

Special signature schemes

Citation for published version (APA):
van Heijst, E. J. L. J. (1992). Special signature schemes. [Phd Thesis 1 (Research TU/e / Graduation TU/e),
Mathematics and Computer Science]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR376157

DOI:
10.6100/IR376157

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR376157
https://doi.org/10.6100/IR376157
https://research.tue.nl/en/publications/6f2dc07c-812f-42d9-bc33-52c22221c6c0

SPe~i91

Sig;r19t&Jre

s~l1efl1e~

Special
Signature
Schent es

door

Eugène Josephus Leonardus Johannes van Heijst

Special
Signature
Scheines

Proefschrift

ter verkrijging van de graad van doctor aan de Technische
Universiteit Eindhoven, op gezag van de Rector Magnificus,
prof. dr. J. H. van Lint, voor een commissie aangewezen door
het College van Dekanen in het openbaar te verdedigen op
maandag 6 juli 1992 om 16.00 uur

door

Eugène Josephus Leonardus Johannes van Heijst

geboren te Eindhoven.

Dit proefschrift is goedgekeurd door
de promotoren
prof. dr. ii. H.C. A. van Tilborg

en
pro(dr.J.H. vanLint
en de copromotor
dr. JJ. ebirum

Contents

1. Introduetion
1.1. Introduetion .
1.2. Public key cryptography
1.3. Signatures . . 4
1.4. Discrete Logarithm 5

1.4. 1 . Discrete Logarithm modulo a prime number . 5
1.4.2. Discrete Logarithm modulo a composita number 6

1.5. RSA 7
1.6. Blobs 8
1.7. Zero-knowledge 10
1.8. Summary of the remaining chopters . 13

2. Which new RSA signatures can be computed from certain
given RSA signatures? 17
2. 1. Introduetion . 17
2.2. Deterministic and probabilistic algorithms (Turing machines) . 19
2.3. Notation . . 21
2.4. Statement of the theorems . 21
2.5. T aking random elements . 23
2.6. Proofs of the theorems . 24
2.7. Some practical applications. 29
2.8. Some ramarks on Corollary 2.1 33
2.9. Some open problems 36

3. Which new RSA signatures can be computed from RSA
signatures, obtained in a specific interactive protocol? 39
3.1. Introduetion 39
3.2. Notation . . . 41
3.3. A small example of the problem under consideration . 42
3.4. The protocol and problem under consideration . . 45

i i

3.5. Algebralc strategies .
3.6. Generalizatlons .
3.7. Some open problems .

Contents

46
47
49

4. Group Signotures 51
4.1. Introduetion . 51
4.2. First construction of group signatures 54
4.3. Second construction of group slgnatures . 55

4.3. 1. Confirmatien protocol 56
4.3.2. Disavowal protocol 58
4.3.3. Some remarks on this construction of group signatures 59

4.4. Third construction of group signatures . 61
4.5. Fourth construction of group signatures . 62
4.6. Applications . . 64
4.7. Some open problems . 64

5. Signotures uncondltionally secure for the signer 67
5.1. Introduetion . 67
5.2. Notatien 69
5.3. Fall-stop signatures . 70

5.3.1. General introduetion 70
5.3.2. The construction of (BPW90),(PW91) · 71
5.3.3. New construction of fail-stop slgnatures . 72
5.3.4. More than one signeture per public key 76

5.4. Undeniable signatures unconditionally secure for the signer 78
5.4. 1. Description of the signeture scheme 78
5.4.2. Security of this signeture scheme . 79
5.4.3. Confirmatien protocol 81
5.4.4. Disavowal protocol 82

5.5. Convertible undeniable signatures unconditionally secure
tor the signer 85

5.6. Appllcations . 86
5. 7. Some open problems . 86

6. Efficient offllne electronic checks 89
6.1. Introduetion . . 89
6.2. Setting and notatien 92
6.3. Transactlens . 93

6.4.
6.5
6.6.
6.7.
6.8.

6.3.1. Wlthdrawal Transaction 94
6.3.2. PaymentTronsoctlon . 96
6.3.3. Deposit Transaction . 96
6.3.4. Refund Transaction .
Comparison wlth (CFN88) .
Transferabillty .

97
97
98
99 storage .

Demo '.' '
Parameter values .

6.9. lmprovements .
6.9.1. Comblnlng challenge and denominatien bits ..
6.9.2. More denominatien bits per check
6.9.3. Anonymous retund

6.10. Several ways Allee, the shop, and the bank con try to cheat
6. 11. Other offllne payment systems
6.12. Some open problems .

100
100
101
101
102
103
103
106
107

7. Chameleon blobs, unconditionally secure tor the verifler 109
7.1. Introduetion . 109
7.2. Can chameleon blobs be uncondltlonally secure

for the verifler? . 110
7.3 Descrlptlon of a new blob that uses on opening protocol . 111
7.4. Properties ofthe blobof Section 7.3 111
7 .5. Other constructlens of blobs that use an opening protocol 113
7.6. Some open problems . 115

References . 117

Notation . 123

Samenvatting . 125

Acknowledgements 129

Index 131

1
Introduetion

1.1. Introduetion

In this section we will give a brief overview of all the {well known) cryptographic tools
and methods used in this thesis. It includes public key cryptography, message
confidentiality and authentication (digital signature), the cryptosystems based on
discrete logarithm and RSA, blobs and zero-knowledge. Also all the assumptions which
will be used in this thesis are stated, but if an assumption is used somewhere in this
thesis, it is indicated explicitly.

1.2. Public key cryptography

In contemporary computer-controlled communication systems, the conventional
cryptosystems have turned out to possess two major disadvantages: the problem of key
management and distribution in the case of many users, and tbe problem of
authentication.

In [DH76] a new cryptosystem, called a pub/ie key system, is introduced (see
Figure 1.1) that solvesthese two problems. Each user U of this cryptosystem creates
bis own encryption algorithm EU and decryption algorithm Du. Each user U makes
hls encryption algorithm Eu public by puttingit in a public key hook, called a Trusted
Public Directory (TPD) ofpublic keys {lt must be "trusted", otherwise some attacks are
possible, see [RS84]). The decryption algorithm Du however is kept secret by U. The
pairs Eu. D u are required to sati.sfy the properties:

Pl. D,jE,jm)) = E,jD,jm}) = m, for all messages m and all users U.
P2. Eu and D u are algorithms that are easy to perform.

2

P3. It is computationally infeasible for eavesdroppers to find an algorithm n;;
from Eu that satisfies n;;(Eu(m)) = Eu(n;;(m)) = m for a non negligible
fraction of all m.

The notion "computational feasibility" can be defined formally by using Twing
machines {see Section 2.2), but bere we will use the following intuitive definition. If
a1 ,. .. ,a1 are binary strings chosen according to some prescribed probability

distribution and b is a binary string with b=J(a1, ... ,a1) forsome functionf, then we

say that it is feasible to compute b from a 1 , ... ,a1 if there i~ IJ.ll çffi,ciem aigmjthm tb,at
outputs b with non-negligible probability when it is given a 1 , . .. ,a1 as input. In this

thesis we shall freely use the notion of computational feasibility in statements of

propositions, corollaries, and so forth.

Property P3 makes it possible to publish the encryption algorithm without
endangering the privacy of the transrnitted messages. This property is often based on
some (unproven) complexity theoretic assumption (see Sections 1.4 and 1.5).

... message m
User Yl

encryption
User '13 D ()-,--,--..,-----, '1! c - m

decryption 1--j -----

lE~
TPD t)---·eavesdropper

F'~g.l.l. Description of a public key system.

Wedefine the following four kinds of functions, whose description must be publicly
known and the function must be easy to perform:

• one-way function: given a random image, it is computationally infeasible to
find a preimage. (In the literature another derwition is sometin;les used: for

given x and ft x) it is COn:tPUtationally infeasible to find an x '::t=x such that
J(x) = j{x).)

• trapdoor one-way function: a one-way function, for whkb it is feasible to

compute prei~s, given oertain ~ddition;rl il,lformatïon.
• co/Jisi.on-free junction: it is computatiol1~lly iqfeasible to .find tw{) disti~t

numbers that map to the same im~3e. (In ifhe literature also c.alled collisi.on­
resistant. A callision is a pair {x, x'} satisfying ;YJ/:.x' andj{x) = j{x')).

• hashfunciion: a ,ç.otlision-f~ funcûon ~hat maps ~bitrary-length input lo a
fixed-length output.

Introduetion 3

Note that with these definitions, collision-free and one-way functions are not related,

according to Table 1.1 (in wbich p is a large prime and g a generator of z;; see

Section 1.3.1).

function collision-free one-way

f(x,y)=x+y no DO

f(x)=x yes no
f(x,y)mgx+y (modp) no yes

f(x)Egx (modp) yes, for xe{O,l, ... ,p-2} yes

Table 1.1. Foor functions to illustrate that collision-free and one-way functions are
not related.

Message contidenfiality
If user Jl wants to send a confidentlal message m to user 'B, he looks up in the TPD the

public encryption algorithm E'B of 'B, and sends the encrypted message

c=Eqjm).

User 'B can reeover the message m from c by applying his secret decryption algorithm
D'B on c, because D']J(E'B(c))= c by property PI (see Figure 1.1). By property P3,

no other user than 'B can reeover the message: it is computationally infeasible for an
eavesdropper knowing E'B and c = Eqj.m) to compute m. Thus everyone can encrypt

the message and only one person can decrypt the message.

Message authenHcation (dlgltal slgnature)
If user Jl (called the signer) wantstosend messagem to user 'B (called the recipient)

provided with bis digital signature, he sends the message m and bis signature
s =Dfl,m).

User 'B can verify the signature s by applying the public encryption algorithm E >1 to

s, because (by,property PI) E>l(s)= EfiiDfiim))= m. By property P3 noother user

than Jl can have created this digital signature on m. Thus only one person can compute
the signature and everybody can verify the signature. Tbis is an example how to
construct digital signatures; see the next section for the general case.

Protocols
A protocol can be taken to be a set of rules according to which messages are
transmitted between parties. Generally the parties apply cryptographic operations (such
as computation of digital signatures and encryption) to the messages sent and received,
in order to proteet their interests. Hence the descriptions above of message
confidentiality and message authentication are examples of protocols, which will be
often depicted in a figure. See Figure 1.2 for the protocol of a digital signature, in which

denotes the transmission of the value x from one party to another party.
A move is a message sent from one party to the other (so the protocol in Figure 1.2

4

consists of one move, while the coin-flipping protocol of Figure 1.6 consists of 3
moves), An interactive protocol is one in which the two parties involved both
influence (in some way) the numbers sent during the protocol (see for instanee Figures

1.6, 1.7 and 1.8).

UserJl

create a message m

User'lJ

verify the signature by testing
whether E.Jt(D14.(m)) = m

Fig. l.l. Protocol of a digital signature.

l.3. Slgnatures
I

fn [DH76] the concept of (conventional) digital signatures was introduced, and a

, . ·· formal definition of what was thought to be the optimal security for digital signatures
! ·was g.iven in [GMR85] and [GMR88]. Forthese signatures, there is a publicly known

.....
test predicate, so that the recipient of the signature can verify efficient1y the correctness

of the signature. For instance, in the previous section user '13 verifies the signature s =
DJ. m) of user Jl by applying the pubtic encryption algorithm E 14. to s. All known

conventional signature schemes are based on a generally trusted, but unproven

complexity-theoretic assumption (such as property P3 of the previous section). Hence
signatures can be forged if this assumption turns out to be false. Hence the signers have
only computational security. The recipients of the signatures have unconditional
security: if a received signature passes the test predicate, then this signature will always
be valid, no matter how much computing power the signer has.

Recently it bas been discovered that the definition of [GMR88] was not as general as
possible: there are schemes possible with more (or different) security features, such as
the following schemes.

Undeniable signatures
In [Cv A89J undeniable signatures are introduced: for the verification of these signatures

no test function is available, but the recipient has to perform a confirmation protocol
with the signer. This means that a recipient of such a signature cannot show the
correctness of the signature to other persons without the help of the signer. Moreover, a
presumed "signer" can disavow a forged signature by using a disavowal protocol. The
signer bas computational and the recipient unconditional security.

Convertible signatures
In [BCDP9(J] convertible signatures are introduced: these are undeniable signatures that
have the feature that they can be changed into (conventional) digital signatu.t:es (by

releasing some numbèrs by the signer) (see also Chapter 5).

Introduetion 5

Signatures uncondnionally secure for the slgner
A scheme is called unconditionally secure for the signer if an attacker with unlimited

computing power cannot fake signatures of a signer S, i.e., he cannot create the correct

signature of S on an arbitrary message. An exponential small error probability is

tolerated, because the attacker can always guess the secret key of S correctly. So the
signer bas unconditional security and the recipient computational security (for
constructions see Chapter 5).

Fail-stop slgnatures
In [WP89] fail-stop signatures are introduced: these are signatures unconditionally
secure for the signer having the following properties (unforgeabîlity also relies on a
complexity-theoretic assumption):

• If a signature is forged, the presumed signer can prove that the signature is a

forgery
• The signer cannot make signatures which he can later prove to be forgeries.

In Remark 5.1 of Subsection 5.4.1 we show that undeniable signatures unconditionally
secure for the signer are not fail-stop signatures.

1.4. Discrete Logarlthm

1.4. 1. Discrete Logarfthm modulo a prime number

In [DH76] the following one-way function is proposed. Let p be a large prime such

that p-1 contains a large prime divisor, and let g be a generator of z;. Thus each

element c of z; can be written as

csg8 (modp),

where s is unique roodulo (p-1). Given s, one can compute c in polynomial (in ·
logp, where this logarithm is base-2)-time. But the opposite problem of finding s
when c, p, g are given is assumed to be infeasible. More precise, this scheme is based
on the following complexity-theoretic assumption:

Assumption 1.1. It is infeasible to compute the discrete logarithm modulo a large
prime number p, provilled p-1 contains a large prime divisor.

The last condition in this assumption is needed, otherwise the discrete logarithm can
easily be computed by the algorithm ofPohlig and Heliman [Po1Hel78]. Assumption 1.1
can be strengthened to the Certified Discrete Log Assumption:

6

Assumption 1'.2:. lt is infeasible to compute the discrete logarithm modulo a large

prime numberp, provided p-1 contains a large prime divisor, even' if tliefactorizatibn

of p-1 is known.

Another concept based on the discrete logarithm is the one in which g does not

generale z;, but a subgroup of z; of prime order (see Section 5.2).

Diffie and Heilman [DH76] proposed the following key-exchange protocol (called
the Diffie-He/lman key-exchange). Each user U randomly chooses a setret key

sue {l, ... ,p-2}; the public key will be cu =gsu (modp). Suppose users .9l and '13
want to exchange a secret key over a public channel. They can both compute the secret

key k=gsY<s'.B (modp) because (c~t}; =l!Jls'B =(c11 tYt (modp). With this key
exchange protocol, each user must be sure that he uses the correct public key of the
other, otherwise an active eavesdropper can decrypt all the messages sent, without being
notleed (see [RS84]). Thereföre a Trusted Public Directory mustbe used.

There are also signature schemes based on discrete logarithm; see for instanee
[EIG85].

Whatinformation about the bits of the exponentsis revealed by c gs? Write p =
2dq+I, where q is odd. Using the Pohlig-Hellman algorithm [PolHel78], the d least
significant bits ofs are easy to compute. Peralla [Per85] proved thatfor some constant
c the bits sd+!, ... ,sd+cloglogp are simultaneously hard (this means that these
clogl0g p bits are polynomially indistinguishable from a random cloglog p -bit
string) (see Figure 1.3).

Fig. 1.3. Complexity map of the discrete logarithm modulo a prime (not to scale).

1 :4':2. D1scretelogarifhm modukfa comf:,SO$ifè' nurnbet

Tfie· idea of using a comp·osite nlO'dulus for tne discrete Iógarithin can be found in
[Shin85], [McC88] and [SS90J, Shmuely [Shm85] proved (roughly stated) that any
atgorithm that will break the coniposite Diffie•Hellman key-exchange (wîth composite
modulus) fora nonneglfgibh:Hractiott of'hases g, can ·be used to fáètör'the modûll.ls.
McCurley (MeC88] notes that this result ïs not as strong as we niightlike fór the
security of the scheme, because it is unlikely that the cryptanalyst may spècicy randóm
base g during the attàclö Ile· ptoved that any algorithm that breaks the setieme using
g= 16 can be used t0 factor the niodûlUs;

Introduetion 7

[SS90] considered the same problem as [Per85] (see Figure 1.4). They proved that if
the modulus N = pq is a large Blum integer (this means that both primes p and q

are congruent to 3 mod 4), g is a quadratic residue (so g = w2 (mod N) for some

we z:) and p, q are of equal size (they have the same number of bits), and that if it is
infeasible to factor Blum integers, then:

• for arbitrarily small constant e the bits si (lSi::;(l-e)log N) are hard (so
each si is polynornially indistinguishable from a random bit);

• the bits s1, •.• ,s!IogN are simultaneously hard.

Fig. lA. Complexity map of the discrete logarithm modulo a Blum integer (oot to scale).

1.5. RSA

Define z~ to be the set {a I a e IN, I :5 a :5 N, gcd(a,N) = 1}, where N is a positive

integer. The Euler's Totientfunction qJ(N) is defined as (/I..N)= IZ~I. and it has the

property that for all numbers me z~ holds that

mtp(N) = l(modN).

In [RSA78] the following trapdoor one-way function is proposed. Initially, each user V.
chooses two large "random" primes P u and Q u• and computes their product N u•

which will be used as modulus. V. further chooses an integer du>l coprime to

qi._N'U)= (Pu-l)(Q-u-1) and computes an integer du with d.ud'Ual(modqJ(N'U))t.

He makes Nw d'U public in a TPD, but keeps Pu, Qu, (/)(Nu) and ilu secret (these

numbers are the trapdoor information for U). Hence the encryption algorithm of V. is

E(m) = md'll (modNu) and hls decryption algorithm is D(c) = cd.u (modNu>·

In stead ofwriting cdu (modN'U) we write c 11du (modN'U), and we will call it the

d'U th RSA-root of ce Z~ (because it is the unique solution ye Z~ of the congruence

/'U = c (modN'll)). Thus if user j[wants to issue bis signature on m to user 'B, bis
signature will be

S= m 11d?. (modN~),
which can be easily verified by 'B (see Figure 1.5). In this thesis we usually assume one

signature authority Z which issues signatures to individuals, and we will also

t For efficiency, Cannichael' s function }.,(N) can be used in stead of fj)(N). Th is function is defined to be the

smallest positive number M_N) such that for all m coprime to N, we have that ml(N)ii!l (modN) (i.e., the

highest order of the elements from Z~). Hence M_N) divides ~·

8

User.fil Userr.B

compute S = m11
dJ1! (mod N Jt) m,S verify that

~Jl! =m(modNJt)
Fig, 1~. An RSA-based signature-issuing protocol in which user 1'1. issues a signature

on message m to user !8.

The security of the RSA-scheme is basedon the following assumption.

Assumption 1.3. Without the trapdoor information it is infeasible to compute RSA­

roots.

According to this assumption it is infeasible to split numbers that are the product of
severallarge primes; and it is infeasible to compute discrete logarithms roodulo a
composite number that is the product of some large primes. The proof of the last claim
can be found in [CEvdG87]: suppose that we have an efficient algorithm AL that for

each pair {g,c} with ge { l, ... ,N-1 }, gcd(g,N)=l and ce <g>, computes an integer

s with gs =c (modN). Choose rat random from {l, ... ,N-1}, coprime toN, and
choose a "probable prime" p between N and 2N. Then with high probability, p is

coprime to qi_N). Compute g:= r 2P (modN) and c:= r 2 (modN), and because

gcd(p,qi_N)) = 1 we have that ce <g>. If we apply AL on {g,c}, we obtain an

integer s with g8 = c. Then r2Ps = r2 (modN), so r2(ps-l) = 1, and thus is rps-t a
square root of 1. The number 1 has four square roots roodulo N, so with probability
112, this root is not equal to 1 or -1, and thus it yields the factorization of N. But
according to Assumption 1.3 it is infeasible to factor numbers · that are the product of
severallarge primes, so this algorithm AL does not exist.

1.6. Blobs

A bit commitment scheme is a scheme that allows P (prover) to commit himselfto

some bits (this commitment is called a blob) in such a way that it prevents 'll(verifier)
from lea(flÎng these bits without the help of P (so that a .blob is a one-way function for
'J/ and a collision-free functiön for P). Later on, P can open this blob to reveal. the
committed bits, and 'llis convineed that P has not changed these bits in the meantime.
These blobs can be created by physical means (e.g., envelopes), by quanturn mechanics
(see [Brass88]), or by cryptography (see [BCC88] for an overvièw). In.the lastcase,

there is a public function 1Hhatis efficiently computable.IfPwantsto commit bimself

Introduetion 9

to value b (from a eertaio set), he chooses randomly a number r (from some other

fixed set), computes the blob B = IJJ(b,r) and issues B to o/. If later on, this blob bas to

be opened, then P reveals b and r to 'll, who will verify that this blob Bindeed

satisfies B = IJJ(b, r).

According to [BCC88], a blob bas the following four properties:

(i) Pcan create blobs to commit to any value (from some set).

(ii) Pcan open any blob he bas committed to in only one way.

(iii) The verifier '1l cannot learn anything about the value that P bas bimself committed

to in an unopened blob.

(iv) Blobs are uncorrelated to any secret that Pwants to keep from o/.

An example of the use of blobs is coin-flipping over the phone [Blu82]: if two

persons Pand '1l want to flip a coin over the phone, they have to use blobs, otherwise

neither party will be convineed that the other is bonest They can perform the following

protocol (see Figure 1.6), that uses two coin-flips insteadof one. First Pflips a coin and
let b1 be the outcome of tbls coin-flipping (for instance, let b1 be "0" for head and "1"

for tail). P sends to '1l a blob containing this number b1. Thus P cannot change tbe

outcome of bis coin-flip anymore, and o/cannot leam this number b1• '1l also flips a

coin and sends the outcome b2 to P. So also '1l cannot change this number bz
anymore. Now Popens bis blob, so '1l will know the outcome b1 of the coin-flip by P
(and will verify it). The outcome of this coin-flipping protocol will be q $bz. This
protocol bebaves like a fair coin, if at least one of the two persons uses a fair coin.

PersonP

q is the result of a coinflipping,
and choose r randomly

'B(hJ. • r)

Person '1l

bz is the result of a coinflipping

verify the blob

Fig. 1.&. Protocol for a coin-flipping over the phone between P

and '11. The outcome of the coin-flip wiJl be b1 @b2 •

Blobs are called simulatable if in addition to (i), (ii), and (iii) tbey satisfy:

(iv') '1l can generate blobs for each value with the same probability distribution as P
would.

Blobs are called chameleon if in addition to (i), (ii), and (iii) they satisfy:

(iv") '1l can generate blobs tbat he can open in several ways; and for eacb value the

probability distribution is the same as that of P.

Thus ebameieon blobs allow 'llto do what P was forbidden to do (property (ii)).

10

(For the use of ebameieon blobs, see Section 1.7.) Blobs are called unconditionally

secure for the prover if property (iii) holds regardless of 'V's computing power, and are

called unconditionally secure for the verifiert if property (ii) holds regardless of P's
computing power. Several implementations of these different kinds of blobs can be
found in [BCC88].

1. 7. Zero-Knowledge

Suppose a prover P wants to convince a verifier o/ that XE L, where L is a language.
They will use an interactive protocol, in which the two parties are allowed to exchange

messages and to toss coins. At the end of this protocol, 'f) will either accept or reject P's

claim that XE L(of course, no protocol could possibly force o/to be convinced).

Two properties are required for this interactive protocol (we denote by 'l1 a person

who follows the designated protocol and by 'l1 a cheater who can deviate from the
protocol in an arbitrary way):

• Completeness: if XEL, iiï accepts P's proof with overwhelming probability.

• Soundness: if xE L, o/ accepts P's proof with negligible probability.

Such an interactive protocol is zero-knowledge (introduced in [GMR85]) if o/ does

not learn anything more from the interaction beyond the validity that XE L. More
formally

• Zero-knowledge: for each :V there exists a probabilistic polynomial-time

algorithm (called a simulator) that can simulate the communication between P

and i'.

We distinguish two types of zero-knowledge. A protocol is called

• (computationally) zero-knowledge if, to each polynomial-time verifier i',
there corresponds a polynomial-time simulator capable of producing i'·s view
of the protocol that is polynomially indistinguishable from the probability
distribution, without even talking to the prover.

• peifectly zero-knowledge if it produces exactly the same probability
distribution.

In the Iiterature two types of soundness are distinguished (the narnes are proposed by
Chaum, see [Brass91]):

• statistically convincing: o/is convineed of P's claim, because if that claim had

been false, Pwould have been caught cheating except with exponentially small
probability (e.g., in the protocol of Figure L7 this type of soundness is used).

t Note the difference between"unconditionally secure for the verifier" for signatures (see Section 1.3) and for blobs.
If these notions are used in this thesis, they are used in the context of signatures or of blnbs.

• computationally convincing: o/ is convineed of P's claim, provided that he

believes that P did not break a specific instanee of the appropriate cryptographic
assumption while the protocol was in progress (e.g., in Step 2 of Protocol 4.2
this type of soundness is used).

In this thesis we will be loose: by saying that an interactive protocol is zero­
knowledge, we mean that it is complete, sound (i.e., convincing in one of the two ways),
and zero-knowledge.

Pand o/ may have different kinds of computing power. So we can distinguish the
following four cases:

• Phas unlimited computing power and o/has polynomial time computing power
(e.g., [GMR85], [GMR89]).

• Phas polynomial time computing power and o/has unlimited computing power
(e.g., [BrCr86], [Ch86), and Chapters 5 and 7 of this thesis).

• Pand o/ both have polynomial time computing power (e.g., [FFS88] and
Chapter 4 of this thesis).

• Pand o/both have unlimited computing power (e.g., quanturn blobs {BCC88]).

Consider the protocol for proving the possession of a discrete logarithm of

[CEvdG87]: let p be a prime, g a generator of z;. and CE z;. and suppose that p

wants to convince o/ that he knows an integer s such that c 5 lf (mod p). lf P
reveals s to o/, then o/will be convinced, but this is not in a zero-knowledge way. A
zero-knowledge protocol can be found in Figure 1.7, and we prove that this protocol is

complete, sound, and perfect zero-knowledge. By aE R S we denote the random
selection of an element (that will be called a) from the setS according to the uniform
probability distribution.

I ProverP

. choose reR{O, ... ,p-2}

Verifier o/
asgr (modp)

choose b ER {0,1}
x"' r+sb (mod p-l) verify that gx ach (modp)

Fig. 1.7. Perfect zero-knowledge protocol for proving possession of discrete logarithm [CEvdG87).

Complete: This protocol is trivially complete.

Sound: lf P can answer both ebaHenges of o/ correctly, then he knows x15r and

X:!5r+s. Hence he knows a number s that satisfies c 5 lf. Thus if P does not know
s, he can answer at most one of the challenges, and thus he will be detected cheating

with probability ::::!. Therefore this protocol will be iterated t times in sequentia! order

12

(where t is a number polynomial in log p), so the probability that P wUI 'be detected

cheating will be at least 1-T 1
• Hence thîs protocol is sound.

Perfect zero-knowledge: For each 'Ï' the following simulator can be constructed:

repeat t times

repeat at most l:=llog pj times

choose e at random from { 0, l } ,
choose rat randomfrom {O,l, ... ,p-2},

compute a = g' c -e,

receive be { 0, 1} from 'Ï',
if b=e then output x=r

until b=e,
ifb#! in alll executions, output "bad luck"

Note that this simulator bas polynomial running time, that the number a is

uniformly distributed over z~. and that a and e are mutually independent. So b is

independent of e and thus b= e with probability f. He nee the probability that this

simulator outputs "bad luck" is at most 2/p. Hence this protocol is perfectly zero­
knowledge. But if p is a composite number in stead of a prime, then thîs protocol is
computationally zero-knowledge (see (CEvdG87]).

The protocol of Figure 1.7 is executed t times in sequential order and is zero­
knowledge. From a theoretica! point of view, a zero-knowledge protocol that is

executed in parallel need no longer be zero-knowledge, because o/ can cboose bis
challenge b1, ... ,b1 to be the outcome of a collision-free one-way function on the

numbers a 1 , ..• ,a1• By doing this, o/ cannot create a transcript himself, and therefore
this protocol is not zero-knowledge (each simulator that outputs a transcript with
nonnegligible probability bas exponential running time). But by using ebameieon blobs

the protocol of Figure 1.7 can be executed in parallel (see Figure 1.8). Because o/ can
open these blobs in several ways, it is easy to see that a simulator for this protocol now
bas polynomial running time.

ProverP
choose 1j, ... ,Jt
E R{O, ... ,p-2}

blob(g'l), ...• blob(g'l)

Verffier o/

choose ~ ,b1 e R{O,l}

verify the opening of the
blobs and that gx; = g'~ c11

i

(i= 1, .. . ,t)
Fig. 1.8. Parallel~xeclltion of1he protocol of Figure ·J. 7, by using ebameieon lilllbs,

We omit .the blin<;ling f;~ewrs in the blobs.

But if a protocol is not zero-knowledge, that does not mean that the verifier receives
"useful information" after the execution. An example of such a protocol is the parallel
version of the identification scheme of [FFS88). They proved that the verifier obtains no
useful information for factoring the modulus.

1.8. Summary of the remaining chopters

This thesis consists of six chapters (apart from the introduction), divided into three
parts, each dealing with a different aspect of digital signatures.

In Chapter 2 and 3 we give two new theoretical results for the security of large
classes of RSA-based signatures.

In Chapter 4 and 5 we present three new kinds of signature schemes and
constructions for them: group signatures, undeniable signatures unconditionally secure
for the signer, and convertible signatures unconditionally secure for the signer. We also
present an efficient construction for fail-stop signatures.

In Chapter 6 and 7 we offer two applications of signature methods: a payment
system and a new kind of blob.

The chapters can be read independently of each other, except that
• Chapter 3 is a continuation of Chapter 2, and that
• the soundnessof Protocol4.2 (Section 4.3.1) and an attack on the payment

system ofChapter 6 (Cheating 3 of Section 6.10) are studied by using Corollary
2.1.

Below we describe these chapters in more detail.

Chopter 2. Whlch new RSA slgnatures can be computed trom certain
given RSA slgnatures?
Problem. A signature authority Z sets an RSA-scheme with modulus N, and issues
RSA-signatures S1 , ... ,S8 of certain types to an individual ~. The individual tries, by
using these signatures S1, ... ,S8 , to compute a new RSA-signature S' of a type not

issued by Z. The RSA-signatures areproductsof rationat powersof residue classes

modulo N, and the residue classes are chosen at random by Z (e.g.,

x}13x~15xr2115 (modN) for residue classes x1,x2,x3). The rational exponents in the
product determine the type of the signature.

Literature. Two related problems are analyzed: computing x 11
k1 from

{x,x11k2, ... ,x11k1 } [Sh83], and.computingxk from {xk1, ... ,xk1 } (withx unknown)

[AT83].
Our contribution. We combine and generalize these results from one variabie to
arbitrarily many variables. Let xi be residue classes (mod N), uniformly chosen by Z

14

and let a i,j' bi be rational numbers. If .9l receives the signatures
a1 · a · b·

S1 =fix i ·1 , ... ,Ss= fix/'1 , our main theorem states that computing S' =fix/ from

{S1, ... ,S8 } is polynomial time equivalent to computing a certain RSA-root on random

residue classes (mod N).

Applieations. We illustrate this result by analyzing two payment systems and one

signature scheme, under the assumption that it is infeasible for .9l to compute RSA­
roots.

Chopter 3. Which new RSA signatures can be computed trom RSA
signatures, obtained in a specific interactive protocol?
Problem. A signature authority Z sets an RSA-scheme with modulus N, and issues

RSA-signatures S1, ... ,S9 of eertaio types to an individual .9l, and .9l is able to influence
the form of these RSA-signatures. The RSA-signatures are products of rationat powers

of residue classes roodulo N; some of these residue classes are cbosen by Z and the

others are chosen freely by .9l . .9l wants to cboose these residue classes in such a way
that he can use these signatures S1, .. • ,S8 to compute a new RSA-signature S' of a type

not issued by Z.
Literature. In Chapter 2 the case was studied in which .9l bas no influence on the

received signature, that is, .9l chooses no residue class. In [Dav82], [Denn84] and

[D085] the case was studied in which Z chooses no residue class, that is, individuals
were able to obtain signatures on desired messages.
Our contrlbution. In this chapter we combine both cases, so some of these residue

classes are chosen by Zand the others are chosen freely by .9l.. In this chapter we make
the following two assumptions:

• .9l cannot compute RSA-roots of randomly chosen residue classes.

• In bis computations, the only operations roodulo N that .9l uses are
multiplications and divisions.

We formuláte a necessary and sufficient condition under which .9l is able to

influence the signatures he receives from Z in such a way that he can later use these

signatures to compute a signature of a type notissued by Z. It tums out that this
condition is equivalent to the solvability of a partienlar quadratic equation in integral
matrices.
App.l.ieations. In all payment systems, the user chooses blinding factors and can thus

influence the signatures he will receive from z. So in these cases our results can be
applied.

Chopter 4. Group Slgnatures
Problem. A group signature scheiDt,! for a group of persons has the f<;tJ.lowi,J.lg tb):~
properties:

• only group memhers can sign messages;
• the recipient of the signature can verify that it is a valid group signature, but

cannot discover which group memher created it;
• if necessary, the signature can be "opened", so that the person who signed the

message is revealed.
So a group signature scheme is a signature scheme with one pub !ie key and several

secret keys; and if several owners of secret keys conspire, they cannot create new secret
keys.
Literature. If a person wants to prove that he belongs to a certain group, then there are
several protoeals known that can be used (see for instanee [SKI90], [OOK90] and
[CE86]). These schemes cannot be used to construct group signatures, because of
several reasons.
Our contribution. We present four different constructions for such schemes and use
Corollary 2.1 to prove the security of one of the schemes. These constructions differ, for
instance, in complexity theoretic assumption, the need for a trusted authority, the
number of computations and the number of bits to be transmitted.
Apptlcations. These schemes can, for instance, be used if the signer does not want to
reveal his identity to the recîpient, but if later on the recîpient wants to know the identity
of the signer, he is able to.

Chopter 5. Slgnatures uncondHionolly secure tor the slgner
Problem. A signature scheme is called unconditional secure for the signer if an attacker

with unlimited computing power cannot fake signatures of a signer S, i.e., he cannot

create the correct signature of S on an arbitrary message. An exponential small error

probability is tolerated, because the attacker car,t always guess the secret key of S
correctly.
Literature. Undeniable signatures are introduced in [Cv A89], fail-stop signatures in
[WP89], and convertible signatures in [BCDP90], all as defined in Section 1.3.
Our contribution. We present the first construction of an undeniable signature
unconditionally· secure for the signer; the first construction of a convertible signature
unconditionally secure for the signer; and an efficient construction of fail-stop
signatures.
Applications. These kind of signatures have the advantage over ordinary digital
signatures that, for instanee in an electrooie payment system, the customers need not
worry about the trusted authority (which normally has more computing power than the
customer) being able to break the underlying assumptions of the signature scheme.

Chopter 6. Efflcient offllne electronic checks
Problem. In an electronk payment system the users have to buy information from the
bank (such as specially created numbers) instead of special objects (such as coins);
during the payment, the construction of these numbers is revealed to the shop. The shop
can verify the construction of the numbers and if the constructions are correct, the shop
will accept these numbers as valid money (so the number itself does not represent

16

money, but merely the knowledge of the construction of these numbers). The privacy of
the user can be protected unconditionally, which means that even with unlimited
computing power, the bank cannot determine where the users have spent their money:
Electronic information can be easily duplicated, so the user can give a copy of the
information toa second shop. This shop will accept this information as valid money,
since the information is still correct as it was before. Hence any user can spend the same
money at several different shops without being caught, because his privacy is protected
unconditionally. This doublespending can be prevented if the shop uses an online
conneetion with the bank: immediately after receiving the information, the shop
contacts the bank in order to verify that the information bas not been used before. A
system including sneb online connections is very expensive, so it would be better to
have an offiine connection: the shop contacts the bank, say, once a week. For the
offline casetopreserve unconditional privacy, the user must have unconditional privacy
if the money is spent once; but bis identity must be revealed if the money is spent twice.
Literature. The flrst offline electronic payment system can be found in [CFN88].
Our contribution. We improve the efficiency of the offline electrooie payment system
of [CFN88], by reducing the number of computations (done by bank, user, and shop)
and the number of bits transmitted during the creation and spending phases of the
money. Also, some new functionalities are added, and we examine several ways of
eheating (one by using Corollary 2.1).

Chopter 7. Chameleon blobs, uncondltlonally secure for the verifler
Problem. A blob allows a person to commit toa eertaio bit (or bits) in such a way that
he cannot change this bit afterwards, and that the recipient of the blob cannot learn this

bit. Usually there is a pubtic function 'B, and if a person wants to commit bimself to bit
b, he ehooses r randomly and compotes the blob B = 'B(b,r). Opening this blob
consists of revealing b and r.
Literature. See for instanee [BCC88] for an overview of blob constructions. In the
literature ît is proven that it is not possible to have ebameieon blobs that are
unconditionally secure for the verifier.
Our contribution. We present the flrst blob in which the person reveals only b and
convinces the recipient in a zero-knowledge way that he knows r such that B = 'B(b, r).
We present several constructions forthese blobs; most of these constructions are based
on the discrete logarithm.
Applications. These new blobs can for instanee be used to create ebameieon blobs that
are unconditionally secure for the verifier (for our new blobs the definition of
ebameieon can be modifled a little).

2
Which new RSA signatures can be
computed trom certain given RSA
signatures?*

2. 1. Introduetion

Several more complicated protoeals use as a building block simple protocols in which
only one party, called the signature authority, can create signatures and issue them to
the other parties, called the individuals. Such protoeals are used, for instance, in
credential systems and payment systems, in which a signature represents a credential or
money. In fact, in such credential or payment systems, the signature authority issues
different types of signatures, corresponding to different credentials or different values of
money. A very challenging question in cryptology is what the security of eertaio
protócols will be. The security ofthese systems depends on whether an individual (or a
group of conspiring individuals) is able or unable to compute a signature of a type not
issued by the signature authority, by using signatures that were issued by the authority.

In this chapter we consider a generalization of the RSA-scheme of Section 1.5:

signature authority Z chooses at random several residue classes (mod N), computes a
number of RSA -signatures that are· products of rational powers of these residue classes

modulo N, and issues these signatures to individual >I., together with the residue
classes. The exponents in the product deterrnine the type of signature. lt will appear to

be useful also to consider the varlation in which Z sends only the sighatures but not the

* This chapter is based on the papers "Which new RSA signatures can he computed from some given RSA
signatures?" by Jan-Hendrik Evertse and Eugène van Heyst, which appeared in Advances in Cryptology­
EUROCRYPT '90, I.B. Damgärd ed., Lecture Notes iu Computer Science 473, Springer-Verlag, pp. 83-97; and
"Which new RSA signatures can be computed from certain given RSA signatures?" by Jan-Hendrik Evertse and
Eugène van Heyst, J. Cryptology 5 (1992), pp. 41-52.

18 2

residue classes to .91. (so that .91. cannot verify the signatures) . .91. mayalso have received

the signatures without the residue classes by eavesdropping. It is conceivable that an

individuallearns several RSA-signatures issued by Z (by participating in a signature­

issuing protocol or by eavesdropping) and that he uses these to compute useful

signatures not issued by Z.

Here is an example of the kind of problems we are facing. Suppose that an

individual .91. received two randomly chosen residue classes x1,x2 (modN) and a

signature s = x[13 . xà19 (mod N), and that he wants to compute S' = xY9 (mod N) . .91.

can easily compute xà13 (modN), since xi'3 x!2S3 (modN). But then .9l still has to
compute some cube RSA-root. From Theorem 2.1, stated in Section 2.4, it follows that

computing xi19 from {x1,x2 ,S} is justas difficult as computing xi13 (modN) for each

residue class x (mod N). Thus if .9l cannot compute RSA-roots, he cannot compute

xi19 from {xi,Xz,S}.

Aki and Taylor [AT83] and Shamir [Sh83] considered related problems. Shamir

showed, roughly speaking, that for pairwise coprime integers k1, ••• ,k1, computing x 11
k1

from {x,x 11k2 , ... ,xiikr} is justas difficult as computing u11k, from u alone, for random

u (see Example 2.5 of Section 2.7). Aki and Taylor proved that if k,k1, ... ,k1 are

integers with gcd(kl' ... ,k
1
)/ gcd(k, ki' ... ,k

1
)= r, then computing xk from

{xk1 , ... ,xk1 } (with x unknown) is at least as difficult as computing u11
r from u for

random u (see Example 2.3 of Section 2.7). We generalize these results to arbitrarily

many variables as in the example above. Our main result is stated in Section 2.4,

independently of the context of the protocols mentioned above. Let SI= nx;IJ , ... ,
Ss= nx;•J' S' = nx:j (modN), where the X; are uniformly chosen residue classes

(mod N) and the ai,j' bi are rationat numbers (we are not precise bere). Then

computing S' from SI , ... ,Ss is polynomial-time reducible to computing a certain

RSA-root on random residue classes (mod · N) and vice versa. Note that all the
. signatures are modulo the same modulus N. For different moduli see for instanee
[Has85J.

This chapter is organized as follows. In the next section we give a brief overview of
Turing machines, that can be used to formalize notions like "computational feasibility".
In Section 2.3 we summarize the notations used in this chapter, while our two main
theorems are stated in Section 2.4. In Section 2.5 we give two algorithms that simulate

the choice of a random element from.some set by using coin tosses only. The proofs of
our main theorems can be found in Section 2.6, while an important corollary and some
practical applications (in particular, two payment systems) of the main theorems are
given inSection 2.7. In Section 2.8 we give several remarks on the corollary of the

Which new RSA signatures can he computed from eertaio given RSA signatures? 19

previous section, and we end with some open problems.

2.2. Deterministic and probabilistic algorithms (Turing machines)

For the convenience of the reader, we reeall some notions related to Turing machines. A
Turing machine (TM) consistsof a finite control unitand a two-way infinite tape with
a read/write unit. The machine has a finite number of states, among which are two
special states called the initia! state and the halting state. The machine uses a finite
alphabet S, containing a so-called blank symbol.

The tape is divided into cells, and each cell contains a symbol. At each stage, only a
finite number of cells on the tape contains nonblanks. The content of the tape in the
initial state is called the input. The unit can read/write the cell underneath it, and
afterwards the unit can remaio there or move one cell to the left or right. The machine
also bas a set of instructions (write symbol, move unit, and go to next stage), which
prescribes what the machine should do if it is in some state and has read some symbol.
Hence, after an instruction, the content of the tape may be changed. If there is at most
one instruction for each state and alphabet symbol, the machine is called a
deterministic Turing machine (DTM). The machine stops if it arrives at the halting
state. The non-blank content of the tape in this state is called the output. The running
time is then defined as the number of steps the unit bas made before stopping. A
polynomial-time TM is a TM for which there is a polynomial with nonnegative
coefficients, such that for every input, the running time of that TM is bounded above by
the value of that polynomial evaluated in the leligth of the input (i.e., the number of
nonblank symbols).

A probabi/istic Turing machine (PTM) is a TM that bas at most two instructions
for each state and alphabet symbol. It is decided by an unbiased coin toss which one of
the instructions is foliowed (cf. [Gill77]). Thus the output of a PTM is no longer
uniquely deterrnined by the input, but can be considered as a stochastic variable, whose
probability distribution depends on the input. In genera}, the running time of a PTM can
also be considered as a stochastic variable.

We can extend the notion of a PTM by allowingit to issue oracle requests. Lets*
be the coneetion of two-way infinite strings of symbols from S, at most finitely many

of which are nonblanks. An oracle 0 is a collection of random variables { 0 (t) I
iE I} on s*, where I is a subset of s*, such that the number of nonblank symbols of
O(i) is bounded polynomially in terms of the number of nonblank symbols of i, for

iE I. An 0-using PTM is a device that has, apart from its usual read-write and
random tape, an 0-request tape. Whenever the 0-using PTM neects to do a request to

0, it goes into an 0-request state; it writes some iE I on the 0-request tape; then

20 2

the oracle 0 writes some value of O(i) on the a-request tape, and this value is read
by the PTM; after this, the PTM continuesits ordinary computations. We shall consider
the action of 0 in which it outputs a value of O(i) as one step in the execution of the
0-using PTM. Thus, a polynomial-time 0 -using PTM does, apart from polynomially
many ordinary PTM-operations, at most polynomially many 0-requests.

The above notions of Turing machines can be used to define formally the notion of
"computational feasibility", the complexity classes NP and NP-complete, and lower
bounds on the running time of certain problems. But in this chapter we will be loose
with Turing machines and we will use the words deterministic and probabi/istic
algorithms to indicate DTM and PTM. In the algorithms that we consider, the inputs
are tuples of integers and rationals, and the length of such an input is the sum of the
lengtbs of the binary representations of the integers and of the numerators and
denominators of the rational numbers in the input. In genera!, both the output and the
running time of a probabilistic algorithm are stochastic variables, depending on the
input and the random coin tosses. However, bere we consider only probabilistic
algorithms whose running time is determined by the input alone. Thus, if a probabilistic
algorithm is used to solve a partienlar problem, then it doesnothave to output a solution
with absolute certainty but only with some probability of success. More generally, the
underlying probability space consists of the strings of bits chosen during the execution
of the · algorithm, with uniform distribution, and of a set J of possible inputs, from
which input I is chosen with probability p1. Thus, if some algorithm solves a problem
with conditional probability of success s1 given input/, then its probability of success

is I p1s1 • By a polynomial-time algorithm we mean a deterministic algorithm whose
Iel

running time depends polynomîally on the length of the input. For instance, there are
polynomial-time algorithms for doing the following (where a, b, care integers):

• computing gcd(a,b) from a and b (Euclid's algorithm),
• computing the inverse of a (mod b) from a and b, if gcd(a,b) =I (Euclid's

algorithm),

• computing a-b (mod c) from a, band c, if gcd(a,c) = 1,
• testing rational veetors for linear independence,
• solving a linear diophantine equation with rational coefficîents,
• deciding if a system of rationallinear equations bas an integral solution, and if

so, finding one,
• computing the Smîth normal form of an integral matrix ([KaBa79]).

Also gcd(a,b), where a,be CQ can be computed in polynomial time: let d be a

positive integer such that da and db are integral, and define gcd{a,b):= gcd(a;/,bd).

Note that this deîmition is independent of the choice of d. For instance, gcd(j, Î) = i
and gcd(j,l) = !·

Which new RSA signatures can be computed from certain given RSA signatures? 21

2.3. Notation

The following notation will be used in this chapter (some of notation was already
introduced in Section 1.5). Boldface characters are used to denote vectors, and the RSA­

modulus N used is created by the signature authority.

gcd(a1 , ... ,tlt)

log x
In x

a=b(modN)

Z{a1, ... ,as}

<a,b>

z~
ilN
xlld (modN)

X8 (modN)

l(n)

length(a,b)

the greatest common divisor of a1, ... ,ate CD (see Section 2.2).

base-2logarithm of x.
naturallogarithm of x.

~1(b-a)e zk; this is defined for a,be CDk, ke IN.

{:Lf=l Çiai I ~1 , ••• , Çs e Z}: the abelian group generated by a 1 , •.• ,

a
8
E CDk.

{LÎ=lÇiaiiÇ1, ... ,Çse CD}: the vector space generated by a 1, ... ,ase

CDk.

a1b1+ ... +akbk: the scalar product of a = (a1, ... ,ak) and b =

(bl····•bk).

the set {a I a e IN, 1 :S: a :S: N, gcd(a,N) = l} of qi._N) elements.

the ring {'J I a,d e Z, d > 0, gcd(d, tp(N)) = 1}.

the d1h RSA-root of x (mod N): the unique solution Se Z~ to

Sd =x (modN) for XE Z~ and dE Z with gcd(d,qi._N)) = 1.

the number Se Z~ with S = xf' x~2
••• xf* (modN), for x= (x1, •.. ,x,)

* k d - k E (Z:N) an a= (a1 , .. . ,ak)E ((0 N) .

length of the binary representation of ne IN; the length of a negative •

integer m, a rational number p!q (q:;t!:l) and a vector c are defined by:

l(m) 1(-m)+l, l(plq)=l(p)+l(q)+l and l(c)=:Lj(l(ci)+l),

respectively.

l(a) + l(b).

2A. Statement of the theorems

Let a 1 , ••• , as,be (fl N)k. We consider the problem of computing xb for random

XE (Z~l, if {x81
, ••• ,x8 s} (but not necessarily x) is given as input. We distinguish

whether or notbis an element ofCD{a1, ... ,asl· Toeach of these two cases a theorem is

devoted, of which the proof can be found in Section 2.6.

22 2

In Theorem 2.1 below, al' ... ,a
8
.b are veetors in (G N)k, satisfying

b E 0{a1, ... ,as}; length(N,a1, ... ,a.,b) = L; } (2.1)
gcd(d, cp(N)) = 1, where d =min{ x EN I xb E Z{a1, ... ,a8 }}.

TheoreJD2.1. Let al' ... ,a
8
,bE (Ö N)k satisfy (2.1).

(i) For every probabilistic algorithm AL that on input { N,a ,a8,b,x81
, ••• ,x8

'}

computes xb in time :::;; TAL with probability of success ~ E AL for random

XE (Z~l, there exists a probabi/istic algorithm AL that for arbitrary UE Z~
c01nputes ulfd in time:::;; TAL+ L0 (1) with probability of success ~ie AL.

(ii) For every probabilis,tic algorithm AL that on input { N,u} computes ulfd in

time :::;; TAL with probability of success ~ E AL for random UE Z~, there

exists a probabi/istic algorithm AL that for arbitrary xe (Z~)k computes xb

from { N,al' ... ,as,b,x81
, ... ,x8

' } in time :::;; TAL + L O(l) witli probability of

success ~ ie AL'

Remark 2.1. Theorem 2.1 can be generalized to the case that gcd(d.f/XN)) > 1. Let G

be the largest subgroup of Z~ whose order is coprime to d. Then for every ue G,

there is a unique xe G with xd u (modN) and we denote this x by ulfd. We can
prove that for every probabilistic algorithm AL as in Theorem 2.1 there is a probabilistic

algorithm AL that for arbitrary uE G computes ulfd in time :::;; TAL + L 0(1) with

probability of success ~ ie AL· As the proof of this generalization is the same as that of

Theorem 2.1, we shall omit it bere.

Remark 2.2. Theorem 2.1 deals with the situation that xb bas to be computed from

x81
, •.• ,x8

• while x itself is not known. We can treat the case that x is also known. Thus

xb bas to be computed from given x81
, ••• ,x8

' and x. We can apply Theorem 2.1 with
al' ... ,a •• e1 = (1,0, ... ,0), ~ = (0,1, ... ,0}, ... , ek = (0, ... ,0,1), instead of a 1 , ... ,a8

• Note

tllat be0{a1, ... ,a •• e1, ... ,ek} for all al' ... ,as,bE(ONi.Further, if dis the S[llallest

positive integer x with xbE Z{a1, ... ,as,e1, ek}, then d is the gcd .of all ttlese

integers x. Hence ifbe (0 N)k, thengcd(d,f/XN)) = 1.

We can also treat the case in which x~1 ... x~· (which is a product of numbers)has to be

computed from {x81
, ••• ,x8

'} for certain b 1,. .. ,b sE (gl N}k, where x1 , ••• ,xs are distinct

veetors from (Z~)k: namely, put x':= (x1, ... ,x8), ai:= (a1,0, ... ~f)), a2:=(0.a2,0, ... ;0)

, ... ,a~:= (0, ... ,0,a8), b'~== (b1, ... ,b8), and apply Th~rem 2.1 with x',~î ,a~.b'.

Which new RSA signatures can be computed from certain given RSA signatures? 23

In Theorem 2.2 below, a1 , ••• ,as,b are veetors in (Ö Nl, satisfying

b ~ ID{a1, ... ,as}; length(N,a1, ... ,as,b) = L; } (
2

_
2
)

d = min{x E IN 13Ç1, ..• ,Çs EZ: xb = I.t=!Çiai (modÀ(N)) }.

Note that dis the gcd of all the integers x as in (2.2). Hence d divides À(N). We
have:

Theorem 2.2. Let al' ... ,as.bE (Ö Nl satisfy (2.2).

(i) There exists a polynomial (in L)-time algorithm that computes a nonzero

multiple of À(N)Id from a 1 , ..• ,as.b.

(ii) For every XE (Z~l, the cardinality of the set {zE Z~ I 3 yE (Z~)k:

yb = z (modN), y8 i = x8 i (modN) for i=1, ... ,s} is equal to the number of

solutions ZE Z~ of zd = 1 (mod N).

For instance, if d=1, then from a1' ... ,as,b we can compute in polynomial (in L)

time a multiple of À(N) and from that we can compute in probabilistic polynomial (in
length(N)) time the factorization of N [Mil75]. The other extreme situation is that

d:=À(N) and x81
, ••• ,X88 are given but x is unknown. In this case xb is not uniquely

determined by {x,x81
, ••• ,X88

}; in fact, every number in z~ is possible for xb.

2.5. Taking random elements

In general (so log N~ Z), there is no known polynomial-time algorithm to choose an
element uniformly from {O, ... ,N-1} in which the only possible non-deterministic
operations are coin tosses. But we can simulate it for instanee in one of the two
following ways.

Algorithm 2.1. Let 0 < e < 1.

Step 1. Compute the integer K :=I log~ l.
Step 2. Choose c at randomfrom {0, ... ,2K-1} by doing K coin tosses.

Step 3. Compute (the unique) rE {O, ... ,N-1}, such that r = c (mod N).

Lemma 2.1. Algorithm 2.1 has running time that is polynomial in log~, and the

probability dis tribution is such that to-e) ~ Pr(r) ~ to + e), for rE {0, ... ,

N-1}.

Proof. It is easy to see that the running time of this algorithm is polynomial in log~.

For each rE {O, ... ,N-1}, the number of cE {0, ... ,2K-1} such that r=c (mod N) is

either L z; J or L z; J+ 1. Hence:

Pr(r)= 2~Lz;J or Pr(r)=fr(l~J+l).

{

Pr(r) ~...LeK -1)- ..l._ ~ 1-e
S

2K N - N N'
0 K

Pr(r):::; 2k eN +1) = ir+} :::;; !te.

Algorithm 2.2.

Step l. Compute the integer K := r log N l (so N:::; zK < 2N).

Step 2. Choose rat random from { 0, .. . ,zK -1} by doing K co in tosses.

Step 3. Check ifre {O, ... ,N-1 }.

Lemma 2.2. Algorithm 2.2 has running time polynomial in log N, the probability of

success is ~ t. and the conditionat probability distributton given success is uniform.

Proof. The probability of success is > 2~ = t; it is easy to see that the running time

is polynomial in log N, and that the conditional probability distribution given successis
uniform. (J

Algorithms 2.1 and 2.2 can be modified to take random elements uniformly from

Z~ (in stead of {O, ... ,N-1}) with probability of success ~tas follows. Check in the

last step whether rE {O, ... ,N-1} and gcd(r,N) = I. If so, take the residue class r

(mod N). Thus, we get an element of Z~ with probability of success q>(N)jzK ~
l/(12lnln N), in view of the inequality <p(N) ~ N/(6lnln N) for N>4 [RS62]. So after

12lnln N repetitions of Algorithm 2.2 we have with probability at least t an element

from z~.

()
c!n k-lnlnN ()1/k

There is a constant c>O with 1- 1 1210\ 0 N · ~ t . Hence, afterat most

K · k · c ·lnk ·.lnlnN cointosses

we find a vector re (Z~l with probability of success ~ t. Moreover, the.conditional

probability distribution of r, given success, is uniform on (.Z~)k. In the rest of this
thesis we will use Algorithm 2.2.

2.6. Proofs of the theorems

We needsome lemmas to prove Theorems 2.1 and 2.2.

Which new RSA signatures can he cornputed frorn certain given RSA signatures? 25

Lemma 2.3. There exists a polynomial-time algorithm that computes for every

81 , .•. ,a8 E C[)k a basis {el , ... ,ek} 0 f zk and positive elements d 1 , .. . ,d1E cQ S UC h
that {d1e1, ... ,d1e1} isabasisof7L{a1, ••• ,a8 }.

Proof. For a1, ... ,a8e zk this follows from the result of Kannan and Bachem [KaBa79]
that we can compute in polynomial-time the Smith normal form of an integral matrix.

For a1 , ..• ,a8 e Ok, one may first compute de IN such that da1, ••• ,da8 e zk and then
apply the result of Kannan and Bachem. 0

Lemma 2.4. For a,be 7L, a,b:t:O, let (a\b) denote the largest positive divisor of

ae Z which is not divisible by any prime number dividing b. There exists a

polynomial-time algorithm that computes (a\b)from a,be 7L, a,b#:O.

Proof. Consider the sequence of integers c0 =lal, c1 = c0 I gcd(c0,b),

c2 =c1 / gcd(c1,b), There is ani such that gcd(c;,b) = 1; let i0 be the smallest such
i. Since c1 ~ c0 /2, c2 ~ c1 /2, ... , ciu ~ cio_1 /2, cio+l = C;

0
, we have i0 ~ l(a). Hence

it takes polynomial time to compute c; . For each prime number p and each ae 7L,
0

a#:O, let ordp(a) be the integer such that a· p-ord.(a) is an integer not divisible by p.

Obviously, ordp(c;
0

) 0 for each prime p dividing b. Further, if p is a prime

dividing a but not b, then ordp(a)=ordp(c0) ordp(c1)= ... =ordp{c;
0

). lt follows

that ciu == (a\b). 0

Lemma 2.5. Let al , ... ,ase ok' b E CO{a ••... ,as} and let d he the smallest positive

integer such that dbe 7L{a1, ... ,a.}. Then there exists a vector re Ok such that the

denominators ofthe coordinates ofr only have prime factors dividing d and such that

<a;.r>e7L fori=l, ... ,s, and <b,r>--}e7L. (2.3)

Further, there is a polynomial-time algorithm that computes d and the above vector r
from a 1 , ... ,a8

,b.

Proof. Compute a basis {e1, ... ,ek} of zk and d 1 , ... ,d1e CO>O as in Lemma 2.3 from

a1 , ... ,a •. Further, compute .; 1 , ... ,Ç1e 10 with b :E:=1Ç;d;e;. e.g., by Gaussian

elimination. Then dis the smallest positive integer such that dÇ 1 , ... ,dÇ1e 7L; hence it
can be computed in polynomial time. Let u1, ... ,u1 be the numerators of d1, ... ,d1,

respectively. Compute (u1 \d), ... ,(u1\d). Note that gcd(d,Ç1d(u1 \ d), ... ,Ç1d(u1 \ d))

=1. Now compute s1, ••• ,s1e 7L satisfying

(2.4)

26

with Euclid's algorithm. Finally, compute re «i, e.g., by Gaussian elimination, with

< e;,r > = d; 10r '.- , ••• ,t,
{

s;(u; \d) ç • -l

0 fon = t + l, ... ,k.
(2.5)

Note that the denominators of s; ·(u;\ d)/d; only have prime factors dividing d for i=

l, ... ,t. Since {e1, ... ,ek} is a basis of zk, tbis implies that the denominators of the
coordinates of r only have prime factors dividing. d. Further, from (2.5) and
a;e7L.{d1e1, ••• ,d,e,} it follows that <a;.r>e7L. for i=l, ... ,t. Finally, from (2.4),

(2.5), and b = Il=I ~;d.-e;. it follows that < b,r > -fi e7L.. lt is easy to verify that all the
computations mentioned above take polynomial time. This proves Lemma 2.5. l:l

Proof of Theorem 2.2. Without loss of generality we may assume that a1 , ... ,as,be zk.
Indeed, if a1 , ... ,as,be (~ Nl, we can compute in polynomial (in L) time me IN witb

gcd(m,À.(N)) = l such that aj:=ma; (i= l, ... ,s), b':=mbe7L.k, and we can proceed

furtber with ai, ... ,a;,b'. The integerdis also tbe smallest positive integer x for which

xb'=If=I~iaj(modÀ.(N)) is solvable in ~ 1 , ... ,~se7L. and xt-Hm is l-l on Z~.
Hence {ze7L.~ 13ye(7L.~)k: yb' =z. y•i =xa; (modN) for i= l, ... ,s} bas the same

cardinality as {ze 7L.~ 13ye (7L.~)k: yb = z, y•; = x•; (modN) for i= l, ... ,s}.

(i) Compute a basis {el , ... ,etJ of zk and dI, . .. ,dl (which are now positive integers)
such that { d1 e1 , ... ,d1~} is a basis of 7L.{a1 , ... ,as}. Further, compute integers

{31, ... ,f3k such that b = If=1/3;e;. Since b è 0{a1, ... ,a5 }, at least one of the integers

/31+1, ... ,f3k, say /3t+l• is nonzero. There are integers q 1 , ••• ,f11 such that

db= Il=l fl;d;e; (modÀ.(N)). This implies that df3t+! = 0 (modÀ.(N)). Hence /31+1 is a

nonzero multiple of À(N)Id. All operations mentioned above can be done in
polynomial (in L)-time and so f3t+l can be computed in polynomial (in L)-time. This
proves (i).

(ii) Let S1 ={ze7L.~ I 3ye(7L.~l: yb=z, ya; =l(modN) for i=l, ... ,s}. Then

{ze7L.~ I 3ye(7L.~)k: yb z, y8
; =xa; (modN) for i= l, ... ,s}={z·xb I zeStJ.

Hence it suffices to show, that S1 is equal to S2:={ze 7L.~ I zd = 1 (modN) }.

First take ze S1• There are ~1 , ... ,~1e 7L such that db If=1 ; 1a 1 (modl(N)).

T~ller with tbe fact tbat aÄ.(N) = 1 (modN) for every ae 7L~. this implies tbat for

someye(z~/: l=ydb=IU=1 (y81)~1 =l(modN). Hence zeS2 . It follows that

s, ç Sz.
Now take zeS2 • We have that N = PQ. Put ~ =gcd(d,P-1). Then ö is the

smallest positive integer x such that xb = If=I Çiai (mod P 1) bas a solution in

Which new RSA signatures can be computed from eertaio given RSA signatures? 27

~1 ~8E 7L., i.e., the smallest positive integer x for which

xbe7L.{at, ... ,a5 ,(P-l)e1, ... ,(P-l)ek}, where {e1, ... ,ek} is any basis of zk. By

Lemma 2.5, there is a vector re tlk, with

<(fl-l)ei,r> e 7L. forj=1, ... ,k,)
< a j•r > e 7L. for j = 1, . .. ,s,

< b,r > e 7L. .

<ai,v> = 0

<b,v> =
(mod(P 1)) for j = l, ... ,s,}
(mod(P -1)).

(2.6)

Since ze S2, we have z'i = 1 (modP). Further, the group 7L.~ is cyclic of order P-1.

Hence there is a residue class w with w(P-l)/5 z(modP). Put y1 =(wvl, ... ,wvk).

Then (2.6) implies that y:i = w <aJ,v> = l (modP) for j = 1, ... ,s and that yr
w<b,v> w(P-1)/5 = z (modP).

In the same way we have for the other prime Q a y2 such that y;1 = l (modQ) for

j=l, ... ,s and y~ z (modQ). By the Chinese Remainder Theorem, there is a

ye (7L.~/ with y = y1 (mod P) and y = y2 (mod Q). This y satisfies y
8
i = 1 (modN)

for j=1, ... ,s, and yb=z(modN). Hence zeS1. We conclude that also S2 ç;;S1•

Therefore Sz S1 and part (ii) ofTheorem 2.2 bas been proved. 0

Proof of Tbeorem 2.1. Assume we are given N and a 1 , ... ,a5
,be (ÖNl satisfying

(2.1).

(i) Assume there is a probabilistic algorithm AL which computes xb from x81
, ••• ,xa• in

time S: T AL(L) with probability of success ;::: eAL(L) for randomly chosen xe (7L.~l.

Fix UE z~. We describe a probabilistic algorithm ALto compute u11d. The idea is to

apply ALto the vector u= (u11
, • .. ,u1

k) for an appropriate vector te ÖN. However, this

u is nota random vector in (Z~/, all its coordinates being a power of the same residue

class; hence we know nothing about the probability of success when AL is applied to u.
We use the well-known trick of applying AL to a vector of the form

x (u11 rt, ... ,ikrkm) instead, where r=(yt, ... ,rk) (the blinding factors) is randomly

chosen from (7L.~)k and m is such that ma1 , ... ,ma
5
,mhe (7L.~)k. Since Z~ is a

multiplicative group and the mapping x-+xm on 7L.~ is 1-1 in view of

gcd(m,cp(N)) = 1, this vector x is uniformly distributed on (7L.~)k.

Below we describe algorithm AL (all congroences are mod N):

28 2

Step 1. Compute t =(tp···.l,jç)E ok and a l•···•ak,{Je 7L sucb that <a;,t>::::: tX; for

i= l, ... ,s, < b,t >+IJ=~ and the denominators of tp···•tk are composed of

primes dividing d. Since gcd(m,t~N)) = 1, we have te (~~l- Compu.te m

such that nial , ... ,mas,mbe zk.
Step 2. Cho.ose r = (1j, ... ,rk}eR (7L~l.
Step 3. Compute ua;rma; =u<a;,t> ·r-i x8 î for i::r: l, ... ,s, where x=(u11 rt, ... ,

ikrf:'). This computation is easy, since a;e7L, m'\e7Lk for i= l, ... ,s.

Nete that it need not be feasible to compute x.

Step 4. Apply ALto x8
1 , ••• ,x8

s.

Step 5. If AL outputs xb, then compute xbr-mhufJ = u<b,t>+fJ = u 11d. This is possible

since {Je 7L and mbe zk.

Choosing re R (7L.~)k in Step 2, eau be done by using Algorithm 2.2 from Section 2.5.

The probability of success;::: ! and the conditional probability distribution of r given

successis uniform on (7L.~)k.
Steps 1, 2, 3 and 5 of algorithm AL described above have running time L O(l). Further,

Step 4 has running time TAL' Hence the running time of AL is :::; TAL + L O(l). Step 2

has probability of success ;;::: !· Given success in Step 2, the conditionat probability

distribution of x is uniform on (7L.~)k and hence the conditional probability of success

in Step 4 is;;::: eAL' Therefore, the unconditional probability of success of AL is ;;:::

!eAL. This proves (i).

(ii) Assume we are given a probabilistic algorithm AL which from randomly chosen

ue 7L~ computes u114 in time :::; TAL and probability of success ;;::: eAL(L). We

construct the following algorithm AL (the congroences are mod N):

Step 1. Compute Ç1, ... ,~5E 7L such that db= I,Ç;ai.

Step 2. Cboose re R 7L~.

Step 3. Compute u= r 4 ·ll;(x8
i)i;;.

Step 4. Apply AL to u.

Step 5. If AL outputs u11d, then compute r-1u114 = fi;(Xa;)i;;ld = (xdbitd = xb.

If we choose r in Step 2 as described above, then with essentially the same argument as

above, it follows that AL bas running time:::; TAL+ LO(l) and probability of success :11:

!eAL for arbitmry xe (7/..~)k. Tbis pro\'68 (ü). CJ

Which new RSA signatures can be oomputed from certain given RSA signatures? 29

2.7. Some practical applications

Let us return to the protocols of Section 2.1. Let N be a composite modulus and let

a1 , •• ,a9 ,b E (Ö Nl. Signature authority Z chooses at random XE (Z~)k and issues the

signatures xa1 , ... ,xas to individual .!Jl. Now .fJL wants to compute xb. Is he able to do

this? Of course, we assume that for .fJL it is computationally infeasible to compute RSA­
roots roodulo N, since otherwise he could forge all signatures. According to
Assumption 1.3, Theorem 2.1 implies the following:

Corollary. 2.1. Assume there is an integer d with (d,qi;_N))=l and

dbEZ{a1, •.. ,a9 }. Then it is feasible for .fJL to compute xb from {N,a1, •.• ,a
8
,b,

x81
, ••• ,xas} for uniformly chosen XE (Z~)k if and only ifb eZ{al•···•asl·

If bEZ{a1, .•. ,a
8
}, then xb can be computed from xa1, ••• ,xas simply by

multiplying and dividing (rood N) the signatures received: if g1, ••• ,Ç9 e Z are such

that b=Ç1a1 + ... + Çsas, then xb=Tii=1 (xai)~i (modN). Hence the corollary

means that .fJL cannot compute RSA-signatures from other signatures, unless he is able to
do this using only the obvious operations on RSA-signatures: multiplying and dividing

(rood N). This corollary can also be used in situations where Z also issues x or where

.fJL receives signatures xa1 , ... ,x8
' on distinct veetors x 1 , .•• ,X

8
(see Remark 2.2 of

Section 2.4).

We now give five examples to illustrate Corollary 2.1.

Example 2.1. In Chapter 6, a user-anonymous offline payment system is introduced,
and in Section 6.10 we will use Corollary 2.1 to discuss a special attack by the user on
this payment system (Cheating 3).

Example 2.2. Consicter the user-anonymous offline payment system of [0089] for
coins. In this system, the bank uses a signature scheme that we do not specify bere. The
user makes RSA-signatures using his own modulus N, which factorization he keeps
secret; here, then, the user plays the role of a signature authority. Let L be a fixed

integer, and define I= (IDuseriiR)L modN, where R is a number chosenat random by
the user and 11 denotes concatenation. In Figure 2.1 the basic idea of the withdrawal (in
which the user is able to blind messages and the bank to verify the messages and to sign
them, (see [0089]), and the spending protocol of a coin is given. Aftersome time, the
shop sends the numbers that it received to the bank and the bank verifies that these
numbers have not been used before.

30

User
X:random

Witbdrawat .of a coin Spending of a coin

User
blinded(N,l,X) N,l,X, sign(N,/,X)

sign(blinded(N,l,X)) E:random, (E,L)=l

(
E)ljL C;;;; X·/ (modN)

Fig. 2.,1. The (simplifie<j) of:{line payment system of [0089] for eoins.

2

Shop

From Corollary 2.1 it follows that it is not feasible for the shop/bank to compute the

identity of the user (i.e., J11 L mod N) from N,I,X,E,L and c = x11 L .JE! L. But if the
user spends the same coin at two shops, the bank receives NJ,X,L, sign(NJ,K),

. l/L
two integers E1 ,E2 that are coprime to L, and the signatures (X .JE,) (mod N) and

(X·/E2)IJL (modN). From Corollary 2.1 it follows that the bank can compute

J11LmodN from these numbers (and hence the user's identity) if and only if
gcd(E1-E2,L) = 1.

A user can spend the same coin at different shops ("double spending"). What is the

probability that a doublespender will be caught, that is, what is Pr(E1-E2e Z~) for

randomly chosen numbers E1 ~e Z~? Let p be a prime divisor of L. Then p~ E1,

p{ ~. and thus Pr{pHE1-~)) = 1 - Pr(pi(E1-~)) = 1- p~t· If we write

L=pf' ... p:• with P; prime and ai>O, then Pr(E 1 -E2eZ~) = Pr(pj'f(E1-E2) I
lSj.:;n) = TI}=! (1- Pj

1
_ 1) "' qf._L)IL. This probability is close to 1 if L is a large

prime, and it is close to 0 if L is the product of many small distinct primes. The
probability is equal to 0 if 2 is a divisor of L. Therefore, it is unwise to let the user
choose L freely bimself (which was the original suggestion); rather L should be fixed
as a large prime.

E.x.ample 2.3. In [AT83] and [McKTMA85] schemes based on cryptography are
proposed for controlling access to information within a group of users org:illlized in a
hierarchy. Assume a communication system of users U1 (or classes of users) that is
partially ordered by the relation ::;;, where U1 ::;; Ui means that user Ui can have access
to information destined to user U 1• Denote the authority by U0, who chooses an RSA­
modulus N and a secret key K. Toeach user U 1 the authority assigns a public key t1

and a secret k;ey K11 (mod N). These inlegers t; are chosen in such a way tbat

(2.7)

Hence this scheme enables a user Ui at some level to compute from his own secret key

Which new RSA signatures can be computed from certain given RSA signatures? 31

K
1
i the secret keys K 1

i of the users U i below him in the organization, because

(K1
i)

1J 1
i = K1

; (modN) and t/tj is an integer.

However, if U; 1. Uj, then t/~ is not an integer and this computation by Uj is
considered to be infeasible. Thus the only remaining question is how to choose the
integers ti. Figure 2.2 shows the Hasse diagram of a poset and shows three different
methods for the choices forti> which are indicated inside the nodes (representing users).
The methods are explained below.

Fig. 2.2.1.

The Hasse diagram of a poset with three different methods for the choices of the public keys, which are indicated

inside the nodes (representing users).

i) The assignment of Figure 2.2.1 satisfies condition (2.7). But two users may be able to
successfully cooperate to discover a secret key to which they are not entitled. For

instance, from the keys J<:4 and K 9 , the secret key K can be computed as

(K4
)-

2 K 9 = K (modN), and hence all the keys in the system can be computed.

ü) In [AT83] it is proven that it is feasible fora user to compute Kd from {Ka, , ... ,Ka,}

if and only if gcd(al' ... ,as) Id. Thus the previous collaborative attack can be

prevented by choosing the integers ti in such a way that they also satisfy

gcd (tj).f ti.
{j1Uj1:U;)

(2.8)

They propose the following choice of the integers t;: the authority chooses a sequence
{Pi} of distinct primes (which are indicated in Figure 2.2.2 below the nodes) and
computes t; = llPj. It is easy to see that this assignment satisfies (2.7) and (2.8). The

U1"LU;

disadvantage of this choice is that the used exponents (the t/s) can get quite large, even
for smal! posets.

üi) In [McKTMA85] another assignment- one that satisfies (2.7) and (2.8)- is proposed
(see Figure 2.2.3), called the canonkal assignment. The poset is first decomposed into
disjoint ebains (a chain is a totally ordered subset: see the bold lines). Each chain is

assigned a distinct prime. For each node i, we define n; pm, where i is the m1h node
from the top in the chain whose prime is p. Then the t;'s are computed as t; lcm ni.

j:i,i

32

The authors also prove .that any assigllfllent contains a canonical set of t1 '.s, and that any
effOFt to keep the ti's as small as possible will also lead to a canonical set.

E:umple 2.4. In [Bos92] a new signature scheme is presented, based on the Lamport
signatures (DH76]. In this new construction a user cannot compote a new signature on a

given message, even if he received RSA-signatures on messages of his choice.

Let k,l be fixed parameters (at least one of which is even) and R a fixed public

table of k random elements (r 1, ... ,rk). Let S be a fixed partition of a lxk matrix into

dominos of size 1 x2 (dominos are used for a good visualization). These 4f: dominos

have a fixed order, and lhey all have a "0" side and a "1" side (see Figure 2.3). Each

user has his own RSA-modulus.

Fig. 2.3. Example of a partilion Sof a 3x4 matrix into six 0/1-dominos.

If a user wants to. sign a 4/: bit messagem =(mv ... ,mw2), he delermines a set

P = (p1, ... ,p1) of l distinct primes. By using the partilion S, the bits of the message

delermine a subset M of size 4}, because bit m; determines the m rside of domino i.
The user's signature on m will be

TI lip· od P, rj '(m N).
i,jeM

If for example, the message to be signed is (001011), then the signer detennines a set
(p1,p2,p3) of distinct primes, and by using the partition of Figure 2.3, his signature

will be (p1,Pz,PJ), Tj11P1r/'P2rfP2r;'Pirl1P1rl1
P3 (modN). For the next signature, the

user must choose a set P that is disjoint from all previous sets of primes used (so for
instanee all these sets of primes can be fixed and publisbed in advance).

Consider all the signatures that person 51. has issued. If somebody else wants to forge

a signature of 51. on a message m not yet issued by .91. he bas to compute several

rJ'P; (modN), where all the used primes P; are different from all primes pre.viously

used by 51.. Hen.ce by Corollary 2.1 it follows that he .caaA.ot .rompute ~y of these

Wbich new RS}\signatures can be computed from certain given RSA signatures? 33

numbers rJ1
Pi. Thus, nobody can forge any signature of Jil (except by reusing the

primes).
This signature scheme can also be optimized in various ways (see [Bos92]), but this

is beyond the scope of this chapter.

Example 2.5. If two parties want to exchange secret messages, they can use the one­

time pad (invented by Vernam): the secret key is a long sequence of randomly chosen
bits and the cipher text is the X-OR of the cleartext and the secret key. The ciphertext
thereby obtained contains no Shannon information about the cleartext; but the main
drawback of this system is the huge secret key that bas to be generated, distributed, and
stored by the two parties. Therefore, insteadof a truly random key, a pseudorandom

key will be used, which is created by a generator from an initial seed. The strength of
this scheme depends on the strength of the pseudorandom key.

Shamir [Sh83] has proposed the following pseudorandom sequence: the two parties
create an RSA-modulus N and choose a random seed S and a sequence of keys

kdc2,k3, ... , which are coprime to ~N) and pairwise coprime toeach other (e.g. the
sequence 3,5,7,11,13, ...). Then the pseudorandom sequence R1,R2.R3, ... will be

R1 = s11kt (modN),
R2 S11k2 (modN),

Shamir considers the following two problems (t,k1,k2, ••• ,k1 are fixed):
(1) Given N and S, computeRt.
(2) Given N,S,R2 ,R3, ... ,R.r, computeRt.

Shamir proves that from N,a1, ... ,at> and Sa1 ,Sa2 , ... ,S'1 (modN), one can compute

in polynomial time sao (modN) where a0 = gcd(a1,. .. ,a1). With this result, he proves
(roughly speaking) that if it is feasible for a person to solve some of the instances of

problem (1) with probability;;:: e, then that person can solve some of the instances of

problem (2) with probability ;;:: e.
This chapter is a generalization of Shamir's result.

2.8 Some remarks on Corollary 2. 1.

Remark 2.3. From this corollary, the following well-known results can be obtained.

Corollary 2.2. Let a,a 1, ... ,a8,b,d be positive integers coprime to (/'(N), c,c 1, ... ,c8

be integers, and x,y be chosen randomly from 7l~. Then the following five results hold

for.Jtl.

(i) It isfeasible to compute x 11d from {x,xc/a}

(ii) lt isfeasible to compute x 11d from {x,y,(xct ycz)11a}

34

(iii) ft isfeasihle to compute x 11d from {x,x 11a, , •.. ,x11a•}

(iv) It isfeasible to compute (xy)11d from {x,y,x 11
a ,y11b}

(v) It isfeasihle to compute xd from {xc1 , ••• ,xc•}

<=* d!Icm(a1, ... ,a8)

<=* dlgcd(a,b).

<=* gcd(c1, ... ,cs) I d

[AT83].

2

Remark 2.4. Corollary 2.1 can also be proved without Lemmas 2.3, 2.4, and 2.5, by

using the next lemma, which is a corollary of Kronecker' s Approximation Theorem.

Lemma 2.6. Let A he a rationat matrix and let b he a rational vector. Then .the

system Av = b has án integral salution v if and only if yTb is an integer for each

rationat column vector y for which y TA is integral.

Proof of Corollary 2.1.
We will prove only the "difficult" part of Corollary 2.1: assume that there is. an integer

d with (d,q(N)) = 1 and dbe:Z{a1, ••• ,as}; and that there is a probabilistic algorithm

AL that on input {N,al' ... ,a
8
,b,x81

, ... ,x8 s} computes xb in .time ~ TAL with

probability of success ~ E AL for random xe (:Z~)k. Let . ue Z~ be an arbitrary

number. Below we describe an algorithm to compute an RSA-root on u.

Step I. Compute t = (tl' .. . ,tk)e G:'lk and a 1 , .. . ,ake Z such that <a;,t> = a; for

i= l, ... ,s; and the denominators of t1' •.• ,tk are composed of primes

dividing d. Since gcd(d,q(N)} 1, we have te((ÖN)k. Compute m such

that mal' ... ,m as, m be zk. Write < b,t > +/3 =i for some integers

f3,'f>O, ö, gcd(y,O) = 1.

Step 2. Choose r = (lj, ... ,rk)E R (Z~l.
Step 3. Compute ua;rma; u<a;.t> · rma; = x8

; for i l, ... ,s, where x= (u 11 1jm , ... ,

u1krkm). This computation is easy, since a;e:Z, ma;e:zk for i= I, ... ,s.

Note that it need not be feasible to compute x.

Step 4. Apply ALto x8
1 , ... ,x8

s.

Step 5. If AL outputs xb, then compute xbr~mbufl = u<b,t>+/3 u'Y18 . This is possible

because f3e :Z and m be; :zk. Because gcd(y, Ö) = 1, we compute u11 8 from

ur'o.

We have assumed that it is feasible to compute u118 for an arbitrary number u, ifand

only if 0=1, i.e., if y1b .is an integer. Now, Lemma 2.6 states that the sy&tem

[a1 ••• as)v = b kas,,an integralsolution v, which.can"be,computed in polyQomial.~ime
(for instanee by using the Gaussian elimination method). Thus b e:Z{a1, ... ,as}. 0

Wbicb new RSA signatures can be computed from certain given RSA signatures? ---~ ____ 3_5

Remark 2.5. In the case tbat xb bas to be computed from xa1 , ... ,xa• and x (see
Remark 2.2), we can reformulate Corollary 2.1 by using tbe next lemma of [Hegl858]
(page 111); but it does not yield a polynomial-time algoritbm.

Lemma 2.7. Let A he a rational matrix offull row rank with k rows, and let b be a

rationat k-dimensional column vector. Then Av = b has an integral salution v, if and

only if the gcd of all subdeterminants of A af order k di vides each subdeterminant of

[A b] of order k.

Corollary 2.3. Let a 1 , ••. ,a8 ,bE <d:l N)k, J.lp· .. , J.lm be all the subdeterminants of

[a1 .•. as] of order between I and min (k;s), and let llmt-I•···•Iln be all the

subdeterminantsof [a1 ••• a. b] of order between 1 and min(k;s+l), containing at

least one entry from b. Then the following two statements are equivalent:

(i) lt is feasible for ftl. to compute xb from {N,a1 , ... ,a •. b,xa1 , ... ,xa, ,x} for

uniformly chosen XE (Z~i.

(ii) gcd(l,J.lp .. ·•J.lm) = gcd(l,J.lp ... ,J.ln).

Note tbat statement (ii) cannot be verified in polynomial time, because m = (s;k)
and n = m + u~n (for s?.k).

Proof. Define the matrices A=[a1 ... a.], /=[e1 ... ed and B=[A 1]. Since eacb
column of I bas exactly one nonzero en try, each subdeterminant of B containing q

columns from I is a subdeterminant of A of order s-q. Furtber, det(l) = 1. Similarly,
each subdeterminant of [A I b] containing q columns from I and at least one entry
from bis a subdeterminant of [A b] of order s-q, containing at least one entry from b.

Hence tbe subdeterminants of B of order k are J.lo = det(l) = I,J.lp .. ·•llm• and

tbe subdeterminants of [B b] of order k, containing at least one en try from b, are

J.lm+l''"'J.ln· So for every integer o, tbe subdeterminants of [A Ob] of order k are

J.l0 , ... ,J.lm,OJ.lm+l•· .. ,OJ.ln- Because B bas full row rank, Lemma 2.7 implies that tbe

equation Bv = ób has an integral solution v if and only if gcd(J.lo •. ... J.lm>l<lt; (i=

m+I, ... ,n). This bolds if and only if gcd(J.lo, ... ,J.lm) is a divisor of

o · gcd(J.l0, . .. ,J.lm,J.lm+-1'' .. , J.ln). By defining d to be tbe smallest positive integer sucb

tb t Bv db b . t gral l t' h tb t d gcd(J.lo•···•J.lm) F a = as an me sou ton v, we ave a = gcd(J.lo, ... ,J.lm,J.lm+i•· .. ·J.ln). rom
Corollary 2.1 it follows that statement (i) is equivalent with

gcd%, ... ,J.lm) = gcd%, .. ~·J.lm,J.lm+l'"'' J.ln). 0

36 2

Remark 2.6. One can transform the ptoblem of computing a certain RSA-signature
from some given RSA-signatures into another problem. But one must be' careful··to
transform the problem into an equivalent problem. We will illustrate this with. ali

example: let x,y be chosen randomly from Z~, and suppose an individual wants to
cornpute

xlld from {x,y,(xy3)119}.

(According to Corollary 2.2.(ii)., this is feasible if and only if d=l or d=3). We can

write xy3 = x2z, where z = l I x, and we can consider the problem of computing

x 11d from {x,z,(x2z)119
}.

(According to Corollary 2.2.(ii)., this is feasible if and only if d=l). The second
problem is notequivalent to the first problem, because it is infeasible to compute y

from {x,z,(x2z/'9 }, i.e., it is infeasible to compute (~)113 from {x,z,(x2z)119
} (Corollary

2.1). It is easy to see that the problem of computing

x 11d from {x,z,(z/ x)113 ,(x2z)119
}

is equivalent to the first problem.

If we write xy
3 = x4 z3, where z = y I x, then the problems of computing x 11d from

{x,y,(x/)119
} and from {x,z,(x4z3)119

} are equivalent, because one can compute {x,y}
from {x,ylx} and vice versa.

2.9. Some open problems

Can the same kind of results be found for discrete log-based signatures? Shmuely
[Shm85] made the following first start.

Let N be a composite modulus and g a base to generate encryption keys. Each user

U has a secret key sue {l, ... ,N} and a public key cu = gsu (modN). If two users ~

and '13 want to use a common secret key to encrypt tnessages, they can use the Diffie­
Hellman key exchange protocol [DH76]: they can both compute 'the key

k:: gsAsB (mödN), because (cA)88 :: g 8A'B S (c8)8A (rilodN).
Is it feasible to break this Diffie-Hellman key exchange protocol, i.e., to compute

gtY fröm { N,g,gX ,gY}? Shmuely-proves (toughly speakrng)that any algorithm that will
break this ëömposite'DiffietHellman key exchange prOtocol for a nonnegligible fraction
of bases gcafi be used to fattörthe modulus.

Another éxample is brèaking the protocol for mental poker [SRA79]: suppose ~
wants ter send a secret message m to ']3, · Then ·they choose a compositê'modulus N (of

Whlch new RSA signatures can be computed from certain given RSA signatures? 37

which only .91. and tJJ know qi_N)) and they perform the protocol of Figure 2.4.

Shmuely proves that breaking mental poker, i.e., computing m from { N,mx,mY,mJfi} is
a special case of breaking the composite Diffie-Hellman key exchange.

Userftl

choosex ER Z~.

UsertJJ

choose y E R Z~

compute c11Y (= m)
1

Fig. 2.4. Protocol for Mental poker [SRA 79].

3
Which new RSA signa'tures can be
computed trom RSA signatures,
obtained in a specific interactive
protocol?*

3.1. Introduetion

In the previous chapter we studied the case in which a signature authority Z issues

RSA-signatures of certain types to an individual .!it. The individual tries, by using the

signatures he bas received, to compute an RSA-signature of a type not issued by Z. The
RSA-signatures areproductsof rationat powersof residue classes modulo N, and the

residue classes are chosen at random by Z. In this chapter we consider an interactive

protocol in which Jit may choose some of these residue classes freely.

A class of interactive protocols that will not be considered in this chapter are so­
called ping-pong protocols (cf. [EGS85]). In such a protocol (which consistsof several
moves), one party generates a secret message, applies a sequence of operators to it, and
sends it to the other party. This party also applies a sequence of operators to the message
received, and sends the result back. In each move of the protocol, one of the parties
applies a sequence of operators to the last message received, and sends it back. The
question would be whether an "active" third party can discover the initial message (by
altering messages, impersonating other users, etc.).

In this chapter however, we consider not the entire class of interactive problems, but

* This chapter is basedon !he paper "Which new RSA signatu:res can be computed from RSA signatures, obtained in
a specific interactive protocol?" by Jan-Hendrik Evertse and Eugène van Heyst, which wiJl appear in Advances in

. Cryptology-EUROCRYPT '92.

40 3

only problems related to those in Figure 3.1. Initially, Z chooses two large primes P, Q
and computes their product N. Further, Z chooses two integers a,b. coprime to

q(N) = (P-l)(Q.,-1). Z millees N, a, .b publiç, and keeps Pand Q secret. Let c, d

also be some integers eoprime to q(N). In this protocol, Z chooses a residue class u,
and .91.. wants to choose h in such a way that after the execution of this protocol, he is

able to compute from {u,h,u110h11b} a pair { t;k} satisfying t = u11cklld (modN). The
reason for con,sidering such problems is that in all payment systems the user chooses

blinding factors and can thus influence the signatures he will receive from Z

Individual .91.

chooseh

verify that sab = ubha
·:warirs iöëömpütë .. {Uil.
satisfying t = ullcklld

Signature authority Z

u choose u randomly
h

Fig. 3.1. An interactive signature-issuing protocol in which the signature authority Z
issues a signature to individual 5L

In Chapter 2 we studied the case in which .91. bas no influence on the signature

received, that is, .91. chooses no residue class (i.e., b=l in Figure 1.1). A necessary and
suftkient condition was given for the computation of this new signature to be feasible

for .91..

In [Oav82], [Denn84] and [0085] the case is studied in which Zchooses no residue
class, that is, in which individuals were able to obtain signatures on desired messages

(i.e., a=l in Figure 1.1). [Oav82] states that .91. can decrypt ciphertext encrypted under

Z's public key and can forge Z's signature on meaningful messages; [Oenn84] can foil
this attack by using hashing. The result of [0085) states that if .91. can get enough
signatures on carefully chosen residue classes, he is able to sign any message; and they
prove that this metbod is more efficient than the best known algorithms to. factor the
modulus.

Here, we consider an interactive protocol in which Z issues a fixed amount of RSA­

signatures to .91.. Generally, these RSA-signatures consist of productsof rational powers
of residue classes modulo the composite nulJiber N of the underlying RSA-scheme;

some ofthese residue classes are cho~n by Z a.ad. the.o!AArs are cbosen freely by .91.. In
this chapter we make the following, two assqmptions:

(i) .91. cannot computeRSA-roots of randomly chosen resi(Jue classes.
(ii) In his computations, the only operations modulo N that .91. uses are multiplicl;\lions

Which new RSA signatures can be computed from RSA signatures obtained in a specific interactive protocol? 41

and divisions.

The problem whether assumption (ii) is necessary remains open. We formulate a

necessary and sufficient condition under which ~ is able to influence the signatures he

receives from Z in such a way that he can later use these signatures to compute a

signature of a type not issued by Z. It tums out that this condition is equivalent to the
solvability of a particular quadratic equation in integral matrices.

This chapter is organized as follows: The notation used is introduced in the next
section, while in Section 3.3 a small example of the problem considered is given. In
Section 3.4 the interactive protocol considered and the problem we are facing are
defined, and in Section 3.5 this problem is analyzed by assuming that the individual
performs only multiplications and divisions modulo N (thi~ is called an algebraic
strategy). Some generalizations of the protocol of Section 3.4 are given in Section 3.6.
InSection 3.7 we give some applications, and inSection 3.8 some open problems are
stated.

3.2. Notation

The following notation is used throughout this chapter (some of the notation was
already mentioned in Sections 1.5, 2.2 and 2.3). Boldface characters are used to denote
vectors, and the RSA-modulus N used is created by the signature authority.

ab (a1b1, ••• ,akbk), if a= (a1 , ••. ,ak)and b = (b1 , .•• ,bk).

a= b (modm) m-1(b-a)e 7L.k; this is defined for a,be Glk, m,ke IN, m>O.

N a composite, odd number.

7L.~ the set {ala e IN, 1 ~a~ N, gcd(a,N) = 1} o((jl(N) elements.

IDN the ring {"Jia,d e 7L., d > 0, gcd(d,<p(N)) = 1}.

x11
d (modN) the d1h RSA-root of x (mod N): the unique solution Se 7L.~ to

Sd :=x (modN), for XE 7L.~ and de 7L. with gdd(d,(/l(N)) = l.

x8 (modN)

[a1 ... atl

XA (modN)

l(n)

the number Se Z~ with S=xf1 x~ ... x;•(modN), for x=(x1, ... ,xk)
* k - k e (7L.N) and a= (a1 , •. • ,ak)e (Gl N) .

the matrix with columns a1, ... ,a1.

(x8
I , ... ,x8

1) e (7L.~) 1 , for A= [a1 •.• atJ e ({), N)k,t a n d x e (7L.~)k;
SO (XA)B =XAB.

lengthof the binary representation of ne IN; the lengthof a negative
integer m, a rational number p/q (q:;t:1), a vector c, and a matrix
A=(a;) are defined by: l(m)=l(-m)+1, l(plq)=l(p)+l(q)+1,

l(c) = I.;(l(c;) + 1), and l(A) = I.;,j(l(a;,j) + 1), respectively.

42

length(A,B)

aERS

l(A) + l(B).

denotes the random selection of an element (that will be called a) from
S according to the uniform probability distribution; for any set S.

3.3. A small example of the problem under consideration

Let a,b,cE ON be fixed and assume that the denominators of a,b, and c are coprime

to l(i..N). We analyze the following Protocol 3.1 betweenZand .9l (see Figure 3.2). In

this protocol, .9lreceives from Zthe RSA-signature ua+xb (modN), which .9lcan verify.

Note that .9l cannot compute this signature on a randomly chosen residue class u

himself, because in general a + xb E <D \ 7l..

The next lemma states when it is feasible for .9l to compute U: after the execution of
this protocoL

Individual .9l

choose x E 7l.

verification

wants to compute uc

Signature authority Z
"I want to begin"

choose u ER 7l.~

Fig. 3.2. Protocol 3 .I.

Lemma 3.1 • .9l can choose x in Protocol 3.1 in such a way (and in polynomial time)

that ît is feasible for him to compute uc after the execution of the protocol if and only if
gcd(l,a,b) Ie.

Note that gcd(l,a,b) is in general not 1, because a and b are rationat numbers.
This lemma can be proved by using Corollary 2.1 and the following two lemmas.

Lemma 3.2. Let a,b,cE <0, c:#:O. Then there exists an integer À such that

gcd(a+Ab,c) = gcd(a,b,c), and this À can be computed in polynomial (in

length(a,b,c)) time.

Proof. Define ä =a I gcd(a,b,c),b =bI gcd(a,b,c),c c I gcd(a,b,c). Thus ä,b,c are

integers with gcd(ä,b,c) = 1. It suffices to show that we can compute in polynomial

time a .ÎLE IN that satisfies gcd(ä + .Îlb,c) 1.

For each prime number pand each ae .7l.,a;i:O, let ordp(a) be the integer such that

a. p-ordp(a) is an integer not divisible by p. Take

Which new RSA signatures can be computed from RS~ signatures obtained in a specitic interactive protocol? 43

Îl = rr p ordp(ë)

plë,p(ä

Let p be a prime dividing ë. If plä, then pf b (by gcd(ä,b,ë) = 1) and pf Îl (by

definition of ÎL), hence pf (ä +;tb). If pf ä, then piÎL (by definition of Îl and

ordp(ë)~1) and thus also pf (ä + Îlb). We conclude that no prime di vides both ë and

(ä + Îlb); therefore gcd(ä + Îlb,ë) =I.
Define the sequence c0:=1ël andci+l:=cïfgcd(ä,c;) for i=0,1,2, Let i0 be the

smallest integer such that gcd(ä,cio) = 1. It is easy to see that cio = Îl and that io s l(ë);

thus Îl can be computed in polynomial time. CJ

Lemma 3.3. Let a,b,ce fl. Then there are x,y,ze :Z such that c = (a+xb)y + z if
and only if gcd(l,a,b)lc. Further, if such x,y,ze :Z: exist, thm they can be computed
in polynomial (in length(a,b,c)) time.

Proof. Note that a,b, 1 are integral multiples of gcd(l,a,b). Hence, if there exist

x,y,ze :Z: such that c (a+xb)y + z, then c is also an integral multiple of

gcd(l,a,b). Hence gcd(l,a,b)lc.

On the other hand, assume that gcd(l,a,b)lc. By Lemma 3.2 we can compute in

polynomial time an xe :Z: such that gcd(a+xb, l)=gcd(l,a,b). Further we can

compute in polynomial time y,ze :Z: with c = (a+xb)y + z (e.g., let de IN such that

da,db,dce IN, and use gcd(a+xb, 1)1c and Euclid's algorithm to compute y, ze :Z
with de= (da+xdb)y + dz). This proves Lemma 3.3. CJ

Proof of Lemma 3.1.

(i) Suppose that gcd(l,a,b)lc. According to Lemma 3.3, 5'l can compute in polynomial

time numbers x,y,ze :Z: such that c = (a+xb)y + z. 5'l will use the obtained number

x during the execution of Protocol 3.1. Afterwards, 5'l can compute tf from

{N,a,b,c,u,u0 +xb} as follows:

I

(ii) Soppose that 5'l can choose x in Protocol 3.1 in such a way that it is feasible for

him to compute uc after the execution of the protocoL Corollary 2.1 states that

computing tf from {N,a,b,c,u,u0 +xb} for uniformly chosen ue :z:~ isfeasible for 5'l if

and only if ce :Z:{l,a+xb}. That is, if and only if there are y,ze:Z: such that
c = (a+xb)y + z. CJ

We generalize Protocol 3.1 to Protocol 3.2 (see Figure 3.3), in which 5'l initially
chooses some residue class, but we will prove that doing so does not influence the

44

feasibility of computing the signature tf after the execution of the protocol.

Individual 51

choose V E R Z~

choosex,ye Z:

.. ve~fyS ..

1 wants to compute uc

"I want to begin"

s

Fig. 3.3. Protocol 3.2.

Signature authority Z

choose u E R Z:~

3

How must 51 choose v,x,y so that it is feasible for him to compute uc from

{u, v,ua+xbvby ,a,b,c,x,y}? According to Corollary 2.1 this computation is feasible if and
only if there is an integral solution zl'z2,z3 to

{
zl + z3(a + xb) = C,

Zz +z3by 0.

According to Lemma 3.3, a necessary condition for the first equation is that

gcd(l,a,b)lc. But the number z3 hereby obtained does not need to be a solution of the

second equation. If y=O, then the z3 obtained is also a solution of the second equation.

Hence a necessary condition for the simultaneous solvability of the two equations is

that gcd(l,a,b)lc; and if y=O, then this condition is also sufficient. Thus the best

strategy for 51 is to choose y=O and to take x according to Lemma 3.1 ; he nee this

algebraic strategy "works" if and only if gcd(l,a,b)!c.

In the two protocols above, we restricted the behaviour of 51: he bas to send tf or

uxvy to Z. A more general protocol is Protocol 3.3 of Figure 3.4, but this protocol is

difficult to analyze. In the next sections we generalize Protocol 3.3, but we are only able

to analyze this new protocol if we restriet the behaviour of 51, like in Protocol 3.1 and

3.2.

lndividual 51

chooseh E Z~

...... v~r:ïf:y si~11at11re.
wants to compute uc

"I want to begin"

u

h

Fig. JA. Protocol 3.3.

Signature authority Z

choose U E R Z~

Which new RSA signatures can be computed from RSA signat1JfCS obtained in a specific interactive protocol? 45

3.4. The protocol and problem under consideratlon

In this section we consicter the following interactive Protocol 3.4 (see Figure 3.5), which

is more general than Protocol 3.3. The signature authority Z has created an RSA­
modulus N, and issues RSA-signatures that will be products of rational powers of
residue classes modulo N. Let M = {A,B,C,DJ be a set of fixed rational matrices

A E (Ö N)k,l, BE (Ö N)m.l, CE (Ö Nl,n, DE (Ö N)m,n. In Protocol 3 .4, an

individual ftl. requests Z to create the RSA-signature (in fact it consists of l RSA­
signatures)

s1 = uAhf (modN),

where u e (:Z~)k is chosen by Z, and h1 e (:Z~)m is chosen by ftl. (h1 may depend on

N,M = {A,B,C,DJ and u). But actually, ftl. wants to have the RSA-signature

s2 = uchf (modN),

forsome h2 e (:Z~)m and s2 e (:Z~)n. Therefore he wants to choose h1 in such a way
that after the execution of Protocol 3.4, he can compute from {N,A,B,C,D,u,h 1,

s1 = uAhf} a pair [s2 ,h2} satisfying s2 = uchf. This way of choosing h1 (which may
depend on N,M = {A,B,C,D} and u) in order to be able to COJ11pute a pair {s2 ,h2}, is
called an M -strategy. We assume that the running time of an M -strategy is not a
stochastic variable, but that it is determined by N and M. This implies that the M­

strategy will not with 100% certainty output a pair {s2,h2} satisfying s2 éhf. Hence
the problem that we wish to consicter is the following:

Individual jl Signature authority Z
"I want to begin"

u

choose h1 E (:Z~)m

· waiii:s.iö ëömpüt~1~!:ii;J
satisfying s2 = ucbf.

Fig. 3.5. Tbe consîdered interactive Protocol3.4!

Problem 3.1. For which system of matrices M = {A,B,C,DJ does there exist a
polynomial (in length(N,A,B,C,D))-time M-strategy that outputs with probability

~ t. say, a pair {s2,h2 } satisfying s2 = uchf?

This problem was solved in Chapter 2 for the special case in which B and D are
the all-zero matrices, i.e., for the noninteractive case.

Ifthere are no restrictions on h 2 (e.g., h2 must be an element from a special subset

46

of (Z~)m), then we can restriet outselves in Protocol3.4 to the case that D [0] (the

all-zero matrix), according to the next lemma.

Lemma 3.4. Let CE ((l N)k,n, DE ((l N)m,n and u E (Z~)m. Then there exists a

matrix ëe (ÖN)k,n (which is computable in polynomial time from C and D), such

that computing a pair (s,h) E CZ~)n x (Z~)m satisfying s = uChD is polynomial­

.time equivalent to computing u è.

Proof. We can reformulate the identity s = uchD as

where the first n coordinates of vector (s,h) are those of s, the last m coordinates are

those of h, the first n rows of [!0] are those of the identity matrix /, and the last m

rows are those of -D. According to [KaBa79], we can find in polynomial time

unimodular matrices P,Q and a matrix [g] in Smith normal form, such that

P[g] [-1D]Q. Because [.!Dj has full column rank, G is invertible. Define ë CQG-1
•

Then from (s,h) satisfying s = uchD we can compute uë in polynomial time because

uë = ucQc-1 (s,h)[!D]Qc-I = (s,h{[g]c-t ·= (s,h)P[b]

first n coordinates of (s,h)P.

If, on the other hand, uè is given, then we obtain the pair {s ,h} satisfying s = uchD by

first computing the vector s = (uè, 1, ... ,1) of length n+m and then by defining s,h by
-P-I

(s,h):=s . 0

3.5. Algebraic strategies

As shown in the previous section, we may restriet ourselves to the case in which M
{A,B,C,[Q]}. We have no idea how to decide if there exists a polynomial-time M­
strategy for given N,A,B,C, u. Therefore we consicter only M-strategies belonging toa

special class, the so-called algebraic M -strategies. In an algebraic strategy, ft! only
applies to u multiplications and divisions mod N in order to compute h 1•

Let A e (Ö N)k.l, BE (Ö N)m.l, CE (Ö N)k,n be fixed rationat matrices. Jl is

assumed to follow an algebraic M-strategy; hence, in Protocol 3.4, h 1 must consist of

productsof integral powersof the entries of u, i.e., h =u x, forsome x E zk.m. Thus
insteadof analyzing the general Protocol 3.4 in this section, we will analyze Protocol
3.5 (see Figure 3.6, in which we write h in stead of h 1).

Wbich new RSA signatures can be computed from RSA signatures obtained in a specitic interactive ptotocol? 47

lndividual .91.

choose X E 7L.k,m

h:= UX E (7L.~)m

............... v.e~ify ~1 .
wants to compote s2 = uc

Signature authority Z
"I want 10 begin"

choose u e R (7L.~l
h

Fig. 3.6. Protocol3.5, which is equivalent 10 Protocol3.4 if 5Hollows an algebraic M-strategy.

We now also assume that it is computationally infeasible for .91. to compote RSA-roots

modulo N, since otherwise he could forge all signatures. Under this assumption,
Corollary 2.1 implies the following for Protocol3.5:

Corollary 3.1. Let A,B, C be fixed rational matrices. Then the following two
statements are equivalent for an individual:

(i) lt isfeasible to compute integral matrices X,Y,Zsuch that C = (A+XB)Y + Z.
(ii) There is a feasible algebraic M -strategy to compute h from { N,A,B, C, u} and

uc from {N,A,B,C,u,uAhB}.

According to this result, we are iilterested in the following problem:

Problem 3.2. Let A e (Ö N)k,l, Be (Ö N)m.l, Ce ((I N)k,n be rational matrices.

Find a polynomial (in length(A,B,C))-time algorithm that decides whether the
equatîon

C = (A+XB)Y + Z

is so/vab/e in integraf matrices XE zk.m, f E zl.n, ZE 7L.k,n, and ij SO, find a

solution X, Y,Z

We have not been able to solve Problem 3.2 in full generality. In [Evert90] it is
proven that there exists such a polynomial-time algorithm for Problem 3.2 in the case

that n=l, but this proof is not included in this chapter. In Section 3.3, we solved

Problem 3.2 in the special case that k=l=m=n=l.

3.6. Generalizatlons

In Protocol3.4 (see Figure 3.5) the system of matrices used is M = {A,B,C,D}, so the
individual will receive one type of signature (s 1), and wants to compote a secoud type

(s2).

48

We now assume that there are (t+l) types of signatures, so Z creates a public

system of matrices M = {A1,B1, ... ,A1+1,B1+Jl, where thematrices (A;,B;) are used

for the i1h type. But Z will only issue signatures of type 1, ... ,t to Jil, who will try to

compute a signature of type t+ I. Thus the protocol we want to consider is the serlal

Protocol3.6 (see Figure 3.7), in which we assume that Z uses the same u in every
signature, and that the individual chooses b 1, ... ,h1 (where h; may depend on M,u and

s1, ... ,si_1) and receives the signatures
- AihB; ('-1 t) S; =U i l- , ... , .

.9l will not receive signatures of type (t+l), so he tries to choose {h 1, ... ,h1} in such a

way that after receiving { s 1 , ... ,s1}, he is able tó compote a pair (s1+1 ,ht+1) such that

Individual .9l

chooseb1

verify s1

choose h1

verify st
·wallt:Stöcompuië ts;;;,h1;J}·
satisfying st+1 uA1+lb~~~~

S =U Al+ I bBI+l
t+l - t+l .

Signature authority Z
"I want to begin"

u

Fig. 3.7. The serial signature-issuing Protocol 3.6, in which .91. recei ves the signatures s 1•· . ,sI.

lf we assume that .9l uses an algebraic M-strategy, then we can prove that it suffices
to consider algebrak strategies on protoeals with s=l; that is, we can reduce Protocol
3.6 in polynomial time to Protocol3.4 as follows:

z .9l z .9l z

Ffg. 3.8. Hów to modify Protocol3.6 intó Protocol 3.4.

Moves 3 up to 6 ofProtocol3.6 are shown in the left-hánd side of Figure 3.8. Let d be
the smallest positive integer such that dA 1 and dB1 are integral matrices (so d ean be

the lcm of aH the denominators of A1 and B 1). Hence sf can be computed by .9l

Which new RSA signatures can be computed from RSA signatures obtained in a specific interactive protocol? 49

without knowing s1, because sf = udA1hf81 , so the used exponents are integral. In

order to create h2, 51. might use St. But 5l only applies multiplications and divisions on

s 1, so 5l is able to compute hz:= h~ without knowing s1 (Jl will only use sf, which he

could compute without knowing s1). By defining the new matrix 82:= ~~.we have

that h2B2 h~, so 5ldoes not need to know St in order to compute h~ (by using

matrix 82). The possibility that 51. can compute st+! at the end of the protocol remains
the same if we carry out the first four moves in parallel insteadof serially (see Figure

3.8, middle). By defining st:=(st,s2), ht:=(ht,hz), Ät:=[A1 ~1. Ët:=[B.t B2l, we

have that St= uÀ1 h~; thus we can combine the first four moves into two (see Figure
3.8, right-hand side). In this way we obtain a protocol with 2 moves less. By repeating
this argument, we only have to analyze a protocol with 2+2 moves, i.e., Protocol 3.4.

3.7. Some open problems

In the analysis of the protocols we assumed that the individual uses an algebrak
strategy, i.e., that he uses only multiplications and divisions modulo N (and also
additions and subtractions). The problem whether this assumption is necessary remains
open. So the question is whether it is possible to analyze protocols like Protocol 3.3, in
which the individual can use any strategy.

Another open problem (as mentioned in Section 3.5) is to find a polynomial time
algorithm to verify whether the matrix equation C = (A+XB)Y + Z is solvable, and
if so, to find a solution.

4
Group Signatures*

4.1. Introduetion

If a person wants to prove that he helongs to a certain group, then there are several
protocols known that can be used.

In [CE86] credential systems are constructed: if a person belongs toa eertaio group,
an authority will give him a credential. If a party wants to verify this credential, the
group memher transforms his credential to a form that does not reveal his identity. The
privacy of the person is protected unconditionally: even with unlimited computing
power two parties cannot link credentials together.

In [OOK90] two memhership authentication schemes are proposed, in which the
same secret key is given to each group member. These schemes give an efficient
construction for hierarchical situations.

In [SKI90] another memhership authentication scheme is proposed. However, this
scheme cannot he used for signing messages, and each group memher can create other
secret keys from his own secret key.

In this chapter we present a new type of signature, which we call a group signature:

it is a signature scheme for a group of persons that has the following three properties:
(i) only memhers of the group can sign messages;

(ü) the recipient of the signature can verify that it is a valid signature of that group, but
cannot discover which memher of the group created it;

(iü) in case of dispute later on, the signature can he "opened" (with the help of the
group memhers or of a trusted authority) to reveal the identity ofthe signer.

i Tbis chapter is basedon the paper "Group Signatures" by David Chaum and Eugène van Heyst, which appeared in
Advances in Cryptology-EUROCRYPT '91, D.W. Davies ed., LNCS 547, Springer Verlag, pp. 257-265.

52

Tbe use of group signatures will be illustrated witb the following two examples: A
company bas several computers, each connected to tbe local network. Each department
ofthat company bas its own printer (also connected to the network) and only memhers
of that department are allowed to use tbeir department's printer. Before printing,
therefore, the printer must he convineed that the user is working in tbat department At
the same time, the user wants privacy: tbe user's name may not he revealed. If,
however, someone discovers at the end of tbe day that a printer bas been used too often,
tbe director must be ahle to discover who misused that printer, tosend him a bill.

Alternatively, suppose tbat any doctor can give a signed note to a patient for an
insurance claim. Tbe insurance company can verify tbe validity of a signature (i.e., that
is was signed by a doctor), but cannot discover whicb doctor signed it. If somebody
steals a doctor' s key, the identity of tbe doctor can he revealed in order to trace the thief.

Such a group signature scheme is not just a signature scheme with one puhlic and
several secret keys. The scheme must also have the property that it is infeasible for
conspiring group memhers to create a new secret key out of their own secret keys.
Otherwise they could sign messages with tbis new secret key and their identity can
never be revealed (soit violates property (iii)).

The three constructions of memhership authentication schemes in the papers
mentioned above cannot be used to create group signatures for several reasons: [CE86]
doesnothave property (iii), in [OOK90] all group memhers have the same secret key,
and in [SKI90] each group memher can construct other secret keys from his own secret
key. In this chapter four different constructions of group signature schemes are
presented. Persons can be merobers of more than one group, but in each construction
only one group of persons will he considered (so the hierarchical situation will not he
treated here). These four constructionscan he found in Sections 4.2 up to 4.5. These
four constructions are compared (see Table 4.1) on the following five items.

Complexity theoretic assumption. In the first construction, every puhlic key system
can be used while the other constructions are hased on either Assumption 1.2 or 1.3 (see
Sections 1.4.1 and 1.5). In all constructions the privacy of the signer is protected
computationally. Care must of course he taken in the selection of the exponents used, in
order to proteet the anonymity of the signer (see Section 4.6). Noteven a group merober
{ other than the signer) can de termine who created a certain signature.

Trusted authority. Let Z he an authority, trusted by the group. Z sets the group
signature scheme, except for the last construction: in this case a group signature scheme
can be created from a "normal" setup of a scheme based on the discrete logarithm,

without using a trusted authority. Except for the first construction, Z is no longer
needed after the setup.

Group Signatures 53

Creation of the g roup. In the first two constructions, the group of persons is
determined during the setup of the scheme. In the last two constructions, it is assumed
that there is already a "normal" setup of the RSA-scheme or of a scheme based on the
discrete logarithm. If in one of these last two constructions of group signatures someone
wants to signa message without revealing his identity, he creates at that moment some
"group" of persons. He can, for instance, do this by picking these persons from a
Trusted Public Directory of public keys, and he proves that he belongs to that group. In
case of dispute later on, the other "group members" are able to deny that signature (it is
not necessary that they know the "group"), while the signer is not able to deny his
signature.

Type of signature. In the last three constructions, the signatures created by the group
memhers are undeniable signatures. Therefore in these constructions we have a
confirmation protocol (in which the signer can convince the recipient that the signature
on the message is correct) and a disavowal protocol (in which the other group memhers
can convince the recipient that they did not create that signature).

It is possible to create digital (i.e., not undeniable) group signatures in these last
three constructions (by using the same protocols). This can be realized as in [FFS88], by
doing the iterations of the confirmation protocol in parallel and letting the recipient
choose the challenge vector not randomly, but as the outcome of a collision-free one­
way-function on the received numbers. Because this parallel execution of the protocol is
no longer zero-knowledge, the signature together withall the numbers sent during the
confirmation protocol will be a digital signature. Still to be proven is that this parallel
protocol gives "no useful knowledge" to the recipient.

Casts. In all four constructions the length of the public key (i.e., the number of bits in
the group's public key) is linear in the number of group members. The numbers of bits
and the number of computations are only compared in the case of the confirmation
protocol, because in the disavowal protocols, both these numbers are independent of the
number of group members.

Group signature Complexity Trusted Creationof Type of Length of the Numberof Number of bits

implementation theoretic authority the group signature public key of computations transmitted

i
3
4

assumption needed for the group during conf. pr. during conf. pr.
Any I:Setup+opemng I In advance Anytype Lmear Independent
1.3 Setup In advance Undeniable Linear Linear
1.3 Setup Afterwards Undeniable Linear Linear
1.2 -- Afterwards Undeniable Linear Linear

Table 4.1. Comparison of the four group signature constructions presented in this
chapter. "Independent, Iinear" means that the number is independent respectively
Iinear in the number of group members.

Independent
Independent
Independent

Linear

54

4.2. First construction of .group signatures

The trusted authority Z chooses a public key system, gives each persou a list of secret
keys (these lists are all disjoint), and publishes the complete list of corresponding public
keys (e.g., sorted on name) in a Trusted Public Directory (see Figure 4.1). Thus this
TPD is the public key of the group, which itself consists of some public keys.

Each persou can sign a message with a secret key from his own list, and also issues
to the recipient the corresponding public key. The recipient can verify this signature
with the public key and can verify that this public key is from the public list. Each secret

key will be used only once, otherwise signatures created with that key are linked. Z
knows all the Iists of secrel keys, so that in case a recipient asks Z to open a signature,

he knows who created the disputed signature. Hence Z is both needed for setup and for
"opening" a signature.

If each group memher gets from the trusted authority the same number of secret
keys, then the length of the public key of this group signature construction (i.e., the
number of pubtic keys of the Trusted Public Directory) is linear in the number of
persons; but the number of messages a person can sign is fixed (because each secret key
will be used only once). The number of bits to be transmitted and the number of
computations needed to verify a signature are independent of the number of persons
(leaving aside the look-up in the TPD).

Trusted Authority

_/ ""···· Group I :J· . :J =
memher l --"j:: (.. ,

Group r=l i­
memher 2 L:::J . ·· ~J-

lists of TPD of
secret keys public keys

Group
member l

T~usted Au~thonty~
SJ

... (/l)'l

smartcards TPD of
wilh secrel keys public keys

Fig. 4.1. lllustration of the first group signature construction. The left-hand side

shows the basic idea and the right-hand side shows the blinded public key

construction.

A problem with this construction is that Z knows all the secret keys of all the group
memhers and can therefore fake the signatures of the group members. This can be
prevented by using blinded pub/ie keys (see Figure 4.1). Let the public key system used
be a scheme based on the discrete logarithm, for instanee the EIGamal scheme [EIG85]
or the undeniable signature scheme [CvA89]. Let p be a prime according to

Assumption l.l and let g be a generator of the multiplicative group z:;=
{ 1,2, ... ,p-1}. Group member i creates bis own secret key si and gives the public key

l 1 (modp) to Z. Thus Z bas a list of all these public keys together with the group
memher's name. Each week, Z gives each group member i a randomly chosen numher

rie { 1, ... ,p-1} and publishes the list of all the blinded public keys (l1)'~ in random
order. During this week group memher i will use s1ij (modp-1) as secret key for

signing messages. Opening a group signature is done by contacting Z, just as in the
, previous scheme.

The advantages of this modification are that Z cannot fake signatures, and that each
group memher needs only one "really secret key" (for instanee in a smart card), which
can he hlinded in order to make other secret keys. Only the particular week's signatures
can he linked, so that each group memher need have only a few secret keys in his smart
card to prevent this linking. Even if an r1 is accidentally disclosed, no more information
ahout the secret key si is revealed.

In another modification, no trusted authority is needed: each user untraceably sencts
one (or more) pub !ie keys to a public list, which will he the puhlic key of the group. But
only group memhers must he able to send puhlic keys to that list.

4.3. Second construction of group signatures

Z chooses two different large primes p, q together with a one-way-function f of which
the outcome may he assumed to he coprime to N = pq. For security it is essential that

the users do not know cp(N) (so N cannot he prime). Z issues to group memher i a

secret key si> which is a large prime coprime to cp(N) and randomly chosen from the

puhlic set <P= {f-JNl, I ffil + 1, ... , 21 ffil- 2}. z publishes N, v: = rr S; and f, which
will he the public key of the group. If group memher i wants to sign message n, his
signature will be

(j(n)t' modN,

and he has to convince the recipient that si di vides v and that si is an element in <I>,
without revealing anything more ahout si. This can he done by using the confrrmation

protocol of Section 4.3.1. If in case of dispute later on, the recipient wants to know the
memher who signed the message, he can perform a disavowal protocol with each group

memher, without the help of Z (see Section 4.3.2). The signer cannot perform this
disavowal protocol successfully, and thus bis identity will he revealed to the recipient.
To prove the security of this group signature construction we need Assumption 1.3.

56

4.3. 1. Conftrmation protocol

We first consider the following Instanee 4.1 (Figure 4.2), in which P wants to

convince o/ that he knows a certain discrete logarithm modulo a composite number,

and that this discrete logarithm lies in some intervaL P does not need to know the
factorization of the modulus.

secret of P

public

: prove to '})

c

N,x,y,Q; x,y e Z~, Q == {a, ... ,a + f3} c IN

xc=y(modN) AceQ

Fig. 4.2. Instanee 4. 1.

This instanee is solved by (BCDvdG87] by using Protocol 4.1 t, which uses

computationally secure blobs 'B (we will be loose in writing blobs: we write 'B(z) in
stead of ~z,t) for some blinding factor t). This protocol has to be iterated several
times.

Protocol4.1. (for Instanee 4.1)

Step 1. P chooses re {0, ... ,/3}. He computes blobs on z1 = xr (modN) and

z2 = xr-/3-l (mod N), and sends the unordered pair { 'B(z 1), 'B<z2)} to V.
Step 2. o/ chooses randomly be { 0,1} and sends it to P.
Step 3. P sends o/ in case

b=O: the number r, and the opening of both blobs.

b= 1: the number (c+n or (c+r-/3-l), whichever is m the set Q (this

number will be called r~ and the opening of respectively the blob on
ZJ or Z2 (this number will be called z).

Step 4. o/verifies in case

b=O: that rE {0, ... ,/3} and that the blobs contain xr and xr-fJ-l in some

order.

b=l: that reQ, that one of the blobs contains z and that z satisfies

=zy.

But the protocol of [BCDvdG87] does not really solve Instanee 4.1: note that

rE {0, ... ,{3) and that (c+ r) or (c+r-1-/3) is an element from (a , ... ,a+/31. So

after execution of this protocol, o/will be convineed that cE Ö = { a-{3, . .. ,a+2/3}.

There is a discrepancy between the requirements for c, namely cE { a, ... ,a+/3},

t Hence, by using Q=(I, ... ,N}, one can prove that he knows a discrete logarithm modulo N, without
knowing rp(N).
The original protocol of [BCDvdG87] contains a mistake, which is changed in our Protocol 4.1.

and what is actually proven, that CE { a-f.3, ... ,a+2/3}. Intheir paper they prove that

only if cE {a, ... ,a+/.3}, their protocol reveals no (other) information: Because if

ceQ, then the distribution of r in Protocol4.l is uniform over Q and this distribution

is thus independent of c. Therefore this protocol can be simulated by o/.

With this protocol we are able to create a confirmation protocol for the group

signature scheme, so let P be a fixed group memher who wants to convince the recipient

'Ilthat Sis his correct group signature on the message n. Thus the following instanee
(in which we write m instead offt.n)) must be solved:

secretofP

public

proveto 'll

Protocol4.2. (for Instanee 4.2)

s

N,v,m,S,4.l; m,SE Z~
S m8 (modN)" sE 4.l A slv

Fig. 4.3. Instanee 4.2.

Step 1. Convince the recipient of having a number s such that S = ms (modN) and

that sE4.l with Protocol 4.1, iterated k times (use the substitution Q = 4.l,

x= m, y = S and c = s).
Step 2. Convince the recipient that s is a divisor of v, by using the following protocol:

Prover P Verifier 'll

b:= avis

verify a
open blob

choose r ER {1, ... , N}

verify opening and
thatb=mvr

We prove that Protocol4.2 is complete, sound, and zero-knowledge. Note that for all

S the probability distributions of sr (modN) where rE {l, ... ,q;(N)} or

rE { 1, ... ,N} are polynomially indistinguishable ([CEvdG87]). Step I of Protocol 4.2
bas already been proven to be sound, complete, and zero-knowledge (Protocol4.1). Step

2 is trivially complete and zero-knowledge (reeall that the blobs '13 are computationally
secure).

So we now only have to prove that Step 2 is sound. In Step l it is proven that P

knows an integer s such that S = m•. When is it feasible for him to compute b = xv

from {s, v,m,a = r}, where x= mr? Under the assumption that it is infeasible to
computeRSA-roots (sobere Nis nota prime), it follows from Corollary 2.2.v. that

computing xv from {s,v,x'} is feasible if and only if slv. These two problems are
equivalent, because we can construct generators of x as follows: randomly choose an

58

odd number r'e { 1, ... ,N}. This number will with high probability be co prime to

qf.._N). By defining m' = (x5
(, we have a number that generates a group containing

x, because sr' is coprime to qi._N). Therefore these two problems are equivalent, and

so computing b = (mr)v from (s, v,m, a= (mrn is feasible if and only if s lv.
Hence Step 2 is also sound. Q

By using Protocol 4.1 as a subprotocol in Protocol 4.2, P convinces the recipient in

'fact that the exponent used in the signature is an element of {2,3,. .. ,31..JNl-4}.

4.3.2. Disavowal protocol

If a recipient 'V wants to open a signature S on message m, he bas to perforrn a

disavowal protocol with each group member. Only group members that have not created
this signature S (i.e., that have an other secret key) must be able to successfully
perforrn this protocol. Hence the following instanee bas to be solved, in which group

memher Phas not created signature S.

secret ofP

public

proveto 'V

s

N,v,m,S,<P; m,Se z;.,
S;t<ms (modN)AsE<PAslv

Fig. 4.4. Instanee 4.3.

There are no zero-knowledge disavowal protocols known in the literature to

convince 'Vthat ax ;t.fJX (modN), for given {N,a,f3,ax}, where qJ(N) is unknown.
Therefore we use the following modification of the disavowal protocol of [Ch901 to

solve Instanee 4.3. Z publishes { g,h}, which generates the whole group z;., (see

Section 4.3.3 for how to construct g and h), together with a Trusted Public Directory

containing the triples {name group member,gs,hs} where s is the secret key of that

group member. Let l be a very small constant such that exhaustive search over

{0, ... ,/} is feasible. Tbe disavowal protocol uses tbe fact that if S = ms, tben Pcanoot

compute a from (m;)a, because (m;)a = 1. In this .case, therefore, he only can guess a.

Prover P

compute by exhaustive

search a from Y (= (m;)a)
verify numbers

'B(a)

open blob

Fig. 4.5. Protoool4.3 for Instanee 4.3.

Verifier 'V
choose lj.r2 ER {l, ... ,N}
and a ER {0, ... ,/}

verify opening

4.3.3. Some remarks on this construction of group signotures

Remark4.1.
If all group memhers except one conspire, the secret key of that one person can be

computed, because s1. This threat can be easily eliminated if the authority Z

makes bimself a memher Of the group, that is, if Z COmpotes V as V= Sz ·TI si, Where

·sz is a secret key only known to Z. By using this trick, the group can also consist of

only two members.

Remark4.2.
The number of bits in v (v is the only part of the public key that depends on the
number of group memhers) is linear in the number of persons. So raising a number to
the power v will take a time linear in the number of group members. Hence the number
of computations in Step 2 of confirmation Protocol 4.2 is linear in the number of group
memhers while Step 1 is independent of the number of group members.

The number of bits transmitted during confirmation Protocol 4.2 is independent of
the number of group members.

Remark4.3.

During the setup we defined the set <I> to be {f v'Nl, f v'Nl + 1, ... , 2f v'Nl- 2}. This is
not the only possible choice for the set, from which the public keys are taken. Suppose
that <I>= {f/'1, fi't + l, ... ,f/'1 + (j)z} c IN; then the following conditions must hold:

N 2 -1,2,fi'l é <I> = {fi't f/'2• f/'t f/'2 + 1, ... , f/'1 + 2fP2} ·

The first condition that lé ~ is necessary to prevent m1 from being a valid group

signature on m. We use the condition lfé ~ to rednee the size of the secret key (so the

secret keys are now smaller than lp{N)). The last condition fl'fé ~ is needed to avoid
the following conspiracy attack: if two group members, say i andj, conspire, they can

create signatures S ms,sj, which they can both disavow later. Because ~é ~. we

have that sisfê ~. so this signature S = ms,sj will not be accepted in Step l of Protocol
4.2.

Instead of creating the signature ms on m, a group memher can also create the

signatures mvls and mv. Although vis and v are divisors of v, both numbers are not

elements of ~, because v > v I s > q>f. Hence these two signatures are not accepted
by confirmation Protocol4.2.

Remark4.4.

The order of the elements from z~ is a divisor of qi._N), so if an element is randomly

chosen from Z~, it might have small order. In [SS90] it is proven that if the two

60

(randomly chosen) prime factors p, q of Nare of equal size (the same number of bits),

then a substantial fraction of the elements in z~ have high order.

Remark4.5.
The blob 1Jcan be implemenled in the following way: Z chooses generators 8p and hq

of z; and z; respectively, and constrocts using the Chinese Remaioder Theorem

{
g modp {I modp • *

numbers g = p and h = h od . lt ts easy to see that the pair g,h generates ZN
I modq q m q

uniformly, that is, each image of the function f(x,y) = gxhy (modN) has the same

number of preimages, for x,ye { 1,2, ... ,<p(N)}.

But if Zreveals g,h, he also reveals the factorization of N. Therefore Z chooses
integers a 1 ,a2,b1 ,b2 satisfying gcd(a1,q,p -I) = gcd(a2,~,q -1) =
gcd(a1~-a2q,f~Z~) =I, and publishes geg01 h0~ and ii=l1hb2

• Remark that

!iZi = gcd(p -l,q -1). Below we prove that the pair g,h generates the whole group

Z~ uniformly, if the exponents are chosenfrom { l,2, ... ,qi,_N)}. Hence, in order for P

to make 1J{v), he chooses r1,r2e { 1,2, ... ,N} and creates 1J{v) as yg'ihr2 (mod N).

We wish to prove that g,h generate Z~ uniformly. We know that g,ÎÎe Z~, and

thus <g,ÎÎ>cZ~. Hence it is sufficient to prove that g,he <g,h>, because this

implies that Z~c< g,ii >, and thus Z~ = < g,ÎÎ >. To prove that ge< g,h >, we have

to find c,de Z such that g = gcfid (modN) = gca,+~h~+db2 (modN). The pair

<g,h> generates Z~ uniformly and the order of g,his (p-1) and (q-1) respectively;

h . . . al fi di " '"'» h th {cal +db] "'1 mod(p-1) 'tb fi di ence tt IS eqmv ent to m ng c,ue a.. suc at ,~..._
0

od(I)' or wt m ng a
ca2+-~• m q-

vector XE Z 4 such that

(
al q p-1 0 Î--(1)
a2 ~ 0 q-tr- 0 .

We will apply Lemma 2.7 to find out when this matrix equation bas an integral

soluti<Jn. Let A be the matrix (;~ ~ p~l q~tJ which bas full rank. The gcd of all

subdeterminants of A of order 2 is

gcd(tzt~ -a2q, a2(P 1), -~(p-1), at(q-1), q(q-1), (p-l)(q-1))=

gcd(a1~ -a2q, (p 1)· gcd(-~,-~,(q-1)), (q -1)· gcd(a1,q,(p -1))) =

gcd(a1~- a2~. (p -1), (q -1)) =

I.

By applyiag Lemma 2.7, we show that the equation Ax (~) has an integral

solutioo. This proves that ge< g,ii >. By using a similar argument we can prov:e iliat

he <g,ii >.

4.4. Thlrd construction of group signatures

For this construction of group signatures we assume that there is already a Trusted
Public Directory in which each person's RSA-modulus is listed (the person's public
RSA-exponent is not needed in this group signature construction). We also assume that
the prime factors of each modulus Ni = p1q1 have the property that

PiE<I>={r -{Ml, r -{Ml + 1, ... , 2r -{Ml- 2} and q i > 3-{M, where M is some public
number. The security of this construction is based on Assumption 1.3.

During the setup, a trusted authority Z chooses an RSA-modulus N, such that both

N and qKN) are coprime to all the N;'s. This number N will be the public key of the

group and nobody will know qi._N). Choosing this modulus is the only task that Z has
to perform, because the secret key of group memher i will he the factorization of his

ownRSA-modulus Ni = Piqi.
So far no group has been created; there is only an already existing TPD. If someone

wants to sign a message, he creates at that moment some "group" of persons. He can
do this by randomly picking some individuals (including himself) from the Trusted
Public Directory of public keys; then he proves that he belongs to that group (i.e., that
he helongs to that suhgroup of memhers of the TPD). So if person i wants to sign

message n, he first chooses randomly some set r of persons from the TPD (including
himself). His group signature will be

f, (/(n))P; modN,

and he convinces the recipient in a zero-knowledge way that this is his correct signature,
that is, that the exponent used in the signature is the smallest divisor of the modulus of

somehody in the set r. This can be done by performing Protocol 4.2, with Q =<I>=

{r 4Ml, r Jiïfl + 1, ... , 2r 4Ml- 2} and V= n jerNj. So the signer convinces the

recipient that the exponent used in the signature is

• an element of <f,={2, 3, ... , 3r 4Ml- 4}, and

• a divisor of ll jerNi.

Each person only knows the factorization of his own modulus. Therefore the
exponent used is the number 1 or is a product of some of the moduli of r \ {i}, together
with q; and/or p1• According to the bounds on the prime divisors of each modulus, we

have that Ni > qi > 3Jiïf (for each j). Hence for all j: Ni and qi are not elements of

<f, and therefore Ni and qi cannot he divisors of the exponent used in the signature.

Also the number 1 is not an element of <f,, and thus the exponent used in the signature
must he pi.

62

If a "group member" wants to deny a signature on a message, he can use Protocol
4.3. If he did. not sign that message, he can successfully perform this protocol, despite
the fact that he did not know he was in such a group.

4.5. Foul'lh construction of group signatures

'Let p be a large public prime and let g, h be public generators of z;. We assume that

there is already a setup for a scheme based on the discrete logarithm (Assumption 1.2),

so person i has a secret key si and a public key k; = gs' (mod p). There is. a TPD with

all these public keys.
To transform this scheme into a group signature scheme, we need no trusted

authority. The "group" is created in the same way as in the previous section, so that if

person i wants to sign message m = j{n), he first randomly chooses some set r of
persons (including himself) from the TPD; his signature will be

r, m$1 (modp).

He must convince the recipient in a zero-knowledge way that the secret exponent used

in that signature is also used in the public key of some person in the group r. Thus they
have to use a protocol that solves the following instanee 4.4 of Figure 4.6:

secretofP

public

to prove to o/

Sj

p,g,h,m,s,r

S=ms; (modp)Ags1 e{kjljer}

Fig. 4.6. Instanee 4.4.

They use the protocol below, which gives no additional information about the person i
and his secret key si. In Protocol4.4 we have compressed the three proofs that

• S is of the correct form, that
• the exponents used in S and in some pul:>lic key ar,e the same, and that

• the public key is used by somebody in r.

Pro~ 4A. (for Instanee 4.4)

Step 1. P chooses numbers r 1, ... ,rm, t 1 , t2 , t3 e { l, ... ,p-1} and a permulation 't'

ofr. Re, s,endft o/ thp,.ll/HIIJJ,t!rs,: x!!= (kt h12 (111od p), y = mf; (~o4p), qn.d

Z-r(j) =kihri (modp) (foralljer).

Step . .2. o/chooses be { 0; l} and sends b to IJ!.

Group Signatures 63

Step 3. P sends 'llin case

b=O: rt, ... ,r1n, ft, t2, t3 and 't'.

b=l: ft+s; (mod p-1), t 2 +r; (mod p-1), t 3 +s; (mod p-l),and index

'l(t).

Step 4. 'llverifies in case

b=O: that the numbers x, y, Zt·····Zm areformed correctly.

b=l: that yS=m13 +s, (modp)andthatxzr(iJ=Sh''+"(g/m)''+s' (modp).

This protocol is trivially complete. 1t is also sound, because if P can answer both

questions, he knows the number s ; that satisfies S = ms' and k; = gs'. So if this

protocol is iterated k times, 'll will be convineed with confidence l-2-k. This protocol

is also zero-knowledge because it can be simulated (with the same probability
distributions) by the following algorithm.

Simulator
Step 1. Choose a permutation 't' ofr, numbers rt, ... ,r1n, ft, t 2 , t3 E {l, ... ,p-1},

and ee {0,1 }.

Compute and send the numbers: Zr(j) = kjhrj (modp) (for all jer),

y = m13 I se (modp), and x= (!Y' h12 (S I Zr(i)t (modp).

Step 2. Receive be { 0,1}.
Step 3. In case

e=b=O: send the numbers rt, ... ,r1ri' ft, t2, t3 and 't'.

e=b=l: send index 'liJ), and ft, t2, t3•

e:;t:b: restart this algorithm.

If a "group member" wants to deny a group signature, he can for instanee use the
disavowal protocol of [Ch90]. He can successfully perform this protocol despite the fact
that he did not know he was in such a group.

Confirmation Protocol 4.4 is zero-knowledge, so it reveals no additional information
about the identity of the signer. But what additional information about the signer is
revealed by the group signature, in other words, we need also to discuss the anonymity
of signers in this construction of group signatures. If we write p = 2dq+l (for q odd),

then, given m and m s (mod p), it is easy to compute the d least significant bits of

s(as mentioned in Section 1.4.1). Thus the recipient of the signature can eliminate

persons from r who cannot have created this signature. To avoid this attack, the d least
significant bits of all secret keys must be the same. And we have to use Assumption 1.2.

64

4.6. ApplicQtions

In Section 4.1 we already mentioned two applications of group signatures. Another
applicationofgroup signatures can be found in [Ped92]. InSection 6.3 of[Ped92] two
distribut!!!d signature · schemes are described: in such a scheme there are n agents
having secret keys and any kof them can together sign messages; while k-1 agents
cannot.

I.n the fust scheme of [Ped92J, the recipient of the signature can see which k agents
have signed the message. In his second scheme this is not the case, but each agent who
participated in signing the message knows who the other k-1 agents were and he can
prove who the other k-1 agents were.

By using group signatures, even this knowledge can be eliminated. Suppose we have
digital group signatures (see Section 4.1), so each agent can create his signature on a
message and the recipient can verity this signature himself. The recipient bas a valid
distributed signature on a message m only if he has k different digital group signatures
on the samemessage (i.e., k different agents signed the same message). With group
signatures noteven the groupmembers .know who signed a message.

We have presenled four different constructions of group signatures. In the first
construction the recipient has to ask Z to open a received signature, while in the three
other constructions the recipient bas to perform the disavowal protocol with each group
member. For the disavowal protocol all group memhers must be available. 1t would be
nice. to create group signature scbemes in which for opening a signature another
situation holds, such as: a majority of the group members can open a signature.

Is it possible to make digital (i.e., not undeniable) group signatures other than by
using [FFS88] on undeniable signatures'l

Can the results of [SS90] and [Per85] · be appli~ to show that specific choices of the
exponents in the constructions of Sections 4.~-4.4 and 4.5, respectively, preteet
anonymity in ways equivalent to known computationál problems?

Can the trusted authority Z be replaced by a multiparty protocol?

Is it possible to m()dify the fourt:h group signature scbeme in such a way that the
number 0f tr~mi*~ ruw during t*e conftrmat:ion protocol is independent of the
nl11Dber o~gro~JI'.Q}embel's?

What knowledge is revealed by releasing < g,h > (see Section 4.3.3)? With this
knowledge, is it easier to factor the modulus?

A group signature scheme is a signature scheme with one public and several secret
keys, and it is infeasible for conspiring group memhers to create a new secret key out of

their own secret keys. Is it possible to create a complementary scheme with one secret

and several public keys, in which it is infeasible for conspiring group memhers to create

a new public key out of their own public keys?

5
Signatures uncondi"tionally secure
for the signer*

5. 1. Introduetion

Digital signatures are intended to provide legal security in digital communication, as
handwntten signatures should do in conventional communication: a digital signature
guarantees that the presumed signer really is the sender of this message (or has at least
authorized it), and the recipient can prove this to third parties. All known conventional
signature schemes have a publicly known test predieale test, that can evaluate
signatures in polynomial time. Each signer has a public key PK; a number S will be
accepted as his signature on message m if it satisfies test(PK,m,S) = "true". This
implies that forging signatures is in the complexity class NP: one can guess a signature
and test its correctness in polynomial time.

All these schemes are based on a generally trusted, but unproven, complexity­
theoretic assumption (such as the infeasibility of integer factoring or the computation of
some discrete logarithm). Hence signatures can be forged if this assumption turns out to
be false. The signers thus have only computational security, and the presumed signer is
defenseless because the forged digital signature looks exactly like an authentic one and
satisfies the test predicate. The recipients of the signatures have unconditional security:
if a received signature satisfies the test predicate, then this signature will always be
valid, no matter how much computing power the signer has. In order to deal with
increasingly powerful computers and better "breaking" algorithms, then, one must

* Tills chapter is based on the paper "Cryptographically strong undeniable signatures, nnconditionally. secure for the
signer" by David Chaum, Eugène van Heyst and Birgit pfitzmann, Advances in Cryptology-CRYPTO '91, J.
Feigenbaum ed., LNCS 576, Springer-Verlag, pp. 470-484; and on the paper "How to make efficient Fail-stop

signatures" by Eugène van Heyst and Torben Pedersen, which will appear in Advances in Crypto/ogy-EVROCRYPT
'92. This chapter contains only a part of the first paper; the rest wiJl appear in the Ph.D. thesis of Birgit Pfitztnann.

68

increase often enough the so-called security parameters, such as the size of the used
modulus (which hopefully cannot be factored).

In this chapter we will study the "opposite case", in which the signer bas
unconditional security and the recipient computational security. Clearly, these
signatures cannot be conventional digital signatures. In such a scheme, sotneone who
wants to forge a signature of another person on some message cannot do more than
merely guess the signature, and cannot verify locally whether bis guess was correct.

An example of such a scheme is the fait-stop signature (see [WP89], [BPW90],
[PW90] and [PW9l]). With such a signature, unforgeability also relies on a complexity
theoretic assumption; but even if a signature is forged, the presumed signer can prove
that the signature is a forgery: he canprove that the system's underlying assumption bas
been broken. This proof of forgery may fail (with a very small probability), but the
ability to prove a forgery does not rely on any complexity theoretic assumption and is
independent of the forger's computing power. Hence, the signer is protected against
forgers with unlimited computing power, because after the first forgery, all other
partleipants in the system and the system operator know that the signature scheme bas
been broken, and the system will be stopped. That is why this system is called "fait­
stop". If signatures become invalid after forgery bas been proven, the signatures are
unconditionally secure for the signer.

Another example of the new signature schemes is the unconditionally secure
signatures of [CR90]: these are signatures in which both the signer and the recipient
have unconditional security, but they differ widely from conventional signatures: each
participant bas a different test predicate, and this test predicate depends on how many
partleipants have received the signature. Moreover, active attacks on recipients tnay
damage the security ofthe system.

Signatures unconditionally secure for the signer

[HPl] [HP2]

Fig. S;l. An overview of currently knoWil signatures that are unconditionally secure
for the signer.

In this chapter we present three signature schemes that are unconditionally secure for
the signer (see Figure 5.1):

(i) A new efficient construction offail-stop signatures (called [HPl] in Figure 5.1), in

Signatures unconditionally secure for tbe signer 69

which a signature on a message consists of only two numbers, rather than of
signing a message bit-wise as in [BPW90] (see Subsection 5.3.3).

(ii) The first construction of undeniable signatures that are unconditionally secure for
the signer (called [CHP] in Figure 5.1; see Section 5.4). We show that these
signatures are not fail-stop signatures.

(iii) The first construction of convertible signatures that are unconditionally secure for
the signer. If the signer reveals some numbers, then these signatures turn into fail­
stop signatures (called [HP2] in Figure 5.1; see Section 5.5).

In principle all these signatures use one-time keys: this means that for each
signature a new public key must be used, in order to provide unconditional security for
the signer. But see also Subsection 5.3.4 for efficient constructions how to use the
public key several times, withoutendangering the unconditional security for the signer.

5.2. Notatlon

Throughout this chapter pand q denote large primes (say, of at least 500 bits) such

that q divides p-1, and Gq is the unique subgroup of z; of order q. As any element

b:Fl of Gq generates the group, the discrete logarithm of ae Gq with respect to the
basebis defined and denoted by logb(a).

In this chapter we will use generators g,h of Gq and notgenerators of z; (see for
instanee also [CvA89]). Note that this is not the usual setup fora scheme basedon the
discrete logarithm. The reason for doing this is that each nonzero element x bas a
multiplicative inverse roodulo q, while this is not true roodulo p-1. So in G q we may

rewrite gx =hy (modp) as g=hylx (modp) for x;;:O(modq). We assume that

computing the discrete logarithm in z; is infeasible (Assumption 1.2), and thus also
computing the discrete logarithm in a large subgroup, i.e., in Gq.

In this chapter we denote by
SK the secret key of the signer,
PK = pub(SK) the corresponding public key,
S = sign(SK,m) signature of the signer on message m,
test(PK,m,S) polynomial-time (in a security parameter k) computable predicate

to verify the signature S on m . A signature is called va lid if it
satisfies this predieale test.

70

5.3. Fan-stop signatUres

5.3.1. Generalintroduction

Fail-stop signatures have been formally defined in [PW90]. This Subsection 5.3.1 only .

gives a brief and rather informal description of the properties of fail-stop signatures.

In a fail-stop signature scheme, exponentially many (in k) secret keys correspond to

a given public key, and different secret keys will (with very high probability) give

different signatures on the same message. All these signatures satisfy the test predicate
and will thus be va1id. So note that with fail-stop signatures not only one signature

satisfies the test predicate. However, the signer knows only one of these secret keys and
can thetefore construct only one of these signatures on a message.

Furthermore, given the public key and signatures on some messages, a forger must

not be able to guess which signature the signer is able to construct on a new message, so
that even if the forger (by using bis unlimited power) succeeds in making a valid
signature, this signature will with very high probability be different from the signer' s

signature. Given such a forged signature the signer must then be able to prove that it is
different from bis own signature, thereby proving that it is a forgery. After having

discovered such a forgery and proved it, the signer should stop using the scheme.

Fot fail-stop signatures we require tbat the predicate test must satisfy that for every
secret key SK* corrèsponding to PK

test(PK, m, sign(SK*,m)) = "true".

A scheme is a fail-stop signature scheme if it satisfies the following three
requirements:

(i) Let PK and the signature S= sign(SK,m) on m be given. Then there are
exponeritially many (in k) possible secret keys SK* corresponding to PK such
that S= sign(SK*,m). Furthermore, if such a secret key SK* is chosen at
random, then the probability that sign(SK,m*) = sign(SK*,m*) is negligible,

for every message m*=t!: m.
(Informally: it is notpossible to compote thè signer's signature on a new message,
even with unlimited computihg power.)

(ii) There is a polynomial-time compl.ltable tunetion proof, which on input SK, PK, a
message m, and a valid, forged signatun'l S' :;é sign(SK,m) on m, outputs a
proof that S' is a forgery.

(lnformally: the presurned signer is able to supply a proof ofthe forgery.)
(iii) No signer with pölynomial~time computing power is able to construct a valid

signature S on a given message mand also cötlstruct a proof that Sis a forgery.
(lnformally: the signer cannot make signatutes which he can later prove to be
forgeries.)

Signatures unconditionally secure for the___...si""gn'-'-er'-----------~--------'7-=-1

These requirements are for one-time keys. It is not hard to generalize this definition
of fail-stop signatures to camprise schemes in which more than one message can be
signed with one secret key.

The first two requirements imply that fail-stop signatures are unconditionally secure
for the signer, whereas the third requirement says that the scheme is secure for the
recipients of the signatures. Unlike the security for the signer, the security for the
recipient depends on a complexity theoretic assumption. The reader is referred to
tPW90] for a thorough discussion of the properties of fail-stop signatures. (To avoid
confusion, note that [PW90] considers different security parameters for the security of
the signer and for the security of the recipient, while in our scheme these are equal.)

5.3.2. The construction of (BPW90), (PW91)

In [BPW90] and [PW91] a construction of a particular fail-stop signature (called a
hiding scheme) is given. This scheme is based on the assumption of the existence of
claw-free pairs of permutations ([GMR88]): this means that there are permutations fo

andf1 of the same set such that it is infeasible to find a pair (x0 ,x1) that satisfies
fo(Xo) = IJ(x1) (which is called a claw).

This hiding scheme is based on the idea of Lamport (one-time) signatures

([DH76]): Let g be a one-way function and k an a priori fixed number indicating how
many bitscan be signed. Each person chooses random numbers 'i,o•'i,I (i= 1,2, ... ,k)

and publishes his public key

{
g(1i,o), g(r2.o),. ··• g(rk.o),
g(TJ,I), g(r2,1), ... , g(rk,l).

If he wants to sign the rh bit with value hE { 0,1 }, he sends the preimage 'i.b of

g('i,b) to the recipient, who can easily verify its correctness. Thus the signer can use this

public key to sign at most k bits.

To transform this Lamport signature into a fail-stop signature, the authors require
that g also fulfills the following two conditions:

• for a fixed value a> 0, and for each xE dom(g), the value g(x) has at least

2a preimages,

• g is collision-free for the signer.
Such a function gis called a bundlingfunction, and this tunetion is nat chosen by the
signer but by the recipient: otherwise this function need not be collision-free for the
signer. It can easily be verified that the Lamport signature scheme that uses a bundling
function is a fail-stop signature scheme. The following construction of a bundling
function gis proposed, that uses a claw-free pair of permutationsj0 andfi:

g(ao, ... ,aa-l•x) := fao (... fau-2 <lau-I (x)) ...),

72

where a;E {0,1} (i= 1, ... ,0') and x is an element from the permuted set. It is easy to
see that finding a g-collision is as hard as finding a claw, and that each image of g bas

zu preimages; thus this function gis a bundling function.

In [GMR88] efficient claw-free pairs of permutations are constructed as follows. Let

m be a large Blum integer (so m = pq, where both primes p and q are congruent 3

mod 4) and define for xe {0,1,2, ... ,m-l }:

lxl·= {x if x E {0, 1, ... , m:Ïl },
. ·c {m+l m+3 1} m-x 1 xE ~2-,-2-, ••• ,m- .

Then the following two functions are permutations of D={ 1~ m:Ïl I Jacobi symbol

(~)= 1}:

fo(x) := lx2 modml,
ft(x) :=14x2 modml.

In [GMR88] it is proven that finding a claw for these two permutations (i.e., a pair

(.~,,x1) with fo (Xo) = ft (x1)) is as hard as factoring m. The bundling function g
that uses these two permutations can be rewritten as

a za
g(ao •. .. ,au_1,x) = 14 x modml,

where a= !,f!,.01a;2i and xE D. Thus the application of this bundling function g

mainly consists of 0' squarings, and the collision-freeness of g depends on the
infeasibility of factoring large Blum integers.

This hiding scheme that uses Lamport signatures has the disadvantage that it signs
messages bit-wise: for each bit of the message, one signature bas to be given. Of course
messages can also be basbed before being signed, to rednee the length of the fait-stop

signature. In the next subsection we construct a fail.,.stop signature that does not have
this disadvantage: the length of the signature is twice the length of the (hashed)

message.

5.3.3. New construcflon·of.fail-atopslgpatures

In this subsection we describe · an efficient fail-stop · signature (based on Assumption
1.2), thatdoes not sign messages bit-wise. Let g and h be elementsof Gq such that no
participant knows logg(h). Reeall that these two elements have order q which is
prime. These elements can either be chosen by a trusted authority, when the system is
initialized, or by the participants using a coin-flipping protocol. Although (p,q,g,h) is
part ofthe public key (called the prekeyofthe scheme), it will not be mentionedas part
of the public key in the following. To give a better idea ofthe scheme, we will first

Signatures unconditionally secure for lhe signer

assume that a person issues only one signature. Let the secret key of person ;;{ be

SK = (Xt.X2.Yt·Y2) E z:.
and ;;{ publishes the corresponding public key

PK= pub(SK) = (p1,pû = (gxlhxz ,gYihY2).

To signa message me Zq, ;;{ computes the following numbers:

S sign(SK,m) = (a1,aû, where

a1 = x1+my1 (rood q),

02 = x2+my2 (rood q).

The. recipient of this digital signature verifies that

PtPz agalhaz (modp).

73

(5.1)

(5.2)

(5.3)

The following three lemmas show that this signature scheme is a fail-stop signature
scheme. First note that for every secret key SK* corresponding to PK, the predieale

test(PK,m,sign(SK*,m)) holds, i.e., for every tuple (x 1 ,x2,y1,y2)e z: that

satisfies

we have

PK = (gxlhxz ,gY1hY2),

O"t = Xt+myt (rood q),

a2 = x2+my2 (rood q),

Lemma 5.1. The public key PK, together with the signature sign(SK,m) on m,

contain no information about which of q possible secret keys are used for SK.

Proof. This lemma is a special case of Theorem 4.4 of [Ped91]. Another way to prove

it is the following. Define h:= ga, p1:= ge1, p2 := ge2 • This representation is possible
because gis a generator of Gq. Then we can write Equations (5.1) and (5.2) as:

{

e1 =x1 +ax2 (modq),
e2 = Yt + ay2 (modq),
a1 =x1 +my1 (modq),
0'2 =x2 +my2 (modq).

The fact that equation (5.3) holds, follows immediately from Equations '(5.1) and (5.2).
The forger has to find a solution (x1,x2,y1,y2) to the equations

[
1 a 0 0][Xtl [el l 0 0 I a Xz = e2 (rood).
IOmO Yt O't q
0 1 0 m y2 a2

74 Chapter 5

It is easy to see that this matrix has rank 3 (the rank is defined because q is prime),
hence, since there is at least one solution, there are exactly q solutions to this equation.

0

Lemma 5.2. Let PK, the signature S = sign(SK,m) on m and a valid signature

S' = ('li, 12) on m' (so p1pi' = g -r, h -rz), be given. Then there exists a unique secret

key SK* corresponding to PK such that S = sign(SK*,m) and S' = sign(SK*,m').

Proof As in the proof of Lemma 1, a solution (x1 .X1-Y! ,y2) to the matrix equation

[~ g ? ~][x' l 1=~ I 1 0 m 0 x2 _ a 1
0 1 0 m y1 - a2
1 0 m' 0 y2 r1
0 1 0 m' !z

has to be found. It is easy to see that this matrix has rank 4 (because m' "# m), so there
is exactly one solution. 0

Lemma 5.1 says that there are q possible secret keys corresponding to a given
public key and one given signature. By Lemma 5.2, each of them will yie1d a different
signature on a message m'::F- m. This shows that the first requirement for the security
of the signer is satisfied.

Lemma 5.3. /f the presumed signer receives a valid, forged signature S' = (r1, 12)

on m (so p1pi = g -r, h 'Z"z), butS'"# sign(SK,m), then he can compute log
8
(h).

Proof By writing sign(SK,m)=(a1,az), we have that p1pi =g-r1h-r2 =ga1ha2 and

thus that ga,--r, =h-rz-Gz (modp). lf crz= 12· then we also have a1 = r1 and thus
S' = sign(SK,m). This is a contractietion and therefore the presumed signer can

compute logg(h) as (a1 - r 1)(r 2 - a2)-1 modq. 0

Hence, under the assumption that the signer cannot compute log
8

(h), this
logarithm is a proof of forgery. Thus we can define

proof(SK,S') ;= (a1 - r 1)(r2 - a 2)-1 modq.

Lemma 5.3 also implies that the signer cannot compute a valid signature different
from sign(SK,m) without being able to compute discrete 1ogarithms. Hence, the
signature scheme is computationally secure for the recipjents if it is infe~sible to
compute logg(h). So this scheme also has properties (ii) and (iii) of fail-stop
signatures.

Signatures unconditionally secure for the signer 75

Note that this secret key is a one-tîme key: îf two different messages are signed
using the same secret key, then it is easy to compute the secret key from these
signatures.

Remark 5.1. In the above scheme, the public key consists of two numbers modulo q. lt
is possible to reduce the size of this public key as follows. Let H be a.collision-free
hash function that maps the elementsof Gq (of length l(q), which is the number of
bits of q) into numbers of a smaller size. Then the pubtic key will be

PK* = (H(p1),p2),

where p 1 and p 2 are defined as before. A signature (cr1.<Ji) on the message m is
constructed as before, and it is verified as

H(l'1h(12 Pzm) = H(pl).

By using this public key, the Lemmas 5.1, 5.2 and 5.3 have to be modified. For
instance, Lemma 5.3 has to be modified as follows:

Lemma 5.3.a. Jf the presumed signer receives a valid, forged signature s· = ('t"J '12)

on m (so H(g";1h";2 pzm)=H(Pt))), but S':t:.sign(SK,m), then he can compute

logg(h) or he has found a collis ion for H.

Long messages can first be hashed into smaller messages before signing, but then
Lemma 5.3 has to be modified in a similar way as was done in Lemma 5.3.a. Another
modification of our fail-stop signature scheme is the following, in which H, p 1, p2 ,

cr1, and cr2 are defined as before.

PK* = (H(pl),H(pz)),

S* = sign(SK,m) = (O"t,<Ji.P2).

The recipient verifies this signature S* as

Even if no hash functions are used in the public key, it is more efficient to verify the
signature by computing

8 (1,hC1zp2m,

and comparing it with p 1• This requires Iess than 2l(q) multiplications, if the products

gh, 8P2• hp2 and ghp2 are precomputed.

76

5.3A. More than one slgnature per publlc key

As noted in the previous subsection, a person can use hls public key (and secret key)
only once. We present three different ways to overcome tbis problem: the public key

can be used to provide k messages with a signature, and the signer still bas
unconditional security. In tbe first two ways, tbe secret key consistsof 2k numbers,

while each signature consists of 2 numbers. These two ways differ in tbe computations

needed. In tbe tbird way, tbe secret key consists of at most k elements, while each

signature consists of r log k l + 3 numbers.

Metbod 1. Person 51 chooses as a secret key

SK = (xl, Yt• x2, Y2•· ··• xk+l• Yk+l),

and he publishes the corresponding public key

PK = (Pt•···•Pk+l) = (gxlhYl , ... ,gxk+lhYk+l).

To signa message me z;. Jil computes tbe following numbers:

sign(SK,m) = (0'1,0'2), where

a1 = x1 + mx2+ ... +mkxk+l (modq),

0'2 =yt +my2+ ... +mkyk+l (modq).

The recipient of tbis digital signature verifies tbat

m mk - O'J 0'2 PtP2 ···Pk+l =g h (modp).

After issuing signatures on k different messages, the signer still has unconditional
security. (This follows from Theorem 4.4 of [Ped91].) Tbe security of tbe recipient
follows from tbe same arguments as in tbe proof of Lemma 5.3.

Metbod 2. ([Pf91]) Person Jil chooses tbe same secret key and public key as in Metbod

l. In Metbod 2, tbe signature on tbe message depends on tbe number of messages tbat Jil
bas signed previously: If Jil bas signed i-l messages (1 ::;; i::;; k), tbe signature on a
message, m, will be

sign(SK, m, i)= (i,a1,a2), where
a1 =x;+ mxi+I (modq),
0'2 = Y; + myi+l (modq);

The recipient of this signature verifies tbat

P;Pi!t g01 h(J2 (modp).

Hence, at the cost of including a counter in tbe signatures, tbe computations of the
signet as well as the recipient are easier bere tban in Metbod l. Again, the security of
the recipient fol1ows from Lemma 5.3.

Signatures unconditionally secure for the signer 77

In order to prove that the signer bas unconditional security after issuing k different

signatures, it is suffîcient to show that the rank of the following (3k+ 1)x(2k+2) matrix

Ak is 2k+ 1. This will be done by proving that matrix Ak below can be obtained from

Ak by elementary row operations, and noting that matrix Ak bas rank 2k+ 1.

1 0 mi
1 0 mi 1 0 m1 1 0 m2 I 0 mi I 0 m2 1 0 m2

Ak I 0 and ~ l 0 m2
mk

1 0 mk 1 0 mk I a I 0 mk I a l a

I a

To see that this matrix bas rank 2k+ 1, consider the following four rows of matrix Ak:

0
0
0
0

0 1 0 ~ 0 0
001 Om;O
OlaOOO
OOOlaO

0
0
0
0

By Lemma 5.1, this submatrix bas rank 3 and the third row can be removed. By using
this metbod for i= 1,2, ... ,k-l, we may delete all rows (0 ... 0 1 a 0 ... 0) from

matrix Ah except the last row. This results in matrix Ak.
Hence, P K and k signatures sign(SK,m 1,1), ... ,sign(SK,m"'k) contain no

information about which of q possible secret keys are used for SK, and each of these
possible secret keys will yield a different signature on a new message m*.

Metbod 3. Use one ofthe two types oftree-authentication (assume that k=2n).
(1) (see [Merk80]) The signer bas k(=2n) pairs of secret key S; and public key PK; =
pub(SKi). These numbers PKi are used to construct a binary tree by using a collision
free hash function h, as indicated in Figure 5.2 (left-hand side). The public key PK

will betheroot of the tree and the secret key SK contains all other nodes of the tree
(the signer does not need to store all the elements of SK).

The ith signature on message m; does not only consistsof sign(SK;,m;). but it also
contains n+ 1 nodes of the tree, so that the recipient can verify the signature (see the
right-hand side of Figure 5.2, remember that the recipient only knows PK). So each
signature consists of n+3 numbers, which is logarithmic in k.

(2) (see [Merk87] and [GMR88]) The signer starts with one pair of a secret and public
key at the root. Then he creates two sons, each having a new pair of secret and pubtic
key, and he uses the secret key of the father to sign the note saying: "my two sons have
public key ... and ... ". For each of these two sons he creates two new sons, each having a
new pair of secret and public key, and he uses the secret key of each father to sign the
note saying what the two new public keys of the sons are. And so on.

78

He can sign messages by using the secret key that belongs to a leave of the tree, and
a complete signature consists of this signature and the corresponding branch of the tree
with the signed notes. But the signer does not need to build the complete tree during the
setup: the tree is built up from left to right as the signatures are needed.

PK

SK

' ' '
' '

o To be revealed by the signer for using SK 5
IJ To be computed by the recipient

Fig. 5.2. Three authentication: tbe lefi-band side indicates how to constmct the tree, and the right-hand

side shows which numbers must be revealed by the signer and how tbe recipient can verify the signature.

5.4. Undenlable signatures unconditionally secure tor the signer

5.4. 1. Descrlptlon of the signature schema

Let g1,g2 and g 3 be generators of G q such that no participant knows logg}g;)

(i#j) (in this subsection we will use that g1 :# 1 and g1 :# g2). These elements can
either be chosen by a trusted authority, when the system is initialized, or by the
participantsusinga coin-flipping protocol. They also choose security parameters l, l',
which will be the number of times that the confirmationldisavowal protocol has to be
iterated. The prekey of the scheme is (p,q,g1,g2.g3,J,n, To give a better idea of our
scheme, we will first assume that a person issues only one signature. Let the secret key

of person .Jt be

SK = (x1,x2,x3)e :Z~,

and suppose){ publishes the corresponding public key

PK=pub(SK)=gf1g?g33 (modp).

To signa message me 7Lq•){compotes:

S = sign(SK,m) = x1 + x2 + mx3 (mod q).

(5.4)

(5.5)

Signatures unconditionally securc:..e ::..:cfo"--r th=e'-'s""ign<=e=-r _________________ _:..::_79

Tbis signature is an undeniable signature. Hence the signer (.9l) bas to performa
zero-knowledge confirmation protocol (see Subsection 5.4.3) with tbe recipient to
convince him of the correctness of his signature, i.e., of the correctness of the assertion:

"I know a SK such that PK = pub(SK) and S sign(SK,m)",

or he has to perform a zero-knowledge disavowal protocol (see Subsection 5.4.4) to ·
convince him that some number S' is not his signature on m, i.e., that

"I know a SK such that PK = pub(SK) and S' c:t; sign(SK,m)".

Remark 5.2. This scheme is not a fail-stop signature scheme: if a person breaks the
underlying Assumption l.2, then he is able to disavow all bis previous signatures, and
nobody wîll notice that the underlying assumption bas been broken. Tbis is not the case
with fail-stop signatures.

5.4.2. Security of this signature scheme

Security tor the verifier
By using the Certified Discrete Logarithm Assumption (Assumption 1.2), we will prove

that tbe function used, i.e., pub, is collision-free: this means that .9l cannot find two
different secret keys baving the same public key.

Lemma 5.4. On Assumption 1.2, it is infeasible for .9l to have a probabilistic
polynomial-time algorithm that on a random triple of generators (g1,g2,g3) of Gq

as input, outputs a Gq-collision, i.e., a pair (x1 ~,xg) c:t; (y1,y2•Y3)e Z~ satisfying

g[I g? g33 = g{l g§_2 gi3 (mod p).

Proof. . Assume that .9l bas such a probabilistic polynomial-time algorithm AL to

compute these collisions. Then .9l can compute collisions for random generators g1,g2
of G q as follows:

~ ~ ~~ Step 1. Cboose e1,e2eR &.q and r 1,r2eR &.q (r1,r2 not both zero). If g1 g2 =1,

then .9l bas found a non trivia! collis ion for g 1 ,g2 . So suppose that g(gi * 1;
hence it is a generator of Gq.

Step 2. Apply tbe algorithm AL on the three generators (gf1, g~2 , g(gi). With a
probability corresponding to tbe algorithm AL, it outputs a nontrivial collision

(x! ~,x3) c:t; (Yt ·Y2•Y3) for (gf1
, g~2 , g(gf).

Rewrite the obtained collision as gfl<xt-Y!)-~(y3 -x3) g2e2 (x2-Y2)+~(Y3-x3) (modp).

If x3 == y3, then it is easy to verify that we have a nontrivial collision for g 1 ,g2, so
assume tbat x3 * Y:3· If the collision obtained is trivia! for g1,g2, then we have

80

11 = (xJ-YJ)eJ (modq) and" = (x2-Y2)e2 (modq). Thus we obtain from the algorithm the
1 Y3 X3 2 Y3 X3

trivial collision for only one choice of (r 1 ,r2), but from g(8f the algorithm cannot
determine which of q pairs (r 1,r2) was used. Hence with probability (1-1/q) the
output of the algorithm produces a nontrivial collision for g1,g2• So the overall
probability that this metbod succeeds is at least (1-1/q) times the probability that the
algorithm AL outputs a collision for triples, which was assumed to be infeasible. Q

The confirmation and disavowal protocol are sound (which will be proved in
Subsections 5.4.3 and 5.4.4) and the function sign is deterministic, so according to

Lemma 5.4, it is infeasible for ..91. to convince the recipient that S is a valid signature on

mand disavowit later (otherwise ..91. would have found two different secrel keys having
the same public key, which contradiets this lemma). So the verifier has computational

security.

Security tor the signer
By using the following lemma, we will show that if a forger knows the public key of ..91.

together with bis signature on m, and if he forges a signature of ..91. on m' :t:. m, then

the probability that ..91.can disavow this forged signature is 1-1/q.

Lemma 5.5. Let PK = pub(SK) and the signature S = sign(SK,m) be given. Then

for each forged signature S' on m' there exists a unique SK* such that
PK = pub(SK*), S = sign(SK*,m), and S' = sign(SK*,m~.

Proof. Because g1 is a generator of Gq, we define a,f3, y as g2 = gr (mod p),

g3 gf(modp), and PK=g{(modp). We want to find (x1.x:z,xJ) that solves the
following equations:

{
y 5 Xt + lXX2 +. f3x3 (modq},
S = x1 + x2 + mx3 (modq),
S' = x1 + x2 + m'x3 (modq).

The matrix of these three equations can be transformed by row operations into

[
l a f3 l 0 I-a m-/3 .
0 0 mf -m

Because we require that m :t:. m' and that a :t:. l (g1 :t:. g2), this matrix has rank 3, and
thus there is exactly one solution to our system of equations. Q

Thus, given the public key of .>I and a valid signature on m, this determines exactly
q secret keys that satisfy the conditions (5.4) and (5.5) together, and each of these q

sectet keys determines a different value for the signature on a message m' (:t:.m). So

the forger can only guess the secret key used; thus with probability 1-1/q he chooses
another secret key. Because of the completeness of the disavowal protocol, any

signature on m' other than sign(SK,m') can be disavowed by .Pl with probability
exactly 1. So the signer has unconditional security with exponentially smalt error
probability (because with probability 1/q the forger chooses the correct secret key).

Note that the security of .Pl only depends onthefact that g1 * g2 , and not on the
randomness of the generators.

The forger may ask .Pl several times to disavow (forged) signatures on m', and
because there are only q possible signatures for m', we cannot allow him to try them

all. If we restriet him to {(i attempts, then it is easy to see (by using the previous

Lemma 5.5) that the probability that .Pl can disavow all these {(i forged signatures is at

least 1--Jq-.

5.4.3. Confirmation protocol

If a signer wants to convince the recipient of the correctness of bis signature S=
sign(SK,m) on m with public key PK = pub(SK), they can perform Protocol 5.1 of
Figure 5.3 (which has to be iterated I times).

Signer

chooseR = ('i,r2,r3) ER Z~,
compute SK' a SK + R, PK' = pub(SK'),
and S' = sign(SK',m)

PK',S'

b

{
R :b=O
SK' :b=l

Recipient

choose b ER {0,1}

verify that

{
PK' = PK · g(gf} g'.j :b = O
S' = S+11 +r2 +mr3

{
PK' = pub(SK')
S' = sign(SK',m) :b = 1

Fig. 5.3. Conflfll1ation Protocol 5.1 for undeniable signatures, unconditionally secure
for the signer.

Lemma 5.6. Protocol 5.1 is a perfect zero-knowledge interactive protocol to
convince the recipient that the signer knows a satisfying assignment for

"I knowa SK such that PK =pub(SK) and S sign(SK,m)".

Proof. This protocol is a special case of the proof system for random self-reducible
relations of [TW87]. This can easily be verified by using:
N=(q,m),XN=(PK,S), YN=SK,

82 5

relation RN on XXY: ((PK,S),SK)e RN ~ PK = pub(SK) and S = sign(SK,m).
blinding: blind(SK,R) = SK+R, and

A(PK,S,R) := (PK',S1, where PK' = PK · g(g!} g!J and S' = S +Ij + r2 + mr3 • Cl

5A.4. Disavowal protocol

We assume that the presumed signer wants to disavow a forged signature SF on a
·message m. We will first show a simplified protocol. To do so, the signer and the

recipient can perform the disavowal Protocol 5.2, which takes l' rounds. In each round

the signer chooses randomly R = (r1,r2,rûe Z!, compotes

SK' = SK+R,
PK' = pub(SK'),

S' = sign(SK',m),
SF' = SF+Ij +r2 +mr3;

and issues commitments on PK',S' and SF' to the recipient. Tnen the recipient can

choose one out of the three challenges:
Cl. Signer must open the commitments on PK' and SF', and must reveal R,

C2. Signer must open the commitments on PK' and S', and must reveal SK',
C3. Signer must convince the recipient that S''#SF', without revealing these

numbers.

This is depicted in Figure 5.4, in which the 0 denotes commitments on numbers,
and the three possible challenges are indicated.

C2. reveal SK'

C3. prove SF''#S'

Fig. 5.4. The three blobs and tbe three challenges tbat the verifier can ask for.

For blobs, we will use the following efficient commitment scheme, which is

unconditionally secure for the signer. ~t be .Z
11

= {O,l, ... ,q-1) be the value to be

committed to, and let the blob be

'B(b,t)=lh1 (modp),

where te {0,1, ... ,q-1} and g,h are two generators of Gq such that log8 (h) is not
known (this blob construction was simultaneously proposed in [Ped91]). If one created

the blobs '1K_br,t1) and 'B(b2,t2), then one can also compote and open the blobs

'JK,b1 +b2, t 1 +t2) and 'B(b1-b2, t 1 -t2). Hence the committed values in these blobs

Signatures unconditionally secure for the signer 83

can be added and subtracted, and tbus it is sufficient in Challenge 3 to prove that the
committed value SF'-S' is nonzero. But even this difference may not be revealed, so
tbe protocol needs tbe following blinding:

('B(b,t)/ = lrhtr = 'B(br,tr) (modp).

If re R z; = { l, ... ,q-1}' then br is uniformly distributed in Zq for b;t:{), and br is .

always 0 if b=O. Because 'B,.b,t) and 'B(br,tr) together uniquely determine r, the

signer may not reveal botb 'll,.b,t) and the pair br, tr at the same time; otherwise, bis

uniquely determined. Hence an additional level of commitments is needed for tbe
disavowal protocol, as shown in Figure 5.5.

The numbers SF', S' and r(SF'-S') are elements from Zq and thus we can

compute the blobs 'll,.SF: *), 'B(S', *) and 'B(r(SF'-S'),*) by using the blob

construction above. But these blobs are elements from G q• and we cannot compute tbe

blobs 'B('ll,.SF:*),*), 'B('ll,.S',*),*) and 'B('ll,.r(SF'-S'),*),*) by the same blob

construction. Thus for the outer commitments we need an efficient embedding
À: Gq H Z:q' (for a prime q' ?::. q). For instance, if we have that p = 2q+l,

Gq = z; I {±1}, which is represented by {1,2, ... ,q}, then we can use tbe embedding:

À() = {x ~f x e {1, .. . ,q -1},
x 0 tf x ==q.

Cl. open A,B,b, reveal R C2. open A, C,c, reveal SK'

C3. open B,C,D, reveal r

Cl. openD,d

Fig. 5.5. The disavowal Protocol5.2 with the three challenges Cl,C2 and C3.

Disavowal protocol5.2. (see Figure 5.5)

Repeat I' times:
The signer computes PK', SF' and S' as indicated in tbe beginning of this

subsection, and chooses re R { l, ... ,q-1 }. He creates commitments A,b,B,c,C as

indicated in Figure 5.5, computes o= r(SF'-S') (mod q), d= (blcY (mod p),

and creates tbe commitment D.
The recipient receives A, B, C, D and can choose one of the three challenges:

84 5

C 1. Signer opens the commitments A, B, b, D, d and reveals R.

Recipient verifies the openings and that ä :;éÜ, SF'= SF+ 1j + r2 + mr3 (modq},

and that PK' = PK · gê 8f g'f (mod p).
C2. Signer opens the commitments A, C, c and reveals SK'.

Recipient verifies the openings and that P K' = pub(SK') and
S' = sign(SK',m).

C3. Signer opens the commitments B, C, D and reveals r.

Recipient verifies the openings and that d = (blcY (mod p).

Lemma 5.7. This disavowal Protocol 5.2 is a perfect zero-knowledge interactive
protocol to convince the recipient that the presumed signer either knows a satisfying

assignment for

"/ know a SK such that PK = pub(SK) and SF-:;:. sign(SK,m)",

or can break the commitment scheme.

Sketch of tbe proof.
Completeness. It can easily be verified that if the signer knows such an SK and
behaves correctly, then he can answer all three challenges.
Soundness. We will prove that if the signer answers all three challenges, then the
recipient can either open a commitment in two ways, or he knows that SF'-:;:.S'. If the
signer opens a commitment in two ways, we have proven the statement. So suppose that

he answers everything correctly: he reveals numbers SK', S', SF', d, r, ~ x, y, z that

satisfy b = 'll..SF',x), c = tJl..S',y} and d = 'll..~z). If we define OI' := r(SF'-s'}

and z* := r(x-y), then 'll..~.z*)= 'll..ä.z). If (~.z*):;é(~z), then the recipient

bas a commitment that can be opened in two ways, and if (ä*,z*)=(~z), then it is
easy to see that SF' -:;:. S'.
Perfect zero-knowledge. We will show that each of the three casescan be simulated.

Cl. Choose R, ä-:;:.0 and C randomly, and compute PK'=PK·g(g2_2g'f (modp),
SF' SF+'î +r2 +mr3 (modq), andcommitmentsA, b, B, d, D.

C2. Choose SK', B and D randomly, and compute P K' = pub(SK'), S' =
sign(SK',m), and commitments A, C, c.

C3. Choose b, c, r"#-0 and A randomly, and compute d=(blcY, and commitments
B,C,D.

lt can be easily shown that in each case this simulator can answer the corresponding
challenge, and that in each case the joint probability distribution on the values visible
for the recipient is the same for the signer and the simulator. Q

Signatures unconditionally secure for the signer 85

5.5. Convertible undeniable signatures unconditionally secure tor the
signer

Convertible undeniable signatures were introduced in [BCDP90]. Briefly, these
signatures allow the signer of undeniable signatures to change bis signatures to ordinary
digital signatures. In Section 5.4 an undeniable signature scheme was presented in
which the signer is unconditionally secure. This section combines the ideas of
[BCDP90] with Sections 5.3 and 5.4 by constructing an undeniable signature scheme
that is unconditionally secure for the signer and has the property that the signer can
convert the fail-stop undeniable signatures to plain fail-stop signatures.

Let p, q, g and h be as inSection 5.2. The secret key of person .9l. is

SK = (x1,x2,y1,y2) e Z~,

and the corresponding public key is

PK = pub(SK) = (p1,p2) = (gx1hx2 ,gYihY2).

The undeniable signature of .9l. on the message me Zq is

Oi = sign(SK,m) = x 1+my1 (rood q).

This signature is undeniable, because given PK, the signature is just a random number

in Zq. The signature scheme is unconditionally secure for the signer, because given

a1, it is impossible for a forger with unlimited computing power to construct a; =
sign(SK,m') fora new message m'::F m. This follows from the sameargumentsas in

Lemma 5.1 and 5.2. We mention that .9l. can convert this signature to a fait-stop
signature by publishing

02 = x2+my2 (mod q),

which changes the undeniable signature into the fail-stop signature of Section 5.4.

Confirmation protocol
To verify the signature a1 on a message m, .9l. and the recipient compute

u= p1pig -(J1 (modp), and .9l. convinces him with a zero-knowledge protocol that he

knows a number a2 such that u= h(J2 (mod p). Perfect zero-knowledge protocols for
this problem are well known (e.g. [CEvdG87]), soit can be proven that:

Tbeorem 5.8. There is a perfect zero-knowledge protocol for convincing someone of

having u2 satisfying u= h(J2 (mod p).

86 5

Disavowal protocol
Disavowal of these signatures is slightly more complicated. A given number OE 'Zq is

not Jt' s signature on m if

PIP2;;; gGhuz (mod p),

where <12 = x2+my2 (mod q). Jt can therefore convince someone that <1 is not his
signature by convincing him that he knows numbers s and t such that

p1p!f: = gsht (mod p), and Cl* s.

(because if a was his signature this would mean that Jt knew log8 h). The perfect zero­
knowledge protocol presented in Subsection 5.4.4 can be used as follows:

SK = (s,t),
PK p1p!f: (modp),

S = S,

SF= CJ,

SK' ::::: (s + 'î·t + r2),

PK' = PK · g'lh''2 (modp),
S' = s+r1 (modq),

SF' = O'+li. (modq) ..

(Note that in this disavowal protocol we use the definition sign(SK,m) =
sign((s,t),m) := s.)

5.6. Applications

In [PW91] an application of fail-stop signatQres is suggested, called the 3-phase
protocol. Customers in an electrooie payment system would use fail-stop signatures
when signing a request tothebank (for example for the withdrawal of money). These
signatures have the advantage over ordinary digital signatures that the costomers need
not worry about the bank (which normally has more computing power than the
customer) being able to break the underlying assumptions of the signature scheme. In
this 3-phase protocol for making such requests, the customer only has to sign a single
bit with a fail-stop signature.

If the signature scheme of Subsection 5.3.3 is used, this 3-phase protocol can be
avoided and the customer needs only to send a single message to the 1>/.tnk in order to
sign the request.

5.7. SQme open problems

For each message, the pubtic key of the fait-stop signature presented in Subsection 5.3.3
is approximately 1000 bits (assuming a modulus of size 500 bits), the secret key is
approximately 2000 bits, and the signature of a 500-bit message is 1000 bits (long
messagescan first be hashed into 500-bit messages). By using a hash function,we can
reduce the size of the public key (see Remark 5.1 in Subsection 5.3.3). Unknown is

Signatures unconditionally secure for the signer 87

whether our construction for fail-stop signatures is the most efficient construction, and if

not, what the most efficient construction will be.

6
Efficient offline electronic checks*

6.1. Introduetion

In a "traditional" payment system, the bank creates special objects (such as coins, paper

cash, checks, or creditcards) that are worth money: they can be used to pay a shop in

retum for some goods, or to pay a person. The money can also be stored in some

account at the bank. It is assumed that it is infeasible for users to create these objects
themselves. In this system, the user's privacy as regards the bank is not very high: the
bank can trace paper cash in principle by serlal numbers; and by using checks or credit

cards, the bank knows who spent what amount and where.

In an electtonic payment system, information (in the form of specially created

numbers) is used as money, and this information is stored by the users intheir handbold
computer. These numbers must first be created either by the bank or by the bank and the

user together, and it is assumed that it is infeasible for the users to create electrooie
money without the cooperation of the bank. But a user can copy numbers easily; and
because a copy of valid electtonic money is still valid electronic money, he can spend

this copy at another shop (tbis is called double spending). Tbis second shop cannot
detect that this money bas already been used. So before the shop accepts the money, it
contacts the bank, which can verify that that electrooie money has not been used before
(this is called an online connection). Only then will tbe shop accept the money.

Electronic coins are called unconditionally untraceable (the user bas unconditional
privacy), if for each point in time the bank bas no information (in the Shannon sense)

to link any payment until then to any creation of electtonic money until then, even with

* Tbis chapter is basedon the paper "Efficient Offline Electtonic Checks" by Bert den Boer. David Chaum, Eugène
van Heyst, Stig Mj-lsnes and Adri Steenbeek. which appeared in Advances In Cryptology-EUROCRYPT '89. J.J.
Quisquater and J. Vandewalle eds., Lecture Notes in Computer Science 434, Springer-Verlag, pp. 294-301.

90

unlimited computing power (except when only one person bas created and spent
money).

So in an electtonic payment system three types of parties are involved: a bank, a
user (to be called Alice). and a shop, and there are three possible transactions
between them:

• Withdrawal transaction between the bank and Alice: this is the creation phase of
the money and is done partly by Alice and partly by the bank. The bank
decreases Alice's account by the value ofthe electtonic money created.

• Payment transaction between Alice and the shop: Alice uses the electtonic
money to pay at a shop.

• Deposit transaction between the shop and the bank: the shop transmits the
electtonic numbers it bas received from Alice to the bank, which verifies that
these numbers are correct and that they have not yet been spent. If so, the bank
increases the balance of the shop.

An online conneetion between the shop and the bank is very expensive, so we want a
payment system that reptaces this online conneetion by an offline conneetion (this
means that the shop contacts the bank only occasionally, say once a day or once a week.
to transmit the numbers received). The first such system can be found in [CFN88],
which has the following properties:

• The shop does not need an online conneetion with the bank.
• During payment the user does not have to do computations.
• The withdrawal and payment of a check are unconditionally unlinkable.
• The system can be used for electtonic checks. This means that the money can be

used for many values up to a certain maximum.

These properties seem to cause two major problems. The first is that a user can reuse
valid money and the second shop cannot detect this cheating (because of the offiine
connection). After both deposits the bank detects this double spending, but it cannot
trace the user because her privacy was protected unconditionally. This problem is
ingeniously solved in [CFN88] by creating the money in such a way that the privacy of
the user is proteeled unconditionally if she uses the money only once (as she is supposed
to), andthat the bamk cantrace the user(wittrhigh probability) if sbe reuses that money
(see Figure6.1).

The second major problem results from the use of checks. The amount for which a
check is spent, cannot be paid later to the bank (because of the unconditional privacy
requirement), and this amount is not known at the time of withdrawal. Therefore the
check bas to be issued for the maximum value and must be able to be spent for many
lesser values. Later on the user must request the bank to refund the unspent part of the
check, and this is the fourth transaction needed intheir payment system (see Fig.ure 6.2).

CHECK

Second use of the check, with challenge 0 I 0 I

Fig. 6.1. An mustration of how to prevent double spending in the offline case. A check
is created as a 2x4 matrix, in which the numbers a i are randomly chosen by Alice and
in which ID is her account number. During a payment, she will receive from the shop a
random 4-bit string and she will reveal from each column of the check only one number,
according to the challenge. Hence the identîty of the user is still protected
unconditionally.

But suppose that sbe spends Ibis check twice, and that the first shop gives challenge
0001 and the second shop gives challenge 0101. The numbers revealed are indicated in
both cases. After both deposits the bank can trace Alice because a2E!)(a2EBID)=ID. In
Ibis small example tbe second shop wil! generale with probability 15/16 a different
challenge than the first shop, and thus the bank wil! be able to trace Alice with
probability 15/16. Tbis probability can be made arbitrarily close to I by using a wider
matrix.

Fig. 6.2. Tbe foor transactions in an electtonic payment system for checks.

In this chapter we present a payment system that improves the efficiency of
[CFN88]; also, some functionalities are added. In the next section we give the setting of
our new payment system and the notation used. In Section 6.3 we describe the four
transactions, which are compared with [CFN88] inSection 6.4. In Sections 6.5 up to 6.9
we discuss the possibility of passing a check from person to person, the storage of the
checks, a demo of this payment system for an Apple Macintosh computer, the suggested
size of the parameters used, and some improvements of our scheme. In Section 6.1 0 we

92

analyze several ways of cheating. We end with a brief overview of offline payment
systems that appeared in the literature after this paper, and some open problems.

6.2. S.Hing and notation

The underlying scherne of this payrnent system is the RSA-scheme. All calculations are
done roodulo N, the factorization of which only the bank knows (in our formulas we
will omit this modular reduction). The check is a product of k/2 terms and these terms
are ordered lexicographically: the first j terms (called denomination part) are used for
the amount tobespent in a shop and the last k/2-j (called challenge part) to prevent
the check from being spent twice. The j terms in the denomination part have

denominations $1 (one dollar), $2, ... , $2i-2, $z.i-l respectively (or h~. 2~, ... ,

$10.24, ... , $z.i-1/100), and thus each check can bespent for each integral value up to

$(2Lt) = $(20 + 21 + ... + 2i-1). As in the original paper [CFN88], let
k be a security parameter that is an even number,
j be the number of denomination bits in a check (we assurne that 5 S j s 14; for

other values of j see Section 6.8),
f,g be two-argument, collision-free one-way functions, with g such that if its first

argument is.fixed, the mapping is q-to-1 from the second argument onto the
range (for some integer q),

h be an injective one-way function with one argument,
l be an injective k-argument one-way function,
/D; be Alice's account number concatenated with a counter,

$ denote bitwise exclusive-or, and
denote concatenation.

Essentially such a check is constructed as follows: for each term she randomly

chooses integers a,b,c, and d, and computes the term as /(g(allb,c), g(a$/D,d)),
thus each of these terms can be represented by the tree of Figure 6.3.

Fig. 6.3. Each term is coostructed as such a tree, and the dotted lines indicate the

numhers that must be revealed if the corresponding bit is "I" or "0".

During payment, Alice will receive one bit for each term (challenge and

denomination) of her check, and according to this bit she bas to reveal some numbers of
how this term is constructed, see Figure 6.3. For instance, if this bit is "1", then Alice

reveals the numbers allb, c, and g(a(f)JD.d). If later on she wants to request refund
fora denomination bit, she has to reveal the corresponding number b.

Thus, if Alice wants to both spend and request refund for the same denomination bit,
she reveals the same number b twice and will be caught cheating by the bank. And if
Alice reveals the answers to both challenges 0 and 1, then her identity can be computed

as aEB(a$/D) = ID. This is a mathematica! implementation of the idea of Figure 6.1.

Alice creates these terrns herself, so a cut-and-choose protocol will be included in
the withdrawal transaction: Alice creates twice as many terrns as needed and issues
them to the bank. The bank randomly chooses half of these terms and Alice has to

reveal their construction (i.e., she has to reveal allb, c, a$/D and d for each of
these terrns). The bank verifies these constructions of the opened terrns, and if they are
all correct the bank will assume that (nearly) all the other terrns are also correct. She
will sign these unopened terrns, so that they become valid money.

For coins (i.e., checks with only one denomination), the user has unconditional
privacy, because

• The numbers a and g(a$ID,d) together contain no Shannon information
about ID, that is, each number is equally likely to be ID (because of the
definition ofthe function g).

• The numbers a$/D and g(allb,c) together contain no Shannon information
about ID.

• If all users withdraw money at the same time, and spend it at the same time, the
bank cannot link a payment with a withdrawal, because of the blinding used. (If
one person withdraws money and spends it immediately, the bank can link
withdrawal to payment, despite the blinding.)

For checks the privacy of each user is protected "almost" unconditionally: a user can
request refund for several checks at once, to keep the bank from learning the amount
spent for each check. Payments and refunds are unlinkable, except by the little that can
be learned from the total number of each type of unspent denomination.

In the next section the construction of the check and the four transactions wiH be
explained in more detail.

6.3. Transactloos

As mentioned, the payment system consists of three parties (bank, user Alice and a
shop) and four transactions: withdrawal, payment, deposit, and refund. Each of these
transactions is a protocol between two of the three parties. The transactions do not need

94

to be in this order: after withdrawal and payment, the refund of the check involved can
occur earlier or later than its deposit. Alice can also first request refund for part of the
check and later spend the rest of the check in a shop (see Figure 6.4).

withdrawal

~ !·~ pay~ ;tund

/""' + refund deposit payment

+ + +
deposit refund deposit

Flg. 6.4. The three possible sequences of four transactions for one check.

In figures 6.5, 6.6, 6.7, and 6.8, descrihing these four transactions, the symbols OI,
0, lit?, L::::>, and ~are used to indicate computation, trivial computation (e.g.
table lookup), verification, transmission, and writing in an archive list, respectively.

6.3.1. Withdrawal Transaction

Allee bank

hesb of eandldotes

candldote portltlon

Flg. 6.5. Withdrawal of a check.

(l) Alice chooses at random: r;, a1, b1, c;, d1, e1, (1 ::;; i::;; k) and computes:
x; g(a111b1,c;),
Yi = g(a;E9ID1,d1),

M; = f(x;,Y;)
m1 = h(g(b1,e1))

M3j • mP · ,-}7·3j
l I l

(called major term),
(called minor term),

(called blinded candidate).

These blinding factors r,a,b,c,d,e are used as follows:
r: to make the withdrawal and payment unlinkable,
a: to hide the identity ofthe user in a check unconditionally,
c,d,e: to hide the first argument in the function g unconditionally,
b: to prevent users from spending a denomination bit in a shop a n d

requesting for refund for the same denomination bit.

Efficient offline electronic checks

All these computations can be made before conneetion with the bank, and during the
conneetion with the bank only the hash value l(a1,a2,. .. ,ak) is sent.

(2) The bank partitions the integers l, ... ,k randomly between two unordered sets S0

and Sc. both of k/2 elements. The partitioning is then sent to Alice.
(3) Alice orders the elements in the partirion Sc by the Mi value of the corresponding

candidate, forming the ordered set Tc (so Tc is a permulation of Sc). This set Tc,
the a 1 'sof the elementsin Tc, and the ri> a;, bi> c;, d;, e; of the caildidates in S0

are sent to the bank. The candidates in S0 are said to be "opened".
(4) The bank verifies that the hash of the blinded candidates revealed equals

l(a1, a2, ... , ak) and that every element of the opened partilion is correctly formed.

(The opened parrition can now be discarded by both parties, because it was only
used for the cut-and-choose protocol.) The bank takes a random integer R and
computes

J . I . k/2 ·

D ·= ll(a .)1117·31+ -• . ll(a .)1117. RJJ31
·- l(t) t(.t) . '

i=l i=j+l

where t(i) is the ith element of Tc; sends D and R to Alice; and reduces Alice's

account by $(i-I), the maximum value of the check. The bank also stores R with
Alice's account number insome list.

(5) Alice verifies the validity of this signature D by testing whether

17 3j ? j 3i-l k/2 3j 17
D · ll(at(i)) · ll(at(i)) ·R .

1=1 i=j+l

Let a,{3 be such that 31 a + 17 {3 = 1. From this signature D she computes the
following numbers:

jj

c

C' :=

Number C is called signed check and will be used during payment, and number
C' is called refund part and wiJl be used during refund. The computations of C
and C' can be done more efficiently than the formulas suggest and can be
accomplished any time before payment.

96

6.3.2. Payment Transaction

Allee

Fig. 6.6. Payment of a check.

Alice can use the signed check C to pay in a shop. The first j terros of a check
(remem.ber that a check is the product of k/2 ordered elements and each shop can

verify this ordering) have denominations $1 , $2, ... , $2Î-2, $2Î -I respectively. So, every

integral amount smaller than $(2Lt) can be paid with C; let (wJ, ... ,wj) be the binary

representation of the amount of payment (so the amount is $ I.{""1 w; zi-1).
(1) Alice gives C to the shop.
(2) The shop generates a binary challenge-vector (wj+t. ... ,WkJ2) and sends it to Alice.
(3) Alice gives the following partial opening of the check C (1 ~ i ~ k/2) (see also

Figure 6.3):
if w;=l, she reveals the corresponding a;llbï. c;, y;;

if w,-=0, she reveals xb al!:)/D;, d;.
(4) The shop verifies the partial opening, the check's signature, and the ordering of tbe

M;'s in C. If these are "OK", then he accepts this check as valid money.

6.3.3. Deposit Transaction

I
s• ~~~

. ~~--~-p-en-:t-ch~e-ck~--"~.

Fig. 6.7. Deposit ofa check.

(I) Tbe shop sends to the bank: C, the vector w=(w1, •• ,wkf2) (amount and challenge
vector), and the partial opening.

(2) The bank verifies the signature, the partial opening, and the ordering of the M ;' s in
C, just as the shop did.

(3) Tbe bank bas two searchable archive lists: one of spent checks and one of revealed
minor terms. In the first list the bank stores the number C and the corresponding

partial opening a; or a;ff:IID; (1 ~ i ~ k/2). In the last list he stores the revealed
b; 's. The bank consults the searchable lists to be sure, perhaps by sorting them, that
no b; bas already been refunded and that no check bas been spent twice. Wben
double spending of a check is found, the ID; can be reconstructed from any
difference in the corresponding veetors w and w ', tbereby revealing the cheater' s

Efficient offline electrooie checks 97

account number (see Figure 6.1). There will be a difference inthelast k/2-j bits of

w and w' with probability 1-2j-kl2 •

6.3.4. Refund Transaction

Alice bank

combined minors

Fig. 6.8. Refund of a check.

(1) After each payment, but before the refund, the minor terms of several checks are
accumulated by Alice and g(b;,e;) is computed for each w; = 1. Alice sends the
bank the product of the C''s, the R's, and in actdition the g(b;,e;) for each
denomination spent, and the b;,e; for the denorninations not spent.

(2) The bank verifies the opened minor terms and their signature C', much in the way
that checks are verified. The bank also verifies that the R's were stored with Alice's
account number.

(3) The bank verifies that the b; 's are not listed and stores them on its list of revealed
minor terms together with Alice's account number, to prevent Alice from spending a
denornination bit after the refund.

Note that in case of requesting refund for multiple checks at once, Alice keeps the
bank from learning the amount spent for each check; only the total number of each type
of unspent denomination is revealed.

6.4. Comparison with (CFN88)

In our payment system three basic changes from [CFN88] were made to improve
efficiency:

• During the withdrawal transaction Alice initially sends to the bank not the
candidates for the check, but the value of the one-way function l with the
candidates as its arguments. Hence she avoids sending half of the candidates.

• All the minor terms are signed together (still with different exponents) rather
than separately. Hence the bank has only to give one signature D per check,
while in [CFN88] the bank has to give j+ 1 signatures per check.

• In [CFN88] each major and minor term is blinded separately, while in our
scheme Alice sends a blinded product of the major and minor terms; hence she
needs only half as many blinding factors, only half as many bits are transrnitted,
and the bank makes only one signature. When Alice receives the signed check,
though, she must do some calculations to obtain the signed check and the refund
part (i.e., to separate the major and minor terms). An additional one-way

98

function h is introduced for this.

If we compare our new scheme with [CFN88] for the values k=40 and j= 10, then
our new system saves 91% on the number of the signatures, saves 41% on the (other)
multiplications, saves 73% on the divisions, and saves 33% on the bit transmissions .

. 6.5. Transferability

Transferability means that a person Alice (payer) can pay a person Bob (called payee)

electronic money, and Bob can use this money to pay another person or shop. In
[CFN88], this concept is not mentioned, and in [0089] the first transferable offline
electtonic payment system is presented. Their idea is that Bob gives Alice a challenge
(as usual) and receives the numbers corresponding to this challenge and a note signed
by Alice saying that that money now belongs to Bob. When Bob wants to spend this
money in a shop, he first transmits the transcript of the protocol with Alice, and after
receiving the challenge from the shop, he transmits the corresponding response.

But this system can easily be cheated: Alice can give the same money to several
persons, by asking the second payee (who cooperates with Alice) to issue her the same
challenge as the first payee. Both payees have a correct signed note, so they both can
spend the money without difficulty. The bank later detects this cheating, but can trace
neither Alice nor the payees.

In [Ant90] another way of constructing transferable offline cash is presented. Here
the basic concept needed to realize transferability is that of "checks" with no
denomination terms in them, that is, checks with no value. These "empty checks" can be
obtained freely from the bank. The challenge Bob issues to Alice is the outcome of the
one-way function f on Bob's empty check. In this way the check paid to Bob is
connected to one of his empty checks. When he pays a shop with bis new "check" (or
rather, coin, since it can only be spent for the amount for which he received it), he not
only issues the check data received during the previous payment transaction, but also
uses the empty check to answer a challenge issued by the shop (see Figure 6.9). Hence
Bob cannot double-spend this new check, or else he will with high probability reveal bis
identity to the bank.

Suppose that Alice wants to give the check C 1 to two different payees, instead of
only one. Then both payees must use the same empty check C2 (and thus the same
challenge ch1), otherwise Alice's identity will be revealed to the bank after both
deposits (see Figure 6.9). Hence both payees must know the construction of this empty
check C2 in order to be able to respond to the shop's random challenge. But this empty
check is created correctly, so it contains the identity of one of the payees. Thus if they
both spend this check, they will each receive a different challenge (with high
probability), and the payee' s identity will be revealed to the bank. Therefore no-one is

likely to cooperate in this way.

Fig. 6.9. Tr.msferability in our payment system.

6.6. Storage

Por each check Alice has to store a lot of numbers in her computer. The numbers she
will store depend on which transactions already took place, and on the fact that memory
can be exchanged for computation. Por instance, if Alice stores a;,b;,c;,d;, then she can

compute M; as j(g(a;llb;,c;), g(a;llb1,c;)), but she can also store Mt. At the cost of
one memory location, then, she need not do computations. In the following overview we
use the "normal" time order (so refund after payment, see Pigure 6.4), and we indicate
only the numbers that really need to be stored in her computer. Other numbers can be
recomputed:

• before withdrawal: r;, a;, ht. q, dt, e; for each candidate (i=l, ... ,k);
• after withdrawal: C, C', R and ah b;, c;, dt. e; for each unopened candidate

(i= t(l), ... ,t(k/2));

• afterpayment: C', R and b;, e; for each unopened candidate (i=
t(l), ... ,t(k/2)).

By storing these numbers, Alice has to recompute the integers x;, y1, and g(b;,e;)

before payment or refund.
The memory that becomes available after a transaction can be used to store the

numbers of the candidates neerled for a new check. This allows Alice to do all
computations before conneering the bank for a withdrawal.

100

6.7.Demo

Hans Beuze and Peter Sliepenbeek implemented the payment system described in the
previous sections on an Apple Macintosh (see Figure 6.10), and Adri Steenbeek wrote

the numerical part of it. Diskettes containing this demo are available from the authors.

There is also an earlier version available for an IBM-PC.

Flg. 6.10. A screen dump of the Macintosh demo of this payment system.

6.8. Parameter values

We assume that the RSA-modulus N has 512 bits. We can of course take all integers to
have 512 bits, but this is not necessary for the security or the efficiency.

The variables used for unconditionally hiding information (c,d,e,r) are taken to be
512 bits. The size of b depends on the number of users: if twice in the lifetime of this
payment system the same b is generated, then the second user loses the money of the
related denomination bit. So if b has 128 bits, then the ptobability of this happening is

very close to zero. The identity /D can have 32 bits, and thus also its blinding factor a.
The outcome ofthe collision-free function g can be 128 bits (64 bits is too smal!). The

system Will be uséd for low-value payments, so we can use j:::; 15 (allowing check
valnes :::; $327.68). By taking k= l 00, the shop has achallenge of 35 bits.

Thus for a practical and reliable system we suggest the following parameter values:
k 100 bits,

/Db ai

b;

c;,d;.r;,e;,N

I

32 bits,
128 bits,
512 bits,

128xl28-?512 bits,

g

h
j

l28x512--+ 128 bits,

128---+512 bits,
15 bits.

6.9. lmprovements

6. 9.1. Combining challenge and denominatien bits

In our scheme each denomination bit and each challenge bit are in separate terms, but a
challenge bit and a denomination bit can be combined into one term. The advantage of
doing this is that fewer computations have to be performed, and fewer bits transmitted, .
during the protocols. If j = k/4, we can create a symmetrie check: it no longer consists
of a separate denomination and a challenge part. To do so, Alice chooses during the
withdrawal transaction at random: rb ah b;, c;, d;, e; (1 :s; i :s; 3k/4), and computes:

X; = g(b;,C;),
Y; = g(b;A).
V; = g'(a;,X;),
W; = g'(a; ESID;.Y;).
M; = f(v;,w;),
m; = h'(h(b;,e1)),

a- = M~j · m~1 · rP·3i
l - l l l ~

During the cut-and-choose operation k/2 blinded candidates have to be opened, so a

check consistsof k/4 terms. During the payment transaction, let (1~h ... ,Jt'kf4) be the

binary representation of the amount of payment, and (XJ. ... ,zk/4) be the binary
challenge-vector. Then Alice gives a partial opening of the check, according to Table
6.1.

X; lrj revealed numbers

0 0 v;.a;$ID;.Y;

0 I v;.a;$1D;.b;,d;
I 0 aitXjtWi

I I aj,bjtCj,Wi

Table 6.1. The revealed numbers for the payment and
challenge bits, if these are combined into one term.

The major term M; can be expressed by the tree in Figure 6.11 (the indices i are
omitted), in which the dotted lines indicate the numbers revealed during the payment
transaction: start in each of the main subtrees at a certain level (which depends on the
challenge bit), and if the payment bit is a one, go one level deeper in one of the main
subtrees.

102

a b c affllD

Fig. 6.11. An expression of the major term and its opening, which depends on the

payment bit 11: and the challenge bit z.

6.9.2. More denominotion bits per check

By using the same idea as in Subsection 6.9.1, the number of denomination bits in the
check can be doubled with little additional cost. The minor tèrm is constructed as

m=h(g(bt,et). g(~,e2)) and the major term as the tree in Figure 6.12. Thus
number b1 is revealed if payment bit 1 is 1, and b2 is revealed if payment bi~ is 1.

Using this metbod one may want to put all denomination bits into one term for
efficiency. Butthen there are problems with the security of the system, due to the cut­
and-choose protocol: suppose Alice creates k' terms and exactly one of them is
wrongly created. If she has to open k'-1 terms, then with probability lik' she receives
the signature on the wrongly created term, so she can both spend and request refund for
this check, without being caught cheating.

Fig. 6.12. An expression of the major term with two denominations (represented by

bt and b2). The way to open this major term, which depends on the payment bits
and the cha!lenge bit, is also indicated.

Efficient offline electronic checks 103

6.9.3. Anonymous refund

In the payment system presented bere, the bank puts a random number R in the user' s
check in order to link the withdrawal to the refund, or, better: to link the refund to the
user's correct identity. In order to have anonymous refund, the payment system can be
changed the following way: at the beginning of the withdrawal transaction, Alice
chooses at random r;, a;, b;, c;, d;, e;, z; (1 :::; i:::; k) and computes:

X; = g(a;llb;IIZ;,c;),
Yi = g(a; fB ID;,d;),
M; = f(x;,yJ,
m; = h(g(b;ll(z;ffiiD;),e;)).

3j 17 17·31 a; = M; ·m; ·1f

The bank will compute the signature

j 1117·3j+l-i k/2 1117
D := Il(at(i)) Il(at(i))

i=! i=j+l

without the number R. The refund can be anonymous, because if Alice tries to request
refund for an already spent denomination, her identity will be revealed to the bank: from

a;llb;llz; and b;ll(z;ffilD;) the bank can compute ID;.

6. 10. Several ways Alice, the shop, and the bank can try to cheat

In this section we discuss several ways Alice may try to cheat, how a shop and Alice
can conspire, and how the bank may try to cheat (Cheating 1, 4, and 5 can be found in
[CFN88]). Assume that Alice tries to spend $a at the shop and to get back $b from the

bank, where a+b > (2j-1). Note that she cannot show the same b; both to the shop
when buying and to the bank when requesting for refund; if she does, she is caught
cheating.

Cheating 1: by Allee.

Alice constrocts the blinded candidate a 1 improperly: she uses b1 to create x1 and b{

to create m1. She will create the other candidates a 2, ... ,ak properly and in such a
way that M1 is lexicographically the smallest of M 2, ... ,Mk. With probability 112 the

candidate a1 will not need to be opened during the cut-and-choose protocol. After
computing C and C' from the signature received from the bank, she can spend the
check C for the maximum amount; and by using C: she can still request for arefund
for b{, because b{ "# b1• The number b{ will have denomination $1 because it belongs
to the lexicographically first major term.

Insteadof improperly creating a 1, she can also create a; improperly in the same

way (for some i). The advantage of cheating in a; is that it will belong to a higher

104

denomination than $1 (so for instance, take i=J).

The original payment system [CFN88] is vulnerable to the same attack.
This attack is not prevented by using an ordering other than lexicographic in the

check; that only reduces the probability of success from 1/2 to j!k, since in a check only
j of the k terms are used for the denominations. A better way to prevent this attack is
to allocate several minor .terms per denomination. Then, if a denomination is used, Alice
has to reveal several b's of several terms. Thus in order to both spend and request for
refund a denomination, all the b's in these terms must be created improperly.

Cheating 2: by Alice.
Alice withdraws a check by using her name, but she requests the bank to refund this
check for the maximum value by not using her own name, and using Bob's name
instead. After receiving this refund, she spends the check at the shop for the maximum
value. The bank detects this cheating only after the check is deposited, but it only knows
the name Bob and thus cannot trace Alice.

This attack is prevented in the payment system presented bere, because during the
withdrawal the bank randomly generates for each refund term a number R and stores
this number with the user's name (during withdrawal Alice bas to use her own name).
Another way to prevent this attack is to require the user to identify herself during the
re fund.

For anonymous refund (see Subsection 6.9.3), the system can be cheated by a

combination of Cheating 1 and 2: Alice creates a 1 improperly by using different b's
in x 1 and m 1 and also using another account number than ID;. She will create

a2, ... ,ak properly and in such a way that M1 is lexicographically the smallest of

M2, ... ,Mk. With probability 112 the candidate a1 will not need to be opened. Now
she requests the bank to refund the check for the maximum amount by using C: and
afterwards she goestoa shop to spend check C for the denomination of b1 only. After
deposit the bank detects this cheating, but cannot trace Alice. The same metbod of
allocating several minor terms per denomination can be used to prevent this attack.

Cheating 3: by Alice.
The order of b/s in C and C' is the same. But Alice may want to change the order of
the terms in either C or c: so that some of the b;' s are no long er correlated, as for
instance:

c: bXbz

C': ö2 b1

denom: $1 $2

If this is possible, then Alice can spend this check C for $ l.{;;;l zi = $(2i - 2) by

revealing b2 ,b3 , ... , b1; and she can request refund for $2 by using C' and revealing

b1• But $(21'-2) + $2 = $(2Ll) + $1, so now she has gained $1, without being
caught.

One way for Allee to accomplish this, therefore, is to order the elements of Tc
wrongly so that the terms in C will be also ordered wrongly, and she has to reorder

[

a(O) u(l) u(j-1) j]1117
them lexicographically. So she needs to compute Cu= Mf Mi ... MJ P3

,

where (j is a non-identical permutation of {O, ... j-1} and P=Tif~J+1 (M1(i)). Alice

could cheat with this signature Cu as follows: she looks for iJ such that

á,ÏJ)=h<h; she shows Cu to the shop and spends $O::;.,h2i) using only

$(Li., 1, i) from her check; and gets back from the bank $(21') by showing it C '. So

she can spend the check of value $(2L 1) for the amount

$(I#h i)+ $(2it) $(21 -1) + $(2h (2it-h -1)), so she gained $(2h (2id2 -1)).

If we assume that Alice cannot compute RSA-roots (mod N) of random numbers, and
thatf,g are good pseudo-random functions, then from Corollary 2.1 follows:

Corollary 6.1. Let P, M 1 , •. • ,M1 be ramlom numbers from Z~. Then it is feasible for

Alice to find a non-identical permutation (j of { 0, ... ,j-1} and it is feasible to compute

[
3a(0) 3mn 3<1(j-l) y]1/17 [3o 3, gi-l 3j]1/17

Cu M1 M2 .•• M1 P from C M1 M2 •• . Mj P if and only if

there is an i0 (1 :::; i0 :::; j) such that 3io = I (mod 17).

The proof, which is not so difficult, is ornitted here. By usingj=lO, it is easy to see

that there are no numbers 1 :::; i0 :::; j that satisfy 3io = 1 (modl7). Hence this kind of
attack fails. But if the number of denornination bits (j) varies, the exponent used (17)
must also be changed according to Table 6.2, to prevent this kind of attack.

Table 6.2. List of the exponent used for the banks signature on the

check, for several amounts of denomination bits (j).

A second way for Alice to cheat is to perform the withdrawal protocol properly, but
after receiving C and C', to change the order of the elements in C'. For this purpose

she needs to compute C~= (Rmd13 mi13 ••• m}'3
, where (j is a non-

[

u(j} u(j-1) u(l)]17

identical permutation of { l, ... j}. Then Alice can.cheat as follows: she looks for i1

such that a(i1) = i2 > i1; she spends $(2:;.,;/) at the shop by using C; and when

requesting refund, she shows C~ and b; .e; to the bank, in order to get $(2;2) as refund
I I

106 6

instead of $(2;,). But from Corollary 2.1 it follows that Alice can compute C~ if and

only if z'iios:;,.;;j-J[ri -aru(i) e .Z]. If, bowever, a is not the identity

permutation, then there is an i such tbat o(i)-i < 1 and thus art: .Z. Hence Alice

cannot compute Ca,where a is a non-identical permutation. So this second way does

notwork.

Cheating 4: collusion hetween Alice and a shop
Alice spends her check at some shop and reuses this check for the same amount at the
colluding shop, which will issue the same challenge to Alice. The bank knows that with
very high probability one of the two shops is lying, but cannot determine which one, and
cannot trace Alice's account. Tbis attack can be avoided if the sbop's cballenge bas to
be generated by a pseudo-random device, the output of which cannot be modified by the
shop.

Another way to prevent this attack is for each shop always to use the same
challenge; and each of these different challenges is a word from a code with large
Hamming distance. Each shop stores all the checks it has ever received, so that a user
cannot reuse a check at the same shop. A combination of these two techniques can also
be used.

Cheating 5: by tbe bank.
The bank can generate valid money with Alice's account number in it, and can double­
spend this check. To prevent this, Alice will use her own public-key system as follows.
During the withdrawal she generates integers z[,z;' (i= l, ... ,k) and creates ID; as

/DIIz[llzj'. Along with the blinded candidates she sends her signature on

g(zî,zî) 11. . . llg(zk,zk). After the cut-and-choose protocol tbe bank knows k/2 pairs

z[,zi' and after the reuse of this check it will receive another pair. Hence ha ving k/2+ 1

pairs z[,zi' and Alice's signature, the bank has a valid proof that Alice reused her check.

We have assumed that no user can invert the function g · and that even if the bank
can invert g, it cannot know which of the preimages was used by Alice. Hence with
high probability Alice can show another preimage and can therefore prove that the bank
bas broken g. This, therefore, is a fail-stop signature (see Section 5.3).

6. 11. Other offline payment systems

This scheme was presented in '89; since that time other offline payment systems have
also been proposed. We will mention four of them very briefly.

[0089]: (see also Sections 2.7 and 6.5) The authors propose a payment scheme in
which the tradeoff between the degree of efficiency and the degree of
untraceability can be chosen. If the user has unconditional privacy, the

efficiency is the same as in our scheme.
[Hay90]: This is a variant of [CFN88], and it has the property that if a cheater is

revealed, then also all his previously used checks are revealed (called hot­
listing).

[Ant90]: This is a variant of [CFN88]: neither the check nor the refund part are one
single number, but each can be split into separate parts. During payment
therefore, deposit and refund, the amount of numbers to be transmitted is
fewer (for instance, one does not need to send x i or Yï). This scheme is more
efficient than ours.

[0091]: In our scheme a check can only be used once: the part of the check that has
not been spent can only be refunded. The authors propose a scheme in which
the user can subdivide the amount of the check into many pieces in any way
she chooses and each piece can be spent.

6.12. Some open problems

The conditions under which this payment system is reliable are not known. What can be
said about these conditions?

In the withdrawal transaction we have a cut-and-choose protocol, but it is better to
replace this protocol by another protocol, that is more efficient and easier to analyse.

In Section 6.5, [Ant90] proposed a metbod to build transferability into this scheme,
but the amount of numbers needed to represent the money grows each time the money is
transferred. An open question is whether there exist more efficient methods for
establishing transferability.

7
Chameleon blobs, unconditionally
secure for the verifier

7. 1. Introduetion

A bit commitment scheme is a scheme that allows a person to commit to a certain value
in such a way that he cannot change the committed value afterwards, and that the
recipient of this commitment (called blob) cannot learn its content. When these blobs

are created using cryptography, there is a public function '13; if person P wants to
commit bimself to value b, he chooses randomly a number r and his blob will he

B= 'B(b,r). Opening this blob to the recipient 'll consistsof revea1ing band r, who
will verify that B = 'B(b,r) (see Section 1.6).

In this chapter we present the frrst blobs that use a new metbod of opening: in stead

of revealing b and r to 'll, P only reveals b and convinces 'll, by using a zero­
knowledge protocol, that he knows an r that satisfies B= 'B(b,r). Forthese new blobs
we may modify the definition of ebameieon (see Section 7.2). Therefore, by using our
way of opening blobs, we are able to construct ebameieon blobs that are unconditionally
secure for the verifier, which was proven in the literature to be impossible.

This chapter is organized as follows: in Section 7.2 we analyze why "normal"
ebameieon blobs cannot be unconditionally secure for the verifier, we define two types
of ebameieon (active and passive), and we argue why we use passive ebameieon for our
new blobs. InSection 7.3 and 7.4 we create an efficient blob, basedon the Certified
Discrete Log Assumption, which opens in this new way and we prove that it is a passive
ebameieon blob that is unconditionally secure for the verifier (with an exponentially
small error probability). InSection 7.5 we give otber blob constructions, and we also

llO

show that each "normal" blob can be transformed into a ebameieon blob that uses a
zero-knowledge protocol for opening. Hence each simulatable blob that is
unconditionally secure for the verifier can be transformed into a ebameieon blob that is
unconditionally secure for the verifier (with an exponentially small error probability).
We endinSection 7.6 with some open problems .

. 7.2. Can chameleon blobs be unconditionally secure tor the verlfler?

Consider the following two quotations. [BCC88] states (p. 175): " ... blobs that are

unconditionally secure for o/. (...) Of course, none of these blobs are chameleon." The
reason for this statement is that unconditional security for the verifier is achieved by
requiring that for any blob there cannot exist a matching pair; this means that there

cannot simultaneously exist b 1 '#b2, r 1, r 2 such that ~b1 ,r 1) ~b2,r2). But

"chameleon" implies that 'll can construct numbers b1 '#b2,. r 1, r 2 such that

~b1 ,r 1) = 'l{.b2,r2). Therefore a blob that is unconditionally secure for the verifier
cannot be chame1eon.

[FS89] states (p. 532): "lffurthermore, 'll has secret trapdoor information which

allows 'J) (unlike P) to compute matching pairs(...), the scheme is termed trapdoor
commitment scheme (or chameleon in { BCC88 1). " The reason for this statement is that
in order to have blobs that P can only open in one way but 'J) in several ways, 'J) must

have more (trapdoor) inforrnation than P.
According to these two quotations, ebameieon blobs (trapdoor commitment

schemes) cannot be unconditionally secure for o/.

In Section 1.6 a blob was called chameleon if 'J) can generate a blob that he can
open in several ways. Wedefine (for the first time) two kinds of chameleon:

• Active chameleon: this means that 'J) can generate b1'1=b2, r 1, r 2 such that

'B_b1,r 1) = ~b2,r2), and thus he can successfully perform the blob­
opening protocol with anybody.

• Passive chameleon: this means that 'J) can generate a blob and that for this blob
he can create several transcripts of the blob-opening protocol for several
committed values.

(The same distinction can be made between passively and actively simulatable, but
in this chapter we will take "simulatable" to mean only actively simulatable.) For
"normal" blobs these two kinds of ebameieon are the same, but for our new blobs they
are different. In this chapter we will use the second kind of chameleon; the reason for
doing so is expressed in [BCC88], page 167: "The advantage of chameleon blobs is

that they allow 'll to simulate in a straightforward way his entire conversation with P,

without ever encountering failures. Again, this remains true even if 'J) deviates

arbitrarily from his stipulated behaviour."

We show that by using our way of opening a blob, we are able to construct (passive)

ebameieon blobs that are unconditionally secure for the verifier and in which P has

some secret inforrnation instead of '1!. Hence these blobs can be opened in parallel.

7 .3. Description of a new blob that uses on opening protocol

In this section we will flrst describe a new efficient blob, and in the next section we will
prove that it is a passive ebameieon blob that is unconditionally secure for the verifier
(with an exponentially small error probability).

Let p be a large prime and let g be a generator of the multiplicative group z;. We

assume that p-1 = 2q, where q is an odd number of which eách divisor is Iarger than
21ogp, and we use Assumption 1.2 (Certified Discrete Log Assumption).

Person P bas a secret key sE { 1,2, ... ,p-2} and the corresp6nding public key will

be gs (modp). If he wants to commit bimself to value he {O,l, ... ,LlogpJ}, he

randomly .chooses a number re z;. r.,. ±1 (mod p) and issues to 'llthe blob

(r,rs+2b).

'llverifies that r ;t; ±1 (mod p). To open this blob, P reveals band convinces 'll that

the exponents used in rs+lb / r2b and g3 are the same, by using the (computational)
zero-knowledge confirrnation protocol of [Ch90]. The number of moves in this opening

protocol is 5, because P first has to issue b to 'll, and then they have to perforrn the 4-
move confirrnation protocol. But this opening protocol can be reduced to 4 moves, as
indicated in Figure 7 .1.

Prover P

choose y ER {O, ... ,p- 2}

verify x a.{J

Veritier 'll

choose a,,B ER {0, . .. ,p- 2}

verify that
y = ga,.P+r and that
z = (gs)a(rs+2b / r2bfl+r

Fig. 7.1. The 4-move blob-opening protocol.

7 .4. Properties of the blob of Sectlon 7.3

We will prove that this new blob of Section 7.3 is a passive ebameieon blob that is
unconditionally secure for the verifier (for the blob's properties see Section 1.5).

112

• Property (i): This new blob bas property (i) trivially.

• Property (ii): During the confirmation protocol P can only change the committed

value intheblob with exponentially small probability lip (see [Ch90]); hence P

can open the blob in two different ~ays, only by choosing numbers re Z~ and

b1,b2e{O, ... ,LlogpJ} such that b1:;t:b2 and rs+Zq=rs+2~(modp). Hence

r2·lbJ-~I = 1 (modp). 1t is easy to see that the number of solutions to the equation

rd I (modp) is equal to gcd(d,p-1). Because b1:#b2e {O, ... ,LlogpJ}, we have

that 2·1b1-b21 s; 2Llogpj < each divisor of q. Thus gcd(2·1b 1-b2 l, p) =
gcd(2·1b1-h21, 2q) = 2, and so the number of solutions to the equation

r2·lf>t-~l = 1 (modp) is two: namely r ~ ±1 (modp). But these choices of r were

ruled out in the definition of the blob, and thus it is not possible for P to change the
committed value in the blob.

• Property (iii): The loglog p successive higher-order bits after the least significant
bit of a discrete Jogarithm are simultaneously hard [Per85] (see also Subsection
1.4.1). So for this property we use that the exponent intheblob is (s+2b): if the

exponent would be (s+b), then 'J) can compute in polynomial time the least
significant bit of b.

• Simulatable: 'J) can simulate blobs for each value be {0, ... , Llogpj} by choosing

te { 1,2, ... ,p-2}\{ q} and creating the pair (g' ,(gs g2bi) (i.e., the blob is

(r,rs+2h), where r= g'). This blobis simulatable because 'J) can peifonn the
opening protocol of this blob (although he does not know s) with a verifier o/', and
'll' cannot distinguish between an original blob and a simulated blob. Thus 'll
performs the protocol of Figure 7.2 insteadof that of Figure 7.1, while 'll cannot

detect the difference between these two protocols:t. Soit also satisfies property (iv).

Person 'll

chooseoeR {O, ... ,p-2}

verify x

r:= (Ö- a)r1 -{3 (modp l) r

Verifier 'l/'

choose a,f3 eR {O, ... ,p-2}

verify that
y ga(g')fJ+r and that
Z = (gs)a(g(s+2b)t / (g')2bf+r

Fig. 7 .2. The opening protocol fora simulated blob.

:j: Thus for normal undeniable signatules also, a forger can create on message gt the valid signature gts. and he can
perform the conf111llation protocol succesfully, even without knowîng s. This cao be avoided îf a hash value of the
message is signed.

• Passive chameleon: each person o/ can simulate a transcript: To create a blob, he

randomly chooses two numbers rl,r2e z~ and the blob will be (rl,r2). To open

this blob, o/ randomly chooses the "committed" number be {O, ... ,Llogpj} and
creates a transcript of the confirmation protocol that uses these numbers. This is
possible because the confirmation protocol is zero-knowledge.

• Unconditionally secure for the verifier (with an exponentially small error
probability): because the committed value intheblob is uniquely determined by the
blob and the public key (remember that r ;t; ±1 (mod p)); moreover, during the

confirmation protocol P can change the committed value in the blob only with

probability 1/p (which is exponentially small in log p), even if P bas unlimited
éomputing power [Ch90].

In the description of this blob we required that p-1 = 2q where q is odd, but this

restrietion is not necessary. Write p = 2uq+l for q odd, and require that each divisor

of q is larger than 2log p. To generate a blob, P randomly chooses re z; such that

r2u ;t; 1 (modp). If P wants to commit bimself to value bE {O, ... ,llogpj}, his blob
will be

and o/verifies that r2u ;t; 1 (mod p). It is easy to verify that Pcannot open this blob in

two ways: there do not exist numbers re:Z~, r2u;t;l(modp) and b 1 ,b2e

{0 Ll J} h th s+2uhj _ s+2ub]_ od) , ... , ogp suc at r = r (m p .

7 .5. other constructions of blobs that use an opening protocol

The new blob presented in Section 7.3 is efficient. Other methods are known for
constructing ebameieon blobs that are unconditionally secure for the verifier, but some
constructions turn out to be less efficient than the one inSection 7.3.

One construction is basedon [BCC88] (with the Certified Discrete Log Assumption

1.2). Let p=2Uq+l be a large prime, q odd, g a generator of z~. and let

I=LloglogpJ. If P wants to commit bimself to value be {0,1, ... ,21-1}, he randomly

chooses a number re Z~ such that the u+/ least significant bits of r are zero, and

his blob will be

gr+b2u (modp).

To open this blob, P reveals b and performs the zero-knowledge protocol of

114 7

[BCDvdG87] (which must be iterated several times, see also Protocol4.1 in Subsection

4.3.1) to convince the recipient that he knows an integer s such that

O:S:s< -1 and (g21+uJ =gr+b2u g-b2" (modp). (7.1)

This blob is passive chameleon and unconditionally secure for the verifier: Suppose

. that P can open this blob in two ways. Then Equation (7 .1) implies that he can find
zl+u b zu zl+u b 2"

numbers B, s 1, b1, s 2, b2 such that gsl g 1 l2 g 2 = B(modp), which

is equivalent to (because gis a generator of z;):
s12/+u +f12" = s22l+u +b2 211 (modp 1).

Because p-I=2uq and q odd, this equation is equivalent to:

(s1 s2)21 = bz ht (modq).

(7.2)

(7.3)

By using the fact that 0::;; s1 < ~ -1, s 1e Z and b1e {0, ... ,21-1.} (i= 1,2), we have
2

that (using interval notation mod q):

{

(sl -s2)zi (modq} E [O]v[21,q 21
),

b2 -ht (modq) e [0,21 -l]v[q-21 +l,q).
(7.4)

By combining Equations (7.3) and (7.4), we see that the only solution to Equation (7.1)

is s 1 s2 and b 1 = b2. He nee this blob is unconditionally secure for 'll. It is easy to
verify that this blob also satisfies the other blob properties and that it is chameleon (the

blobis (actively) simulatable, because no secret key is used in its construction).

We show a construction such that each simulatable blob that is constructed by using

a public function 'B, and for which the opening is the revealing of several numbers, can

be modified into a blob B' that uses a zero-knowledge protocol for opening. Consicter
the predicate

"Blob B contains the value b".

Whenever this predicate is true, there exists a certificate r such that B='B(b,r);

knowing r, it is easy to verify that B='B(b,r). Now Pand 'J) can efficiently build a
Boolean formula satisfiable if and only if this predicate is true {for instanee by using
Cook's constructive theorem [Cook71]). Because the satisfiability of Boolean formulas

is NP-complete, and if P knows an r such that B = 'B(b, r), then P can use the basic

protocol of [BCC88] to convince 'llthat this Boolean formula is satisfiable, and hence

that he knows r. In this protocol for proving the satisfiability of Boolean formulas,

other blobs have to be used, which we will call C (and that use function (). We assume
that the blobs B and Care simuiatab Ie.

Confusing ebameieon blobs 115

The properties of this blob B • are:
• Property (i): trivial.

Property (ii): If Ptries to opentheblob B' in another way than the one to which he
committed himself, he does not know a satisfying assignment for the Boolean

formula (according to property (ii) of blob B). Hence the best strategy that P can

follow is to guess the challenge he will receive from o/, which means that he will be
correct with probability 112. Hence the probability that he will not be caught

cheating after k iterations of the protocol is 112k, and thus blob B' has property
(ii).

• Simulatable: Because the blobs B and C are simulatable, this blob B' is (actively)
simulatable, and thus it also has property (iv).

• Passive chameleon: In [BCC88] it is proven that the sequentia! execution of the
iterations of this protocol is zero-knowledge, because of property (iii) and (iv) of

blob C. Thus o/ can simulate his entire sequentia! conversation with P, without
knowing a satisfying assignment. Hence the blob B' is passive ebameieon and has
property (iii).

If blob B is chameleon, then the blob B' is active chameleon, independent of
whether the blobs C are ebameieon or not. If the blobs B and C are unconditionally

secure for the verifier, then the blob B' is also unconditionally secure for o/ (except for
an exponentially small error probability).

We have now shown a construction to transform a simulatable blob B that is
unconditionally secure for the verifier, into a blob B • that is both passive ebameieon
and unconditionally secure for the verifier (with an exponentially small error
probability).

If the iterations of the protocol of [BCC88] have to be carried out in parallel and if
the blob B' has to be both ebameieon and unconditionally secure for the verifier, then
the blobs C used must also be ebameieon and unconditionally secure for the verifier

(otherwise o/ cannot simulate his entire parallel conversation with P). But now the
blobs C are also of this new type that requires an opening protocol, so we are form the
frying-pan into the fire.

7 .6. Some open problems

In the previous sections we constructed ebameieon blobs unconditionally secure for the
verifier to commit to values of length loglog p. Can we construct these new kind of
blobs that can be used to commit to fulllength messages (or at least a hash value of, say,
size 128 bits)?

116

Can there be found some applications for these new kind of blobs, other than
constructing a counter example?

References

[Ant90] Hans van Antwerpen, Electronic cash, master thesis, Dept. of Math. &
Comp. Sc., Technica! University of Eindhoven, July 1990.

[AT83] S. Aki and P. Taylor, Cryptographic solution to a problem of access
control in a hierarchy, ACM Trans. Comput. Systems 1 (1983), pp. 239-
248.

[BCC88] Gilles Brassard, David Chaum and Claude Crépeau, Minimum disciosure
proofs of knowledge, J. of Comp. and System Sc. 37 (1988), pp. 156-
189.

[BCDP90] Joan Boyar, David Chaum, Ivan Damgard and Torben Pedersen,
Convertible Undeniable Signatures, Advances in Cryptology-CRYPTO
'90, A.J. Menezes and S.A. Vanstone eds., LNCS 537, Springer Verlag,
pp. 189-205.

[BCDvdG87] Ernest Brickell, David Chaum, Ivan Damgard and Jeroen van de Graaf,
Gradual and verifiable release of a secret, Advances in Cryptology­
CRYPTO '87, C. Fomeranee ed., LNCS 293, Springer-Verlag, pp. 156-
166.

[Blu82] M. Blum, Coin flipping by te1ephone, Proc. IEEE Compcon (1982), pp.
133-137.

[Bos92] Jurjen Bos, Practical privacy, PhD Thesis, Dept. of Math. & Comp. Sc.,
Teehuical University Eindhoven, March 1992.

[BPW90] Gerrit Bleumer, Sirgit Pfitzmann and Michael Waidner, A remark on a
signature scheme where forgery can be proved, Advances in
Cryptology-EUROCRYPT '90, I.B. Damgard ed., LNCS 473, Springer
Verlag, pp. 441-445.

[Brass88] Gilles Brassard, Modern cryptology, LNCS 325, Springer-Verlag,
Berlin.

[Brass91]

[BrCr86]

[CE86]

Gilles Brassard, Cryptology column: How convincing is your protocol?,
Sigact News, 22 (1991), pp. 5-12.
Gilles Brassard and Claude Crépeau, Non-interactive transfer of
confidence: a perfect zero-knowledge interactive protocol for SAT and
beyond, FOCS 1986, pp. 188-195.
David Chaum and Jan-Hendrik Evertse, A secure and privacy protecting

118 References

protocol for transmitting personal information between organizations,
Advances in Cryptology-CRYPTO '86, A.M. Odlyzko ed., LNCS 263,
Springer-Verlag, pp. 118-167.

[CEvdG87] David Chaum, Jan-Hendrik Evertse and Jeroen van de Graaf, An
improved protocol for demonstraling possession of discrete logarithms
and some generalizations, Advances in Cryptology-EUROCRYPT '87,

. [CFN88]

[Ch86]

[Ch90]

[Cook71]

[CR90]

[CvA89]

[Dav82]

[Denn84]

[DH76]

[D085]

[EGS85]

[EIG85]

D. Chaum, W. Price eds., LNCS 304, Springer-Verlag, pp. 127-141.
David Chaum, Amos Fiat, and Moni Naor, Untraceable electronic cash,
Advances in Ctyptology-CRYPTO '88, S. Goldwasser ed., LNCS 403,
Springer-Verlag, pp. 319-327.
David Chaum, Demonstraling that a public predicate can be satisfied
without revealing any information about how, Advances in
Cryptology-CRYPTO '86, A.M. Odlyzko ed., LNCS 263, Springer­
Verlag, pp. 195-199.
David Chaum, Zero-knowledge undeniable signatures, Advances in
Cryptology-EUROCRYPT '90, I. Damgard ed., LNCS 473, Springer­
Verlag, pp. 458-464.
S.A. Cook, The comp1exity of theorem proving procedures,
Proceedings 3rd annual ACM symposium on the theory of computing
(STOC), 1971, pp. 151-158.
David Chaum and Sandra Roijakkers, Unconditionally secure digital
signatures, Advances in Cryptology-CRYPTO '90, A.J. Menezes and
S.A. Vanstone eds., LNCS 537, Springer-Verlag, pp. 206-214.
David Chaum and Hans van Antwerpen, Undeniable signatures,
Advances in Cryptology-CRYPTO '89, G. Brassard ed., LNCS 435,
Springer-Verlag, pp. 212-216.
George Davida, Chosen signature cryptanalysis of the RSA (MIT) public
key cryptosystem, Tech. rept. TR-CS-82-2, Dept of Electrical
Engineering and Computer Science, Univ. ofWisconsin, October 1982.
Dorothy Denning, "Digital signatures with RSA and other public-key
cryptosystems", Comm. ofthe ACM, 27 (1984) pp. 388-392.
Whitfield Diffie and Martin Hellman, New directions in cryptography,
IEEE lT 22 (1976), pp. 644-654.
Yvo Desmedt and Andrew Odlyzko, "A chosen text attack on the RSA
cryptosystem and some discrete logarithm schemes", Advances in
Cryptology-CRYPTO 85, H.C. Williams ed., LNCS 218, Springer­
Verlag, pp. 516-522.
Shimon Even, Oded Goldreich and Adi Shamir, "On the security of
ping-pong protocols when implemented using the RSA", Advances in
Cryptology-CRYPTO 85, H.C. Williams ed., LNCS 218, Springer­
Verlag, pp. 58-72.
Taher ElGamal, A public key cryptosystem and a signature scheme

[Evert90]
[FFS88]

[FS89]

'[Gill77]

[GMR85]

[GMR88]

[GMR89]

[Has85]

[Hay90]

[Heg1858]

[KaBa79]

[McC88]

basedon discrete logarithm, IEEE IT-31 (1985), pp. 469-472.
Jan-Hendrik Evertse, unpublished notes, 1990.
Uriel Feige, Amos Fiat and Adi Shamir, Zero-knowledge proofs of
identity, J. Cryptology 1 (1988), pp. 77-94.
Uriel Feige and Adi Shamir, Zero-knowledge proofs of knowledge in
two rounds, Advances in Cryptology-CRYPTO '89, G. Brassard ed.,
LNCS 435, Springer-Verlag, pp. 526-544.
John Gill, Computational complexity of probabilistic Turing machines,
SIAM J. Comput. 6 (1977), pp. 675-695.
Shafi Goldwasser, Silvio Micali and Charles Rackoff, Knowledge
complexity of interactive proof systems, STOC 1985, pp. 291-304.
Shafi Goldwasser, Silvio Micali and Ronald Rivest, A digital signature
scheme secure against adaptive choseu-message attacks, SIAM J.
Comput. 11 (1988), pp. 281-308.
Shafi Goldwasser, Silvio Micali and Charles Rackoff, The knowledge
complexity of interactive proof systems, SIAM J. Comput. 18 (1989),
pp. 186-208.
Johan Hastad, On using RSA with low exponent in a public key network,
Advances in Cryptology-CRYPTO '85, H.C. Williams ed., LNCS 218,
Springer-Verlag, pp. 403-408.
Barry Hayes, Anonymous one-time signatures and flexible untraceable
electronk cash, Advances in Cryptology-AUSCRYPT '90, J. Seberry
and J. Pieprzyk eds., LNCS 453, Springer-Verlag, pp. 294-305.
I. Heger, Über die Auflösung eines Systemes von mehreren
unbestimmten Gleichungen des ersten Grades in ganzen Zahlen,
Denkschriften der Königlichen Akademie der Wissenschaften (Wien),
Mathematisch-naturwissenschaftliche Klasse 14 (2. Abth.) (1858), pp.
l-122.
R. Kannan and A. Bachem, Polynomial algorithms for computing the
Smith and Hermite normal forms of an integer matrix, SIAM J. Comput.
8 (1979), pp. 499-507.
Kevin McCurley, A key distribution system equivalent to factoring, J.

Cryptology 1 (1988), pp. 95-105.
[McKTMA85] Stephen MacKinnon, Peter Taylor, Henk Meijer and Selim Aki, An

optimal algorithm for assigning cryptographic keys to control access in a
hierarchy, IEEE Trans. Comp. Systems 34 (1985), pp. 797-802.

[Merk80] Ralph Merkle, Protocols for public key cryptosystems; Proceedings of

[Merk87]

the 1980 symposium on security and privacy, April 1980, Oakland,
California, pp. 122-134.
Ralph Merkle, A digital signature based on a conventional encryption
function, Advances in Cryptology-CRYPTO '87, C. Fomeranee ed.,

120

[Mil75]

[0089]

[0091]

[OOK90]

[Ped91]

[Ped92]

[Per85]

[Pf91]

[PW90J

[PW91]

[PolHel78]

[RS62]

[RS84]

[RSA78]

[Sh83]

References

LNCS 293, Springer-Verlag, pp. 369-378.
J.C.P. Miller, On factorization, with a suggested new approach, Math.
Comp. 29 (1975), pp. 155-172.
Tatsuaki Okamoto and Kazuo Ohta, Disposable zero-knowledge
authentications and their applications to untraceable electtonic cash,
Advances in Cryptology-CRYPTO '89, G. Brassard ed., LNCS 435,
Springer-Verlag, pp. 481-497.
Tatsuaki Okamoto and Kazuo Ohta, Universa! electronk cash,
Advances in Cryptology -CRYPTO '91, J. Feigenbaum ed., LNCS 576,
Springer-Verlag, pp. 324-337.
Kazuo Ohta, Tatsuaki Okamoto and Kenji Koyama, Memhership
authentication for hierarchical multigroup using the extended Fiat­
Shamir scheme, Advances in Cryptology-EUROCRYPT '90, I.
Damgard ed., LNCS 473, Springer-Verlag, pp. 446-457.
Torben Pedersen, Non-interactive and information-theoretic secure
variabie secrel sharing, Advances in Cryptology-CRYPTO '91, J.
Feigenbaum ed., LNCS 576, Springer-Verlag, pp. 129-140.
Torben Pedersen, Distributed provers and verifiable secret sharing based
on the discrete logarithm problem, PhD thesis, Computer Science
Department, Aarbus University, 1992.
René Peralta, Simultaneons security of bits in the discrete log, Advances
in Cryptology-EUROCRYPT '85, F. Pichler ed., LNCS 219, Springer­
Verlag, pp. 62-72.
Birgit Pfitzmann, personal communication.
Birgit Pfitzmann and Michael Waidner, Pormal aspects of fail-stop
signatures, Interoer Bericht 22190, Fakulät für Informatik, Universität
Karlsruhe, December 1990.

Birgit Pfitzmann and Michael Waidner, Fail-stop signatures and their
applications, SECURICOM '91; 9th worldwide congress on computer
and communications security and protection, Paris, 1991, pp. 145-160.
S.C. Pohlig and M.E. Hellman, An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance, IEEE IT 24
(1978), pp. 106-110.
J. Rosserand L. Schoenfeld, Approximate formulas for some functions
of prime numbers, Illinois J. Math. 6 (1962), pp. 64-94.
Ronald Rivest and Adi Shamir, How to expose an eavesdropper, Comm.
ACM 27 (1984), pp. 393-395.
R.L. Rivest, A. Shamir, and L. Adleman, A Metbod for Obtaining
Digital Signatures and Public Key Cryptosystems, Comm. ACM 21
(1978), pp. 120-126.
Adi Shamir, On the generation of cryptographically strong
pseudorandom sequences, ACM Trans. Computer Systems 1 (1983), pp.

[Shm85]

[SKI90]

[SRA79]

[SS90]

[TW87]

[WP89]

38-44.
Zahava Shmuely, Composite Diffie-Hellman public key generating
systems are hard to break, Technical report no. 356, Computer scienct\
department, Technion-lsrael lnstitute ofTechnology, February 1985.
Hiroki Shizuya, Kenji Koyama and Toshiya ltoh, Demonstraling
possession without revealing factors and its applications, Advances in
Cryptology-AUSCRYPT '90, J. Seberry and J. Pieprzyk eds., LNCS
453, Springer-Verlag, pp. 273-293.
A. Sharnir, R.L. Rivest, and L. Adleman, Mental poker, MIT/LCS/ TM-
125, February 1979.

Schrift and Shamir, The discrete log is very discreet, Proc. 22nd STOC
1990, pp. 405-415.
Martin Tompa and Heather WoU, Random self-reducibility and zero
knowledge interactive proofs of possession of information, 28th FOCS,
IEEE Computer Society, 1987, pp. 472-482.
Michael Waidner and Birgit Pfitzmann, The Dining Cryptographers in
the Disco: Unconditional Sender and Recipient Untraceability with
Computationally Secure Serviceability, Advances in Cryptology­
EUROCRYPT '89, LNCS 434, Springer Verlag, p. 690.

Notation

~

11

IN,Z,G:l

bitwise exclusive-or.

concatenation.
the sets of positive integers, all integers and rational numbers
respectively.

gcd(a1, ••• ,a1) the greatest common divisor of a1, ••. ,a1; defined for rationat numbers

b d() gcd(a,d, ... ,a,d) h d IN d 0 · h th t ygc a1, ••• ,a1 : d , were e '. *, ts suc a

a1d, ... ,afle Z; this definition is independent of the choice of d.

Jcm(a1, .•• ,a1) the least common multiple of a1 , ... ,a1e (! (this is defined for rational

numbers analogously to the gcd).

(a\b)

log x

lnx

LxJ
rxl

there is an integer c such that ac = b; also defined for a,be G:l.

there is no integer c such that ac = b; also defined for a, be (!.

the integer such that a· p-ordp(a) is an integer not divisible by p, for p

prime and ae Z ,a*-0.
the largest positive divisor of a which is not divisible by any prime

number dividing b, for a,be Z, a,b*-0.

base-2logarithm of x.

naturallogarithm of x.

the largest integer ~ x.

the smallest integer ~ x.

transmission of the value x from one party to another party.

denotes the random selection of an element (that will be called a) from
S according to the uniform probability distribution; for any setS.

a= b (mod m) (b-a)lme Z; this is defined for a,be G:l, me IN, m *-0; we shall
omit the suffix (mod m), if no confusion is likely to arise.

a
[al ... al]

a=b(modm)

Z{a1, ••• ,as}

thesetof veetors (a1, ... ,ak) with a1, ... ,ake S, for any setS.

row vector (al , ... ,ak); if ae Sk, then al, ... ,akE S.

the matrix with columns a 1, ... ,a1•

m·l(b-a)e zk; this is defined for a,be (Ik, m,ke IN, m>O.

{l:;f= 1 ~1a1 1Ç1 , ••• ,ÇseZ}: the abelian group generated by a 1 , ... ,ase
(Ik.

124

0{a1, ... ,asl

<a>,<a,b>
<a,b>

ab

N

7L.*
N

7L.p
7L.*

p

Gq

qKN)

a-1 (modN)

<flN
À(N)

XI!d (modN)

xa!d (modN)

X8 (modN)

XA (modN)

l(n)

length(A,B)

Notalion

{li=I.;iai IÇ!, ... ,.;s E 0}: the vector spacegenerated by al, ... ,ase ok.
the groups generated by a and generated by a,b respectively.

a1b 1 + ... + akbk: the scalar product of a = (a1, ... ,ak) and
b = (bl, ... ,bk).

(a1b1 , ... ,a~k), if a= (a1, .. • ,ak) and b = (b1 , . .. ,bk).

a composite, odd number; so N = p~1
... p:' with p 1 , ... ,p1 distinct odd

primes and k1, ... ,k1e IN; usually N = PQ,for large primes P,Q.

the set {a I a e IN, 1 ~a~ N, gcd(a,N) = 1}.
the set { 0, 1, ... ,p-1 } , with p prime.

the set { l,2, ... ,p-l }, withp prime.

the unique subgroup of 7L.~ of order q, for ql(p-1) and p,q prime.

Euler's Totient function: qKN) = 17L.~ I= m=1pf1-
1(pi l).

the number be 7L.~ with ab = I (mod N); for ae z;".
thering {-j ja,d e7L,d > 0, gcd(d,tp(N))= 1}.

Carmichael's function: À(N) = lcm(pf1-
1(p1 -I), ... ,p:'-1(p1 -1)) (for

Nodd).

the d1h RSA·root of x (mod N): the unique solution Se z;_, to

sd x (modN) for xe 7L.~ and de 7L. with gcd(d,qKN)) = 1.

the number in z;_, which is congruent (x 11d)a (modN) for a,de 7L.

WÎth gcd(d,q(N)) = 1 and XE 7L.;"; if a/d=a'/b', then Jélfd=
XJ'lb'.

the number Se 7L.~ with S=xf1 x~2
... x;k(modN), for x=(x1, ... ,xk)

* k d - k e (7L.N) an a= (a1, ... ,ak)e (ON) .

(x81
, ... ,x81)e (7L.~) 1 , for A=[al ... ade (cDN)k,/ and XE (7L.;"l;

SO (XA)B::: XAB.

Iength of the binary representation of ne IN; the length of a negative
integer m, a rationat number plq (q;tl), a vector c, and a matrix
A=(a;) are defined by: l(m)=l(-m)+I, l(plq)=l(p)+l(q)+I,

l(c) = Li(l(c;) + 1), and l(A) = L;,/l(a;,j) + 1), respectively.

l(A) + l(B).

Samenvatting

Dit proefschrift gaat over digitale (electronische) handtekeningen. Een handtekening is
een bewijs dat een bepaalde boodschap van de ondertekenaar afkomstig is. Een digitale
handtekening onder (een beter woord is "op") een boodschap is dit ook, en heeft de
volgende eigenschappen:

• De handtekening bestaat uit één of meerdere getallen, die verkregen zijn door
het toepassen van een wiskundige functie op de te tekenen boodschap. Hierdoor
verschilt de handtekening van boodschap tot boodschap.

·• Iedereen kan controleren of de handtekening bij een boodschap correct is.
• Het is zo goed als onmogelijk om andermans handtekening bij een nieuwe

boodschap te maken. Dus als iemand een oude boodschap (een beetje) verandert
klopt de handtekening niet meer.

Door deze drie eigenschappen is een digitale handtekening dus niet de PIN-code
van je bankpas, waarmee je in sommige winkels kunt betalen. Ook niet het wachtwoord
voor de toegang tot een computer. En het is ook niet het faxen van een document waar
je handtekening onderstaat.

Digitale handtekeningen kunnen door computers· verwerkt worden en over een
telefoonlijn verstuurd worden. Het is niet zo dat er maar één methode is om digitale
handtekeningen te construeren. Er zijn verschillende constructies bekend en deze
verschillen in de gemaakte aannames en de (extra) eigenschappen die die handtekening
kan hebben, zoals: de ontvanger van een boodschap met handtekening kan die
handtekening wel controleren, maar hij weet niet wie het ondertekend heeft (zie ook
Hoofdstuk 4).

In het eerste hoofdstuk van dit proefschrift worden in het kort enkele bekende
cryptografische systemen behandeld (het RSA-systeem en het systeem gebaseerd op de
discrete logaritme), en enkele basisbegrippen uit de moderne cryptografie (zoals blobs
en zero-knowledge). In de overige zes hoofdstukken worden drie verschillende aspecten
van digitale handtekeningen behandeld, namelijk nieuwe theoretische resultaten,
constructies van handtekeningen en toepassingen. Deze zes hoofdstukken kunnen
onafhankelijk van elkaar gelezen worden, behalve dat

126

• Hoofdstuk 3 een vervolg is van Hoofdstuk 2, en dat
• in een bewijs in Hoofdstuk 4 en in Hoofdstuk 6 een stelling uit Hoofdstuk 2

gebruikt wordt.

In Hoofdstuk 2 en 3 geven we enkele nieuwe theoretische resultaten voor de
veiligheid van klassen handtekeningen systemen, die gebaseerd zijn op RSA.

In Hoofdstuk 2 initialiseert een bepaalde instantie een RSA-systeem met modulus N
en geeft s handtekeningen genaamd H 1 , ... ,Hs van bepaalde types aan een individu.
Elk zo'n handtekening is niet de wortel van een bepaald residu (zoals gebruikelijk is in
RSA), maar is het product van rationale machten van residuen roodulo N, en de
gebruikte machten bepalen het type van de handtekening. Het individu probeert met de
verkregen handtekeningen een nieuwe handtekening H' te berekenen. Onze
hoofdstelling zegt dat als de gebruikte residuen willekeurig door die bepaalde instantie
gekozen zijn, dat dan het berekenen van H' uit H 1, ... ,Hs van dezelfde
moeilijkheidsgraad is als het berekenen van een bepaalde RSA-wortel op een
willekeurig gekozen residu roodulo N.

In Hoofdstuk 3 hebben we dezelfde situatie als in Hoofdstuk 2, maar nu worden
enkele van de in de handtekeningen gebruikte residuen door die instantie gekozen en de
overigen door het individu zelf (dus nu heeft het individu wel invloed op de verkregen
handtekeningen). Ook in dit geval wil het individu een nieuwe handtekening H'

berekenen uit de verkregen handtekeningen H 1 , ... ,Hs. Als we aannemen dat:
• het individu zelf geen RSA-wortels op willekeurig gekozen residuen kan

berekenen, en dat
• het individu gebruikt in zijn berekeningen roodulo N alleen vermenig-

vuldigingen en delingen,
dan zegt onze hoofdstelling dat het berekenen van H' uit H 1, ... ,Hs van dezelfde
moeilijkheidsgraad is als het oplossen van een bepaalde tweede graads vergelijking in
geheeltallige matrices.

In Hoofdstuk 4 en S geven we constructies voor drie nieuwe types van
handtekeningen, en een nieuwe, efficiente constructie voor de zogenaamde Fail·
stop handtekeningen.

In Hoofdstuk 4 introduceren we de zogenaamde "group signature" en we geven er
vier verschillende constructies voor. Zo'n handtekening is bedoeld voor een groep
personen en heeft de volgende drie eigenschappen:

• alleen personen uit die groep kunnen een handtekening zetten,
• de ontvanger van de handtekening kan verifiëren dat het een geldige

handtekening is, maar hij weet niet welk persoon die handtekening gezet heeft,
• indien noodzakelijk kan een handtekening "geopend" worden, zodat de naam

van de persoon die die handtekening gemaakt heeft bekend wordt.
Handtekeningen die de eerste twee eigenschappen hebben zijn al in de literatuur

bekend, maar de derde eigenschap is nieuw.

In Hoofdstuk 5 construeren we drie digitale handtekening systemen, waarbij
niemand de handtekening van iemand anders op een nieuwe boodschap kan maken,
zelfs niet met onbeperkte rekencapaciteit.

Er zijn constructies bekend voor de volgende drie soorten handtekeningen:
• undeniable: een handtekening die niemand kan controleren, tenzij in overleg

met de ondertekenaar (op een zero-knowledge manier). Daarom kan iemand die
een goede handtekening heeft gekregen niemand anders hiervan overtuigen. En
een veronderstelde ondertekenaar kan een vervalste handtekening ontkennen.

• convertible: een undeniable handtekening met de extra eigenschap dat de
ondertekenaar deze kan veranderen in een gewone digitale handtekening door
enige getallen bekend te maken.

• fail-stop: als iemand een handtekening vervalst, dan kan de veronderstelde
ondertekenaar bewijzen dat het een vervalsing is.

We geven constructies zodat de eerste twee soorten handtekeningen voor het eerst de
extra eigenschap krijgen dat niemand de handtekening van iemand anders op een
nieuwe boodschap kan maken, zelfs niet met onbeperkte rekencapaciteit. Bovendien
geven we een nieuwe constructie voor fait-stop handtekeningen die veel efficienter is
dan de bestaande constructie.

In Hoofdstuk 6 en 7 geven we twee toepassingen van digitale handtekening
technieken: een nieuw electronisch betalingssysteem en een nieuw soort blob.

In Hoofdstuk 6 presenteren we een nieuw electronisch betalingssysteem, dat het
systeem van Chaum, Fiat en N aor vele malen efficienter maakt, en bovendien nieuwe
eigenschappen bezit. Betalen met je bankpas en je PIN-code in een winkel is wel
electronisch, maar het is niet wat wij bedoelen met een electronisch betalingssysteem.
Niemand kan de ingetoetste PIN-code controleren dan alleen de betaalautomaat, waar
de geheime sleutel van de bank in zit. Bovendien heeft de gebruiker geen privacy: de
bank weet precies waar, wanneer en voor hoeveel je hebt gekocht.

In een electronisch betalingssysteem zoals wij die hier beschouwen heeft iedere
gebruiker een kleine computer op zak. Hij gaat er eerst mee naar de bank om deze
computer "met geld te laten vullen", dit wil zeggen met speciaal geconstrueerde getallen
waar de bank haar digitale handtekening op zet. Bij het betalen laat hij de constructie
van deze getallen en de handtekening van de bank zien, en de winkel kan zelf
controleren of het goed is, zonder een rechtstreeks contact met de bank. In dit systeem
kan de bank er niet achterkomen waar, wanneer en voor hoeveel je hebt gekocht.

128

In Hoofdstuk 7 presenteren we een nieuw commitment systeem: dit is een systeem
waarbij je je kunt binden aan een bepaald getal, zonder dat de ontvanger van dit
commitment (ook wel blob genaamd) weet welk getal het was, en zonder dat je achteraf
dit getal nog kunt veranderen (je geeft dit getal als het ware in een gesloten envelop). De

gebruikelijke constructie is met een wiskundige functie 'B, die de twee bovenstaande
eigenschappen moet hebben (in vaktermen: collision-free voor de maker en one-way
voor de ontvanger). Als iemand zich wil binden aan een getal b, kiest hij willekeurig

een getal ren zijn commitment wordt B=fJl,b,r), en hij geeft het getal B aan de
ander. Om later dit commitment B te openen maakt hij ben r bekend, zodat de
ontvanger B kan controleren.

Wij presenteren een nieuw soort blob: de maker maakt alleen b bekend en bewijst
dat hij r weet zonder r bekend te maken. Wij geven verschillende constructies en
toepassingen, en we construeren een "tegenspraak" met een in de literatuur bekend
lemma

Acknowledgements

I would like to thank everyone who has contributed-directly or indirectly-to the
contents of this thesis. I would like tomention several persons in particular.

First of all, I would like to thank my promotor Henk van Tilborg for all hls useful
comments and suggestions during the research work. Also I would like to thank my
promotor prof. dr. J.H. van Lint for all his suggestions to improve this thesis.

Then I would Iike to thank David Chaum for introducing me to cryptology,
especially to its practical aspects. Several of the probieros that are treated in this thesis
were posed by him.

I am also very grateful to Bert den Boer, Jurjen Bos, Stefan Brands, Matthijs Coster,
Jan-Hendrik Evertse, Maarten van der Ham, Torben Pedersen and Birgit Pfitzmann for
their scientific support and encouragements. They listened to all my ideas, which were
not always formulated well. It is their patience, criticism, and enthusiasm that purified
my ideas. They also proofread my papers and (parts of) this thesis.

Finally, I would like to thank my housemates Aad, Erwin, Gerard, Henk, Herman,
Jan, Paul, Peter, Pieter and Theo for so much patience they had with me. They taught
me the relativity of science, how to care for other persons, and how to "vivere l'altro".

Index

A
account 89,90,95,106

number 91,92,95,97,104,106
active ebameieon 108,1l0,115
algebraic strategy 41,44,46,47,48,49
algorithm

decryption 1,3,7
deterministic 18,20
encryption 1,2,3,4,7
Euclid's 20,25,43

Pohlig-Hellman 5,6
polynomial (time) 10,20,23,24,35,47,49,79
probabilistic I 0, 18,20,22,27 ,28,34, 79

anonymous refund 103,104
archive list 94,96
Assumption

l.I. 5,55
1.2. 6,52,53,62,63,69,72,79,109,111,113
1.3. 8,29,52,53,55,61

authentication I
merobership 51 ,52
message 1,3
tree 77,78

authority 30,31,51,59

8

signature 7,13,14,17 ,21,29,39,40,41,44
trusted 15,51 ,52,53,55,61 ,62,64,72, 78

bank 15,16,29,30,86,89-108
basis 25,26,27
bit

challenge 92,101,102
commitrnent (scheme) 8,16,109
denomination 92,93,94,97,100,101,102,105
hard 7
simultaneously hard 6,7

blinded
candidate 94,95,101,103,106
public key 54,55

blinding factors 12,14,27 ,40,56,94,97 ,I 00
blob 1,8-13,16,56,57,59,82,83,109-116

ebameieon 9,10,12,16,108,110,113,114,115
simulatable 9,110,112,114,115

Blum integer 7,72
Boolean formula 114,115
bundling function 71,72 .

c
candidate 94,95,97,99,103,104

blinded 95,101,103,106
canonical set 31 ,32
Carmichael's function 7,124
chain 31
challenge 11,12,82,83,84,91,92,93,98,100, 106,

115
bit 92,101,102
part 92,101
vector 53,96,101

ebameieon 9, 10,12,16,108,110,113,114,115
active 108,110,1l5
pass i ve 108-115

check 89-108

empty 98
signed 95,96,97

Chinese Remainder Theorem 27,60
claw 71,72
claw-free pairs of permutation 71,72
coin 8,15,29,30,89,93,98

flipping over the phone 8
toss/flip 4,8,10,18, 19,20,23,24,72,78

collision 2,72,75,79,80
collision-free 2,3,8, 12,53,71,72,75,77,79,92,100,

128
collision-resistant 2
commitment (scherne) 8,82,83,84,109,128

trapdoor 110
complete(ness) 10,11,57,63,81,84

132

complexity-theoretic assumption 4,5,67

composite Diffie-Hellman key-exchange 6,36,37

computational
con vincing 11

feasibility 2,18,20
infeasible 2,29,47
security 4,5,52,56,57,67,68,74,80

zero-knowledge 10,12,1ll
computing power 4,10,11,15,67,68,86

polynomial time ll,70

unlimited 5,11,15,16,51,68,70,85,90,113
conditionat probability 20,24,28
confidential(ity) 1,3

confirmation protocol 4,53,55,56,57,59,64,65,78-
85,111,112,ll3

conventional (eligîtal) signature 4,67,68

convertible signature 4,13,15,69,85
convincing

computationally 11

statistically 10
Cook's theorem 114
Corollary 2.1 13-16,29-36,42-44,47,57,105,106

credential 17,51
cryptosystem 1
cut-and-choose protocol 93,95,102,013,105,107

D
decryption (algorithm) 1,3,7

denomination
bit 92,93,94,97,100,101,102,105

part 92
deposit 90,91,93,94,96,98,104,107

deterministic
algorithm 19,20

Turing Machine (DTM) 19,20
Diffie-Hellman key-exchange 6,36

composite 6,36,37
digital signature 1,3,4,13,15,53,64,67,73,76,85,86
disavowal protocol 4,53,55,58,63,65,78-86

Euclid's algorithm 20,25,43
Euler's Totient function 7,124

Index

exponentially smal! error probability 5, 10, 15,81,

109-116

F
factorization 6,8,23,29,56,60,61,92

fail-stop signature 5,13,15,68-75, 79,85,86,87, I 06
forged signature 67,70,73,75,80,81,82

function

G

bundling 71,72
Carmicheal's 7,124
collision-free 2,8,12,53,71,75,77,79,92,100

Euler' s Totient 7, 124
hash 2,75,77,86

one-way 2,3,5,8, 12,53,55, 71,92,97,98

trapdoor one-way 2,7

Gaussian elimination 25,26,34
generator 3,5,11 ,33,55,57 ,60,62,69,73,78,79,80,

81,82,111,113,114

group signature 13,14,15,51-66

H
Hamming elistance I 06
hard bit 7
hash function 2,75,77,86
Hasse diagram 31
hieling scheme 71,72

I
identification scheme 13
individual 7,13,14,17-50
interactive protocol 4,10,11,14,39-50,81,84

J
Jacobi symbo1 72

discrete logarithm 1,5-8,11,16,36,52-55,62,67,69, L
74,79,109-113,125

distributed signature 64
doublespending 16,30,89,90,91,96
DTM 19,20

E
eavesdropper 2,3,6

efficiency 16,91,97, 100,102,106,107
EIGamal scheme 54
empty check 98
encryption (algorithm) 1,2,3,4,7

Lamport signature 32,71,72

language 10

M
M-strategy 45-48
majorterm 94,101,102,103
matrix 20,25,32,34,35,41,45,46,49,60,74,77,80,

91,123,124
memhership authentication scheme 51,52
mental poker 36,37

message

authentication 1,3
confidentiality 1,3

minor term 94,96,97,102,104
move 3,4,39,48,49, 111

N
NP 20,67
NP-complete 20,114

0
offline 15,16,29,30,89,90,91,92,98,106
one-time

key 69,70,75
pad 33

one-way function 2,3,5,8,12,53,55,71,92,97,98
online 16,90
oracle 19,20
order 6,22,27,35,59,60,69,72,124

p

parallel 12,13,49,53,111,115
passive ebameieon 108-115
perfect zero-knowledge JO, IJ, 12,81 ,84,85,86
ping-pong protocol 39
Pohlîg-Hellman algorithm 5,6
polynomial time 5,10,12,14,18-26,33-35,42-49,

67,69,70,79,112
computing power 11,70

polynomially indistinguishable 6,7,10,57
poset 31
predieale 4,67-70,73,114
preimage 2,60,71,72,106
presumed signer 4,5,67 ,68,69, 74,75,82,84
privacy 2,16,52,89,93,127

computational 52
unconditional 16,51 ,89,90,93, I 06

probabilistic
algorithm 10, 18,20,22,27 ,28,34, 79
Turing Machine (PTM) 19,20

probability
conditional 20,24,28
exponentially smal! error 5,10,15,81,109-116
unconditional 28

proof offorgery 68,74
protocol 3

coin-flipping 4,9,72,78
confirmation 4,53,55,56,57 ,59,64,65, 78-85,

111,112,113
cut-and-choose 93,95,102,013,105,107
Diffie-Hellman key exchange 6,36,37
disavowal 4,53,55,58,63,65,78-86
interactive 4,10,11,14,39-50,81,84

ping-pong 39
zero-knowied ge 10,11 ,12, 13,16,53,57 ,58,61,

62,63,79,85,109-115,125,127
prover 8,10
pseudorandom 33
PTM 19,20

Q
quadratic residue 7

R
refund 90-106

anonymous 103,104
part 95,96,107

residue class 13,14,17,18,24,27,39,40,42,43,45
root 7,8,14,18,21,29,34,40,41,47,57,77,105,124
RSA

root 7,8,14,18,21,29,34,40,41,47,57,105,124
scheme 8,13,14,17,40,53,92
signature 8,13,14,17-50

running time 12,19,20,23,24,28,45

s
scheme

basedon the discrete logarithm 6,52-54,62,69
comrnitroent 8,82,84,109,110
E1Gamal 54
hiding 71,72
identification 13
memhership authentication 51,52
RSA 8,13,14,17,40,53,92

security 4,6,8,13,15,17,55,61,67,68,71,74,76,79,
80,81,100.102

computational 4,5,67 ,68,80
parameter 68,69,71,78,92
unconditional 4,5,67,68,69,76,77,81,110

sequential 11,12,115
Shannon (information) 33,89,93

shop 29,30,89-108

signature

authority 7 ,13, 14,17 ,18,21,29,39,40,41,45

conventional (digital) 4,67,68

convertible 4,13,15,69,85

digital 1,3,4,13, 15,53,64,67 ,73,76,85,86

distributed 64

fail-stop 5,13,15,68-75,79,85,86,87,106

forged 67,70,73,75,80,81,82

group 13,14,15,51-66

Lamport 32,71,72

RSA 8,13,14,17-50

undeniable 4,5,13,15,53,54,64,69,78,79,81,85

134

simulatable blob 9,110,112,114,115
simulator 10,12,63,84
simultaneously hard bits 6,7
smart card 54,55
Smith normal form 20,25,46
sound(ness) 10-13,57,58,63,80,84
statistically convincing 10
subdeterminant 35,60
system

T

credential 17,51
crypto 1
payment 13-18,29,30,40,86,89-108
public key I ,2,52,54, 106

test predieale 4,67-73
TM 19,20
TPD 1,3,7,54,61,62
transaction 90-108
transcript 12,98,110,113
transferability 98,99, 107
trapdoor

commitrnent scheme 110
inforrnation 7,9,JIO
one-way function 2,7

tree-authentication 77,78
trusted authority 15,51,52,53,55,61,62,64, 72,78
Trusted Public Directory (TPD) 1,3,7,54,61,62
Turing Machine 2,19,20

Deterministic (DTM) 19,20
Probabilistic (PTM) 19,20

u
unconditional

privacy 16,51,89,90,93,106
probabi1ity 28
security 4,5,67,68,69,76,77,81,1 10

unconditionally secure for the
prover 10
recipient 4,5,67,78
signer 5,13,15,67-88
verifier 10,16,109-116

undeniab1e signature 4,5,13, 15,53,54,64,69,78,79,
81,85

unlimited computing power 4,5, 11, 15, 16,51,68,
70,85,90,113

untraceabi1ity 106

V

valid 4, 14, 15,16,51 ,52,59,64,67 ,68,70, 73,75,80,
89,90,93,96,106

Index

Vernam 33

w
withdrawal 90-108

z
zero-knowied ge

perfect 10,11,12,81 ,84,85,86
protocol 10,11,12,13,16,53,57,58,61,62,63,79,

85,109-llS, 125,127

Stellingen behorende biJ het proefschrift

Special Signature Schemes

door

Eug•ne J.L.J. van Heljst

1.
Het protocol voor "Gradual and verifiable release of a secret" dat gepresenteerd
is in het gelijknamige artikel is niet correct, en daarom is Lemma 2 van dat
artikel ook niet correct.

Zie: Dit proefschrift, Sectie 4.3.1, en

2.

Emest Brickell, David Cbaum, Ivan DamgArd and Jeroen van de Graaf,
Gradual and veriflable release of a secret, Advan.ces in Cryptology­
CRYPTO '87, C. Pomerance ed., LNCS 293, Springer-Verlag, pp. 156-
166.

In de nederlandse taal worden begrippen gebruikt met betrekking tot
handtekeningen, die niet adequaat weergeven wat er met digitale
handtekeningen gebeurt, zoals: hand-tekening, ondertekenen, namaken.

3.
De volgende visualisatie van een bJob
is aanschouwelijker dan een dichtgeplakte envelop.

4.
Het kraken van een cryptosysteem houdt nog niet bet afkraken van de auteurs in.

5.
Een cryptische uitspraak blijft beter bij.

6.
Het mensbeeld in de cryptologie getuigt van een zodanige argwaan tegenover
elkaar, dat, als dit het enige beschikbare mensbeeld zou zijn, de samenleving
onleefbaar zou worden. Daarom is bet noodzakelijk dat er vanuit verschillende
disciplines andere mensbeelden worden gepresenteerd.

7.
Het is terecht dat met behulp van de cryptologie bet eigen bezit maximaal
beschermd wordt. Zo beeft men volledig de gelegenheid om zijn goederen uit
vrije wil in gemeenschap te brengen.

8.
Het religieuze leven met als centrum de Eucharistie heeft ten volle zin als ze
uiteindelijk gericht is op eenheid onder de mensen.

9.
Tegen de schijn in tendeert de wereld naar de eenheid.

10.
De uitspraak "toets de theorie aan de praktijk" geldt niet alleen voor onze studie,
maar ook voor ons leven.

11.
Ik bemin, dus ik ben.

Zie: De uitspraak "cogito ergo sum" van René Descartes, Discours de la
Méth.ode (1631).

12.
Het .. hora est" kan niet alleen verlossend werken bij een promotie, maar
eveneens bij een homilie, daarbij in het midden latend of dit voor spreker of
luisteraar geldt.

