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Chapter 1

Introduction

1.1 Background

Two primary applications of combustion turbines are aero propulsion and power gen-
eration. Turbofan engines typically use a dual spool configuration consisting of a high-
pressure turbine coupled with a high-pressure compressor and a low-pressure turbine
coupled with a fan (see Figure 1.1). The bypass ratio, or the ratio of fluid bypassing
the core to fluid passing through the core, is varied to accommodate efficiency and per-
formance needs. Thrust is developed by the momentum of the fluid exiting the en-
gine. Commercial airliners typically use high bypass ratios, generating thrust by mov-
ing large quantities of air, because this is more efficient from the fuel economy point of
view. Military engines put a premium on performance and often use low bypass ratios
and high jet velocities sacrificing some efficiency.

The second wide spread application of combustion turbine technology is power gen-
eration. Power turbines are much larger than aero turbines because weight and space
are not an issue. They are frequently as large as a school bus and place a premium on
efficiency. Units range in size from output measured in kW to 500 MW. A GE MS7001
power turbine is shown in Figure 1.1. Combustion turbines are ideal for peaking power
(meeting maximum power needs) because they can be started and provide power to the
grid in minutes. In contrast, a nuclear power plant, which is used for base load power,
must go through multiple modes and testing at startup and may take up to three days
to reach full power. Combustion turbines have also found wide spread use in the power
industry as merchant plants. Merchant plants are stationed in areas of high power de-
mand, such as California, and when the local utility has a shortage of power or a plant
goes off-line, the owner of the merchant plant can fire the plant and sell the electricity.

The basic components of the combustion turbine are labeled in Figure 1.2. Air enters
the machine from the atmosphere through the intake and absorbs work from the com-
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(a) Rolls-Royce Trent aero engine (Courtesy of Rolls-
Royce)

(b) General Electric MS7001 power turbine (Cour-
tesy of General Electric)

Figure 1.1: Examples of gas turbines

pressor which raises both the pressure and temperature of the air. The air then passes
through the combustor where heat energy is added in the form of fuel. The combus-
tion gases are then expanded through the turbine, extracting useful work, and finally
exhausted to the atmosphere out of the nozzle. The turbine is coupled with the compres-
sor and this unit together with the combustor is known as the gas generator. The turbine
extracts only enough work to continue driving the compressor. In turbojet and turbofan
applications, the relatively high enthalpy fluid leaving the turbine is then accelerated
through the exit nozzle creating a high momentum jet which delivers thrust. In other
applications where thrust is not desirable, such as power plants or helicopter engines,
the fluid is then further expanded through a second turbine known as the power tur-
bine. The power turbine is coupled to a generator, propeller, or some other shaft driven
device.

Different methods have been used in the development of turbine blades (which rotate)
and vanes (which are static) in order to deal with increasing turbine inlet temperature.
One of the major problems in enhancing the efficiency in gas turbines is the maximum
possible value of the turbine inlet temperature allowed in the view of blade material
properties (see Figure 1.3). Up to about 1300 K uncooled blades can be used.

The first method is concerned with the material airfoils are made of and how they are
casted. A first aspect is that airfoils material has resulted in better mechanical and heat
resistance properties. Better casting techniques made the blade stronger with respect
to both mechanical and heat resistance. This led from the conventionally casted tur-
bine blade with good mechanical properties in all directions and homogenous crystal
structure in all directions via the directionally solidified turbine blade with improved
mechanical properties in the longitudinal direction and a columnar crystal structure to
single crystal turbine blade with excellent mechanical properties in longitudinal axis
and improved heat resistance.
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Figure 1.2: Scheme of an aero-engine (courtesy of ASL/ETHZ).

A second technique to be able to increase the thermal load on the turbine blades and
vanes is to cover the airfoil with a coating which creates a sort of thermal barrier. The
third method is to cool the blades. This cooling is done both internally and through film
cooling. In both techniques (relatively) cold air is used to cool the blades. In the past the
blades were cooled only internally through either drilled longitudinal holes or casted
cavities. With the increasing turbine inlet temperature this was not enough, so in the
seventies film cooling was introduced. In film cooling compressed air is injected along
the blade surface, forming a cold boundary layer, thus separating the hot gas from the
blades. Nowadays film cooling is used together with internal cooling. The cooling noz-
zles are usually produced by some kind of drilling. There are several methods to do
this, but most of them have the drawback of low drilling speed. Mechanical drilling is
not suited for superalloys, although it is fast, but it is limited to holes with a diameter
larger than 3 mm. Electro-Chemical Drilling (ECD) is done by electrolysis. This is a pro-
cess in which an electric potential difference is imposed on an anode and a cathode. The
electrolyte, usually a sulphuric acid, tends to corrode the anode surface in the electric
field. ECD is able to produce very neat holes, since the scale on which the drilling has
to be performed is very small, but it is slow and produces a lot of waste. The ECD was
modelled in [51].

Electric Discharge Machining (EDM) is a method for producing holes and slots, or other
shapes, by using an electric discharge (spark) to remove unwanted material. It is also
called spark erosion. Sometimes it is used to produce a part, such as producing a slot
in a very hard metal, and sometimes it is used to ”rescue” a part such as removing a
broken tap. The basic idea is to move an electrode very close to the work piece, and
repeatedly produce a spark between the two. This is best done while immersed in a di-
electric liquid rather than in air, and it helps if the proper distance can be automatically
maintained. Note that the electrode gets eaten as well as the workpiece, and some com-
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Figure 1.3: Example of an overheated blade

pensation must be made for this. Very good finish can be achieved, though at reduced
speed. EDM is not a fast method; some jobs can take days to produce holes, so its use
is limited to jobs that cannot easily be done in other ways (e.g. oblong slots or complex
shapes, sometimes in very hard material). Also EDM cannot be used for coated mate-
rials. ECD and EDM have typically drilling speeds of 1-10 mm/min, but several holes
can be drilled at the same time, using multiple electrodes.

Yet another technique is Electron Beam Drilling (EBD). An electron beam machine works
in much the same way as a cathode ray tube in a television. The electron beam machin-
ing process is fairly straightforward. First a stream of electrons is started by a voltage
differential. The concave shape of the cathode grid concentrates the stream through
the anode, much like the way a concave mirror focuses a light beam from a flashlight.
The anode applies a potential field that accelerates the electrons. This stream of elec-
trons is then forced through a valve in the electron beam machine. The valve is used for
controlling the beam and the duration of a machining process. If the impulse of the elec-
tron beam is too large, the part will overheat and potentially ruin the machined piece
by either distorting a feature or relaxing strength built up from material cold-working
or tempering. Once passing through the valve, the beam is then focused onto the sur-
face of the work material by a series of electromagnetic lens and deflector coils. The
entire process occurs in a vacuum chamber. The reason for the need of a vacuum for
the electron-beam machining process is that air molecules can adversely interact with
the beam of electrons. A collision between an electron and an air molecule causes the
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electron to veer off course.

In contrast to the electron-beam machining, a laser machining process can be done out-
side of a vacuum, in ambient atmospheric conditions because the size and mass of a
photon is numerous times smaller than the size of an electron. Laser drilling offers
an alternative to mechanical drilling, punching, broaching and wire EDM. It is espe-
cially adaptable for small holes with large depth-to-diameter ratios. With laser drilling,
a wide range of hole diameters are obtainable. Material such as steel, nickel alloys,
aluminum, copper, brass, borosilicate glass, quartz, ceramic, plastic and rubber are all
being successfully laser drilled. The laser is so fast and so repeatable that it is ideal for
high production volumes associated with fully automated or semi-automated tooling
applications. Laser drilling is the process of repeatedly pulsing focused laser energy at
a material, vaporizing layer by layer until a thru-hole is created. This is what is called
a popped or percussion drilled hole. Depending upon material and material thickness,
a popped hole could be as small as 0.04 mm in diameter. If a larger hole is required,
the laser, once through the material, is moved with respect to the work piece to contour
the desired diameter. This is called trepanning. The end result is a fast, efficient way to
create holes.

To increase the turbine inlet temperature several parts have to be cooled and, as men-
tioned above, one way to do this is to drill cooling nozzles in the components. There
are several groups of components where drilling is needed - the blades, the vanes and
the combustion chambers. For the blades the typical number of holes to be drilled is
around 300 film cooling holes per blade. These holes are cylindrical or fan shaped with
the diameter ranges from 0.5 to 1.0 mm and depths varying between 3 and 10 mm. For
the cylindrical holes laser drilling is often used, although for the fan shaped holes EDM
is better suited. For the vanes, approximately 500 holes per part need to be drilled, both
cylindrical and fan shaped. Again, for the cylindrical holes laser is used, while EDM is
used for the fan shaped ones. In the inserts on average of 300 holes need to be drilled.
The holes are cylindrical, 0.3-3 mm in diameter. For such type of the job laser drilling
gives the best results. For the drilling of the holes in the combustion chambers more
than 100,000 holes need to be drilled and this is the area where high drilling speed is
essential and where laser drilling is the method to use. As one can see, laser drilling can
be used extensively for drilling different holes in gas turbine components.

There are roughly three techniques to drill with a laser. The simplest way is to remove
material through a single laser pulse. This technique is mainly used for drilling narrow
(< 1 mm) holes through thin (< 1 mm) plates. Another method, used to drill wider
(< 3 mm) holes in plates (< 10 mm), is to cut a contour out of the plate. This technique
is called laser trepanning drilling. The drilling process in which the laser operates in a
repeated manner, with short pulses, ranging from 10−12 to 10−3 s, which are separated
by longer time periods, is called laser percussion drilling. In this way the laser builds
up energy and operation in this manner allows for large bursts of energy.

Laser percussion drilling is favored over the older drilling techniques and the other
laser drilling techniques because it is by far the quickest. However, it still suffers from
some drawbacks. The first drawback is that a so-called recast layer, that is, resolidified
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Figure 1.4: A series of photos of holes produced by laser percussion drilling. The num-
ber of pulses to produce each hole is indicated. (Courtesy of ELDIM BV)

material remains at the wall of the hole. Some resolidified material can normally also be
found at the entrance and exit of the hole, in which cases it is called spatter and dross,
respectively. Furthermore, the holes normally show some tapering: the decrease of hole
diameter with depth therefor control of the taper angle and reproducibility is needed.
Finally, occasionally the hole resulting from a laser percussion drilling process shows
barrelling or a bellow shape: the local increase of hole diameter. The process of laser
percussion drilling was studied in detail in [80].

1.2 Overview of some previous numerical investigations

Three-dimensional calculations of film cooling of real turbine blade models are less
abundant than calculations of jets in crossflow over flat plates, e.g. [7, 35, 41, 83]. There
exist even fewer calculations of surface heat transfer of fully film-cooled rotating tur-
bine blades [22]. Various other investigations exploring the effect of several parameters
on the flow and temperature fields over different blade prototypes revealed the impor-
tance of extending the calculations into the cooling channel, at least for low blowing
rates. Turbulence models that have so far been employed in film cooling calculations do
not go beyond the two-equation type. An exception is the work reported in [18], where
the predictive performance of various two-equation turbulence models were compared
to the sophisticated Reynolds stress model RSM. Surprisingly, RSM calculations were
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not better than those with eddy viscosity models. Authors of [23] reported on calcula-
tions for the C3X vane and the VKI rotor where they used the Baldwin-Lomax model
and various two-equation turbulence models. No clear picture emerged from the calcu-
lations indicating which of the employed models is superior. The same Baldwin-Lomax
model was also employed in [11] in their computations of the film cooling of the two-
dimensional AGTB cascade. For this particular configuration, which has been widely
adopted as a benchmark for code validation, [31] and [73] used the standard k−ε model
with wall functions.

In [72], the authors report on the simulation of the flow around the three-dimensional
version of the AGTB test-case. Owing to the difficulties in calculating these flows using
a full three-dimensional RSM under low Reynolds number conditions authors of [72]
and [36] opted for another strategy. This consists in retaining the basic architecture of the
k − ε model, while an anisotropic eddy-viscosity/diffusivity correction for secondary
stresses is introduced. The extension of the model to low-Re number conditions was in
all cases achieved via a dynamic, zonal, two-layer approach [60]. This practice was first
applied to jet injection over a flat plate [35], then to real blade models [36, 72].

1.3 Direct numerical simulation of turbulent flows

”Turbulence has been the victim of many colorful descriptions over the years from
Lamb’s (1916) scholarly chief outstanding difficulty of our subject to Bradshaw’s (1994)
inspired invention of the Devil on the seventh day of creation. This apparent frustration
results largely from the mixture of chaos and order and the wide range of length and
time scales that turbulent flows possess” [48]. The complex behaviour of turbulence is
the consequence of a set of equations, the Navier-Stokes equations. However, analyt-
ical solutions to even the simplest turbulent flow problems do not exist. A complete
description of a turbulent flow, where the flow variables (e.g., velocity and pressure)
are known as a function of space and time can therefore only be obtained by numer-
ically solving the Navier-Stokes equations. The range of scales in turbulent flows in-
creases rapidly with the Reynolds number (as Re

9
4 ). As a result, most engineering prob-

lems, e.g., the flow around a car, have too wide a range of scales to be computed using
Direct Numerical Simulation (DNS). The engineering computation of turbulent flows
therefore relies on simpler descriptions: instead of solving for the instantaneous flow-
field, the statistical evolution of the flow is sought. Approaches based on the Reynolds-
averaged Navier-Stokes (RANS) equations are the most prevalent (see [67] for a review)
and involve computing one-point moments such as mean velocity and turbulent kinetic
energy. Another approximation, large eddy simulation (LES), is intermediate in com-
plexity between DNS and RANS. Large eddy simulation directly computes the large
energy-containing scales, while modelling the influence of the small scales (see [40, 47]
for a review).

Statistical descriptions suffer from the problem of closure, i.e. the equations describ-
ing the statistical evolution of the flow contain terms that cannot be obtained from the
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Navier-Stokes equations and therefore require modelling. The search for better turbu-
lence models, and better parameterization of the turbulence, is what drives most turbu-
lence research.

In contrast to its incompressible counterpart, DNS of compressible turbulent flows is
fairly recent. The early 1980s saw DNS of homogeneous compressible turbulence being
initiated. However, it was not until a decade later that serious study of compressible
homogeneous turbulence (isotropic and sheared) was undertaken [10, 17, 37, 65]. Wall-
bounded flows such as the compressible channel [14] and a turbulent boundary layer
[57] have only recently been attempted. High-speed turbulent mixing layers have been
the focus of much experimental attention; DNS of this flow was performed by Vreman et
al [82]. An exciting new development has been the field of computational aeroacoustics,
where both the fluid motion and the sound it radiates are directly computed (see [39,70]
for reviews).

1.4 Requirements on the solution strategy for the film cool-
ing problem

Often the variations of the solution are large only in a part of the domain and small else-
where. The film cooling problem sketched in Figure 1.5 is a typical example of such a
problem. It is (still) beyond computer facilities to use a uniform grid over the whole do-
main with a resolution that captures the local phenomena because of the large number
of points required. To approximate the solution, a large system of algebraic equations
resulting from discretization has to be solved and information has to be stored at a large
number of grid points. In general the advantages of using a uniform grid, like simple
data structures and the existence of simple, accurate discretization stencils and fast so-
lution techniques for the resulting system of algebraic equations do not counterbalance
the disadvantage of having so many redundant points, and the use of a global uniform
grid is computationally inefficient. Local grid refinement allows us to keep the advan-
tages of the uniform grid, while having high resolution where necessary and avoiding
redundant points. Let us consider a typical example of the film cooling problem (see
Figure 1.5). From the experimental data it is known [32] that the crucial part of the do-
main with respect to the heat loads is the area just downstream the cooling nozzle, so
we would like to have highest resolution in this area. The idea of local grid refinement
is quite simple - we have one coarse grid which covers the whole domain and one (or
more) fine grids in the area we are interested in (for the film cooling this is the area
downstream the cooling nozzle). In the present work we use two local grid refinement
techniques, namely Local Uniform Grid Refinement (LUGR) and Local Defect Correc-
tion (LDC) which are studied in more detail in Chapters 3, 4, 5.

In film cooling, an important and not yet fully investigated question is the profile (tem-
perature, velocity, etc.) of the cooling jet at the exit of the cooling nozzle, where it in-
teracts with the main flow. Most attempts to clarify the situation include the use of
unstructured meshes to model underlying geometry and are thus not as precise as DNS-
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Figure 1.5: Typical example of the film cooling problem. Temperature distribution for
the inverse problem (cold main flow, hot ”cooling” jet) on the center plane. Film cooling
nozzle is located between 0.004 and 0.006 mm.

type simulations. In the present work we propose another approach, based on domain
decomposition (see Figure 1.6). We discuss it in more details in Chapter 7.

1.5 Outline of this thesis

In Chapter 2 of this thesis, we describe the physical picture, which takes place during
air film cooling as well as the mathematical model of such a process. First we introduce
the system of equations for flow (namely Navier Stokes equations for compressible gas),
then we describe briefly the appropriate boundary conditions.

In Chapter 3, we concentrate on discussing issues connected with Local Grid Refine-
ment. We discuss two techniques - Local Uniform Grid Refinement and Local Defect
Correction (LDC). In these techniques the discretization on the composite grid is based
on a combination of standard discretizations on several uniform grids with different
grid sizes that cover different parts of the domain. At least one grid, the coarse grid,
should cover the entire domain, and its size should be chosen in agreement with the
relatively smooth behavior of the solution outside the high activity areas. Apart from
this global coarse grid, one or several local fine grids are used in the high activity areas.
These grids are also uniform. Each of the local grids covers only a (small) part of the
domain and contains a high activity region. The LDC method is an iterative process: a
basic global discretization is improved by local discretizations.

Chapter 4 is devoted to the convergence analysis of the Local Defect Correction tech-
nique. First we present a theoretical analysis of the convergence behavior for simple
convection-diffusion equations and different discretization schemes, that is upwind and
central differences. We conclude Chapter 4 with a comparison of the theoretical conver-
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Figure 1.6: Domain decomposition strategy.

gence rate with one we see during actual numerical calculation.

In Chapter 5 we discuss the combination of the Local Defect Correction technique with
high order discretization schemes. High order discretization schemes are widely used
for DNS calculations. We start with a short introduction to the high order (compact)
schemes. Next we propose a method to combine those schemes with the LDC method,
introduced earlier in Chapter 4. We conclude the chapter with numerical examples
which illustrate properties of the proposed method, such as accuracy and efficiency.

In Chapter 6 we discuss the issue of the boundary conditions for compressible flows.
We start with describing the existing approaches for boundary conditions in case of tur-
bulent flows. Next, we formulate so-called non-reflecting boundary conditions based
on work of Lele and Poinsot [55]. For our grid refinement problem we have to intro-
duce artificial boundary conditions for the fine grid. Normally this is done with the use
of interpolation from the coarse grid. In case of compressible flows use of interpola-
tion could lead to reflections from the artificial boundaries. In order to investigate this
problem, in the last section of Chapter 6 we present a numerical example, which shows
absence of the reflections for the problem of interest.

Chapter 7 of this thesis is devoted to numerical simulations of the air film cooling prob-
lem, based on the methods described in previous chapters. First we present a full math-
ematical formulation of the problem of interest. Next in Section 2 we discuss numerical
techniques to solve the problem of interest. Section 3 is devoted to the discussion of
domain decomposition and parallelization for the three-dimensional flow of compress-
ible fluid. We conclude this chapter with a short discussion of the numerical results
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obtained, such as inflow profiles for the cooling jet, accuracy and efficiency of the local
uniform grid refinement.

We finish this thesis with conclusions and future recommendations in Chapter 8.





Chapter 2

Problem description and
mathematical model

2.1 Air film cooling

Film cooling gives rise to very complex flow and heat transfer processes. Its efficiency
can be influenced by a number of parameters: the blade geometry and curvature, the
shape of the injection hole, the injection angle (which can be perpendicular, streamwise
inclined or spanwise inclined), the blowing rate (also known as the mass-flux ratio), the
density and temperature ratios, the freestream turbulence and compressibility effects.
The flow in the vicinity of the discharge holes depending of flow conditions can be
particularly complex due to the interaction of the coolant jet with the flow around the
blade. The individual jets are bent over by the mainstream, leading to the formation of
longitudinal vortices and a reverse-flow region below the jet. The flow becomes even
more complicated when the injection is lateral, which is often the case in practice, since
then the cooling film covers the area to be cooled better. The formation and location
of the longitudinal vortices depend strongly on inclination and blowing rate. More
precisely, the strength and elevation of these vortices depend on the penetration of the
injected coolant into the cross flow. In the case of streamwise injection two counter-
rotating vortices form, while in the lateral injection configuration there is only one large-
scale vortex. The vortices entrain ambient hot gas and move it to the vicinity of the
wall and hence adversely influence the cooling effectiveness. This phenomenon is more
pronounced at higher blowing rates for which the jets penetrate more deeply into the
oncoming flow and the vortices are lifted further from the surface.

The foregoing description is in fact an idealization of the flow as if it were perfectly
stable and steady, and that is exactly what turbulence models of all types are supposed
to predict. The reality of jets in cross flow is more complex than that: the flow features
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a broad band of vortical, large-scale structures, dominated by the well-known kidney
vortex, but also includes other unsteady structures such as the horse-shoe vortex, the
wake vortices, and the shear layer vortices; these can be reproduced only by means of
nontime-averaged-based concepts such as direct and large eddy simulation.

It has been well established (see [32] and references therein) that the geometry of the
nozzles is an important parameter in film cooling. The cooling is effectively influenced
by local flow phenomena like separation of the flow in the cooling hole, relaminarization
and reattachment. In film cooling cold air is injected into the boundary layer through
small nozzles in the blade surface. The flow through these nozzles is laminar with a
Reynolds number of typically 100 – 1000 (based on the diameter of the cooling jet).
The speed in the nozzles is of the same order of magnitude as the free stream velocity.
Interaction of the jets with the (laminar) boundary layer flow (with a Reynolds number
typically 1000 based on the domain length and free stream velocity) is essentially three-
dimensional. The collision of the laminar jet with the boundary layer flow produces a
local turbulent shear layer and changes the local heat transfer to the blade (when poorly
constructed it may even increase the local heat transfer). Since, the interaction is three-
dimensional, the problem at hand must be modelled using the three-dimensional flow
equations. However, solving the full Navier-Stokes equations for this problem on all
scales (including the smallest turbulent length scale) is (still) beyond computer facilities.

As stated the major deficiency of turbulence models is their basic assumption of local
isotropic diffusive energy, which is not true in the transition phenomenon. We, there-
fore, propose another approach. The origin of the problem lies in the fact that solving
the flow equations on all scales in the full domain is computationally expensive. How-
ever, the flow consists of a main flow with laminar boundary layer and a laminar jet,
which are one by one more easy to solve. It is only the interaction of the flows which
poses a problem. The high resolution is in fact only necessary in a very limited part of
the domain. Hence we propose to use a so called local grid refinement method, which is
able to solve the problem on simple (thus structured) grids. Only where it is necessary
(say, around cooling nozzle where we have vortex formation) we then need to refine.

Moreover, instead of looking at the flow around a whole blade (which is (still) beyond
present computer facilities with the approach proposed), we simplify our problem and
concentrate on one hole only. The problem of interest is sketched in Figure 2.1. In this
figure we schematically represent the film cooling problem. There is a main flow around
the blade (marked with ”main stream”), which creates a laminar boundary layer near
the blade’s surface and there is a cooling jet coming out of the nozzle (marked with ”jet”
and ”nozzle” respectively).

2.2 Governing equations

The governing equations of fluid flow represent mathematical statements of balance
laws of physics:
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Figure 2.1: Sketch of the problem. Nozzle is located 1/4 from the beginning of the
domain.

• The mass of a fluid is conserved in the absence of sources.

• The rate of change of momentum equals the sum of the forces on a fluid particle
(Newton’s second law).

• The rate of change of energy is equal to the sum of the rate of heat addition to and
the rate of work done on a fluid particle (first law of thermodynamics).

All fluid properties are functions of space and time, so we write ρ(x, t), p(x, t), T(x, t)
and u(x, t) for the density, pressure, temperature and velocity vector respectively.

The following equation represents mass conservation for the unsteady flow of a com-
pressible fluid

Dρ

Dt
+ ρ∇ · u = 0, (2.1)

where Dρ/Dt = ∂ρ/∂t+u ·∇ρ is the material derivative,∇ is the gradient operator and
∇· is the divergence operator.

Newton’s second law states that the rate of change of momentum of a fluid particle
equals the sum of the forces on the particle. We distinguish two types of forces which
act on a fluid particle: surface forces (pressure forces, viscous forces) and body forces
(gravity force, centrifugal force, Coriolis force, electromagnetic force). It is common
practice to highlight the contributions due to the surface forces as separate terms in
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the momentum equation and to include the effects of body forces as source terms. The
state of stress of a fluid particle is defined in terms of the pressure and the viscous
stress components. The pressure, a normal stress, is denoted by p. Viscous stresses
are expressed by the stress tensor τ. The usual suffix notation τij is applied to indicate
the direction of the viscous stresses. The suffices i and j in τij indicate that the stress
component acts in the j-direction on a surface normal to the i-direction. So we can write
the following expression for the balance of momentum:

ρ
Du
Dt

= −∇p +∇ · τ + ρf, (2.2)

where f is the external force per unit mass of fluid.

In the present work we neglect the body forces (f = 0) and assume that the fluid is
Newtonian. In a Newtonian fluid the viscous stresses are proportional to the rates of
deformation of the fluid particle. The three-dimensional form of Newton’s law of vis-
cosity for compressible flows involves two constants of proportionality: the (first) dy-
namic viscosity, µ, to relate stresses to linear deformations, and the second viscosity, λ,
to relate stresses to the volumetric deformation. We can write the following expressions
for the components of the stress tensor τ in three dimensions in Cartesian coordinates:

τxx = 2µ
∂u

∂x
+ λ∇ · u, τyy = 2µ

∂v

∂y
+ λ∇ · u, τzz = 2µ

∂w

∂z
+ λ∇ · u, (2.3)

τxy = τyx = µ

(
∂u

∂y
+

∂v

∂x

)
, τxz = τzx = µ

(
∂u

∂z
+

∂w

∂x

)
, τyz = τzy = µ

(
∂v

∂z
+

∂w

∂y

)
,

(2.4)
where u, v, w are the components of the velocity vector u in Cartesian coordinates.

Not much is known about the second viscosity, however for gases a good approximation
can be obtained by taking the value λ = −2

3µ. In summary, substituting expressions for
the stress tensor components (2.3)-(2.4) into (2.2), we can write the following equations
for the momentum balance:

Du
Dt

= −
1

ρ
∇p + ν∇2u, (2.5)

where ν = µ/ρ is the kinematic viscosity.

The energy balance for general compressible fluid flow is described by the following
equation:

ρ
Di

Dt
= −p∇ · u −∇ · q + Φ, (2.6)

where i is the internal energy, q is the heat flux vector and Φ is the viscous dissipation
function. Fourier’s law of heat conduction relates the heat flux to the local temperature
gradient:

q = −k∇T, (2.7)

where k is the heat conduction coefficient. Substitution of (2.7) into (2.6) gives

ρ
Di

Dt
= −p∇ · u +∇ · (k∇T) + Φ. (2.8)
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All the effects due to viscous stresses in the internal energy equation (2.8) are described
by the dissipation function Φ, which can be shown (see [28]) to be equal to:

Φ = µ

{
2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2
]

+

+

(
∂u

∂y
+

∂v

∂x

)2

+

(
∂u

∂z
+

∂w

∂x

)2

+

(
∂v

∂z
+

∂w

∂y

)2

+ λ∇ · u

}
. (2.9)

The motion of the fluid in three dimensions in Cartesian coordinate system is described
by a system of five partial differential equations: mass conservation (2.1), the x−, y−, z−
projections of momentum equation (2.5) and the energy equation (2.8). The number of
unknowns is equal to seven (pressure p; three velocity components u, v, w, temperature
T , density ρ, internal energy i). Hence we need to formulate two additional equations.
Among the unknowns are four thermodynamic variables: density ρ, pressure p, internal
energy i and temperature T . Relationships between the thermodynamic variables can be
obtained through the assumption of thermodynamic equilibrium. The fluid velocities
may be large, but they are usually small enough that, even though the properties of
the fluid particle change rapidly from place to place, the fluid can thermodynamically
adjust itself to new conditions so quickly that the changes are effectively instantaneous.
Thus the fluid always remains in thermodynamic equilibrium. The only exceptions are
certain flows with strong shock waves.

We can describe the state of a substance in thermodynamic equilibrium by means of
just two state variables. Equations of state relate the other variables to the two state
variables. If we use ρ and T as state variables we can state equations for pressure p and
specific internal energy i:

p = p(ρ, T), i = i(ρ, T). (2.10)

For a perfect gas the following equations can be used:

p = ρRT, i = cvT, (2.11)

where R is the universal gas constant and cv is the constant volume gas heat capacity.

In the flow of compressible fluids the equations of state link the energy equation with
mass conservation and momentum equation. This link arises through the possibility of
density variations as a result of pressure and temperature variations in the flow field.
In the case of an incompressible fluid the energy equation can be decoupled from the
system and can be solved separately.

2.3 Mathematical formulation of the problem

For compressible flow of an ideal gas for which gravity forces are neglected the fluid
dynamics equations, are
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Figure 2.2: Sketch of the computational domain. Arrow indicates cooling jet.

Dρ

Dt
+ ρ∇ · u = 0, (2.12)

Du
Dt

= −
1

ρ
∇p + ν∇2u, (2.13)

ρ
Di

Dt
= −p∇ · u +∇ · k∇T + Φ, (2.14)

p = ρRT, and i = cvT, (2.15)

These equations hold in the domain sketched in Figure 2.2. It is given in Cartesian co-
ordinates by Ω =

{
(x, y, z) ∈ R3|0 ≤ x ≤ X, 0 ≤ y ≤ Y, 0 ≤ z ≤ Z

}
, where typical values

are X = 10−2 m, Y = 10−3 m, Z = 10−3 m. In order to close the mathematical for-
mulation we have to provide initial and boundary conditions. For initial conditions we
assume that at time t = 0 we have a boundary profile along the plate with a known
(Blasius) profile. A Blasius boundary layer profile is described by the solution of the
following differential equation

ff ′′ + 2f ′′′ = 0, f(η = 0) = 0, f ′(η = 0) = 0, f ′(η = ∞) = 1, (2.16)

where f(η) is a dimensionless stream function and η = y
(

U∞
νx

)
is the similarity variable

and U∞ is the main stream velocity at infinity. The equation (2.16) does not have an
analytic solution and must be solved numerically. The relation between η and corre-
sponding velocity components are given by

Ub = U∞f ′, Vb =
1

2

√
νU∞

x
(ηf ′ − f), Wb = 0, (2.17)
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Dimension Two-dimensional Three-dimensional
Boundary type Euler Navier-Stokes Euler Navier-Stokes

Supersonic inflow 4 4 5 5
Subsonic inflow 3 4 4 5

Supersonic outflow 0 3 0 4
Subsonic outflow 1 3 1 4

Table 2.1: Number of physical boundary conditions required for well-posedness of two-
and three-dimensional flows [69].

where U∞ is the free stream velocity and underscore b stands for Blasius. As initial
condition for temperature we assume uniform temperature T∞ in whole computational
domain.

Mathematically, the boundary conditions of a system of equations are subject to certain
requirements to make the problem well posed. The number of physical boundary con-
ditions for the well-posedness requirement for the Euler and Navier-Stokes equations
has been derived by Strikwerda in [69] and is stated in Table 2.1 for two- and three-
dimensional cases. These boundary conditions are provided by information about the
external flow, adjacent to the boundaries. In some cases, however, no accurate external
flow information is available, such as at the outflow boundary. Although mathemati-
cally only a certain number of boundary conditions is required, depending on the local
flow condition, numerically we should specify all the dependent variables. We call
the conditions completing the specification of the dependent variables the numerical
boundary conditions. Whereas the mathematical requirement for well-posedness got
general acceptance, there is still no method to specify numerical boundary conditions
if the required external information is lacking. Different methods are used in literature.
We discuss some in Chapter 6.

A detailed description of the boundary conditions can be found in Chapter 5, below
we just list all of them. As one can see from Figure 2.2, we have six planes which are
boundaries of the domain. At the side planes of the computational domain (z = 0 and
z = Z) we apply periodic boundary conditions. From the mathematical point of view
this means that cooling nozzles are periodically distributed infinitely in spanwise (z) di-
rection. At the inlet plane (x = 0) we prescribe boundary layer profile and temperature:

u(0, y, z, t) = Ub(y, z), (2.18)

v(0, y, z, t) = Vb(y, z), (2.19)

w(0, y, z, t) = Wb(y, z) = 0, (2.20)

t(0, y, z, t) = Tb(y, z), (2.21)

where underscore b stands for Blasius. Values of Ub, Vb one gets from the solution of
the equation (2.16) using formulas (2.17), also we assume Wb = 0. For temperature we
prescribe Tb = T∞, which is given.
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At the bottom plane (y = 0) we assume adiabatic wall conditions except for the cooling
nozzle, where the profile and temperature of the cooling jet are prescribed, so every-
where at y = 0 except for the hole

u(x, 0, z, t) = v(x, 0, z, t) = w(x, 0, z, t) = 0, (2.22)

∂T(x, 0, z, t)

∂y
= 0. (2.23)

At the exit of the film cooling hole we prescribe velocity profile and temperature distri-
bution

u(x, 0, z, t) = Uj(x, z, t), (2.24)

v(x, 0, z, t) = Vj(x, z, t), (2.25)

w(x, 0, z, t) = Wj(x, z, t), (2.26)

t(x, 0, z, t) = Tj(x, z, t), (2.27)

where underscore j stands for jet. There are several ways to prescribe velocity profile
and temperature distribution. The easiest is to assume a certain profile (like parabolic
profile for the velocity and uniform temperature distribution) or, if possible, we can use
results from experiments or external calculations. This is discussed in more details in
Chapter 7.

At the top plane (y = Y) we prescribe boundary conditions of radiation type (more
details one can find in Chapter 6).

At the outflow boundary (x = X) we assume stress free outflow in the tangential direc-
tion and that the derivative of the heat fluxes leaving the domain in streamwise direction
is zero

∂τxy

∂x
= 0,

∂τxz

∂x
= 0,

∂q

∂x
= 0. (2.28)

The pressure at the outlet boundary is forced towards its reference value by imposing

∂p

∂x
=

p∞ − p

X
, (2.29)

where subscript ∞ indicates a reference condition (again, as for velocity U∞, p∞ is free
stream pressure).

More about boundary conditions and their derivation and numerical implementation
one can find in Chapter 6.



Chapter 3

Local refinement strategies for
flow problems

Many boundary value problems produce solutions that have highly localized proper-
ties. Quite a number of methods have been developed to solve such problems efficiently,
most of them use the idea of grid refinement in the high activity regions and truly
non-uniform methods are widely used. However, the use of uniform grids has sev-
eral advantages compared to non-uniform ones. Most important advantages are simple
discretization stencils, fast solution techniques for solution of the systems, which re-
sults from discretizations of the governing equations on the uniform grids, simple data
structures. That is why the idea of local uniform grid refinement has been introduced
back in the 70’s. The most well known include adaptive mesh refinement (AMR) [9,52],
which was successfully applied to hyperbolic problems, the fast adaptive composite
grid (FAC) method [43] introduced for elliptic problems and local uniform grid refine-
ment (LUGR) [76, 81].

In this chapter we consider boundary value problems with solutions that have one or
a few small regions with high activity, of which the film cooling problem is a typical
example and present two methods to solve such problems, namely Local Uniform Grid
Refinement and Local Defect Correction [25]. The essence of both is the use of several
uniform grids with different grid sizes that cover different parts of the domain. At
least one grid should cover the entire domain and in the regions with high activity we
use local fine grids. The aim of the global coarse grid is to represent relatively smooth
behavior of the solution outside the high activity regions and the use of one or more
local fine grids allows us to represent the behavior of the solution in the corresponding
high activity region. Note that such composite grids are highly structured and hence
very simple data structures can be used, simplifying programming and data handling.
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3.1 A complexity estimate

It has been mentioned before that one of the main advantages of using local grid refine-
ment is the fact that while keeping the required resolution in the high activity area, we
reduce the total number of grid points in the whole computational domain. Let us con-
sider the efficiency of this procedure. An important theoretical instrument to judge the
efficiency of a method is a complexity estimate. Below we present a typical case to com-
pare the efficiency of the local grid refinement algorithms with an equivalent uniform
fine grid.

Figure 3.1: Cubic high activity area in a stretched domain.

To start with, consider a problem where the high activity subdomain is a cube within
the global domain, as sketched in Figure 3.1. We assume that the global domain is a
stretched block with a square cross-section. The area of high activity is a cube inside the
global domain (see Figure 3.1).

Assume that the global domain is covered by a uniform grid. For simplicity we assume
that the grid size is the same in each direction. In particular, the number of grid points
is equal along the y- and z-axes, say N. Since the length of the global domain is larger
and we assume that the mesh sizes are identical in every direction, the number of grid
points in x-direction is larger than in the other two directions and is, say, AN (A > 1).
The number of coarse grid points in the global domain is therefore equal to AN3. Let
the area of the high activity be covered by a fine mesh with the same grid size in every
direction. We introduce the refinement factor σ := H/h, where H is the step size in the
global grid and h is the step size for the local fine grid. Then in y- and z-direction we
have again the same number of grid points, say M. Let the length of the high activity
region in x-direction be l and let it be proportional to the length of the global domain
L with factor β, β = l/L, 0 < β ≤ 1. Then the number of points needed for the local
fine grid is AN3σ3β and the total number of points needed for the local uniform grid
refinement method is

NLUGR = AN3 + AβN3σ3. (3.1)
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For the equivalent uniform fine grid which covers the whole global domain we need
the following number of points:

Nun = A3N3σ3. (3.2)

We can define the gain G in the number of grid points of LUGR over the number of
points for the equivalent uniform fine grid as the following ratio

G :=
Nun

NLUGR
. (3.3)

Substituting (3.1) and (3.2) into (3.3), we find that

G =
AN3σ3

AN3 + AβN3σ3
=

σ3

1 + βσ3
. (3.4)

Assuming that β ¿ 1 (the fine grid covers a small part of the global domain), we get
that

G ≈ σ3. (3.5)

3.2 Basics of the Local Uniform Grid Refinement technique

Local Uniform Grid Refinement (LUGR) is an adaptive grid technique for computing
solutions of partial differential equations, that have local high activity regions. Using
nested, finer and finer, uniform subgrids, the LUGR technique allows to refine the space
grid locally around these high activity regions, and to avoid discretization on a very fine
grid covering the entire physical domain. By refining only parts of the domain LUGR
saves computer memory and computational time. LUGR should be contrasted to point-
wise grid refinement, which leads to nonuniform grids. Typical problems solved with
LUGR include steep moving fronts, boundary layers, moving pulses, etc [76]. For time-
dependent problems, LUGR can be combined with static regridding. Static regridding
means that while the solution advances in time, the space grid is adapted at discrete
times.

The ideas, which lead to the LUGR technique, first appeared in [52]. The properties of
LUGR for stationary problems were analysed in [81], in combination with explicit time
schemes (namely Runge-Kutta) in [77] and for implicit Euler in [76].

The idea of the LUGR method can be briefly described as follows. Given a coarse base
space grid and a base temporal step size, finer and finer uniform subgrids are generated
in the areas of high activity (that is where solution changes rapidly). These subgrids
have in general nonphysical boundaries and on each of these subgrids we compute
local solution. They are generated up to the level of refinement good enough to resolve
the anticipated fine scale structures (this scale is know in advance). Having completed
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the refinement for the current base time step, the process is continued to the next base
time step, while starting again from the base coarse grid.

An attractive feature of the static regridding LUGR approach is the possibility of divid-
ing the whole solution into the following computational procedures: spatial discretiza-
tion, temporal integration, error estimation, regridding and interpolation. Depending
on the application, these individual procedures can be quite simple or very sophisti-
cated. This flexibility is attractive since it makes it possible to treat different types of
problems with almost the same code assuming that the grid structure and the associ-
ated data structure remains unchanged.

There are several versions of the LUGR algorithm, the most simple one uses two grids
for stationary problems (see Figure 3.2).

Figure 3.2: Scheme of the LUGR algorithm with two grids for stationary problems.

Algorithm 1

LUGR algorithm with two grids for stationary problems

1. Discretize and solve on the coarse grid

2. Decide where to place local fine grid

3. Get boundary conditions for the fine grid problem from the coarse grid

4. Discretize and solve on the fine grid

5. Update the coarse grid with the new solution of the fine grid
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For time-dependent problems the LUGR algorithm has to be corrected taking into ac-
count the following issues: high activity can travel with a certain velocity through the
computational domain and time advancement schemes have requirements on the ratio
between time and space step sizes (like CFL condition). The description of the modified
LUGR algorithms and their analysis for time-dependent problems one can find in [77]
for explicit time schemes (namely Runge-Kutta) and in [76] for implicit Euler. For the
film cooling problem we have a situation where the high activity region we are inter-
ested in is stationary in the space domain. Below one can find the LUGR algorithm for
time-dependent problems with a stationary high activity region in case of an explicit
time advancement scheme (see Figure 3.3). Due to the stability restrictions on the size
of the time step, if we make the space step size smaller, we also have to take smaller
time steps. Starting from the coarse grid solution at time tn we make one ”coarse” grid
time step and several ”fine” grid time steps to arrive at the point tn+1. At tn+1 we sub-
stitute the fine grid solution for the coarse grid points that are located within the area of
refinement. This all is summarized in Algorithm 2.

Figure 3.3: Scheme of the LUGR algorithm with two grids for time-dependent problems.

Algorithm 2

LUGR algorithm with two grids for time-dependent problems

1. Discretize and solve on the coarse grid with the coarse grid time step ∆t from
t = tn to t = tn+1

2. Get boundary conditions for the fine grid problem from the coarse grid at t = tn

3. Discretize and solve m-times on the fine grid with the time step τ = ∆t
m starting

from t = tn, where m is the refinement factor in time.

4. Update the coarse grid at t = tn+1 with the new solution of the fine grid at t = mτ
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3.3 Basics of the Local Defect Correction technique

As mentioned in the previous section, the LUGR technique has quite a lot of advantages,
which makes it favorable for time-dependent problems with localized high activity ar-
eas, like boundary layer type of problems. However, as one can see from [45], there are
certain situations when the LUGR algorithm is not able to produce adequate results. As
was pointed out in [4], one of the main features of LDC compared to other local grid re-
finement methods is the use of two-way coupling between grids, as a simple approach
of only coarse to fine grid may work for hyperbolic problems but not for elliptic [45].
Therefore in this section we introduce another local grid refinement strategy, namely
Local Defect Correction (LDC) method (see [25]). In this method, which is an iterative
process, a basic global discretization is improved by local discretizations defined in the
subdomains. The update of the coarse grid solution is achieved by putting a defect cor-
rection term in the right hand side of the coarse grid problem. At each iteration step,
the process yields a discrete approximation of the continuous solution on the composite
grid. The discrete problem that is actually being solved is an implicit result of the itera-
tive process. Therefore, the LDC method is both an iterative discretization and solution
method.

The LDC technique was analysed in combination with finite difference discretizations
in [20, 21] for diffusion and convection-diffusion problems . Combination of the LDC
method with finite volume discretizations was proposed in [3,6,79] and application of it
for numerical simulations of the flow and heat transfer in a glass tank was done in [49].
LDC for time-dependent problems is studied in [44, 45]. Further development of the
LDC technique for parabolic problems in finite volume context one can find in [46]. The
LDC method also allows to combine different grid types. In [50] a combination of a
Cartesian coarse grid and a local polar grid is presented and in [24] a Cartesian coarse
grid is combined with a slanted local one.

Let us consider the following stationary problem

{
Lu = −ε∇2u(x, y) + c · ∇u(x, y) = f(x, y) in Ω,

u = g on Γ.
(3.6)

In (3.6), L is a linear elliptic differential operator, and f and g are the source term and
Dirichlet boundary condition, respectively, ε > 0 is the diffusion coefficient, c is the
convection coefficient, u is the unknown function, Ω is the domain of interest and Γ is
the boundary of this domain.

Following [5], we introduce the basics of the Local Defect Correction technique. In order
to discretize (3.6), we first choose a global coarse grid (grid size H), which we denote by
ΩH . The next step is to find an initial approximation uH

0 on ΩH by solving the system

LHuH
0 = fH

, (3.7)
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which is a discretization of boundary value problem (3.6). In (3.7), the right hand side
fH incorporates the source term f as well as the Dirichlet boundary condition g.

Now, assume that the continuous solution u of (3.6) has a high activity region in some
(small) part of the domain. This high activity could either be caused by the bound-
ary conditions or the source term. We would like to capture this high activity of u by
discretizing (3.6) on a composite grid. The position of this high activity region can be
detected by various methods, for example by calculating the gradient, see [8] for details.
So we choose Ωl ⊂ Ω such that the high activity region of u is contained in Ωl. If we
have more than one high activity region, one may take more regions of refinement. In
Ωl, we choose a local fine grid (with grid size h), which we denote by Ωh

l . The fine grid
is chosen such that ΩH ∩Ωl ⊂ Ωh

l , i.e., grid points of the global coarse grid that lie in
the area of refinement belong to the local fine grid too. See Figure 3.4 for an example
composite grid.

Figure 3.4: A global coarse and a local fine grid. The darker area is the area of high
activity Ωl. The interface Γ is dashed. Large light colored circles are nodes of the coarse
grid, large dark colored circles are boundary points, smaller circles, not located on the
domain boundary or the interface, are nodes of the local fine grid.

Now we have to define a local discrete problem on Ωl. So we define artificial boundary
conditions on Γ , the interface between Ωl and Ω \ Ωl. Since on Γ we have more fine
grid points than coarse grid ones, we prescribe artificial Dirichlet boundary conditions
by applying an interpolation operator Ph,H. The operator Ph,H maps function values at
grid points of the coarse grid that lie on the interface, denoted by ΓH, to function values
at grid points of the fine grid that lie on the interface, denoted by Γh. If we denote the
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vector space of grid functions on ΓH by G(ΓH), and likewise introduce G(Γh), we have
Ph,H : G(ΓH) −→ G(Γh). In practice, we take Ph,H to be the linear interpolation operator
on the interface for simplicity.

In this way, we find the following approximation uh
l,i , i = 0, on Ωh

l

Lh
l uh

l,i = fh
l

(
uH

i |Γ
)
. (3.8)

In (3.8), the matrix Lh
l is a discrete approximation of the differential operator L on the

subdomain Ωl, and the first term on the right hand side fh
l incorporates the source term

f as well as the Dirichlet boundary condition g on ∂Ωl\Γ given in (3.6). The dependence
on the coarse grid approximation via the artificial Dirichlet boundary condition is made
explicit by writing fh

l (uH
i |Γ ).

When boundary value problem (3.6) has been discretized and solved on a coarse grid,
and when an area of the coarse grid has been refined and a local solution has been
calculated on the finer grid, we can define a composite grid approximation uH,h

0 as

uH,h
0 (x, y) :=

{
uh

l,0(x, y), (x, y) ∈ Ωh
l ,

uH
0 (x, y), (x, y) ∈ ΩH \ Ωh

l .
(3.9)

So for the coarse grid points within the region of the refinement we have two solutions,
one coming from the coarse grid and another from the fine grid. We will now use the
local fine grid solution to update the coarse grid approximation. This update can be
achieved by projecting the more accurate fine grid solution onto the local coarse grid,
and by calculating the residual of the projected solution. Since the coarse grid points
belong to the fine grid too, we simply restrict the fine grid solution to those points.
The calculated residual is an estimate of the local discretization error of the coarse grid
discretization. The estimate is used to formulate a modified discrete problem on the
coarse grid. This is considered in more detail below.

The grid points of the coarse grid will be partitioned as ΩH = ΩH
l ∪ ΓH ∪ ΩH

c , where
ΩH

l := ΩH ∩ Ωl, Γ
H := ΩH ∩ Γ and ΩH

c := ΩH \ (ΩH
l ∪ ΓH). If we would substitute

the projection on ΩH of the exact solution u of boundary value problem (3.6) into the
coarse grid discretization (3.6), we would find the local discretization error or defect dH,
given by LH(u|ΩH) = fH + dH. If we would know the values of the defect dH, we could
use them to find a better approximation on the coarse grid. This could be achieved by
putting the defect vector on the right hand side of (3.6). However, as we do not know
the exact solution of the boundary value problem, we cannot calculate dH. What we can
do though, is to use the approximation uh

l,0 calculated on the local fine grid to estimate
dH at the coarse grid points (x, y) ∈ ΩH

l . Define wH
0 ∈ G(ΩH) as the global coarse grid

function of best approximations sofar, i.e.

wH
0 (x, y) :=

{
uh

l,0(x, y), (x, y) ∈ ΩH
l ,

uH
0 (x, y), (x, y) ∈ ΓH ∪ΩH

c .
(3.10)



3.3 Basics of the Local Defect Correction technique 29

Next, we estimate the defect by dH = LH(u|ΩH) − fH ≈ LHwH
0 − fH =: dH

0 . Assuming
that the stencil at grid point (x, y) involves (at most) function values at (x + iH, y + jH)

with i, j ∈ {−1, 0, 1}, dH
0 provides an estimate of the local discretization error of the

coarse grid discretization at all points of ΩH
l . Therefore, we can update the coarse grid

approximation by placing the estimate at the right hand side of the coarse grid equation
(3.6). This leads to the coarse grid correction step to find uH

i , i = 1, on the coarse grid

LHuH
i = fH

i−1, (3.11)

where

fH
i (x, y) :=

{
fH(x, y) + dH

i (x, y), (x, y) ∈ ΩH
l ,

fH(x, y), (x, y) ∈ ΓH ∪ΩH
c .

The correction step (3.11) produces a new solution uH
1 on the coarse grid. Because (3.11)

incorporates estimates of the local discretization error of the coarse grid discretization,
the new solution uH

1 is assumed to be more accurate than uH
0 . Hence, the new solution

uH
1 provides a better boundary condition on the interface. A better solution on the local

fine grid can be found as before by solving (3.8) with i = 1.

Figure 3.5: Scheme of the LDC algorithm with two grids.

To summarize, we have the following iterative method (with desired accuracy δ ) (see
Figure 3.5).

Algorithm 3.
Two-grid LDC algorithm with area of refinement chosen a priori
Initialization

• Solve the basic coarse grid problem (3.7).
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• Solve the local fine grid problem (3.8).

Iteration, i = 1, 2, . . ., until ||uH,h
i − uH,h

i−1 ||∞ ≤ δ

• Solve the updated coarse grid problem (3.11).

• Solve the local fine grid problem (3.8).

For the time–dependent case let us consider the following two-dimensional problem:





∂u(x, y, t)

∂t
= Lu(x, y, t) + f(x, y, t) in Ω×Θ,

u(x, y, t) = ψ(x, y, t) on Γ ×Θ,

u(x, y, 0) = φ0(x, y),

(3.12)

where Θ = (0, tend) is the time interval, Ω, Γ, L were introduced before, ψ(x, y, t) is the
boundary condition and φ0(x, y) is the initial condition. We assume that u has a region
of high activity that covers a small part of Ω. We discretize our problem (3.12) in time
using an implicit time scheme (one can think of implicit Euler as the simplest example).
As for space discretization, we can use any scheme of our choice, which provides stable
results (for example second–order finite differences for diffusive terms and first-order
upwind for convective). Again, as in previous examples, the LDC method does not
restrict us to use the same schemes for the fine and coarse solution. In addition to the
notation used in previous section, we introduce the following things: superscript n for
indication of the time level n, coarse grid time step ∆t = tn+1 − tn, fine grid time step
τ = ∆t

m , where m is the time refinement factor (one can think for simplicity that m = σ).
For time-dependent problems we also have to provide initial conditions. The natural
way to get an initial condition for the fine grid is to interpolate values from the available
coarse grid solution. Another difficulty is that the artificial boundary conditions may
change from one fine grid time step to another (but still being within the same coarse
time step). In order to tackle this we can use time interpolation of the corresponding
values between time tn and tn+1. More detailed information on time-dependent LDC
techniques one can find in [44].

For time–dependent problems, we can use the following LDC algorithm [44]

Algorithm 4.
LDC algorithm for a time-dependent problem
FOR LOOP (time), n = 1, 2, . . . ,N

Initialization

• Solve the basic coarse grid problem and get un
H,0

• Choose a region of refinement, introduce a fine grid Ωl
h on it, divide

the time step [tn−1, tn] in subintervals ∆τ.

• Compute an initial condition for the local problem.

• Compute a boundary condition for the local problem.
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• Compute a local approximation un,l
h,0, solving the local problem

Iteration, i = 1, 2, . . . , κ

– Use un,l
h,i−1 to compute an approximation of the local discretization

error
– Solve the updated coarse grid problem and get un

H,i.
– Use un

H,i to update boundary conditions for the local problem
– Solve the local fine grid problem.

End iteration on i

• Go to the next time step

END FOR LOOP (time)





Chapter 4

Analysis of the convergence of
the Local Defect Correction
technique

In this chapter we study the convergence behavior of the Local Defect Correction (LDC)
technique, introduced in Section 3.3. It should be noted that previously LDC was used
mostly for diffusion problems [3]. For flow problems (like the film cooling one) we have
both convection and diffusion, so we need additional testing for LDC on such problems.
In this chapter the major objective is to extend the results for pure diffusion problems to
convection-diffusion problems. The model problem of interest we study in this chapter
is given by

{
εu ′′(x) + cu ′(x) = f(x), c, ε > 0 x ∈ (0, 1),

u(0) = u0, u(1) = u1,
(4.1)

where the diffusion parameter ε may be (very) small. We introduce the parameter
κ = c/ε. Previous papers [3, 19] studied convection-diffusion equations, where the
convection and diffusion coefficients are of the same order of magnitude. However,
we would like to study the properties of the LDC technique for convection-dominated
problems too. For our experiments we specifically take the convection coefficient c to
be fixed and the diffusion coefficient ε to be variable. For small ε this approach could
also be interpreted as a transformation of the pure convection problem into a two point
boundary value problem by means of adding ‘small’ diffusion.
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4.1 Theoretical estimation of the convergence rate

As one can see from Section 3.3, the LDC algorithm is an iterative process. According to
[5], the LDC iteration can be expressed in terms of an iteration matrix, whose properties
are studied analytically and experimentally for the two-dimensional Poisson equation
discretized by finite differences. In general, it is observed that LDC converges very fast
and that iteration errors are reduced by several orders of magnitude at each iteration
step. In [5] it is shown that the LDC iteration can be formulated in terms of coarse grid
points located at the interface only. Suppose we have a high activity area in the left part
of the one-dimensional domain, from point x = 0 to point x = γ, so Ωl = (0, γ). For our
one-dimensional problem, the interface between the global coarse and local fine grid
consists of the single point x = γ. For this reason, the iteration matrix M from [5] is a
scalar quantity that we will denote by M. We would like to have fast convergence of our
iterative process and therefore we want to study the influence of various parameters
on the convergence rate. In the following sections we present first theoretical results
for the convergence rate, which in the subsequent section are illustrated by numerical
experiments.

We can write the following expression M

M = M1M2, (4.2)

where

M1 =
(

0 I 0
) (

LH
)−1




I
0
0


 , (4.3)

M2 = BH
l,Γ − LH

l RH,h
(

Lh
l

)−1

Bh
l,Γ , (4.4)

where RH,h is a restriction operator from the fine to the coarse grid, LH is is a discrete
approximation of the differential operator L on the global domain, Lh

l is a discrete ap-
proximation of the differential operator L on the subdomain Ωl and BH

l,Γ reflects the
dependence on artificial Dirichlet boundary condition.

In the following we look at M2 since it has the major effect on the convergence rate.
Indeed, we have

|M| =‖ M ‖∞≤‖ M1 ‖∞‖ M2 ‖∞≤ 1

8
‖ M2 ‖∞ .

The last inequality is a well known result, see, e.g., [26]. We would like to show that
|M| < 1, which means that the LDC algorithm converges to a fixed point. For this
reason we let g ∈ R and analyse M2g. Consider

M2g =

(
BH

l,Γ − LH
l RH,h

(
Lh

l

)−1

Bh
l,Γ

)
g = BH

l,Γg − LH
l RH,hvh

l , (4.5)

where
vh

l =
(

Lh
l

)−1

Bh
l,Γg.
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Rewriting, we find
Lh

l vh
l + Bh

l,Γ (g) = 0. (4.6)

According to the definitions of the matrices Lh
l , Bh

l,Γ , this is a discretization on the local
fine grid of the following boundary value problem

{
εu ′′(x) + cu ′(x) = 0,

u(0) = 0, u(γ) = −g.
(4.7)

In the following we study the convergence behavior of the LDC algorithm and consider
the following combinations of discretization schemes

• Central differences both for fine grid and coarse grid. Here (on the coarse grid
e.g.) we approximate the second derivative u ′′i by the following expression

u ′′i =
ui−1 − 2ui + ui+1

H2
(4.8)

and the first derivative u ′i by

u ′i =
ui+1 − ui−1

2H
. (4.9)

• Upwind both for fine grid and coarse grid. We approximate the second derivative
by (4.8) and the first derivative by

u ′i = φ
ui − ui−1

H
+ (1 − φ)

ui+1 − ui

H
, (4.10)

where

φ =

{
1, c < 0

0, c ≥ 0

and c is the convection coefficient in (4.1).

• Upwind for coarse grid and central differences for fine grid. In this case we use
(4.8) and (4.10) on the coarse grid and (4.8) and (4.9) on the fine grid.

4.2 Analysis for central differences on both grids

Assume we use the central difference scheme (see (4.8) and (4.9)) both for fine and coarse
grids. Using the fact that we can get an explicit formula for the solution vh

l (see, for
example [64]), we can write the following

vh
l (i) = −g

1 − τi

1 − τn
, i = 0, 1, . . . , n, (4.11)
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with
τ =

1 + d

1 − d
, d = −

ch

2ε
= −

κh

2
.

Now we analyse
z := M2g = BH

l,Γg − LH
l RH,hvh

l . (4.12)

According to (4.4), z is the residual we find by substituting the local fine grid solution
vh

l into the coarse discretization.

Therefore we can write the following expression for zi, the i-th component of z

zi =
1

H2

[(
−1 −

κH

2

) (
vh

l

)
i−1

+ 2
(
vh

l

)
i
+

(
−1 +

κH

2

) (
vh

l

)
i+1

]

=
−g

H2

[(
−1 −

κH

2

)
1 − τσ(i−1)

1 − τn
+ 2

1 − τσi

1 − τn
+

(
−1 +

κH

2

)
1 − τσ(i+1)

1 − τn

]
, (4.13)

where σ := H/h is the refinement factor and the subscript i, i = 1, 2, . . . , k − 1 denotes
the coarse grid point inside the fine grid region.

We find

zi =
−gτσ(i−1)

1 − τn

1

(1 − d)σ

1

H2

[
(1 + σd)(1 − d)σ − 2(1 + d)σ + (1 − σd)

(1 + d)2σ

(1 − d)σ

]
.

(4.14)

As one can see from (4.14), the convergence rate depends on the following factors:
coarse grid mesh size H, refinement factor σ (or, which is the same, fine grid mesh
size h), factor κ = c/ε. Below we study the influence of each of these parameters on zi

separately.

First we study the influence of the coarse grid mesh size H on the convergence rate, so
we fix κ and σ and make a Taylor series expansion around d = 0 (since d = ch/(2ε), so
d = cH/(2εσ) = κH/(2σ) and d → 0 is equivalent with H → 0).

zi =
−gτσ(i−1)

1 − σn
1

1

(1 − d)σ

1

H2

[
−4

3

(
1 −

1

σ2

)
(σd)4 + O(d5)

]

=

(
1 −

1

σ2

)
gτσ(i−1)

1 − τn

1

(1 − d)σ

κ4

12
H2 + O(H3). (4.15)

For fixed κ and σ, 1
(1−d)σ converges to 1 for H → 0. The only terms that depend on H

left are gτσ(i−1)

1−τn and H2. We analyze the behavior of the first for H,h → 0. Expansion
gives:

τ =
1 − κh

2

1 + κh
2

=

(
1 −

κh

2
+ O(h2)

)2

= 1 − κh + O(h2),
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τn =
(
1 − +κh + O(h2)

)n
=

(
1 −

κγ

2
+ O

(
1

n2

))n

→ exp (−κγ) (n → ∞).

From (4.15) we can see that the convergence rate depends on the coarse grid size H as
O(H2) and does not depend on the fine grid size h. In Figure 4.1 we present dependence
of the convergence factor M on different variables: coarse grid mesh size H (in this case
we keep κ = 20, σ = 2), refinement factor σ (κ = 20, H = 0.01) and factor κ = c/ε

(H = 0.01, σ = 2). As one can see in Figure 4.1 (a), we have O(H2) dependence of the
convergence rate on coarse grid mesh size H indeed.

10
−5

10
−4

10
−3

10
−2

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

H

M

(a) κ = 20, σ = 2

0 10 20 30 40 50
3

3.2

3.4

3.6

3.8

4

4.2
x 10

−5

σ

M

(b) κ = 20, H = 0.01

0 200 400 600 800 1000
10

−40

10
−30

10
−20

10
−10

10
0

κ
M

(c) H = 0.01, σ = 2

Figure 4.1: Dependence of the convergence factor M on the coarse grid mesh size H (a),
refinement factor σ (b) and factor κ = c/ε. (c)

Next we study the influence of the refinement factor σ on the convergence rate. From
(4.14) we expect to have a weak dependence on the refinement factor. To see if this is
true, we fix all parameters for the fine grid except the fine grid step size h, and therefore
σ, and calculate the convergence factor M. As can be seen from Figure 4.1 (b), indeed
we have minor dependence of the convergence factor M on the refinement factor.

Finally, we study the influence of the factor κ = c/ε on the convergence rate. Since our
problem of interest is convection dominated, using the central difference scheme for
the coarse grid discretization is not desirable. Indeed, the stability of central differences
requires the mesh size to be of order ε to avoid oscillations; and that is the behavior we
see in Figure 4.1 (c). As long as the Péclet number is smaller than 2 (stability constraint
for central differences), the convergence factor decreases as κ increases. For κ > 200, the
central difference scheme breaks down. This is too restrictive and in such a case we do
not need LDC at all, since with such a small step size we will resolve the whole problem.
However, the amount of computational work increases tremendously. For this reason
the central difference approximation is not suitable as a coarse grid approximation in
our LDC method for convection-dominated problems.

Nevertheless, note that one of the nice properties of the LDC technique is that it con-
verges, even for unstable numerical schemes, both on fine and coarse grids. An illus-
tration of this fact can be found in Figure 4.2. The Péclet number Pe, calculated for
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the coarse grid mesh size is 5000 and for the fine grid 1000, so our central difference
scheme is completely unstable (see Figure 4.2 (a), solid line is exact solution). How-
ever, after a number of iterations the solution becomes better and better, and the LDC
method slowly converges (see Figure 4.2 (b)). Because the local grid is much finer than

(a) Initial solution (b) Solution after 20 iterations

Figure 4.2: Central differences both for fine and coarse grids.

the global one, there is one more possibility to use central differences namely for the
fine grid approximation, a detailed analysis of which is presented in Section 4.4.

4.3 Analysis for upwind scheme on both grids

Next we consider the upwind discretization scheme for the convection term in (4.1) (see
(4.8)) and we use it both for the fine and coarse grid discretization. The first part of the
analysis is the same as in Section 4.1 up to (4.7). For the upwind scheme we get the
following expression for vh

l

vh
l (i) = −g

1 − τi

1 − τn
, i = 0, 1, . . . , n, (4.16)

with

τ = 1 + d, d = −
ch

ε
= −κh.

Proceeding as in Section 4.2 (see (4.13)-(4.14)), the components of

z := M2g = BH
l,Γg − LH

l RH,hvh
l (4.17)
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can be written as

zi =
−gτσ(i−1)

1 − τn

1

H2

[
1 + σd − 2(1 + d)σ − σd(1 + d)σ + (1 + d)2σ

]
. (4.18)

As one can see from (4.18), the convergence rate depends on the coarse grid mesh size
H, the refinement factor σ and the factor κ = c/ε. We now analyse the effect of H, σ and
κ more carefully.

First we study the influence of the coarse grid mesh size H on the convergence rate. We
can show that for fixed κ and σ we have

zi =
1

2
g

τσ(i−1)

1 − τn
κ3 σ − 1

σ
H + O(H2). (4.19)

Now we can analyse each term in the relation (4.19). The factor 1
2gκ3 σ−1

σ is just a con-
stant. The only term left is τσ(i−1)

1−τn . We analyse its behavior for H,h → 0.

Expansion gives:

τn =
(
1 − κh + O(h2)

)n
=

(
1 −

κγ

n
+ O

(
1

n2

))n

→ exp (−κγ) (n → ∞).

From (4.19) we can see that our convergence rate depends on the coarse grid size H as
O(H) and does not depend on the fine grid size h. This type of behavior one can observe
in Figure 4.3 (a). Next we study influence of the refinement factor σ on the convergence
rate. If we fix H and σ, we expect the convergence factor to have a minor dependence
on the refinement factor. To see if this is true, we fix all the parameters except fine grid
step size h, and therefore σ, and calculate the convergence factor M. As can be seen
from Figure 4.3 (b), indeed we have only weak dependence of the convergence factor M

on the refinement factor. Finally, we investigate the influence of the factor κ = c/ε on
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Figure 4.3: Dependence of the convergence factor M on the coarse grid mesh size H (a),
refinement factor σ (b) and factor κ = c/ε. (c)

the convergence rate. If we fix H and σ, we expect fast convergence for κ À 1, because
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in this case the factor τσ(i−1)

1−τn in (4.19) tends to zero. Indeed, as one can see in Figure 4.3
(c), with ε tending to zero (that is κ = c/ε → ∞) we have a dramatic improvement of
the convergence factor M.

4.4 Analysis for upwind scheme on the coarse grid and
central difference scheme on the fine grid

As it was mentioned in Section 4.2, there is one more possibility to use central differ-
ences, namely for the fine grid approximation. In this case we have to use a small
mesh size precisely in the region where we really need it. In order to better under-
stand the convergence properties of the combination upwind for the coarse grid and
central differences for the high activity region, we perform an analysis, similar to those
in Sections 4.2, 4.3. For this discretization we obtain the following expression for zi ,
i = 1, 2, . . . , k − 1

zi =
1

H2
(−g)

τσ(i−1)

1 − τn

[
1 + 2σd − 2

(
1 + d

1 − d

)σ

− 2σd

(
1 + d

1 − d

)σ

+

(
1 + d

1 − d

)2σ
]

, (4.20)

where

σ = H/h, d = −
ch

ε
= −κh, τ = 1 + d.

For fixed κ and σ we get

zi = (−g)
τσ(i−1)κ3

1 − τn
H + O(H2). (4.21)

As can be seen from (4.21), for the combination of upwind for the coarse grid and central
difference for the fine grid our convergence factor M depends on the coarse grid size H

like O(H) and this is the same behavior as for the combination upwind plus upwind.
This can be seen in Figure 4.4 (a). Again we want to study the influence of different
factors on the convergence rate. We expect to have weak dependence on the refinement
factor. To see if it is true, we fix all the parameters except the fine grid step size h, and
therefore σ, and calculate the convergence factor M. As can be seen from Figure 4.4 (b),
indeed we have minor dependence of the convergence factor M on the refinement fac-
tor. Finally we study the influence of the refinement factor κ = c/ε on the convergence
rate. For fixed H and σ, we expect fast convergence in the case κ À 1. Indeed, as one
can see in Figure 4.4 (c), with ε tending to zero (that is κ = c/ε tends to infinity) we have
a dramatic improvement of the convergence factor M. This can be explained by the fact
that in this case the factor τσ(i−1)κ3

1−τn in (4.21) tends to zero.
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Figure 4.4: Dependence of the convergence factor M on the coarse grid mesh size H (a),
refinement factor σ (b) and factor κ = c/ε (c)

4.5 Numerical results

The first goal of the numerical simulations is to check whether our LDC algorithm works
for convection-diffusion equations and whether the convergence in the numerical sim-
ulations is as predicted in Sections 4.1-4.4. We will also compare the observed conver-
gence behavior with the predictions of the convergence rate according to [5, Theorem
2].

We apply the theory now to (4.1). The source term f and the boundary conditions u0

and u1 are chosen such that

u(x) =
1

2
(tanh(50(x − 1/8)) + 1). (4.22)

The following parameters were chosen for computations: κ = 100 (convection-dominated)
or κ = 0.1 (diffusion-dominated), γ = 0.3. As discretization schemes we choose central
differences or upwind.

We estimate the convergence rate M by Mi defined as

Mi := ‖∆fH
i ‖∞/‖∆fH

i−1‖∞, i = 1, 2, . . . (4.23)

where ∆fH
i = fH

i − fH
i−1 and fH

i is

fH
i (x, y) :=

{
fH(x, y) + dH

i (x, y), (x, y) ∈ ΩH
l ,

fH(x, y), (x, y) ∈ ΓH ∪Ωh
c .

(4.24)

Of course, as one can see from (4.23), our estimate becomes less reliable if we have
fast convergence and thus small Mi , say Mi < 10−8 . In Section 4.1 we have found
that the convergence in the numerical simulations depends on H, σ and κ. To verify
the dependence found in theory, we will first study convection-dominated problems
(κ = 100) and then diffusion-dominated problems (κ = 0.01).
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As for numerical experiments, we provide several examples, which represent typical
results we get.

Example 1. Convection-dominated problems. Central difference scheme. First we
would like to study the dependence of the convergence factor M when we use central
difference discretizations on both the global coarse and local fine grids. To this end
we vary the coarse grid and fine grid mesh sizes H and h; if we fix H and vary h, we
can study the influence of the refinement factor σ = H/h. In Figure 4.5 we show the
dependence of the convergence rate on h and hence σ for several values of H. Figure
4.5 (a) shows the theoretical convergence rate given by [5, Theorem 2]; Figure 4.5 (b)
shows the estimate Mi from (4.23) for i = 2. Indeed, as it was predicted, there is only
a weak dependence on σ. As one can see from Figure 4.5 (b), we have a flat graph of
the convergence rate as h tends to zero, which means we have no dependence of the
convergence rate on σ. The values of h are decreasing from right to left, so we can say
that from right to left h tends to zero (and consequently σ tends to infinity). From the
theory it was predicted that we have no dependence of the convergence rate M on the
fine grid mesh size h (and refinement factor σ), so from our test we want to have a
flat line. This is indeed true in Figure 4.5. In Figure 4.6 we show the dependence of

(a) Theoretical result (b) Result of real computation

Figure 4.5: Dependence of the convergence rate on h. Central differences, κ = 100

(Example 1).

the convergence rate on H for several values of h. Figure 4.6 (a) shows the theoretical
convergence rate given by [5, Theorem 2]; Figure 4.6 (b) shows the estimate Mi from
(4.23) for i = 2. In Figure 4.6 (b) one can see the typical dependence of the convergence
rate on the coarse grid size H. From the theory in Section 4.2 we expect our convergence
rate M not to depend on the fine grid mesh size h and to depend on the coarse grid
mesh size as O(H2). This is the behavior we find in Figures 4.5 and 4.6. The numerical
results confirm the analytical results from Section 4.2. We should remark that these
results correspond to the ones in [5, Theorem 2]. The insight given by theory about the
dependence of the convergence factor M on the coarse grid mesh size H is confirmed
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(a) Theoretical result. (b) Result of real computation.

Figure 4.6: Dependence of the convergence rate on coarse grid size H. Central differ-
ences, κ = 100 (Example 1).

by the numerical experiment. We are able to correctly predict the convergence rates.

Example 2. Convection-dominated problems. Upwind scheme. In this section we use
the upwind discretization on both grids and carry out the same experiments as for cen-
tral differences. First we study if the convergence factor M depends on the refinement
factor σ and on the coarse grid mesh size H. From the theory presented in Section 4.4
we expect to have no dependence of the convergence factor on the fine grid mesh size.
As for coarse grid mesh size H we expect an O(H) dependence. This dependence is
indeed observed in the numerical experiments. This can be seen in Figure 4.7 in which
we show the estimate Mi for the convergence rate for varying h and H. We have not
provided the convergence rate predicted by theory as these figures are almost identical
(just like in Figures 4.5 and 4.6 in the previous example).

Example 3. Diffusion-dominated problems. Central difference scheme. For diffusion-
dominated problems (here we consider κ = 0.01) the convergence factor M is typically
of order 10−8. Therefore the LDC iteration reaches its fixed point in one or two steps
and it is hard to estimate the convergence factor reliably (see (4.23)). It was known from
previous articles (see [19–21]) that the LDC algorithm performs well for pure diffusion
problems, so it is not surprising that in the case of diffusion-dominated problems (with
presence of small convection) the LDC method gives fast convergence. Some results for
the diffusion-dominated problem one can find in Figure 4.8.

Example 4. Pure convection problem. By means of the LDC technique we are able
to solve not only convection-diffusion problems and pure diffusion problems, but also
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(a) Fine grid mesh size. (b) Coarse grid mesh size.

Figure 4.7: Dependence of the convergence rate on coarse H and fine h grid sizes. Up-
wind scheme, κ = 100 (Example 2).

convection problems like
{

c∂u
∂x = f, x ∈ Ω = (0, 1),

u(0) = u0.
(4.25)

The idea is to transform this problem into a two-point boundary value problem and
to solve the latter one by the LDC technique. In order to do this, we first extend our
domain to the right and introduce a diffusive term ε∂2u

∂x2 into (4.25) as well as an extra
boundary condition on the right side. Since the correct boundary value on the right is
not known, we will have a boundary layer of order ε. So instead of problem (35) we
solve the following one

{
ε∂2u

∂x2 + c∂u
∂x = f, c > 0, x ∈ Ω̃ = (0, 1 + ε)

u(0) = u0, u(1 + ε) = uguess.
(4.26)

We introduce two fine grids: one to resolve the high activity area and another one to
resolve the boundary layer. For this example we use the same fine grid step sizes for
both fine grids, although it is not required. For the second grid we choose region (1 −
γ + ε, 1 + ε) and uguess = 2.

The results of the numerical tests with Péclet number Pe, equal to 100000 are presented
below. We used the upwind scheme on all grids. For results presented in Figure we
used following parameters γ = 0.3, ε = 10−6, c = 1, σ = 20, h = 0.01. Depending
on the fine grid mesh size h it is also possible to use central differences in the high
activity region, even in the case when the scheme is not stable. So instead of solving
a pure convection problem (which might be difficult to solve), we transform it to into
a two-point boundary value problem and solve the latter one efficiently by the LDC
technique.



(a) (b)

Figure 4.8: Dependence of the convergence rate on fine grid size h and coarse grid mesh
size H. Central difference scheme, κ = 0.1 (Example 3).

(a) Initial solution (marked with triangles), exact
solution (solid line) and second fine grid solution
(marked with diamonds)

(b) Sequence of the fine grid solutions - initial
fine grid solution (marked with circles) and sec-
ond fine grid solution (marked with triangles)

Figure 4.9: Convection problem. Upwind scheme, c = 1, ε = 10−6 (Example 4).





Chapter 5

Combination of the LDC
technique with high order
compact finite difference schemes

As was mentioned in Chapter 1, compact finite differences are widely used for DNS
calculations of turbulent flows. In this chapter we present an algorithm which allows
for combining the Local Defect Correction (LDC) technique, presented in Chapter 3 and
analysed in Chapter 4, with compact finite differences.

5.1 High order compact finite difference schemes

Implicit finite difference relations for the first and second derivatives have been given
a variety of names. Many can be found in [15], under the names of Mehrstellen or Her-
mitian methods by analogy of Hermitian finite elements. They are also known as Padé
differencing approximations [33]. In the 70-80’s a large number of applications for solv-
ing fluid-mechanics equations have been developed [29,34,61,62]. From the more recent
papers [38] and [42] should be mentioned. Following [54] all implicit formulae can be
derived in a systematic way from a Taylor series expansion.

The traditional numerical methods for the DNS of transitional and turbulent flows have
been spectral methods because of their high accuracies. But applications of spectral
methods have been limited to flows in simple domains. Several alternative numerical
methods have been used for general geometries. Examples are the spectral element
methods [53], high-order compact (Padé) finite-difference methods [38], and high-order
non-compact (explicit) finite-difference methods [58].
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Finite-difference methods have recently received much attention for the DNS of transi-
tional and turbulent flows [2, 38, 56, 58, 59] because they can easily be applied to com-
plex geometries. Finite-difference schemes include both traditional explicit schemes and
compact [38] schemes. High-order schemes are required because traditional second or-
der schemes do not have an adequate accuracy for DNS. High-order finite-difference
methods used most are central difference schemes [38, 56], which introduce only phase
errors but no dissipative errors in numerical solutions. The drawback of central schemes
is that they are not robust enough for convection-dominated hypersonic flow simula-
tions. Extra filtering procedures, which are equivalent to adding numerical dissipation
in an ad hoc manner, are needed in order to stabilize the computations and control the
aliasing errors. For example, central difference schemes of fourth order or higher are
unstable when they are coupled with high-order boundary schemes using one-sided
finite-difference approximations [12, 56]. In [12] it is shown that for a sixth-order inner
central compact scheme, only a third-order boundary scheme can be used without intro-
ducing instability. This results in a globally fourth-order accurate scheme, even though
the inner scheme is sixth-order accurate.

On the other hand, upwind-bias schemes are very robust even when they are made
high-order accurate, see [58], where a spatially fifth-order upwind finite-difference scheme
using an upwind-bias stencil for the Navier–Stokes equations is used. The numeri-
cal dissipation in the upwind-bias schemes is enough to control the aliasing errors. In
recent years, many other upwind high-order schemes have been developed; [75] dis-
cusses a fifth-order compact upwind scheme for moisture transport in atmosphere.
A fourth-order compact upwind scheme is used in [13] because the standard central
compact schemes break down in convection–dominated problems. The accuracy of a
fifth-order explicit upwind finite-difference scheme with built-in filtering terms in a
central grid stencil for linear wave propagation problems was tested in [85]. In [66]
explicit numerical damping was used to stabilize high-order finite-difference equations
for the Navier–Stokes equations. [1] proposes fifth-order upwind compact schemes with
spectral-like resolution using central grid stencils for the direct numerical simulation of
shock-turbulence interaction. [84] uses upwind compact and explicit high order finite
difference schemes for calculations of hypersonic boundary layer transitions.

Finite difference schemes may be classified as explicit or implicit. Explicit schemes ex-
press the nodal derivatives as an explicit weighted sum of the nodal values of the func-
tion, e.g., u ′i = (ui+1 − ui−1)/2h and u ′′i = (ui+1 − 2ui + ui−1)/h2 for the first and
second derivative respectively. Throughout this section ui and uk

i denote the values of
the function and its k-th derivative respectively, at the node x = xi , and h denotes the
uniform mesh spacing. By comparison, implicit (compact) schemes equate a weighted
sum of the nodal derivatives to a weighted sum of the function, e.g., u ′i−1+4u ′i+u ′i+1 =
3(ui+1 − ui−1)/h and u ′′i−1 + 10u ′′i + u ′′i+1 = 12(ui+1 − 2ui + ui−1)/h2 for the first and
second derivative respectively. It is well known [15, 33, 38] that implicit schemes are
significantly more accurate for smaller scales than explicit schemes with the same mesh
width. This increase in accuracy is achieved at the cost of inverting a banded (usually
tridiagonal) matrix to obtain the nodal derivatives. Since tridiagonal matrices can be in-
verted quite efficiently [68], the implicit schemes are extremely attractive when explicit
time advancement schemes are used. The most popular of the implicit schemes (also
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called Padé schemes due to their derivation from Padé approximants) appear to be the
symmetric fourth and sixth order versions (see, e.g. [38]).

When we restrict ourselves to three-point expressions the general form of an implicit
finite difference relation between a function of one variable and its first two derivatives
would read

a+ui+1 + a0ui + a−ui−1 + b+u ′i+1 + b0u ′i + b−u ′i−1

+c+u ′′i+1 + c0u ′′i + c−u ′′i−1 = 0.
(5.1)

By imposing different constraints on the coefficients a, b and c, we can tune the numer-
ical scheme in some sense. For example we can get a higher order or a better spectral
resolution of the scheme [71]. In the following we address some of the possible high or-
der compact finite difference schemes, which will later be used in numerical examples.
In Chapter 6 we present some more compact schemes actually used for calculations.

The problem we study in this chapter is given by

{
Lu = −ε∇2u(x, y) + c · ∇u(x, y) = f(x, y) in (0, 1),

u = g on Γ.
(5.2)

In (5.2), L is a linear elliptic differential operator, and f and g are the source term and
Dirichlet boundary value respectively, ε > 0 is the diffusion coefficient, c is the convec-
tion coefficient, u is the unknown function of (x, y), Ω is the domain of interest and Γ is
the boundary of this domain.

We start with a one-dimensional situation. In this case we have three sets of equations:
a discretized version of our one-dimensional convection-diffusion equation

{
−εu ′′(x) + cu ′(x) = f(x), c, ε > 0 x ∈ (0, 1),

u(0) = u0, u(1) = u1,
(5.3)

which looks like
Lui ≡ −εu ′′i + cu ′i = fi, i = 1, . . . , N − 1; (5.4)

an expression for the second derivative (see Section 5.1.1); an expression for the first
derivative (see Section 5.1.2).

5.1.1 Diffusive term

For the discretization of the diffusive term in (5.2) we can use the following schemes

• Padé scheme (3-point scheme [54])

u ′′i+1 + 10u ′′i + u ′′i−1 −
12

h2
(ui+1 − 2ui + ui−1) = 0. (5.5)
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To close this relation at the boundary, we use

εu ′′1 + cu ′1 = f1, εu ′′N + cu ′N = fN,

where c and ε come from (5.4).

• High order compact upwind scheme of Zhong (5-point scheme [84])

25u ′′i−1 + 60u ′′i + 15u ′′i+1 =
1

h

(
−

5

2
u ′i−1 −

160

3
u ′i−1 + 15u ′i + 40u ′i+1 +

5

6
u ′i+2

)
.

(5.6)
To close this relation at the boundary, we use [84]

60u ′′0 + 180u ′′1 =
1

h
(−170u ′0 + 90u ′1 + 90u ′2 − 10u ′3), (5.7)

15u ′′0 + 60u ′′1 + 15u ′′2 =
1

h
(−45u ′0 + 45u ′2), (5.8)

15u ′′N + 60u ′′N−1 + 15u ′′N−2 = −
1

h
(−45u ′N + 45u ′N−2), (5.9)

60u ′′N + 180u ′′N−1 = −
1

h
(−170u ′N + 90u ′N−1 + 90u ′N−2 − 10u ′N−3). (5.10)

Another possibility is to use the same scheme as for the convective term (see relation
(5.12) and related closing relations in Section 5.1.2), but modified for second derivative

u ′′i+1 + 4u ′′i + u ′′i−1 −
3

h
(u ′i+1 − u ′i−1) = 0. (5.11)

To close this relation at the boundary, we use

2u ′′1 + u ′′0 −
1

2h
(u ′2 + 4u ′1 − 5u ′0) = 0, u ′′N + 2u ′′N−1 −

1

2h
(5u ′N − 4u ′N−1 − u ′N−2) = 0.

5.1.2 Convective term

Central difference type schemes do not behave well when applied to convection-dominated
problems. A way to overcome this difficulty is to use upwind schemes. In [12] stability
of the numerical boundary treatment for compact high-order finite difference schemes
was investigated and it was shown that the upwind compact schemes give better re-
sults. A lot of information about non-centered high-order compact finite difference
schemes one can find in [75].

For the discretization of the convective term in (5.2) we can use the following schemes
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• Padé scheme (3-point scheme [54])

u ′i+1 + 4u ′i + u ′i−1 −
3

h
(ui+1 − ui−1) = 0. (5.12)

To close this relation at the boundary, we use

2u ′1+u ′0−
1

2h
(u2+4u1−5u0) = 0, 2u ′N+u ′N−1−

1

2h
(5uN−4uN−1−uN−2) = 0.

• High order compact upwind scheme of Zhong (5-point scheme [84]). This is the
scheme (5.6)-(5.10), modified for the first derivative:

25u ′i−1 + 60u ′i + 15u ′i+1 =
1

h

(
−

5

2
ui−1 −

160

3
ui−1 + 15ui + 40ui+1 +

5

6
ui+2

)
.

(5.13)
To close this relation at the boundary, we use [84]

60u ′0 + 180u ′1 =
1

h
(−170u0 + 90u1 + 90u2 − 10u3),

15u ′0 + 60u ′1 + 15u ′2 =
1

h
(−45u0 + 45u2),

15u ′N + 60u ′N−1 + 15u ′N−2 = −
1

h
(−45uN + 45uN−2),

60u ′N + 180u ′N−1 = −
1

h
(−170uN + 90uN−1 + 90uN−2 − 10uN−3).

5.2 Combination of LDC with HOCFD

In this section we present an algorithm which combines the Local Defect Correction
technique with the schemes presented in Section 5.1. First we start with the one-dimensional
version of equation (5.2) and after that we extend the algorithm to two- and three-
dimensional problems.

5.2.1 One-dimensional problems

We can rewrite the system of equations (5.5), (5.12) and a discrete form of the differential
equation (5.4) with corresponding boundary conditions in the following matrix-vector
form

Ax = b, (5.14)

where A is a 3×3 block-diagonal matrix representing the discrete operator, x = (u ′′T , u ′T , uT )
is the vector of unknowns and b = (0, 0, f)T is the right-hand side. The matrix A has the
following structure:

A =




A11 A12 A13

0 A22 A23

A31 A32 A33


 . (5.15)
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The condition number of the matrix A is quite large, even for ”small” problems, due to
the fact that the matrix is highly unbalanced (we have O(1), O(h) and O(h2) terms on
the diagonal). Moreover, we should point out that the LDC algorithm is not applicable
to the equation in the form (5.14). So we need a reformulation. One of the ways to solve
this problem is to rearrange the matrix A. We can write our system (5.14) as

A11u ′′ + A12u ′ + A13u = 0, (5.16)
A22u ′ + A23u = 0, (5.17)

A31u ′′ + A32u ′ + A33u = f. (5.18)

Rearranging the terms we can get the following equation:

A−1
11

(
A12A−1

22 A23 − A13

)
u − A32A−1

22 A23u + A33u = f, or, (5.19)

Amu = f, (5.20)

with Am := A−1
11

(
A12A−1

22 A23 − A13

)
− A32A−1

22 A23 + A33. Matrices A11 and A22 are
non-singular. After these rearrangements our matrix Am does not suffer from ill condi-
tioning. After the reformulation like (5.20) it is possible to directly apply the algorithm
presented in Section 3.3.

5.2.2 Two- and more dimensional problems

We would like to discretize (5.2) using the schemes from Section 5.1. We introduce the
vector of unknowns x = (uT

xx, uT
yy, uT

x , uT
y, uT )T , with the size 5N where N is the number

of grid points.

The corresponding matrix A is a 5× 5 block matrix with the following structure

A =




A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45

A51 A52 A53 A54 A55




(5.21)

Entries A1,i represent the discretization of uxx by one of the possible discretization
schemes (5.12)-(5.13), entries A2,i of uyy by (5.12)-(5.13), entries A3,i of ux by (5.5)-
(5.6), entries A4,i of uy by (5.5)-(5.6), entries A5,i of u; the latter represent the equation
(5.2) as well as the boundary conditions. Depending on the type of discretization used,
some of the off-diagonal submatrices Ai,j could be zero or singular (see Figure 5.1). The
matrix A has quite a large condition number, so we use equilibration of rows in order
to reduce it. The basic idea of the equilibration of rows is to multiply rows of the matrix
such that we get O(1) values on the main diagonal. More detailed information one can
find in [78].
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(a) Scheme (5.12)+(5.11), N=11
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(b) Scheme (5.12)+(5.5), N = 21

Figure 5.1: Possible matrix structures depending on the scheme used

For two-dimensional problems it is quite difficult to perform explicit substitution like
(5.19). We still do the same reduction of the matrix A, but instead of explicitly expressing
the matrix subblocks, we use block Gaussian elimination. In order so solve our problem
we need to perform the following steps

1. Solve the coarse grid problem

(a) Construct matrix AH and right hand side fH. Matrix AH has the form (5.15).

(b) Perform block LU-decomposition of the matrix AH. As a result we have
AH = LHUH and we get LH and UH in the following form

LH =




I 0 0 0 0

L21 I 0 0 0

L31 L32 I 0 0

L41 L42 L43 I 0

L51 L52 L53 L54 I




,

UH =




U11 U12 U13 U14 U15

0 U22 U23 U24 U25

0 0 U33 U34 U35

0 0 0 U44 U45

0 0 0 0 U55




.

(c) Define the vector yH := UHx.

(d) Solve LHyH = fH. Get yH
5 .
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(e) Solve
U55uH = yH

5 (5.22)

and get uH, the coarse grid solution.

2. Solve the fine grid problem

(a) Get the boundary conditions for the fine grid boundary value problem and
construct Ah

l and fh
l .

(b) Solve the local grid problem

Ah
l xh

l = fh
l (5.23)

and get xh
l = ((uh

xx)T , (uh
yy)T , (uh

x )T , (uh
y)T , (uh)T ). Extract uh

l .

3. Calculate the defect

(a) Construct the vector wH

wH(x, y) =

{
uh

l (x, y) (x, y) ∈ ΩH
l

uH(x, y) (x, y) ∈ ΩH \ ΩH
l

(b) Construct the defect dH
0 = U55wH − yH

5 . Restrict the defect by setting it to
zero outside the area of refinement.

4. Solve the updated coarse grid problem

U55uH
1 = yH

5 + dH
0 (5.24)

and get the new coarse grid solution uH
1 .

5. If not converged, go to step 2.

We have outlined all steps of the new LDC method. The iteration is as in Algorithm 1;
the basic coarse grid problem, the local fine grid problem and the updated coarse grid
problem are given by (5.22), (5.23) and (5.24), respectively.

5.3 Numerical results

In this section we present some typical numerical results for the convection-diffusion
problem (5.2). As in the previous section, we start with a one-dimensional problem and
then present results for a two-dimensional model problem.
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Example 1

With the use of numerical simulations we want to investigate the following properties
of our LDC method for high order compact finite difference schemes: convergence be-
havior, accuracy and efficiency.

For our numerical test we solve the one-dimensional boundary value problem (5.3) and
we choose the source term f and the boundary conditions such that

u(x) =
1

2
(tanh(50(x − 1/8)) + 1) . (5.25)

The following parameters are chosen for the computations: c = ∓0.99 (convection dom-
inated), c = ∓0.1 (diffusion dominated); in case of one-dimensional problem, our bor-
der between coarse and fine grids Γ consists of one point only, which is called the inter-
face point γ and for this example was chosen to be γ = 0.3; different number of coarse
grid points N. We use the Padé scheme given by (5.12), (5.5).

The typical results for the convergence behavior for the LDC technique one can find in
Figures 5.2-5.3. In Figure 5.2 we plot ‖ui −ui−1‖∞ against the iteration number i, where
ui is our numerical coarse grid solution on the ith iteration. As one can see in Figure
5.2, the LDC algorithm shows fast convergence. In Figure 5.3 we plot ‖ui − uexact‖∞
against the iteration number, where exact stands for the exact solution of the problem
(which is known in our case). As one can see from Figure 5.3, we only need a small
number of LDC iterations to reach the fixed point solution, and, as will be shown later,
this is the solution we get on a fine uniform grid. These results are typical and do not
change much for different values of N and c.
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Figure 5.2: Convergence of the LDC algorithm

In order to compare the results of the LDC technique with those we get using a fine
uniform grid, we performed a number of calculations. By fine uniform grid we mean a
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Figure 5.3: Convergence of the LDC algorithm

c N LDC fine uniform grid c N LDC fine uniform grid

11 0.067 0.056 11 0.071 0.052

21 2.52 ∗ 10−4 2.55 ∗ 10−4 21 2.21 ∗ 10−4 2.49 ∗ 10−4

0.0 41 9.92 ∗ 10−6 9.92 ∗ 10−6 0.5 41 1.02 ∗ 10−5 1.02 ∗ 10−5

81 7.41 ∗ 10−6 7.41 ∗ 10−6 81 7.57 ∗ 10−6 7.57 ∗ 10−6

161 3.72 ∗ 10−6 3.72 ∗ 10−6 161 3.74 ∗ 10−6 3.74 ∗ 10−6

11 0.067 0.056 11 0.050 0.041

21 2.48 ∗ 10−4 2.54 ∗ 10−4 21 3.13 ∗ 10−4 1.96 ∗ 10−4

0.1 41 9.95 ∗ 10−6 9.95 ∗ 10−6 0.9 41 1.12 ∗ 10−5 1.12 ∗ 10−5

81 7.43 ∗ 10−6 7.43 ∗ 10−6 81 7.83 ∗ 10−6 7.83 ∗ 10−6

161 3.73 ∗ 10−6 3.73 ∗ 10−6 161 4.01 ∗ 10−6 4.01 ∗ 10−6

Table 5.1: ‖uexact − uH‖∞ for LDC algorithm and equivalent uniform grid

grid that covers the whole domain with a mesh size equal to the mesh size of the fine
LDC grid. First we compare the errors. In Table 5.1 one can find estimation ‖uexact −
uH‖∞ for the LDC solution and for the fine uniform grid solution. For LDC we stop the
iteration if ‖uH,h

i − uH,h
i−1‖∞ < 1 ∗ 10−5. The errors for the LDC algorithm and the fine

uniform grid are of the same order.

We measure the CPU time spent on the computation by the LDC algorithm with refine-
ment factor 4 and an equivalent uniform grid solution with spatial step H/4. It should be
noted that the measurements of the CPU times cannot be considered as absolute, since
they are machine-dependent; even on the same computer they could differ depending
on the load of the machine at that particular moment. However, the results in Table 5.2
were obtained on the same machine and conditions (that is system activity, background
processes, etc.) were approximately the same. Moreover the data in Table 5.2 is the
averaged data after 25 runs of the same test. As one can see from Table 5.2, the LDC al-
gorithm, even for one-dimensional problems, gives considerable savings in calculation
time compared with an equivalent uniform grid. Taking into account that the accuracy
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c N LDC (# iter) equiv. uniform grid c N LDC (# iter) equiv. uniform grid

11 0.067(5) 0.026 11 0.0457(5) 0.0248

21 0.085(4) 0.0737 21 0.0873(4) 0.0825

0.0 41 0.209(3) 0.3461 0.5 41 0.2271(3) 0.3786

81 0.574(2) 1.9890 81 0.6157(2) 1.9525

161 1.8668(1) 7.6213 161 1.73(1) 11.6560

11 0.0465(5) 0.0272 11 0.0397(5) 0.0273

21 0.0893(4) 0.0805 21 0.0725(4) 0.0785

0.1 41 0.2299(3) 0.3818 0.9 41 0.2264(3) 0.3778

81 0.7467(2) 2.0971 81 0.6222(2) 2.1028

161 1.8111(1) 11.2755 161 1.7290(1) 11.5411

Table 5.2: Calculation time for LDC algorithm and equivalent uniform grid

of both methods is the same, we can conclude that for problems with some high activity
regions and smooth solutions in the rest of the domain even in one-dimension, LDC is
the method to use.

Example 2

Now we consider the LDC algorithm combined with the high order finite difference
schemes in the algorithm described in Section 5.2.2. For the numerical experiment, we
apply the LDC algorithm to the boundary value problem





−ε1
∂2u

∂x2
− ε2

∂2u

∂y2
+ c1

∂u

∂x
+ c2

∂u

∂y
= f, (x, y) ∈ Ω = (0, 1)× (0, 1),

u(x, 0) = g1(x), u(x, 1) = g2(x), u(0, y) = g3(y), u(1, y) = g4(y).
(5.26)

In (5.26), f and gi have been chosen such that

u(x, y) = tanh [25(x + y − 1/3)] + 1. (5.27)

We choose a uniform coarse grid ΩH in Ω with grid sizes ∆x = ∆y = 1/(N − 1), with
N = 11, 16, 21. The area of refinement Ωl is chosen as Ωl = (0, 1/2)2. We choose a
uniform fine grid Ωh

l in Ωl with grid sizes ∆x = ∆y = h with h = H/2,H/4. For the
computation presented below we choose ε1 = ε2 = 0.1 and c1 = c2 = 1. For the coarse
grid discretization we present results for the Padé scheme (5.5) for the diffusive term
and scheme of Zhong (5.13) for the convective term. For the fine grid we used the same
schemes as for the coarse grid, although it is not required.

The typical results for the LDC algorithm can be found in Figure 5.4. All the numerical
tests show fast convergence of the LDC algorithm. Usually the LDC algorithm reaches
the fixed point solution in one or two iterations. We also compare the accuracy of results
for the LDC solution and for the fine uniform grid - the accuracy is similar, although the
LDC gives a substantial savings in the size of the problem. For instance, suppose we
have a 21×21 uniform grid. This leads us to a linear system with a matrix of dimension
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Figure 5.4: Difference between exact and numerical results for LDC technique applied
to 2D convection-diffusion equation.

Grid size init 1 iteration uniform grid
Coarse: 11× 11, fine: 11× 11, equiv.: 21× 21 2.56 ∗ 10−2 1.30 ∗ 10−3 1.26 ∗ 10−3

Coarse: 11× 11, fine: 21× 21, equiv.: 41× 41 2.56 ∗ 10−2 1.28 ∗ 10−3 3.46 ∗ 10−5

Coarse: 21× 21, fine: 21× 21, equiv.: 41× 41 1.26 ∗ 10−3 3.23 ∗ 10−5 3.46 ∗ 10−5

Table 5.3: ‖uexact − uH‖∞ for LDC algorithm and equivalent uniform grid

2205× 2205. If we use LDC, we can get the same accuracy by using two 11× 11 grids -
coarse and fine. This leads to two linear systems with matrices of dimension 605× 605.

We compare accuracy and performance of the LDC method with the solution on a fine
uniform grid. The results are in Tables 5.3 and 5.4. The accuracy of the LDC method is
exactly the same as for the equivalent uniform grid. In Table 5.3 the results for the LDC
technique with an 11 × 11 coarse grid and a 21 × 21 fine grid do not differ from those
for 11× 11 for both coarse and fine grids due to the fact that the main error region is no
longer in the area of refinement (see Figure 5.4).

We expect that the LDC algorithm should be more efficient than the uniform fine grid
method. This is indeed what we see in Table 5.4 - LDC is much faster than the equivalent
uniform grid method.



Grid size 1 iteration equiv. uniform grid
Coarse: 11× 11, fine: 11× 11, equiv.: 21× 21 2.60 7.71
Coarse: 11× 11, fine: 21× 21, equiv.: 41× 41 1.84 530
Coarse: 21× 21, fine: 21× 21, equiv.: 41× 41 9.988 530

Table 5.4: Calculation time for LDC algorithm and equivalent uniform grid





Chapter 6

Boundary conditions for
turbulent flows

6.1 Introduction

Numerical simulations necessitate a truncation of the computational domain by arti-
ficial boundaries. The artificial boundaries for the rectangular computational domain
used for the present application are the inflow, outflow, lower and upper boundaries as
sketched in Figure 6.1. Since these boundaries are close to the plate, the flow outside
the computational domain is different from an undisturbed, uniform flow; it is affected
by disturbances inside the domain. Moreover, the presence of the cooling jet makes the
flow picture even more complicated. On the other hand, in order to calculate the interior
flow, we need some external flow information. This mutual requirement of information
makes the conditions along the artificial boundaries unknown in most flow applica-
tions and therefore should be approximated. Mathematically the boundary conditions
of a system of equations are subject to a certain requirement in order for the problem to
be well-posed. The number of physical boundary conditions for the well-posedness re-
quirement for the Euler and Navier-Stokes equations is stated in Table 6.1 for two- and
three-dimensional cases [69]. Depending on the type of flow and the dimension of the
problem, a different number of ”physical” boundary conditions is required, so in the
first column of Table 6.1 we list different types of inflow and outflow situations.

The boundary conditions listed in Table 6.1 are provided by some information about
the external flow adjacent to the boundaries. We call these boundary conditions physi-
cal boundary conditions. In some cases, however, no accurate external flow information
is available, such as at the outflow boundary. Although mathematically only a certain
number of boundary conditions is required, depending on the local flow condition, nu-
merically, we should specify all the dependent variables. We call the conditions when
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Figure 6.1: Sketch of the computational domain

Dimension Two-dimensional Three-dimensional
Flow type Euler Navier-Stokes Euler Navier-Stokes

Supersonic inflow 4 4 5 5
Subsonic inflow 3 4 4 5

Supersonic outflow 0 3 0 4
Subsonic outflow 1 3 1 4

Table 6.1: Number of physical boundary conditions required for well-posedness of two-
and three-dimensional flows.
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completing the specification of the dependent variables the numerical boundary condi-
tions. From numerical calculations, we observe [55] that fulfilling the number of phys-
ical boundary conditions according to the theory for a hyperbolic system (Euler equa-
tions) is sufficient. Satisfying the number of conditions for the Navier-Stokes equations
by adding some viscous conditions (see [55]) results only in small differences. Therefore
we follow the inviscid approach. The equivalence of the results can be understood from
the fact that in the present application the viscous effects are restricted to the region near
the wall.

Extrapolation method

Along an artificial boundary, some dependent variables are unspecified by the physical
boundary conditions. To complete the specification of the variables, we simply extrap-
olate dependent variables from interior points to the boundary. The choice of depen-
dent variables for the physical and numerical boundary conditions is not unique. The
following are appropriate combinations based on our experience for two-dimensional
problems.

First we consider a subsonic inflow boundary. According to Table 6.1, we should pre-
scribe three physical boundary conditions. In the case of an isothermal wall, the appro-
priate physical boundary conditions at the inflow boundary are provided by the (two)
velocity components and the temperature. The fourth variable can then be specified
by extrapolating the pressure or the density from the interior points, which represents
the numerical boundary condition. In the case of a subsonic outflow boundary, we
need one physical and three numerical boundary conditions. The physical boundary
condition can be satisfied by prescribing one dependent variable, for instance pressure,
although this will cause reflections of existing disturbance waves at the outflow bound-
ary. The numerical conditions are satisfied by extrapolating the velocity components
and the temperature from the interior points.

We consider now a subsonic upper boundary. Depending on the sign of the velocity
normal to the boundary, we regard it as an inflow upper boundary (negative sign) or
an outflow upper boundary (positive sign). From this point, we can proceed in the
same way as in the previous cases. The pressure can be used as a physical boundary
condition, for instance by prescribing a pressure jump in the case we want to invoke
a steady shock from the upper boundary. The procedure for a supersonic boundary
follows accordingly. We prescribe all the dependent variables at the inflow boundary
(no numerical boundary conditions) and extrapolate them from the interior points at
the outflow boundary (no physical boundary conditions).

Buffer/sponger zone method

As an alternative for the extrapolation method, a buffer zone method was developed.
The idea is to add to the original computational domain a special ”buffer” zone at the
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outflow boundary. The purpose of this zone is to avoid reflections from the outflow
boundary. The governing equations in the buffer domain are modified by increasing
diffusion in a certain direction. Alternatively, a sponge layer approach has been devel-
oped and used in [71]. The sponger layer is put outside the outflow or far-field bound-
ary, where a damping function is used to depress the flow fluctuations. Both buffer or
sponge zones are capable of absorbing the outward moving waves and have been used
in many LES/DNS computations.

But these methods have some shortages. First, extra sponge or buffer areas have to be
added to the original domain, which will increase the number of grid points and com-
putational cost. Second, the sponge approach can only be applied when the equations
of perturbation are considered, which may not be applicable when a so-called ”base
flow” does not exist or cannot be defined. With ”base flow” we mean presence of some
basic flow stability, and therefore ability to describe the physical components by their
mean value and fluctuating part. Consider as an example turbulent duct flow - there is
a vivid directional anisotropy, since the streamwise components are dominant. We can
consider these streamwise components as ”base” flow and try to split flow variables
into the mean components (those present in the ”base” flow) and a fluctuating part.

Characteristic method

The characteristic method described here was originally proposed by Hedstrom [27] for
one-dimensional cases. Thompson [74] performed an extension to multi-dimensional
problems and non-rectangular coordinate systems. The advantage of the characteristic
method is that it can provide numerical as well as alternative physical boundary condi-
tions in case the external flow is unknown. In the latter case, the so-called non-reflecting
boundary condition replaces the required physical boundary condition. This boundary
condition is extracted by invoking the non-reflecting principle (Hedstrom) in the charac-
teristic form of the Euler equations. Some authors combine the extrapolation technique
and the non-reflecting property of the one-dimensional characteristic method for their
boundary conditions, for example [63]. Others use a quasi multi-dimensional character-
istic method [55, 74]. In our work we use the method of Poinsot and Lele [55], which is
briefly described below. This approach was extended to curvilinear coordinates in [62].

It is well known that hyperbolic systems of equations represent the propagation of
waves [74]. At the boundary, some waves are propagating into and others out of the
computational domain. The behavior of the outward propagating waves is defined
entirely by the solution within the domain. In contrast, the incoming waves bring the
information from the outside of the computational domain and therefore require bound-
ary conditions to complete specification of their behavior. Although the Navier–Stokes
equations are not hyperbolic [74], they do propagate waves like systems described by
Euler equations do. In order to estimate these waves it seems natural to deal only with
the hyperbolic part of the Navier-Stokes equations. These quantities combined with
viscous stresses and dissipation are then used to specify the boundary values of all vari-
ables not prescribed by the physical boundary conditions.
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Since we shall use characteristic boundary conditions for our calculations, we present a
short introductional example and the basic idea for the simple one-dimensional inviscid
case. In the next section this is followed by a more detailed description for viscous
compressible flow.

We start with the one-dimensional Euler equations, which form a hyperbolic system. In
conservative form it can be written as

∂g
∂t

+
∂f
∂x

= 0, (6.1)

with

g =




ρ

ρu

e


 , f =




ρu

ρu2 + p

(e + p)u


 , (6.2)

where u, ρ, p, e are velocity, density, pressure and total energy, respectively. Equation
(6.1) describes the conservation properties of the system, that is, it relates the rate of
change of the integral of a field over a small volume to the flux of that field across the
volume boundaries.

We can rewrite (6.1) in so-called ”primitive” form. We do so because it is easier to
obtain the eigenvalues of the system when these are written in non-conservative form
as a function of the primitive variables [28]. In primitive form the system (6.1) becomes

∂u
∂t

+ A
∂u
∂x

= 0, (6.3)

with

u =




ρ

u

s


 , A =




u ρ 0

c2/ρ u p/(ρs)
0 0 u


 , (6.4)

where s = p
ργ , γ is ratio of specific heat at constant pressure to specific heat at constant

volume (for air γ = 1.4) and c =
√

γp/ρ. The matrix A has the following real eigenval-
ues λ1 = u − c, λ2 = u, λ3 = u + c. We can diagonalize A using the transformation

LAL−1 = Λ,

where Λ is a diagonal matrix Λii = λi, i = 1, 2, 3 and L is a matrix whose rows are
the left eigenvectors of the matrix A (under left eigenvectors we mean a row vector ll
satisfying llA = λlll ),

L =




lT1
lT2
lT3


 =




−c ρ − p
sc

0 0 1

c ρ p
sc


 . (6.5)

Multiplying equation (6.3) by L gives

L
∂u
∂t

+ ΛL
∂u
∂x

= 0, (6.6)
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or




−c ρ − p
sc

0 0 1

c ρ p
sc


 ∂

∂t




ρ

u

s


 +




u − c 0 0

0 u 0

0 0 u + c







−c ρ − p
sc

0 0 1

c ρ p
sc


 ∂

∂x




ρ

u

s


 = 0.

(6.7)
We can define a new function w by

dwi = lTi du, (6.8)

or

∂w
∂x

= L
∂u
∂x

=




lT1
lT2
lT3


 ∂u

∂x
=




lT1
∂u
∂x

lT2
∂u
∂x

lT3
∂u
∂x


 (6.9)

and rewrite equation (6.3) as follows

∂w
∂t

+ Λ
∂w
∂x

= 0, (6.10)

or

∂wi

∂t
+ λi

∂wi

∂x
= 0, (6.11)

which gives us a set of wave equations with characteristic velocities λi. Each wave am-
plitude wi is constant along the curve in the xt-plane, defined by dx/dt = λi. The next
step is to use those equations to develop boundary conditions. Now we have to make
some assumption about the incoming waves. Using the so-called ”non-reflecting” ap-
proach, proposed in [27] and further developed by [74], we demand that the amplitudes
of the incoming waves at the boundaries (in case of a one-dimensional problem those
boundaries are just points a, b) are constant in time, which leads to the relation

∂wi

∂t
|x=a,b = Li|x=a,b =

(
lTi

∂u
∂t

)
|x=a,b = 0, (6.12)

for those waves whose characteristic velocities are directed inward at the boundary.
Equations (6.12) for the incoming waves and (6.7) for the outgoing waves completely
determine the solution at the boundaries.

We can write a general expression for the equations at the boundary

lTi
∂u
∂t

+ Li = 0, (6.13)
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where

Li =

{
λilTi

∂u
∂x , for outgoing waves

0 for incoming waves. (6.14)

In the next section we extend this approach to a more complicated case, that is, a three-
dimensional viscous compressible flow. But the approach stays the same: we determine
characteristic waves that enter the computational domain and then, with the use of cer-
tain assumptions (for instance it can be something like we just used - that the amplitudes
of the incoming waves at the boundaries are constant in time) we try to estimate those
amplitudes.

6.2 Boundary conditions based on the characteristic method

The fluid dynamics equations (for viscous compressible fluid), in Cartesian coordinates,
are

Dρ

Dt
+ ρ∇ · u = 0, (6.15)

Du
Dt

= −
1

ρ
∇p + ν∇2u, (6.16)

ρ
De

Dt
= −p∇ · u +∇ · k∇T + Φ, (6.17)

p = ρRT, and e = cvT, (6.18)

For simplicity we introduce the following notation in this section: index i stands for
the direction and in the three-dimensional case i = 1, 2, 3, so x1 = x, x2 = y, x3 = z

and u1 = u, u2 = v, u3 = w. Let us now consider a boundary, located at x1 = X

(Figure 6.2). The major idea of the things presented below is to identify waves crossing
the boundary, and their normal and tangential components, and then use some specific
technique presented below for estimating the incoming waves. So first we rewrite our
system of equations (6.15)-(6.18) to find out which waves are crossing boundaries, and
in which direction. Using the characteristic analysis [74] to modify the hyperbolic terms
of equations (6.15)-(6.17) corresponding to the waves propagating in the xi direction,
we can recast this system as

∂ρ

∂t
+ d1 +

∂

∂x2
(m2) +

∂

∂x3
(m3) = 0, (6.19)
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Figure 6.2: Waves leaving and entering the computational domain through an inlet
plane (x1 = 0) and an outlet plane (x1 = X) for a subsonic flow.

∂ρE

∂t
+

1

2
d1 +

d2

γ − 1
+ m1d3 + m2d4 + m3d5 +

∂

∂x2
[(ρE + p)u2] +

∂

∂x3
[(ρE + p)u3] =

3∑

i=1

3∑

j=1

∂

∂xi
(ujτij) −

3∑

i=1

∂qi

∂xi
,

(6.20)

∂m1

∂t
+ u1d1 + ρd3 +

∂

∂x2
(m1u2) +

∂

∂x3
(m1u3) =

3∑

j=1

∂τ1j

∂xj
, (6.21)

∂m2

∂t
+ u2d1 + ρd4 +

∂

∂x2
(m2u2) +

∂

∂x3
(m2u3) =

3∑

j=1

∂τ2j

∂xj
, (6.22)

∂m3

∂t
+ u3d1 + ρd5 +

∂

∂x2
(m3u2) +

∂

∂x3
(m3u3) =

3∑

j=1

∂τ3j

∂xj
, (6.23)

where mi = ρui is the xi-direction momentum density (flow rate).
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The various terms in the system (6.19) - (6.23) contain derivatives normal to the x1

boundary (d1 to d6), derivatives parallel to the x1 boundary like (∂/∂x2)(m2u2) and
local viscous terms. The vector d, which is written in terms of amplitudes of waves, can
be expressed as

d =




d1

d2

d3

d4

d5




=




1
c2

[
L2 + 1

2 (L5 + L1)
]

1
2 (L5 + L1)
1

2ρc (L5 − L1)

L3

L4




=




∂m1

∂x1

∂(c2m1)
∂x1

+ (1 − γ)µ ∂p
∂x1

u1
∂u1

∂x1
+ 1

ρ
∂p
∂x1

u1
∂u2

∂x1

u1
∂u3

∂x1




, (6.24)

where the Li’s are the amplitudes of waves associated with each characteristic velocity
λi. In the following we call those waves ”characteristic waves”. These velocities are
given by

λ1 = u1 − c, (6.25)

λ2 = λ3 = λ4 = u1, (6.26)

λ5 = u1 + c, (6.27)

where c is the speed of sound
c2 =

γp

ρ
.

The Li’s are given by

L1 = λ1

(
∂p

∂x1
− ρc

∂u1

∂x1

)
, (6.28)

L2 = λ2

(
c2 ∂ρ

∂x1
−

∂p

∂x1

)
, (6.29)

L3 = λ3
∂u2

∂x1
, (6.30)

L4 = λ4
∂u3

∂x1
, (6.31)

L5 = λ1

(
∂p

∂x1
+ ρc

∂u1

∂x1

)
. (6.32)

A simple physical interpretation of the Li’s can be given by looking, for example, at the
linearized equations for one-dimensional inviscid acoustic waves. Let us consider the
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upstream-propagating wave associated with the velocity λ1 = u−c. If p ′ and u ′ are the
pressure and velocity perturbations, the wave amplitude A = p ′ − ρcu ′ is conserved
along the characteristic line x + λ1t = c, where c is a constant, so that

∂A

∂t
+ λ1

∂A

∂x
= 0 or

∂A

∂t
+ L1 = 0.

At a given location −L1 represents the time variation of the wave amplitude A. By
analogy we will call Li’s the amplitude variations of the characteristic waves crossing
the boundary.

We see that system of equations (6.19) - (6.23) can be used to give values of variables on
the boundary at the following time step if we can estimate the amplitude variation Li

of the waves propagating into the domain.

We have now to distinguish two different types of problem: (1) those where some infor-
mation is known about the outside domain so that Li’s of the incoming waves can be
determined and (2) those where such information is not available:

1. For local refinement if we consider the fine grid problem, we have all the needed
information concerning the incoming and outgoing waves from the corresponding
coarse grid solution. So the first approach is just to impose those quantities for the
waves which enter the domain as Dirichlet boundary conditions.

2. In most cases no information about the amplitude of the incoming waves is avail-
able and the approach described in [55] can be used. This is based on inferry
values of the wave amplitude variations in the viscous multidimensional case by
examining a local associated one-dimensional inviscid problem. This approach is
described below.

6.2.1 The local one-dimensional inviscid (LODI) relations

At each point on the boundary we consider the system of equations (6.19) - (6.23) and
neglect transverse and viscous terms. The resulting equations allow us to infer val-
ues for wave amplitude variations by considering the flow locally as inviscid and one-
dimensional. The relations obtained by this method are not ”physical” conditions but
should be viewed as compatibility relations between choices made for the physical
boundary conditions and the amplitudes of waves crossing the boundary.
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One of forms for the LODI system is [74]

∂ρ

∂t
+

1

c2

[
L2 +

1

2
(L5 + L1)

]
= 0 (6.33)

∂p

∂t
+

1

2
(L5 + L1) = 0 (6.34)

∂u1

∂t
+

1

2ρc
(L5 − L1) = 0 (6.35)

∂u2

∂t
+ L3 = 0 (6.36)

∂u3

∂t
+ L4 = 0 (6.37)

These equations may be combined to express the time derivatives of all other quantities
of interest. For example we can express time derivative of the temperature T as follows
[74]

∂T

∂t
+

T

ρc2

[
−L2 +

1

2
(γ − 1)(L5 + L1)

]
= 0 (6.38)

Most physical boundary conditions have a counterpart LODI relation. For example,
imposing a constant entropy on some boundary requires setting L2 = 0, imposing a
constant inlet pressure should be accompanied (from (6.34)) by setting L5 = −L1 to fix
the amplitude variation of the wave L5 entering the domain.

Values obtained for the wave amplitude variations through LODI relations will be ap-
proximate because the complete Navier-Stokes equations involve viscous and parallel
terms. However, boundary variables will be time advanced using the system of equa-
tions (6.19) - (6.23) and viscous and parallel terms will effectively be taken into account
at this stage. The LODI relations are used only to estimate the incoming wave amplitude
variations.

Here we describe two case, namely for Euler and Navier-Stokes equations. The proce-
dure for Euler equations involves three steps. As an example to illustrate the method
we use a subsonic outlet boundary where pressure is specified.

1. For each inviscid boundary condition imposed on this boundary, eliminate the
corresponding conservation equation from the system (6.19) - (6.23). For the ex-
ample of a constant outlet pressure, p is specified and there is no need to use the
energy equation. The choice of the conservation equation to eliminate in most
practical cases one can find in Table 6.2 [55].

2. For each inviscid boundary condition use the corresponding LODI relation to ex-
press the unknown Li’s (corresponding to incoming waves) as a function of the
known Li’s (corresponding to outgoing waves). For for a constant outlet pressure



72 Boundary conditions for turbulent flows

Table 6.2: Conservation equations to eliminate for a given inviscid boundary condition
(examples)

Inviscid condition Equation to eliminate
u1 velocity imposed x1 momentum equation (6.20)
u2 velocity imposed x2 momentum equation (6.21)
u3 velocity imposed x3 momentum equation (6.22)
m1 flowrate imposed x1 momentum equation (6.20)
Pressure imposed energy equation (6.23)
Density imposed continuity equation (6.19)
Enthalpy imposed energy equation (6.23)
Entropy imposed energy equation (6.23)

the only incoming wave is L1 (see Figure 6.2) and LODI relation (6.34) suggests
that

L1 = −L5. (6.39)

3. Use the remaining conservation equations of the system of equations (6.19) - (6.23)
combined with the values of the Li’s obtained from Step 2 to compute all vari-
ables which were not given by the inviscid boundary conditions. For a constant
pressure outlet the density and the velocities will be obtained through the cor-
responding conservation equations (6.19), (6.21)-(6.23), where equation (6.39) has
been used to evaluate the incoming wave amplitude variation L1.

Step 2 is the key part of the algorithm. Using the conservation equations written on the
boundary as well as some reasonable information on the amplitude of incoming waves
(suggested by the LODI relations) removes the ambiguity of having to choose some
arbitrary ”numerical” conditions. Time advancement of Step 3 of the algorithm includes
parallel terms to obtain the solution at the next time step. We use the LODI relations
only to estimate the amplitudes of the incoming waves. Since the LODI relations are a
simplification of the original system (we neglect some terms while deriving them), the
solution of the complete set of equations (6.19) - (6.23) with LODI conditions would not
satisfy the physical boundary conditions we have imposed [55]. Step 1 is necessary to
discard equations in the system (6.19) - (6.23), which are replaced by inviscid boundary
conditions.

The Navier-Stokes equations require more boundary conditions than the Euler equa-
tions do. In the Navier-Stokes characteristics boundary conditions (NSCBC) method
complete Navier-Stokes boundary conditions are obtained by using Euler inviscid bound-
ary conditions and supplementing them with viscous conditions. In the NSCBC proce-
dure viscous conditions are applied only during Step 3. They are only used to modify
the conservation equations applied in Step 3 to compute boundary variables which have
not been specified by inviscid conditions. Steps 1 and 2 are the same for the Euler and
Navier-Stokes equations.

In the NSCBC method, the number and the choices of physical boundary conditions
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(inviscous and viscous) were guided using theoretical studies. However, the agreement
between these studies and the results present in [55] is not complete.

6.2.2 Boundary conditions used in calculations

Below we list boundary conditions from [55] which are used for the calculations pre-
sented in Chapter 7. We have a subsonic flow, so the most important boundary condi-
tions are subsonic inflow and outflow. In what follows we give some insight how these
conditions might be obtained using the technique presented above.

For subsonic inflow all components of velocity u = (u1, u2, u3) as well as temperature
T are imposed.

u1(0, x2, x3, t) = Ub(x2, x3, t),

u2(0, x2, x3, t) = Vb(x2, x3, t),

u3(0, x2, x3, t) = Wb(x2, x3, t),

T(0, x2, x3, t) = Tb(x2, x3, t).

For a subsonic three-dimensional flow, four characteristic waves are entering the do-
main (see Figure 6.2), while one of them (namely L1) is leaving the domain with speed
λ1 = u1 − c. Therefore the density ρ (or pressure p) has to be determined by the flow
itself. We have four physical boundary conditions (for u1, u2, u3 and T ) and one numer-
ical (for ρ). No viscous relation is needed in this case. To advance the solution in time
at the boundary, we need to determine the amplitudes Li (i = 2, 3, 4, 5) of the different
waves crossing the boundary. Only one of them (L1) may be computed from the interior
points.

1. The inlet velocities u1, u2 and u3 are imposed, so equations (6.21), (6.22) and (6.23)
are not needed. The inlet temperature T is imposed, so (6.20) is also not needed.

2. As the inlet velocity u1 is imposed, the LODI relation (6.35) suggests the following
expression for L5

L5 = L1 − 2ρc
dUb

dt
.

As the inlet temperature is imposed, the LODI relation (6.38) gives

L2 =
1

2
(γ − 1)(L5 + L1) +

ρc2

Tb

dTb

dt
.

LODI relations (6.36) and (6.37) show that L2 = −dVb/dt and L4 = −dWb/dt.

3. The density ρ can now be obtained by using equation (6.19).
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For subsonic non-reflecting outflow we have the following. Consider a subsonic out-
let where we want to implement our non-reflecting boundary condition. We see that
four characteristic waves L2, L3, L4 and L5 leave the domain while one of them, L1, is
entering the domain with speed λ1 = u1 − c. Specifying one inviscid boundary condi-
tion for the primitive variables would generate reflected waves. For example, imposing
the static pressure at the outlet p = p∞ leads to a well-posed problem, but will create
acoustic wave reflection. To avoid such a situation we need to impose a ”soft” boundary
condition. But at the same time we want to add some physical information about the
mean static pressure p∞ to our set of boundary conditions so that our problem remains
well-posed. Below we describe a procedure which allows to do it.

1. We have only one boundary condition: pressure p∞ at infinity is imposed. This
condition does not fix any of the dependent variables at the boundary and we
keep all conservation equations in the system (6.19)-(6.23).

2. The condition of constant pressure at infinity is used to obtain the amplitude vari-
ation of the incoming wave L1, the simplest way to insure well-posedness is to
set [55]

L1 = K(p − p∞), (6.40)

where K is a constant: K = σ(1 − M2)c/L. M is the maximum Mach number in
the flow, L is the characteristic size of the domain, c is the speed of sound, σ is a
constant, which controls the level of reflection.

If we consider a viscous flow, the viscous conditions require that the tangential
stresses τ12 and τ13 and the normal heat flux q1 have zero spatial derivatives
along x1. These conditions may be implemented in the system (6.19)-(6.23) di-
rectly.

3. All the Li with i 6= 1 may be estimated from the interior points. L1 is given by
the equation in step 2 and the system of equations (6.19)-(6.23) may be used to
advance the solution in time at the boundary.

In [55] a number of test cases is mentioned, in particular non-reacting ducted shear layer,
non-reacting free shear layer, reacting free shear layer, acoustic wave propagation, vor-
tex convection and Poiseuille flow. Four different sets of outflow boundary conditions
were used for numerical comparison for different flow situations, namely

1. The method used in [74]. It is based on partial use of extrapolation and Riemann
invariants. In this method values of velocities and density are extrapolated, while
for the pressure a condition similar to the NSCBC condition (6.40) is used. In [55]
numerical results obtained with this method were used as a reference for compar-
ison.

2. The NSCBC formulation corresponding to perfectly non-reflecting boundary con-
ditions (σ = 0).

3. The Corrected non-reflecting NSCBC formulation (σ = 0.25).
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4. The reflecting outlet maintained at a constant static pressure p∞.

The results of the tests show that in certain situations, for example in case of Poisseuille
flow, the corrected non-reflecting condition gives better results than the perfectly non-
reflecting one.

6.3 Boundary conditions for artificial internal boundaries

As mentioned in Chapter 3, we want to use local grid refinement techniques for calcula-
tions, so we have to provide some boundary conditions for the local grid problem. Since
we have information from the coarse grid, we can use it to estimate the incoming and
outgoing waves from the corresponding coarse grid solution and impose those quan-
tities for the waves which enter the domain as Dirichlet boundary conditions. There
are two possible situations concerning Dirichlet boundary conditions for the fine grid:
first, we can operate with ”physical” variables like velocities, pressure, temperature,
etc.; second, we can use the estimates of the corresponding Li and impose those as the
boundary conditions. Below we consider a numerical example, which has the same
nature of wave propagation as the problem of interest.

6.3.1 Numerical example: spreading of an acoustic pulse

Acoustic phenomena are typical for all types of compressible flows. One of the simplest
examples of such flows could be described by linearized Euler equations. Those equa-
tions are derived from the nonlinear Euler equations describing flow of inviscid gas.
The idea is to linearize the flow around a time-invariant reference flow. All variables
are expanded as a sum of a mean part and a fluctuating part. Consider small amplitude
disturbances superimposed on a uniform mean flow with density ρ0, pressure p0 and
velocity u0 in the x-direction. The linearized Euler equations for the disturbances in two
dimensions are

∂u
∂t

+
∂e
∂x

+
∂f
∂y

= h, (6.41)

where

u =




ρ

u

v

p


 , e =




ρ0u + ρu0

u0u + p/ρ0

u0v

u0p + γp0u


 , f =




ρ0v

0

p/ρ0

γp0v


 .

The nonhomogeneous term h on the right side of (6.41) represents disturbed unsteady
sources.

For our test problem we choose the time advancement of an initial acoustic pulse in a
rectangular domain (see Figure 6.3). If we look at the pressure distribution, initially it
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has the form of a Gaussian pulse, but with the time this pulse spreads out in the domain
and is moved by the main flow. For the computations presented below we use the
domain Ω = {0 ≤ x ≤ 50, 0 ≤ y ≤ 50} (see Figure 6.4).

Figure 6.3: Acoustic pulse problem. We mark with dots and slash-dots parts of the
boundary where radiation and outflow boundary conditions are used, respectively.

The crucial parts in the acoustical simulation are the boundary conditions prescribed.
As mentioned in the previous section there are several main approaches for construction
of the non-reflecting boundary conditions

• the extrapolation method;

• usage of damping zone;

• the method of characteristics;

• Fourier-Laplace transform and expansion at infinity. This method is specific to
acoustic problems and therefor was not introduced in the previous section and is
shortly presented in the next section.

According to [30] the best performance in aeroacoustic problems is shown by the last
approach.

The major goal of this section is to test the possibility of Dirichlet boundary conditions
for the fine grid. So for the coarse grid solution we just choose the best boundary condi-
tions known from the literature and for the linearized Euler equations of aeroacoustics
these are the boundary conditions developed in [71]. We state them below:
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The radiation boundary conditions are given by

(
1

V(Θ)

∂

∂t
+

∂

∂r
+

∂

2r

)



ρ

u

v

p


 = 0, (6.42)

where V(Θ) = a0

[
M cos Θ +

(
1 − M2 sin2 Θ

)1/2
]

, a0 is the speed of sound of the main

flow and r, Θ are polar coordinates with the origin in the center of the computational
domain (in the present case in the point with coordinates (0, 0)).

The outflow boundary conditions are given

∂ρ

∂t
+ u0

∂ρ

∂x
=

1

a2
0

(
∂p

∂t
+ u0

∂p

∂x

)
, (6.43)

∂u

∂t
+ u0

∂u

∂x
= −

1

ρ0

∂p

∂x
, (6.44)

∂v

∂t
+ u0

∂v

∂x
= −

1

ρ0

∂p

∂y
, (6.45)

1

V(Θ)

∂p

∂t
+ cos Θ

∂p

∂x
+ sin Θ

∂p

∂y
+

p

2r
= 0. (6.46)

The movement of the gas is described (6.41). At the outflow boundary (downstream
the main flow (x = 50)) we prescribe outflow boundary conditions (6.43) - (6.46) and
the rest of boundaries (x = 0, y = 0, y = 50) are of radiation type (6.42). The initial
conditions are

p(x1, x2) = 1/γ, (6.47)
ρ(x1, x2) = 1, (6.48)

u1(x1, x2) = M + εx2 exp
(
− ln(2)

(
x2

1 + x2
2

)
/b2

)
, (6.49)

u2(x1, x2) = εx1 exp
(
− ln(2)

(
x2

1 + x2
2

)
/b2

)
, (6.50)

where the flow Mach number is M = 0.5, the Gaussian half-width b = 5 and the ampli-
tude ε = 0.03 and γ = 1.4.

The analytical solution of this initial value problem is given by [71]

p(x1, x2, t) =
1

γ
+

ε

2α

∫∞

0

ξ exp
[
−ξ2/(4α)

]
cos(c0tξ)J0(ηξ)dξ, (6.51)

where η =
√

(x1 − Mt)2 + x2
2, c0 is the speed of sound in the main flow, α = (ln 2)/b2

and J0(z) is the Bessel function of the first kind and order zero.

We first discretize our initial value problem in space and time. Consider the approxima-
tion of the first derivative ∂f/∂x at node i of a uniform one-dimensional grid. Suppose
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Case M = N = 3 Case N = 0, M = 6 Case N = 1, M = 5 Case N = 2, M = 4

−3 0.02651995 - - -
−2 −0.18941314 - - 0.0346861

−1 0.79926643 - −0.173186 −0.408117

0 0 −2.3947 −2.39476 −0.563042

1 −0.79926643 5.6686 2.40222 1.30628

2 0.18941314 −6.6715 −1.53629 −0.479708

3 −0.02651995 5.5620 0.73555 0.125217

4 - −2.9215 −0.210886 −0.0153139

5 - 0.8686 0.0268144 -
6 - −0.11143 - -

Table 6.3: Coefficients aj for some different stencils

M values of f to the right and N values of f to the left of this point are used to form the
finite difference approximation

(
∂f

∂x

)

i

' 1

∆x

M∑

j=−N

ajfi+j. (6.52)

The special case of M = N is of particular interest. It can be shown that if M and N

are not equal that such an asymmetric stencil causes spatially growing wave solutions
when it is used over a large region. Asymmetric stencils may, however, be employed
in limited regions (such as boundary regions of the computational domain) without
leading to accumulated numerical instability [70]. The coefficients aj for some stencils
are presented in Table 6.3. In the example presented in this section we use the same time
integration scheme as in the original paper [70]. It is an explicit time marching scheme,
although we can also use implicit ones. The linearized Euler equations (6.41) provide
the time derivatives of u. Suppose the solution is known up to a time level t = n∆t. To
advance to the next time step a four-level scheme is used in form

un+1 − un ' ∆t

3∑

j=0

bj

(
du
dt

)n−j

. (6.53)

To ensure that the scheme is consistent, three of the four coefficients bj are chosen so
that (6.53) is satisfied to third-order in time. The remaining coefficient b0 is determined
by requiring that the Laplace transform of scheme (6.53) is a good approximation of that
of the partial derivative. This gives the following coefficients [70]:

b0 = 2.30255809, b1 = −2.49100760, b2 = 1.57434093, b3 = −0.38589142.

For a symmetric space stencil (M = N = 3) the complete discretized problem looks like

u(x, y, t + ∆t) = u(x, y, t) + ∆t

3∑

j=0

bjk(x, y, t − j∆t), (6.54)
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k(x, y, t) = −
1

∆x

3∑

j=−3

aje(x + j∆x, y, t) −
1

∆x

3∑

j=−3

ajf(x, y + j∆y, t) + h(x, y, t), (6.55)

u(x, y, t) =

{
uinitial(x, y), 0 ≤ t ≤ ∆t

0, t < 0.
(6.56)

As one can see from (6.54), we use an explicit time integration scheme. This leads to a
time step restriction, which in the case of problem (6.54) looks like [71]

∆tmax =
0.4

1.75
[
M + (1 + (∆x/∆y)2)

0.5
] ∆x

a0
. (6.57)

Due to the stability criterion (6.57) time step sizes of the fine and coarse grid solutions
have to be different in case of local grid refinement. In fact, since the stability criterion
(6.57) is linear in ∆x, we should set the time refinement factor τ to 4 when our space
refinement factor σ is equal to 4.

To solve problem (6.54) and to test artificial boundary conditions, we consider the fol-
lowing grid refinement strategy for our model problem:

1. Coarse grid solution. On the coarse grid we solve equation (6.41) with boundary
conditions (6.42)-(6.46). In the interior points we use the symmetric 7-point stencil
and scheme described by (6.54). In the boundary region we use the asymmetric
7-point stencil and discretized version of the boundary conditions (6.42)-(6.46).

2. Fine grid solution. First we determine the position of the high activity region.
Several options exist; in the present calculations we compute the gradient of the
coarse grid solution to determine where the high activity is. Then we construct
a fine grid which covers that region. The next step is that we use interpolation
(linear or cubic) to get initial conditions for the fine grid problem.

3. We advance our solution in time on the fine grid using the symmetric 7-point sten-
cil and scheme described by (6.54). As for the boundary conditions, several situ-
ations are possible. The first one is when the region of refinement lies completely
in the coarse domain. In this case we prescribe Dirichlet boundary conditions
at all boundaries. Another situation occurs when part of the fine grid boundary
corresponds to the coarse grid boundary. In this case at the common part of the
boundary we prescribe the original boundary condition (6.42) or (6.43)-(6.46) and
Dirichlet boundary conditions at the rest of the fine grid boundaries.

4. Once we reached the same time point for both fine and coarse grid solutions, we
perform an interpolation from the fine grid to the coarse one, and replace values
in the coarse grid solution with those interpolated from the fine grid.

5. We repeat steps 1-4 until we reach the final time.
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The algorithm for the linearized 2D Euler equations was implemented and uses the 7-
point stable centered high order finite difference scheme for the space derivatives and
time scheme (6.54)-(6.55) for the time derivative. Some of the results one can find in
Figure 6.4. The choice of time for Figure 6.4 is quite arbitrary since we use this picture
only to show the solution’s behavior. As one can see from Figure 6.4 we have a Gaussian
type of pressure fluctuation distribution initially. Our fine grid is concentrated near the
origin and is quite small (see Figure 6.4 (a)). With time the area occupied by the pressure
fluctuations is growing and moving. We see that in certain points pressure fluctuations
get negative values (see Figure 6.5). Since the initial pulse spreads through the domain,
our fine grid also increases in size and moves (see Figure 6.5(a)).

(a) Coarse and fine grids (b) Pressure distribution on fine grid

Figure 6.4: t = 8.35

As one can see from Figures 6.4-6.6, Dirichlet boundary conditions coming from the
coarse grid used on the fine grid do not pose any reflections on the boundaries. As
one can see from Figure 6.6, the outflow boundary conditions (6.43)-(6.46) work well.
Here the pulse leaves the computational domain. In Chapter 7 we present some more
examples of the use of Dirichlet boundary conditions in actual calculations.



(a) Coarse and fine grids (b) Pressure distribution on fine grid

Figure 6.5: t = 11.1
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Figure 6.6: Time at which the pulse crosses the boundary of the coarse grid (non-
reflecting boundary conditions are used)





Chapter 7

Numerical simulation of air film
cooling

Numerical methods for the direct simulation of turbulent flows are required to accu-
rately reproduce its evolution over a wide range of length and time scales. This chapter
discusses some of the issues involved. We start with a recap of the mathematical model.
Spatial discretization and the time advancement scheme are considered in Section 7.2
which is followed in Section 7.3 by a discussion of domain decomposition and paral-
lelization. This chapter is concluded by numerical results in Section 7.4.

7.1 Mathematical description of the film cooling problem

Below we briefly repeat the mathematical model, described in Chapter 2. Flow of a
compressible ideal gas is described by the following system of equations

∂ρ

∂t
+∇ · (ρu) = 0, (7.1)

ρ

(
∂u
∂t

+ (u · ∇)u
)

= −∇p −∇ · Υ, (7.2)

ρT

(
∂s

∂t
+ u · ∇s

)
= −∇ · q − Υ⊗∇u, (7.3)

where ρ, t, u, Υ, s and T denote density, time, velocity vector, stress tensor, entropy
and temperature respectively. The heat flux vector q can be expressed as a function of
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Figure 7.1: Sketch of the computational domain

temperature using Fourier’s law
q = −λ∇T, (7.4)

where
λ =

µcp

Pr
,

is the thermal conductivity, Pr is the Prandtl number and cp is specific heat at constant
pressure. For our calculations we take Pr = 0.72. The dynamic viscosity µ is a function
of the temperature T and is given by Sutherland’s law

µ = 1.458 ∗ 10−6 T1.5

T + 110.4
.

The set of equations is closed by constitutive relations for the temperature and pressure

T =
p

ρR
, p = p∞

(
ρ

ρ∞

)γ

exp
(

s − s∞
cv

)
, (7.5)

where the subscript ∞ indicates a reference condition (p∞ = 1.03∗105 Pa, s∞ = 0 J∗K−1,
ρ∞ = 1.2 kg ∗m−3)and γ = 1.4 (γ is the ratio of specific heat at constant pressure cp to
specific heat at constant volume cv). If we introduce R as the ideal gas constant, then we
have the following relations γ =

cp

cv
, cp = cv + R, cv = R

γ−1 .

In Figure 7.1 we have sketched the computational domain. It is given in Cartesian coor-
dinates by Ω =

{
(x, y, z) ∈ R3|0 ≤ x ≤ X, 0 ≤ y ≤ Y, 0 ≤ z ≤ Z

}
.

At the inlet plane (x = 0) we prescribe boundary layer profile and temperature.

u(0, y, z, t) = Ub(y, z), (7.6)

v(0, y, z, t) = Vb(y, z), (7.7)
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w(0, y, z, t) = Wb(y, z), (7.8)

T(0, y, z, t) = T∞(y, z), (7.9)

where the subscript b stands for Blasius because those values come from numerically
solving a Blasius problem with a boundary layer on flat plate and T∞ is the inflow
temperature (for more details on Blasius profile see Chapter 2).

As mentioned in Section 2.3 we apply periodic boundary conditions at z = 0 and z = Z.

u(x, y, 0, t) = u(x, y, Z, t),

v(x, y, 0, t) = v(x, y, Z, t),

w(x, y, 0, t) = w(x, y, Z, t), (7.10)
s(x, y, 0, t) = s(x, y, Z, t).

At the bottom plane (y = 0) we assume adiabatic wall conditions except for the cooling
nozzle, where the profile and temperature of the cooling jet are prescribed. So every-
where at y = 0, except at the hole, we impose

u(x, 0, z, t) = v(x, 0, z, t) = w(x, 0, z, t) = 0, (7.11)
∂T(x, 0, z, t)

∂nw
= 0, (7.12)

where nw is the normal to the wall (for our problem of interest nw = y). At the exit of
the film cooling hole we prescribe the velocity profile and temperature distribution, viz.

u(x, 0, z, t) = uj(x, z, t), (7.13)

v(x, 0, z, t) = vj(x, z, t), (7.14)

w(x, 0, z, t) = wj(x, z, t), (7.15)

T(x, 0, z, t) = Tj(x, z, t), (7.16)

where the subscript j stands for jet. We have several options: the simple approach is just
to prescribe an undisturbed Poiseuille type profile; a more sophisticated (and therefor
more detailed) one includes the solution of a supplemental problem. We describe how
to get those values in Section 7.3 in detail.

At the outflow boundary (x = X) we assume stress free outflow in the tangential di-
rection. Furthermore we require the derivative of the heat fluxes leaving the domain in
streamwise direction to be zero

∂τxy

∂x
= 0,

∂τxz

∂x
= 0,

∂q

∂x
= 0. (7.17)

The pressure at the outlet boundary is forced towards its reference value by imposing

∂p

∂x
=

p∞ − p

X
. (7.18)
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The top boundary is treated analogously to the outflow one by forcing the pressure
towards some reference value and taking special care not to get reflections (see Chapter
6 for details).

7.2 Discretization in space and time

7.2.1 Spatial discretization

We choose in the spatial domain (see Figure 7.1) a Cartesian structured grid. The spatial
derivatives in the governing equations (7.1)-(7.5) are approximated using finite differ-
ences. Quite a number of different compact and non-compact upwind and central dif-
ference schemes have been developed for turbulence simulations. An overview can be
found in Section 5.1. We choose the following schemes for our calculations based on the
experiments in [16].

A compact finite difference sixth-order scheme proposed by Lele [38] is applied to the
non-convective fluxes

1

3

(
f ′i−1 + f ′i+1

)
+ f ′i =

1

36h
(fi+2 + 28fi+1 − 28fi−1 − fi−2) , (7.19)

where h is the space step size.

A fourth-order explicit biased upwind scheme is available for calculating the convective
fluxes [84]:

f ′i =
s

12h
(−fi−3s + 6fi−2s − 18fi−s + 10fi + 3fi+s) , (7.20)

where s accounts for the upwind direction, i.e. s = 1 for a positive and s = −1 for a
negative velocity. In addition a fifth-order compact upwind scheme is available [84]

1

6

(
f ′i−s + f ′i+s

)
+ f ′i =

s

18h
(10fi+s + 9fi − 18fi−s − fi−2s) . (7.21)

As mentioned in Section 2.3 we apply periodic boundary conditions at z = 0 and z = Z.
Near all other boundaries (in- and outflow, top boundary, wall) we have to propose clos-
ing schemes, since we cannot use interior schemes (7.19)-(7.21) in those areas. Below we
present differential schemes for all non-periodic boundary points as well as differential
schemes for points next to non-periodic boundaries.

The first derivative at the boundary i = 1 can be obtained from a third-order compact
scheme [38]

f ′1 + 2f ′2 =
1

2h
(4f2 − 5f1 + f3) . (7.22)
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Central schemes Upwind schemes
Interior points compact sixth-order, symmetric (7.19) compact fifth-order (7.21)
Points next to boundary compact fourth-order, symmetric (7.23) compact third-order (7.24)
Boundary points compact fifth-order (7.22) compact fifth-order (7.22)

Table 7.1: Spatial discretization scheme applied.

Instead of the sixth-order compact central scheme (7.19) at the points next to the bound-
ary the following scheme can be applied [38]

1

4

(
f ′i−1 + f ′i+1

)
+ f ′i =

3

4h
(fi+1 − fi−1) . (7.23)

Instead of the compact-fifth order upwind scheme next to the boundary a third-order
compact scheme can be applied

1

16

(
7f ′i−s + f ′i+s

)
+ f ′i =

3s

8h
(−3fi−s + 2fi + fi+s) . (7.24)

To summarize, the spatial discretization schemes used for the simulation of the film
cooling problem are listed in Table 7.1.

7.2.2 Time discretization

Since the flows in the film cooling problem are subsonic with Reynolds number Re

larger than one, the acoustic fluxes will evolve faster than the convective ones and the
convective fluxes will evolve faster than the diffusive ones. In explicit time-integration
this means that stability imposes a severe time step restriction. This gives a possibil-
ity [16] to employ a split-time integration in order to reduce computational times, which
uses separate time stepping for the different fluxes.

The proposed numerical time integration [16] starts from the splitting of the Navier-
Stokes equations (7.1)-(7.5) in three separate operators:

∂f
∂t

= A(f) + C(f) + D(f), (7.25)

where f denotes the vector of unknown primitive variables and A(f), C(f) and D(f)
denote the acoustic, convective and diffusive contributions, respectively. The time-split
integration uses separate time steps for the three different fluxes (see Figure 7.2). For
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Figure 7.2: Time-split integration. We assume here that per diffusive time step we per-
form four convective time steps (τc = 0.25τd) and per convective time step we perform
four acoustic time steps (τa = 0.25τc).



7.2 Discretization in space and time 89

the diffusive fluxes a second-order Runge-Kutta scheme is used:

d0 = f(td),

d1 = d0 +

∫td+0.5τd

td

(A (f(t)) + C (f(t)) + D (d0)) dt,

d2 = d1 + 0.5τd (D(d1) − D(d0)) , (7.26)

f(td + τd) = d2 +

∫td+τd

td+0.5τd

(A (f(t)) + C (f(t)) + D (d1)) dt,

where D (f(td)) represents the stress and diffusive contributions in ∂f
∂t evaluated in solu-

tion vector f at time td. The diffusive time step size τd must be chosen in agreement with
the stability criterion for the diffusive fluxes (see (7.29)). For the internal integration in
steps 2 and 4 the same procedure is followed to separate acoustics from convection:

c0 = f(tc),

c1 = c0 +

∫ tc+0.5τc

tc

(A (f(t)) + C (c0) + D (d0)) dt,

c2 = c1 + 0.5τc (C(c1) − C(c0)) , (7.27)

f(tc + τc) = c2 +

∫ tc+τc

tc+0.5τc

(A (f(t)) + C (c1) + D (d0)) dt,

where τc is the convective time step size. Again, C (f(tc)) represents the convective
contributions in ∂f

∂t evaluated in solution vector f at time tc. After half of the convective
time steps have been performed during one diffusive time step, the diffusion terms are
reevaluated and the values of these terms at td are replaced by those at td + 0.5τd.

For the time integration of the acoustic terms, a third-order Runge-Kutta scheme is used

a0 = f(ta) +
1

4
τa (A (f(ta)) + C (c0) + D (d0)) ,

a1 = f(ta) +
8

15
τa (A (f(ta)) + C (c0) + D (d0)) ,

a2 = a0 +
5

12
τa (A (a1) + C (c0) + D (d0)) , (7.28)

f(ta + τa) = a0 +
3

4
τa (A (a2) + C (c0) + D (d0)) ,

where τa is the acoustic time step size. A (f(ta)) represents the acoustic contributions
in ∂f

∂t evaluated in solution vector f at time ta. Again, like with the diffusive terms, after
half of the acoustic time steps have been performed during one convective time step,
the convective terms are reevaluated and the values of these terms at tc are replaced by
those at tc + 0.5τc.

As we use explicit time integration, stability restrictions (like CFL criteria) on the maxi-
mum time step size have to be considered. For the acoustic, convective and two diffu-
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sive (viscous contribution to the momentum equation and heat dissipation in the energy
equation) terms the following critical time step sizes hold [16]

1

Ta
= max

(
|u| + c

hx
,
|v| + c

hy
,
|w| + c

hz

)
,

1

Tc
= max

(
|u|

hx
,

|v|

hy
,
|w|

hz

)
,

1

Td,visc
= max

(
µ

ρ(hx)2
,

µ

ρ(hy)2
,

µ

ρ(hz)2

)
, (7.29)

1

Td,heat
= max

(
λ

ρcp(hx)2
,

λ

ρcp(hy)2
,

λ

ρcp(hz)2

)
,

where c is the speed of sound and hx, hy and hz are space step sizes in x, y and z

directions respectively.

7.3 Domain decomposition and parallelization

7.3.1 Domain decomposition

In the DNS code the cooling jet is modeled via the boundary conditions at the bottom of
the computational domain. It is not clear from the experiments which velocity and tem-
perature profiles one should prescribe at the cooling nozzle’s exit. Because of the nature
of the developed DNS code it is not possible to incorporate the underlying geometry of
the cooling nozzle. Hence we propose to use domain decomposition. The essence of the
method is that we first assume some profile and solve the DNS problem. Then, using a
commercial unstructured solver, we solve a supplemental problem modelling the cool-
ing nozzle with boundary conditions obtained from the DNS results. The result of this
simulation gives a new profile for the nozzle’s exit. We can once again solve the DNS
problem with the updated profile. Several geometries of the underlying nozzle will be
treated, mainly those used in the experiments. It should be noted that such an approach
allows us to incorporate almost any inaccuracies of the cooling nozzle.

A lot of parameters influence the flow (and therefore the velocity profile) in the cooling
nozzle. From experiments [32] we know that three main geometrical parameters have
major influence. These are the position, the size and the shape of the inaccuracy (see
Figure 7.3 (b)). In the top left figure we have an inaccuracy positioned far away from
the nozzle’s exit, while in the top right figure the inaccuracy of the same size is moved
towards the exit. In the bottom left figure we have the situation with a larger inaccu-
racy, while the bottom right figure represents the influence of the shape. Experiments in
a water channel show that among these three, the last parameter has a minor influence,
while first two have major effect. For practical reasons we can also eliminate the influ-
ence of the size. The reason for this is that according to manufacturing specifications
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(a) Domain decomposition strategy. (b) Inaccuracies

Figure 7.3: Domain decomposition

provided by the end user, the geometrical parameters should be within prescribed tol-
erance. Because of those requirements nozzles with large inaccuracies are not accepted
during the final control stages, so we can say that the size difference lies within a narrow
region. Although large inaccuracies are not interesting from a practical point of view,
we still make some calculations in this case as well as for more realistic geometries. So
from three groups of parameters from practical point of view we are mostly interested
in the influence of the position of the inaccuracy on the flow parameters. We discuss
results of the calculations in Section 7.4. The algorithm calculation of proper boundary
conditions for the cooling jet can be summarized as follows (see Figure 7.3 (a)):

1. Solve the main flow problem with the use of the DNS code. As for boundary
condition for the cooling jet use either parabolic profile or experimental data if
available.

2. For a specified region get artificial boundary conditions for unstructured grid
solver from the DNS solution.

3. Solve the complementary flow problem with the use of unstructured solver. Ex-
tract the inflow profile for the cooling jet.

4. Solve the main flow problem with the use of the DNS code. As for boundary
condition for the cooling jet use the profile from the unstructured grid solution.

5. Repeat steps 2-4.

We should note that the approach described above is limited to quasi-stationary situa-
tions, although we can also use this approach for developing flow assuming the inflow
profile does not change that much, so that we are able to catch these changes.
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7.3.2 Parallelization

Parallel computing is concerned with producing the same results using multiple proces-
sors. The problem to be solved is divided up between a number of processors. Ideally, if
a program is running on P processors, we would like it to go P times faster than on one
processor. In practice this is extremely difficult to achieve due to overheads such as com-
munication time and purely sequential parts of the code e.g., file accesses. In designing
a multiple processor computer, an important question needs to be addressed: How do
processors coordinate to solve a problem? Processors must have the ability to commu-
nicate with each other in order to cooperatively complete a task. One parallel comput-
ing architecture uses a single address space. Systems based on this concept, otherwise
known as shared-memory multiprocessors, allow processor communication through vari-
ables stored in a shared address space. Another major architecture for parallel comput-
ers employs a scheme by which each processor has its own memory module. Such a
distributed-memory multiprocessor is constructed by connecting each component with a
high-speed communications network. Processors communicate to each other over the
network.

The architectural differences between shared-memory multiprocessors and distributed-
memory multiprocessors have implications on how each is programmed. With a shared-
memory multiprocessor, different processors can access the same variables. This makes
referencing data stored in memory similar to traditional single-processor programs, but
adds the complexity of shared data integrity. A distributed-memory system introduces
a different problem: how to distribute a computational task to multiple processors with
distinct memory spaces and reassemble the results from each processor into one solu-
tion.

For the calculations presented in this chapter we use the following distributed-memory
computer (Beowulf cluster)

1. Master node

• Hardware: 2x 2.6 GHz Intel Xeon 512kB cache; 1 GB memory (ECC); 2x 200
GB HDD (in RAID1, i.e. mirrored); 2x Gbit ethernet (1 local, 1 WAN)

• Software: ClusterVisionOS (modified RedHat) Vanilla kernel (easy updating)

2. Slave nodes (23 in total)

• Hardware: 2x 2.4 GHz Intel Xeon 512kB cache; 2 GB memory; (ECC) 40 GB
HDD (in RAID1, i.e. mirrored); Gbit ethernet

• Software ClusterVisionOS (modified RedHat) Vanilla kernel (easy updating)

3. In total

• 48 Xenon CPUs

• 49 GB internal memory

• 1320 GB total harddisk space
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• Software (at present)

– MPI (MPICH, LAM)
– Compilers (gcc, intel)
– Queuing software
– Math libs: Atlas (BLAS, LAPACK), PetSc, SLEPc
– MatLab

Many problems are based on taking a very large set of data, arranged in a regular grid
structure, and applying transformations to the data elements. When the data can be
split up into regular subgrids, and distributed over a set of processes, then the transfor-
mations can be applied in parallel, allowing the problem to be solved in a smaller time
scale, or allowing much larger problems to be solved than could normally be attempted.
The regular domain decomposition method is to take a large grid of data elements, split
it up into regular subgrids, and distribute these subgrids to separate processes where
they can be operated on. The global data set is decomposed into separate sections, and
each section is placed under the control of a separate process as shown in Figure 7.4 (a).

(a) Decomposition of the global data set (b) Boundary swapping

Figure 7.4: Parallel solution.

The degree of decomposition depends on the number of processes available. The aim is
to ensure that the data is distributed as evenly as possible amongst all of the processes.
Each process is assigned its own section of the data - its data block. Before the data grid
can be distributed amongst the processes, the processes themselves must be arranged
as a logical process grid. This grid of processes must allow the data set to be distributed
evenly, and therefore the size of each dimension of the logical process grid will reflect
the magnitude of the corresponding dimension of the global dataset. For example, if a
two-dimensional data grid is to be distributed over 6 processes, the processes could be
arranged as in Figure 7.4 (a).
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It is often necessary for data generated within one process to be made available to an-
other process to allow it to perform an update on its own data. When a single data
element is updated, the new value can depend on the original value of that element,
and also on the values of a number of neighboring elements. If one of these neighbor-
ing elements is actually contained within the data grid belonging to a different process,
the value of that element must be copied over from that process so that it can be used.
In general, whenever a process has successfully updated all of its data elements, it must
arrange to send off copies of any data which might be needed by other processes, to
those processes. At the same time, it must be prepared to receive data from other pro-
cesses, which it can then copy into its own overlap areas, to be used in the next iteration.
Each iteration can be considered as performing the following within each process:

• Send off copies of any data elements that neighboring processes might require to
carry out the next update.

• Receive copies of data elements that neighboring processes have sent to this pro-
cess, and place them in the appropriate overlap areas. Update every element in
the local data grid.

The sending off of copies of data to other processes, and the receiving of copies of data
from other processes, is known as boundary swapping (see Figure 7.4).

In order to ensure communication between different processes, we use the Message
Passing Interface (MPI). MPI is a standard for inter-process communication on distributed-
memory multiprocessors. The standard has been developed by a committee of vendors,
government labs, and universities. Implementation of the standard is usually left up to
the designers of the systems on which MPI runs, but a public domain implementation,
MPICH, is available. MPI is a set of library routines for C/C++ and FORTRAN. MPI
is a standard interface, so code written for one system can easily be ported to another
system with those libraries.

The execution model of a program written with MPI looks as follows: when an MPI
program starts, the program spawns into the number of processes as specified by the
user. Each process runs and communicates with other instances of the program, possi-
bly running on the same processor or different processors. The greatest computational
speedup will occur when processes are distributed among processors. Basic communi-
cation consists of sending and receiving data from one process to another. This com-
munication takes place over a high-speed network which connects the processors in the
distributed-memory system.

In Figure 7.5 we plot timings for one time step for a parallelized version of the code for
different problem sizes. Note that we use parallelization only in one (vertical) direction.
We plot two results - for the problem of the size 128×64×64 (line marked with squares)
and for the problem of the size 128 × 64 × 128. With the dashed line we mark the
theoretical limit (that is when calculation time scales with the number of processors
available). As one can see from Figure 7.5, our problem of interest scales quite good,
although we still are quite far from the theoretical limit.
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Figure 7.5: Calculation time per time step with the use of MPI. Dashed line represents
theoretical limit.

7.3.3 Grid refinement

Following our theoretical discussion of the local grid refinement in Chapters 3-5 and,
partly, 6, below we present results of the computation based on the local uniform grid re-
finement technique . We can combine local uniform grid refinement with parallel solution
of the underlying coarse and fine grid problems. This allows to decrease computational
time and to increase the size (in the sense of the number of the grid points) of the prob-
lem of interest. In this case Algorithm 3.3 looks like the one sketched in Figure 7.6

In Figure 7.7 we plot wall clock calculation time with and without local grid refine-
ment. We take just one processor and would like to get a certain resolution in the area
of interest. Within the developed framework this can be achieved with two different
techniques, that is, with or without local grid refinement. In the first case we just use a
global grid which coves the whole computational domain and has a predefined space
step size. In the second approach we use two grids, the coarse and the fine, such that
the space fine grid size is equal to the space step size in the first approach. We perform
just one step in time, say from tn to tn+1 with time step ∆t = tn+1 − tn. This is the
time step used both in case of no grid refinement and in case of grid refinement. In real
calculations we have different time steps for the coarse and fine grids, which leads to
further time savings compared to the results presented below, but here we keep it the
same for simplicity. In summary, for this comparison we have to solve:

• In case of no refinement, solve the problem with predefined time step ∆t and space
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Figure 7.6: Local grid refinement and parallelization strategy.

step size (assuming that space step sizes in all three directions are equal) h.

• In case of local uniform grid refinement in one direction: one coarse solution with
time step ∆t and space step size H = σh, where σ > 1 is the refinement factor (in
the case presented in Figure 7.7, σ = 4) and one fine grid solution (with refinement
in just one direction) space and time steps equal to ∆t and h, respectively.

In Figure 7.7 we see two lines, the shorter one represents timings for local grid refine-
ment in x-direction and the longer one represents timings for the equivalent uniform
grid. If we look at the point marked by ”A” in Figure 7.7, this represents the calculation
time for local grid refinement with two 64×64×32 grids. With a refinement factor σ = 4

this corresponds to an equivalent uniform grid of size 256×64×32, calculation time for
which one can find marked by ”C”. The same holds for point marked by ”B” and ”D”
- these are calculation times for two 128 × 64 × 32 for local grid refinement versus one
512 × 64 × 32 equivalent uniform grid respectively. As one can see from Figure 7.7 we
get substantial time savings while using local grid refinement.

At the next stage we address the accuracy of the local uniform grid refinement method
versus the equivalent uniform grid. First we consider possible reflections from the
boundaries in case of local grid refinement. From the numerical experiments we have,
we conclude that in case of first order interpolation technique for transferring boundary
values from coarse grid to fine grid and with restrictions on fine space and time steps
coming from (7.29) we do not see any problems of this type. Some typical results one
can find in Figure 7.8. In this figure we have already a developed flow after approx-
imately 2000 time steps. We used the same time step both for coarse and fine grids.
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Figure 7.7: Wall clock calculation time with and without local grid refinement.

Figure 7.8: Combination of coarse and fine grid calculations.
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In Figure 7.9 one can see fine grid solution at different times. We plot velocity vectors in
the center plane and mark with color velocity magnitude.

(a) t = 1 ∗ 10−4 (b) t = 2 ∗ 10−4

(c) t = 4 ∗ 10−4 (d) t = 10 ∗ 10−4

(e) t = 15 ∗ 10−4 (f) t = 20 ∗ 10−4

Figure 7.9: Fine grid solution on different times. We plot velocity vectors in the center
plane. Color represents velocity magnitude.

A small comparison of accuracy results for uniform grid refinement method and equiv-
alent uniform grid one can find in Table 7.2. We compared velocity values in one calcula-
tion point, which is situated down the stream behind the cooling nozzle. (x = 2.5 · 10−3,
z = 3 · 10−4).

7.4 Numerical results

Here we present some numerical results from calculations of the film cooling process.
The experimental part and quite extensive description of the physics of the process one
can find in [32].

We typically use grids of the size 128× 64× 32, although experiments with much finer
grids (up to 512 × 256 × 128) were also performed. We normally use parallelization
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Value GR 64× 64× 32 UG 256× 64× 32

Vx 130.56 129.23
Vz 0.1 0.15

Table 7.2: Comparison between equivalent uniform grid and local grid refinement re-
sults. ”UG” stands for equivalent uniform grid and ”GR” stands for local grid refine-
ment.

for calculations, but in the present state it is limited to one direction only (we split the
domain in vertical direction). Typical size of the domain is 0.02×0.01×0.01 m and time
steps can be derived from (7.29).

First we present some results from calculations for different geometries. We compare the
so-called simple approach (namely just a prescribed parabolic profile; it is marked by a
solid line in the pictures) with results obtained by simulation with the unstructured grid
solver. In the simple approach we impose the prescribed velocity profile just at the plane
where the cooling nozzle intersects the bottom plane of the computational domain. In
the realistic approach we use the domain decomposition technique described in Section
7.3 to get the profile of the cooling jet. In fact the simple approach assumes that the main
flow has no influence on the flow in the cooling nozzle and therefore we can use just
some kind of inclined Poiseuille profile.

It is important to note that for all geometries under consideration we see a relatively
strong presence of the third (z) velocity component, which in most cases is symmetric
around the center plane. This velocity component causes circulation of the flow inside
the cooling jet at the inflow plane and is caused by the interaction with the main flow.
This was also observed experimentally in [32].

The second thing we observe while comparing results in Figures 7.10-7.13 is that with
the simple approach we underestimate the velocity in x and y directions. This is due
to the fact that we have a compressible flow and presence of inaccuracies may turn
a straight tube in some analogous to a Laval nozzle (a Laval nozzle is a converging-
diverging nozzle, which under certain conditions allows to achieve supersonic flow)
due to inaccuracies flow in the cooling nozzle may accelerate.

Concerning the position of the inaccuracy, during the numerical experiments we ob-
serve that the deeper the inaccuracy is within tube, the more close the outflow profile is
to the theoretical one. The closer the inaccuracy is to the nozzle’s exit, the more influence
it has on the flow. This influence is not always negative. In some cases it might have
some positive effect. Each of these cases should be studied separately, so if we consider
the predictability of final results, the main conclusion is that we should keep the inaccu-
racy deep inside the cooling nozzle. The influence of the position can be neglected for
low velocity ratios (less than 0.25) [32].

The next point of interest from a practical point of view is to investigate the influence
of the inaccuracy shape on the flow characteristics. From this perspective we studied
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(a) Sketch of the domain
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Figure 7.10: Sketch of the computational domain and example of an input profile. Ve-
locity ratio is equal to 0.5. Single line is the simple approach, squares denote the un-
structured grid solver results.

three types of inaccuracies, which have a cross sectional shape of a half circle, trian-
gle and parallelepiped (see Figures 7.10, 7.12). For our numerical experiments we fix
the position of the inaccuracy within the tube as well as the so-called blockage area (we
define blockage as the ratio between the area of cross cut of nozzle with and without
inaccuracy) and we only change the shape. Based on the comparison of results for dif-
ferent shapes of inaccuracies, we can conclude that the shape has a minor influence on
the flow characteristics.

The final point of interest is the influence of the size of the imperfection. As it was men-
tioned before, this is mostly a question of theoretical interest due to the fact that in real
production all the nozzles are checked to be within prescribed tolerance and large inac-
curacies are impossible. From a practical point of view we can speak of blockages up to
30% at most. It was shown in [32] experimentally and our numerical results agree with
it, that blockage has a very strong influence on the film cooling at small and moderate
velocity ratios (around 0.5).

Next we analyze the flow structure itself via numerical experiments. Here we just show
how numerical simulations may enrich the experimental part. We start with a series
of computations of the ”start up” phase of a flow. From an application point of view
this is quite an interesting phase, with not that many information available. Most of the
researches concentrate on the quasi-stationary part, when the flow is fully developed.
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Figure 7.11: Example of an input profile. Velocity ratio is equal to 0.5. Single line is the
simple approach, squares denote the unstructured grid solver results

However, during the start up phase we may see the biggest changes in the flow parame-
ters, this in turn could lead to higher loads (both thermal and mechanical) on the blade.
In Figures 7.14 one can see the evolution of the flow at the ”start-up” phase.

Once we reach fully developed flow, it is interesting to take a look at the flow struc-
ture. If we fix the moment in time, then we can just go through different planes in the
computational domain in order to visualize the flow structures. In Figure 7.15 one can
see a sequence of cross cuts through the plane, perpendicular to the main flow direc-
tion. One can see that the flow has quite a difficult structure, with vortices acting in
all directions. A detailed experimental exploration one can find in [32], here we just
show typical computational results. The main advantage we have with numerical com-
putations compared to experiments is that the numerical approach gives much more
information and flexibility compared to the experimental one. We have our data in the
whole domain of interest, whereas in experiments we get data only in a small part of
the domain (see Figure 7.15).
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Figure 7.12: Sketch of the computational domain and example of an input profile. Ve-
locity ratio is equal to 0.5. Single line is the simple approach, squares denote the un-
structured grid solver results

0 0.005 0.01 0.015 0.02
0

5

10

15

20

25

30

35

x

v

(a) v along x-direction

0 0.005 0.01 0.015 0.02
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x

w

(b) w along x-direction

Figure 7.13: Example of an input profile. Velocity ratio is equal to 0.5. Single line is the
simple approach, squares denote the unstructured grid solver results
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Figure 7.14: Time evolution of temperature distribution in the center plane of the com-
putational domain.
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Figure 7.15: Temperature distribution in the computational domain.



Chapter 8

Conclusions and
recommendations

In this thesis we have studied local grid refinement methods and their application to
flow problems. Two methods were investigated: local uniform grid refinement (LUGR)
and local defect correction (LDC). LDC is an iterative method for solving pure bound-
ary value or initial-boundary value problems on composite grids based on using simple
data structures and simple discretization stencils on uniform or tensor-product grids.
Fast solution techniques exist for solving the system of equations resulting from dis-
cretization on a structured grid. The discretization on the composite grid is implicitly
given by the LDC iteration. Numerical experiments and analytical derivations illustrate
the fast convergence of the method. The standard method has been combined with high
order finite difference schemes. The domain decomposition algorithm provides a nat-
ural way for parallelization and enables the usage of many small tensor-product grids
rather than a single large unstructured grid. It has been shown that this may strongly
reduce memory usage.

We have analyzed the convergence behavior of the LDC method for the convection-
diffusion equation. We are able to theoretically estimate the convergence rate for differ-
ent combination of fine and coarse grid discretization schemes. The following were an-
alyzed: central differences on both grids, upwind on both grids, upwind for the coarse
grid and central differences for the fine grid. We managed to show that the convergence
speed is a function of the coarse grid step size H and in case of the upwind scheme
we have O(H) convergence, while in case of central difference it increases to O(H2).
Numerical experiments support the theoretical estimation. We also proposed a way of
transforming a pure convection problem into a boundary value problem by introduc-
tion of a small diffusive term and an artificial boundary condition. Another finding is
that in case of a high Péclet number and an unstable scheme (like central differences)
we still can get convergence of the composite solution.
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We have combined the standard LDC method with high order finite differences. There
is a natural way to combine high order schemes and LDC for one-dimensional prob-
lems, which after certain modifications is applicable for two- and three-dimensional
problems. Numerical results prove high accuracy and fast convergence of the proposed
method.

We made a review of boundary conditions for compressible flows in Chapter 6. Since
we would like to use local grid refinement for such type of problems, we studied the
model problem of an acoustic pulse spreading in Chapter 6. For this model problem we
introduced local grid refinement and made a series of tests in order to see if artificial
boundary conditions introduced for the fine grid cause any reflections of the acoustic
waves.

We numerically studied film cooling problem and proposed a way to have a domain
decomposition in order to use a proper boundary condition for the cooling jet. This
domain decomposition allows to combine a structured DNS flow solver for the problem
of interest with an unstructured solver for the flow in the cooling nozzle. On the other
side, we implemented local grid refinement for the flow problem, which gives some
time saving. So far grid refinement was used only in stream-wise direction. In this
case an existing DNS solver on tensor-product grids was used as a black box solver.
However, the proposed approach is solver independent and may be combined with
different solvers. The existing tensor-product grid solver has been modified in order to
run on a cluster, although so far we made parallelization only in one (vertical) direction.

In this thesis we just described a numerical approach to solve the film cooling problem
without giving a detailed analysis of the flow. In other words we were more interested
in designing a proper tool than in extensive and comprehensive numerical experiments
with the help of the designed tool. This is partly due to the lack of time. On the next
stage the approach described in this work should be used for a detailed series of calcula-
tions, which in turn should be compared with experimental results available. Another
interesting area of research is to study the interaction of the cooling jets from several
nozzles. In the present work we assumed periodic boundary conditions, which means
an infinite row of cooling nozzles, which is not the case in reality. Also we concentrated
on the flow pattern in the neighborhood of each individual nozzle and we were not in-
terested in things far down the stream, where in reality jets from different nozzles start
to interact.

For optimization of the solution method the following things could be interesting

• Parallelization in all three directions. This will lead (especially in stream-wise
direction) to substantial time savings and/or the possibility to increase the size
of the problem (number of grid points). However, there is a difficulty of tracking
the position of the cooling hole, since if we implement parallelization in all three
directions, because of different boundary conditions we have to trace different
computational blocks independently.

• Grid refinement in all three directions. So far we used grid refinement only in one
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direction.

• Nesting grids. This could give further insight into flow structure. At the moment
we cannot use large refinement factors, however use of nested grid will allow to
go to almost any level of detail of the flow structure.
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[66] B. Sjögreen. High order centered difference methods for the compressible Navier-
Stokes equations. J. Comput. Phys., 117:67–75, 1995.

[67] C. Speziale. Analytical methods for the development of Reynolds-stress closures
in turbulence. Annu. Rev. Fluid Mech., 23:107–157, 1991.

[68] G. Strang. Linear Algebra and Its Applications. Harcourt Brace Jovanovich, San Diego,
1988.

[69] J. C. Strikwerda. Initial boundary value problem for incompletely parabolic sys-
tems. Communications on Pure and Applied Mathematics, 30:797–822, 1977.

[70] C. Tam. Computational aeroacoustics: issues and methods. AIAA Paper, 950677,
1995.

[71] C. Tam and J. Webb. Dispersion-relation-preserving finite differences schemes for
computational acoustics. J. Comput. Phys, 107:262–281, 1993.

[72] G. Theodoridis, D. Lakehal, and W. Rodi. 3D calculations of the flow field around
a turbine blade with film cooling injection near the leading edge. Flow, Turbul.
Combust., 66:57–83, 2001.

[73] G. Theodoridis and W. Rodi. Calculation of the flow around a high-pressure tur-
bine blade with cooling-jet injection from slots at the leading edge. Flow, Turbul.
Combust., 62:89–110, 1999.

[74] K. W. Thompson. Time dependent boundary conditions for hyperbolic systems. J.
Comput. Phys, 68:1–24, 1987.

[75] A. Tolstykh and M. Lipavskii. On performance of methods with third- and fifth-
order compact upwind differencing. J. Comput. Phys, 140:205–232, 1998.

[76] R. A. Trompert and J. G. Verwer. Analysis of the implicit Euler local uniform grid
refinement. Technical Report NM-R9011, CWI, Amsterdam, 1990.



114 BIBLIOGRAPHY

[77] R. A. Trompert and J. G. Verwer. Runge-Kutta methods and local uniform grid
refinement. Technical Report NM-R9022, CWI, Amsterdam, 1990.

[78] A. van der Sluis. Equilibration and pivoting in linear algebraic systems. In Proceed-
ings of the IFIP Congress, pages 127–129, 1968.

[79] B. van ’t Hof. Numerical Aspects of Laminar Flame Simulation. PhD thesis, Eindhoven
University of Technology, Eindhoven, 1998.

[80] J. C. J. Verhoeven. Modelling laser percussion drilling. PhD thesis, Eindhoven Uni-
versity of Technology, Eindhoven, 2004.

[81] J. G. Verwer and R. A. Trompert. Analysis of local uniform grid refinement. Tech-
nical Report NM-R9211, CWI, Amsterdam, 1992.

[82] A. Vreman, N. Sandham, and K. Luo. Compressible mixing layer growth rate and
turbulence characteristics. J. Fluid Mech, 320:235–258, 1996.

[83] K. D. Walters and J. H. Leylek. A detailed analysis of film-cooling physics, part 1:
Streamwise injection with cylindrical holes. ASME Paper, 97-GT-269, 1994.

[84] X. Zhong. High-order finite-difference schemes for numerical simulation of hyper-
sonic boundary-layer transition. J. Comput. Phys, 144:662–709, 1998.

[85] D. W. Zingg, H. Lomax, and H. Jurgens. High-accuracy finite-difference schemes
for linear wave propagation. SIAM J. Sci. Comput., 17:328, 1995.



Index

acoustic pulse, 75

blockage area, 100
buffer zone method, 63

characteristic method, 64
combustion turbine, 1
compact schemes, 48
convective term, 50

diffusive tem, 49
discretization schemes, 87
distributed-memory, 92
domain decomposition, 90

electric discharge machining, 3
electro-chemical drilling, 3
electron beam drilling, 4
estimates of compexity, 22
explicit schemes, 48
extrapolation method, 63

film cooling, 3

high order compact finite difference schemes,
47

implicit schems, 48

laser drilling, 5
laser percussion drilling, 5
LDC, 26
LDC and HOCFD, 51
local uniform grid refinement technique, 95
LODI relations, 70
LUGR, 23

mechanical drilling, 3
MPI, 94

numerical results, 98

shared-memory, 92
spatial discretization, 86
stability restrictions, 89

time discretization, 87

well-posedness, 61



116 Summary



Summary

One of the major problems in enhancing the specific work output and efficiency in gas
turbines is the maximum possible value of the turbine inlet temperature due to blade
material properties. To increase this maximum, turbine blades need to be cooled (in-
ternal or external), which is usually done by compressor air. Based on its high cooling
efficiency, film cooling is one of the major cooling techniques used, especially for the
hottest blades. In film cooling cold air is injected into the boundary layer through small
nozzles in the blade surface. Impingement of the jets into the (laminar) boundary layer
flow is essentially three-dimensional. The collision of the laminar jet with the boundary
layer flow produces a local turbulent shear layer and changes the local heat transfer to
the blade (when poorly constructed it may even increase the local heat transfer).

In this project we have studied local grid refinement methods and their application to
flow problems in general and to air film cooling in particular. Local defect correction
(LDC) is an iterative method for solving pure boundary value or initial-boundary value
problems on composite grids. It is based on using simple data structures and simple
discretization stencils on uniform or tensor-product grids. Fast solution techniques exist
for solving the system of equations resulting from discretization on a structured grid.
We have combined the standard LDC method with high order finite differences by using
a new strategy of defect calculation. Numerical results prove high accuracy and fast
convergence of the proposed method.

We made a review of boundary conditions for compressible flows. Since we would like
to use local grid refinement for such flow problems, we studied the spreading of an
acoustic pulse. For this model problem we introduced local grid refinement and made
a series of tests in order to see if the artificial boundary conditions introduced for the
local fine grid cause any reflections of the acoustic waves.

The numerical techniques developed have been used to study film cooling. Because
this problem concerns the interaction between a main flow and a jet, we also propose
a domain decomposition algorithm in order to supply proper boundary conditions for
the cooling jet. This domain decomposition combines a structured DNS flow solver for
the problem of interest with an unstructured solver for the flow in the cooling nozzle.
Additionally we implemented local grid refinement for the flow problem to save com-
putational costs.
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Samenvatting

Een van de belangrijkste problemen bij het verbeteren van het specifiek vermogen en
de efficiëntie van gasturbines is hoe hoog de temperatuur bij de ingang van de turbine
mag zijn met het oog op materiaaleigenschappen. Om deze waarde te verhogen moeten
turbineschoepen (intern of extern) gekoeld worden. Dit wordt gewoonlijk gedaan door
samengedrukte lucht. Filmkoeling is een van de belangrijkste koeltechnieken die wordt
gebruikt vanwege de hoge koelefficiëntie, met name voor zeer hete schoepen. Bij filmkoel-
ing wordt koude lucht via smalle gaten in het oppervlak van een schoep in de grenslaag
geı̈njecteerd. De instroom van de jets in de (laminaire) grenslaag is driedimensionaal.
De botsing van de laminaire jet met de grenslaag produceert een lokaal turbulente af-
schuiflaag en verandert de lokale warmteoverdracht naar de schoep. Bij een slechte
constructie kan de lokale warmteoverdracht zelfs toenemen.

In dit project hebben we een aantal methoden voor lokale roosterverfijning beschouwd
en gekeken naar hun toepasbaarheid op stromingsproblemen in het algemeen en filmkoel-
ing met lucht in het bijzonder. Lokale defectcorrectie (LDC) is een iteratieve meth-
ode voor het oplossen van randwaardeproblemen en beginrandwaardeproblemen op
samengestelde roosters. De techniek berust op eenvoudige datastructuren en eenvoudige
discretisatiestencils op uniforme of tensorproductroosters. Er zijn snelle technieken
voor het bepalen van de oplossing van systemen van vergelijkingen die voortkomen
uit de discretisatie op een gestructureerd rooster. Dankzij een nieuwe manier om het
defect in de LDC-methode te berekenen zijn we er in geslaagd om LDC te combineren
met zogenaamde hoge-orde eindige differentiemethoden. Numerieke resultaten tonen
aan dat de ontwikkelde methode zowel een hoge nauwkeurigheid als een snelle con-
vergentie geeft.

We hebben een overzicht gegeven van randvoorwaarden voor samendrukbare stromin-
gen. Aangezien we roosterverfijning willen toepassen op dergelijke stromingsproble-
men hebben we de verspreiding van een akoestische puls bestudeerd. Voor dit model-
probleem hebben we roosterverfijning toegepast en een serie experimenten uitgevoerd
om te onderzoeken of de kunstmatige randvoorwaarden weerkaatsingen veroorzaken
van de akoestische golven.

De ontwikkelde numerieke technieken zijn gebruikt om filmkoeling te analyseren. Om-
dat in dit probleem de interactie tussen een hoofdstroom en een jet van belang is, presen-
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teren we ook een domeindecompositie algoritme om de juiste randvoorwaarden voor
de (koelende) jet te kunnen opleggen. Deze domeindecompositie combineert een com-
puterprogramma dat de stroming via DNS op een gestructureerd rooster oplost met
een computerprogramma dat de stroming in het koelkanaal oplost op een ongestruc-
tureerd rooster. Tenslotte hebben we roosterverfijning geı̈mplementeerd voor het stro-
mingsproblemen om rekenkosten te verlagen.
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