pp. 217-219.

[13] G.S. Fishman. Principlesof Discrete Event Simulation. New York: Wiley, 1978.

[14] M.J. Flynn. Some computer organisations and their effectiveness. IEEE Trans
actions on Computers C-21(1972); pp. 948-960.

[15] P.A.J. Hilbers. Processor Networks and Aspects of the Mapping Problem. Cam
bridge: Cambridge University Press, 1991. (Cambridge International Series on
Parallel Computation: vol. 2)

[16] C.A.R. Hoare. Communicating sequentia! processes. Communications of the
ACM 21(1978); pp. 323-334.

[17] C.A.R. Hoare. Communicating Sequentia[Processes. London: Prentice-Hall,
1985.

[18] D.J. Holding and G.F. Carpenter. Software fault toleranee in real-time systems.
In: Parallel Processing in Control: The Transputer and othe1· Architectures;
ed. P.J. Fleming. London: Peregrinus, 1988. (lEE Control Engineering Series:
vol. 38); pp. 126-157.

[19] C. Huizing. Semantics of Reactive Systems: Comparison and Full Abstraction.
PhD Thesis, Eindhoven: Eindhoven University ofTechnology, 1991; pp. 103-120.

[20] INMOS Limited. Occam 2 Reference Manual. London: Prentice-Hall, 1988.

[21] INMOS Limited. Transputer Reference Manual. London: Prentice-Hall, 1988.

[22] INMOS Limited. Transputer lnstruction Set: A Compiler Writer's Guide. Lon
don: Prentice-Hall, 1989.

[23] G. Jones and M. Goldsmith. Programming in Occam 2. London: Prentice-Hall,
1988.

[24] W.E.H. Kloosterhuis. The Enabling Model: A Tool for Perf01·mance Analysis
of Concurrent Mechanisms. PhD Thesis, Eindhoven: Eindhoven University of
Technology, 1991.

[25] J.J. Lukkien. Transputer Pascal: A User Manual. Teehoical Report CS8912,
Groningen: University of Groningen, 1989.

[26] J.J. Lukkien. Parallel Program Design and Generalized Weakest Preconditions.
PhD Thesis, Groningen: University of Groningen, 1991.

[27] J.J. Lukkien. The Eindhoven Transputer System. Lecture Notes 2485, Eind
hoven: Eindhoven University of Technology, 1992.

Bibiiography 153

[28] A.J. Martin. The probe: a.n addition to communica.tion primitives. Information
Processing Letters 20(1985); pp. 125-130. Erratum: IPL 21(1985); p. 107.

[29] A.J. Martin. Compiling communica.ting processes into delay-insensitive VLSI
circuits. Distributed Computing 1(1986); pp. 226-234.

[30] J. Misra. Distributed discrete-event simulation. Computing Surveys 18(1986);
pp. 39-65.

[31] R. Overwater. Processes and Interactions: An Approach to the Modelling of In
dustrial Systems. PhD Thesis, Eindhoven: Eindhoven University of Technology,
1987.

[32] G. Reed and A. Roscoe. A timed model for communicating sequential processes.
In: Proceedings of ICALP; ed. L. Kott. Berlin: Springer, 1986. (Lecture Notes
in Computer Science: 226); pp. 314-323.

[33] J.E. Rooda. Using the Process-Interaction Approach. Lecture Notes 4680, Eind
hoven: Eindhoven University of Technology, 1990.

[34] J.E. Rooda and J.H.A Arentsen. Procescalculus bij modelleren van flow-shop
fabrieken. Mechanische Technologie 1(1991); pp. 10-20.

[35] J.E. Rooda, J.H.A. Arentsen and G.H. Smit. Procescalculus bij modelleren van
job-produktie fabrieken. Mechanische Technologie 2(1992); pp. 36-45.

(36] C.L. Seitz. Concurrent VLSI architectures. IEEE Transactions on Computers
C-33(1984); pp. 1247-1265.

[37] R.E. Shannon. Systems Simulation, the Art and Science. Englewood Cliffs:
Prentice-Hall, 1975.

[38] G.H. Smit. A Hierarchical Control Architecturelor Job-Shop Manufacturing Sys
tems. PhD Thesis, Eindhoven: Eindhoven University of Technology, 1992.

(39] P. Struik. Designing Parallel Programs of Parameterized Granularity. PhD The
sis, Eindhoven: Eindhoven University of Technology, 1992.

[40] P. Struik. Techniques for designing efficient parallel programs. In: Parallel Com
puting: From Theory to Sound Practice; ed. W. Joosen and E. Milgrom. Am
sterdam: lOS Press, 1992; pp. 208-211.

[41] A.M. Wortmann. Modelling and Simulation of lndustrial Systems. PhD Thesis,
Eindhoven: Eindhoven University of Technology, 1991.

[42] G. Zwaan. Parallel Computations. PhD Thesis, Eindhoven: Eindhoven Univer
sity of Technology, 1989.

154 Bibliography

Index

action 8
active communication 42
admission set 135
alphabet 8
alphabet of 11
array variabie 53
assignment 40
asynchronous communication 48

behaviour 14
Bool5
bounded recursion 24

channel38
doek 9
closed system 36
collision fundion 135
communication 38
communication action 38
communication behaviour 41
composable 17
computing time 81
construction 5
control strategy 90, 92, 118, 135

data-driven communication 42
delay 21

of dependenee function 12
of enabling structure 14

demand-driven communication 42
dependenee function 12
dining philosophers 51
discrete-event simulation 59
distribution function 53
dynamic assignment 94

efficiency 81
empty program 21
empty schedule 10

enabling function 14
enabling model 7
enabling structure 14
environment 18, 31
equivalence

of enabling structures 20
of program structures 31, 35

event list 99
execution time 81
execution tree 21
execution-tree set 21
external alphabet 14
external choice 23

factory control 3
flow-shop factory 3, 73
function 4

generic action 20
generic program 4 7
greedy enabling structure 36

history 16

implementation 60
index function 27
indifferent communication 148
input alphabet 26
Int 5
interdependence 61
internal alphabet 14
internal choice 23
interrupt 147
interval 5

job 109
job-shop factory 3, 109
jump-cut 103, 129, 144
just in time 73

156 Index

latency 96, 121
lift system 83
locked process 62

macro-domain 32
macro-moment 32
maximally cooperative 31
micro-moment 32

Nat 5

Occam 3, 103, 104
order-level control 73
output alphabet 26

parallel composition
of enabling structures 17
of programs 22
of systems 36

parameterized programs 45
passive communication 42
periphery 132
primitive program 21
probe action 26
probe function 41, 43
problem size 82
process 10

of enabling structure 18
process list 106
process set

of enabling structures 18
of program structure 31

productive program 23
program 20, 26

empty 21
stop 21

program structure 26
projection 11
pull-oriented factory 73 ·
push-oriented factory 73

quantification 5

receiver 39
reenrsion 23
refusallist 135
response time 79
ring 3

ring structure 65

sealing 32, 103, 107
schedule 9

empty 10
selection construct 40
sender 39
sequentia! composition 22
shop 74, 110
Signal42
similarity 11
simulation 59
speedup 81
static assignment 94
stop program 21
structure 13
synchronous communication 48
system 35

unbounded reenrsion 24

throughput 96, 121
time 8
time-critical action 100
time-domain 9
time-jump 98
timeout 44
timer list 106
token 64
token ring 63
torus 3
traffic-light system 131
Transputer 3, 104, 106
Transputer Pascal 3, 103, 104
tree structure 68
turntable 54

variabie 39

watchdog timer 100

zero delay 32
. '

Summary

The construction of a good model is an essential first step in the realization of any
industrial system. This dissertation describes a methad by which this step can he
made. The resulting conceptual model gives an unambiguous representation of the
concrete system. Since our rnadelling approach is based on a mathematica! theory,
the result is suitable for validation, thorough analysis of the correctness, and perfor
mance studies. The thesis contains the whole trajectory from the development of a
suitable theory to the construction of a prototype, which is in our case a computer
simulation.

The underlying mathematical formalism is the event-based "Enabling Model,"
which is weB suitable for the description of mutually cooperating mechanisms and
their parallel composition. In the Enabling Model, events are associated with mo
ments in time and, as a result, reai-time performance constraints are expressible.
Since the description of complex mechanisms in the Enabling Model can be labori
ous, we have added a specification language of which thesemantics are defined in the
underlying formalism. The language consists of primitive programs and operators
to construct larger programs. The operators are: serlal and parallel composition,
internal and external choice, and both bounded and unbounded recursion. Since the
gap between spedfication and implementation has to he small, all interactions among
mechanisms are described by means of communications via channels. Sometimes, a
communication is preeerled by another one, namely an explicit request for commu
nication. As an abstraction of such communication protocols, active and passive
communications are discriminated.

The prototype aimed at consists of an executable computer program which sim
ulates the behaviour of the system in combination with a certain environment. The
mapping from spedfication to implementation is, in some sense, transparent: the
parallelism present in the specification is maintained in the implementation, which
leads to a distributed discrete-event simulation. The external-choice construct turns
out to cause problems. In order to solve these difficulties, a token ring is added to
the implementation. Since the simulation program has to be fast, several alternatives
for the ring structure are discussed.

Another form of simulation is the so-called approximation technique. By using
the doek of the processor, the introduetion of the token ring can he avoided and the
addition of a single process suffices. Although the implementation is easily obtained
for just one processor, the obtained slumlation outcomes should be approached with

158 Summary

care. In order to ascertain the accuracy of the results, sealing of the time in the
computation is required.

The theory is ahundantly illustrated with examples: on the one hand small ex
amples are used for clarifying the ideas introduced, and on the other hand a numher
of case studies are worked out to show the expressive power of the theory. The latter
ones are taken from the realm of factory control: a flow-shop and a joh-shop factory,
a lift system and, heyond the scope of the realm, a traffic-light system.

Samenvatting

Modelvorming is een eerste essentiële stap in de totstandkoming van een industrieel
systeem. Deze dissertatie beschrijft een methode om deze stap te verwezenlijken. Het
resulterende conceptuele model geeft in eenduidige 'bewoordingen' een representatie
van het beoogde concrete systeem. De modelleringsmetbode is gestoeld op een ma
thematische theorie, zodanig dat het resultaat zich leent voor validatie, een grondige
analyse van de correctheid, en prestatiestudies. Het gehele traject van theorievorming
tot en met het bouwen van een prototype, in het onderhavige geval een computer
simulatie, wordt beschreven.

Het onderliggende wiskundig formalisme is het op events gebaseerde "Enabling
Model," welke de mogelijkheid biedt om onderling samenwerkende mechanismen en
hun parallelle samenstelling te beschrijven. In het Enabling Model worden events ge
koppeld aan een tijdstip, hetgeen noodzakelijk is voor het beschrijven van zogenaamde
'real-time performance constraints.' Het beschrijven van complexe mechanismen is in
het Enabling Model enigszins omslachtig en daarom wordt een specificatietaal toege
voegd, waarvan de semantiek gedefinieerd is in het onderliggende formalisme. De taal
bestaat uit primitieve programma's en operatoren voor het construeren van grotere
programma's. De mogelijke operatoren zijn: seriële en parallelle compositie, interne
en externe keuze, en zowel eindige als oneindige recursie. Aangezien de afstand tussen
specificatie en implementatie klein dient te zijn, worden de interacties tussen mecha
nismen beschreven door communicaties via kanalen. Soms wordt een communicatie
vooraf gegaan door een andere, een expliciete vraag naar communicatie. Een abstrac
tie van dit verschijnsel wordt verkregen door actieve en passieve communicaties te
onderscheiden.

Het prototype bestaat uit een executeerbaar computerprogramma dat het gedrag
van het systeem in combinatie met een bepaalde omgeving simuleert. De gekozen
afbeelding van specificatie op implementatie is in zekere zin transparant: het paral
lellisme aanwezig in de specificatie is ook zichtbaar in de implementatie, hetgeen leidt
tot een gedistribueerde discreet-event simulatie. Het blijkt dat externe keuze voor
problemen zorgt. Voor het oplossen van deze problemen wordt een zogenaamde 'to
ken ring' aan de implementatie toegevoegd. Daar het simulatieprogramma snel moet
zijn worden verschillende alternatieven voor de ringstructuur besproken, die tot een
sneller programma leiden.

Een andere mogelijkheid is de keuze voor een approximatietechniek. Door het
benutten van de aanwezige klok in een processor is de introductie van een token
ring te vermijden en volstaat de toevoeging van slechts één enkel proces. Hoewel de

160 Samenvatting

implementatie op slechts één processor eenvoudig is te verkrijgen, is voorzichtigheid
geboden met betrekking tot de verkregen simulatieresultaten. Om zich te vergewis
sen van de nauwkeurigheid is schaling van de tijd in de berekening noodzakelijk.

De theorie is rijkelijk geïllustreerd met voorbeelden: enerzijds worden kleine voor
beelden gebruikt om ideeën nader toe te lichten en anderzijds worden een aantal
case-studies behandeld om de uitdrukkingskracht van de theorie weer te geven. De
laatstgenoemde komen uit het gebied van de 'factory control' en zijn: een flow-shop
en een job-shop fabriek, een liftsysteem en, niet tot het gebied behorend, een verkeers
lichtensysteem.

Curriculum vitae

Op 30 april1965 werd ik geboren te Zaamslag. Na het doorlopen van de middelbare
school aan het Zeldenrust College te Terneuzen, hetgeen in 1983 resulteerde in een
atheneum-B diploma, startte ik in hetzelfde jaar met mijn studie informatica aan de
Technische Hogeschool (later Universiteit) Eindhoven (TUE).

Mijn afstudeerwerk in de richting Parallellisme en Architectuur heb ik verricht bij
de faculteit Electrotechniek in de vakgroep Automatisch Systeem Ontwerpen onder
leiding van prof.dr.-ing. J.A.G. Jessen met als directe begeleider dr.ir. L. Stok. Het
afstudeerwerk "From Network to Artwork, Automatic Schematic Diagram Genera
tion" behelsde het ontwerpen van een tool voor het automatisch genereren van een
circuit-diagram vanuit een abstracte (netlist) beschrijving. Het gegenereerde diagram
moest vooral goed te interpreteren zijn. Gerelateerde problemen waren 'placement'
van de componenten en 'routing' van de verbindingen.

Na mijn doctoraal examen in juni 1988 ben ik tijdelijk in dienst getreden van het
bedrijf lCD bv (Integrated Circuit Design) te Enschede, alwaar ik mijn afstudeerwerk
aan hun silicon compiler heb toegevoegd.

Voor mijn afstudeerwerk en de tijdelijke werkzaamheden bij lCD heb ik in 1989
de Mignot-prijs (le plaats) gekregen. Deze prijs wordt jaarlijks op de TUE toegekend
aan het 'beste' afstudeerwerk in relatie tot het bedrijfsleven.

Eind oktober 1988 moest ik opkomen voor mijn militaire dienstplicht. Dit dienst
verband heeft geduurd tot en met februari 1990. Tijdens deze periode heb ik de
nodige ervaring opgedaan in het werken met groepen.

Aansluitend ben ik in dienst getreden van NWO (Nederlandse Organisatie voor
Wetenschappelijk Onderzoek). Onder leiding van prof.dr. M. Rem ben ik als OIO
(onderzoeker in opleiding) werkzaam geweest in de sectie Parallellisme van de vak
groep Informatica aan de TUE. Het onderzoek vond plaats in het project "Ontwerp
en Implementatie van Grofkorrelig Parallelle Programma's." Tijdens het onderzoek
is mede samengewerkt met de TUE-faculteit Werktuigbouwkunde, sectie Automati
sering van de Produktie onder leiding van prof.dr.ir. J.E. Rooda. De resultaten uit
dit interdisciplinaire onderwek zijn opgetekend in deze dissertatie. Naast het ver
richten van onderzoek hen ik ook werkzaam geweest in het onderwijs op het gebied
van parallellisme, in het bijzonder het implementeren van parallelle programma's.

Stellingen

behorende bij het proefschrift

ModeHing Industrial Systems:
Theory and A pplications

van

John Koster

Technische Universiteit Eindhoven

december 1993

1. Het Enabling Model is een krachtig instrument voor de real-time performance
analyse van een collectie parallel samenwerkende mechanismen [1]. Het En
abling Model is nog veel krachtiger: het leent zich uitstekend als semantisch
model voor een real-time specificatietaaL Taalcontructies waarvan de beteke
nis zonder al te veel problemen kan worden gedefinieerd zijn: sequentiële en
parallelle compositie, interne en externe keuze, en zowel eindige als oneindige
recursie [2].

[1] W.E.H. Kloosterhuis. The Enabling Model: A Tool for Performance Anal
ysis of Concurrent Mechanisms. Proefschrift, Eindhoven: Technische Uni

. versiteit Eindhoven, 1991.

(2] Hoofdstuk 2 van dit proefschrift.

2. De Transputer heeft zich ontpopt als een krachtige bouwsteen voor processor
netwerken en is uitermate geschikt voor real-time toepassingen in embedded
systemen. Het is echter jammer dat de processor niet in het bezit is van een
speciale simulatiefaciliteit die ervoor zorgt dat tijdens de executie van een col
lectie processen actieloze perioden worden overgeslagen. De Transputer zou zo
ook een interessante simulatieprocessor kunnen zijn.

[lit] Hoofdstuk 7 van dit proefschrift.

3. De begrippen actieve en passieve communicatie dienen ter abstractie van com
municatie die voorafgegaan wordt door een andere, een expliciete vraag om
communicatie [1]. Het beantwoorden van actieve communicaties geschiedt door
passieve equivalenten. In specificaties wordt door middel van symbolen ' •'
en ' o' het desbetreffende communicatietype eenduidig vastgelegd. Deze toe
wijzing is vaak naar keuze. In feite is er dus nog een andere vorm van commu
nicatie, indifferente communicatie, welke bijvoorbeeld aangegeven kan worden
door het symbool ' e '.

[1] Hoofdstuk 3 van dit proefschrift.

4. Het associëren van een positieve reële vertraging met de prefix-operator zoals
in [1] gebeurt conform het causaliteitsprincipe. Ofschoon zo'n vertraging over
eenkomt met de realiteit, is deze ongewenst voor het geven van abstracte reai
time specificaties. Het beschrijven van opeenvolgende acties die tegelijkertijd
kunnen plaatsvinden vereist een aanpassing van het tijdsdomein [2].

[1] J. Davies. Spec~(ication and Proof in Real-Time CSP. Cambridge: Cam
bridge University Press, 1993. (Distinguished Dissertations in Computer
Science)

[2] Hoofdstuk 2 van dit proefschrift.

5. De proces-interactie-benadering is een doelmatige strategie voor het verkrijgen
van een computersimulatie van een collectie processen [1]. Als specificatieme
thode is de benadering beperkt toepasbaar. Zo ontbreekt non-determinisme
als abstractietechniek en dient het specificeren van busy waiting te worden
afgeraden vanwege inherente implementatieperikelen.

[1] A.M. Wortmann. Modelling and Simulation of Industrial Systems. Proef
schrift, Eindhoven: Technische Universiteit Eindhoven, 1991.

6. Bij het automatisch genereren van een schematisch diagram vanuit een ab
stracte circuitbeschrijving is het vooral de plaatsing van de componenten die
de kwaliteit van het uiteindelijke resultaat bepaalt.

[lit] G.J.P. Kosterand L. Stok. From network to artwork, automatic schematic
diagram generation. In: Proc. of the 26th Design Automation Conference,
Las Vegas, 1989. Piscataway: IEEE Comp. Soc. Press, 1989; pp. 686-689.

7. Het ontwerpen van parallelle programma's is moeilijk; een ontwerpmethode
biedt soelaas. Er zijn ruwweg twee mogelijkheden:

(a) start met een sequentieel programma en onderscheid taken die parallel
kunnen worden uitgevoerd, ofwel

(b) begin met een fijnkorrelig parallel programma en pas de korrelgrootte aan.

Het interpreteren van fijnkorrelige programma's is zeker geen sinecure. Het
achterhalen van een ontwerpfout in strategie (b) is dan ook veel moeilijker dan
in strategie (a).

8. Processor farming is een eenvoudige en efficiënte implementatiemethode voor
een klasse van parallelle programma's. In [1] wordt gesuggereerd dat een imple
mentatie volgens deze techniek automatisch tot een goede load balance leidt.
Deze veronderstelling is onjuist.

[1] INMOS Limited. Transputer Applications Notebook: Architecture and
Software. Trowbridge: INMOS, 1989.

9. Het bezitten van een nieuwe en betere piano betekende voor Beethoven het
krijgen van geniale ingevingen die hebben geleid tot het pianoconcert no. 5 in
Es grote terts, opus 73, het zogenaamde "Emperor Concerto" [1]. Eigenlijk is
de informaticus net als Beethoven: het bezitten van state-of-the-art-apparatuur
is een belangrijke stimulus.

[1] P. Ramey. In tekstbijlage van: L. van Beethoven, The Five Piano Goncer
tos, door M. Perahia, piano, en het Concertgebouw Orkest onder leiding
van B. Haitink. CBS Records Inc., M3k 44575, 1988.

10. Het ontwikkelen van nieuwe produkten gebeurt slechts sporadisch uit het oog
punt van milieuzorg. Daarnaast zijn de merites ten aanzien van het milieu
vaak moeilijk vooraf te bepalen. Het milieuvriendelijke karakter dat bij vele
projecten hoog in het vaandel staat is dan ook slechts uiterlijke (groene) schijn.
Het is vaak niet meer dan een gewiekste truc voor het aanboren van nieuwe
geldbronnen voor de financiering van het project en voor het oppoetsen van het
blazoen.

11. Hoewel men het cultuur- en natuurvriendelijke karakter van reizigers graag
onderschrijft, is de oprechtheid ervan twijfelachtig. Met name in derde wereld
landen, maar zeker ook in rijke westerse landen, is toerisme mede debet aan de
grote sociaal-economische en ecologische problemen.

flit] Te gast in Nepal; samenst. K. van Teeffelen, red. W. Aartset al. Nijmegen:
Stichting Toerisme & Derde Wereld, 1991. (Te gast in ... : nr. 8)

12. Geld en sport zijn on(lo)smakelijk met elkaar verbonden. Zo heeft in het voetbal
de kwaliteit van het getoonde spel te lijden onder de financiële belangen die op
het spel staan en reikt men in de atletiek tot bovennatuurlijke prestaties.

