

Job shop scheduling by constraint satisfication

Citation for published version (APA):
Nuijten, W. P. M., Aarts, E. H. L., van Erp Taalman Kip, D. A. A., & Hee, van, K. M. (1993). Job shop scheduling
by constraint satisfication. (Computing science notes; Vol. 9339). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/b5896484-fd9e-48ca-9438-2c6d2e8ef66b

Eindhoven University of Technology

Department of Mathematics and Computing Science

Job Shop Scheduling by Constraint Satisfaction

by

W.P.M. Nuijten, E.H.L. Aarts, D.A.A. van Erp Taalman Kip

and

K.M. van Hee

Computing Science Note 93/39
Eindhoven, November 1993

93/39

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author.

Copies can be ordered from:
Mrs. M. Philips
Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
ISSN 0926-4515

All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Job Shop Scheduling by Constraint Satisfaction

W.P.M. Nuijten 1 E.H.L. Aarts 1,2 D.A.A. van Erp Taalman Kip 1,3 K.M. van Hee 1

,
3

Eindhoven University of Technology, Department of Mathematics and Computing Science,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Philips Research Laboratories, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands
RIKS, P.O. Box 463, 6200 AL Maastricht, The Netherlands

Abstract
We present a new algorithm for the job shop scheduling problem based on constraint satis
faction techniques. Novel features of our algorithm are its extensive consistency checking and
randomized variable and value selection. An empirical performance analysis is presented in
which our algorithm is compared with the best-known approximation algorithms for job shop
scheduling. We argue that our algorithm performs comparable to these algorithms.

1 Introduction

We are concerned with a problem in deterministic machine scheduling known as the Job
Shop Scheduling Problem (JSSP) [French, 1982]. Informally, the problem can be stated
as follows. Given are a set of jobs and a set of machines. Each job consists of a set
of operations that must be processed in a given order. Furthermore, each operation is
given an integer processing time and a machine by which it has to be executed. Once
an operation is started, it is executed without interruption and a machine can execute
at most one operation at a time. A schedule assigns a start time to each operation.
Basically, the problem is to find for each machine an ordering of the operations that have
to be executed by it. In the optimization variant of the JSSP one is asked to find a
sched ule that minimizes the maximum completion time of the operations. Here, we follow
the feasibility variant of the JSSP. To this end a fixed overall deadline is introduced and
the problem is to find a schedule, if it exists, that meets this overall deadline. The reason
to consider this variant is that it corresponds to the general formulation of constraint
satisfaction problems [Montanari, 1974]. It should be noted that any algorithm that
solves the feasibility variant can be used to solve the optimization variant with a binary
search in a number of calls to this algorithm which is bounded by log(NPmax), where N
denotes the number of operations and Pmax the maximum processing time; see also [Garey
& Johnson, 1979].

This paper is one in a series of papers in which we report on our investigations of the
potentials of constraint satisfaction techniques for scheduling. The general objective of
our research is to investigate solution methods that are capable of solving a wide range
of scheduling problems, but that also perform satisfactory on special cases. Here, the
method under consideration is constraint satisfaction and in this paper we concentrate
on the JSSP as a special case. This choice is motivated by the fact that this is a well
investigated problem for which a number of high quality solution methods exist that are
compared on the basis of a well-known benchmark set of problem instances.

The organization of the paper is as follows. In Section 2 we discuss constraint satisfac
tion after which, in Section 3, we give a formal definition of the JSSP. Section 4 presents

1

our constraint satisfaction approach to the JSSP. Section 5 presents the computational
results and a performance comparison with other algorithms. Section 6 concludes the
paper with a discussion of the obtained results.

2 Constraint satisfaction

2.1 The constraint satisfaction problem

An instance ofthe Constraint Satisfaction Problem (CSP) [Montanari, 1974] involves a set
of variables, a domain for each variable specifying the values to which it may be assigned,
and a set of constraints on the variables. The constraints define which combinations of
domain values are allowed and which are not. One is asked to assign values to variables
such that all constraints simultaneously are satisfied. The obvious difference with an
optimization problem is the absence of an optimization criterion; the problem is to find
a feasible solution instead of a best solution. Modeling the instances of a problem as
instances of the CSP is a rather general and flexible technique and a large class of problems
can be treated as such. Before giving a definition of the CSP, we formally define domains,
constraints and assignments.

Definition 2.1. A domain is a finite set, and its elements are called values. o
The size of a domain Dis qlDI where q is the maximum number of bits needed to encode
any value in the domain.

Definition 2.2. Given is a collection of domains D = {DJ, ... ,Dp}. A constraint c :
DJ X ••• x Dp -+ {T,.L} on D defines which combinations of values from the domains
satisfy the constraint. The set of all constraints on D is denoted by C(D). 0

A constraint c on D = {DI, ... , Dp} is called polynomially computable, if for all s E
DI X ... x Dp, cis) can be computed within a time bounded by a polynomial in the
sum of the sizes of the domains. We consider only polynomially computable constraints.
Below, we treat the constraints of Definition 2.2 as predicates, e.g., cis) is used instead
of c(s) = T and oc(s) is used instead of c(s) = .L.

Definition 2.3. Given are a set of variables X = {XI,"" xp}, and for each variable
Xi a domain D(Xi) specifying the values to which it may be assigned. An assignment
s E D(xI) X ... X D(xp) specifies for each Xi E X a value in its domain, Le., S(Xi) denotes
the value of variable Xi. The set of all assignments is denoted by A(X, D). 0

Definition 2.4. An instance of the Constraint Satisfaction Problem (CSP) is a triple
(X, D, C), where X = {XI, ... , xp} is a set of variables, D = {D(XI)"'" D(xp)}, gives
for each variable Xi a domain D(Xi)' for which the size is polynomial in p, and C =
{ CI, ... , c,} <;; C (D) is a set of polynomially computable constraints on D, such that q is
polynomial in p. The question is whether there is an assignment s E D(xI) X .,. X D(xp)
such that I/I<i<, Ci(S), Such an assignment is called a solution. 0

The size of an instance of the CSP is characterized by the number of variables, Le., each
instance of the CSP can be coded in size bounded by a polynomial in p, where p is the
number of variables. This follows from the sizes of the domains being polynomial in p,
the number of constraints being polynomial in p, and each constraint being polynomially
computable, which implies that there exists an encoding that is polynomial in the sum of
the sizes of the domains, which in turn is polynomial in p.

Theorem 2.1. The CSP is NP-complete.

2

.,

Proof. The CSP is in NP, as for a given assignment s all constraints can be checked in
polynomial time. A straightforward polynomial time transformation from SATISFIABIL
ITY [Garey & Johnson, 1979] concludes the proof. 0

The constraints of Definition 2.2 may involve all variables. However, one often only
considers unary and binary constraints, which are concerned with one and two variables,
respectively. For simplicity reasons, we assume that at most one unary constraint for each
variable x is given, denoted by cx, and that at most one binary constraint relates variable
x to variable x', denoted by Cxx" Cx can be represented as a Boolean function over D(x),
Le., Cx : D(x) -+ {T, .l}. Cxx' can be represented by a Boolean function over the Cartesian
product of D(x) and D(X'), Le., Cxx': D(x) x D(X') -+ {T,.l}. A unary constraint Cx can
be viewed as a binary constraint Cxx such that, for v E D(x), cx(v) ¢} cxx(v, v). Therefore,
often only binary constraints are considered. Nudel [1983} proofs that this can be done
without loss of generality. An instance of the CSP with only binary constraints is called
a binary CSP instance. We, furthermore, assume that binary constraints are symmetric,
Le., cxx'(v,v') = cx'x(v',v) for v E D(x) and v' E D(x'). With a binary CSP instance, a
constraint graph G can be associated, with a node set given by the set of variables, and
directed arcs (x, x') for each constraint Cxx" In [Dechter & Pearl, 1988], some classes of
binary CSP instances are identified that can be solved in polynomial time. One of these
classes is the class of instances in which the constraint graph is a tree. Such instances can
be solved in O(pd2), where p is the number of variables and d is the size of the largest
domain. For a more elaborate discussion on well-solvable special cases we refer to [Dechter
& Pearl, 1988].

2.2 Solving the CSP

The question of solving the CSP has received much attention, especially in the field
of artificial intelligence [Nadel, 1989]. We divide the approaches into two classes, viz.,
domain independent and domain dependent. Domain independent approaches do not
use specific conditions on the variables, their values or the corresponding constraints.
As is often done in artificial intelligence, the emphasis is put on common properties of
problems. The performance of such general approaches for specific subclasses of problems,
however, is often questionable. Therefore, an increasing number of constraint satisfaction
researchers employ a domain dependent approach and try to improve performance by
exploiting the structure of the problem. Such an approach is often said to be typical of
operations research. We use techniques that find their origins in both artificial intelligence
and operations research and as a result, we are able to combine the best of both worlds
in the sense that the resulting approach is general but still capable of exploiting problem
specific structure, leading to improved performance characteristics.

Most approaches to solve the CSP are based on tree search algorithms. In order to
treat these algorithms properly, we need to introduce some definitions.

Definition 2.5. A search state of an instance I = (X, D, C) of the CSP is a pair (II, 0),
where II ~ C(D) is a set of posted constraints and for each variable x E X, o(x) ~ D(x)
gives the current domain. 0

Definition 2.6. A search tree of an instance I ofthe CSP is a minimal connected directed
acyclic graph (V, E), where V is a set of search states of I. 0

In a search state for each variable the current domain is administrated, being the values
of each variable that are still under consideration. Furthermore, a search state records

3

which constraints are posted, thus recording which decisions led to this search state. The
node set of a search tree consists of a set of search states. Going from one node to another
is done by posting an extra constraint. At any node in the search tree a limited number
of constraints may be posted, defining the edges of the tree. Initially, i.e., in the root of a
search tree, the search state always is (0, D), representing that no constraints are posted
and the current domains are equal to D(x) for all variables x EX.

A search state represents a set of solutions that satisfy both the original constraints
and the posted constraints and that, for each variable x EX, have a value from 6(x).

Definition 2.7. Let I = (X,D,C) be an instance of the CSP, and let a = (11,6) be a
search state of I. The solution set of a is the set S(a) = {s E A(X, D) I "<IeEG c(s) 1\

"<IeEn c(s)}. 0

Observe that all assignments in the solution set of any search state of an instance I, also
are solutions of I.

Each time a constraint is posted, some values of variables may become inconsistent.
Let a = (11,6) be a search state. A value v E 6(x) for a variable x is called inconsistent
if no solution in S(a) exists that includes the assignment of v to x. Then, this value can
be removed from the current domain of x, without losing any solutions. More formally
a search state a' = (11,6'), where 6'(x) = 6(x)\{v} and for all x' 'I x, 6(x') = 6'(x'),
can be obtained such that S(a) = S(a'). The resulting search state a' is called solution
equivalent with a. The following definition formally defines this property.

Definition 2.8. Let I = (X, D, C) be an instance of the CSP. A search state a = (11,6) of
I is called solution equivalent with a search state a' = (11,6') iffor all x EX, 6(x) ~ 6'(x)
andS(a)=S(~). 0

The process of removing inconsistent values is usually called consistency checking.
Consistency checking transforms one search state into a solution equivalent one. It is
highly unlikely that all inconsistent values can be removed in polynomial time, as this
would imply that starting with a search state a = (11,6), we could obtain in polynomial
time a solution equivalent search state a' = (11,6') such that for all x E X and for all
v E 6(x), there exists an s E S(a') such that s(x) = v. By iteratively choosing any
value of the current domain of any variable and then removing all inconsistent values, we
would have an O(pZ) algorithm solving the CSP, where Z is the time complexity of the
algorithm removing all inconsistent values. If Z is polynomial, so is this solution method,
which contradicts with the CSP being NP-complete and the assumption that P 'I NP.

Once a search state is found such that 16(x)1 = 1, for all x E X, a solution is found
and the instance is solved. If a search state is reached where the current domain of any
variable is empty, i.e., there exists an x E X such that 6(x) = 0, we say that a dead end
occurs.

Definition 2.9. Let I = (X, D, C) be an instance of the CSP. A search state a = (11,6)
is called a dead end if there exists an x E X such that 6(x) = 0. 0

If a dead end is reached it is proven that no solution exists that satisfies all the original
constraints together with the posted constraints. Then the tree search algorithm has to
backtrack, i.e., undo certain decisions and try alternatives for them. The search typically
stops if a solution is found, or if all alternative decisions in the root of the tree have been
tried without success. In the latter case, the instance is said to be infeasible.

We focus on algorithms where decisions are the selection of one value for a variable.
Selecting a value v E o(x) for a variable x can be seen as posting a unary constraint Cx

4

such that cx(v') ¢} v' = v, for all v' E D(x). Of course only those variables x E X are
regarded with 16(x)1 > 1. In general, constraint satisfaction tree search algorithms that
employ abovementioned strategy, can be described by the following framework.

llhile not solved and not infeasible do
check consistency
if a dead end is detected then

backtrack
else

select variable
select value for variable

endit
endllhile

So, in each iteration, a variable is selected and assigned a value in its current domain.
Subsequently, consistency checking is used to eliminate values that are inconsistent with
the assignments made so far. Variable and value selection heuristics try to prevent the
search from getting stuck in a dead end. If, however, the search does get stuck in a
dead end, backtracking is needed to escape from it. These three basic components, viz.,
consistency checking, variable and value selection and dead end handling, are treated below
in more detail.

Consistency checking. Each time a variable is assigned a value, inconsistent values
of the unassigned variables are removed. A value v E 6(x) for a variable x is called
inconsistent if no solution exists that includes the assignment of v to x in addition to
the assignments made so far. Important forms of consistency are node, arc and path
consistency, also called 1-, 2-, and 3-consistency, respectively. Mackworth [1977J gives a
description of all three forms of consistency. We only address node and arc consistency.

Node consistency refers to the consistency of unary constraints. A constraint Cx is
node consistent if cx(v) holds for all values v E 6(x). Node consistency is easily achieved
by deleting all values that do not satisfy the unary constraints. It suffices to do this
only at the beginning of the search. Using unary constraints can therefore be eliminated
by including appropriate redefinitions of the domains, i.e., by introducing new domains
D'(x) = {v E D(x) 1 cx(v)}.

Arc consistency refers to the consistency of binary constraints. The idea of arc con
sistency is the following. If a value v of a variable x is inconsistent with all values of
variable x', i.e., V v'E.5(x') ,cxx'(v, v'), then no solution exists that includes the assignment
of v to x in addition to the assignments so far, and thus v can be eliminated from 6(x).
If, however, for all values v E 6(x), at least one value in 6(x') is consistent with it, Cxx' is
called arc consistent.

Definition 2.10. Let x and x' be variables with current domains 6(x) and 6(X') respec
tively. Furthermore, let Cxx' be the constraint defined on x and x'. Cxx' is said to be arc
consistent with respect to 6(x) and 6(x') if and only if

VvE8(x) 3V/E8(XI) CXXI(V, v').
o

If all constraints of a binary CSP are arc consistent, we say that full arc consistency
is achieved. Arc consistency algorithms have a long history; they originate from the
Waltz filtering algorithm [Waltz, 1972] and have been refined several times [Mackworth,

5

1977], resulting in the time optimal algorithm AC-4 of Mohr & Henderson [1986]. AC-
4 runs in O(ed2

), where e is the number of binary constraints and d is the size of the
largest domain. Van Hentenryck, Deville & Teng [1992] introduce AC-5 which generalizes
both AC-3 [Mackworth, 1977] and AC-4. Moreover, AC-5 can be instantiated to an
O(ed) algorithm achieving arc consistency for functional, anti-functional and monotonic
constraints. Mackworth & F'reuder [1993] give an overview of the history of arc consistency
algorithms.

Variable and value selection. The selection of a next variable and its value is done
by variable and value selection heuristics, respectively. In its simplest form both the vari
ables and their values are chosen in a predefined order. More sophisticated techniques
dynamically try to select a variable which maximally constrains the rest of the variables.
The idea of these variable selection heuristics is that one starts with critical variables,
i.e., variables that are difficult to instantiate. A critical variable is one that is expected
to cause backtracking, namely one whose remaining possible values are expected to con
flict with the remaining possible values of other variables. Furthermore, so-called least
constraining value selection heuristics are used that select a value that leaves as many
options as possible open to the remaining uninstantiated variables. A least constraining
value is one that is expected to participate in many solutions to the CSP. Naturally, both
application domain dependent and independent variable and value selection heuristics
have been developed. In Section 3 some variable and value selection heuristics in the field
of scheduling are given. We mention two examples of domain independent variable selec
tion heuristics, viz., selecting the variable with smallest number of remaining values; see
[Bitner & Reingold, 1975; Haralick & Elliott, 1980; Purdom, 1983], and selecting the vari
able with maximal degree in the constraint graph [Freuder, 1982]. A domain independent
value selection heuristic is Advised BackTracking (ABT) [Dechter & Pearl, 1988] that
estimates for each value of the selected variable the number of solutions it participates in
by counting the solutions to an instance that corresponds to a tree-like relaxation of the
original constraint graph.

Dead end handling. If a dead end is reached it is derived that no solution exists that
satisfies all original constraints and all posted constraints. As a result at least one posted
constraint should be undone and an alternative constraint should be tried. In our case
of assigning values to variables, this means at least one assignment has to be replaced by
another. In its most simple form undoing constraints is done by means of chronological
backtracking, which consists of undoing the last constraint and posting another constraint.
Chronological backtracking, however, often results in exhaustively searching a subtree in
which no solution can be found. This is because often the combination of several ear
lier constraints causes the algorithm to get stuck in such a subtree. The main problem
of escaping from a dead end, is to decide which posted constraints to undo. Besides
chronological backtracking, more sophisticated procedures, so called intelligent backtrack
ing procedures, are developed to escape from a dead end. As examples of intelligent
backtracking procedures, we mention backjumping and dependency directed backtracking.
Like chronological backtracking, backjumping [Nadel, 1989] undoes the posted constraints
in the reversed order they were posted, but in addition to the last posted constraint it
undoes those constraints that did not contribute to the dead end, up to the last posted
constraint that did contribute to the dead end. This improves the performance of the
tree search. Another way of improving the performance is by recording the reasons for

6

the dead end in the form of new constraints, so that the same conflicts will not arise
again in the later search. Dependency directed backtracking [Stallman & Sussman, 1977]
incorporates both backjumping and constraint recording. We refer to [Dechter & Pearl,
1988] for a short overview of intelligent backtracking procedures.

Besides these tree search approaches, some other solution methods have been proposed
for the CSP. We mention the method of Minton, Johnston, Philips & Laird [1992] which
is based upon the work of Adorf & Johnston [1990]. Instead of constructing a solution by
extending consistent partial assignments as is done by the tree search algorithms, Minton,
Johnston, Philips & Laird [1992] propose to assign a tentative value to every variable,
resulting in a possible inconsistent full assignment, and to modify this assignment by
choosing a variable with a conflicting assignment and replacing it with an assignment
that minimizes the number of remaining conflicts, until all conflicts are resolved. The
basis of this approach is reformulating the CSP as an optimization problem, and then
solving it by a local search procedure. It this way, all local search procedures may be used
to solve the problem. Little effort has been done to do so however.

3 The job shop scheduling problem

First, we present the feasibility variant of the JSSP and then give the straightforward
relation with the CSP, i.e., we show that the JSSP can be seen as a special case of the
CSP.

Definition 3.1. An instance of the Job Shop Scheduling Problem (JSSP) consists of a set
o of N operations, a set .:J of n jobs, a set M of m machines, an overall deadline D E Z+,
a function J : 0 --> .:J giving for each operation the job to which it belongs, a function
M : 0 --> M giving for each operation the machine on which it must be processed, a
function p : 0 --> Z+ giving the processing time of each operation, and a binary relation
-< decomposing 0 into chains, such that every chain corresponds to a job. A schedule is
a function s : 0 --> zt giving the start times of the operations. The problem is to find a
schedule s such that for all 0,0' E 0:

(i) s(o) :2: 0,

(ii) s(o)+p(o):O: D,

(iii) s(o) + p(o) :0: s(o'), if 0 -< 0', and

(iv) s(o) + p(o) :0: s(o') or s(o') + p(o') :0: s(o), if M(o) = M(o') and 0 f. 0'.

o
Constraint (i) of Definition 3.1 implies nonnegative start times, constraint (ii) implies
that all operations must be completed before D, constraint (iii) accounts for the binary
relation, i.e., if 0 -< 0', then 0' cannot start before 0 is finished, and constraint (iv)
implies that no two operations can be processed on the same machine at the same time.
Constraints defined on operations that are related by -< are called precedence constraints.
Constraints defined on operations that must be scheduled on the same machine are called
capacity constraints.

That the JSSP is a special case of the CSP can easily be seen as follows. For each
operation 0 E 0, a variable is introduced, i.e., 0 is used as the set of variables. Further
more, for each operation the domain D(o) = [O,D - p(o) + 1] is defined, specifying the
start times for it, and the set of binary constraints is defined as follows. Let 0,0' E 0,

7

0# 0', t E D(o), and t' E D(o'), then

{

t+p(o):::; t'
coo,(t, t') ¢> t' + p(o') :::; t

t + p(0) :::; t' V t' + p(0') :::; t

ifo-<o',
if 0' -< 0,

if M(o) = M(o'), 0 f, 0', and 0' f, 0,
Note that a binary constraint defined on the variables of operations 0 and 0' is denoted
as coo,. As for each operation a variable is introduced, we often use "variable" and
"operation" interchangeably. The same holds for "value" and "start time", as values
correspond to start times.

The decision variant of the JSSP has been proved to be NP-complete [Garey, Johnson
& Sethi, 1976J. Over the years many algorithms have been designed to handle the opti
mization variant of the JSSP. Roughly speaking, these algorithms can be divided into two
classes, viz. optimization and approximation algorithms. Most optimization algorithms
for the JSSP are based on branch & bound techniques; see for instance Carlier & Pin
son [1989J, Applegate & Cook [1991]' and Brucker, Jurisch & Sievers [1992J. Among the
most successful approximation algorithms we mention the shifting bottleneck procedure
of Adams, Balas & Zawack [1988], simulated annealing [Van Laarhoven, Aarts & Lenstra,
1992; Matsuo, Suh & Sullivan, 1988J, genetic local search [Aarts, Van Laarhoven, Lenstra
& Ulder, 1992; Dorndorf & Pesch, 1992J and tabu search [Dell'Amico & Trubian, 1993J.

Most attention to the feasibility variant of the JSSP is paid by the field of constraint
satisfaction. Most constraint satisfaction algorithms for scheduling are based on tree
search algorithms, which construct a solution of a given problem instance by assigning
the start times to the operations one by one; we only mention [Keng & Yun, 1989J and
[Sadeh, 1991J. Recently, Muscettola [1993J and Smith & Cheng [1993J have used a different
formulation of the JSSP as the one we presented. They follow the well-known observation
that the actual problem of the JSSP is determining machine orderings, i.e., orderings of the
operations on the machines. Novel features are however the variable and value ordering
heuristics, defining which operations to order and how. Minton, Johnston, Philips & Laird
[1992J, see Section 2.2, also test their so-called repair heuristic on scheduling.

Although several applications of constraint satisfaction techniques to scheduling have
been reported in the literature, few comparative studies are known. One example of such
a study is given by Sadeh [1991J who compares his variable and value orderings with
those of Keng & Yun [1989J, and with the general variable ordering of Purdom [1983J
and the general value ordering of Dechter & Pearl [1988J. Sadeh has carried out his
performance analysis on a specific set of randomly generated instances and he concludes
that his orderings perform better than the other approaches used in the comparison. We
implemented Sadeh's variable and value orderings and tested them using the well-known
benchmark set of problem instances of [Lawrence, 1984J and [Fisher & Thompson, 1963J.
We found that Sadeh's algorithm performs poorly on these instances; see [Nuijten, Aarts,
Van Erp Taalman Kip & Van Hee, 1993J. In their turn Muscettola [1993] and Smith &
Cheng [1993] compare their approaches to the one of Sadeh and come up with slightly
better results. Muscettola [1993J also implemented the approach of [Minton, Johnston,
Philips & Laird, 1992], and he reports quite poor results, even on the relatively easy
instances from [Sadeh, 1991].

4 A new constraint satisfaction approach

In this section our approach is presented which is based on tree search algorithms. In
Section 4.1 the consistency checking algorithms we use are discussed. Section 4.2 presents

8

the way operations and start times are selected. Section 4.3 discusses the way dead ends
are handled.

4.1 Consistency checking

Arc consistency. In Definition 2.10 arc consistency is defined for the general binary
esp. The straightforward translation to the JSSP leads to the following. Let 0,0' E 0,
then constraint Coo' is arc consistent if and only if for all t E 6(0), there exists a t' E 6(0')
such that coo,(t, t'), where 6(0) and 6(0') are the current domains of 0 and 0', respectively.
Before discussing arc consistency of the constraints of the JSSP in detail, we introduce
the following notations. For each operation 0 E 0 we have

.6(0): the current domain,

• est(o) = min{t I t E 6(0)}: the earliest possible start time,

• ect(o) = min{t + pro) I t E 6(0)}: the earliest possible completion time,

• Ist(o) = max{t I t E 6(0)}: the latest possible start time,

• lct(o) = max{t + pro) I t E 6(0)}: the latest possible completion time.

Let 0,0' E 0 and 0 -< 0', then coo,(t, t') ¢} t + pro) ~ t'; see Section 3. The following
theorem is concerned with arc consistency of precedence constraints.

Theorem 4.1. Let 0,0' E 0 and 0 -< 0'. Then (i) coo' is arc consistent with respect to
6(0) and 6(0'), if and only iflct(o) ~ Ist(o') and (ii) Co'o is arc consistent with respect to
6(0) and 6(0'), if and only if ect(0) ~ est(0').

Proof. (i) If lct(o) ~ Ist(o'), then for all t E 6(0), t + pro) ~ Ist(o'). (ii) If ect(o) ~ est(o'),
then for all t' E 6(0'), ect(o) ~ t'. 0

Arc consistency of coo' and Co'o easily can be achieved by deleting from 6(0) all start times
larger than Ist(o') - p(o) and by deleting from 6(0') all start times smaller than ect(o).

Let 0,0' E 0,0 # o',M(o) = M(o'), 0 -I< 0', and 0' -I< 0, then coo,(t,t') ¢} t + pro) ~
t' V t' + p(0') ~ t; see Section 3. To illustrate how capacity constraints can be made arc
consistent, we discuss the following example.

0 + • •)r • • 0--0------0----, • ,
" x x

o· ! • • •)- • 0------0------0

• , , • " u " x x

Figure 1: Two operations with M(o) = M(o').

Let est(o) = O,lst(o) = 6,p(0) = 4 and est(o') = 1,lst(0') = 7,p(0') = 5. 1n Figure 1,
possible start times are denoted by a '.' and times at which an operation cannot be started
although the operation may be processed at that time are denoted by a '0'. Furthermore
the processing time is indicated by a bar starting at the earliest start time. The' x's
indicate inconsistent start times. In this case these inconsistent start times have to be
removed to achieve arc consistency of Coo' and Co'o' As an example we state that 0 cannot
be started at time 4, as this makes scheduling 0' impossible. In general, an operation 0

cannot be started at any time in the open interval (Ist(o') - p(o),ect(o')) for any 0' that
is to be scheduled on the same machine. Therefore, Coo' is arc consistent if and only if
6(0) n (Ist(o') - p(o),ect(o')) = 0, which leads to the following theorem.

9

Theorem 4.2. Let 0,0' E 0,0 oF 0', M(o) = M(o'), 0 f. 0', and 0' -< o. Then Coo' is arc
consistent with respect to 6(0) and 6(0'), if and only if 6(0) n (lst(0') - p(0), ect(0')) = 0.
Proof. If 0 is started at time Ist(o') - pro) + 1 or later, 0' cannot be scheduled after o.
Furthermore, if 0 is started at ect(0') - 1 or earlier, 0' cannot be scheduled before o. From
this follows that starting 0 at any time in the open interval (Ist(o') - p(o),ect(o')), which
implies that 0' cannot be scheduled before nor after o. 0

Arc cousistency of coo' can be achieved by deleting the start times in (Ist(o')-p(o),ect(o'))
from 6(0). Similarly, arc consistency of Co'o can be achieved by deletiug the start times in
(Ist(o) - p(o'),ect(o)) from 6(0').

We now discuss the complexity of achieving arc consistency for a constraint Coo" In
[Mackworth, 1977], the well· known procedure REVISE is introduced that achieves arc con·
sistency for a general binary constraint Cxx' on the variables x and x' in O(16(x)116(x')I)
running time, by deleting all values from 6(x) for which no value in 6(x') exists that sat
isfies Cxx" REVISE is used in AC-3 which is an O(ed3) algorithm [Mackworth & Freuder,
1985] for achieving full arc consistency, where e is the number of binary constraints and
d is the size of the largest domain. AC-3 can be used as a component of the consistency
checking procedure mentioned in the framework of Section 2.2. When applying REVISE,
it is needed that all values of the variables are administrated. However, we choose not
to represent the consistent start times by specifying them individually, but by specifying
the consistent intervals to which they belong, resulting in the representation of a do
main 6(0) by a number of disjunctive intervals, i.e., 6(0) = [at,bl] U ... U [ax,bx], with
al :<; bl < a2 :<; ... < ax :<; bx. From Theorem 4.2 follows that achieving arc consistency
for a constraint may lead to the deletion of at most one interval from one of the domains
of the operations between which the constraint is defined. This may lead to the splitting
of at most one interval [ai, bi] into two new intervals. This implies that each domain can
be represented by a list of at most I 0M(o) I intervals, where OM(o) is the set of operations
that are to be scheduled on machine M(o). From this it follows that achieving arc con
sistency for Coo' can be done in O(OM(o)), both for precedence and capacity constraints.
We thus can devise our own procedure achieving arc consistency, with O(z) running time,
where z = maxoEO 10M(0)1. If we incorporate this procedure in AC-3, an O(zde) full arc
consistency algorithm results, referred to as AC-3a. AC-4 of Mohr & Henderson [1986]
achieves full arc consistency in O(ed2) running time. AC-4 however also has an O(ed2)
space complexity, which is O(N2d2), whereas AC-3a has an Ore + N z) space complexity,
which is O(N 2). This leads to the following theorem.

Theorem 4.3. Full arc consistency of a search state of the JSSP, can be obtained in
O(zde) running time and O(e+ N z) space complexity, where e is the number of constmints,
d is the size of the largest domain, and z = maxoEO 10M(0)1. 0

Beyond arc consistency. In addition to achieving full arc consistency we use a tech
nique due to Carlier & Pinson [1989], which determines whether an operation is to be
scheduled before or after a specific subset of operations on the same machine. This tech
nique can be used to reduce the domains of the unassigned operations, and thus can be
used in a consistency algorithm. We illustrate the abovementioned technique by means
of the following example.
Figure 2 shows three operations 0,0', and 0". If 0 is scheduled on time 0, it is easy to see
that it is impossible to schedule both 0' and 0"; the same holds for scheduling 0 on times
1 - 7. What actually can be deduced is that 0 should be scheduled after the other two

10

0 + • • • • • ;. • • • • • 0---0---0--0--0 , , , , • , • , • " " " " .. " " " X X X X X X X X

o· ! • • • ;. • 0------0----0--, , , • • " "
0" • • ;. • • • e>--o-----o , • • ,

" " "

Figure 2: Three operations with M(o) = M(o') = M(o").

operations. Before continuing, we define the following abbreviations, for S ~ O.

• e(S) = minoEs est(0)

• C(S) = maxoES !ct(o)

• peS) = LoES p(o)
The following theorem provides the conditions under which one operation 0 is to be
scheduled after a set S of operations on the same machine.

Theorem 4.4. Let 0 EO and S C 0, such that 0 rj. Sand "'O'ES M(o') = M(o). If

e(SU{o})+P(Su{o}»C(S),
then no schedule exists in which 0 precedes any of the opemtions in S.

Proof. Suppose all operations are scheduled and 0 precedes an operation of S. If 0" E S
is the operation that is scheduled last, then s(0") + p(0") :::: e(S U {o}) + P(S U {o}) >
C(S):::: !ct(O") which leads to a contradiction. 0

If no schedule exists in which an operation 0 precedes any of the operations in set S,
est(o) can be set to maxs,CS e(S') + peS'). Formally, maxs,cs e(S') + peS') = 00 as
o ~ Sand e(0) = 00 and 1'(0) = O. We therefore, from now 0;' assume that S' # 0. By
considering all S ~ OM(o), we come up with

L(o) = max max e(S') + peS'),
5£;OM(o)ia 5'£;5

o¢:?orj.S 1\ e(SU{o})+P(SU{o}»C(S),
as a lower bound for the earliest start time of operation o. The following theorem provides
the conditions under which one operation 0 is to be scheduled before a set S of operations
on the same machine.

Theorem 4.5. Let 0 EO and S C 0, such that 0 rj. Sand "'o'ES M(o') = M(o). If

C(S U {a}) - peS U {o}) < e(S),
then no schedule exists in which 0 succeeds any of the opemtions in S.

Proof. Similar to the proof of Theorem 4.4 o
Consequently, if no schedule exists in which an operation 0 succeeds any of the operations
in set S, Ist(0) can be set to mins'cs C(S') - P(S' U {o}). If we do this for all sets
S ~ OM(o), we come up with -

U(o)= min min C(S')-P(S'U{o}),
5£;OM(o)ia S'£;5

O¢:? 0 rj.S 1\ C(SU{o})-P(SU{o})<e(S),
as an upper bound for the latest start time of operation o.

Let p E M be a machine and let T be the set of operations that are to be scheduled on p.
In [Carlier & Pinson, 1990J an OUTI2) algorithm is given that for all 0 E T calculates L(o)

11

and U(o). We derive a more concise O(ITI2) algorithm to do the same. We present the
derivation of the algorithm that calculates all L(0); a similar derivation of the algorithm
that calculates all U(o) is omitted.

In our algorithm we use the following two arrays:

• A contains all operations of T in ascending order of earliest start times .

• B contains all operations of T in ascending order of latest completion times.

These arrays can be constructed in O(lTIIog ITI) time. Ax is used to denote the x-th
element of array A; A;;-' is used to denote the place of 0 in A, Le., A;;-' = x if Ax = o.

For all Ax, with 1 ~ x ~ ITI, we calculate

L(Ax) = max max e(S') + P(S'),
8£TI" 8'£8

a {o} Ax rt S 1\ e(S U {Ax}) + P(S U {Ax}) > C(S).
We use Lx as a shorthand notation for L(Ax). Lemma 4.1 is used to rewrite Lx.

Lemma 4.1. Let S <;; T and 0 E T. If

then

"VU£T e(U) + P(U) ~ C(U),

e(SU{o})+P(SU{o}»C(S),

lct(o) > C(S) {o} 0 rt s.

(1)

(2)

Proof. Suppose 0 rt S 1\ lct(o) ~ C(S). Then with (2) e(SU{o})+P(SU{o}) > C(SU{o})
holds and therefore with (1) a contradiction follows, hence 0 rt S =} lct(o) > C(S).
Trivially lct(o) > C(S) =} 0 rt S holds. 0

If (1) is not true a dead end is detected. Below, we describe an O(ITI2)-algorithm to
verify (1). Now we assume that (1) is true, so we may use Lemma 4.1 to rewrite Lx.

Lx = max max e(S') + P(S')
8£TI" 8'£8

a {o} lct(Ax) > C(S) 1\ e(S U {Ax}) + P(S U {Ax}) > C(S)
In order to calculate Lx we iteratively consider for each 1 ~ Y ~ ITI all subsets of T for
which C(S) = lct(By). It is clear that by doing so we consider all subsets ofT. Therefore,
the following holds

Lx = max Lxy ,
!~y~ITI '

Lx y = max max e(S') + P(S'),
, s~TIO' SIr;.S

a {o} C(S) = lct(By) II lct(Ax) > lct(By) 1\ e(S U {Ax}) + P(S U {Ax}) > lct(By).
However, for reasons displayed below we choose an equivalent definition of Lx,y'

Lx y = max max e(S') + P(S')
, 8£TI" 8'£8

a {o} C(S) ~ lct(By) 1\ lct(Ax) > lct(By) 1\ e(S U {Ax}) + P(S U {Ax}) > lct(By)
Remark that lct(By) = lct(By+,) =} Lx,y = Lx,y+"

From the previous definitions we obtain a preliminary version of the algorithm. Notice
that we first calculate Lx,! for all 1 ~ x ~ ITI, than L x ,2 for aliI ~ x ~ ITI etc., which is
the reversed order of how we presented it.

12

for y := 1 to ITI do
if y = ITI v lct(By) i lct(By+tl then

for x := 1 to ITI do
est(Ax) := est(Ax) max Lx,y;

endfor
endif

endfor

Next, we must calculate the value of Lx,y' Remark that if lct(Ax) ::; lct(By), Lx,y = -00,

and thus no improvement of the earliest start time will result. In the sequel we, therefore,
assume that lct(Ax) > lct(By), which results in the redefinition of Lx,y as follows.

Lx y = max max e(5') + P(5')
, S~Tla s'~s

a ~ C(5) ::; lct(By) 1\ e(5 U {Ax}) + P(5 U {Ax}) > lct(By)
We now are going to treat subsets 5 of which at least one operation is placed before Ax in
array A and subsets 5 of which all operations are placed after Ax in array A, separately.
This leads to

Lx,y = Ex,y max Fx,y,

Ex,y = max max e(5') + P(5'),
s~TI«S) S'~S

£(5) ~ C(5) ::; lct(By) 1\ VoES A;' > x 1\ est(Ax) + P(5) + p(Ax) > Ict(By),

Fx,y = max max e(5') + P(5')
S~TI'P(S) s'~s '

'P(5) ~ C(5) ::; lct(By) 1\ 30Es A;I < x 1\ e(5) + P(5) + p(Ax) > lct(By).

Both £(5) and 'P(5) are frequently used below.

We first concentrate on the calculation of E x •y • The set

5x,y = {Ai I x ::; i 1\ lct(Ai) ::; lct(By)},
contains those operations of T that are not placed before Ax in array A and that are
to be scheduled before lct(By). Let 5 <;; T, such that £(5) holds. Then, trivially 5 <;;
5x ,y 1\ £(5x ,y). With

max e(5') + P(5') > max e(5') + P(5'),
S'C;;Sx,y - s'c;;.s

this leads to the observation that

~£(5x ,y) =} V S~T ~£(5),
which implies that Ex,y = -00, and

£(5x,y) => Ex,y = s~r: e(5') + P(5').
_ x,y

With
Gx y = max e(5') + P(5'),

, S'C;Sx,y

this leads to

Ex = {Gx,y if est(~x) + P(5x,y) + p(Ax) > lct(By)
,y - 00 otherwIse.

We use an array G to administrate Gi,y for alII::; i ::; ITI. From

max est(A j ,) + P(5i, v),
i'E{ i, ... ,ITl}llct(A;,)$lct(By) ,

-00,

13

P(SITI+l,y)

P(S;,y)

= {G.+l,y max est(A.) + P(S',y) if !ct(A.) ::; !ct(Ey)
G.+1,y otherwise,

0,

{
P(S'+l,y) + p(A.)
P(S'+l,y)

if !ct(A;) ::; !ct (Ey)
otherwise,

we derive the following part of the algorithm that calculates G.,y for aliI ::; i ::; ITI. Here,
9 is the variable containing G.,y and P is the variable containing P(S',y).

P := 0; 9 := -00

for i := ITI down to I do
if !ct(A;) ::; !ct(Ey) then

P := P + ptA;);
9 := 9 max est(A;) + P;

G.:= g;
endfor

Next, we turn to the calculation of Fx,y' Let S ~ T, such that ",(S) holds. Furthermore,
let x' < x be such that Ax' E S II Vx"<x' Ax" ¢ S. Then, trivially S ~ Sx',y II ",(Sx',y)'
From

max e(S') + P(S') > max e(S') + P(S'),
S/~S~I ,g - S'~S

by using the definition of Gx,y and e(Sx',y) = est(Ax')' we derive

Fx,y = max G x' y'
x'E{l, ... ,x-l}le,t(Az')+P(Sz',y)+p(Az »lct(By) ,

We define
Hx,y = , max est(Ax') + P(Sx"y).

x E{l, ... ,x-l}llct(Az,):<;lct(By)

Let z E {I, .. . ,x -I} be the index for which est(Az) + P(Sz,y) is maximal, Le.,

!ct(Az) ::; !ct(Ey) II est(Az) + P(Sz,y) = Hx,y.

If Hx,y+p(A x)::; !ct(Ey), then trivially Fx,y = -00. If Hx,y+p(Ax) = est(Az)+P(SZ,y)+
p(Ax) > !ct(Ey), then ",(Sz,y) holds, thus Fx,y ;:: Gz,y' From Lemma 4.2 we then derive
that

Gzy = max Gx'y,
, l$x'<x '

which implies that Fx,y = Gz,y'

Lemma 4.2. Let 1 ::; x, y ::; ITI and z, z' < x. Then

est(Az) + P(SZ,y) ;:: est(Az') + P(Sz',y) =} Gz,y ;:: Gz',y'

Proof. If z';:: z, trivial. If z' < z, then suppose est(Az)+P(Sz,y);:: est(Az')+P(Sz',y) II
Gz,y < Gz',y' Without loss of generality we assume that z' is the largest number smaller
than z for which this holds. Then Gz',y = est(Az') + P(Sz',y) > Gz,y, which together
with Gz,y ;:: est(Az) + P(Sz,y) leads to a contradiction. Hence, est(Az) + P(SZ,y) ;::
est(Az') + P(Sz',y) =} Gz,y ;:: Gz',y' 0

From the definition of Gx,y, we derive that Gz,y = G1,y, which leads to

F _ {Gl,y if Hx,y + p(Ax) > !ct(Ey)
x,y - -00 otherwise.

14

The values of H x •y are described by

Ho,y = -00,

H _ {Hx- 1•y max est(Ax) + P(Sx.y) if Ict(Ax) ::; lct(By)
x.y - Hx- 1•y otherwise.

This leads the algorithm of Figure 3, for calculating lower bounds for the earliest start
times of all operations in T. Obviously, the algorithm is O(ITI2), as the outer loop and
both inner loops are of O(lTI).

for y := 1 to ITI do
if y = ITI V Ict(By) # lct(By+tl then

P := 0; 9 := -00

for i := ITI down to 1 do
if Ict(Ai) ::; Ict(By) then

P := P + p(Ai);
9 := 9 max est(Ai) + P;

endif

Gi:= g;
endfor
H:= -00;
for x := 1 to ITI do

if Ict(Ax) > Ict(By) then
if est(Ax) + P + p(Ax) > lct(By) then

est(Ax) := est(Ax) max Gx;
end if
if H + p(Ax) > lct(By) then

est(Ax) := est(Ax) max G1 ;

endif
else

H := H max est(Ax) + P;
P := P - p(Ax);

andif
andfor

endif
endfor

Figure 3: An O(ITI2) algorithm for calculating lower bounds for the earliest start times
of operations in T.

The algorithm for finding upper bounds for the latest completion time can be developed
analogous to the algorithm for finding lower bounds for the earliest start time of opera
tions. The last issue we need to address is the checking of (1) of Lemma 4.1. If (1) does
not hold, i.e.,

3S<;;T e(S) + P(S) > C(S),
a dead end occurs. This is equivalent with

3xE {1 ITIJ 3yE {1 ITIJ e(Sx.y) + P(Sx.y) > C(Sx.y),
which, in turn, is equivalent with

3xE {1 ITIJ 3yE {1 ITIJ Gx.y > Ict(By).

15

From this the algorithm of Figure 4, to check (1) of Lemma 4.1, follows.

for y := 1 to ITI do
if y = ITI V lct(By) t- lct(By+d then

P := 0; 9 := -00

for x := ITI down to 1 do
if lct(Ax) :::; lct(By) then

P := P + p(Ax);
9 := 9 max est(Az) + P;

endif
if 9 > lct(By) then "report a dead end" endif

endfor
endif

endfor

Figure 4: An O(ITI2) algorithm for identifying dead ends.

What we did not use. In this section we discuss two ways of identifying inconsistent
start times that we did not use for reasons explained in Section 4.2. We, however, do
mention them as they can be used in combination with other ways of operation and start
time selection.

The following example illustrates situations in which it is impossible to derive prece
dence relations between an operation 0 and a set of operations S, but in which it only can
be derived that 0 is to be scheduled before or after all operations in S. This is a simple
extension we made on the basis of Theorem 4.4 and 4.5. Figure 5 shows such a situation.

0 + • • ;. • • • • • • • • • • • ~ , , , • , • , • • " " u " .. " .. " " " x x x x x x x x x x

o' I • • • • ;. 0----0---0--<>-

• " " u " ..
0" I • • • ;. • • 0---0--0---> , • '" " u " .. "

Figure 5: Three operations with M(o) = M(o') = M(o").

It easily can be seen that operation 0 cannot be started on 3 -12, as this makes scheduling
both 0' and 0" impossible. This leads to the following theorem.

Theorem 4.6. Let 0 EO and S cO, such that 0 rf- Sand 'r/O'ES M(o') = M(o). If

e(S) + P(S U {o}) > C(S),

then no schedule exists in which there are two opemtions 0', 0" E S such that 0' precedes
o and 0 precedes 0".

Proof. Similar to the proof of Theorem 4.4. 0

If we find that no schedule exists in which there are two operations 0',0" E S such that
0' precedes 0 and 0 precedes 0", the open interval (C(S) - P(S U {o}), e(S) + P(S)) is
deleted from 0(0).

16

The second additional way of identifying inconsistent start times is illustrated as fol
lows. Regard the following search state as depicted in Figure 6. We have three operations
0,0', and Oil, all with processing time 3, earliest start time 0 and latest start time 6. This
search state is fully arc consistent and no precedence relations can be derived. There
exists, however, no schedule in which 0 is started on start time 1, as this implies that
neither of the two other operations can be scheduled before 0 and that they cannot be
scheduled both after o. Similarly, 4 is an inconsistent start time for 0 as this implies that
neither of the two other operations can be scheduled after 0 and that they cannot be
scheduled both before o. In Figure 6 all inconsistent start times are marked by 'x'.

D + • • ;. • • • 0--0---0 , , , , • , , • • x x x x

D' I • ;. • • • 0--0---0 , , , • , • x x x x

D" I • • ;. • • • 0--0---0 , , , , • , , , • x x x x

Figure 6: Three operations with M(o) = M(o') = M(O").

In order to treat the general case of this way of finding inconsistent start times, we
need to introduce several notations .

• ect(n, T) = minu<;Tllul=n e(U) + P(U) denotes the earliest completion time of any
n operations of the set T .

• Ist(n, T) = maxu<;Tllul=n C(U) - P(U) denotes the latest start time of any n oper-
ations of the set T.

Note that ect(n, T) is actually a lower bound on the earliest completion time of any n
operations. We remark that any other lower bound can be used in the sequel. Similarly,
Ist(n, T) is an upper bound on the latest start time of any n operations, and any other
upper bound can be used in the sequel.

Theorem 4.7. Let 0 EO and S CO, such that 0 rf. S and'ifo'Es M(o') = M(o). Then
operation 0 cannot be started on any value in the set given by

ISH
U (lst(ISI-i,S)-p(0),ect(i+1,S)).
i=O

Proof. Let 1 :'0 i :'0 I SI and suppose 0 is started on or afterlst(lSI- i, S) - p(0)+ 1, resulting
in a completion time larger than Ist(ISI - i, S). As Ist(ISI- i, S) is the latest starting
time of any lSI - i operations from S, this implies that at most lSI - i - 1 operations
can be scheduled after o. Now suppose 0 is started on or before ect(i + 1, S) - 1. As
ect(i + 1, S) is the first completion time of any i + 1 operations from S this implies
that at most i operations can be scheduled before o. Therefore starting 0 on any t E
[lst(ISI- i, S) - p(o) + 1,ect(i + 1, S) - 1] implies that at most ISI- i - 1 + i = ISI- 1
operations can be scheduled. 0

4.2 Operation and start time selection

Based on the observation that every schedule can be transformed into a left justified
schedule in which the operations are scheduled as early as possible while preserving the
precedence constraints and the machine orderings, we decided to use operation and start
time selection that together only construct left justified schedules. For reasons explained

17

in Section 4.3 we furthermore introduce randomization. For operation selection we first
determine the earliest minimal completion time of any unscheduled operation and then
randomly select one operation that can be started before this completion time. The start
time selection consists of selecting the earliest possible start time of this operation. The
combination of this operation selection and start time selection results in the construction
of only left justified schedules. Recall that the ways of identifying inconsistent start times
based on Theorem 4.6 and Theorem 4.7 may result in the deletion of start times strictly
larger than the earliest start time of an operation and strictly smaller than the latest
completion time of an operation. By using these particular operation and start time
selection we cannot benefit from such deletions and therefore we do not use aforementioned
ways of identifying inconsistent start times. Another advantage of our way of operation
and start time selection is that the number of possible decisions in each node of the
search tree is drastically reduced. We remark that results of experiments we did with
more sophisticated variable and value selection heuristics were quite disappointing; see
[Van Erp Taalman Kip, 1993; Nuijten, Aarts, Van Erp Taalman Kip & Van Hee, 1993J.

4.3 Dead end handling

As said before, once a tree search algorithm gets stuck in a dead end, some facility is needed
to escape from it. We employ an approach that consists of two parts. First we try to solve
the instance at hand by simply using chronological backtracking. However, if this does not
lead to a solution after a reasonable number of backtrack steps, we use the most rigorous
escape facility that is conceivable, namely the complete restart of the search. A problem
then is to direct the search along a path different from the ones followed previously.
Inspired by recent successes of randomized and other non-systematic search methods, like
simulated annealing and genetic local search, we combine restarting the search with a
randomized selection of a next operation and its start time as is described in Section 4.2.
In this way the probability of following the same search path more than once is very small
since the number of possible paths usually is very large. Furthermore, we use that if, by
way of backtracking, it is derived that operation 0 cannot be scheduled on time t, it is
implied that it cannot be started on any time in the interval [t+ 1, mino'EoM(o)\{o} ect(o')).
In this way we actually focus on determining machine orderings.

5 Computational results

We compared the performance of the following algorithms: the tabu search algorithm from
[Dell'Amico & Trubian, 1993], referred to as TS, the simulated annealing algorithm from
[Van Laarhoven, Aarts & Lenstra, 1992J, referred to as SA, BOTTLE-8 from [Applegate
& Cook, 1991J, referred to as BOT, and our randomized constraint satisfaction algorithm,
referred to as RCS. TS and SA are known to be the best approximation algorithms for
the JSSP among a number of local search algorithms, including simulated annealing,
tabu search, threshold accepting and genetic local search; see also [Aarts, Van Laarhoven,
Lenstra & Ulder, 1992; Dorndorf & Pesch, 1992; Matsuo, Suh & Sullivan, 1988J. We
included BOT in the comparison as it is a high-quality approximation algorithm tailored
to the JSSP. BOTTLE-S is the BOTTLE-X procedure of [Applegate & Cook, 1991J with
X = 8. BOTTLE-X is an extension of the shifting bottleneck procedure of Adams, Balas
& Zawack [1988J. We choose to use X = 8 as for smaller X the procedure finds relatively
poor solutions using little computation time and for larger X the computation times
become too large.

The comparison is carried out for a set of 40 instances of the JSSP due to [Lawrence,

18

/

Instance LB UB n m TS SA BOT RCS
% t ,. t % t % t

F1 666 10 5 0 0.1 0 17.6 0 5.9 0 1.3
F2 655 10 5 0 18.8 0 16.7 1.06 7.8 0 12.8
F3 597 10 5 0 21.6 1.51 18.4 1.34 9.8 0 1.0
F4 590 10 5 0 32.2 0 17.3 0 12.5 0 1.7
F5 593 10 5 0 0.3 0 16.9 0 4.3 0 0.7
G1 926 15 5 0 0.3 0 40.9 0 8.5 0 1.5
G2 890 15 5 0 0.6 0 53.7 0 10.0 0 1.9
G3 863 15 5 0 0.3 0 41.7 0 9.5 0 2.1
G4 951 15 5 0 0.2 0 40.4 0 7.0 0 1.6
G5 958 15 5 0 0.2 0 34.7 0 7.6 0 1.5
HI 1222 20 5 0 0.4 0 89.6 0 11.8 0 3.2
H2 1039 20 5 0 0.2 0 93.6 0 12.7 0 3.5
H3 1150 20 5 0 0.4 0 80.6 0 9.9 0 3.1
H4 1292 20 5 0 0.4 0 66.0 0 10.7 0 2.5
H5 1207 20 5 0 1.2 0 105.1 0 17.7 0 16.6
Al 945 10 10 0 97.4 1.16 98.0 2.65 1912.6 0 194.8
A2 784 10 10 0 21.7 0.13 102.8 0.13 3018.4 0 2.5
A3 848 10 10 0 63.1 1.53 96.1 0 1606.4 0 325.3
A4 842 10 10 0 103.8 0.71 118.6 0 7605.0 0.12 235.2
A5 902 10 10 0 71.7 0 95.3 0.55 8680.6 0.55 67.9
B1 1040/1047 15 10 0.76 198.8 2.21 284.4 2.12 9674.0 2.79 862.5
B2 927 15 10 0.64 191.4 1.19 309.0 0.86 6182.9 1.08 594.3
B3 1032 15 10 0 1.8 0 299.0 0 16.9 0 99.2
B4 935 15 10 0.64 181.8 1.82 299.7 0.64 9682.6 0.75 522.0
B5 977 15 10 0.20 191.7 1.54 304.7 1.23 6049.4 0.41 1033.3
C1 1218 20 10 0 22.1 0 620.3 0 284.1 0 1477.4
C2 1235/1236 20 10 0.56 254.2 2.75 647.9 1.86 19238.9 4.05 1156.2
C3 1216 20 10 0 186.4 0.66 622.0 0.66 12034.2 0 650.5
C4 1120/1160 20 10 5.53 281.3 8.75 629.7 6.96 25119.9 9.91 667.1
C5 1355 20 10 0 10.4 0 565.1 0 11.1 0 169.3
D1 1784 30 10 0 2.1 0 216.7 0 20.8 0 41.9
D2 1850 30 10 0 2.2 0 250.3 0 18.3 0 92.9
D3 1719 30 10 0 1.8 0 268.6 0 13.1 0 111.6
D4 1721 30 10 0 5.1 0 269.4 0 19.6 0 291.6
D5 1888 30 10 0 1.3 0 238.3 0 15.8 0 77.9
11 1268 15 15 0.78 238.4 1.97 763.7 2.44 5095.8 1.89 1338.1
12 1397 15 15 0.85 242.2 2.57 755.3 1.65 5196.1 1.00 772.0
13 1184/1196 15 15 1.60 256.6 2.62 782.9 6.76 471.8 7.94 1149.4
14 1233 15 15 0.72 237.8 1.22 823.7 0.97 1761.9 0.41 1011.7
15 1222 15 15 0.90 236.6 0.98 767.6 2.29 2274.2 2.05 841.5
FISH06 55 6 6 0 6.6 0 7.4 0 23.4 0 0.5
FISHlO 930 10 lO 0.53 156.6 2.26 111.3 0.86 199.3 0 255.8
FISH20 1165 20 5 0 260.2 1.63 121.1 3.86 49.0 0 10.7

Table 1: Performance comparison of tabu search (TS), simulated annealing (SA),
BOTTLE-8 (BOT), and randomized constraint satisfaction (ReS) for different instances
of the JSSP. See text for explanation of the symbols.

19

1984J and three instances due to [Fisher & Thompson, 1963J. The last three instances
include the notorious 10-jobs lO-machines instance that has defied solution to optimality
for more than twenty years. For every optimization instance mentioned above, we devised
a number of constraint satisfaction instances by setting the overall deadline to the smallest
integer larger than respectively 0,1,2,3,4,5,6,7,8,9,10% above the minimal makespan.
The tests for RCS and BOT were performed on a SPARC-station ELC. Van Laarhoven,
Aarts & Lenstra [1992J did their tests for SA on a VAX-785. We divided the running
times they report by 7 to get corresponding running times on a SPARC-station ELC.
Dell'Amico & Trubian [1993] did their tests for TS on a PC 386.

Let N I be the number of operations of an instance I. For RCS we choose to restart
if the number of chronological backtrack steps exceeded 0.2 * N I. In Table 1 we give the
results when allowing a maximum of 500 restarts (RCS). To reduce actual running times
the restarts can performed in parallel. We used 10 SPARC-stations ELC and distributed
the restarts over the various workstations until one of them found a solution. Evidently,
this leads to a linear speed up. In order to keep the comparisons fair, we reported the
accumulated running times of all 10 SPARC-stations. However, when using K processors,
with K smaller than the number of restarts, running times obtained on one processor can
be divided by K, to get the approximate resulting running times on K processors. For
SA we choose to use the results obtained with the decrement parameter b = 0.01. Better
results can be obtained with smaller values of b, leading to increased running times; see
[Van Laarhoven, Aarts & Lenstra, 1992]. This phenomenon of spending more time to get
better results can also be observed with our algorithm; we can spend more time by simply
allowing more restarts. In [Nuijten, Aarts, Van Erp Taalman Kip & Van Hee, 1993J some
experiments are reported that show this behavior. For BOT we did the experiments as
they are described in the text of [Applegate & Cook, 1991J. The results reported by them
were obtained with a small variation of the algorithm.

The column LB /UB of Table 1 gives for each instance the minimal makespan if known.
Otherwise, the best lower bound and upper bound found up to now are reported. The
columns nand m give the number of jobs and the number of machines, respectively.
For all instances, the number of operations of each job equals the number of machines.
Furthermore, Table 1 shows for each of the algorithms the deviation from the lower bound
for which a solution was found in terms of percentage (%), together with the running time
in seconds (t). For TS, SA, and RCS the deviations from the lower bound are the best
from a set of five runs using different seeds for the random number generator. The running
times reported are averages over these five runs.

It can be observed that our algorithm performs well. From the 43 instances, 30 were
solved to optimality, including the notorious FISH10 instance. For most other instances
near-optimal solutions were found. Comparing RCS to the other algorithms leads to the
conclusion that RCS is outperformed by TS, but that RCS performs comparable to SA
and BOT. From the 14 instances that were not solved to optimality by both TS and RCS,
TS outperforms RCS on 12. The only two instances for which RCS finds a better solution
are 14 and FISH10. From the 20 instances that were not solved to optimality by both
SA and RCS, SA outperforms RCS on 6, whereas RCS does better on 14 instances. If a
same analysis is done for BOT and RCS, we come up with 7 instances for BOT and 12
for RCS.

20

6 Conclusion

We presented a randomized constraint satisfaction algorithm for the JSSP. We showed
through an empirical performance analysis that our algorithm performs well, i.e., high
quality solutions can be obtained within moderate running times. As our algorithm
basically consists of a number of independent restarts, its effectiveness can be improved
by allowing more restarts, this at the cost of larger running times. Another advantage of
the independency of the restarts is that our algorithm can be easily run in parallel with
a linear speed up.

As mentioned in Section 1, this paper is one in a series of papers in which we report
on our investigations of the potentials of constraint satisfaction techniques for schedul
ing. Forthcoming papers will deal with three generalizations on the basic JSSP, viz., the
introd uction of

• machine alternatives, i.e., an operation may be processed on anyone of a number of
alternative machines thus adding the problem of finding a machine assignment for
each operation,

• multiple capacity machines, i.e., machines may be able to execute more than one
operation simultaneously, and

• operations that are executed on several machines simultaneously.

It is our general believe that constraint satisfaction techniques can be successfully applied
to handle specific scheduling problems such as the JSSP, since it allows to incorporate
specific problem structures which improve the quality of the obtained solutions. On
the other hand constraint satisfaction techniques are sufficiently open to deal with more
general problems and their constraints, which we hope to demonstrate in our forthcoming
papers. The combination of being a satisfactory approach for job shop scheduling and the
possibility of extending it to solve more general scheduling problems, makes our approach
an interesting one to study.

References
AARTS, E.H.L., P.J.M. VAN LAARHOVEN, J.K. LENSTRA, AND N.J.L. ULDER [1992], Job Shop Schedul

ing by Local Search, Memorandum COSOR 92-29, Eindhoven University of Technology.
ADAMS, J", E. BALAS, AND D. ZAWACK {198B]' The shifting bottleneck procedure for job shop scheduling,

Management Science 34, 391-401.
ADORF, H.-M., AND M.D. JOHNSTON [1990], A discrete stochastic neural network algortihm for con

straint satisfaction problems, Proc. International Joint Conference on Neural Networks, 17-21.
ApPLEGATE, D., AND W. COOK [1991], A computational study of the job-shop scheduling problem,

ORSA Journal on Computing 3, 149-156.
BITNER, J.R., AND E.M. REINGOLD [1975}, Backtracking programming techniques, Communications of

the ACM 11, 651-656.
BRUCKER, P., B. JURISCH, AND B. SIEVERS [1992], A Bmnch /)! Bound Algorithm for the Job-Shop

Scheduling Problem, Working document, University of Osnabriick, Germany.
CARLIER, J., AND E. PINSON [1989], An algorithm for solving the job-shop problem, Management Sci.

ence 35,164-176.
CARLIER, J., AND E. PINSON [1990], A practical use of Jackson's preemptive schedule for solving the job

shop problem, Annals of Operations Research 26, 269-287.
DECHTER, R., AND J. PEARL {1988]' Network-based heuristics for constraint-satisfaction problems, Ar

tificial Intelligence 34, 1-38.
DELL'AMICO, M., AND M. ThUBIAN [1993], Applying tabu-search to the job-shop scheduling problem,

Annals of Operations Research 41, 231-252.
DORNDORF, U., AND E. PESCH [1992], Evolution Based Learning in a Job Shop Environment, Working

document, University of Limburg, the Netherlands.

21

ERP TAALMAN KIP, D.A.A. VAN [1993], Some constraint satisfaction algorithms for the generalized job
shop scheduling problem, M3ilter's thesis, Eindhoven University of Technology.

FISHER, H., AND C.L. THO:MPSON [1963], Probabilistic learning combinations of local job-shop scheduling
rules, in: J.F. Muth and G.L. Thompson (eds.), Industrial Scheduling, Prentice Hall.

FRENCH, S. [1982]' Sequencing and Scheduling: An Introduction to the Mathematics of the Job.Shop,
Wiley & Sons.

FREUDER, E.C. [1982], A sufficient condition of backtrack-free search, Journal ACM 29, 24-32.
GAREY, M.R., AND D.S. JOHNSON [1979], Computers and Intractability; A Guide to the Theory 0/ NP

completeness, W.H. Freeman and Company, New York.
CAREY, M.R., D.S. JOHNSON, AND R. SETHI [1976], The complexity offlowshop andjobshop scheduling,

Mathematics of Operations Research 1, 117-129.
HARALICK, R.M., AND C.L. ELLIOTT [1980], Increasing tree search efficiency for constraint satisfaction

problems, Artificial Intelligence 14, 263-313.
HENTENRYCK, P. VAN, Y. DEVll..LE, AND C.-M. TENG [1992], A generic arc-consistency algorithm and

its specializations, Artificial Intelligence 57,291-321.
KENG, N., AND D. YUN [1989], A planning/scheduling methodology for the constrained resource problem,

Proc. 11th International Joint Conference on Artificial Intelligence, 998-1003.
LAARHOVEN, P.J.M. VAN, E.H.L. AARTS, AND J.K. LENSTRA [1992], Job shop scheduling by simulated

annealing, Operations Research 40, 113-125.
LAWRENCE, S. [1984], Resource Constrained Project Scheduling: An Experimental Investigation of Heuris

tic Scheduling Techniques (Supplement), Graduate School of Industrial Administration, Carnegie
Mellon University, Pittsburgh.

MACKWORTH, A.K. [1977J, Consistency in networks of relations, Artificial Intelligence 8,99-118.
MACKWORTH, A.K., AND E.C. FREUDER [1985], The complexity of some polynomial network consistency

algorithms for constraint satisfaction problems, Artificial Intelligence 25, 65-74.
MACKWORTH, A.K., AND E.C. FREUDER [1993], The complexity of constraint satisfaction revisited, Ar

tificial Intelligence 59, 57-62.
MATSUO, H., C.J. SUH, AND R.S. SULLIVAN [1988], A Controlled Search Simulated Annealing Method for

the General Job Shop Scheduling Problem, Working Paper 03-04-88, Graduate School of Business,
University of Texas at Austin, Austin, USA.

MINTON, S., M.D. JOHNSTON, A.B. PHILIPS, AND P. LAIRD [1992], Minimizing conflicts: a heuristic
repair method for constraint satisfaction and scheduling problems, Artificial Intelligence 58, 161-
205.

MOHR, R., AND T.C. HENDERSON (1986], Arc and path consistency revisited, Artificial Intelligence 28,
225-233.

MONTANARI, u. [1974J, Networks of constraints: Fundamental properties and applications to picture
processing, Information Sciences 7, 95 - 132.

MUSCETTOLA, N. [1993], Scheduling by iterative partition of bottleneck conflicts., Proc. 9th IEEE Con
ference on Al Applications, 49-55.

NADEL, B.A. [1989], Constraint satisfaction algorithms, Computational Intelligence 5, 188-224.
NUOEL, B. [1983], Consistent-labeling problems and theiT algorithms: Expected-complexities and theory

based heuristics, Artificial Intelligence 21,135-178.
NUIJTEN, W.P.M., E.H.L. AARTS, D.A.A. VAN ERP TAALMAN KIP, AND K.M. VAN HEE [1993], Ran

domized constraint satisfaction for job shop scheduling, IJCAl '99 Workshop on Knowledge-Based
Production Planning, Scheduling and Control.

PURDOM, JR., P.W. [1983], Search rearrangement backtracking and polynomial average time, Artificial
Intelligence 21,117-133.

SADEH, N. [1991]' Look-ahead Techniques for Micro-opportuni,fjtic Job Shop Scheduling, Ph.D. thesis,
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213.

SMITH, S.F., AND C.-C. CHENG [1993J, Slack-based heuristics for constraint satisfaction, Proc. 11th
National Conference on Artificial Intelligence.

STALLMAN, R.M., AND G.J. SUSSMAN [1977], Forward reasoning and dependency-directed backtracking
in a system for computer-aided circuit analysis., Artificial Intelligence 9, 135-196.

WALTZ, D.L. [1972J, Generating Semantic Descriptions from Drawings 0/ Scenes with Shadows, Tech.
Rep!. AI271, MIT, Cambridge, MA.

22

/

'i
/

91/18

91/19

91/20

91/21

91/22

91/23

91/24

91/25

91/26

91/27

91/28

91/29

91/30

91/31

91/32

91/33

91/34

91/35

Rik van Geldrop

Erik Poll

A.E. Eiben
RV. Schuwer

J. Coenen
W.-P. de Roever
J.Zwiers

G. Wolf

K.M. van Hee
LJ. Somers
M. Voorhoeve

A.T.M. Aerts
D. de Reus

P. Zhou
J. Hooman
R Kuiper

P. de Bra
GJ. Houben
J. Paredaens

F. de Boer
C. Palamidessi

F. de Boer

H. Ten Eikelder
R van Geldrop

J.c.M. Baeten
F.W. Vaandrager

H. ten Eikelder

P. Struik

W. v.d. Aalst

J. Coenen

F.S. de Boer
J.W. Klop
C. Palamidessi

Transfonnational Query Solving, p. 35.

Some categorical properties for a model for second order
lambda calculus with subtyping, p. 21.

Knowledge Base Systems, a Formal Model, p. 21.

Assertional Data Reification Proofs: Survey and
Perspective, p. 18.

Schedule Management: an Object Oriented Approach, p.
26.

Z and high level Petri nets, p. 16.

Fonnal semantics for BRM with examples, p. 25.

A compositional proof system for real-time systems based
on explicit clock temporal logic: soundness and complete
ness, p. 52.

The GOOD based hypertext reference model, p. 12.

Embedding as a tool for language comparison: On the
CSP hierarchy, p. 17.

A compositional proof system for dynamic proces
creation, p. 24.

Correctness of Acceptor Schemes for Regular Languages,
p. 31.

An Algebra for Process Creation, p. 29.

Some algorithms to decide the equivalence of recursive
types, p. 26.

Techniques for designing efficient parallel programs, p.
14.

The modelling and analysis of queueing systems with
QNM-ExSpect, p. 23.

Specifying fault tolerant programs in deontic logic,
p. 15.

Asynchronous communication in process algebra, p. 20.

In this series appeared:

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.AM. Schoenmakers

91/04 E. v.d. Sluis
AF. v.d. Stappen

91/05 D. de Reus

91/06 KM. van Hee

91/07 E.Poll

91/08 H. Schepers

91/09 W.M.P.v.d.Aalst

91/10 R.C.Backhouse
PJ. de Bruin
P. Hoogendijk
G. Malcolm
E. Voermans
J. v.d. Woude

91/11 R. C. B ackhouse
P.J. de Bruin
G.Malcolm
E.Voermans
J. van der Woude

91/12 E. van der Sluis

91/13 F. Rietman

91/14 P. Lemmens

91/15 A.T.M. Aerts
KM. van Hee

91/16 AJ.J.M. Marcelis

91/17 AT.M. Aerts
P.M.E. de Bra
KM. van Hee

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses
"if... ,then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant
Segments, p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

CPO-models for second order lambda calculus with
recursive types and subtyping, p. 49.

Terminology and Paradigms for Fault Tolerance, p. 25.

Interval Timed Petri Nets and their analysis, p.53.

POLYNOMIAL RELATORS, p. 52.

Relational Catamorphism, p. 31.

A parallel local search algorithm for the travelling
salesman problem, p. 12.

A note on Extensionality, p. 21.

The PDB Hypermedia Package. Why and how it was
built, p. 63.

Eldorado: Architecture of a Functional Database
Management System, p. 19.

An example of proving attribute grammars correct:
the representation of arithmetical expressions by DAGs,
p. 25.

Transforming Functional Database Schemes to Relational
Representations, p. 21.

92/01 J. Coenen
J. Zwiers
W.-P. de Roever

92/02 J. Coenen
J. Hooman

92/03 J.C.M. Baeten
J.A. Bergstra

92/04 J.P.H. W. v .d.Eijnde

92/05 J.P.H.W.v.d.Eijnde

92/06 J.C.M. Baeten
J .A. Bergstra

92/07 RP. Nederpelt

92/08 RP. N ederpelt
F. Kamareddine

92/09 RC. Backhouse

92/10 P.M.P. Rambags

92/11 RC. Backhouse
J.S.C.P.v.d.Woude

92/12 F. Kamareddine

92/13 F. Kamareddine

92/14 J.C.M. Baeten

92/15 F. Kamareddine

92/16 R.R. Seljee

92/17 W.M.P. van der Aalst

92/18 RNederpelt
F. Kamareddine

92/19 J.c.M.Baeten
J.A.Bergstra
S.A.Smolka

92/20 F.Kamareddine

92/21 F.Kamareddine

A note on compositional refinement. p. 27.

A compositional semantics for fault tolerant real-time
systems. p. 18.

Real space process algebra. p. 42.

Program derivation in acyclic graphs and related
problems. p. 90.

Conservative fixpoint functions on a graph. p. 25.

Discrete time process algebra. p.45.

The fine-structure of lambda calculus. p. 110.

On stepwise explicit substitution. p. 30.

Calculating the Warshall/Floyd path algorithm. p. 14.

Composition and decomposition in a CPN model. p. 55.

Demonic operators and monotype factors. p. 29.

Set theory and nominalisation. Part I. p.26.

Set theory and nominalisation. Part II. p.22.

The total order assumption. p. 10.

A system at the cross-roads of functional and logic
programming. p.36.

Integrity checking in deductive databases; an exposition.
p.32.

Interval limed coloured Petri nets and their analysis. p.
20.

A unified approach to Type Theory through a refined
lambda-calculus. p. 30.

Axiomatizing Probabilistic Processes:
ACP with Generative Probabilities. p. 36.

Are Types for Natural Language? P. 32.

Non well-foundedness and type freeness can unify the
interpretation of functional application. p. 16.

92/22 R. Nederpelt
F.Kamareddine

92/23 F.Kamareddine
E.Klein

92/24 M.Codish
D.Dams
Eyal Yardeni

92/25 E.Poll

92/26 T.H.W.Beelen
W.J.J.Stut
P.A.C.Verkoulen

92/27 B. Watson
G. Zwaan

93/01 R. van Geldrop

93/02 T. Verhoeff

93/03 T. Verhoeff

93/04 E.H.L. Aarts
J.H.M. Korst
P.J. Zwietering

93/05 J.C.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93/07 P.D. Moerland

93/08 J. Verhoosel

93/09 K.M. van Hee

93/10 K.M. van Hee

93/11 K.M. van Hee

93/12 K.M. van Hee

93/13 K.M. van Hee

93/14 I.C.M. Baeten
J.A. Bergstra

A useful lambda notation, p. 17.

Nominalization, Predication and Type Containment, p. 40.

Bottum-up Abstract Interpretation of Logic Programs,
p. 33.

A Programming Logic for Fro, p. 15.

A modelling method using MOVIE and SimConjExSpect,
p. IS.

A taxonomy of keyword pattern matChing algorithms,
p. 50.

Deriving the Aho-Corasick algorithms: a case study into
the synergy of programming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real
Time Executions in DEDOS, p. 32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach
Part V: Specification Language, p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

93/15 J.C.M. Baeten
J .A. Bergstra
R.N. Bol

93/16 H. Schepers
J. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Verhoef

93/19 G-J. Houben

93/20 F.S. de Boer

93/21 M. Codish
D. Dams
G. File
M. Bruynooghe

93/22 E. Poll

93/23 E. de Kogel

93/24 E. Poll and Paula Severi

93/25 H. Schepers and R. Gerth

93/26 W.M.P. van der Aalst

93/27 T. Kloks and D. Kratsch

93/28 F. Kamareddine and
R. Nederpelt

93/29 R. Post and P. De Bra

93/30 J. Deogun
T. Kloks
D. Kratsch
H. Miiller

93/31 W. Korver

93/32 H. ten Eikelder and
H. van Geldrop

93/33 L. Loyens and J. Moonen

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Mul ticast in the DEDOS system,
p. 19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Program
ming, p. 15.

Freeness Analysis for Logic Programs - And Correct
ness?, p. 24.

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real
Time Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. 11.

A Semantics for a fine A-calculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Permutation and Other Graphs,
p. II.

Derivation of delay insensitive and speed independent
CMOS circuits, using directed commands and
production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

ILlAS, a sequential language for parallel matrix
computations, p. 20.

7

93/34 J.C.M. Baeten and
J .A. Bergstra

93/35 W. Ferrer and
P. Severi

93/36 J.C.M. Baeten and
J.A. Bergstra

93/37 J. Brunekreef
J-P. Katoen
R. Koymans
S. Mauw

93/38 C. Verhoef

Real Time Process Algebra with infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process
algebra, p. 17.

	Abstract
	1. Introduction
	2. Constraint satisfaction
	2.1 The contraint satisfaction problem
	2.2 Solving the CSP
	3. The job shop scheduling problem
	4. A new constraint satifcation approach
	4.1 Consistency checking
	4.2 Operation and start time selection
	4.3 Dead end handling
	5. Computational results
	6. Conclusion
	References

