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Abstract. This paper addresses point stabilization for the extended chained form (ECF), a
control system that may be used to model a number of mechanical underactuated systems. A control
law is proposed, based on well-known hybrid open-loop/feedback techniques, which exponentially
stabilizes the origin of a dynamic extension of the ECF and ensures a degree of robustness to additive
disturbance terms that may represent, for instance, model uncertainties. Numerical simulations are
included to illustrate the performance of the presented stabilizers.
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1. Introduction. The study of mechanical control systems with fewer actua-
tors than degrees of freedom constitutes a stimulating and active subject of research.
Examples of such systems include underactuated manipulators [21], underactuated
(surface and underwater) maritime vehicles [30, 5], underactuated spacecraft [18], and
mechanical systems with internal degrees of freedom subject to virtual holonomic con-
straints [15, 24]. Besides the study of properties such as accessibility and controllabil-
ity, the research efforts have focused mainly on problems such as open-loop steering
from one configuration to another, trajectory tracking, and stabilization to an equi-
librium point (or configuration). For underactuated mechanical systems, the latter
problem is especially challenging since such systems typically do not meet Brockett’s
necessary condition for stabilization to a point by continuous, pure-state feedback
[3]. As a consequence, solutions usually involve elaborate control techniques, such as
time-varying feedback or hybrid control. In this paper we are particularly interested
in stabilization to a point.

A valuable tool when addressing control problems is the possibility of transform-
ing the system dynamics, via coordinate change and feedback, into a “canonical”
control system with a simpler, more tractable structure. Among such canonical rep-
resentations, the extended chained form (ECF)

ẍ1 = u1,
ẍ2 = u2,
ẍ3 = u1x2

(1)
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plays, for some underactuated mechanical systems, a role similar to the one played by
the chained form for driftless nonholonomic systems (cf. [19, 26]). By slight abuse of
nomenclature we are calling the particular system (1), with six state variables and two
inputs, the ECF, although more general extensions to the chained form can be envis-
aged and have been considered. System (1) has also been termed second-order chained
form. However, no definitive unifying notation seems to exist as yet for the family
of “chained systems.” In [11], for instance, a two-input control system is introduced
which is referred to as an n-dimensional, high-order generalized chained system. On
the other hand, chained systems having more than two inputs have also been studied
under the denomination multi-input chained systems, e.g., in [29]. Finally, the reader
should be aware that in some references—but not in the present paper—the term
extended chained form refers to a driftless chained system, as introduced in [19], with
integrators added in cascade to each of its inputs, cf., e.g., [31].

The ECF made its appearance in the context of underactuated mechanical sys-
tems in [4], where it was shown that the dynamic model of a simplified underwater
vehicle is feedback-equivalent to two interconnected ECFs. In [8], the model of a
planar PPR manipulator was directly transformed into the ECF (PPR denotes a ma-
nipulator with two prismatic joints and one revolute joint at its most distal end; the
bar above “R” designates an unactuated or passive joint). Among the two-input,
three-DOF systems that are feedback-equivalent to the ECF one finds the planar,
vertical take-off and landing (VTOL) system in the absence of gravity [25], a sim-
plified underwater vehicle [22], the planar, serial-drive RRR manipulator [32], and
the planar, parallel-drive RRR manipulators with any two joints actuated. Two ad-
ditional examples are multibody systems possessing an unactuated, internal DOF
which is required, by design, to satisfy a virtual holonomic constraint, namely the
rigid body with internal DOF in [15] and the dynamics of the spring-coupled, third
link of a planar PPR manipulator in [24]. It is worth noting that the transformations
involved in these examples allow one to map generic equilibrium configurations of the
mechanical system to the origin of the ECF, thereby reducing stabilization of any
such configuration to stabilization of the latter point.

In view of these results, considerable emphasis has been given to the design of
controllers for the ECF and some of its generalizations. For instance, a time-varying
controller, updated in terms of the state only at isolated time-instants, was developed
in [4] to achieve a “discrete-time” version of K-exponential stability for the origin of
two interconnected ECFs. Tracking controllers were proposed in [8] which, associated
with carefully selected state trajectories (cf. also [32]), exponentially drive the state
of the ECF towards the origin. In [11], discontinuous controllers were introduced
to almost-exponentially stabilize the origin of two-input, generalized, n-dimensional
chained form systems, including the ECF. More recently, the authors of [6] pointed
out conditions for two-input systems with drift to be feedback-linearizable by non-
smooth (and eventually discontinuous) state and input transformations. Once such
a transformation is applied, linear controllers can be used to drive the system state
exponentially to the origin, provided the initial conditions belong to a set where the
new coordinates are well defined. In [1] a time-varying, continuous, homogeneous
control-law was introduced which, to date and to the extent of our knowledge, is the
only one capable of ensuring Lyapunov-stability as well as exponential convergence
(indeed K-exponential stability) for the origin of the ECF.

In this paper we propose controllers that are both stabilizing and robust—in
appropriately defined senses—based on a well-known hybrid open-loop/feedback ap-
proach (also known as iterative state steering). Essentially, this goes along the lines
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of discrete-time control of continuous-time systems: at a given sample instant tk the
state x(tk) is sensed, and an input function t �→ uk(t) is computed and used to drive
the system until the next sample instant tk+1. Within the interval (tk, tk+1) the input
may change with t, but it is independent of the instantaneous value of the state x(t).
The input uk is designed so that, at the end of the interval, the state x(tk+1) is “closer”
to the origin than it was at the beginning. This control algorithm is iterated indefi-
nitely and, under appropriate assumptions, it leads to a robustly stable equilibrium
point. Let us remark that the use of iterated control is not new and that important
results have been reported in the literature. One example is [4], mentioned above,
where iterated controls were developed, but where no robustness study was carried
out. A hybrid control combining sampled-time control with continuous-time, linear
feedback was proposed in [20] to stabilize chained form systems, with applications
to wheeled mobile robots. Among the earliest references addressing the robustness of
time-varying, iterative control in the framework of nonholonomic systems one finds [2],
where control laws are developed for the three- and four-dimensional chained forms.
These feedback laws render the origin exponentially stable (in the discrete-time sense)
and this stability property is preserved in the presence of additive disturbance vector
fields. The authors of [14] consider a large class of systems, possibly with drift, under
iterative state steering control. Although no algorithm is presented to construct any
such controller—it is assumed that one is known beforehand—conditions are pointed
out for discrete-time stability of the origin and robustness to the presence of additive
disturbance vector fields. A drawback of the reported conditions for robustness is that
some of them are stated in terms of the flow of the disturbance vector field(s), thus
limiting the class of disturbances for which robustness can be assessed in practice.
For driftless systems, a powerful approach was presented in [17], where a constructive
algorithm is given to design stabilizers for any driftless, analytic, controllable system.
The controllers thus obtained guarantee local exponential stability of the origin for a
dynamic extension of the original system, and the stability is robust to additive dis-
turbance vector fields. Our controller design and methodology share similarities with
[4] and [14], although the stability and robustness analysis is inspired by [17]. The
presence of a drift term, however, makes the analysis—and the eventual generalization
of the present approach to a larger class of systems—more difficult. As a consequence,
our result is merely applicable to a class of systems which can be represented as a
(perturbed) ECF.

This paper is organized as follows. Section 2 contains definitions of stability
and robustness, as used in the present context, as well as a statement of the robust
stabilization problem. In section 3, a feedback law is introduced and then shown to
be a robust stabilizer in the specific sense considered here. Section 4 contains two
simulation examples. Some concluding remarks are given in section 5. Finally, in the
appendix, notational conventions are fixed and some technical lemmas are stated or
proved.

2. Preliminaries and definition of the problem. Prior to stating the prob-
lem, let us precisely define the notions of stability and robustness used in this context.
To this end consider the ECF, regarded as the nominal system, rewritten in the form

ẋ = b0(x) + u1b1(x) + u2b2(x),

with

b0(x) = x2
∂

∂x1
+ x4

∂

∂x3
+ x6

∂

∂x5
, b1(x) =

∂

∂x2
+ x3

∂

∂x6
, b2(x) =

∂

∂x4
.(2)
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As a result of model errors, such as parameter uncertainties, disturbance vector fields
may be present in the system to be actually controlled, and one way to model this is
by considering the perturbed system

ẋ = b0(x) + h0(x, ε) +

2∑
i=1

ui(bi(x) + hi(x, ε)),(3)

where h = (h0, h1, h2) is a 3-tuple of real-analytic mappings hi : U × E → R
6, and

E ⊂ R is an interval containing 0. h, referred to in what follows as a disturbance,
is assumed to satisfy h0(0, ε) = 0 for every ε ∈ E, so that (x, u) = (0, 0) is an
equilibrium point for the perturbed system. The interpretation of ε is that of an
additional parameter quantifying the “magnitude” of the perturbation. For ease of
reference we denote by D3 the set of all disturbances h = (h0, h1, h2), each defined on
a set U × E (E may thus depend on the choice of h). In what follows we also write
hε
i (x) = hi(x, ε).

Essentially, these disturbances are intended to represent two kinds of error terms,
namely, those that do not depend on ε, which may typically encompass “high-order”
terms neglected when the model is derived, and those that result from inaccuracies—
quantified by ε—in the knowledge of the physical dimensions involved in the model
(cf. also Remark 2(i) after Proposition 3.1). Obviously, however, not all disturbances
may be modeled by additive vector fields as in (3). Phenomena such as neglected
modes, nonsmooth effects (e.g., friction) or measurement noise would require different
representations. Therefore, the notion of robustness one can aim at by considering
such disturbances bears some limitations.

Before we proceed, let us recall the notion of exponential stability for continuous-
time systems. Let 0 ∈ U ⊂ R

n, with U open, and consider the system

ż = f(z, t), f(0, · ) = 0, f : U × R → R
n.(4)

The mapping (z, t) �→ f(z, t) is assumed to be continuous in z and piecewise contin-
uous in t. The origin z = 0 is locally exponentially stable for (4) if there exist K > 0,
γ > 0 and a neighborhood V ⊂ U of 0 such that, for every (z0, t0) ∈ V ×R, a solution
z(·) satisfying z(t0) = z0 is defined on [t0,∞) and also satisfies

‖z(t)‖ ≤ K‖z0‖e−γ(t−t0)(5)

for all t ≥ t0.
Now suppose that a continuous, time-varying (T -periodic) feedback law α : U ×

R → R
2 is given. As mentioned in the introduction, one intends to act on the

perturbed system (3) by periodically iterating this control law in the hope that such
process stabilizes the system exponentially to a point (the origin, say, without loss of
generality). Nevertheless, according to the definition of (local) exponential stability,
the iteration of such a control law cannot, in general, achieve that goal since the
origin may even fail to be an equilibrium. Indeed, the state of the system may reach
the origin at some time t0 ∈ (kT, (k + 1)T ), which need not coincide with any of
the sampling instants. Since the control operates in “open-loop” between samples,
it may continue acting on the system, thus causing the state to leave the origin
again. In such a case, inequality (5)—which is required to hold for every choice
of “initial data” (z0, t0) ∈ V × R—would not hold for (0, t0) and any selection of
K > 0, γ > 0. One way to remedy this issue is to consider stability in the discrete-time
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(a) (b)

x0x0

y0y0

x(t)
x(t)

y(t)

y(t)

t0 = kT kT (k + 1)T(k + 1)T t0
x(kT ) �= y(kT )

R
nR

n

RR

Fig. 1. Initial conditions for system (6): (a) If t0 mod T = 0, both x(·) and y(·) are initialized
to x0; (b) If t0 mod T �= 0, x(·) and y(·) are initialized to x0 and y0, respectively. Note that in
the latter case the solutions are in general not reversible in time, since extending x(t) and y(t) for
t ∈ [kT, t0), using the dynamics (6), may lead to the condition x(kT ) �= y(kT ).

sense and concentrate only on the sequence of state values at the sampling instants,
(z(kT ))k∈N. However, since one is dealing with a continuous-time system (3), we
adopt the alternative approach proposed in [17], where local exponential stability is
considered for a dynamic extension of the perturbed system (3). More precisely, in
order to cope with the case when t0 mod T 	= 0 (so t0 does not equal any sampling
instant) we adjoin a signal t �→ y(t), which coincides with the state x(kT ) at the
update instants indexed by k ∈ {
t0/T � + 1, 
t0/T � + 2, . . . }, and then consider the
dynamically extended perturbed system⎧⎪⎪⎨⎪⎪⎩

ẋ = b0(x) + h0(x, ε) +
2∑

i=1

αi(y, t)(bi(x) + hi(x, ε)),

ẏ =
∞∑

k=�t0/T�+1

δ(t− kT )x(t),
(6)

under the proviso that its “initial condition” be defined, given any (x0, y0) ∈ R
6 ×

R
6, by setting (x(t0), y(t0)) equal to (x0, x0) if t0 mod T = 0, or equal to (x0, y0)

otherwise. (The symbol δ(t − kT ) in (6) represents Dirac’s delta “function” and
satisfies

∫ ∞
−∞ δ(t− kT )f(t)dt = f(kT ) for any mapping f : R → R

n.)
The meaning of the initial conditions for system (6) is illustrated in Figure 1.

Clearly, the first sample instant after the initial time t0 occurs at t = (
t0/T � + 1)T
or, using the notation in the figure, at t = (k+1)T . This explains the initial value for
the index k in the second summation of (6). Note also that the trajectories initialized
in this way are defined for forward time (t ≥ t0), but they may fail to be reversible in
time. In other words, when t0 mod T 	= 0, the solution (x(·), y(·)) may be prolonged
to the interval [kT, t0) by using the dynamics (6); however, x(kT ) may differ from
y(kT ).

Remark 1. It is worth pointing out that the dynamic extension in (6) is a technical
artifice merely used to establish the proofs in a precise setting. In particular, the
extension does not have to be “implemented,” nor does it restrain the way the control
signals are actually applied to system (1), or the set of allowable initial conditions for
the latter.

The problem of robust stabilization may now be formulated as follows.
Problem 1 (robust stabilization of the extended chained form). Design a control

law α : U×R → R
2 which ensures that, for every disturbance h in a given set A ⊂D3,

there is a constant ε0 > 0 such that the origin (x, y) = (0, 0) of system (6) is locally
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exponentially stable whenever ε ∈ E and |ε| ≤ ε0.

3. Robust stabilizers for the extended chained form. In this section we
derive a solution to Problem 1 for the ECF system (1). The solution is obtained in
two main steps: first the feedback law α is designed to have certain properties; then,
in the slightly more involved second step, a stability/robustness analysis is carried out
to guarantee that α indeed solves the problem. For more details on the notation used
in this and the ensuing sections, the reader may consult section 6.1 in the appendix.

3.1. Design of the feedback law. Fix T > 0 and set ω = 2π/T . Our goal is
to design a feedback law α ∈ C0(R6 ×R; R2), T -periodic in its second argument, such
that the solution x(·) to the controlled ECF

ẋ = b0(x) +

2∑
i=1

αi(x0, t)bi(x), x(0) = x0 ∈ R
6,(7)

with b0, b1, b2 given in (2), satisfies

x(T ) = Ax0 + o(‖x0‖),(8)

where A ∈ R
6×6 a discrete–time-stable matrix, i.e., a matrix whose spectrum is con-

tained in {z ∈ C : |z| < 1}. We propose the following controller structure:

α1(x, t) = a1x1 + a2x2 + Gρ(x) cos(ωt),(9)

α2(x, t) = a3x3 + a4x4 −
2ω2

G

1

ρ(x)
(a5x5 + a6x6) cos(ωt),(10)

where the vector of control gains a ∈ R
6 is determined below, G > 0, and ρ is given1

by ρ(x) = (
∑6

i=1 |xi|
2
ri )

1
2 , with r = (1, 1, 1, 1, 2, 2). We set α(0, ·) = 0. By virtue of

the definition of ρ, one easily shows that α(x, t) → 0 whenever x → 0, uniformly for
t ∈ R, so that α is continuous on R

6 × R.
Now, the closed-loop system can be explicitly integrated thanks to the simple

structure of the ECF and the fact that u(t) = α(x0, t) is independent of x(t) on the
interval (0, T ). After some calculations, one verifies the solution x(·) is of the form

x(T ) = Ax0 + w(x0),(11)

where A is a block-diagonal matrix A = diag(A1, A2, A3) with blocks defined by

Ai =

(
1 + 1

2T
2a2i−1 T + 1

2T
2a2i

Ta2i−1 1 + Ta2i

)
, i = 1, 2, 3.(12)

The spectrum of A is the union of the spectra of the Ai, each of which can be
made equal to {ki1, ki2} ⊂ {z ∈ C : |z| < 1}—thus making A a discrete–time-stable
matrix—by setting

a2i−1 =
ki1 + ki2 − ki1ki2 − 1

T 2
and a2i =

ki1 + ki2 + ki1ki2 − 3

2T
, i = 1, 2, 3.

(13)

1In the language of homogeneity, ρ is a homogeneous norm with respect to a dilation of weight
r. In this paper, however, no further use is made of this terminology or the associated results, and
the interested reader is referred to, e.g., [7, 9] for more detailed discussions on that subject.
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Of course, a2i−1 and a2i must be real, for which it suffices to choose ki1, ki2 to be
complex conjugate. On the other hand, it is readily checked that the function w =
(w1, . . . , w6) : R

6 → R
6 in (11) is given by w1 = · · · = w4 = 0 and

(w5, w6)(x0) = ρ(x0)L(x0) + (ρ(x0))
−1P (x0) + Q(x0),

where L : R
6 → R

2 is linear and P,Q : R
6 → R

2 are quadratic. Since ρ(x0) =

O(‖x0‖
1
2 ), it follows that w(x0) = O(‖x0‖

3
2 ) and hence w(x0) = o(‖x0‖), so the

solution x(T ) has the form (8). Since A is discrete–time-stable, there exists a sym-
metric, positive-definite matrix P ∈ R

6×6 and a real number τ ∈ [0, 1) such that
‖Ax0‖P ≤ τ‖x0‖P for every x0 ∈ R

6, with ‖x‖P = xTPx denoting the norm of x
induced by P . This means that, locally around the origin, the mapping which assigns
x(T ) to x0 is a contraction in the norm ‖ · ‖P .

3.2. Some links between the proposed controller and other approaches.
The remarkably simple structure of the control law (9)–(10) shares common traits with
the one in [1]. In particular, both involve terms that are linear in the state components
governed by second-order chains of integrators, namely, x1, . . . , x4 in the notation of
the present paper. In addition, both of them use normalization by ρ—multiplication
of some terms by 1/ρ—in order to adjust the “degree of homogeneity” of the control
law α (see [1] for further details and definitions). The important difference, however,
lies in the way the control signals are calculated and applied, to wit, iterative state
steering vs. feedback. As a matter of fact, this difference is instrumental in establishing
robustness.

Interestingly, the frequency ω of the time-varying terms in the control law (9)–(10)
does not have to be large. In fact, that frequency may be taken arbitrarily small (i.e.,
the period between samples may be arbitrarily long) without qualitatively altering
the nature of the result. This is in opposition with the control laws in [1] or, more
generally, with previous results based on averaging of “highly oscillatory” systems,
e.g., [28, 16].

Furthermore, in contrast with the control laws in [8], which provide tracking
controllers that steer the state asymptotically towards the origin by following an
appropriately designed trajectory, the computation of (9)–(10) does not require the
use of any such trajectory.

It is also interesting to note that, while our approach and that of [4] exhibit
similarities (e.g., both are intended to be implemented as hybrid open-loop/feedback)
the control expressions (9)–(10) are less involved than the ones in [4], which make use
of time-varying gains determined by the solutions of an exogenous system. Moreover,
even though robustness is not explicitly addressed in [4], it seems difficult to assess
whether those control laws ensure robustness in the sense considered in this paper or
not. In particular, the result in [13], which allows us to ascertain nonrobustness of
[1], does not apply in that case.

On the other hand, the work reported in [14], where stability is considered in the
discrete-time sense, may be used to ascertain robustness of our controllers with respect
to disturbances of a particularly simple nature. It is not clear, however, how a larger
class of disturbances (such as the one considered in our main result; cf. Proposition 3.1
below) can be encompassed by the same methodology. In fact, the strongest result
in [14] holds when disturbances are simple enough that adding them to the closed-
loop system results in a vector field whose flow can be explicitly computed. Since
our stability/robustness analysis uses a Chen–Fliess series expansion to scrutinize the
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terms that add up to the flow, in a very loose sense it may be regarded as a refinement,
for the special case of system (1) controlled by (9)–(10), of the results in [14].

To close this paragraph, let us add that our approach yields control laws that
are globally defined on R

6 × R; hence they are nonsingular on the whole domain
of validity of the coordinate chart containing the point to be stabilized. A slightly
different situation occurs for the control laws of [11] and [6], where singularities may
appear near the target point due to the nature of the control laws and to the nature
of the coordinate transformations, respectively.

3.3. Stability and robustness analysis. In this section we present our main
result, Proposition 3.1, which characterizes the stability and robustness properties of
the feedback law (9)–(10) applied to the ECF.

Proposition 3.1. The control law α defined in (9)–(10) is a local exponential
stabilizer for the origin of system (6), robust to disturbances in A = {(hε

0, h
ε
1, h

ε
2) ∈

D3 : Ord(hε
0) ≥ 1,Ord(h0

0) ≥ 2 and Ord(h0
i ) ≥ 1, i = 1, 2}.

Remark 2. (i) In view of the definition of A, for h ∈ A one can write hi(x, ε) =
wε

i (x) + h0
i (x), with w0

i ( · ) = 0, hε
0(x) = O(‖x‖2), and h0

j (x) = O(‖x‖1), (i = 1, 2, 3,
j = 1, 2). Hence each disturbance vector field can be thought of as consisting of
two parts, one containing only “high-order” terms in x and the other one vanishing
identically when ε = 0. The terms corresponding to these two parts may have different
origins. For instance, wε

i (x) may arise from uncertainty in the knowledge of the
physical parameters; if ε is a quantitative measure of the uncertainty, then these
terms should vanish when ε equals zero. On the other hand, h0

i (x) may include high-
order terms truncated from a series expansion of the system’s nominal model, and
these terms do not necessarily vanish when ε = 0.

(ii) A measure of the extent to which robustness is ensured by a feedback law α
lies in the nature of the set A. Roughly stated, the larger this set is, the more sources
of disturbances α can tolerate. In this respect, the control law in [1] is not robust
to disturbances taken from A; thus the origin may be destabilized by the addition
of disturbances in A regardless of how small their magnitude is (i.e., for arbitrarily
small |ε| > 0). This lack of robustness, which can be checked by using the results in
[13], is illustrated through numerical simulation in the examples in section 4.

The proof of Proposition 3.1 shares the same basic structure as that of Theorem 1
in [17], and some other technical facts are easy modifications of proofs in [27] and [10].
For the sake of conciseness, we prove only those claims particular to our solution and
explicitly refer the reader to the appropriate references when necessary.

Proof of Proposition 3.1. Let us fix a disturbance h ∈ A defined on an open set
U × E ⊂ R

n × R. It must be shown that there is ε0 > 0 such that the origin of (6)
is locally exponentially stable when ε ∈ [−ε0, ε0] ∩ E. The proof is divided into two
main steps corresponding to the following two claims.

Claim 1. For every compact interval E′ ⊂ E there is a compact neighborhood
U ′ ⊂ U of 0 such that if x0 ∈ U ′ and ε ∈ E′, the solution t �→ x(t) = π(t, 0, x0, ε) to

ẋ = b0(x) + hε
0(x) +

2∑
i=1

αi(x0, t)(bi(x) + hε
i (x)), x(0) = x0,(14)

satisfies

x(T ) = Ax0 + λ(ε, x0) + µ(ε, x0) + o(‖x0‖),
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where the mappings λ, µ (which need not be uniquely defined) are such that

‖λ(ε, x0)‖
‖x0‖

→ 0 as ε → 0, uniformly for x0 ∈ U ′ \ {0},(15)

‖µ(ε, x0)‖
‖x0‖

→ 0 as x0 → 0, uniformly for ε ∈ E′.(16)

Claim 2. [17, Theorem 1]. There exists a nonempty interval E0 ⊂ E containing
0 such that, for every ε ∈ E0, the origin of system (6) is locally exponentially stable.
The proof that Claim 1 implies Claim 2 can be found in [17, Theorem 1]; here we
proceed with the proof of Claim 1. The first step consists in showing that the system’s
solution at time T can be represented by means of a Chen–Fliess series expansion and,
to this end, the following lemma is instrumental.2

Lemma 3.2. Let M be a real-analytic manifold and let x ∈ M . Assume that the
following hold: (1) f0, . . . , fm are real-analytic vector fields on M , with f0(x) = 0; (2)
φ : M → R is real-analytic; and (3) α ∈ C0(M ×R; Rm) is such that α(x, · ) = 0 and
α(x, · ) is bounded for every x ∈ M . Then, given T > 0, there is a neighborhood ∈ K
of x such that, for x0 ∈ K and t0 ∈ R, the solution t �→ π(t, t0, x0) to ẋ = f0(x) +∑m

i=1 αi(x0, t)fi(x), x(t0) = x0 is defined for t ∈ [t0, t0 + T ], and the Chen–Fliess

series Serφ,f,α(t, t0, x0) =
∑

I fIφ(x0)
∫ t

t0
αI(x0) converges to φ(π(t, t0, x0)), absolutely

and uniformly for (x0, t0) ∈ K × R and ∈ t[t0, t0 + T ].
Proof. The proof of Lemma 3.2 is given in the appendix.
Let E′ ⊂ E be any compact interval containing 0. Define real-analytic vector

fields g0, g1, g2 on U × E and a feedback law α ∈ C0(U × E × R; Rm) by setting
gi(x, ε) = bi(x) + hε

i (x) and αi(x, ε, t) = αi(x, t). It is clear that g0(0, ε) = 0 for
ε ∈ E, and that g = (g0, g1, g2) and α satisfy the assumptions of Lemma 3.2. Hence,
for every ε ∈ E′ there is an open neighborhood Vε of (0, ε) ∈ U × E for which the
conclusion of that lemma holds. But (Vε)ε∈E′ is an open cover for the compact set
{0} × E′; thus one can extract from it a finite, open subcover. This implies the
existence of a neighborhood U ′ ⊂ U of the origin with the property that, for any
ε ∈ E′, the solution t �→ x(t) = π(t, 0, x0, ε) to system (14), issued from any point
x0 ∈ U ′ at t = 0, is defined on [0, T ], and the corresponding Chen–Fliess series

S(x0, ε, t) = Serid,b+hε,α(t, 0, x0) =
∑
I

(b + hε)I id(x0, ε)

∫ t

0

αI(x0)(17)

converges to π(t, 0, x0, ε) absolutely, uniformly for (x0, ε, t) ∈ U ′×E′×[0, T ]. (Here we
use the notation (b+hε)I id(x0) = (bi1 +hε

i1
) · · · (bir +hε

ir
)id(x0), given a multi-index

I = (i1, . . . , ir).) Note that the terms (x0, ε) �→ (b + hε)I id(x0) involved in the series
(17) represent real-analytic, first-order differential operators iterated on the function
id; hence these terms are real-analytic as well. We may therefore use (17) to express
the solution at t = T in order to prove that it satisfies Claim 1.

2In [27, Lemma 4.2], conditions are given for the Chen–Fliess series to converge for every t in a
sufficiently short interval [0, τ ]. In the present case, however, one requires the value of the solution
at the end of the interval [0, T ], with T fixed beforehand. When the system is driftless, the interval
[0, τ ] of validity of the series expansion can be made arbitrarily long by imposing small enough
bounds on the control inputs ‖u(·)‖ (cf. [17, Prop. 1] and the remarks that follow it). Nevertheless,
the system here contains a drift term, so the convergence results in [27] cannot be applied without
modification. This motivates the role of Lemma 3.2, which states conditions for convergence of the
series for arbitrarily large times and initial conditions near an equilibrium point.
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Set wε
i (x) = hε

i (x) − h0
i (x) so that hε

i = wε
i + h0

i , i = 0, 1, 2. Obviously, each
(x, ε) �→ wε

i (x) is real-analytic and vanishes when ε = 0. For convenience define
the sets of vector fields B = {b0, b1, b2}, W = {wε

0, w
ε
1, w

ε
2}, and H = {h0

0, h
0
1, h

0
2}.

Considering that each of the iterated differential operators (b + hε)I in (17) can be
written as (b+wε+h0)I , it is easy to check that, since S(x0, ε, T ) converges absolutely,

the series can be rearranged as S(x0, ε, T ) =
∑5

i=1 Si(x0, ε, T ), where S1, . . . , S5 are
absolutely convergent series defined by

S1(x0, ε, T ) = x0 +
∑

1≤|I|
bI id(x0)

∫ T

0
αI(x0),

S2(x0, ε, T ) =
∑

1≤|I|
XI id(x0, ε)

∫ T

0
αI(x0),

S3(x0, ε, T ) =
∑

1≤|I|≤2

YI id(x0, ε)
∫ T

0
αI(x0),

S4(x0, ε, T ) =
∑

3≤|I|
YI id(x0, ε)

∫ T

0
αI(x0),

S5(x0, ε, T ) =
∑

1≤|I|
ZI id(x0, ε)

∫ T

0
αI(x0),

and, for I = (i1, . . . , ir), the iterated differential operators XI , YI , ZI satisfy the
following:

1. For j = 1, . . . , r, Xij and Yij belong to B ∪W ∪H, whereas Zij belongs to
B ∪H.

2. At least one of the Xij and at least one of the Yij are contained in W.
3. None of the Xij belongs to {b0, wε

0, h
0
0}.

4. At least one of the Yij belongs to {b0, wε
0, h

0
0}.

5. At least one of the Zij is contained in H.

It follows from the first property that all of the ZI are independent of ε and, from
the second, that XI id(x0, 0) = YI id(x0, 0) = 0 for every x0 ∈ U . In what follows,
S1 through S5 are analyzed separately in order to show that their sum has the form
announced in Claim 1. Let us first present Lemma 3.3, which gathers some simple
facts to be used below.

Lemma 3.3. Under the assumptions of Proposition 3.1 the following hold:

(i) For every compact neighborhood U ′ ⊂ U of the origin there exists K > 0

such that ‖α(x0, t)‖ ≤ K‖x0‖
1
2 for (x0, t) ∈ U ′ × R.

(ii) Let r ∈ {1, 2}. For any nonzero multi-index I ∈ {0, 1, 2}r, the iterated

integral
∫ T

0
αI satisfies

∫ T

0
αI(x0) = O(‖x0‖), and for any multi-index I ∈ {1, 2}r it

satisfies
∫ T

0
αI(x0) = O(‖x0‖2).

(iii) Say that k0 = 0 and k1 = k2 = 1/2. Then for any multi-index I =

(i1, . . . , ir) ∈ {0, 1, 2}r, r > 0, one has Ord(
∫ T

0
αI) ≥

∑r
j=1 kij .

(iv) For every multi-index I, x0 �→
∫ T

0
αI(x0) is continuous.

(v) For i = 1, 2 the following hold:
(i) Ord(b0) = 0, Ord(bi) = −1,
(ii) Ord(hε

0) = Ord(wε
0) ≥ 1, Ord(hε

i ) = Ord(wε
i ) ≥ −1,

(iii) Ord(h0
0) ≥ 2, Ord(h0

i ) ≥ 1.
(vi) If φ ∈ C∞(U ; R) and k ≥ 1, then Ord(bk0φ) ≥ k. (Here b00φ = φ and

bj0φ = b0(b
j−1
0 φ), j ≥ 1.)

Proof. Given in the appendix.
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The first sum S1 converges to the solution of the nominal system (7) controlled
by u = α(x0, t); thus

S1(x0, ε, T ) = x0 +
∑
1≤|I|

bI id(x0)

∫ T

0

αI(x0) = Ax0 + o(‖x0‖).(18)

Let us now prove that S2–S4 can be written in terms of functions satisfying properties
analogous to (15)–(16), while S5 converges to an o(‖x‖) function. The following lemma
is crucial to attaining this goal.

Lemma 3.4. Let U × E ⊂ R
n × R be an open neighborhood of (0, 0) and assume

that, for every I in a countable set I, aI : U × E → R
n is real-analytic and vanishes

at U × {0} and bI : U → R is continuous. Assume further that
∑

I∈I aI(x, ε)bI(x)
converges to f(x, ε), absolutely and uniformly for (x, ε) ∈ U × E. Then there is a
compact neighborhood U ′ ⊂ U of 0 such that

(1) f satisfies (15) (with λ = f) if I is finite and any of the following conditions
holds:

(i) aI(x, ε) = O(‖x‖) for every I ∈ I,
(ii) bI(x) = O(‖x‖) for every I ∈ I.

(2) f satisfies (16) (with µ = f) if any of the following conditions holds:
(i) aI(x, ε) = o(‖x‖) for every I ∈ I,
(ii) there is c > 0 such that bI(x) = O(‖x‖1+c) for every I ∈ I,
(iii) aI(x, ε) = O(‖x‖) and there is d > 0 such that bI(x, ε) = O(‖x‖d) for

every I ∈ I.
Proof. The proof of Lemma 3.4 is given in the appendix.

Consider the sum S2. If 1 ≤ |I| ≤ 2, Lemma 3.3(ii) yields Ord(
∫ T

0
αI) ≥ 1.

On the other hand, since the XI ’s do not involve any drift term (i.e., none of the
indices in I equals zero), for the terms such that |I| ≥ 3 one invokes Lemma 3.3(iii) to

conclude that
∫ T

0
αI(x0) = O(‖x0‖1+c) with c = 1/2. Thus, by setting S2(x0, ε, T ) =

λ2(x0, ε) + µ2(x0, ε),

λ2(x0, ε) =
∑

1≤|I|≤2

XI id(x0, ε)

∫ T

0

αI(x0) and

µ2(x0, ε) =
∑
|I|≥3

XI id(x0, ε)

∫ T

0

αI(x0);

the first is a sum of finitely many terms, and the second is the limit of an absolutely
convergent series. By virtue of Lemma 3.4(1)(ii) and Lemma 3.4(2)(ii), λ2 and µ2

satisfy properties analogous to (15) and (16), respectively.
Let us turn to S3. If I ∈ {(0), (0, 0)}, then, since Ord(b0) = 0, Ord(wε

0) ≥ 1, and
Ord(h0

0) ≥ 2, one has Ord(YI id) ≥ 1 by virtue of Lemma 6.1(v). If I 	∈ {(0), (0, 0)},
then Lemma 3.3(ii) implies Ord(

∫ T

0
αI) = 2. The number of multi-indices I with

1 ≤ |I| ≤ 2 being finite, one concludes by successive application of points (1)(i) and
(1)(ii) of Lemma 3.4 that λ3 defined by

S3(x0, ε, T ) =
∑

1≤|I|≤2

YI id(x0, ε)

∫ T

0

αI(x0) = λ3(x0, ε)(19)

satisfies (15) with λ = λ3.
Now let us turn to S4 and consider two cases according to the values of the

multi-indices I.
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Case (i) (|I| ≥ 3 and I involves three or more nonzero indices). Lemma 3.3(iii)

implies that
∫ T

0
αI(x0) = O(‖x‖1+c) with c = 1/2. Thus the sum of the terms for

which the multi-index I involves three or more nonzero indices converges to a function
(x0, ε) �→ µ4i(x0, ε) which, by virtue of Lemma 3.4(2)(ii), satisfies (16) with µ = µ4i.

Case (ii) (|I| ≥ 3 and I involves two or less nonzero indices). Consider the
following four subcases:

• Subcase (a) (|I| ≥ 3 and I = (0, . . . , 0)). By the definition of YI , wε
0 ap-

pears at least once in YI ; it follows that Ord(YI id) ≥ 2 as a consequence of
Lemma 3.3(v) and Lemma 6.1(v). Thus in this subcase YI id(x, ε) = o(‖x‖),
so the sum of these terms converges to a function (x, ε) �→ µ4a(x, ε) which,
by Lemma 3.4(2)(i), satisfies (16) with µ = µ4a.

• Subcase (b) (r = |I| ≥ 3, I = (0, i2, . . . , ir) and one or two indices are
nonzero). Using again Lemma 3.3(v) and Lemma 6.1(v), one deduces that

Ord(YI id) ≥ 1. Also, by virtue of Lemma 3.3(iii), Ord(
∫ T

0
αI) ≥ 1

2 . Thus the
sum of terms in this subcase converges to a function (x, ε) �→ µ4b(x, ε) which,
in view of Lemma 3.4(2)(iii), satisfies (16) with µ = µ4b.

• Subcase (c) (|I| ≥ 3, I = (i1, 0, . . . , 0), i1 	= 0). It is clear that Ord(
∫ T

0
αI) =

1
2 as a consequence of Lemma 3.3(iii). Also, if neither wε

0 nor h0
0 is involved

in YI , then Lemma 3.3(vi) implies Ord(YI id) ≥ −1 + 2 = 1. If, on the
contrary, any of wε

0 or h0
0 is involved at least once in YI , then Ord(YI id) ≥

−1 +
∑r

j=2 Ord(Yij ) + Ord(id) ≥ 1 since, under that condition, one has∑r
j=2 Ord(Yij ) ≥ 1 in view of Lemma 3.3(v) and Lemma 6.1. Therefore

the sum of these terms converges to a function (x, ε) �→ µ4c(x, ε) which, by
Lemma 3.4(2)(iii), satisfies (16) with µ = µ4c.

• Subcase (d) (r = |I| ≥ 3, I = (i1, . . . , ir), i1 	= 0 and exactly one of i2, . . . , ir
is nonzero). Let I denote the set of multi-indices corresponding to this sub-

case. One has Ord(
∫ T

0
αI) ≥ 1, since exactly two indices in I are nonzero.

Assume that the nonzero indices are i1 and ij , 2 ≤ j ≤ r, so both Ord(Yi1) and

Ord(Yij ) are ≥ −1. Setting ω1 =
∑j−1

k=2 Ord(Yik) and ω2 =
∑r

k=j+1 Ord(Yik),
one gets ω1 ≥ 0 and ω2 ≥ 0. For those terms with |I| ≤ 7, Lemma 6.1(v)
implies that Ord(YI id) ≥ 0. For the terms with |I| ≥ 8, on the other hand,
either b0 appears three times consecutively in YI , or it does not. In the for-
mer case, if the iterated differential operator Yi2 · · ·Yij−1

involves the three
successive b0’s, then Lemma 3.3(vi) yields Ord(YI id) ≥ −1 + max{1, 3} = 2.
If the three successive b0’s are involved in Yij+1 · · ·Yir , the same lemma yields
Ord(Yij · · ·Yir id) ≥ −1 + max{1, 3} = 2. Thus Ord(Yi2 · · ·Yir id) ≥ ω1 + 2
and Ord(YI id) ≥ −1 + max{1, 2} = 1.

Consider now the case when YI does not involve three consecutive b0’s. In this
case,

Ord(Yij · · ·Yir id) ≥ −1 + max{1, ω2 + 1} = ω2,

Ord(Yi2 · · ·Yir id) ≥ ω1 + max{1, ω2};

thus

Ord(Yi1 · · ·Yir id) ≥ −1 + max{1, ω1 + max{1, ω2}}
= max{0,max{ω1, ω1 + ω2 − 1}}.

But since |I| ≥ 8, at least two vector fields from {wε
0, h

0
0} appear in YI , so ω1+ω2 ≥ 2,
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max{ω1, ω1 + ω2 − 1} ≥ 1, and, consequently, Ord(YI id) ≥ 1. Therefore, by setting

λ4(x0, ε) =
∑

I∈I,|I|≤7

YI id(x0, ε)

∫ T

0

αI(x0) and

µ4d(x0, ε) =
∑

I∈I,|I|≥8

YI id(x0, ε)

∫ T

0

αI(x0),

one sees that these mappings are well defined, the first being the sum of finitely many
terms and the second being the limit of an absolutely convergent sequence. But then,
with the help of points (1)(ii) and (2)(iii) of Lemma 3.4, one concludes that λ4 and
µ4d satisfy (15) and (16) with λ = λ4 and µ = µ4d, respectively. Summarizing the
results from Cases (i) and (ii) for S4, one obtains

S4(x0, ε, T ) =
∑
3≤|I|

YI id(x0, ε)

∫ T

0

αI(x0) = λ4(x0, ε) + µ4i(x0, ε) + µ4ii(x0, ε)(20)

with µ4ii = µ4a + µ4b + µ4c + µ4d.
Finally, let us show that S5 converges to a function f5 such that f5(x) = o(‖x‖).

Consider three cases according to the value of I.
Case (i) (I involves three or more nonzero indices). From Lemma 3.3(iii), we see

that Ord(
∫ T

0
α) ≥ 3/2.

Case (ii) (I involves one or two nonzero indices). If r = |I| ∈ {1, 2}, then I ∈
{1, 2}r is nonzero, so Lemma 3.3(ii) implies that Ord(

∫ T

0
α) = 2, whereas Ord(ZI id) ≥

0. Now suppose that r = |I| ≥ 3. From Lemma 3.3(iii), Ord(
∫ T

0
αI) ≥ 1/2. If i1 = 0,

then Ord(ZI id) ≥ 0+Ord(Zi2 · · ·Zir id) ≥ 0+max{1, 0} = 1. Now let us consider the
case where i1 	= 0. If I = (i1, 0, . . . , 0), then, by definition of ZI , either Zi1 ∈ H, in
which case Ord(Zid) ≥ Ord(Zi1)+max{1, 2} ≥ 3, or Zij ∈ H for some j ∈ {2, . . . , r},
in which case Ord(Zi2 · · ·Zir id) ≥

∑r
j=2 Ord(Zij ) + 1 ≥ 2, and so, Ord(ZI id) ≥

−1+max{1, 2} = 1. If i1 	= 0 and ij 	= 0 for some j ∈ {2, . . . , r}, then Ord(
∫ T

0
αI) ≥ 1.

Moreover, either Zi1 ∈ H, in which case Ord(ZI id) ≥ 1 + max{1, 0} = 2, or Zi1 	∈ H.

Suppose the latter is true and set ω1 =
∑j−1

k=2 Ord(Zik) and ω2 =
∑r

k=j+1 Ord(Zik),
so that ω1 ≥ 0, ω2 ≥ 0 and

Ord(Zij · · ·Zir id) ≥ Ord(Zij ) + max{1, ω2 + 1} = Ord(Zij ) + ω2 + 1,

Ord(Zi2 · · ·Zir id) ≥ ω1 + max{1,Ord(Zij ) + ω2 + 1}.

If Zij ∈ H, then Ord(Zij ) ≥ 1 and hence Ord(ZI id) ≥ −1 + max{1, 2 + ω2} ≥ 1.
If Zij 	∈ H, then Zik = h0

0 for some k ∈ {2, . . . , r} \ {j}. In that case ω1 + ω2 ≥
2 = Ord(h0

0) and Ord(Zij ) ≥ −1; thus Ord(ZI id) ≥ −1 + ω1 + max{1, ω2} ≥ 1.

Summarizing, every term pertaining to Case (ii) satisfies Ord(ZI id ·
∫ T

0
αI) ≥ 3/2.

Case (iii) (I = (0, . . . , 0), |I| = r). Since (a) Ord(Zij ) ≥ 0 for j = 1, . . . , r; (b)
at least one of the Zij is equal to h0

0; and (c) Ord(h0
0) ≥ 2, one has Ord(ZI id) =∑r

j=1 Ord(Zij ) + 1 ≥ 3.

All terms corresponding to Cases (i)–(iii) satisfy Ord(ZI id ·
∫ T

0
αI) ≥ 3/2; that

is, ZI id(x0)
∫ T

0
αI(x0) = o(‖x‖). Thus their sum converges to a function f5 with the

required property. Clearly, the sum of finitely many functions f1, . . . , fN satisfying
(15) on compact sets U1, . . . , UN (resp., (16)) also satisfies (15) on U ′ =

⋂N
i=1 Ui
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(resp., (16)). Therefore x(T ) is as in Claim 1, and the proof of Proposition 3.1 is
complete.

In Proposition 3.1, the condition that the disturbances belong to A is sufficient
but not necessary for stability and robustness. In particular, disturbances in A sat-
isfy h0(x, ε) = O(‖x‖) or, stated otherwise, each component of the drift disturbance
satisfies h0,i = O(‖x‖2). This is somewhat conservative since in some cases the latter
condition is not satisfied and yet the conclusion of the previous proposition seems
to hold in simulations. Indeed, a refinement of that result seems plausible, although
the proof would require surmounting some technical obstacles. We are thus led to
formulate the following conjecture which, as we shall see in the examples in section 4,
might be of interest when addressing the stabilization of systems whose models can
be written as an ECF with additional terms. By viewing these terms as disturbances,
one might successfully use the control laws (9)–(10), without modification, to stabilize
some of those systems to a point. A drawback of the stated condition, however, is
that testing it may be difficult in practice.

Conjecture 1. Let A′ be the subset of D3 defined by stipulating that (hε
0, h

ε
1, h

ε
2)

belongs to A′ if and only if (1) Ord(hε
0) ≥ 0, Ord(h0

0) ≥ 2, Ord(h0
i ) ≥ 1, i = 1, 2,

and (2) for every k ≥ 2, every X ∈ {b1, b2, hε
1, h

ε
2}, and every k-tuple (Y1, . . . , Yk) ∈

{b0, hε
0}k having at least one of the Yi equal to hε

0, one has Ord(XY1 · · ·Ykid) ≥ 1.
Then the control law α defined in (9)–(10) is a local exponential stabilizer for (6),
robust to disturbances in A′.

Remark 3. If this conjecture holds true, its proof should essentially coincide with
that of Proposition 3.1. The only differences would arise in arguments that explicitly
appeal to the assumption Ord(hε

0) ≥ 1 (i.e., Ord(wε
0) ≥ 1), namely, Subcases (a),

(c), and (d) of Case (ii) in the sum S4. One should show that, by dropping that
assumption, the terms pertaining to those subcases satisfy the required properties.

For Subcase (c) one has Ord(
∫ T

0
αI) ≥ 1/2 and, since in this subcase every multi-index

I is of the form I = (i1, 0, . . . , 0) with i1 	= 0, the corresponding terms are of the form
YI id = XZ1 · · ·Zkid with X ∈ {bi, h0

i , w
ε
i : i = 1, 2} and (Z1, . . . , Zk) ∈ {b0, h0

0, w
ε
0}k.

By a simple induction argument one sees that the definition of A′, in particular
condition (2) in Conjecture 1, implies that all such terms satisfy Ord(YI id) ≥ 1,
so by virtue of Lemma 3.4(2)(iii) these terms have the required properties. On the
other hand, each term of the series involved in Subcase (a) satisfies Ord(YI id) ≥ 1 and

Ord(
∫ T

0
αI) = 0 since

∫ T

0
αI(x0) = T |I|

|I|! , whereas the terms of the series in Subcase (d)

satisfy Ord(YI id) ≥ 0 and Ord(
∫ T

0
αI) ≥ 1. To prove the conjecture, then, it would

suffice to show that the (infinite) series in these two subcases converge to functions
λ4a and λ4d satisfying (15).

4. Examples.

4.1. Underactuated manipulator. Consider the example of a PPR manip-
ulator, depicted in Figure 2, with unactuated third joint, constrained to move on
a horizontal plane. Considering the links and joints as rigid bodies and neglecting
gravitational and frictional forces, this system can be modeled by

M1q̈1 −m3l sin(q3)q̈3 −m3l cos(q3)q̇
2
3 = τ1,

M2q̈2 + m3l cos(q3)q̈3 −m3l sin(q3)q̇
2
3 = τ2,

−M3l sin(q3)q̈1 + M3l cos(q3)q̈2 + Jq̈3 = 0,
(21)

where mi, i = 1, 2, 3, is the mass of the ith link, Mi =
∑3

j=i mj , J is the moment
of inertia of the third link with respect to the axis of the third joint, and l is the
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q1
q2

q3

l

Fig. 2. Schematic representation of the PPR manipulator.

distance from the same axis to the center of mass of the third link. The input vector
τ = (τ1, τ2) represents the forces applied in the q1 and q2 directions, respectively. The
configuration manifold is Q = R

2 × SS1, for which q : Q → R
2 × (−π, π) is a local

coordinate system.
Given a target configuration q ∈ Q, the dynamics can be transformed into the

ECF, locally around q, by using the coordinates of the third link’s “center of percus-
sion.” A detailed description of the corresponding transformation can be found in [8];
for simplicity, however, in what follows we assume without loss of generality that the
target configuration—the one that should be stabilized—is given by q(q) = (0, 0, 0) ∈
U . After simple computations one verifies that, by setting K = J/M3/l, the dynamic
model (21) can be transformed into the ECF ẋ = b0(x) +u1b1(x) +u2b2(x) by means
of the feedback transformation x = ϕ(q, q̇), u = A(q, q̇) + B(q)[τ1 τ2]

T , where

ϕ(q, q̇) =

⎛⎜⎜⎜⎜⎜⎜⎝
q1 + K(cos(q3) − 1)
q̇1 −K sin(q3)q̇3
tan(q2)
(1 + tan2(q3))q̇2
q2 + K sin(q3)
q̇2 + K cos(q3)q̇3

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and

A(q, q̇) =
1

∆(q)

(
(JK2M2−J2−K4M1M2+JK2M1) cos(q3)q̇

2
3

K
(2K2M1M2−3JM1 cos2(q3)−2JM2+3JM2 cos2(q3)) sin(q3)q̇

2
3

cos3(q3)

)
,

B(q) =
1

∆(q)

(
(K2M2 − J) cos2(q3) (K2M1 − J) cos(q3) sin(q3)

KM2 sin(q3)
cos2(q3)

− KM1

cos(q3)

)
,

∆(q) = K2M1M2 − JM1 cos2(q3) − JM2 sin2(q3).

The control laws developed above can be iterated, after the system has been trans-
formed into the ECF, in order to stabilize the origin x = 0. To this end, at each
sample time tk = kT one uses the measurements of the state variables to calculate
x(tk) = ϕ(q(tk), q̇(tk)), then the prescribed control law u(t) = α(x(tk), t) is computed
from (9)–(10). The actual force used to drive the system is obtained by using the
inverse transformation τ(t) = [B(q)]−1(u(t) −A(q, q̇)).

When the system parameters are not accurately known, which is most often the
case, the functions ϕ, A, and B typically include additional terms. For the sake of
illustration let us suppose that uncertainties are present in the values of the (cumu-
lated) masses Mi, the position of the third link’s center of mass l, and its inertia
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moment J . This entails that only the erroneous values M̃i = Mi + νi, l̃ = l + ν4, and
J̃ = J+ν5, where ν = (ν1, . . . , ν5) ∈ R

5 represents the parameter errors, are available
to the controller. Note that, if one sets ε = ‖ν‖2, the norm of the error tends to zero
as ε → 0. Ultimately, the effect of the inaccuracies results in disturbance vector fields
h = (hε

0, h
ε
1, h

ε
2) being added to the nominal ECF system, yielding a perturbed system

in the form of (3). Using a computer algebra package, one readily verifies that for
i = 1, 2, 3, the mappings (x, ε) �→ hε

i (x) are analytic and have the following structures:

hε
0(x)=x2

4(a
ε
2,0+O(|x3|2))

∂

∂x2
+x2

4(a
ε
4,3x

3
3+O(|x3|5))

∂

∂x4
+x2

4(a
ε
6,1x3+O(|x3|2))

∂

∂x6
,

hε
1(x)=(bε2,0 + O(|x3|2))

∂

∂x2
+ (bε4,1x3 + O(|x3|3))

∂

∂x4
+ (bε6,1x3 + O(|x3|3))

∂

∂x6
,

hε
2(x)=(cε2,1x3 + O(|x3|3))

∂

∂x2
+ (cε4,0 + O(|x3|2))

∂

∂x4
+ (cε6,0 + O(|x3|2))

∂

∂x6
,

where the symbols aεi,j , b
ε
i,j , and cεi,j represent real numbers which vanish when ε = 0

but are nonzero for generic parameter and error values. This implies that Ord(hε
0) = 1

and Ord(hε
1) = Ord(hε

2) = −1, so the assumptions in Proposition 3.1 are verified. As a
result, the iterated application of the control laws (9)–(10) will ensure that the origin
of the dynamically extended system (6) is locally exponentially stable, provided ε is
small enough.

Now consider a PPR manipulator whose nominal, physical dimensions are as fol-
lows. The three masses are equal: m1 = m2 = m3 = 10 kg. The third link is a
homogeneous parallelepiped of length � = 1.5 m and width w = 0.15 m; its center
of mass is located at a distance l = �/2 = 0.75 m from the joint axis and its inertia
moment is J = (�2/3 + w2/12)m3 = 7.51875 kg m2. The goal is to stabilize the sys-
tem to the equilibrium configuration (q, q̇) = (0, 0) starting at rest (q̇0 = 0) from the
initial configuration q0 = (−50 cm, 75 cm, π/4). A convenient DOF, useful for fine-
tuning the transient response, is encompassed by the choice of the controller settings
(T , G, and the ai’s), which can be made with the aid of some intuitively deduced
“rules of thumb.” T controls the length of the periods during which the system oper-
ates in open-loop; smaller values of T lead to more frequent updates of the feedback
terms. G moderates the control effort exerted on the system due to the oscillatory,
time-varying terms; large values of G lead to shorter settling time (to within a given
tolerance) but may require larger control efforts. The values of ai set the position
of the poles {ki1, ki2}, within the unit circle in C, for each of the submatrices Ai

in (12). As can be expected, the closer the poles are to the origin, the shorter the
settling time is, but also the larger the control effort becomes. In these simulations
the settings are ω = 1 rad/s, so T = 2π ≈ 6.28 s; G = 0.1 and ki,j = 0.25 (i = 1, 2, 3,
j = 1, 2); the gain values a1 = a3 = a5 � −0.01425 and a2 = a4 = a6 � −0.194 were
determined from (13). In order to perform the numerical simulation in the perturbed

case, it is assumed that m̃3 = 1.1m3 and l̃ = 0.95l; that is, errors of 10% and −5%,
respectively, are present in the knowledge of these two parameters. The latter induce
an error of −0.7% in the moment of inertia, so that J̃ = 0.993J . The response of
the perturbed system controlled by (9)–(10) appears in Figure 3, which shows the
time history of log(‖(q(t), q̇(t))‖), the configuration variables q(t), and velocities q̇(t),
as well as the input forces τ(t). The differences between the transient responses in
the perturbed and nominal cases are barely perceptible, so no simulation for the lat-
ter case is included. In order to assess the improved performance of the control law
(9)–(10) in the presence of disturbances, let us end this example with a qualitative
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Fig. 3. Transient response of the perturbed PPR manipulator using the hybrid control law
(9)–(10).

comparison with another control approach. Recall that in [1], a homogeneous, time-
varying feedback law was introduced which ρ-exponentially stabilizes the ECF to the
origin. Nevertheless, by virtue of the main result in [13], these control laws are not
robust to disturbances in D3 and, in fact, as illustrated in Figure 4, the disturbances
considered in this example make the system’s solution tend towards what seems to
be a limit cycle (in particular the origin is not Lyapunov-stable).

4.2. Simplified surface vessel. Consider a simplified surface vessel with con-
figuration variables (x, y, θ), as depicted in Figure 5. Research studies concerning this
system are reported in several references, including [23], where more details on the
modeling assumptions can be found. In particular, it is shown in that reference that
the corresponding dynamic model can be written in the form

ẍ = u1,

θ̈ = u2,

ÿ = u1 tan(θ) +
cy
m

(−ẏ + tan(θ)ẋ).
(22)

Clearly this can be viewed as a perturbed ECF system. More precisely, by setting
ε = cy/m and relabeling the state variables (x1, . . . , x6) = (x, ẋ, θ, θ̇, y, ẏ) one can
also write system (22) as

ẋ = b0(x) + hε
0(x) +

2∑
i=1

ui(bi(x) + hε
i (x)),(23)
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Fig. 4. Transient response of the perturbed PPR manipulator using the continuous, homoge-
neous, time-varying feedback from [1]. The time histories of the configuration variables are plotted
with a different scale to illustrate their ultimately oscillatory nature.

x
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θ

Fig. 5. Configuration variables for the simplified surface vessel model.

with b0, b1, b2 given by (2), and the disturbance vector fields defined by

hε
0(x) = ε(−x6 + x2 tan(x3))

∂

∂x6
, hε

1(x) = (tan(x3) − x3)
∂

∂x6
, hε

2(x) = 0.(24)

Obviously, the family h = (hε
0, h

ε
1, h

ε
2) is a disturbance in D3, but it is not contained

in the set A defined in Proposition 3.1 since Ord(hε
0,6) = 1, i.e., Ord(hε

0) = 0. Let
us show, however, that h belongs to A′ and hence that it satisfies the assumptions of
Conjecture 1. To this end, let g(x) = ε(−x6+x2 tan(x3)), so that hε

0(x) = g(x)∂/∂x6.
Note that Ord(hε

1) = 2 and Ord(hε
2) = +∞; hence we need only certify that all terms
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XY1 · · ·Ykid, with X ∈ {b1, b2}, k ≥ 2 and Y1, . . . , Yk ∈ {b0, hε
0}, satisfy

Ord(XY1 · · ·Ykid) ≥ 1.(25)

Since b1φ(x) = ∂φ/∂x2 +x3∂φ/∂x6 and b2φ(x) = ∂φ/∂x4 for any smooth function φ,
a necessary condition to have Ord(b1φ) ≥ 1 and Ord(b2φ) ≥ 1 is that Ord(∂φ/∂x2) ≥
1 and Ord(∂φ/∂x4) ≥ 1. Naturally, this necessary condition holds whenever φ =
Y1 · · ·Ykid and Ord(φ) ≥ 2. In what follows we shall show that it holds even when
the latter is not the case. One has

b0idi(x) =

{
xi+1, i = 1, 3, 5,
0, i = 2, 4, 6,

and hε
0idi(x) =

{
0, i = 1, . . . , 5,
g(x), i = 6,

from which it follows that b0b0id = 0, hε
0b0idi = 0 for i 	= 5, and b0h

ε
0idi = hε

0h
ε
0idi = 0

for i 	= 6. Furthermore,

hε
0b0id5(x) = g(x), b0h

ε
0id6(x) = x4

∂g

∂x3
(x) and

hε
0h

ε
0id6(x) = g(x)

∂g

∂x6
(x) = −εg(x).

By direct calculation one obtains that

∂g

∂x2
(x) = −ε tan(x3),

∂g

∂x4
(x) = 0,(26)

∂

∂x2

(
x4

∂g

∂x3
(x)

)
= x4

∂2g

∂x2∂x3
(x),(27)

∂

∂x4

(
x4

∂g

∂x3
(x)

)
=

∂g

∂x3
(x) = εx2(1 + tan2(x3)).

The orders Ord(·) of all of these functions being ≥ 1, the required condition (25) is
satisfied for k = 2. Now consider the case k ≥ 3 and note that, since Ord(b0b0id) =
+∞ and Ord(b0h

ε
0id) = 2, all terms XY1 . . . Ykid which end with b0b0id or with b0h

ε
0id

satisfy (25) for k ≥ 3. Moreover, b0h
ε
0b0id5 = b0h

ε
0id6 and b0h

ε
0h

ε
0id5 = −εb0h

ε
0id6, so

those terms that end with b0h
ε
0h

ε
0id and b0h

ε
0h

ε
0id also satisfy (25) for k ≥ 3. It remains

only to consider terms ending with hε
0h

ε
0b0id and hε

0h
ε
0h

ε
0id. But hε

0h
ε
0b0id5 = hε

0h
ε
0id6;

thus one needs only to analyze terms of the form X(hε
0)

�id6 and Xb0(h
ε
0)

�id6. A
routine calculation yields, for � ≥ 1,

(hε
0)

�id6(x) = (−ε)�−1g(x) and b0(h
ε
0)

�id6(x) = (−ε)�−1x4
∂g

∂x3
(x).(28)

Hence, in view of (26)–(28), those terms also satisfy (25) for every k ≥ 3. Consequently
h ∈ A′. A numerical simulation of system (23) with the controller (9)–(10) is shown
in Figure 6. For this simulation the size of the error is taken to be ε = cy/m = 0.1,
the initial condition is x = (1, 0, π/4, 0,−1, 0), and the controller settings are ω =
2π/T = 1.5 rad/s, G = 1, and ki,j = 0.1, i = 1, 2, 3, j = 1, 2. The gain values
a1 = a3 = a5 � −0.0462 and a2 = a4 = a6 � −0.333 were determined using (13). As
depicted in the time-plots, the simulation appears to validate Conjecture 1.

5. Conclusions. A controller scheme, based on well-known hybrid open-loop/
feedback techniques, has been introduced for the ECF. This controller exponentially
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Fig. 6. Transient response of the system (23)—equivalent to the simplified surface vessel
model—controlled by (9)–(10).

stabilizes the origin of a dynamic extension of the ECF, with robustness to a class of
additive disturbance vector fields. The class of disturbances includes analytic vector
fields added to the control vector fields as well as “high-order” drift perturbations.
One positive feature of these results is that, for a class of underactuated systems—
whose models need not be feedback-equivalent to the ECF—the problem of local
point stabilization with exponential convergence can be effectively tackled by using
the same control scheme as for the ECF. The typical performance of the proposed
control laws seems qualitatively acceptable, as illustrated by the numerical simula-
tions. On the other hand, these controllers clearly have some limitations regarding
their robustness, and instability may be induced by disturbances not contained in the
class A of Proposition 3.1 or by disturbances of a different nature, such as errors in
the update time of the control.

A problem that remains open is the extension of the approach in this paper to
systems with more inputs and less structure than the ECF. Such an extension would
typically involve a design and an analysis stage, the former yielding control laws that
stabilize the origin of a dynamically extended, nominal system—analogous to (6),
but with hε

i = 0, i = 1, . . . ,m. The design stage, of an essentially algebraic nature,
might be based on techniques related to the design of oscillatory open-loop controls,
such as the ones developed in [12]. By contrast, the analysis can be expected to be
significantly involved, all the more so as it would be desirable to guarantee robustness
to a large class of admissible disturbances.
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6. Appendix.

6.1. Notational conventions.

6.1.1. Local order of mappings. Let us recall some definitions and properties
about local order of mappings, a notion that simplifies the proofs. In this paragraph,
n and m represent positive integers, � represents a nonnegative integer, and ‖·‖ repre-
sents Euclidean norm. Given open sets U ⊂ R

n and V ⊂ R
m, the symbols PC(U ;V ),

C0(U ;V ), C∞(U ;V ), and Cω(U ;V ) denote the sets of piecewise-continuous, contin-
uous, smooth, and (real-)analytic mappings from U to V , respectively. Consider a
neighborhood U of the origin in R

n. We deal with mappings defined on U ×Λ, where
Λ ⊂ R

�, and view the elements of Λ as parameters (e.g., “time” or other parameters).
Given a mapping f : U × Λ → R

m, we write f(x, λ) = o(‖x‖k) if, for every λ ∈ Λ,

lim
x→0

‖f(x, λ)‖
‖x‖k = 0.(29)

We write f(x, λ) = O(‖x‖k) if for every λ ∈ Λ there is a constant K > 0 and a
neighborhood U ′ ⊂ U of the origin such that, for every x ∈ U ′\{0},

‖f(x, λ)‖
‖x‖k ≤ K.(30)

Consider a mapping X = (X1, . . . , Xn) : U ×Λ → R
n representing a family of vector

fields X(·, λ) : U → R
n. We write X(x, λ) = o(‖x‖k) (resp., X(x, λ) = O(‖x‖k)) if

Xi(x, λ) = o(‖x‖k+1) (resp., Xi(x, λ) = O(‖x‖k+1)) for i = 1, . . . , n. We shall also
use the function Ord : f �→ Ord(f) ∈ R ∪ {+∞} defined by Ord(f) = sup{k ∈ R :
f(x, λ) = O(‖x‖k)}. Every vector field X(·, λ) is a differential operator acting on
C∞(U ; R); thus, for φ ∈ C∞(U ; R) one has Xφ(·, λ) ∈ C∞(U ; R), where Xφ(x, λ) =
LXφ(x, λ) =

∑n
i=1

∂φ
∂xi

(x, λ) denotes the Lie derivative of φ in the direction of X
evaluated at (x, λ). We extend this notation to the case when φ ∈ C∞(U ; Rm) and
use Xφ(·, λ) to denote the m-tuple (Xφi)i=1,... ,m of functions Xφi(·, λ) ∈ C∞(U ; R).
The following properties are easily established:

Lemma 6.1. Assume that, for every λ ∈ Λ, f(·, λ), g(·, λ) are C∞ mappings
U → R

m, and X(·, λ), Y (·, λ) are C∞ vector fields U → R
n. Write µ to denote any

of these mappings. Then the following hold:
(i) Ord(f) ≥ 0, Ord(X) ≥ −1.
(ii) If k ∈ R and k ≤ Ord(µ), then µ(x, λ) = O(‖x‖k).
(iii) Ord(f +g) ≥ min{Ord(f),Ord(g)} (where (f +g)(x, λ) = f(x, λ)+g(x, λ)).
(iv) Ord(fg) = Ord(f) + Ord(g) (where fg(x, λ) = f(x, λ)g(x, λ)).
(v) Ord(Xf) ≥ Ord(X) + max{Ord(f), 1}. In particular Ord(Xf) ≥ 0.

6.1.2. Iterated differential operators and iterated integrals. Assume that
U ⊂ R

n is open. Let X = (X1, . . . , Xm) be a family of real-analytic vector fields
Xi ∈ Cω(U ; Rn), and φ ∈ Cω(U ; R) be a real-analytic function. Every element of
I[0,m] =

⋃
k∈{0,1,2,... }{0, 1, . . . ,m}k is called a multi-index. If I = (i1, . . . , ir) ∈

{0, 1, . . . ,m}r, the multi-index I is said to have length r, and this is denoted by
|I| = r. By convention, I = ∅ is regarded as a multi-index having zero length.

Let I = (i1, . . . , ir) ∈ I[0,m] be a multi-index. The iterated differential opera-
tor XI = Xi1 · · ·Xir is defined so that the function XIφ ∈ Cω(U ; R) is given by
Xi1 · · ·Xirφ (each vector field regarded as a first-order differential operator). By
convention one sets X∅φ = φ. We use XI id : U → R

n to denote the n-tuple
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of functions (XI idi)i=1,... ,n, where id : U → R
n is defined by idi(x) = xi for

x = (x1, . . . , xn) ∈ U . Given α ∈ C0(U × R; Rm) (e.g., a time-varying feedback
law), a multi-index I = (i1, . . . , ir), and real numbers t0, t, one defines the iterated

integral
∫ t

t0
αI : U → R as follows:

∫ t

t0

αI(x) =

∫ t

t0

∫ tr

t0

· · ·
∫ t2

t0

αir (x, tr)αir−1(x, tr−1) · · ·αi1(x, t1)dt1 · · · dtr.

By convention,
∫ t

t0
α∅(x) = 1 for every x ∈ U .

6.2. Auxiliary lemmas.

6.2.1. Proof of Lemma 3.2. Since the result is local we may assume, without
loss of generality, that M is an open subset of R

n and that x = 0. We shall appeal to
the following two technical lemmas; for improved readability, the proof of Lemma 6.2
is relegated to section 6.2.4, whereas Lemma 6.3 follows from a trivial adaptation of
the proof of [10, Theorem 2.6].

Lemma 6.2. Let f0, . . . , fm be real-analytic vector fields on a real-analytic man-
ifold M , with x ∈ M , and let φ : M → R be a real-analytic function. Assume that
f0(x) = 0. Then there is a constant C > 0 with the property that, for every η > 0,
there exists a neighborhood K of x such that φ and the vector fields g0 = (1/η)f0,
gi = fi (i = 1, . . . ,m) satisfy the estimate

|(gi1 · · · girφ)(x)| ≤ Crr!

for every x ∈ K and every multi-index I = (i1, . . . , ir) ∈ {0, . . . ,m}r of length r ≥ 1.

Lemma 6.3. Let f ∈ C0(U×Λ×[t0, t1]; R
n), where U ⊂ R

n is open and connected,
Λ ⊂ R

m is compact, and t0 < t1. Assume that (x0, λ0) ∈ U × Λ and that (i) f(·, λ, t)
is locally Lipschitz on U , uniformly for (λ, t) ∈ Λ × [t0, t1], and (ii) y : [t0, t1] → U is
a solution to ẏ = f(y, λ0, t), with y(t0) = x0. Then, given ε > 0, there are compact
neighborhoods U ′ ⊂ U and Λ′ ⊂ Λ of x0 and λ0, respectively, such that for every
x ∈ U ′ and every function ϕ ∈ PC([t0, t1]; Λ

′), the system ż = f(z, ϕ(t), t) admits a
unique solution z : [t0, t1] → U which satisfies z(t0) = x and ‖z(t) − y(t)‖ ≤ ε for all
t ∈ [t0, t1].

Fix t0 ∈ R. Let C > 0 be the constant whose existence is guaranteed by
Lemma 6.2 above, and define η > 0 such that CT (m + 1)

3
2 η < 1. Setting g0 = 1

ηf0

and gi = fi, i = 1, . . . ,m, we apply Lemma 6.2 again to deduce that there is a
neighborhood K of 0 ∈ R

n such that |gIφ(x)| ≤ Crr! for every x ∈ K and every
multi-index I of length r ≥ 1. Moreover, by defining F (x, v, t) =

∑m
i=0 gi(x)vi, with

v = (v0, . . . , vm), we see that F satisfies the assumptions of Lemma 6.3 if one takes
λ0 = (η, 0, . . . , 0) ∈ R

m+1 and y : t �→ 0 ∈ R
n. Therefore, there exists a constant

δ′ ∈ (0, η) such that if x0 ∈ R
n, with ‖x0‖ < δ′, and if v is a piecewise-continuous

function on [t0, t0 + T ] taking values in {u ∈ R
m : ‖u‖ < δ′}, then the solution

to ż = g0(z)η +
∑m

i=1 gi(z)vi(t) with initial value z(t0) = x0 satisfies z(t) ∈ K
for t ∈ [t0, t0 + T ]. But since α(x, t) → 0 as x → 0, uniformly for t ∈ R, there
exists δ ∈ (0, δ′) such that ‖α(x, t)‖ < δ′ whenever ‖x‖ < δ and t ∈ R. It fol-
lows that if ‖x0‖ < δ, then the solution to system ẋ = f0(x) +

∑m
i=1 αi(x0, t)fi(x),

x(t0) = x0, rewritten as ẋ = g0(x)η +
∑m

i=1 gi(x)αi(x0, t), satisfies π(t, t0, x0) ∈ K
for t ∈ [t0, t0 + T ]. Note that, by denoting v(x, t) = (η, α(x, t)), one has ‖v(x, t)‖ <

(m+ 1)
1
2 η for (x, t) ∈ K × [t0, t0 + T ]. On the other hand, the difference between the
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Nth partial sum of the Chen–Fliess expansion SerNφ,f,α(t, t0, x0) and the actual value
of φ along that solution is (cf. [27, section 4])

|SerNφ,f,α(t, t0, x0) − φ(π(t, t0, x0))| ≤
((m + 1)

1
2 η(t− t0))

N+1

(N + 1)!
(m + 1)N+1 sup{|gIφ(x)| : x ∈ K}.

But sup{|fIφ(x)| : x ∈ K} < CN+1(N + 1)! so

|SerNφ,f,α(t, t0, x0) − φ(π(t, t0, x0))| ≤ (C(m + 1)
3
2 η(t− t0))

N+1.

Since t ∈ [t0, t0 + T ], one has C(m + 1)
3
2 η(t − t0) < 1; hence the series converges

uniformly. It is readily checked that the series is absolutely convergent as well.

6.2.2. Proof of Lemma 3.3. (i) Let U ′ ⊂ R
6 be a compact set containing 0.

From the continuity of α, the T -periodicity of t �→ α(x, t), and the definition of ρ,

which implies that ρ(x) = O(‖x‖ 1
2 ), one deduces that ‖αi(x, t)‖/‖x‖

1
2 (i = 1, 2) is

bounded, say, by K ′ > 0, for every (x, t) ∈ U ′ × R. Thus the claim holds for any
K > K ′.

(ii) Set α0 = 1 and write αi(x, t) = Ui(x)+Vi(x) cos(ωt), i = 0, 1, 2, with U0 = 1,
V0 = 0, and U1, U2, V1, V2 defined in the obvious way. Note that Ord(U0) = 0,
Ord(U1) = Ord(U2) = 1, and Ord(V1) = Ord(V2) = 1/2. If I = (i) ∈ {1, 2}, then∫ T

0
αI(x0) = Ui(x)T + Vi(x)

∫ T

0
cos(ωτ)dτ = Ui(x)T , so

∫ T

0
αI(x0) = O(‖x0‖). If

I = (i, j) ∈ {0, 1, 2}2, then∫ T

0

αI(x0) =
1

2
Ui · Uj(x0)T

2 + Ui · Vi(x0)

∫ T

0

∫ t2

0

cos(ωt1)dt1dt2

+Uj · Vi(x0)

∫ T

0

τ cos(ωτ)dτ + Vi · Vj(x0)

∫ T

0

cos(ωt2)

∫ t2

0

cos(ωt1)dt1dt2

=
1

2
Ui · Uj(x0)T

2,

since the three integrals indicated on the right member of this equation vanish. But

then, if I = (i, j) 	= (0, 0), one gets Ord(
∫ T

0
αI) = Ord(Ui) + Ord(Uj) ≥ 1, so∫ T

0
αI(x0) = O(‖x0‖).
(iii) One easily shows that if a function v ∈ C0(U × R; R) satisfies v(x0, t) =

O(‖x0‖�), then
∫ t

0
v(x0, τ)dτ = O(‖x0‖�) for every t ∈ R. By writing Ord(αj) = kj ,

with k0 = 0 and k1 = k2 = 1
2 , one gets∫ t

0

αj(x0, t2)

∫ t2

0

v(x0, t1)dt1dt2 = O(‖x0‖kj+�), j = 0, 1, 2.(31)

Using these facts and an induction argument, one readily deduces that Ord(
∫ T

0
αI) ≥∑|I|

j=1 kij .
(iv) This is verified directly by induction on the length of I using the fact that,

for fixed T ∈ R, x0 �→
∫ T

0
f(x0, τ)dτ is continuous whenever f ∈ C0(U × R; R).

(v) This claim follows immediately by inspecting the components of b0, b1, and
b2 as defined in (2), and from the definition of the set A.
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(vi) It suffices to show (by induction) that for any x ∈ U

bk0φ(x) = b0 · · · b0︸ ︷︷ ︸
k times

φ(x) =
∑

µ∈{1,2,3}k

x2µ
∂kφ

∂x2µ−1
(x),(32)

where we write x2µ = x2µ1 · · ·x2µk
and x2µ−1 = x2µ1−1 · · ·x2µk−1 for any multi-index

µ∈{1, 2, 3}k. Indeed, (v) follows from (32) since every term fµ(x)=x2µ∂
kφ/∂x2µ−1(x)

in the sum satisfies Ord(fµ) ≥ k. Using (2), one gets b0φ(x) =
∑3

i=1 x2i∂φ/∂x2i−1(x),
i.e., (32) with k = 1. If (32) holds for k = m ≥ 1, then

b0(b
m
0 φ)(x) =

3∑
i=1

x2i

⎛⎝ ∑
µ∈{1,2,3}m

∂x2µ

∂x2i−1

∂mφ

∂x2µ−1
(x) + x2µ

∂m+1φ

∂x2i−1∂x2µ−1
(x)

⎞⎠
=

∑
i

∑
µ

x2ix2µ
∂m+1φ

∂x2i−1∂x2µ−1
(x) =

∑
µ∈{1,2,3}m+1

x2µ
∂m+1φ

∂x2µ−1
(x),

since each of the terms ∂x2µ/∂x2i−1 is zero. Hence (32) holds for all k ≥ 1.

6.2.3. Proof of Lemma 3.4. (1) Note that, given the finiteness of I, if for every
I ∈ I the conclusion holds for (x, ε) �→ aI(x, ε)bI(x) and some compact neighborhood
UI ⊂ U of 0, then the conclusion holds for f by setting U ′ =

⋂
I∈I UI . Let us then

fix I ∈ I.
(1)(i) Since aI is real-analytic, we can write aI(x, ε)bI(x) = [∂aI

∂x (0, ε)x + ãI(x,

ε)]bI(x), where ε �→ ∂aI

∂x (0, ε) is continuous and vanishes at 0, and (x, ε) �→ ãI(x, ε) is
a continuous mapping satisfying

(∀ε ∈ E) lim
x→0

‖ãI(x, ε)‖
‖x‖ = 0 and ãI(·, 0) = 0.

Given any compact neighborhood UI ⊂ U of 0, define q(x, ε) = ‖ãI(x,ε)‖
‖x‖ , with

q(0, · ) = 0, so that q is continuous—hence bounded—on UI × E and q(·, 0) = 0.
We claim that supxUI

q(x, ε) → 0 as ε → 0. Otherwise there would be η > 0 and a
sequence (εk)k∈N, converging to zero, such that supx∈UI

q(x, εk) > 2η for every k ∈ N.
By the properties of sup, for every k ∈ N there would exist xk ∈ UI such that

(∀k ∈ N) q(xk, εk) > sup
x∈UI

q(x, εk) − η > η.(33)

The compactness of UI would imply the existence of a subsequence (xkj , εkj )j∈N,
convergent towards a point (x, 0) ∈ UI×E. But then, since q is continuous, q(xkj , εkj )
should converge to q(x, 0) = 0, in contradiction to (33). Therefore, in view of the
continuity of bI , the conclusion follows since

‖aI(x, ε)bI(x)‖
‖x‖ ≤

(∥∥∥∥∂aI∂x
(0, ε)

∥∥∥∥ + sup
x∈UI

q(x, ε)

)
sup
x∈UI

‖bI(x)‖,

the right-hand member of which tends to zero as ε → 0, uniformly for x ∈ UI .
(1)(ii) The assumption bI(x) = O(‖x‖) implies the existence of a constant KI > 0

and a compact neighborhood UI ⊂ U of 0 such that ‖bI(x)‖/‖x‖ ≤ KI for every
x ∈ UI . Furthermore, by the real-analyticity of aI , and using aI(·, 0) = 0, one can
write aI(x, ε)bI(x) = [∂aI

∂ε (x, 0)ε + ãI(x, ε)]bI(x), with ∂aI

∂ε (·, 0) continuous and hence
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bounded on UI , say, ‖∂aI

∂ε (x, 0)‖ ≤ K ′. Moreover, for every x ∈ UI , the function

q(x, ε) = ‖ãI(x,ε)‖
|ε| tends to 0 as ε → 0, so q is also continuous on UI ×E. Proceeding

as in the proof of (1)(i) above, one readily shows that supx∈UI
q(x, ε) → 0 as ε → 0.

The conclusion then follows directly from the inequality

‖aI(x, ε)bI(x)‖
‖x‖ ≤

(∥∥∥∥∂aI∂ε
(x, 0)

∥∥∥∥ + q(x, ε)

)
|ε| ‖bI(x)‖

‖x‖

≤ KI

(
K ′ + sup

x∈UI

q(x, ε)

)
|ε|.

(2) Let U ′ ⊂ U be any compact neighborhood of 0. We claim that if a number
η > 0 exists such that, for every I ∈ I,

(x, ε) �→ ‖aI(x, ε)bI(x)‖
‖x‖1+η

is continuous on U ′ × E,(34)

then the conclusion holds for f and U ′. Indeed,
∑

I∈I aI(x, ε)bI(x) converges abso-
lutely and uniformly; therefore

‖f(x, ε)‖
‖x‖ ≤ ‖x‖η

∑
I∈I

‖aI(x, ε)bI(x)‖
‖x‖1+η

,(35)

and the series on the right side of (35) converges to a function that is bounded on
U ′ × E. Consequently, the term on the left side of (35) tends to zero as x → 0,
uniformly for ε ∈ E, and this proves the claim. The rest of the proof simply consists
of exhibiting such a number η, independent of I, for each case.

(2)(i) The assumption aI(x, ε) = o(‖x‖) and the real-analyticity of aI imply that
all terms in x of degrees < 2 in the Taylor expansion of x �→ aI(x, ε) at 0 vanish
identically. Thus, for every ε ∈ E, ‖aI(x, ε)‖/‖x‖1+η → 0 as x → 0 whenever η ≤ 1.
By continuity of bI , (34) holds with η = 1/2.

(2)(ii) Since bI(x) = O(‖x‖1+c), then ‖bI(x)‖/‖x‖1+c/2 → 0 as x → 0. Taking
η = c/2 we see that (34) holds.

(2)(iii) The assumptions imply that both ‖aI(x, ε)‖/‖x‖1−d/3 and ‖bI(x)‖/‖x‖2d/3

tend to zero as x → 0. Thus, (34) holds with η = d/3.

6.2.4. Proof of Lemma 6.2. This is a straightforward adaptation of the proof
of [27, Lemma 4.2]. Since the result is local one may assume, without loss of generality,
that M is an open subset of R

n and that x = 0. By real-analyticity, the mappings φ
and f0, . . . , fm may be extended to complex analytic mappings defined on a polydisc
D(n, α) = {(z1, . . . , zn) ∈ C

n : |zi| < α, i = 1, . . . , n} for some α > 0. Denote the
corresponding extensions by φ̃ and f̃0, . . . , f̃m, respectively.

By Stirling’s formula, there is a constant C ′′ such that rr ≤ C ′′err! for all r ≥ 1.
Let C ′ = max{|φ̃(q)| : q ∈ D(n, 2

3α)} and define

C = emax{1, C ′C ′′}.

Select η > 0 arbitrarily. Then the vector fields g̃0 = (1/η)f̃0, g̃i = f̃i (i = 1, . . . ,m)
are analytic extensions of the vector fields g0, . . . , gm, respectively, to the set D(n, α).
Consider the complex control system

ż =

m∑
i=0

vig̃i(z), z ∈ C
n, v = (v0, . . . , vm) ∈ C

m+1.(36)
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Clearly, if v = (η, 0, . . . , 0), then (z, v) = (0, v) is an equilibrium point; hence the
corresponding constant solution t �→ (0, v) is defined for t ∈ [0, 1]. Since (36) may be
rewritten as a real control system on R

2n, one can apply Lemma 6.3 to conclude that
there is δ ∈ (0, 2

3α) with the property that, whenever z0 ∈ D(n, δ), v0 ∈ A = {w ∈ C :
|w − η| < δ}, and vi ∈ D(1, δ) (i = 1, . . . ,m), the system (36) has a unique solution
z : [0, 1] → C

n satisfying z(t0) = z0 and z(t) ∈ D(n, 2
3α) for t ∈ [0, 1].

Let us fix a multi-index I = (i1, . . . , ir) ∈ {0, . . . ,m}r, r ≥ 1, and define the set
DI =

∏r
j=1 D

I
j , where DI

j = A if ij = 0 and DI
j = D(1, δ) otherwise. DI is thus an

open subset of C
r. For any z ∈ DI , define the input function vI,z : [0, 1] → A×D(m, δ)

by setting, for j = 1, . . . , r and t ∈ [ j−1
r , j

r ), vI,z(t) = zjeij (here {e0, . . . , em} denotes
the canonical basis of the C-vector space C

m+1). The function vI,z thus defined is
a piecewise-constant function on [0, 1] taking values in A × D(m, δ). Therefore, for
any q ∈ D(n, δ), the solution t �→ ξI,zq (t) to system (36), with input vI,z and initial

condition ξI,zq (0) = q, is defined and satisfies ξI,zq (t) ∈ D(n, 2
3α) for all t ∈ [0, 1].

Moreover, for i = 1, . . . , r, ξI,zq (i/r) is analytic in q and z for (q, z) ∈ D(n, δ)×DI (cf.

[27, proof of Lemma 4.2]). Now define a mapping ψI : D(n, δ) ×DI → C by setting
ψI(q, z) = φ̃(ξI,zq (1)). Then

∂rψI

∂zr · · · ∂z1
(q, 0) =

(
1

r

)r

(g̃i1 · · · g̃ir φ̃)(q).

This is readily shown by extending the following basic argument using induction on
the length r of I = (i1, . . . , ir). For a vector field X = (X1, . . . , Xn) defined on
some subset B of C

n, denote by t �→ ΦX
q (t) the local flow of X satisfying ΦX

q (0) =

q ∈ B. Hence dΦX
q,k/dt = Xk(Φ

X
q (t)) for k = 1, . . . , n. It is easy to check that

ΦzX
q (t) = ΦX

q (zt) when z ∈ C and |z| is small enough. Thus, by setting ψ(i)(q, z) =

φ̃(Φzg̃i
q (τ)) = φ̃(Φg̃i

q (zτ)), with i ∈ {0, . . . ,m}, one gets

∂ψ(i)

∂z
(q, z) =

n∑
k=1

∂φ̃

∂rk

(
Φg̃i

q (zτ)
) dΦg̃i

q,k

dt
(zτ)

d

dz
(zτ)

= τ

n∑
k=1

∂φ̃

∂rk

(
Φg̃i

q (zτ)
)
g̃i,k(Φ

g̃i
q (zτ)),

and then, if τ = 1 and z = 0 (and since r=1 because I = (i)),

∂ψI

∂z
(q, 0) =

n∑
k=1

∂φ̃

∂rk
(q)g̃i,k(q) =

(
1

r

)r

(g̃iφ̃)(q).

Since q �→ ψI(q, z) is analytic on D(n, δ) for z ∈ DI , Cauchy’s estimates yield∣∣∣∣ ∂rψI

∂zr · · · ∂z1
(q, 0)

∣∣∣∣ ≤ max

{
|φ̃(q′)| : q′ ∈ D

(
n,

2

3
α

)}
= C ′,

and this implies in turn that |g̃i1 · · · g̃ir φ̃(q)| ≤ C ′rr for any q ∈ D(n, 2
3α). By

definition of C ′′, one has C ′rr ≤ C ′C ′′err! Also, C ′C ′′ ≤ max{1, C ′C ′′} = C/e.
Using the fact that 1 ≤ C/e, and hence C/e ≤ (C/e)r, one gets C ′C ′′err! ≤ Crr! for
r ≥ 1. Therefore, by setting K = D(n, δ) ∩ R

n, one concludes that

|(gi1 · · · girφ)(x)| ≤ Crr!
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for x ∈ K and r ≥ 1. Since the constant C was selected independently of η, r, and I,
this finishes the proof.
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