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Intfroduction

1.1. Introduction

In this section we will give a brief overview of all the (well known) cryptographic tools
and methods used in this thesis. It includes public key cryptography, message
confidentiality and authentication (digital signature), the cryptosystems based on
discrete logarithm and RSA, blobs and zero-knowledge. Also all the assumptions which
will be used in this thesis are stated, but if an assumption is used somewhere in this
thesis, it is indicated explicitly.

1.2. Public key cryptography

In contemporary computer-controlled communication systems, the conventional
cryptosystems have turned out to possess two major disadvantages: the problem of key
management and distribution in the case of many users, and the problem of
authentication.

In [DH76] a new cryptosystem, called a public key system, is introduced (see
Figure 1.1) that solves these two problems. Each user U of this cryptosystem creates
his own encryption algorithm Ey; and decryption algorithm D ;. Each user U makes
his encryption algorithm Ey; public by putting it in a public key book, called a Trusted
Public Directory (TPD) of public keys (It must be “trusted”, otherwise some attacks are
possible, see [RS84]). The decryption algorithm Dy, however is kept secret by U. The
pairs Eyj, D, are required to satisfy the properties:

Pl. Dy{(E(m)) = EfD¢{m)) = m, for all messages m and all users U.
P2. E;and D, are algorithms that are easy to perform.
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P3. It is computationally infeasible for eavesdroppers to find an algorithm D;,
from E that satisfies D;(Eu(m))mEU(Dz,(m))mm for a non negligible
fraction of all m.

The notion “computational feasibility” can be defined formally by using Tying
machines (see Section 2.2), but here we will use the following intuitive definition, If
dy,....3, are binary strings chosen according to some prescribed probability
distribution and b is a binary string with b=fg,,...,q,) for some function f, then we
say that it is feasible to compute b from a,,...,q, if there is an efficient algorithm that
outputs & with non-negligible probability when it is given ay,...,a, as input. In this
thesis we shall freely use the notion of computational feasibility in statements of
propositions, corollaries, and so forth.

Property P3 makes it possible to publish the encryption algorithm without
endangering the privacy of the transmitted messages. This property is often based on
some (unproven) complexity theoretic assumption (see Sections 1.4 and 1.5).

message User 4 = Eym) User B

EQ

Fig. 1.1. Description of a public key system.

Dyc)=m

eavesdropper

We define the following four kinds of functions, whose description must be publicly
known and the function must be easy to perform:

* one-way function: given a random image, it is computationally infeasible to
find a preimage. (In the literature another definition is sometimes used: for
given x and f{x) it is computationally infeasible to find an x '#x such that
fxy=fx)) | | |

~ frapdeor one-way function: a one-way function, for which it is feasible to
compute preimages, given certain additional information.

* collision-free function: it is computationally infeasible to find two distinct
numbers that map to the same image. (In the literature also called collision-
resistant. A collision i3 a pair {x, x'} satisfying x#x’ and fx) = fx)).

¢ hash function: a collision-free function that maps arbitrary-length input to a
fixed-length output.
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Note that with these definitions, collision-free and one-\ieay functions are not related,
according to Table 1.1 ( in which p is a large prime and g a generator of Z:,; see
Section 1.3.1).

function collision-free one-way
flnyy=x+y no no
flo=x yes no
£ (x,y)ag" *y (mod p) RO yes
Flo=g¥ (modp) | yes, forxe{0,1,...p-2} | yes

Table 1.1, Four functions to illustrate that collision-free and one-way functions are
not related.

Message confidentiality
If user A wants to send a confidential message m to user ‘B, he looks up in the TPD the
public encryption algorithm E4 of B, and sends the encrypted message

c = Egm).
User ‘B can recover the message m from ¢ by applying his secret decryption algorithm
Dgon ¢, because Dg(Eg(c))=c by property P1 (see Figure 1.1). By property P3, -
no other user than B can recover the message: it is computationally infeasible for an
cavesdropper knowing Eg and ¢ = Eg(m) to compute m. Thus everyone can encrypt
the message and only one person can decrypt the message.

Message authentication (digital signature)
If user 4 (called the signer) wants to send message m to user ‘B (called the recipient)
provided with his digital signature, he sends the message m and his signature

5 = D o(m).
User ‘B can verify the signature s by applying the public encryption algorithm E4to
s, because (by property P1) E 4(s) = ED m)) = m. By property P3 no other user
than 4 can have created this digital signature on m. Thus only one person can compute
the signature and everybody can verify the signature. This is an example how to
construct digital signatures; see the next section for the general case.

Protocols

A protocol can be taken to be a set of rules according to which messages are
transmitted between parties. Generally the parties apply cryptographic operations (such
as computation of digital signatures and encryption} to the messages sent and received,
in order to protect their interests. Hence the descriptions above of message
confidentiality and message authentication are examples of protocols, which will be
often depicted in a figure. See Figure 1.2 for the protocol of a digital signature, in which

—=— denotes the transmission of the value x from one party to another party.
A move is a message sent from one party to the other (so the protocol in Figure 1.2
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s

i

consists of one move, while the coin-flipping protocol of Figure 1.6 consists of 3
moves). An interactive protocel is one in which the two parties involved both
influence (in some way) the numbers sent during the protocol (see for instance Figures
1.6, 1.7 and 1.8).

User 4 User B

m,Dy(my _ verify the signature by testing
create a message m AT whether E_q (D;q (m)) =m ’

Fig. 1.2. Protocol of a digital signature.

1.3. $ignatures
\

I‘p [DH76) the concept of (conventional) digital signatures was introduced, and a

- formal definition of what was thought to be the optimal security for digital signatures

was given in [GMR85] and [GMRS8]. For these signatures, there is a publicly known
test 5retiicate, so that the recipient of the signature can verify efficiently the correctness
of the signature. For instance, in the previous section user B verifies the signature s =
D 4m) of user A by applying the public encryption algorithm E 4 to 5. All known
conventional signature schemes are based on a generally trusted, but unproven
complexity-theoretic assumption (such as property P3 of the previous section). Hence
signatures can be forged if this assumption turns out to be false. Hence the signers have
only computational security. The recipients of the signatures have unconditional
security: if a received signature passes the test predicate, then this signature will always
be valid, no matter how much computing power the signer has.

Recently it has been discovered that the definition of [GMRS88] was not as general as
possible: there are schemes possible with more (or different) security features, such as
the following schemes.

Undeniable signatures ‘

In [CvAB9] undeniable signatures are introduced: for the verification of these signatures
no test function is available, but the recipient has to perform a confirmation protocol
with the signer. This means that a recipient of such a signature cannot show the
correctaess of the signature to other persons without the help of the signer. Moreover, a
presumed “signer” can disavow a forged signature by using a disavowal protocol. The
signer has computational and the recipient unconditional security.

Convertibie signatures

In [BCDPIO] convertible signatures are introduced: these are undeniable signatures that
have the feature that they can be changed into (conventional) digital signatures (by
releasing some numbers by the signer) (see also Chapter 5).
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Signatures unconditionally secure for the signer

A scheme is called unconditionally secure for the signer if an attacker with unlimited
computing power cannot fake signatures of a signer S, i.e., he cannot create the correct
signature of § on an arbitrary message. An exponential small error probability is
tolerated, because the attacker can always guess the secret key of S correctly. So the
signer has unconditional security and the recipient computational security (for
constructions see Chapter 5).

Fail-stop signatures
In [WP89] fail-stop signatures are introduced: these are signatures unconditionally
secure for the signer having the following properties (unforgeability also relies on a
complexity-theoretic assumption):

+ If a signature is forged, the presumed signer can prove that the signature is a

forgery

+ The signer cannot make signatures which he can later prove to be forgeries.
In Remark 5.1 of Subsection 5.4.1 we show that undeniable signatures unconditionally
secure for the signer are not fail-stop signatures.

1.4. Discrete Logarithm
1.4.1. Discrete Logarithm modulo a prime number

In [DH76] the following one-way function is proposed. Let p be a large prime such
that p—1 contains a large prime divisor, and let g be a generator of Z;. Thus each
element ¢ of Z; can be written as

c =g (mod p),
where 5 is unique modulo (p-1). Given s, one can compute ¢ in polynomial (in -
log p, where this logarithm is base-2)-time. But the opposite problem of finding s

when ¢, p, g are given is assumed to be infeasible. More precise, this scheme is based
on the following complexity-theoretic assumption;

Assumption 1.1. It is infeasible to compute the discrete logarithm modulo a Iai'ge
prime number p, provided p-1 contains a large prime divisor.

The last condition in this éssumpu‘on is needed, otherwise the discrete logarithm can
easily be computed by the algorithm of Pohlig and Hellman [PolHel78]. Assumption 1.1
can be strengthened to the Certified Discrete Log Assumption:
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Assumption: L2 It is infeasible to compute the discrete logarithmi modulo a large
prime number p, provided p-1 contains a large prime divisor, even'if the factorization
of p~1 is known. ,

Another coneept based on the discrete logarithm is the one in which g does not.
generate Z; , but a subgroup of Z; of prime order (see Section 5.2).

Diffie and Hellman [DH76] proposed the following key-excharge protocol (called
the Diffie-Hellman key-exchange). Each user U randomly chooses a secret key
sy€ {1,...,p-2}; the public key will be cy =g" (mod p). Suppose users 4 and B
want to exchange a secret key over a public channel. They can both compute the secret
key k=g’""% (modp) because (cy)'® =g"1"% =(cy)’ (mod p). With this key
exchange protocol, each user must be sure that he uses the correct public key of the
other, otherwise an active cavesdropper can decrypt all the messages sent, without being
noticed (see [RS84]). Therefore a Trusted Public Directory must be used.

There are also signature schemes based on discrete logérithm; see for instance
[EIG85]. ‘

What information about the bits of the exponent s is revealed by ¢ = g*? Write p=
24g+1, where ¢ is odd. Using the Pohlig-Hellman algorithm [PolHel78), the 4 least
significant bits of s are easy to compute. Peralta [Per85] proved that for some constant
c the bits sy.p,...s804cloglogp € Simultaneously hard (this means that these
cloglog p bits are polynomially indistinguishable from a random cloglog p - bit
string) (see Figure 1.3).

Fig. 1.3. Complexity map of the discrete logarithm modulo a prime (not to Scale).
1.4:2. Discrete Logarithm modulo a composite number

The' idea of using a composite modilus for the discrete logarithm can be found in-
[Shm85], [McC88] and [SS90]. Shimuely [Shm85] proved (foughly stated) that any
algorithm that will break the composite Diffie-Hellman key-exchange (with composite

moditlus) for a nonnegligibld fraction of bases g, can be used to factor'the modulus.”
McCurley [MeC88] notes that this result'is not as strong as we might like for the

security of the scheme, because it is unlikely that the cryptanalyst may specify random

base g during the attack: He proved that any algorithm that ‘bieaks the scheme using:
g=16 can be used to factor the modulos.
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[S890] considered the same problem as [Per85] (see Figure 1.4). They proved that if
the modulus N = pg is a large Blum integer (this means that both primes p and ¢
are congruent to 3 mod 4), g is a quadratic residue (so g= w? (mod N) for some
we Z:) and p, q are of equal size (they have the same number of bits), and that if it is
infeasible to factor Blum integers, then:

¢ for arbitrarily small constant £ the bits 5; (15is(1-glogN) are hard (so
each s; is polynomially indistinguishable from a random bit); '
* the bits 5,...,5,,,,y are simultaneously hard.

T [

(1-g)logN 1logN 1
Fig. 14, Complexity map of the discrete logarithm modulo a Blum integer (not to scale).

1.5. RSA

Define Z}} to be the set {a|aeIN,1<a<N, gcd(a,N) =1}, where N is a positive
integer. The Euler’s Totient function @(N) is defined as @(N) = IZ;; |, and it has the
property that for all numbers me Z*N holds that
m?™) =1 (mod N).

In [RSA78] the following trapdoor one-way function is proposed. Initially, each user U
chooses two large “random” primes Py and @, and computes their product Ny,
which will be used as modulus. U further chooses an integer d,>1 coprime to
@Ny) = (Po~1)(Qq-1) and computes an integer dy, with dydy =1(mod @(Nﬂ))“.
He makes Ny, d,, public in a TPD, but keeps Py, O 4, @(Ny) and dy, secret (these
numbers are the trapdoor information for U). Hence the encryption algorithm of 7 is
E(m)= méu (mod Ny} and his decryption algorithm is D{c) = c‘;"‘ (mod Ny).

In stead of writing ¢ (mod N,;) we write ¢/ (mod Ny), and we will call it the
a(ulh RSA-root of ce Z’;V ‘(because it is the unigue solution ye Z',:, of the congruence

yd‘u = ¢ (mod Ny)). Thus if user 4 wants to issue his signature on m to user B, his
signature will be

S=m"7 (modN,),
which can be easily verified by B (see Figure 1.5). In this thesis we usually assume one
signature authority Z which issues signatures to individuals, and we will also

1 For efficiency, Carmichael’s function A{N) can be used in stead of @(N). This function is defined to be the
smallest positive number A(N) such that for all m coprime to N, we have that m‘“N Yy (modN) (., the
highest order of the elements from Z;'v ). Hence A(N) divides @(V).
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consider more complicated- RS A-signatures, such as: §= mf’ 3, rié"g (mod N}

User 4 - User B

| g ms ~ verify that
compute S=m “A(modNy) ——F—— 59% = m (mod N ;)

Fig. 1.5. An RSA-based signature-issuing protocol in which user A issues a signature

on message m o user B,
The security of the RSA-scheme is based on the following assumption.

Assumption 1.3. Wirhout the trapdoor information it is infeasible to compute RSA-
FOOIS.

According to this assumption it is infeasible to split numbers that are the product of
several large primes; and it is infeasible to compute discrete logarithms modulo a
composite number that is the product of some large primes. The proof of the Jast claim
can be found in [CEvdG87]: suppose that we have an efficient algorithm AL that for
each pair {g,c} with ge {1,...,N-1}, gcd{g,N)=1 and ce <g>, compntes an integer
s with g* =¢ (modN). Choose r at random from {1,...,N-1}, coprime to N, and
choose a “probable prime” p between N and 2N. Then with high probability, p is
coprime to @(N). Compute g:= PP (modN) and c= r? {modN), and because
ged(p,(N)) = 1 we have that ce <g>. If we apply AL on {gc}, we obtain an
integer s with g° =¢. Then 2P = 2 (mod N}, so AP D =1 and thus is ! a
square root of 1. The number 1 has four square roots modulo N, so with probability
172, this root is not equal to 1 or -1, and thus it yields the factorization of N. But
according to Assumption 1.3 it is infeasible to factor numbers that are the product of
several large primes, so this algorithm AL does not exist.

1.6. Blobs.

A bit commitment scheme is a scheme that alows P (prover) fo commit himself to
some bits (this commitment is called a blob) in such a way that it prevents 4/ (verifier)
from learning these bits without the help of P (so that a blob is a one-way- function for
4/ and a collision-free function for ). Later on, 2 can open this blob to reveal the
committed bits, and Vis convinced that P has not changed these bits.in the meantime.
These blobs can be created by physical means (e.g., envelopes), by quantum mechanics
{(see [Brass88]), or by cryptography (see [BCC88] for an overview). Inthe last case,
there is a public function Bthatis efficiently computable. If P wants to commit himself:
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to value b (from a certain set), he chooses randomly a number r (from some other
fixed set), computes the blob B =B(b,r) and issues B to V. If later on, this blob has to
be opened, then P reveals b and r to V/, who will verify that this blob B indeed
satisfies B=B(b,r).

According to [BCC88], a blob has the following four properties:
(i) Pcan create blobs to commit to any value (from some set).
(if) Pcan open any blob he has committed to in only one way. V
(iii) The verifier cannot learn anything about the value that P has himself committed
to in an unopened blob.
(iv) Blobs are uncorrelated to any secret that 2 wants to keep from V.

An example of the use of blobs is coin-flipping over the phone [Bl82]: if two
persons Pand ‘¥ want to flip a coin over the phone, they have to use blobs, otherwise
neither party will be convinced that the other is honest. They can perform the following
protocol (see Figure 1.6), that uses two coin-flips in stead of one. First Pflips a coin and
let b, be the outcome of this coin-flipping (for instance, let b; be “0” for head and “1”
for tail). 2 sends to ¥ a blob containing this number b;. Thus 2 cannot change the
outcome of his coin-flip anymore, and V/cannot learn this number &,. ¥ also flips a
coin and sends the outcome b, to P. So also ¥ cannot change this number b,
anymore. Now P opens his blob, so ¥ will know the outcome b, of the coin-flip by P
(and will verify it). The outcome of this coin-flipping protocol will be b ® b,. This
protocol behaves like a fair coin, if at least one of the two persons uses a fair coin.

Person P “Person V

b is the result of a coinflipping, Bb. 1)
and choose r randomly

—n b, is the result of a coinflipping
—Br 5 erify the blob

Fig. 1.6. Protocol for a coin-flipping over the phone between @
and V. The outcome of the coin-flip will be b, @b, .

Blobs are called simulatable if in addition to (i), (if), and (iii) they satisfy:

(iv) ¥ can generate blobs for each value with the same probability distribution as P
would.

Blobs are called chameleon if in addition to (i), (ii), and (iii) they satisfy:

(iv") V can generate blobs that he can open in several ways; and for each value the
probability distribution is the same as that of 7.

Thus chameleon blobs allow Vto do what P was forbidden to do (property (ii)).
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(For the use of chameleon blobs, see Section 1.7.) Blobs are called unconditionally
secure for the prover if property (iii) holds regardless of Vs computing power, and are
called unconditionally secure for the verifiert if property (ii) holds regardless of P’s
computing power. Several implementations of these different kinds of blobs can be
found in [BCC88].

1.7. Zero-Knowledge

Suppose a prover P wants to convince a verifier V that xe L, where L is a language.
They will use an interactive protocol, in which the two parties are allowed to exchange
messages and to toss coins. At the end of this protocol, ¥ will either accept or reject P’s
claim that xe L(of course, no protocol could possibly force Vto be convinced).

Two properties are required for this interactive protocol (we denote by U a person
who follows the designated protocol and by U a cheater who can deviate from the
protocol in an arbitrary way):

* Completeness: if xe L, v accepts P s proof with overwhelming probability.
« Soundness: if x¢ L, V accepts P’s proof with negligible probability.

Such an interactive protocol is zero-knowledge (introduced in [GMRS85]) if ¥ does
not learn anything more from the interaction beyond the validity that xe L. More
formally

* Zero-knowledge: for each V there exists a probabilistic polynomial-time
algorithm (called a simulator) that can simulate the communication between P
and V.

We distinguish two types of zero-knowledge. A protocol is called
* (computationally) zero-knowledge if, 10 each polynomial-time verifier r’f/,

there corresponds a polynomial-time simulator capable of producing V’s view
of the protocol that is polynomially indistinguishable from the probability
distribution, without even talking to the prover.

s perfectly zero-knowledge if it produces exactly the same probability
distribution.

In the literature two types of soundness are distinguished (the names are proposed by
Chaum, see [Brass91]):
* statistically convincing: Vis convinced of P’s claim, because if that claim had
been false, 7 would have been caught cheating except with exponentially small
probability (e.g., in the protocol of Figure 1.7 this type of soundness is used).

i Note the difference between*“unconditionally secure for the verifier” for signatures (see Section 1.3) and for blobs.
If these notions are used in this thesis, they are used in the context of signatures or of blobs.
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* computationally convincing: V is convinced of P’s claim, provided that he
believes that P did not break a specific instance of the appropriate cryptographic
assumption while the protocol was in progress (e.g., in Step 2 of Protocol 4.2
this type of soundness is used).

In this thesis we will be loose: by saying that an interactive protocol is zero-
knowledge, we mean that it is complete, sound (i.e., convincing in one of the two ways),
and zero-knowledge.

P and ¥ may have different kinds of computing power. So we can distinguish the
following four cases:

* P has unlimited computing power and 9 has polynomial time computing power
(e.g., [GMRS8S5], [GMR89]). '

e Phas polynomial time computing power and ©has unlimited computing power
(e.g., [BrCr86], [Ch86], and Chapters 5 and 7 of this thesis).

» P and ¥ both have polynomial time computing power (e.g., [FFS88] and
Chapter 4 of this thesis).

* P and Vboth have unlimited computing power (e.g., quantum blobs [BCC88]).

Consider the protocol for proving the possession of a discrete logarithm of
[CEvdGS87]: let p be a prime, g a generator of Z:,, and ce Z;, and suppose that P
wants to convince ‘¥ that he knows an integer s such that ¢ = g° (mod p). If 2
reveals s to ¥/, then ¥/ will be convinced, but this is not in a zero-knowledge way. A
zero-knowledge protocol can be found in Figure 1.7, and we prove that this protocol is
complete, sound, and perfect zero-knowledge. By ae S we denote the random
selection of an element (that will be called a) from the set § according to the uniform
probability distribution.

Prover P Verifier 7/
a=g" (modp)

¢ b choose b e {0,1)

x = r+sb(mod p—1) verify that g* = ac? {mod p)

Fig. 1.7. Perfect zero-knowledge protocol for proving possession of discrete Jogarithm [CEvdG87].

choose reg{0,....p~2}

Complete: This protocol is trivially complete.

Sound: If ‘P can answer both challenges of ‘Vcorrectly, then he knows x;=r and
x=r+s. Hence he knows a number s that satisfies ¢ = g°. Thus if P does not know
s, he can answer at most one of the challenges, and thus he will be detected cheating
with probability Z%_ Therefore this protocol will be iterated ¢ times in sequential order
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{where 1 is a number polynomial in log p), so the probability that P will be detected
cheating will be at least 127/, Hence this protocol is sound.
Perfect zero-knowledge: For each V the following simulator can be constructed:

repeat t times

repeat at most £:=Llog p_l times
choose e at random from {0,1},
choose r at random from {0,1,....p-2},
compute a=g'c?,
receive be {0,1} from "% s
if b=e then output x=r

until b=e,

if b#e in all | executions, output “bad tuck”

Note that this simulator has polynomial running time, that the number a is
uniformly distributed over Z;, and that a and e are mutually independent. So b is
independent of e and thus b=e with probability % Hence the probability that this
simulator outputs “bad luck™ is at most 2/p. Hence this protocol is perfectly zero-
knowledge. But if p is a composite number in stead of a prime, then this protocol is
computationally zero-knowledge (see [CEvdG87]).

The protocol of Figure 1.7 is executed ¢ times in sequential order and is zero-
knowledge. From a theoretical point of view, a zero-knowledge protdml that is
executed in parallel need no longer be zero-knowledge, because 7/can choose his
challenge b,,....5; to be the outcome of a collision-free one-way function on the
pumbers a;,...,a,. By doing this, 4/ cannot create a transcript himself, and therefore
this protocol is not zero-knowledge (each simulator that outputs a transcript with
nonnegligible probability has exponential running time). But by using chameleon blobs
the protocol of Figure 1.7 can be executed in parallel (see Figure 1.8). Because 4 can
open these blobs in several ways, itis easy to see that a simulator for this protocol now
has polynomial running time.

Prover P ' Verifier 7
choose #,....% blob(g"),..., blob(z" ) .
€ri0,...,p-2} i
< brcly choose By,....5, € z{0,1}

verify the opening of the
X} =1 +5B) ... % S1+5by, and open bishs s> blobs and that gx,- = g""cé"'
{i=1,..,1)
Fig. 1.8. Parallelexecution of the protocol of Figure 1.7, by using chameleon blébs.
We -omit the blinding factors in the blobs.
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But if a protocol is not zero-knowledge, that does not mean that the verifier receives
“useful information™ after the execution. An example of such a protocol is the parallel
version of the identification scheme of [FFS88]. They proved that the verifier obtains no
useful information for factoring the modulus.

1.8. Summary of the remaining chapters

This thesis consists of six chapters (apart from the introduction), divided into three
parts, each dealing with a different aspect of digital signatures.

In Chapter 2 and 3 we give two new theoretical results for the security of large
classes of RSA-based signatures.

In Chapter 4 and 5 we present three new kinds of signature schemes and
constructions for them: group signatures, undeniable signatures unconditionally secure
for the signer, and convertible signatures unconditionally secure for the signer. We also
present an efficient construction for fail-stop signatures.

In Chapter 6 and 7 we offer two applications of signature methods: a payment -
system and a new kind of blob.

The chapters can be read independently of each other, except that
* Chapter 3 is a continuation of Chapter 2, and that
« the soundness of Protocol 4.2 (Section 4.3.1) and an attack on the payment
system of Chapter 6 (Cheating 3 of Section 6.10) are studied by using Corollary
2.1,
Below we describe these chapters in more detail.

Chapter 2. Which new RSA signatures can be computed from certain
given RSA signatures?

Problem. A signature anthority Z sets an RSA-scheme with modulus N, and issues
RSA-signatures S),...,5; of certain types to an individual 4. The individual tries, by
using these signatures §;,....5,, to compute a new RSA-signature §’' of a type not
issued by 2. The RSA-signatures are products of rational powers of residue classes
modulo N, and the residue classes are chosen at random by 2 (e.g.,
X333 15 (mod N) for residue classes X1,%5,%3). The rational exponents in the
product determine the type of the signature.

Literature. Two related problems are analyzed: computing x
Wiy ‘

ky from

{x,x Jx ke } [Sh83], and computing x* from {xkl,...,xk‘} (with x unknown)
[AT83].
Qur contribution. We combine and generalize these results from one variable to

arbitrarily many variables. Let x, be residue classes (mod N), uniformly chosen by 2
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and let a; P b ] be rational numbers. If A4 receives the signatures
j ; . . b;

S = Hx;l” yeaesSg = Hx;"’ » our main theorem states that computing §’=[]x,’ from

{S},-...S,} is polynomial time equivalent to computing a certain RSA-root on random

residue classes (mod N).

Applications. We illustrate this result by analyzing two payment systems and one

signature scheme, under the assumption that it is infeasible for 2 to compute RSA-
roots.

Chapter 3. Which new RSA signatures can be computed from RSA
signatures, obtained in a specific interactive protocol?
Problem. A signature authority 2 sets an RSA-scheme with modulus N, and issues
RSA-signatures §,,...,8, of certain types to an individual 4, and 4 is able to influence
the form of these RSA-signatures. The RSA-signatures are products of rational powers
of residue classes modulo N; some of these residue classes are chosen by Z and the
others are chosen freely by 4. 4 wants to choose these residue classes in such a way
that he can use these signatures S7,...,5; to compute a new RSA-signature $' of a type
not issued by Z.
Literature. In Chapter 2 the case was studied in which 4 has no influence on the
received signature, that is, 4 chooses no residue class. In [Dav82], [Denn84] and
[DO85] the case was studied in which Z chooses no residue class, that is, individuals
were able to obtain signatures on desired messages.
Qur contribution. In this chapter we combine both cases, so some of these residue
classes are chosen by Z and the others are chosen freely by 4. In this chapter we make
the following two assumptions:

* 4 cannot compute RSA-roots of randomly chosen residue classes.

* In his computations, the only operations modulo N that A uses are

multiplications and divisions.

We formulate a necessary and sufficient condition under which 4 is able to
influence the signatures he receives from Z in such a way that he can later use these
signatures to compute a signature of a type not issued by . It turns out that this
condition is equivalent to the solvability of a particular quadratic equation in integral
matrices.

Applications. In all payment systems, the user chooses blinding factors and can. thus
influence the signatures he will receive from Z. So in these cases our results can be
applied.

Chapter 4. Group Signatures
Problem. A group signature scheme for a group of persons has the following three
properties:

« only group members can sign messages;

* the recipient of the signature can verify that it is a valid group signature, but
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cannot discover which group member created it;
= if necessary, the signature can be “opened”, so that the person who signed the
message is revealed.

So a group signature scheme is a signature scheme with one public key and several
secret keys; and if several owners of secret keys conspire, they cannot create new secret
keys.

Literature. If a person wants to prove that he belongs to a certain group, then there are
several protocols known that can be used (see for instance [SKI90], [OOK90] and
[CES86]). These schemes cannot be used to construct group signatures, because of
several reasons.

Qur contribution. We present four different constructions for such schemes and use
Corollary 2.1 to prove the security of one of the schemes. These constructions differ, for
instance, in complexity theoretic assumption, the need for a trusted authority, the
number of computations and the number of bits to be transmitted.

Applications. These schemes can, for instance, be used if the signer does not want to
reveal his identity to the recipient, but if later on the recipient wants to know the identity
of the signer, he is able to.

Chapter 5. Signatures unconditionally secure for the signer

Problem. A signature scheme is called unconditional secure for the signer if an attacker
with unlimited computing power cannot fake signatures of a signer S, i.e., he cannot
create the correct signature of $ on an arbitrary message. An exponential small error
probability is tolerated, because the attacker can always guess the secret key of §
correctly.

Literature. Undeniable signatures are introduced in [CvA89], fail-stop signatures in
[WP89], and convertible signatures in [BCDP90], all as defined in Section 1.3.

Our contribution. We present the first construction of an undeniable signature
unconditionally secure for the signer; the first construction of a convertible signature
unconditionally secure for the signer; and an efficient construction of fail-stop
signatures.

_Applications. These kind of signatures have the advantage over ordinary digital
signatures that, for instance in an electronic payment system, the customers need not
worry about the trusted authority (which normally has more computing power than the
customer) being able to break the underlying assumptions of the signature scheme.

Chapter 6. Efficient offline electronic checks

Problem. In an electronic payment system the users have to buy information from the
bank (such as specially created numbers) instead of special objects (such as coins);
during the payment, the construction of these numbers is revealed to the shop. The shop
can verify the construction of the numbers and if the constructions are correct, the shop
will accept these numbers as valid money (so the number itself does not represent
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money, but merely the knowledge of the construction of these numbers). The privacy of
the user can be protected unconditionally, which means that even with unlimited
computing power, the bank cannot determine where the users have spent their money.
Electronic information can be easily duplicated, so the user can give a copy of the
information to a second shop. This shop will accept this information as valid money,
since the information is still correct as it was before. Hence any user can spend the same
money at several different shops without being caught, because his privacy is protected
unconditionally. This double spending can be prevented if the shop uses an online
connection with the bank: immediately after receiving the information, the shop
contacts the bank in order to verify that the information has not been used before. A
system including such online connections is very expensive, so it would be better to
have an offline connection: the shop contacts the bank, say, once a week. For the
offline case to preserve unconditional privacy, the user must have unconditional privacy
if the money is spent once; but his identity must be revealed if the money is spent twice.
Literature. The first offline electronic payment system can be found in [CFN88].

Our contribution. We improve the efficiency of the offline electronic payment system
of [CFN88], by reducing the number of computations {(done by bank, user, and shop)
and the number of bits transmitted during the creation and spending phases of the
money. Also, some new functionalities are added, and we examine several ways of
cheating (one by using Corollary 2.1).

Chapter 7. Chameleon blobs, unconditionally secure for the verifier
Problem. A blob allows a person to commit to a certain bit (or bits) in such a way that
he cannot change this bit afterwards, and that the recipient of the blob cannot learn this
bit. Usually there is a public function B, and if a person wants to commit himself to bit
b, he chooses r randomly and computes the blob B='B(b,r). Opening this blob
consists of revealing b and r.

Literature. See for instance [BCCB88] for an overview of blob constructions. In the
literature it is proven that it is not possible to have chameleon blobs that are
unconditionally secure for the verifier.

Our contribution. We present the first blob in which the person reveals only b and
convinces the recipient in a zero-knowledge way that he knows r such that B="B(b,r).
We present several constructions for these blobs; most of these constructions are based
on the discrete logarithm. ‘

Applications. These new blobs can for instance be used to create chameleon blobs that
are unconditionally secure for the verifier (for our new blobs the definition of
chameleon can be modified a little). :



Which new RSA signatures can be
computed from certain given RSA
signatures?’

2.1. Introduction

Several more complicated protocols use as a building block simple protocols in which
only one party, called the signature authority, can create signatures and issue them to
the other parties, called the individuals. Such protocols are used, for instance, in
credential systems and payment systems, in which a signature represents a credential or
money. In fact, in such credential or payment systems, the signature authority issues
different types of signatures, corresponding to different credentials or different values of
money. A very challenging question in cryptology is what the security of certain
protocols will be. The security of these systems depends on whether an individual (or a
group of conspiring individuals) is able or unable to compute a signature of a type not
issued by the signature authority, by using signatures that were issued by the authority.

In this chapter we consider a generalization of the RSA-scheme of Section 1.5:
signature authority 2 chooses at random several residue classes (mod N), computes a
number of RSA-signatures that are products of rational powers of these residue classes
modulo N, and issues these signatures to individual A, together with the residue
classes. The exponents in the product determine the type of signature. It will appear to
be useful also to consider the variation in which Z sends only the sighatures but not the

¥ This chapter is based on the papers “Which new RSA signatores can be computed from some given RSA
signatures?” by Jan-Hendrik Evertse and Eugéne van Heyst, which appeared in Advances in Cryptology-
EUROCRYPT '90, 1.B. Damgérd ed., Lecture Notes in Computer Science 473, Springer-Verlag, pp. 83-97; and
“Which new RSA signatures can be computed from certain given RSA signatures?” by Jan-Hendrik Evertse and
Eugéne van Heyst, J. Cryptology 5 (1992), pp. 41-52.
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residue classes 10 A (so that A cannot verify the signatures). 4 may also have received
the signatures without the residue classes by eavesdropping. It is conceivable that an
individual learns several RSA-signatures issued by & (by participating in a signature-
issuing protocol or by eavesdropping) and that he uses these to compute uvseful
signatures not issued by Z.

Here is an example of the kind of problems we are facing. Suppose that an
individual 4 received two randomly chosen residue classes xj,x, (modN) and a
signature §= xi?"' 3 -x%’ ? (mod N), and that he wants to compute S’ = %’ % (modN). 4
can easily compute xé" 3 (mod N), since x%’ d= X{ 2% (mod N). But then 4 still has to
compute some cube RSA-root, From Theorem 2.1, stated in Section 2.4, it follows that
computing x%’g from {x),x,,8} is just as difficult as computing x!'3 (mod N) for each
residue class x (mod N). Thus if 4 cannot compute RSA-roots, he cannot compute

xé’ ? from {x1,x,,8}.

Akl and Taylor [AT83] and Shamir [Sh83] considered related problems. Shamir

showed, roughly speaking, that for pairwise coprime integers k,....k,, computing Xk

from {x,x” k2 ,...,x” k’} is just as difficult as computing w% from u alone, for random
u {see BExample 2.5 of Section 2.7). Akl and Taylor proved that if kk,... .k are
integers with gecd(k,...k)/ ged(k, k,...k)=r, then computing x*  from
{xkl,...,xk‘} {with x unknown) is at least as difficult as computing W from u for
random u (see Example 2.3 of Section 2.7). We generalize these results to arbitrarily

many variables as in the example above. Our main result is stated in Section 2.4,
independently of the context of the protocols mentioned above. Let § Eﬂxf‘“' pooes

S, = I'[Jc;z"J . = Hx;)” (mod N), where the x, are uniformly chosen residue classes
{mod N) and the a;; bj are rational numbers (we are not precise here). Then
computing S* from §,...,§, is polynomial-time reducible to computing a certain
RSA-root on random residue classes (mod N) and vice versa. Note that all the
_signatures are modulo the same modulus N. For different moduli see for instance
[Has85].

This chapter is organized as follows. In the next section we give a brief overview of
Turing machines, that can be used to formalize notions like “computational feasibility”.
In Section 2.3 we summarize the notations used in this chapter, while our two main
theorems are stated in Section 2.4. In Section 2.5 we give two algorithms that simulate
the choice of a random element from some set by using coin tosses only. The proofs of
our main theorems can be found in Section 2.6, while an important corollary and some
practical applications (in particular, two payment systems) of the main theorems are
given in Section 2.7. In Section 2.8 we give several remarks on the corellary of the
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previous section, and we end with some open problems.

2.2. Deterministic and probabilistic algorithms (Turing machines)

For the convenience of the reader, we recall some notions related to Turing machines. A
Turing machine (TM) consists of a finite control unit and a two-way infinite tape with
a read/write unit. The machine has a finite number of states, among which are two
special states called the initial state and the halting state. The machine uses a finite
alphabet S, containing a so-called blank symbol.

The tape is divided into cells, and each cell contains a symbol. At each stage, only a
finite number of cells on the tape contains nonblanks. The content of the tape in the
initial state is called the input. The unit can read/write the cell underneath it, and
afterwards the unit can remain there or move one cell to the left or right. The machine
also has a set of instructions (write symbol, move unit, and go to next stage), which
prescribes what the machine should do if it is in some state and has read some symbol.
Hence, after an instruction, the content of the tape may be changed. If there is at most
one instruction for each state and alphabet symbol, the machine is called a
deterministic Turing machine (DTM). The machine stops if it arrives at the halting
state. The non-blank content of the tape in this state is called the output. The running
time is then defined as the number of steps the unit has made before stopping. A
polynomial-time TM is a TM for which there is a polynomial with nonnegative
coefficients, such that for every input, the running time of that TM is bounded above by
the value of that polynomial evaluated in the length of the input (i.e., the number of
nonblank symbols).

A probabilistic Turing machine (PTM) is a TM that has at most two instructions
for each state and alphabet symbol. It is decided by an unbiased coin toss which one of
the instructions is followed (cf. [Gill77]). Thus the output of a PTM is no longer
uniquely determined by the input, but can be considered as a stochastic variable, whose
probability distribution depends on the input. In general, the running time of a PTM can
also be considered as a stochastic variable.

We can extend the notion of a PTM by allowing it to issue oracle requests. Let S*
be the collection of two-way infinite strings of symbols from S, at most finitely many

of which are nonblanks. An oracle O is a collection of random variables {O (i) |

ieI} on S*, where I is a subset of §*, such that the number of nonblank symbols of
O(i) is bounded polynomially in terms of the number of nonblank symbols of i, for

iel. An O-using PTM is a device that has, apart from its usual read-write and
random tape, an O-request tape. Whenever the O-using PTM needs to do a request to
0, it goes into an O-request state; it writes some i€ I on the O-request tape; then
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the oracle O writes some value of O (i) on the O-request tape, and this value is read
by the PTM; after this, the PTM continues its ordinary computations. We shall consider
the action of O in which it outputs a value of O() as one step in the execution of the
O-using PTM. Thus, a polynomial-time O-using PTM does, apart from polynomially
many ordinary PTM-operations, at most polynomially many O-requests.

The above notions of Turing machines can be used to define formally the notion of
“computational feasibility”, the complexity classes NP and NP-complete, and lower
bounds on the running time of certain problems. But in this chapter we will be loose
with Turing machines and we will use the words deterministic and probabilistic
algorithms to indicate DTM and PTM. In the algorithms that we consider, the inputs
are tuples of integers and rationals, and the length of such an input is the sum of the
lengths of the binary representations of the integers and of the numerators and
denominators of the rational numbers in the input. In general, both the output and the
running time of a probabilistic algorithm are stochastic variables, depending on the
input and the random coin tosses. However, here we consider only probabilistic
algorithms whose running time is determined by the input alone. Thus, if a probabilistic
algorithm is used to solve a particular problem, then it does not have to output a solution
with absolute certainty but only with some probability of success. More generally, the
underlying probability space consists of the strings of bits chosen during the execution
of the algorithm, with uniform distribution, and of a set J of possible inputs, from
which input I is chosen with probability p;. Thus, if some algorithm solves a problem
with conditionai probability of success sy given input 7, then its probability of success
is 2, pss;. By a polynomial-time algorithm we mean a deterministic algorithm whose

Ied

running time depends polynomially on the length of the input. For instance, there are
polynomial-time algorithms for doing the following (where a, b, ¢ are integers):
-« computing ged(a,b) from a and b (Euclid’s algorithm),
¢ computing the inverse of a (mod b) from a and b, if ged(a,b) =1 (Euclid’s
algorithm),
s computing a? (mod ¢) from a, b and ¢, if ged@@,c) = 1,
* testing rational vectors for linear independence,
» solving a linear diophantine equation with rational coefficients,
* deciding if a system of rational linear equations has an integral solution, and if
so, finding one,
* computing the Smith normal form of an integral matrix ([KaBa79]).

Also ged(a,b), where a,be @ can be computed in polynomial time: let d be a
positive integer such that da and db are integral, and define ged(a,b).= gﬁ‘ig’;@.
Note that this definition is independent of the choice of d. For instance, ged(%,2)=1
and ged(3,)=1.



‘Which new RSA signatures can be computed from certain given RSA signatures? 21

2.3. Notation

The following notation will be used in this chapter (some of notation was already
introduced in Section 1.5). Boldface characters are used to denote vectors, and the RSA-~
modulus N used is created by the signature authority.

ged(ay,....a,) the greatest common divisor of ay,...,a,€ @ (see Section 2.2).

logx base-2 logarithm of x.

Inx natural Jogarithm of x.

a=b(modN) N-!(b-a)e Z*; this is defined for a,be @, keIN.

Zla,,....a,} {T1,&4a;1¢.....8, €Z}: the abelian group generated by a,y,...,

ae Q.

Qfay,....a,} {TL,&a;1,.....& € @) the vector space generated by a,,....a.€
Q.

<ab> ajbi+ ... +aih,: the scalar product of a = (gq,...q)and b =
by ib).

Zy the set {a |a €IN,1<a< N, ged(a,N) =1} of (N) elements.

Qy the ring {4 | a,d € Z, d >0, ged(d, p(N)) =1}.

x4 (modN) the d™ RSA-roor of x (mod N): the unique solution Se Z’,ﬁv to
§¢ = x (mod N) for xe Z and de Z with ged(d,(N)) = 1.

x* (modN)  the number Se Zy with § = x{"x52...x* (mod N), for X = (x,...,x,)
e(Z3)f anda=(ay,...a0e @,)"

Kn) length of the binary representation of ne IN; the length of a negative »
integer m, a rational number p/g (g#1) and a vector ¢ are defined by:
my=l(-m)+1, Upl/g)=lp)+lg)+1 and I(c)=%;{c)+D),
respectively,

length(a,b)  I(a) + I(b).

2.4, Statement of the theorems

Leta,..a be @ N)"‘. We consider the preblem of computing xP for random
Xe (Z;,)k , if {x®,...,x®} (but not necessarily x) is given as input. We distinguish
whether or not b is an element of Q{a,,...,a,}. To each of these two cases a theorem is
devoted, of which the proof can be found in Section 2.6.
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In Theorem 2.1 below, a,...,a_b are vectors in (@ ), satisfying

be Qfay,...,a,}; length(N,a,,....a,b)=L; } @n

ged(d, p(N)) =1, where d = min{ x€ IN | xb € Z{a,,...,a,}}.

Theorem 2.1. Leta,,....a be (@ )" satisfy (2.1).

(i) For every probabilistic algorithm AL that on input {Nay,...a.b,x" ... x%)
computes xP in time < T AL With probability of success 2 €,y for random
Xe (z’;\?)k , there exists a probabilistic algorithm AL that for arbitrary ue va
computes wY in time < TaL+ LOD) with probability of success 2 -%-8 AL

(ii) For every probabilistic algorithm AL that on input { N,u} computes uin

time £ T,y with probability of success 2 €1 for random ue Z*N, there

exists a probabilistic algorithm AL that for arbitrary xe (Z;,)k computes x°

from { Na,,...abx™,..x"} in time < Tap + L OV with probability of

1
Success 2 7E47.

Remark 2.1, Theorem 2.1 can be generalized to the case that ged(d g(N)) > 1. Let G
be the largest subgroup of Z;, whose order is coprime to d. Then for every ue G,
there is a unique xe G with %= u{mod N) and we denote this x by u’. We can
prove that for every probabilistic algorithm AL as in Theorem 2.1 there is a probabilistic
algorithm AL that for arbitrary ue G computes #"? in time < Ty + LOU with
probability of success 2 %EAL. As the proof of this generalization is the same as that of

Theorem 2.1, we shall omit it here.

Remark 2.2. Theorem 2.1 deals with the situation that x® has to be computed from

a1

x?,...,x" while x itself is not known. We can treat the case that x is also known. Thus

xP has to be computed from given x%,...,x* and x. We can apply Theorem 2.1 with
a,,...,8;, ¢, =(1,0,....,0), &, =(0,1,...,0,..., €,=(0,...,0,1), instead of a,...Aa. Note
that be Qfa,,...,a .e,,....¢;} for all a,,...a be @ N)k . Further, if d is the smallest
positive integer x with xbe Z{a,,...,a,.e,...,e,}, then d is the ged of ail these
integers x. Hence ifbe (§ N}"C ,then ged(d, V) = 1.

We can also treat the case in which xg" . .x?‘ (which is a product of numbers) has to be
computed from {x®,...,x"} for certain b,,....b e ((f;) N)", where x,,....X, are distinct
vectors from (Z’}‘V)k: namely, put X":= (X,....X,), a1:=(2.,0,...,0), a5:=(0,a,.0,...,0)
o A= (0,...,0,a,), b= (by,....b,), and apply Theorem 2.1 with x",a],...,a5.b".
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In Theorem 2.2 below, a;,...,a b are vectors in @ N)k, satisfying

be¢ Qfa,,...,a,}; length(N,a,,...,a.,b)=L; 29
d =min{xe IN(3¢,,....E € Z: xb=3]_, &a; (mod A(N)) ). 22

Note that d is the gcd of all the integers x as in (2.2). Hence d divides A(N). We
have:

Theorem 2.2. Leta,,....a_be (@ N)k satisfy (2.2).
(i) There exists a polynomial (in L)-time algorithm that computes a nonzero
multiple of A(N)/d froma,,...,.a_b.
(ii)y For every xe (Z*N)k, the cardinality of the set {zeZy | dye (Z;’v)k:
b =z(modN), y* =x* (modN) for i=l,...,s) is equal to the number of
solutions ze Z;‘V of z¢ =1(mod N).

For instance, if d=1, then from a,...,a b we can compute in polynomial (in L)

time a multiple of A(N) and from that we can compute in probabilistic polynomial (in

length(N)) time the factorization of N [Mil75]. The other extreme situation is that

b

d=A(N) and x*1,...,x® are given but x is unknown. In this case x" is not uniquely

determined by {x,x*!,...,x*s}; in fact, every number in Z;, is possible for xP.

2.5. Taking random elements

In general (so log Ne Z), there is no known polynomial-time algorithm to choose an
element uniformly from {0,...,N-1} in which the only possible non-deterministic
operations are coin tosses. But we can simulate it for instance in one of the two
following ways.

Algorithm 2.1.Let0<e< 1.

Step 1. Compute the integer K := rlog%’—l

Step 2. Choose ¢ at random from {O,...,2K—1} by doing K coin tosses.

Step 3. Compute (the unique) re {0,...,N-1}, such that r = ¢ (mod N).

Lemma 2.1. Algorithm 2.1 has running time that is polynomial in log%, and the
probability distribution is such that %(1 —-€&) < Pr(r) £ —11\7(1 +¢g), for re{0,...,
N-1}.

Proof. It is easy to see that the running time of this algorithm is polynomial in log%.
For each re {0,...,N-1}, the number of ce {0,...,2K—1} such that r=c (mod N) is
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either | 27 ] or| 27 |+1. Hence:

Pr(r) = L3] or Prn=Zrd 3 +0).

2K = 1
0Pr<r>22,(<—,z D= 45k 2 5 4
Pr(r) < S G+l = §+ < BE
Algorithm 2.2,

Step 1. Compute the integer K := {Iog Nl(so N<2K<2n).
Step 2. Choose r at random from {0,...,2K-—1} by doing K coin tosses.
Step 3. . Check if re {0,...,N-1}.

Lemma 2.2. Algorithm 2.2 has running time polynomial in log N, the probability of
success is 2 %, and the conditional probability distribution given success is uniform.

Proof. The probability of success is ;3}';- ># =1, itis easy to see that the running time

is polynomial in log N, and that the conditional probability distribution given success is
uniform. w

Algorithms 2.1 and 2.2 can be modified to take random elements uniformly from
Z;, (in stead of {0,...,N-1}) with probability of success >4 3 as follows. Check in the
last step whether re{0,...,N-1} and ged(r,N) = 1. If so, take the residue class r
{mod ). Thus, we get an element of Z;\, with probability of success (o(N)/ 2K >
1/(12inln N), in view of the inequality @(N)2 N/(61lnln N) for N>4 [RS62]. So after
12Inin N repetitions of Algorithm 2.2 we have with probability at least % an element

from Z),.

cink:nin N vk
) > (%) k. Hence, after at most

There is a constant ¢>0 with I — (1 -~ TBhEN

K-k-c-lnk-InlnN cointosses

we find a vector re (Z° N) with probability of success 2 7 Moreover, the conditional

probability distribution of r, given success, is uniform on (Z N} . In the rest of this
-thesis we will use Algorithm 2.2,

2.6. Proofs of the theorems

We need some lemmas to prove Theorems 2.1 and 2.2.
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Lemma 2.3, There exists a polynomial-time algorithm that computes for every

a;,...a,c Q° a basis {e,,..e;) of Z* and positive elements d,,....dec Q such
that {d,e,,....de.} is a basis of Z{a,,...,a}.

Proof. For a,,....a,& Z* this follows from the result of Kannan and Bachem [KaBa79]
that we can compute in polynomial-time the Smith normal form of an integral matrix.

For a;,...a,€ @, one may first compute de N such that da,...da,e Z* and then
apply the result of Kannan and Bachem. i,

Lemma 2.4. For a,be Z, a,b#0, let (ad\b) denote the largest positive divisor of
ac Z which is not divisible by any prime number dividing b. There exists a
polynomial-time algorithm that computes (a\b) from a,be Z., a,b+0.

Proof.  Consider the sequence of integers ¢p=lal, ¢ =cg/ged(cg.b),
¢y = ¢y / ged(ey,b),.... There is an i such that ged(c;,b) = 1; let iy be the smallest such
i.Since ¢;<¢y /2, Syl 2,..., ¢ S 112, ¢4 =¢;, we have iy < Ka). Hence

it takes polynomial time to compute ¢; . For each prime number p and each ac Z,
a#0, let ord,(a) be the integer such that a- p'ord"(a) is an integer not divisible by p.
Obviously, ord,(¢; )=0 for each prime p dividing b. Further, if p is a prime
dividing a but not b, then ord p(a) =ord p(co) = ord p(cl) =...=ord p(cio)‘ It follows

that G = (a\b). 0

Lemma 2.5. Lera,,...a.c QF, be Qfa,,...,a,} and let d be the smallest positive
integer such that dbe Z{a,,....a;}). Then there exists a vector re QF such that the
denominators of the coordinates of v only have prime factors dividing d and such that

<a;r>eZ fori=l,...,s, and <br>-LeZ. 2.3)

Further, there is a polynomial-time algorithm that computes d and the above vector r
fromag,..ab.

Proof. Compute a basis {ej,...e,} of Z* and d,.....d,e Qg as in Lemma 2.3 from
a;,...a,. Further, compute & |.....5c @ with b=Y!_,&de;, e.g., by Gaussian
elimination. Then 4 is the smallest positive integer such that d&,,....d&,e Z; hence it
can be computed in polynomial time. Let uy,....s, be the numerators of d;,...d,,
respectively. Compute (u,\d),....(#\d). Note that gcd(d,&d(u \ d),....Ed(u, \ d))
=]. Now compute s,...,5,€ Z satisfying

Y Esd - \ d)=1(modd), 2.4)
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with Euclid’s algorithm. Finally, compute re X, e.g., by Gaussian elimination, with

- si(u\d) . ‘
< ei’r - —EIL,—_ for 1= l,...,t, (25)
0 fori=t+1,.. .,k

Note that the denominators of s5; -{(i; \ d)/d; only have prime factors dividing d for i=

1,....t Since {e,..,6} is a basis of Z", this implies that the denominators of the
coordinates of r only have prime factors dividing d. Further, from (2.5) and
a; €Z{dey,....de,;} it follows that <a;,r>eZ for i=1,..,t Finally, from (2.4),
(2.5), and b= 3}, &,de;, it follows that <b,r > —% eZ. It is easy to verify that all the
computations mentioned above take polynomial time. This proves Lemma 2.5. W]

Proof of Theorem 2.2. Without loss of generality we may assume that a,,...,a,,be z*,
Indeed, if a,,...,a,be (@ N)", we can compute in polynomial (in L) time me N with
ged(m A(N)) = 1 such that aj:=ma; (i=1,...,s), b:=mbe Z*, and we can proceed
further with aj,...,a.,b’. The integer d is also the smallest positive integer x for which
A’ =¥5 £l (mod A(N)) is solvable in &;,....5.c Z and x> x™ is 1-1 on Zy.
Hence (ze Zy | 3ye (Z*N)k: yWo=z, y¥ =x* (modN) for i = 1,....s} has the same
cardinality as {ze Zy, | Jye (Z*N)k: Y=z, y% =x% (modN) fori=1,....5}.

(i) Compute a basis {e,....e;} of Z* and dy,....d, (which are now positive integers)
such that {d,e,,..d,¢} is a basis of Zla,,...,a,}). Further, compute integers
Bi....B; such that b=3% Be,. Since be Qfa,,...,a,}, at least one of the integers
BisvseosBrs say By, is nonzero. There are integers 1,,...7, such that
db=¥i_, nde; (mod A(N)). This implies that df,,; = 0 (mod A(N)). Hence B,,, is a
nonzero multiple of A(N)/d. All operations mentioned above can be done in
polynomial (in L)-time and so B,,; can be computed in polynomial (in L)-time. This
proves (i).

() Let S={ze Zy | Iye(Zy)*: ¥y*=z. y¥ =1(modN) for i=1,..,s}. Then
{zeZy | ye (Z})": ¥P =2, y¥ =x" (modN) for i= 1,....s}=(z-x" | z€S§)).
Hence it suffices to show, that S; is equal to §,:={ze Z} i =1 (mod Ay},

First take ze§,. There are §,....5eZ such that db=3Y], &a; (mod A(N)).
Together with the fact that a*™) = 1 (mod N) for every ae Z), this implies that for
some ye (Z}‘V)k: A =y® =11, % )gl =1(modN). Hence zeS,. It follows that
S5 cs,.

Now take z€S,. We have that N = PQ. Put § =gcd(dP-1). Then &6 is the
smallest positive integer x such that xb=37,&a; (modP~1) has a solution in
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E....beZ, ie., the smallest positive integer x for  which
xbeZ{a,,....a, (P-De,....(P-1)e.}, where {e,,..e} is any basis of z*, By
Lemma 2.5, there is a vector re Q¥ with

A(P-Dejr>eZ forj=1...k

<a;r>e Z forj=1,...,s,
<b,r>—% eZ.

Put v:=(P-1)r. Then v = (v,,...,v)e Z* and

<a;,v>=0  (mod(P-1)) forj:l,...,s,}

<bv> = EL (mod(P-1)). 26

Since ze S,, we have 2% =1(mod P). Further, the group Z; is cyclic of order P-1.
Hence there is a residue class w with w"™% =z (mod P). Put y, =(w"l,...,w").
Then (2.6) implies that y?”' = =1{modP) for j=1,..,s and that y{’ =
w<b,v> = W{P—l)/‘é = 7z (mod P).

In the same way we have for the other prime Q ay, such that y;f =1{mod Q) for
j=1,...,s and ylz’ =z{(mod Q). By the Chinese Remainder Theorem, there is a
ye (Z3)" withy =y, (mod P) and y = y, (mod Q). This y satisfies y"/ =1(mod N}
for j=1,...s, and y® =z(modN). Hence zeS;. We conclude that also S, < ;.
Therefore S, = §; and part (ii) of Theorem 2.2 has been proved. u

Proof of Theorem 2.1. Assume we are given N and a,,....a.be (@ N)”‘ satisfying
2.1).

(i) Assume there is a probabilistic algorithm AL which computes x® from x*,...,x* in
time < T, (L) with probability of success 2 €,; (L) for randomly chosen xe (Z’I"V)k.
Fix ue Z;,. We describe a probabilistic algorithm AL to compute u’?_ The idea is to
apply AL to the vector u = (u"l,...,u’*) for an appropriate vector te Q » - However, this
n is not a random vector in ( Z;,)k , all its coordinates being a power of the same residue

class; hence we know nothing about the probability of success when AL is applied to u. "
We use the well-known trick of applying AL to a vector of the form

x= @' H",....u'* ") instead, where t = (,...,,) (the blinding factors) is randomly
chosen from (Z’;\,)" and m is such that ma,....,ma mbe (Z’;;)I‘. Since Zy is a
multiplicative group and the mapping x»—x™ on ZI\, is 1-1 in view of
gcd(m, (X)) = 1, this vector x is uniformly distributed on (Z*N)k .

Below we describe algorithm AL (all congruences are mod N):
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Step 1. Compute t=(1,.....)e @ and ay,...,0.0e Z such that <at>= @, for
i=1,..,s, <bt>+f =1 and the denominators of #,,...., are composed of
primes dividing d. Since ged(m, @(N)) = 1, we have te (@ w)k' Compuate m
such that rla, ,...,ma_mbe z*.

Step2. Choose r=(rj,....1,)€ g (Z3)"

<88 pMi = x% for i=1,...,s, where x= ",

Step 3. Compute u”r™ =u
u'* r). This computation is easy, since ¢ € Z, mae Z* for i=1,..s.
Note that it need not be feasible to compute x. '

Step 4. Apply AL to x™,...,x%.
Step 5. If AL outputs x®, then compute xPr ™uf =4 ®*>*B = V¢ This is possible

since fe Z and mbe Z*.

Choosing re (Z’;,)k in Step 2, can be done by using Algorithm 2.2 from Section 2.5.
The probability of success = -;- and the conditional probability distribution of r given
success is uniform on (Z;)é*

Steps 1, 2, 3 and 5 of algorithm AL described above have running time LOU. Further,
Step 4 has running time T ,; . Hence the running time of AL is < Ty + LD, Step 2
has probability of success = % Given success in Step 2, the conditional probability
distribution of x is uniform on ( z;,)k and hence the conditional probability of success
in Step 4 is 2 £, . Therefore, the unconditional probability of success of AL is >
3€a1.- This proves (i).

(ii) Assume we are given a probabilistic algorithm AL which from randomly chosen

1/d

ue Z}; computes # ' in time < T ,; and probability of success 2 £4;(L). We

construct the following algorithm AL (the congruences are mod N):

Step 1. Compute &,,....6,€ Z such that db= Y &;a,.
Step2. Choose rep Zy.

Step 3. Compute u=r? . [,(x* )g,- .

Step 4. Apply AL to u.

&ild
Step 5. ¥ AL outputs «''?, then compute r /9 = [1,(x% }“t’ =x®)d = ¢

If we choose r in Step 2 as described above, then with essentially the same argument as
above, it follows that AL has running time < Ty + L9 and probability of success >
L&, for asbitrary xe (Z},)". This proves (ii). Q
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2.7. Some practical applications

Let us return to the protocols of Section 2.1. Let N be a composite modulus and let
a,..a.b e @ N)f‘. Signature authority Z chooses at random x€ (Z’I‘v)k and issues the

signatures x*1,...,x* to individual 4. Now 4 wants to compute x". Is he able to do
this? Of course, we assume that for 4 it is computationally infeasible to compute RSA-
roots modulo N, since otherwise he could forge all signatures. According to
Assumption 1.3, Theorem 2.1 implies the following:

Corollary. 2.1. Assume there is an integer d with (do(N))=1 and

dbeZ{a,,....,a,}. Then it is feasible for A to compute xP from {Na,,...an)b,

a

x™,....x* } for uniformly chosen xe (Z’;,)k ifand only if be Z{a,,....a,}.

If beZ{a,,...,a,}, then x® can be computed from x®.,...x% simply by
muitiplying and dividing (mod N) the signatures received: if &;....¢, € Z are such
that b=&a, +... + £a,, then xP =T, (x% )% (mod N). Hence the corollary
means that 4 cannot compute RSA-signatures from other signatures, unless he is able to
do this using only the obvious operations on RSA-signatures: multiplying and dividing
{mod N). This corollary can also be used in situations where Z also issues x or where
A receives signatures x*1,...,x* on distinct vectors XX, (see Remark 2.2 of
Section 2.4).

We now give five examples to illustrate Corollary 2.1.

Example 2.1. In Chapter 6, a user-anonymous offline payment system is introduced,
and in Section 6.10 we will use Corollary 2.1 to discuss a special attack by the user on
this payment system {Cheating 3).

Example 2.2. Consider the user-anonymous offline payment system of [0089] for
coins. In this system, the bank uses a signature scheme that we do not specify here. The
user makes RSA-signatures using his own modulus N, which factorization he keeps
secret; here, then, the user plays the role of a signature authority. Let L be a fixed

integer, and define /= (ID,,MHR)L mod N, where R is a number chosen at random by
the user and Il denotes concatenation. In Figure 2.1 the basic idea of the withdrawal (in

which the user is able to blind messages and the bank to verify the messages and to sign
them, (see {O089]), and the spending protocol of a coin is given. After some time, the
shop sends the numbers that it received to the bank and the bank verifies that these
numbers have not been used before.
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Withdrawal of a coin Spending of a coin

User Bank User Shop
blinded(N,7,X} N.1,X,sign(N,1,X)

3

X:random >
sign(blinded(N,,X)) ,  E:random, (E,L)=1

3

C= (X-IE )’/ L (mod)

Fig. 2.1. The (simplified) offline payment system of [0089] for coins.

From Corollary 2.1 it follows that it is not feasible for the shop/bank to compute the
identity of the user (i.e., 1Y mod N) from N,IX,E,L and C = XYL . JE'L, But if the
user spends the same coin at two shops, the bank receives NJIX.L, sign(N,L.X),

' yL
two integers E,,E, that are coprime to L, and the signatures (X Ve )'{ (mod N) and

yL
(X -182)'} (mod N). From Corollary 2.1 it follows that the bank can compute

" mod N from these numbers (and hence the user’s identity) if and only if

ged(E~Ey L) = 1. :

A user can spend the same coin at different shops (“double spending”). What is the
probability that a double spender will be caught, that is, what is Pr{E;-F,e Zz) for
randomly chosen numbers E,,E,e Z;? Let p be a prime divisor of L. Then p/E,,

piE,, and thus Pr(pl(E;-E,)) = 1-Pr(pE\-E)) = 1—-%. If we write
L=p{...pi with p; prime and a;>0, then Pr(E,-EeZ;) = Pr(p{(E-Ey) |
1gjgn) = H;?:,(l—ﬁ) = @(LYL. This probability is close to 1 if L is a large
prime, and it is close to 0 if L is the product of many small distinct primes. The
probability is equal to 0 if 2 is a divisor of L. Therefore, it is unwise to let the user
choose L freely himself (which was the original suggestion); rather L should be fixed
as a large prime.

Example 2.3. In [AT83] and [McKTMAS8S] schemes based on cryptography are
proposed for controlling access to information within a group of users organized in a
hierarchy. Assume a communication system of users U; (or classes of users) that is
partially ordered by the relation <, where U; < U; means that user U; can have access
to information destined to user U,. Denote the authority by U, who chooses an RSA-
modulus N and a secret key K. To each user U; the authority assigns a public key #;

and a secret key K g {mod N). These integers ¢; are chosen in such a way that
1y ifandonlyif U;s U;. @.h

Hence this scheme enables a user U; at some level to compute from his own secret key
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K" the secret keys K of the users U ; below him in the organization, because

(K'Y = K" (mod N) and t/t;is an integer.

However, if U; £U;, then £/ is not an integer and this computation by U; is
considered to be infeasible. Thus the only remaining question is how to choose the
integers #;,. Figure 2.2 shows the Hasse diagram of a poset and shows three different
methods for the choices for ¢, which are indicated inside the nodes (representing users).
The methods are explained below.

2351113] [235713] | 235711 | ‘
7 11 13 8 9 5
Fig. 2.2.1. Fig. 2.2.2. Fig. 2.2.3.
The Hasse diagram of a poset with three different methods for the choices of the public keys, which are indicated
inside the nodes (representing users).

i) The assignment of Figure 2.2.1 satisfies condition (2.7). But two users may be able to
successfully cooperate to discover a secret key to which they are not entitled. For
instance, from the keys K* and K%, the secret key K can be computed as
(K*2K® = K (mod N), and hence all the keys in the system can be computed.

ii) In [AT83] it is proven that it is feasible for a user to compute K¢ from {K*,...,K%}

if and only if ged(a,,...a,) | d. Thus the previous collaborative attack can be
prevented by choosing the integers ¢; in such a way that they also satisfy

cd (¢ 1. 2.8

S, 2.8)

They propose the following choice of the integers #;: the authority chooses a sequence

{p;} of distinct primes (which are indicated in Figure 2.2.2 below the nodes) and

computes f; = [] pj- It is easy to see that this assignment satisfies (2.7) and (2.8). The
U,LU,

J i

disadvantage of this choice is that the used exponents (the #/s) can get quite large, even
for small posets.

iii) In [McKTMARS] another assignment - one that satisfies (2.7) and (2.8)- is proposed
{see Figure 2.2.3), called the canonical assignment. The poset is first decomposed into
disjoint chains (a chain is a totally ordered subset: see the bold lines). Each chain is
assigned a distinct prime. For each node i, we define n; = p™, where i is the m™ node

from the top in the chain whose prime is p. Then the #;’s are computed as f; =lcm n;.
jgi
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The authors also prove that any assignment contains a canonical set of ¢;’s, and that any
effort to keep the #;"s as small as possible will also lead to a canonical set.

Example 2.4. In [Bos92] a new signature scheme is presented, based on the Lamport
signatures [DH76]. In this new construction a-user cannot compute a new signature on a
given message, even if he received RSA-signatures on messages of his choice.

Let k! be fixed parameters (at least one of which is even) and R a fixed public
table of £ random elements (r|,...,r;). Let S be a fixed partition of a Ixk matrix into
dominos of size 1x2 (dominos are used for a good visualization). These %’— dominos
have a fixed order, and they all have a “0” side and a “1” side (see Figure 2.3). Each
user has his own RSA-modulus.

Fig. 2.3. Example of a partition § of a 3x4 matrix into six 0/1-dominos.

If a user wants to sign a % bit message m ={my,...,my), he determines a set
P=(p,..,py of I distinct primes. By using the partition S, the bits of the message
determine a subset M of size 1%1., because bit m; determines the m;-side of domino i.
The user’s signature on m will be

P. 11 r}”’i (mod N).
ijeM
If for example, the message to be signed is (001011), then the signer determines a set
(p1.p2.p3) of distinct primes, and by using the partition of Figure 2.3, his signature
will be (py,pyps) i PR P2 P2 PP PS (mod N). For the next signature, the
user must choose a set P that is disjoint from all previous sets of primes used (so for
instance all these sets of primes can be fixed and published in advance).

Consider all the signatures that person 4 has issued. If somebody else wants to forge
a signature of A on a message m not yet issued by 4, he has to compute several

rj” Pi (mod N)), where all the used primes p; are different from all primes previously
used by 4. Hence by Corollary 2.1 it follows that he cannot compuie any of these
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numbers ;}.l/p". Thus, nobody can forge any signature of A (except by reusing the

primes).
This signature scheme can also be optimized in various ways (see [Bos92)), but this
is beyond the scope of this chapter.

Example 2.5. If two parties want to exchange secret messages, they can use the one-
time pad (invented by Vernam): the secret key is a long sequence of randomly chosen
bits and the cipher text is the X-OR of the cleartext and the secret key. The ciphertext
thereby obtained contains no Shannon information about the cleartext; but the main
drawback of this system is the huge secret key that has to be generated, distributed, and
stored by the two parties. Therefore, instead of a truly random key, a pseudorandom
key will be used, which is created by a generator from an initial seed. The strength of
this scheme depends on the strength of the pseudorandom key.

Shamir [Sh83] has proposed the following pseudorandom sequence: the two parties
create an RSA-modulus ¥ and choose a random seed § and a sequence of keys
ki .k k3,..., which are coprime to ¢{N} and pairwise coprime to each other {e.g. the
sequence 3,5,7,11,13,...). Then the pseudorandom sequence R|,R;,R;,... will be

R =5"4 (mod N),
R, =5 (modN),

Shamir considers the following two problems (t.&,.k,,... .k, are fixed):
(1) Given N and S, compute R,.
(2) Given N,S, Ry, R;,..., R,, compute R;.

Shamir proves that from N,q,...,q,, and $,8%,...,8% (mod N), one can compute
in polynomial time $“° (mod N) where ag = ged(a;.,....a,). With this result, he proves
(roughly speaking) that if it is feasible for a person to solve some of the instances of
problem (1) with probability > g, then that person can solve some of the instances of
problem (2) with probability > &.

This chapter is a generalization of Shamir’s result.

2.8 Some remarks on Coroliary 2.1.

Remark 2.3. From this corollary, the following well-known resuits can be obtained.

Corollary 2.2. Let a,ay,...a,b,d be positive integers coprime to (N}, ¢,cq,...C
be integers, and x,y be chosen randomly from Z*N. Then the following five results hold
for A ‘

(i) It is feasible to compute x4

c/a}

Sfrom {x,x od |§3?a—¢)

ged(ep,a)

(ii) It is feasible to compute x'¢ from {x,y,(xy2)"?} & d [W.
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% la
@ ,x s

(iii) It is feasible to compute %\ from {x, x4 ... } &d |lcm(a1,...,as)

(iv) It is feasible to compute (xy)“d from {x, y,x”“, ym’ 1 od ] ged(a,b).
(V) It is feasible to compute x° from {x°1,...,x°} & ged(cy...c,) 1 d
[ATS83].

Remark 2.4. Corollary 2.1 can also be proved without Lemmas 2.3, 2.4, and 2.5, by
using the next lemma, which is a corollary of Kronecker’s Approximation Theorem.

Lemma 2.6. Ler A be a rational matrix and let b be a rational vector. Then the
system Av = b has an integral solution v if and only if y'b is an integer for each
rational column vector y for which yTA is integral.

Proof of Corollary 2.1.
We will prove only the “difficult” part of Corollary 2.1: assume that there is an integer

d with (d,((N)) = 1 and dbe Z{a,,...,a,}; and that there is a probabilistic algorithm
AL that on input {N,a{,..,,as,b,xa‘,‘..,xas} computes x? in time £ T 4; with
probability of success 2 £,; for random xe (Z;‘V)I‘ . Let .ue Z}:, be an arbitrary
number. Below we describe an algorithm to compute an RSA-root on .

Step 1. Compute t=(t,...;)e @ and a,...4e Z such that <a.t>=q; for
i=1,...,5; and the denominators of ¢,,...t, are composed of primes
dividing d. Since ged(d,@N)) = 1, we have te (© N)k. Compute m such
that ma,, ...,ma, m be Z*. Write <b,t>+}3=% for some integers

B.7>0, 8, ged(3,6) = 1.
Step 2. Choose r =(1,....n, )€ (Z;’)k'

ma; __ <a8;4>

Step 3. Compute u%r u r™ =x% for i=1,..,s, where x=(@u'4",..,
u'*"). This computation is easy, since aeZ, mae Zk for i=1,..,s.
Note that it need not be feasible to compute x.

Step 4. ~Apply AL to x™ ..., x% .

Step 5. If AL outputs x°, then compute xPr P 2 0B = 110 i s possible
because B Z and mbe Z*. Because ged(7.8) = 1, we compute u'/ ¢ from
u?’?,

We have assumed that it is feasible to compute u"? for an arbitrary number «, if and
only if &1, i.e., if y'b.is an.integer. Now, Lemma. 2.6 states that the system
[a; ..a.]v =b-has:an integral- solution v, which can-be.computed in-polynomial time
(for instance by using the Gaussian elimination method). Thus b e Z{a,,...,a,}. o
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Remark 2.5. In the case that x” has to be computed from x*',...,x* and x (see
Remark 2.2), we can reformulate Corollary 2.1 by using the next lemma of [Heg1858]
{page 111); but it does not yield a polynomial-time algorithm.

Lemma 2.7. Let A be a rational matrix of full row rank with k rows, and let b be a
rational k-dimensional column vector. Then Av = b has an integral solution v, if and
only if the ged of all subdeterminants of A of order k divides each subdeterminant of
[A b] of order k.

Corollary 2.3. Let a,...a.be (@ N)k, i oo pt,, be all the subdeterminants of
{a, ...a,] of order between 1 and min(ks), and let U, ,,... [, be all the
subdeterminants of [ay ... a; b] of order between 1 .and min(ks+1), containing at
least one entry from b. Then the following two statements are equivalent:
(i) It is feasible for A to compute xP from {N,al,...,as,b,xal,...,xa‘ x} for
uniformly chosen X& ( Z;,)k.

(i) ged(lpy,.. 1,0 = ged(Lyy,... 1),

Note that statement (i) cannot be verified in polynomial time, because m = (s:k]

andn=m+ (ﬁ’f) (for s2k).

Proof. Define the matrices A=[a, ... a;], I=[e; ... ;] and B=[A [I]. Since each
column of 7 has exactly one nonzero entry, each subdeterminant of B containing g
columns from 7 is a subdeterminant of A of order s—¢. Further, det(J) = 1. Similarly,
cach subdeterminant of [A I b] containing g columns from 7 and at least one entry
from b is a subdeterminant of [A b} of order s—g, containing at least one entry from b.
Hence the subdeterminants of B of order k are gy =det(/}=14,,...4,, and
the subdeterminants of {Bb] of order %, containing at least one entry from b, are
Moy . So for every integer §, the subdeterminants of [A 6b] of order k are
Hoseeoslims Oty iyo .-, Olt,,. Because B has full row rank, Lemma 2.7 implies that the
equation Bv = b has an integral solution v if and only if ged(ug,...u )M, (i=
m+l,....n). This holds if and only if gecd(y,....0,) is a divisor of
0 ged(Uyse. b bl 5 M,)- By defining d to be the smallest positive integer such
that Bv = db has an integral solution v, we have that d = £y -ty 3 From

T T TR T
Corollary 2.1 it follows that statement (i) is equivalent with

ged(thy,. . o1,) = g0y, - oslhyollyy 1o or Hy)- .
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Remark 2.6. One can transform the problem of computing a ceftain RSA-signature
from some given RSA-signatures into another problem. But one must be' careful-to
transform the ‘problem into an equivalent problem. We will dllustrate ‘this with:an
example: let xy be chosen randomly from Z}}, and suppose an individual wants to
compute

M from {x, y,(x* )0}

{According to Corollary 2.2.(ii)., this is feasible if and only if d=1 or d=3). We can
write xy3 = x°z, where z= y3 / x, and we can consider the problem of computing

xl!d : 119} .

from {x, z&(xzz‘)
{According to Corollary 2.2.(ii)., this is feasible if and only if d=1). The second
problem is not equivalent to the first problem, because it is infeasible to compute y
from {x,z, (xzz)” 9}, i.e., it is infeasible to compute (;’Z)H 3 from {x,z,(xzz)” 9} (Corollary
2.1). 1t is easy to see that the problem of computing

A from {x,z,(z/0)"3, (x* )%}

is equivalent to the first problem.

If we write xy3 =x'2, wherez= y/ x, then the problems of computing xM? from
{x, y,'(xy:*)U 9} and from {x,z,(x4z3)“ 9} are equivalent, because one can compute {x,y}
from {x,y/x} and vice versa.

2.9. Some dpen problems

Can the same kind of results be found for discrete log-based signatures? Shmuely
[Shm&5] made the following first start.

Let N be a composite modulus and g a base to generate encryption keys. Each user
U has a secret key syy€ {1,...,N} and a public key ¢y =g’V (modN). If two users 4
and B want to use a common secret key to encrypt ‘messages, they can use the Diffie-
Hellman key exchange protocol [DH76]: they can both compute ‘the - key
k= g"A"B (mod N), because (c,4 )8 = g*4"8 = (cp)"4 (mod N).

Is it feasible to break this Diffie-Hellman key exchange protocol, i.e., to compute
g¥ from {N,g.g%,8” }? Shmuely proves (roughly speaking) that any’algorithnr that will
break this composite’DiffiesHellman key exchange protocol for a nonsegligible fraction
of bases g ¢ati be used to*fattor the modulus.

Another-éxample is breaking the protocol for mental poker [SRAT9]: suppose 4
wants to send a secret message m to B.- Then they choose a composite:modulus N- (of
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which only 4 and B know @(N)) and they perform the protocol of Figure 2.4.
Shmuely proves that breaking mental poker, i.e., computing m from {Nm*m>m®} is
a special case of breaking the composite Diffie-Hellman key exchange.

User 4 User B
* a=m”
choosexepy Zy ———
4
= chooseyeg Zy
c=p!/* Iy
ey cOmpUte ¢’ (= m)

Fig. 2.4. Protocol for Mental poker [SRA79].



Which new RSA signatures can be
computed from RSA signatures,
obtained in a specific interactive
protocol?

3.1. Infroduction

In the previous chapter we studied the case in which a signature authority 2 issues
RSA-signatures of certain types to an individual 4. The individual tries, by using the
signatures he has received, to compute an RSA-signature of a type not issued by Z. The
RSA-signatures are products of rational powers of residue classes modulo N, and the
residue classes are chosen at random by Z. In this chapter we consider an interactive
protocol in which 4 may choose some of these residue classes freely.

A class of interactive protocols that will not be considered in this chapter are so-
called ping-pong protocols (cf. [EGS85]). In such a protocol (which consists of several
moves), one party generates a secret message, applies a sequénce of operators to it, and
sends it to the other party. This party also applies a sequence of operators to the message
received, and sends the result back. In each move of the protocol, one of the parties
applies a sequence of operators to the last message received, and sends it back. The
question would be whether an “active” third party can discover the initial message (by
altering messages, impersonating other users, etc.).

In this chapter however, we consider not the entire class of interactive problems, but

¥ This chapter is based on the paper “Which new RSA signatures can be computed from RSA signatures, obtained in
a specific interactive protocol?” by Jan-Hendrik Evertse and Eugeéne van Heyst, which will appear in Advances in
'Cryptology-EUROCRYPT '92. o
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only problems related to those in Figure 3.1. Initially, & chooses two large primes P,
and computes their product N. Further, Z chooses two integers aq,b. coprime to
@N) = (P-1)(Q-1). & makes N, a, b public, and keeps P and Q secret. Let. ¢, d
also be some integers coprime to @(N). In this protocol, 2 chooses a residue class u,
and A wants to choose & in such a way that after the execution of this protocol, he is
able to compute from {u,A, u!/epl’ty pair {#k} satisfying 1 =u" ¢4 (mod N). The
reason for considering such problems is that in all payment systems the user chooses
blinding factors and can thus influence the signatures he will receive from 2.

Individual 4 Signature authority 2

¢ £ choose % randomly

h

choose h

verify that $°° = u®h®

$=uV8 (moa my

satisfying ¢ = u'/°k"¢

Fig. 3.1. An interactive signature-issning protocol in which the signature authority Z

issues a signature to individual 4

In Chapter 2 we studied the case in which 4 has no influence on the signature
received, that is, A chooses no residue class (i.e., b=1 in Figure 1.1). A necessary and
sufficient condition was given for the computation of this new signature to be feasible
for 4. V

In [Dav82], [Denn84] and [DO8S] the case is studied in which Z: chooses no residue
class, that is, in which individuals were able to obtain signatures on desired messages
(i.e., a=1 in Figure 1.1). [Dav82] states that 4 can decrypt ciphertext encrypted under
Z’s public key and can forge Z’s signature on meaningful messages; [Denn84] can foil
this attack by using hashing. The result of [DOS85] states that if 4 can get enough
signatures on carefully chosen residue classes, he is able to sign any message; and they
prove that this method is more efficient than the best known algorithms to factor the
moduius.

Here, we consider an interactive protocol in which Z issues a fixed amount of RSA-
signatures to 4. Generally, these RSA-signatures consist of products of rational powers
of residue classes modulo the composite number N of the underlying RSA-scheme;
some of these residue classes are chosen by 2 and the others are chosen freely by 4. In,
this chapter we make the following two assumptions:

(1) A cannot compute RSA-roots of randomly chosen residue classes.
(ii) In his computations, the only operations modulo N that 4 uses are multiplications
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and divisions.

The problem whether assumption (ii) is necessary remains open. We formulate a
necessary and sufficient condition under which A is able to influence the signatures he
receives from 2 in such a way that he can later use these signatures to compute a
signature of a type not issued by 2. It turns out that this condition is equivalent to the
solvability of a particular quadratic equation in integral matrices.

This chapter is organized as follows: The notation used is introduced ‘in the next
section, while in Section 3.3 a small example of the problem considered is given. In
Section 3.4 the interactive protocol considered and the problem we are facing are
defined, and in Section 3.5 this problem is analyzed by assuming that the individual
performs only multiplications and divisions modulo N (this is called an algebraic
strategy). Some generalizations of the protocol of Section 3.4 are given in Section 3.6.
In Section 3.7 we give some applications, and in Section 3.8 some open problems are
stated.

3.2. Notation

The following notation is used throughout this chapter (some of the notation was
already mentioned in Sections 1.5, 2.2 and 2.3). Boldface characters are used to denote
vectors, and the RSA-modulus N used is created by the signature authority.

ab (ayby,....by), if a=(ay,...qp) and b = (by,....by).
a=b(modm) m(b-a)e Z*; this is defined for a,be Q*, mke N, m>0.

N a composite, odd number.

Z*N the set {ala€IN, 1<a < N, gcd(a,N)=1} of 1(p(I\’) elements.
Qy the ring {4la,d € Z, d >0, ged(d, p(N)) =1}.

x4 (modN) the d® RSA-root of x (mod N): the unique solution Se Zjv to
§¢ = x (mod N), for xe Z), and de Z with géd(d,(V)) = 1.
x* (modN)  the number Se Zy with §=x{"x52...x* (mod N), for x=(x{,....%)

e(Zy) anda=(ay,...a0e @,)".

[a, ... a)] the matrix with columns a,...,a,. ‘

x* (modN)  (x*,...x")e (Z}), for A=[a,...a)]e @, and xe (Z})%
so (xA )B =x"8,

i) length of the binary representation of ne IN; the length of a negative

integer m, a rational number p/q (g#1), a vector ¢, and a matrix
A=(a;;) are defined by: IWm)=I1(-m)+1, Up/q)=Up)+Il(g)+],
I(c) = T;(U(c;))+1), and I(A) = I, ;((a; ;) + 1), respectively.
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length(A,B) KA) + KB). :
ac pS denotes the random selection of an element (that will be called 4} from
S according to the uniform probability distribution; for any set S.

3.3. A small example of the problem under consideration

Let a,b,ce @N be fixed and assume that the denominators of a,b, and ¢ are coprime
to (N). We analyze the following Protocol 3.1 between Z and 4 (see Figure 3.2). In
this protocol, 4 receives from 2 the RSA-signature 4°** (mod N), which 4 can verify.
Note that 4 cannot compute this signature on a randomly chosen residue class u
himself, because in general a+xbe Q\ Z.

The next lemma states when it is feasible for 4 to compute »° after the execution of
this protocol.

Individual 4 Signature authority 2

“I want 10 begin”
..—-——-_.—-—_.—-9

¢——> —— chooseucg Z)
MX
choosex ¢ Z —————s

verification ¢

wants to compute #°

Fig. 3.2. Protocol 3.1,

Lemma 3.1. 4 can choose x in Protocol 3.1 in such a way (and in polynomial time)
that it is feasible for him to compute u® after the execution of the protocol if and only if
ged(la,b)|c.

Note that ged(1,4a,b) is in general not 1, because ¢ and b are rational numbers.
This lemma can be proved by using Corollary 2.1 and the following two lemmas.

Lemma 3.2. Lera,b,ce @, c#0. Then there exists an integer A such that
ged(a+Ab, ¢y = ged(a,b,c), and this A can be computed in polynomial (in
length(a,b,c)) time.

Proof. Define @ = a/ ged(a,b,c),b = b/ ged(a,b,c),¢ = ¢/ ged(a,b,c). Thus @,b,¢ are
integers with ged(@,b,%) =1. It suffices to show that we can compute in polynomial
time a A< IN that satisfies ged(@ + Ab,¢) = 1.

For each prime number p and each ae £ ,a»0, let ord ;(a) be the integer such that

-ord , (a)

a-p is an integer not divisible by p. Take
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11 - H pordp(E)‘ R
pic.pka
Let p be a prime dividing €. If pl@, then pf b (by ged(@,h,c)=1) and pf A (by
definition of A), hence pY (@+Ab). If pf @, then plA (by definition of A and
ord,(¢)21) and thus also p} (a +Ab). We conclude that no prime divides both ¢ and
(@ + Ab ); therefore ged(@ + Ab,&) =1.
Define the sequence ¢p:=lZl and ¢; 1= ¢;/ged(@,¢;) for i=0, 1 2,.... Let iy be the
smallest integer such that g{:d(a,c,0 )=1. It is easy to see that G, = }& and that iy < I(€);

thus A can be computed in polynomial time. ]

Lemma 3.3. Let a,b,ce Q. Then there are x,y,z€ Z such that ¢ =(atxb)y+z if
and only if ged(1,a,b)lc. Further, if such x,y,z¢ Z exist, theni they can be computed
in polynomial (in length(a,b,c)) time.

Proof. Note that ,b,1 are integral multiples of gcd(1,4,b). Hence, if there exist
xy2€ Z such that ¢=(atxb)y+z, then ¢ is also an integral maultiple of
ged(1,a,b). Hence ged(1,a,b)jc.

On the other hand, assume that ged(1,a,b)jc. By Lemma 3.2 we can compute in
polynomial time an xe€ Z such that gcd(a+xb,1)=ged(1,a,b). Further we can
compute in polynomial time yze Z with ¢ = (a+xb)y + z (e.g., let de IN such that

dadb,dce IN, and use gcd(a+xb1)|c and Euclid’s algorithm to compute y,ze Z
with dc = (da+xdb)y + dz). This proves Lemma 3.3, ]

Proof of Lemma 3.1. ‘

(i) Suppose that gcd(1,4,b)|c. According to Lemma 3.3, 4 can compute in polynomial
time numbers x,y,ze Z such that ¢=(at+xb)y+z. 4 will use the obtained number
x during the execution of Protocol 3.1. Afterwards, A4 can compute #° from
{N,a,b,c,u,u’" ™) as follows:

(u** Y - u® = uf (mod N).

(i) Suppose that 4 can choose x in Protocol 3.1 in such a wfay that it is feasible for
him to compute u¢ after the execution of the protocol. Corollary 2.1 states that
computing u¢ from {N.a,b,c,u,u""*"} for uniformly chosen ue Z*N is feasible for 4 if
and only if ce Z{l,a+xb}. That is, if and only if there are yze Z such that
¢ = (a+xb)y + z. ; .

We generalize Protocol 3.1 to Protocol 3.2 (see Figure 3.3), in which 4 initially
chooses some residue class, but we will prove that doing so does not influence the
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feasibility of computing the signature u€ after the execution of the protocol.

Individual 4 : Signature authority Z
choose ve R Z;, _ﬂ&%b.e_glﬁ_}
2% - chooseuegp Zy
h=u*vy
choose x,ye & —-ice—us
e verify S e == S=u'h® (=ut ),
wants to compute «°

Fig. 3.3. Protocol 3.2.

How must 4 choose v,x,y so that it is feasible for him to compute u¢ from
{,v,u""v? 4 b c,x,y}? According to Corollary 2.1 this computation is feasible if and
only if there is an integral solution z,,z,,z5 to

{zl +z(a+xb) =c,
2 +z3by =0.

According to Lemma 3.3, a necessary condition for the first equation is that
ged(l,a,b)c. But the number z, hereby obtained does not need to be a solution of the
second equation. If y=0, then the kz3 obtained is also a solution of the second equation.
Hence a necessary condition for the simultaneous solvability of the two equations is
that gcd(1,a,b)|c; and if y=0, then this condition is also sufficient. Thus the best
strategy for A4 is to choose y=0 and to take x according to Lemma 3.1; hence this
algebraic strategy “works” if and only if ged(1,4,b)lc.

In the two protocols above, we restricted the behaviour of A: he has to send »* or
w*v’ 10 Z. A more general protocol is Protocol 3.3 of Figure 3.4, but this protocol is
difficult to analyze. In the next sections we generalize Protocol 3.3, but we are only able
to analyze this new protocol if we restrict the behaviour of 4, like in Protocol 3.1 and
3.2.

Individual 4 Signature authority 2
“I want to begin”™
__—___H
e  chooseuey Zy
&
choosche Zp ——+
. R «® hb
~ verify signature  ¢———————wmv
wanlts to compute u°

Fig. 34. Protocol 3.3.
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3.4. The protocol and problem under consideration |

In this section we consider the following interactive Protocol 3.4 (see Figure 3.5), which
is more general than Protocol 3.3. The signature authority 2 has created an RSA-
modulus N, and issues RSA-signatures that will be products of rational powers of
residue classes modulo N. Let M = {A,B,C,D} be a set of fixed rational matrices
Ae @), Be @Y™, Ce @,"". De @,)™". In Protocol 3.4, an
individual 4 requests Z to create the RSA-signature (in fact it consists of | RSA-
signatures)
s; =uh® (mod V),

where u e (Z})k ischosenby Z,and h; € (Z}}m is chosen by 4 (h; may depend on
NM = {A,B,C, D} and u). But actually, 4 wants to have the RSA-signature

8, = uchg (mod N),

for some h, € (Z})™ and s, € (Z,)". Therefore he wants to choose h, in such a way
that after the execution of Protocol 3.4, he can compute from {NA,B,CDuh;,
51 = u"‘hf; } a pair [s,,h,]} satisfying s, = uché) . This way of choosing h,; (which may
depend on NM = {A,B,C,D} and u) in order to be able to compute a pair {s,,h,}, is
called an M-strategy. We assume that the running time of an M-strategy is not a
stochastic variable, but that it is determined by N and M. This implies that the M-
strategy will not with 100% certainty output a pair {s,,h,} satisfying s, = uché) . Hence
the problem that we wish to consider is the following:

Individual 4 Signature authority 2
“I want to begin”
(—T"— chooseu € (Z’;\,)k
choose h; € (Z,)" L S
............................. verify s, «——1——— computes;:=u'hf ¢ (Z)'
wants to compute {s,,h,} |
satisfying s, = uh?, |

Fig. 3.5. The considered interactive Protocol 3.4

Problem 3.1. For which system of matrices M = {A,B,C,D} does there exist a
polynomial (in length(N,A,B,C,D))-time M-strategy that outputs with probability
2 1, say, apair {s,,h,} satisfying s, =u‘h3?

This problem was solved in Chapter 2 for the special case in which B and D are
the all-zero matrices, i.e., for the noninteractive case.
If there are no restrictions on h, (e.g., i, must be an element from a special subset
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of (Z}‘V)’"), then we can restrict ourselves in Protocol 3.4 to the case that D =[0] (the
all-zero matrix), according to the next lemma.

Lemma 3.4. Ler Ce (@ N)k”', De @,)"" andue (Z,)". Then there exists a
matrix Ce (© N)k’” (which is computable in polynomial time from C and D), such
that computing a pair (sh)e (Z)" x (Z\)" satisfying s= uh? is polynomial-
fime equivalent to computing ué.

P

Proof. We can reformulate the identity s=u as

1
uC =l
where the first n coordinates of vector (s,h) are those of s, the last m coordinates are
those of h, the first # rows of [_‘})] are those of the identity matrix £ and the last m
rows are those of ~D. According to [KaBa79], we can find in polynomial time

unimodular matrices P,Q and a matrix [06] in Smith normal form, such that

P[g] = [_ID]Q. Because [_‘})] has full column rank, G is invertible. Define C=CQG™".

Then from (s,h) satisfying s = uh? we can compuie u®in polynomial time because

ul = w6 = (s,h)[j{)]QG_l = (s,h.)’p{‘(};]a”1 = (s,h)P[é]

= first n coordinates of (s,h)P.

If, on the other hand, u is given, then we obtain the pair {s ,h} satisfying s= T by
first computing the vector § = @S, 1,...1) of length n+m and then by defining s,h by
(s,hy=5"". 0

3.5, Algebraic strategies

As shown in the previous section, we may restrict ourselves to the case in which M =
{A,B,C.[0]}). We have no idea how to decide if there exists a polynomial-time M-
strategy for given N,A,B,C,u. Therefore we consider only M-strategies belonging to a
special class, the so-called algebraic M-strategies. In an algebraic strategy, 4 only
applies to u multiplications and divisions mod N in order to compute h;.

Let Ae @ N)"’l , Be (@ N)'”’I ,Ce @ N)f“” be fixed rational matrices. 4 is
assumed to follow an algebraic M-strategy; hence, in Protocol 3.4, h; must consist of
products of integral powers of the entries of u, i.e.,, h= w”, for some X e Z*™ Thus
instead of analyzing the general Protocol 3.4 in this section, we will analyze Protocol
3.5 (see Figure 3.6, in which we write h in stead of hy).
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Individual 4 Signature authority Z
I want to begin”
choose X € ZF™ « 4 choose u e (Z”I‘V)"
h=u’e Zy" L >
e YeIIEY 81 — sysu'h’  (=u??)
wants to compute s, = u’

Fig. 3.6. Protocol 3.5, which is equivalent to Protocol 3.4 if 4 follows an algebraic M-strategy.

We now also assume that it is computationally infeasible for 4 to compute RSA-roots
modulo N, since otherwise he could forge all signatures. Under this assumption,
Corollary 2.1 implies the following for Protocol 3.5:

Corollary 3.1. Let A,B,C be fixed rational marrices. Then the following two
statements are equivalent for an individual:
(1) It is feasible to compute integral matrices X,Y,Z such that C = (A+XB)Y + Z.
(ii) There is a feasible algebraic M -strategy to compute h from {NA,B,C,u} and
uC from {N,A, B,C,u,u’h?)}.

According to this result, we are interested in the following problem:

Problem 3.2. Let Ae (@,)". Be @™, Ce @,)"" be rational matrices.
Find a polynomial (in length(A,B,C))-time algorithm that decides whether the
equation

C=A+XB)Y +2Z

is solvable in integral matrices X € Z¢ ye ZM, Ze Z%, and if so,k find a
solution X,Y,Z.

We have not been able to solve Problem 3.2 in full generality. In [Evert90] it is
proven that there exists such a polynomial-time algorithm for Problem 3.2 in the case
that n=1, but this proof is not included in this chapter. In Section 3.3, we solved
Problem 3.2 in the special case that k=l=m=n=1,

3.6. Generdlizations

In Protocol 3.4 (see Figure 3.5) the system of matrices used is M = {A,B.C,D}, so the
individual will receive one type of signature (s;), and wants to compute a second type
(s2)-
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We now assume that there are (r+1) types of signatures, so Z creates a public
system of matrices M = {A,B;....,A4,,;.B,,1 }, where the matrices (4,,B;) are used
for the it type. But Z will only issue signatures of type 1,....t to A, who will try to’
compute a signature of type r+1. Thus the protocol we want to consider is the serial
Protocol 3.6 (see Figure 3.7), in which we assume that 2 uses the same u in every
signature, and that the individual chooses hy,....h; (where h; may depend on M,u and
$1,...,8;.1) and receives the signatures

s, =ubh’ (i=1,....

4 will not receive signatures of type (1+1), so he tries to choose {h;,...,h,} in such a
way that after receiving {s;.....s,}, he is able to compute a pair (s,,; h,,;) such that

=y 1B
S =u"h

Individual 4 Signature authority Z
T want to begin”
2  chooseueyg (fov);‘
by

choosehy —m™W———

verify s, e——1— —  computes,:= uAlhf; 1

chooseh, ——X——
s s v A By
verifys, ¢——~—— computes;=u"*h’
wants to compute {8, 1, b}
satisfying s, = uAf“hfﬁ’

Fig. 3.7. The serial signature-issuing Protocol 3.6, in which 4 receives the signaturessy,....sy

If we assume that A uses an algebraic M-strategy, then we can prove that it suffices
to consider algebraic strategies on protocols with s=1; that is, we can reduce Protocol
3.6 in polynomial time to Protocol 3.4 as follows:

A VAN zZ1Aa 2
h! hy,hh 1
s 51,87 §; .
h, |
S E

Fig. 3.8, How to modify Protocol 3.6 into Protocol 3.4.

Moves 3 up to 6 of Protocol 3.6 are shown in the left-hand side of Figure 3.8. Let d be
the smallest positive integer such that dA, and dB, are integral matrices (so d ean be
the lem of all the denominators of A; and B ). Hence sf can be computed by 4
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without knowing s;, because sf EudAlth 1, so the used exponents are integral. In

order to create hy, 4 might use s,. But 4 only applies multiplications and divisions on
$1. 50 4 is able to compute h}:= hg without knowing s, (A will only use sf, which he
could compute without knowing s,). By defining the new matrix Bj:= %Bz, we have
that hy% = hf’* , so A does not need to know s, in order to compute h§2 (by using
matrix B5). The possibility that A can compute s,,; at the end of the protocol remains
the same if we carry out the first four moves in parallel instead of serially (see Figure
3.8, middle). By defining §;:=(s;,5,), ﬁ1:= (h,hj), filt= [4 A1, EI:=[B, Bﬁ]T, we
have that §; = uh hf‘; thus we can combine the first four moves into two (see Figure
3.8, right-hand side). In this way we obtain a protocol with 2 moves less. By repeating
this argument, we only have to analyze a protocol with 2+2 moves, i.e., Protocol 3.4.

3.7. Some open problems

In the analysis of the protocols we assumed that the individual uses an algebraic
strategy, i.e., that he uses only multiplications and divisions modulo N (and also '
additions and subtractions). The problem whether this assumption is necessary remains
open. So the question is whether it is possible to analyze protocols like Protocol 3.3, in
which the individual can use any strategy.

Another open problem (as mentioned in Section 3.5) is to find a polynomial time
algorithm to verify whether the matrix equation C = (A+XB)Y + Z is solvable, and
if so0, to find a solution.
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4.1. Introduction

If a person wants to prove that he belongs to a certain group, then there are several
protocols known that can be used.

In [CES86] credential systems are constructed: if a person belongs to a certain group,
an authority will give him a credential. If a party wants to verify this credential, the
group member transforms his credential to a form that does not reveal his identity. The
privacy of the person is protected unconditionally: even with unlimited computing
power two parties cannot link credentials together.

In [OOK90] two membership authentication schemes are proposed, in which the
same secret key is given to each group member. These schemes give an efﬁcnent
construction for hierarchical situations.

In [SKI90] another membership authentication scheme is proposed. However, this
scheme cannot be used for signing messages, and each group member can create other
secret keys from his own secret key.

In this chapter we present a new type of signature, which we call a group signature:
it is a signature scheme for a group of persons that has the following three properties:
(i) only members of the group can sign messages;
(ii) the recipient of the signature can verify that it is a valid signature of that group, but
cannot discover which member of the group created it;
(iii) in case of dispute later on, the signature can be “opened” (with the help of the
group members or of a trusted authority) to reveal the identity of the signer.

¥ This chapter is based on the paper “Group Signatures” by David Chaum and Eugéne van Heyst, which appeared in
Advances in Cryptology-EUROCRYPT ‘91, D.W. Davies ed., LNCS 547, Springer Verlag, pp. 257-265.
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The use of group signatures will be illustrated with the following two examples: A
company has several computers, each connected to the local network, Each department
of that company has its own printer {also connected to the network) and only members
of that department are allowed to use their department’s printer. Before printing,
therefore, the printer must be convinced that the user is working in that department. At
the same time, the user wants privacy: the user’s name may not be revealed. If,
however, someone discovers at the end of the day that a printer has been used too often,
the director must be able to discover who misused that printer, to send him a bill.

Alternatively, suppose that any doctor can give a signed note to a patient for an
insurance claim. The insurance company can verify the validity of a signature (i.e., that
is was signed by a doctor), but cannot discover which doctor signed it. If somebody
steals a doctor’s key, the identity of the doctor can be revealed in order to trace the thief.

Such a group signature scheme is not just a signature scheme with one public and
several secret keys. The scheme must also have the property that it is infeasible for
conspiring group members to create a new secret key out of their own secret keys.
Otherwise they could sign messages with this new secret key and their identity can
never be revealed (so it violates property (iii)).

The three constructions of membership authentication schemes in the papers
mentioned above cannot be used to create group signatures for several reasons: [CES6]
does not have property (iii), in [OOK90] all group members have the same secret key,
and in [SKI90] each group member can construct other secret keys from his own secret
key. In this chapter four different constructions of group signature schemes are
presented. Persons can be members of more than one group, but in each construction
only one group of persons will be considered (so the hierarchical situation will not be
treated here). These four constructions can be found in Sections 4.2 up to 4.5. These
four constructions are compared (see Table 4.1) on the following five items.

Complexity theoretic assumption. In the first construction, every public key system
can be used while the other constructions are based on either Assumption 1.2 or 1.3 (see
Sections 1.4.1 and 1.5). In all constructions the privacy of the signer is protected
computationally. Care must of course be taken in the selection of the exponents used, in
order to protect the anonymity of the signer (see Section 4.6). Not even a group member
(other than the signer) can determine who created a certain signature.

Trusted authority. Let Z be an authority, trusted by the group. Z sets the group
signature scheme, except for the last construction: in this case a group signature scheme
can be created from a “normal” setup of a scheme based on the discrete logarithm,
without using a trusted authority. Except for the first construction, Z is no longer
needed after the setup. ‘
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Creation of the group. In the first two constructions, the group of persons is
determined during the setup of the scheme. In the last two constructions, it is assumed
that there is already a “normal” setup of the RSA-scheme or of a scheme based on the
discrete logarithm. If in one of these last two constructions of group signatures someone
wants to sign a message without revealing his identity, he creates at that moment some
“group™ of persons. He can, for instance, do this by picking these persons from a
Trusted Public Directory of public keys, and he proves that he belongs to that group. In
case of dispute later on, the other “group members” are able to deny that signature (it is
not necessary that they know the “group”), while the signer is not able to deny his
signature.

Type of signature. In the last three constructions, the signatures created by the group
members are undeniable signatures. Therefore in these constructions we have a
confirmation protocol (in which the signer can convince the recipient that the signature
on the message is correct) and a disavowal protocol (in which the other group members
can convince the recipient that they did not create that signature).

It is possible to create digital (i.e., not undeniable) group signatures in these last
three constructions (by using the same protocols). This can be realized as in [FFS88], by
doing the iterations of the confirmation protocol in parallel and letting the recipient
choose the challenge vector not randomly, but as the outcome of a collision-free one-
way-function on the received numbers. Because this parallel execution of the protocol is
no longer zero-knowledge, the signature together with all the numbers sent during the
confirmation protocol will be a digital signature. Still to be proven is that this parallel
protocol gives “no useful knowledge” to the recipient.

Costs. In all four constructions the length of the public key (i.e., the number of bits in
the group’s public key) is linear in the number of group members. The numbers of bits
and the number of computations are only compared in the case of the confirmation
protocol, because in the disavowal protocols, both these numbers are independent of the
number of group members. ‘

Complexity| Trusted . Length of theNumber of Number of bits
theor%tic y authority (Creation of ;gg:ltﬁfe public key of |computations |transmitted

(Group signature
: the group . "
assumption | peeded for the group  |during conf. pr.|during conf. pr.

implementation

1 Any Setup+opening|In advance| Any type Linear Independent | Independent
2 1.3 Setup In advance [Undeniable| Linear Linear Independent
3 13 Setup Afterwards(Undeniable|  Linear Linear Independent
4 1.2 -- Afterwards|Undeniable| Linear Linear Linear

Table 4.1. Comparison of the four group signature constructions presented in this
chapter. “Independent, linear” means that the number is independent respectively
linear in the number of group members.
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4.2. First construction of group signatures

The trusted authority Z chooses a public key system, gives each person a list of secret
keys (these lists are all disjoint), and publishes the complete list of corresponding public
keys (e.g., sorted on name) in a Trusted Public Directory (see Figure 4.1). Thus this
TPD is the public key of the group, which itself consists of some public keys.

Each person can sign a message with a secret key from his own list, and also issues
to the recipient the corresponding public key. The recipient can verify this signature
with the public key and can verify that this public key is from the public list. Each secret
key will be used only once, otherwise signatures created with that key are linked. 2
knows all the lists of secret keys, so that in case a recipient asks 2 to open a signature,
he knows who created the disputed signature. Hence 2 is both needed for setup and for
“opening” a signature.

If each group member gets from the trusted auathority the same number of secret
keys, then the length of the public key of this group signature construction (i.e., the
number of public keys of the Trusted Public Directory) is linear in the number of
persons; but the number of messages a person can sign is fixed (because each secret key
will be used only once). The number of bits to be transmitted and the number of
computations needed to verify a signature are independent of the number of persons
(ieaving aside the look-up in the TPD}.

Trusted Authority Trusted Authority
n
Group | = Group Tl
member 1|7 - member 1 ‘E@fﬁl
— - o RPN
Group |7 Group @ 5 (5’ )
member 2| = | member 2 “h
7'_7 e : L
P T
—_ @ \
lists of TPD of smartcards TPD of
secret keys  public keys with secret keys  public keys

Fig. 4.1. [lustration of the first group signature construction. The left-hand side
shows the basic idea and the right-hand side shows the blinded public key
construction.

A problem with this construction is that Z knows all the secret keys of all the groop
members and can therefore fake the signatures of the group members. This can be
prevented by using blinded public keys (see Figure 4.1). Let the public key system used
be a scheme based on the discrete logarithm, for instance the ElGamal scheme [EIG85]
or the undeniable signature scheme [CvA89]. Let p be a prime according to
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Assumption 1.1 and let g be a generator of the multiplicative group Z;:
{1.2,...,p~1}. Group member i creates his own secret key s; and gives the public key
g% (mod p) to Z. Thus 2 has a list of all these public keys together with the group
member’s name. Each week, Z gives each group member / a randomly chosen number
ri€ {1,...,p~1} and publishes the list of all the blinded public keys (g% )" in random
order. During this week group member i will use s;7; (modp~1) as secret key for
signing messages. Opening a group signature is done by contacting Z, just as in the
‘previous scheme.

The advantages of this modification are that Z cannot fake signatures, and that each
group member needs only one “really secret key” (for instance in a smart card), which
can be blinded in order to make other secret keys. Only the particular week’s signatures
can be linked, so that each group member need have only a few secret keys in his smart
card to prevent this linking. Even if an r; is accidentally disclosed, no more information
about the secret key s; is revealed.

In another modification, no trusted authority is needed: each user untraceably sends
one (or more) public keys to a public list, which will be the public key of the group. But
only group members must be able to send public keys to that list.

4.3. Second construction of group signatures

Z chooses two different large primes p, g together with a one-way-function f of which
the outcome may be assumed to be coprime to N = pq. For security it is essential that
the users do not know @(N) (so N cannot be prime). Z issues to group member i a
secret key s;, which is a large prime coprime to ¢(N) and randomly chosen from the
public set ®={{VN 1, [VN1+1,..., 2[VN1-2}. Z publishes N, v:=[[s; and f, which
will be the public key of the group. If group member i wants to sign message »n, his
signature will be

(f(n)" modN,

and he has to convince the recipient that 5; divides v and that 5; is an element in @,
without revealing anything more about s;. This can be done by using the confirmation
protocol of Section 4.3.1. If in case of dispute later on, the recipient wants to know the
member who signed the message, he can perform a disavowal protocol with each group
member, without the help of 2 (see Section 4.3.2). The signer cannot perform this
disavowal protocol successfully, and thus his identity will be revealed to the recipient.
To prove the security of this group signature construction we need Assumption 1.3.
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4.3.1. Confirmation protocol

We first consider the following Instance 4.1 (Figure 4.2), in which P wants to
convince Y that he knows a certain discrete logarithm modulo a composite number,
and that this discrete logarithm lies in some interval. P does not need to know the
factorization of the modulus.

secretof P ¢ ¢
public CONLYQ xyeZy, Q={a,...0+B)ciN
proveto ¥V : x“=y(modN) ncefd

Fig. 4.2. Instance 4.1.

This instance is solved by [BCDvdG87] by using Protocol 4.17, which uses
computationally secure blobs ‘B (we will be loose in writing blobs: we write B(z) in
stead of Hz1) for some blinding factor 1), This protocol has to be iterated several
times.

Protocol 4.1. (for Instance 4.1)

Step 1. P chooses rel{0,....0}. He computes blobs on z =x" (modN) and
2y = XA (mod N), and sends the unordered pair {B(z,), Bzp)} to 'V

Step 2. Vchooses randomly be {0,1} and sends it to P.

Step 3. Psends Vin case
b=0: the number r, and the opening of both blobs.
b=1. the number {c+ry or (c+r-B-1), whichever is in the set € (ihis
number will be called 7), and the opening of respectively the blob on
21 or 2 (this number will be called 7).
Step 4. Vverifies in case
=(0: that re {0,....8) and that the blobs contain x" and P in some
order.
b=1: that 7¥e€Q, that one of the blobs contains 7 and that Z satisfies

= Zy.

But the protocol of [BCDvdG87] does not really solve Instance 4.1: note that
re {0,...,3} and that {c+r) or (¢+r—1-f) is an element from {e,...,a+B}. So
after execution of this protocol, %’ will be convinced that ce Q@ = {o-p,...,a+28}.
There is a discrepancy between the requirements for ¢, namely ce {a,...,0+f},

¥ Hence, by using Q={1,...,N}, one can prove that he knows a discrete logarithm modulo N, without

knowing @(N).
The original protocol of [BCDvdG87] contains a mistake, which is changed in our Protocol 4.1.
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and what is actually proven, that ce {&-f,...,0+2 B}. In their paper they prove that
only if ce{a,...,o+fB}, their protocol reveals no (other) information; Because if
ceQ, then the distribution of 7 in Protocol 4.1 is uniform over Q and this distribution
is thus independent of ¢. Therefore this protocol can be simulated by V.

With this protocol we are able to create a confirmation protocol for the group
signature scheme, 50 let Pbe a fixed group member who wants to convince the recipient
Vthat § is his correct group signature on the message n. Thus the following instance
(in which we write m instead of {n)) must be solved:

secretof 7 &
public : NyovmS,®;, mSc Zj\,
proveto VY : S=m’ (modN)Ase® Aslv

Fig. 4.3. Instance 4.2,

Protocol 4.2. (for Instance 4.2)
Step 1. Convince the recipient of having a number s such that S=m’ (modN) and
that se® with Protocol 4.1, iterated k times (use the substitution ) = @,
- x=m,y=8andc=s)
Step 2. Convince the recipient that s is a divisor of v, by using the following protocol:
Prover P Verifier 7/
—a=  hooser g {L,...,N}
b=a’'s Bb) N
verifya ¢t
open blob verify opening and
that b=m""

We prove that Protocol 4.2 is complete, sound, and zero-knowledge. Note that for all
§ the probability distributions of S (modN) where re{l...@N)} or
re {1,...,N} are polynomially indistinguishable ([CEvdGS87]). Step 1 of Protocol 4.2
has already been proven to be sound, complete, and zero-knowledge (Protocol 4.1). Step
2 is trivially complete and zero-knowledge (recall that the blobs ‘B are computationally
secure). ,
S0 we now only have to prove that Step 2 is sound, In Step 1 it is proven that P
knows an integer s such that S=m’. When is it feasible for him to compute b= x"
from {s,v,m,a =x"}, where x = m"? Under the assumption that it is infeasible to
compute RSA-roots (so here N is not a prime), it follows from Corollary 2.2.v. that
computing x¥ from {s,v,x°} is feasible if and only if s|v. These two problems are
equivalent, because we can construct generators of x as follows: randomly choose an



58 Chapter 4

odd number r'e {1,...,N}. This number will with high probability be coprime to
@(N). By defining m’ = (x*)" , we have a number that generates a group containing
x, because sr' is coprime to @{N). Therefore these two problems are equivaleat, and
so computing b=(m")” from {s,v,m, a=(m")} is feasible if and only if s|v
Hence Step 2 is also sound. .

By using Protocol 4.1 as a subprotocol in Protocol 4.2, P convinces the recipient in
‘fact that the exponent used in the signature is an element of {2,3,..., AVN1-4}.

4.3.2. Disavowal protocol

If a recipient V wants to open a signature S on message m, he has to perform a
disavowal protocol with each group member. Only group members that have not created
this signature § (i.e., that have an other secret key) must be able to successfully
perform this protocol. Hence the following instance has to be solved, in which group
member P has not created signature S.

secretof P : s

public : Nov.mS,®;, mSeZy

provetoV : Szm’ (modN)Ase® Asly
Fig. 44. Instance 4.3.

There are no zero-knowledge disavowal protocols known in the literature to
convince ¥ that e # % (mod N), for given {N,a,B,c"}, where @(N) is unknown.
Therefore we use the following modification of the disavowal protocol of [Ch90] to
solve Instance 4.3. Z publishes {§,k}, which generates the whole group Z*N (see
Section 4.3.3 for how to construct § and /1), together with a Trusted Public Directory
containing the triples {name group member, 3°,4°} where s is the secret key of that
group member. Let [ be a very small constant such that exhaustive search over
{0,...,1} is feasible. The disavowal protocol uses the fact that if §=m’, then P cannet
compute a from (ﬂ;—)" , because (ﬁsi)“ =1. In this case, therefore, he only can guess a.

Prover 7 Verifier 7
x=mf3i2, ya8%#5y1(25)2  choose K. €g {1,...,N)
and a € {0,....1}
compute by exhaustive
o e a Bla) \
search a from = (=.:~ (%) )
verify numbers 12
open blob

> verify opening
Fig, 4.5. Protocol 4.3 for Instance 4.3. V
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4.3.3. Some remarks on this construction of group signatures

Remark 4.1.

If all group members except one conspire, the secret key of that one person can be

computed, because II_:T, =s;. This threat can be easily eliminated if the authority 2
i#]

makes himself a member of the group, that is, if Z computes vas v=s;-[]s;, where
'S5, is a secret key only known to Z. By using this trick, the group can also consist of
only two members.

Remark 4.2. ,
The number of bits in v (v is the only part of the public key that depends on the
number of group members) is linear in the number of persons. So raising a number to
the power v will take a time linear in the number of group members. Hence the number
of computations in Step 2 of confirmation Protocol 4.2 is linear in the number of group
members while Step 1 is independent of the number of group members.

The number of bits transmitted during confirmation Protocol 4.2 is independent of
the number of group members.

Remark 4.3,

not the only possible choice for the set, from which the public keys are taken. Suppose
that @ = {@, @, +1....,¢; + 0,} c IN; then the folowing conditions must hold:

14,00 ® ={p,~-9,. ¢~ +L..., ¢, +20,}.

The first condition that 1¢ @ is necessary to prevent m! from being a valid group
signature on m. We use the condition ge @ to reduce the size of the secret keyA (so the
secret keys are now smaller than @(N)). The last condition qp{"e & is needed to avoid
the following conspiracy attack: if two group members, say i and j, conspire, they can
create signatures § = m"* | which they can both disavow later. Because ¢12r£ @, we
have that s;s;€ @, so this signature S = m"" will not be accepted in Step 1 of Protocol
42. V

Instead of creating the signature m® on m, a group member can also create the
signatures m" and m”. Although v/s and v are divisors of v, both numbers are not
elements of &, because v > v/5 > (p12. Hence these two signatures are not accepted
by confirmation Protocol 4.2.

Remark 4.4.
The order of the elements from Z;, is a divisor of @(N), so if an element is randomly
chosen from Zy, it might have small order. In [SS90] it is proven that if the two
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(randomly chosen) prime factors p, g of N are of equal size (the same number of bits),
then a substantial fraction of the elements in va have high order.

Remark 4.5.
The blob B can be implemented in the following way: 2 chooses generators g, and

of Z; and Z; respectively, and constructs using the Chinese Remainder Theorem

g, modp {1 med p

numbers g = {1 modg andh= h, modg It is easy to see that the pair g,k generates Z;,

uniformly, that is, each image of the function f(x,y)=g"*h’ (modN) has the same
number of preimages, for x,ye {1,2,...,0(N)}.
But if Zreveals g h, he also reveals the factorization of N, Therefore Z chooses

integers ay.a,by,b, satisfying ged(apb,p-1) = gedlay,brg~1) =
god(ayb, - ayby, J5) = 1, and publishes §=g"h* and /= g"h". Remark that
o)

s gcd(p—1,4—1). Below we prove that the pair .,/ generates the whole group
Z;; uniformly, if the exponents are chosen from {1,2,...,¢N)}. Hence, in order for P
to make B(y), he chooses r,rpe {1,2,....N} and creates B(y) as yg"h' (mod N).

We wish to prove that Z,/ generate Z;, uniformly. We know that 3,ke Z;v, and
thus < &k >c:Z;,. Hence it is sufficient to prove that g, Ae < gh>, because this
implies that Z;;c< &k >, and thus Z;, =< §,}; >. To prove that ge < &k >, we have
to find cde Z such that g=3h? (modN) =g@ ¥+ (nod N). The pair

<g,h> generates Z;\, uniformly and the order of g,k is (p—1) and (¢g—1) respectively;
cay +dby =1 mod(p~1)
cay +dby =0 mod{g-1)"

@ 5 %" o)

We will apply Lemma 2.7 to find out when this matrix equation has an integral

solution. Let A be the matrix (gzlz i’z '”g* qﬁlj which has full rank. The ged of all

hence it is equivalent to finding c,de Z such that { or with finding a

vector xe Z* such that

subdeterminants of A of order 2 is
ged(apb; - arhy, —ay(p~1), ~by(p~1), ay(g-1). blg-1), (p~1Xg-D)=
ged(aih, - ayby, (p-1)-ged(-az,—by,(g—1)), (g—1)-ged{a, by, (p—1))=
gedlaydy ~ahy, (p-1), (g-D)=
1
By applying Lemma 2.7, we show that the equation Ax = [é:f has an integral

solation. This proves that ge < 3,4 >. By using a similar argument we can prove that
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he<gh>.

4.4. Third construction of group signaturés

For this construction of gronp signatures we assume that there is already a Trusted
Public Directory in which each person’s RSA-modulus is listed (the person’s public
RSA-exponent is not needed in this group signature construction). We also assume that
the prime factors of each modulus N; = p;g; have the property that
p,-ed>={fml [VM1+1,..., 2[VM1-2} and g;> 3VM, where M is some public
number. The security of this construction is based on Assumption 1.3.

During the setup, a trusted authority Z chooses an RSA-modulus N, such that both
N and @(N) are coprime to all the N;’s. This number N will be the public key of the
group and nobody will know ¢(N). Choosing this modulus is the only task that Z has
to perform, because the secret key of group member i will be the factorization of his
own RSA-modulus N; = pg;. ’

So far no group has been created; there is only an already existing TPD. If someone
wants to sign a message, he creates at that moment some “group” of persons. He can
do this by randomly picking some individuals (including himself) from the Trusted
Public Directory of public keys; then he proves that he belongs to that group {i.e., that
he belongs to that subgroup of members of the TPD). So if person i wants to sign
"message n, he first chooses randomly some set I" of persons from the TPD (including
himself). His group signature will be

T, (f(n)” modN,

and he convinces the recipient in a zero-knowledge way that this is his correct signature,
that is, that the exponent used in the signature is the smallest divisor of the modulus of

somebody in the set I'. This can be done by performing Protocol 4.2, with Q= ® =

VMl WM 1+1,..., [VM1-2) and v=II, ;. So the signer convinces the

recipient that the exponent used in the signature is

* anelement of (I~)={2, 3., AVM1- 4}, and
» adivisor of H;er N;.

Each person only knows the factorization of his own modulus. Therefore the
exponent used is the number 1 or is a product of some of the moduli of I" \ {i}, together
with ¢; and/or p;. According to the bounds on the prime divisors of each modulus, we
have that N; > g;> 3¥M (for each j). Hence for all j: N; and g; are not elements of
@ and therefore N; and g; cannot be divisors of the exponent used in the signature.
Also the number 1 is not an element of @, and thus the exponent used in the signature

must be p;.
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if a “group member” wants to deny a signature on a message, he can use Protocol
4.3. If he did not sign that message, he can successfully perform this protocol, despite
the fact that he did not know he was in such a group.

4.5. Fourth.construction of group signatures

‘Let p be a large public prime and let g, & be public generators of Z:,. We assume that
there is already a setup for a scheme based on the discrete logarithm (Assumption 1.2),
so person i has a secret key s; and a public key k; = g% (mod p). There is.a TPD with
all these public keys.

To transform this scheme into a group signature scheme, we need no trusted
authority. The “group” is created in the same way as in the previous section, so that if
person i wants to sign message m =f{n), he first randomly chooses some set T of
persons (including himself) from the TPD; his signature will be

T, m* (mod p). ;
He must convince the recipient in a zero-knowledge way that the secret exponent used

in that signature is also used in the public key of some person in the group I'. Thus they
have to use a protocol that solves the following instance 4.4 of Figure 4.6:

secret of P I

public : p.ghmST

toproveto ¥V : S=m" (modp) g e{k;ljeT}
Fig. 4.6. Instance 4.4.

They use the protocol below, which gives no additional information about the person i
and his secret key s;. In Protocol 4.4 we have compressed the three proofs that

» §is of the correct form, that

+ the exponents used in S and in some public key are the same, and that

« the public key is used by somebody in T,

Protocol 4.4. (for Instance 4.4)
Step 1. P chooses numbers ry,....ryp, ty, ty, t3€ {1,...,p-1} and a permutation
1
of T. He sends ‘V the. numbers: x%(ﬁg)"h’z (mod p), y=m® (modp). and
2q(jy = k;h" (mod p) (for all jeT).
Step.2. Vchooses be {0;1} and sends b to P.
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Step 3. Psends Vin case
b=0: rp,.rmts by iy and T
b=1: n+s; (mod p-1), t,+r; (mod p-1), t3+s; (mod p-1),and index
%) \
Step 4. V'verifies in case
b=0: that the numbers x, y, 2 1+-Zp) are formed correctly.

= Sh""" (g/m)""* (mod p).

. = i3t
b=1: that yS=m""" (mod p) and that xz.,

This protocol is trivially complete. It is also sound, because if 2 can answer both
questions, he knows the number s; that satisfies S=m" and k; =g%. So if this
protocol is iterated k times, Vwill be convinced with confidence 1-2-%. This protocol
is also zero-knowledge because it can be simulated (with the same probability
distributions) by the following algorithm.

Simulator
Step 1. Choose a permutation T of I', numbers Floeeofims E1s B2 t3€ {1, p-1},

and e {0,1}.
Compute and send the numbers: zT(j)Ekjhr" (modp) (for all jeI'),

t,
y=m" /S (mod p), and x = (%) "W (S Zziy)° (mod p).

Step 2. Receive be {0,1}.

Step 3. In case
e=b=0:  send the numbers ry,....,";, 11, by, ty and 1.
e=b=1: send index 1(i), and t|, t, t5.
e#b: restart this algorithm.

If a “group member” wants to deny a group signature, he can for instance use the
disavowal protocol of [Ch90]. He can successfully perform this protocol despite the fact
that he did not know he was in such a group.

Confirmation Protocol 4.4 is zero-knowledge, so it reveals no additional information
about the identity of the signer. But what additional information about the signer is
revealed by the group signature, in other words, we need also to discuss the anonymity
of signers in this construction of group signatures. If we write p = 249¢+1 (for ¢ odd),
then, given m and m* (mod p), it is easy to compute the d least significant bits of
s(as mentioned in Section 1.4.1). Thus the recipient of the signature can eliminate
persons from I" who cannot have created this signature. To avoid this attack, the d least
significant bits of all secret keys must be the same. And we have to use Assumption 1.2.
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4.6. Applications

In Section 4.1 we already mentioned two applications of group signatufes. Another
application of group signatures can be found in [Ped92]. In Section 6.3 of [Ped92] two
distributed signature schemes are described: in such a scheme there are n agents
having secret keys and any k of them can together sign messages, while k-1 agents
canmot,

In the first scheme of [Ped92], the recipient of the signature can see which k agents
have signed the message. In his second scheme this is not the case, but each agent who
participated in signing the message knows who the other k—1 agents were and he can
prove who the other k~1 agents were.

By using group signatures, even this knowledge can be eliminated. Suppose we have
digital group signatures (see Section 4.1), so each agent can create his signature on a
message and the recipient can verity this signature himself. The recipient has a valid
distributed signature on a message m only if he has & different digital group signatures
on the same message (i.e., k different agents signed the same message). With group
signatures not even the group members know who signed a message.

4.7. Some open problems

We have presented four different constructions of group signatures. In the first
construction the recipient has to ask Z to open a received signature, while in the three
other constructions the recipient has to perform the disavowal protocol with each group
member. For the disavowal protocol all group members must be available. It would be
nice. to create group signature schemes in which for opening a signature another
situation holds, such as: a majority of the group members can open a signature.

Is it possible to make digital (i.e., not undeniable) group signatures other than by
using [FFS88] on undeniable signatures? ‘

Can the results of [SS90] and [Per85] be applied to show that specific choices of the
exponents in the constructions of Sections 4.2-4.4 and 4.5, respectively, protect
anonymity in ways equivalent to known computational problems?

Can the trusted authority Zbe replaced by a multiparty protocol?
Is it possible to modify the fourth group signature scheme in such a way'that the

number of transmitted bits during the confirmation protocol is independémj of the
number of group.members?
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What knowledge is revealed by releasing < ,4 > (see Section 4.3.3)? With this
knowledge, is it casier to factor the modulus?

A group signature scheme is a signature scheme with one public and several secret
keys, and it is infeasible for conspiring group members to create a new secret key out of
their own secret keys. Is it possible to create a complementary scheme with one secret
and several public keys, in which it is infeasible for conspiring group members to create
a new public key out of their own public keys?



Signatures unconditionally secure
for the signer’

5.1. Infroduction

Digital signatures are intended to provide legal security in digital communication, as
handwritten signatures should do in conventional communication: a digital signature
guarantees that the presumed signer really is the sender of this message (or has at least
authorized it), and the recipient can prove this to third parties. All known conventional
signature schemes have a publicly known test predicate rest, that can evaluate
signatures in polynomial time. Each signer has a public key PK; a number § will be
accepted as his signature on message m if it satisfies test(PKm,S) = “true”. This
implies that forging signatures is in the complexity class NP: one can guess a signature
and test its correctness in polynomial time.

All these schemes are based on a generally trusted, but unproven, complexity-
theoretic assumption (such as the infeasibility of integer factoring or the computation of
some discrete logarithm). Hence signatures can be forged if this assumption turns out to
be false. The signers thus have only computational security, and the presumed signer is
defenseless because the forged digital signature looks exactly like an authentic one and
satisfies the test predicate. The recipients of the signatures have unconditional security;
if a received signature satisfies the test predicate, then this signature will always be
valid, no matter how much computing power the signer has. In order to deal with
increasingly powerful computers and better “breaking” algorithms, then, one must

¥ This chapter is based on the paper “Cryptographically strong undeniable signatures, unconditionally secure for the
signer” by David Chaum, Eugéne van Heyst and Birgit Pfitzmann, Advances in Cryptology-CRYPTO '91, ).
Feigenbaum ed., LNCS 576, Springer-Verlag, pp. 470-484; and on the paper “How to make efficient Fail-stop
signatures™ by Eugéne van Heyst and Torben Pedersen, which will appear in Advances in Cryptology-EUROCRYPT
92. This chapter contains only a part of the first paper; the rest will appear in the Ph.D. thesis of Birgit Pfitzmann.
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increase often enough the so-called security parameters, such as the size of the used
modulus (which hopefully cannot be factored).

In this chapter we will study the “opposite case”, in which the signer has
unconditional security and the recipient computational security. Clearly, these
signatures cannot be conventional digital signatures. In such a scheme, someone who
wants to forge a signature of another person on some message cannot do more than
merely guess the signature, and cannot verify locally whether his guess was correct.

An example of such a scheme is the fail-stop signature (see [WP89], [BPW90],
[PW90] and [PW91]). With such a signature, unforgeability also relies on a complexity
theoretic assumption; but even if a signature is forged, the presumed signer can prove
that the signature is a forgery: he can-prove that the system’s underlying assumption has
been broken. This proof of forgery may fail (with a very small probability), but the
ability to prove a forgery does not rely on any complexity theoretic assumption and is
independent of the forger’s computing power. Hence, the signer is protected against
forgers with unlimited computing power, because after the first forgery, all other
participants in the system and the system operator know that the signature scheme has
‘been broken, and the system will be stopped. That is why this system is called “fail-
stop”. If signatures become invalid after forgery has been proven, the signatures are
unconditionally secure for the signer.

Another example of the new signature schemes is the unconditionally secure
signatures of [CR90]: these are signatures in which both the sigher and. the recipient
have unconditional security, but they differ widely from conventional signatures: each
participant has a different test predicate, and this test predicate depends on how many
participants have received the signature. Moreover, active attacks on recipients may
damage the security of the system.

Signatures unconditionally secure for the signer

Undeniable signatures,
Fail-stop signatures  unconditionally secure for the signer

[HP1] [HP2]

Fig. 5:1. An ovérview of currently known signatures that are unconditionally secure
for the signer.

“In this chapter we present three signature schemes that are unconditionally secure for
the signer (see Figure 5.1):
(i) A new efficient construction of fail-stop signatures (called [HP1] in Figure 5.1), in
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which a signature on a message consists of only two numbers, rather than of
signing a message bit-wise as in [BPW90] (see Subsection 5.3.3).

(iiy The first construction of undeniable signatures that are unconditionally secure for
the signer (called [CHP] in Figure 5.1; see Section 5.4). We show that these
signatures are not fail-stop signatures.

(iti) The first construction of convertible signatures that are unconditionally secure for
the signer, If the signer reveals some numbers, then these signatures turn into fail-
stop signatures (called [HP2] in Figure 5.1; see Section 5.5).

In principle all these signatures use one-time keys: this means that for each
signature a new public key must be used, in order to provide unconditional security for
the signer. But see also Subsection 5.3.4 for efficient constructions how to use the
public key several times, without endangering the unconditional security for the signer.

5.2. Notation

Throughout this chapter p and ¢ denote large primes (say, of at least 500 bits) such
that g divides p-1, and G is the unique subgroup of Z; of order ¢q. As any element

b#1 of G, generates the group, the discrete logarithm of ae G, with respect to the
base b is defined and denoted by log,(a).

In this chapter we will use generators g4 of G, and not generators of Z; (see for
instance also [CvA89]). Note that this is not the usual setup for a scheme based on the
discrete logarithm. The reason for doing this is that each nonzero element x has a
multiplicative inverse modulo g, while this is not true modulo p-1. So in G, we may
rewrite g* =h’ (modp) as g=h""* (modp) for x#0(modg). We assume that
computing the discrete logarithm in Z:, is infeasible (Assumption 1.2), and thus also
computing the discrete logarithm in a large subgroup, i.e., in G,.

In this chapter we denote by

SK the secret key of the signer,

PK =pub(SK)  the corresponding public key,

8 = sign(SK,m}  signature of the signer on message m,

test{PK,m,S) polynomial-time (in a security parameter k) computable predicate
to verify the signatare S on m. A signature is called valid if it
satisfies this predicate fest.
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5.3. Fail-stop signatures
5.3.1. General intfroduction

Fail-stop signatures have been formally defined in [PW90]. This Subsection 5.3.1 only
gives a brief and rather informal description of the properties of fail-stop signatures.

In a fail-stop signature scheme, exponentially many (in k) secret keys correspond to
a given public key, and different secret keys will (with very high probability) give
different sighatures on the same message. All these signatures satisfy the test predicate’
and will thus be valid. So note that with fail-stop signatures not only one signature
satisfies the test predicate. However, the signer knows only one of these secret keys and
can therefore construct only one of these signatures on a message.

Furthermore, given the public key and signatures on some messages, a forger must
not be able to guess which signature the signer is able to construct on a new message, so
that even if the forger (by using his unlimited power) succeeds in making a valid
signature, this signature will with very high probability be different from the signer’s
signature. Given such a forged signature the signer must then be able to prove that it is
different from his own signature, thereby proving that it is a forgery. After having
discovered such a forgery and proved it, the signer should stop using the scheme.

For fail-stop signatures we require that the predicate fest must satisfy that for every
secret key SK* corresponding to PK

test{ PK, m, sign(SK*m)) = “true”.

A scheme is a fail-stop signature scheme if it satisfies the following three
requirements:

(i) Let PX and the signature S=sign(SK.m) on m be given. Then there are
exponentially many (in k) possible secret keys SK* corresponding to PK such
that S= sign(SK*m). Furthermore, if such a secret key SK* is chosen at
random, then the probability that sign(SK,m*)= sign(SK*m*) is negligible,
for every message m*# m.

(Informally: it is not-possible to compute the signer’s signature on a new message,
even with unlimited computing power.)

(ii) There is a polynomial-time computable function proof, which on input SK, PK, a
message m, and a valid, forged signature §'# sign(SK,m) on m, outputs a
proof that §' is a forgery.

(Informally: the presumed signer is able to supply a proof of the forgery.)

(iii) No signer with polynomial-time computing power is able to construct a valid
signature S on a given message m and also constriict a proof that S is a forgery.
{Informally: the signer cannot make signatures which he can later prove to be
forgeries.)
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These requirements are for one-time keys. It is not hard to generalize this definition
of fail-stop signatures to comprise schemes in which more than one message can be
signed with one secret key.

The first two requirements imply that fail-stop signatures are unconditionally secure
for the signer, whereas the third requirement says that the scheme is secure for the
recipients of the signatures. Unlike the security for the signer, the security for the
recipient depends on a compiexity theoretic assumption. The reader is referred to
[PW90] for a thorough discussion of the properties of fail-stop signatures. (To avoid
confusion, note that [PW90] considers different security parameters for the security of
the signer and for the security of the recipient, while in our scheme these are equal.)

§.3.2. The construction of (BPW90), (PW91)

In [BPW90] and [PW91] a construction of a particular fail-stop signature (called a
hiding scheme) is given. This scheme is based on the assumption of the existence of
claw-free pairs of permutations ({GMRS88]): this means that there are permutations f;
and f; of the same set such that it is infeasible to find a pair (xg,x;) that satisfies
Jolxg) = fi(x;) (which is called a claw).

This hiding scheme is based on the idea of Lamport (one-time) signatures
(IDH76]): Let g be a one-way function and k an a priori fixed number indicating how
many bits can be signed. Each person chooses random numbers 79,7, (i = 1,2,...,k)
and publishes his public key

g(rl,())a g(?’g,o)v--a g(rk,o)o
g(nyh 8(3’2,1)1-“, g(m,;).

If he wants to sign the £ bit with value be {0,1}, he sends the preimage .y of
&(r, ») to the recipient, who can easily verify its correctness. Thus the signer can use this
public key to sign at most k bits,

To transform this Lamport signature into a fail-stop signature, the authors require

that g also fulfills the following two conditions:

+ for a fixed value o> 0, and for each xe dom(g), the value g(x) has at least

29 preimages,

*» g is collision-free for the signer.
Such a function g is called a bundling function, and this function is not chosen by the
signer but by the recipient: otherwise this function need not be collision-free for the
signer. It can easily be verified that the Lamport signature scheme that uses a bundling
function is a fail-stop signature scheme. The following construction of a bundling
function g is proposed, that uses a claw-free pair of permutations f; and f;:

£(Bgreennlgos X) = fao (...f%_2 (j},a_l xN...)s
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where ¢;€ {0,1} (i=1,...,0) and x is an element from the permuted set. It is easy to
see that finding a g-collision is as hard as finding a claw, and that each image of g has

29 preimages; thus this function g is a bundling function.

In [GMR88] efficient claw-free pairs of permutations are constructed as follows, Let
m be a large Blum integer (so m = pg, where both primes p and ¢ are congruent 3
mod 4) and define for xe {0,1,2,...,m~1}:

L 1% ifxe{01,..., 21,
Tm-x ifxem, B3 m-1).

Then the following two functions are permutations of ‘D:{l&té-’”—zi } Jacobi symbol
(£)=1}
)

fo(x) :=1x* modml,
fi(x) :=14x* modmi.

In [GMRS88] it is proven that finding a claw for these two permutations (i.e., a pair -
(xg»%;) with fy(xy) = fi(x))) is as hard as factoring m. The bundling function g
that uses these two permutations can be rewritten as

glag,...,a5_1,%) = 14% x2° mod ml,

where & =322 and xe D. Thus the application of this bundling function g

mainly consists of ¢ squarings, and the collision-freeness of g depends on the
infeasibility of factoring large Blum integers.

This hiding scheme that uses Lamport signatures has the disadvantage that it signs
messages bit-wise: for each bit of the message, one signature has to be given. Of course
messages can also be hashed before being signed, to reduce the length of the fail-stop
signature. In the next subsection we construct a fail-stop signature that does not have
this disadvantage: the length of the signature is twice the length of the (hashed)
message.

5.3.3. New construction of fail-stop signatures.

In this subsection we describe-an efficient fail-stop signature (based on Assumption
1.2), that.does not sign messages bit-wise. Let g and hbe elements. of G, such that no
participant knows log,(h). Recall that these two elements have order ¢ which is
prime. These elements can either be chosen by a trusted authority, when the system is
initialized, or by the participants using a coin-flipping protocol. Although (p,q,g,4) is
part of the public key (called the prekey of the scheme), it will not be mentioned as part’
of the public key in the following. To give a better idea of the scheme, we will first
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assume that a person issues only one signature. Let the secret key of person A be
SK = (655,51, € Zy,
and A4 publishes the corresponding public key
PK = pub(SK) = (py.pp) = (¢"'h*2,8"11"?). (5.1
To sign a message me Z,, A computes the following numbers:
S = sign(SK,m) = (0,,0,), where 5.2)
0y = x;+my| (mod g), ' '
O, = xy+my, (mod g).
The recipient of this digital signature verifies that
ppy =g h%2 (mod p). 5.3)

The following three lemmas show that this signature scheme is a fail-stop signature
scheme. First note that for every secret key SK* corresponding to PK, the predicate

test(PK,m,sign(SK*m)) holds, ie., for every tuple (x;.0.).)0)€ Z; that
satisfies
PK = (gx;kxz ’g?l;z)’z ),
O} = x+my; (mod g),
O, = Xtmy, (mod g),
we have

plpg' = gcrlhd2 (mod p).

Lemma 5.1. The public key PK, together with the signature sign(SKm) on m,
contain no information about which of q possible secret keys are used for SK.

Proof. This lemma is a special case of Theorem 4.4 of {Ped91]. Another way to prove
it is the following. Define h:=g®, p;:=g®, p,:=g". This representation is possible
because g is a generator of Gq. Then we can write Equations (5.1) and (5.2) as:

e =x +ax; (modg),

ey =y +ay, (modg),

06y =x; +my; (modg),

Oy =Xy +my, (modq).
The fact that equation (5.3) holds, follows immediately from Equations (5.1) and (5.2).
The forger has to find a solution (x;,x3,,,y) to the equations

1l a0 0Yx &
001 a XHl_ €
10 mO|y|=|e |mdd.
01 0 miy, 40}
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It is easy to see that this matrix has rank 3 (the rank is defined because g is prime),
hence, since there is at least one solution, there are exactly g solutions to this equation.
Qa

Lemma 5.2. Let PK, the signature S = sign(SK,m) on m and a valid signature
§'=(1,%) on m’ (so plpé”' =g"h"), be given. Then there exists a unique secret

key SK* corresponding to PK such that S = sign(SK* m) and S’ = sign(SK*m’).

Proof As in the proof of Lemma 1, a solution (x;,x5,y,,y,) to the matrix equation

1a 00 €y
001 a |x e
10 m O Xy | _ | Oy
01 0 miy| |0
10 mO0 |\»n T
01 0 m 7,

has to be found. It is easy to see that this matrix has rank 4 (because m'# m), so there
is exactly one solution. a

Lemma 5.1 says that there are ¢ possible secret keys corresponding to a given
public key and one given signature. By Lemma 5.2, each of them will yield a different
signature on a message m'# m. This shows that the first requirement for the security
of the signer is satisfied.

Lemma 5.3. If the presumed signer receives a valid, forged signature S' = (7,,7%,)
onm (so p;py =g"h™), but S' # sign(SK,m), then he can compute log,(h).

Proof . By writing sign(SK,m) = (0y,0,), we have that p,pJ =g"h"2 = g% %2 and
thus that g7 =4"7°2 (mod p). If 6, = 7,, then we also have 0;=17; and thus
S' = sign(SK,m). This is a contradiction and therefore the presumed signer can
compute log, (k) as (0, — 7, (%, — 0,)"' modg. Q

Hence, under the assumption that the signer cannot compute log,(h), this
logarithm is a proof of forgery. Thus we can define

broaf(SK,S = (01— T )Ty — O, )'] modgq.

Lemma 5.3 also implies that the signer cannot compute a valid signature different
from sign(SK,m) without being able to compute discrete logarithms. Hence, the
signature scheme is computationally secure for the recipients if it is infeasible to
compute logg(h)‘. So this scheme also has properties (ii) and (iii) of fail-stop
signatures.
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- Note that this secret key is a one-time key: if two different messages are signed
using the same secret key, then it is easy to compute the secret key from these
signatures.

Remark 5.1. In the above scheme, the public key consists of two numbers modulo ¢. It .
is possible to reduce the size of this public key as follows. Let H be a.collision-free
hash function that maps the elements of Gq (of length l(g), which is the number of
bits of g) into numbers of a smaller size. Then the public key will be

PK* = (H{(py).py),
where p; and p, are defined as before. A signature (0,,65) on the message m is
constructed as before, and it is verified as
H(g®h% p;™) = H(py).
By using this public key, the Lemmas 5.1, 5.2 and 5.3 have to be modified. For
instance, Lemma 5.3 has to be modified as follows:

Lemma 5.3.a. If the presumed signer receives a valid, forged signature §'= (1,1,)
on m (so H(g"h™p;™)=H(p,)))), but S'#sign(SK;m), then he can compute
log,(h) or he has found a collision for H.

Long messages can first be hashed into smaller messages before signing, but then
Lemma 5.3 has to be modified in a similar way as was done in Lemma 5.3.a. Another
modification of our fail-stop signature scheme is the following, in which H, p,, p,,

0, and 0, are defined as before.
PK* = (H(py).H(p,)),
S* = sign(SK,m) = (01,65,p,).

The recipient verifies this signature S* as

H(@g%r%2p;™y=H(p)) and H(p,)=H(p,).

Even if no hash functions are used in the public key, it is more efficient to verify the
signature by computing
gal hd‘z pi-m ,
and comparing it with p,. This requires less than 2Kq) multiplications, if the products
gh, gp;, hp, and ghp, are precomputed.
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5.3.4. More than one signature per public key

As noted in the previous subsection, a person can use his public key (and secret key)
only once. We present three different ways to overcome this problem: the public Key
can be used to provide kX messages with a signature, and the signer still has
unconditional security. In the first two ways, the secret key consists of 2k numbers,
while each signature consists of 2 aumbers. These two ways differ in the computations
needed. In the third way, the secret key consists of at most k elements, while each

signature consists of | log k| + 3 numbers.

Method 1. Person A chooses as a secret key

SK = (X1, Y1 X2 Y20+ 03 Xt ls Vst s
and he publishes the corresponding public key
PK =(pyye Prst) = (870 .., g TR,
To sign a message me Z;, A computes the following numbers:
sign(SK,m) = (0,,07), where
oy =x+ mx2+...+mkxk+l (mod g),
0y =y +myy+...+mhyy; (modg).

The recipient of this digital signature verifies that

k
PiP5 .. Piy = 8%1h°? (mod p).
After issuing signatures on k different messages, the signer still has unconditional

security. (This follows from Theorem 4.4 of [Ped91].) The security of the recipient
follows from the same arguments as in the proof of Lemma 5.3.

Method 2. ([Pf91]) Person 4 chooses the same secret key and public key as in Method
1. In Method 2, the signature on the message depends on the number of messages that 4
has signed previously: If A has signed i-1 messages (1 < i < k), the signature on a
message, m, will be

sign(SK, m, i) = (i,6,,0,), where
Gl = X; + mx; . (m{)dq),
Oy =y; + my;,; (modg).

The recipient of this signature verifies that
pipis1 =g”'h% (mod p).

Hence, at the cost of including a counter in the signatures, the computations of the
signer as well as the recipient are easier here than in Method 1. Again, the security of
the recipient follows from Lemma 5.3.
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In order to prove that the signer has unconditional security after issuing k different
signatures, it is sufficient to show that the rank of the following (3k+1)x(2k+2) matrix
Ay is 2k+1. This will be done by proving that matrix A, below can be obtained from
A, by elementary row operations, and noting that matrix A, has rank 2k+1.

rl()ml 1
10 m 10m
10 m l(}lml
1 om 10 m
Ap= ‘1 o m | and A= 1 om
ta, 10 my
4 1 a
1 a |

To see that this matrix has rank 2k+1, consider the following four rows of matrix A,

0..0 10 m0O0 ..0
0..0 010 mO ...0
0..01a000..0

0 ..0 001 a0 ..0

By Lemma 5.1, this submatrix has rank 3 and the third row can be removed. By using
this method for i = 1,2,...,k—1, we may delete all rows (0 ... 0 1 a 0 ... 0) from
matrix A,, except the last row. This results in matrix A, .

Hence, PK and k signatures sign(SKmi,1),...,5ign(SK,m;, k) contain no
information about which of g possible secret keys are used for SK, and each of these
possible secret keys will yield a different signature on a new message m*.

Method 3. Use one of the two types of tree-authentication (assume that k=27),

(1) (see [Merk80]) The signer has k(=2") pairs of secret key §; and public key PK; =
pub(SK;). These numbers PK; are used to construct a binary tree by using a collision
free hash function h, as indicated in Figure 5.2 (left-hand side). The public key PK
will be the root of the tree and the secret key SK contains all other nodes of the tree
(the signer does not need to store all the elements of SK).

The ith signature on message m; does not only consists of sign(SK;,m;), but it also
contains n+1 nodes of the tree, so that the recipient can verify the signature (see the
right-hand side of Figure 5.2, remember that the recipient only knows PK). So each
signature consists of 7+3 numbers, which is logarithmic in £.

(2) (see [Merk87] and [GMRS88]) The signer starts with one pair of a secret and public
key at the root. Then he creates two sons, each having a new pair of secret and public
key, and he uses the secret key of the father to sign the note saying: "my two sons have
public key ... and ...". For each of these two sons he creates two new sons, each having a
new pair of secret and public key, and he uses the secret key of each father to sign the
note saying what the two new public keys of the sons are. And so on.



78 Chapter 5

He can sign messages by using the secret key that belongs to a leave of the tree, and
a complete signature consists of this signature and the corresponding branch of the tree
with the signed notes. But the signer does not need to build the complete tree during the
setup: the tree is built up from left to right as the signatures are needed.

e N
(A h(x )
SK 4
5K,
pl:b pfb pt:b pa:b © Tobe revealed by the signer for using SK
§K, 8K, SK, 3 To be computed by the recipient

Fig. 5.2. Three authentication: the left-hand side indicates how to construct the tree, and the right-hand
side shows which numbers must be revealed by the signer and how the recipient can verify the signature.

5.4. Undeniable signatures unconditionally secure for the signer
5.4.1. Description of the signature scheme

Let g1.8; and g3 be generators of G, such that no participant knows logg},(gi)

(##f) (in this subsection we will use that g;# 1 and g, # g,). These clements can
either be chosen by a trusted authority, when the system is initialized, or by the
participants using a coin-flipping protocol. They also choose security parameters [ [,
which will be the number of times that the confirmation/disavowal protocol has to be
iterated. The prekey of the scheme is (p,4.8,.85.25.51). To give a better idea of our
scheme, we will first assume that a person issues only one signature. Let the secret key
of person 4 be

SK = (x;.xy.09)€ Zy,
and suppose A publishes the corresponding public key
PK = pub(SK) = g{" 852 83" (mod p). G4
To sign a message me Z,, A computes:

S = sign(SK,m) = x; + x, + mxy (mod g). 3.5
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This signature is an undeniable signature. Hence the signer (4) has to perform a
zero-knowledge confirmation protocol (see Subsection 5.4.3) with the recipient to
convince him of the correctness of his signature, i.e., of the correctness of the assertion:

“I know a SK such that PK = pub(SK) and § = sign(SK,m)”,

or he has to perform a zero-knowledge disavowal protocol (see Subsection 5.4.4) to -
convince him that some number §’ is not his signature on m, i.e., that

“l know a SK such that PK = pub(SK) and S' # sign(SK,.m)".

Remark 5.2. This scheme is not a fail-stop signature scheme: if a person breaks the
underlying Assumption 1.2, then he is able to disavow all his previous signatures, and
nobody will notice that the underlying assumption has been broken. This is not the case
with fail-stop signatures.

5.4.2. Security of this signature scheme

Security for the verifier

By using the Certified Discrete Logarithm Assumption (Assumption 1.2), we will prove
that the function used, i.e., pub, is collision-free: this means that 4 cannot find two
different secret keys having the same public key.

Lemma 5.4. On Assumption 1.2, it is infeasible for A to have a probabilistic
polynomial-time algorithm that on a random triple of generators (&1,8.83) of G,

as input, outputs a G -collision, i.e., a pair (x1,%.%3) # (¥1.y2,93)€ ZZ satisfying

883% 83" = g 83%83® (mod p).

Proof. . Assume that 4 has such a probabilistic polynomial-time algorithm AL to
compute these collisions. Then A can compute collisions for random generators g,,8;
of G, as follows:

Step 1. Choose ey.e;6 g Z, and ry.ryey Z, (ry,ry not both zero). If gflg? =1,
then 4 has found a nontrivial collision for g;,g,. So suppose that g'g7 #1;
hence it is a generator of G,

Step2. Apply the algorithm AL on the three generators (g[', g52, g7'¢%2). With a
probability corresponding to the algorithm AL, it outputs a nontrivial collision

(x1X0.03) # (Yyay3) Tor (8], 832, 81 87 )-

Rewrite the obtained collision as gl!(®1™110371) o ge2l2=9214n03-53) (moq p).
If x5 = y;, then it is easy to verify that we have a nontrivial collision for g,,g,, so
assume that x; # y5. If the collision obtained is trivial for g;.g,, then we have
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n= %ﬂ;ﬁ- (modg) and r, = ﬁﬁy;—ﬁge—z (modg). Thus we obtain from the algorithm the

trivial collision for only one choice of (r},r,), but from g'g3 the algorithm cannot
determine which of g pairs (r,r;) was used. Hence with probability (1-1/g) the
output of the algorithm produces a nontrivial collision for g,,g,. So the overall
probability that this method succeeds is at least (1-1/g) times the probability that the
algorithm AL outputs a collision for triples, which was assumed to be infeasible. Q

The confirmation and disavowal protocol are sound (which will be proved in
Subsections 5.4.3 and 5.4.4) and the function sign is deterministic, so according to
Lemma 5.4, it is infeasible for A to convince the recipient that S is a valid signature on
m and disavow it later (otherwise 4 would have found two different secret keys having
the same public key, which contradicts this lemma). So the verifier has computational
security.

Security for the signer
By using the following lemma, we will show that if a forger knows the public key of 4 .
together with his signature on m, and if he forges a signature of 4 on m'# m, then
the probability that 4 can disavow this forged signature is 1-1/g.

Lemma 5.5. Let PK = pub(SK) and the signature S = sign(SK,m) be given. Then
for each forged signature S' on m' there exists a unique SK* such that
PK = pub(SK*), S = sign(SK*m), and §' = sign(SK*m").

Proof. Because g; is a generator of G,, we define a,B,7 as g, =g (mod p),
& sg‘lﬂ (mod p), and PK = g17 (mod p). We want to find (x;,%,x3) that solves the
following equations:

Y

S

S!

The matrix of these three equations can be transformed by row operations into

(1 o B J
0 l-aa m-f8 |
0 0 m-m

Because we require that m # m’' and that & # 1 (g; # g,), this matrix has rank 3, and
thus there is exactly one solution to our system of equations. L

X1 + Oixz +ﬁX3 (modq},
X+ % +mx; (modg),
Xy + Xy +m'xy (modg).

omm

‘Thus, given the public key of 4 and a valid signature on m, this determines exactly
g secret keys that satisfy the conditions (5.4) and (5.5) together, and each of these ¢
secret keys determines a different value for the signature on a message m' (#m). So
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the forger can only guess the secret key used; thus with probability 1-1/¢ he chooses
another secret key. Because of the completeness of the disavowal protocol, any
signature on m' other than sign(SK,m’) can be disavowed by A with probability
exactly 1. So the signer has unconditional security with exponentially small error
probability (because with probability 1/¢ the forger chooses the correct secret key).

Note that the security of A only depends on the fact that g; # g5, and not on the
randomness of the generators.

The forger may ask A several times to disavow (forged) signatures on m’, and
because there are only g possible signatures for m’, we cannot allow him to try them
all. If we restrict him to \[5 attempts, then it is easy to see (by using the previous
Lemma 5.5) that the probability that 4 can disavow all these /g forged signatures is at

1--L.
least e

5.4.3. Confirmation protocol

If a signer wants to convince the recipient of the correctness of his signature S=
sign(SK,m) on m with public key PK = pub(SK), they can perform Protocol 5.1 of
Figure 5.3 (which has to be iterated / times).

Signer Recipient

choose R = (1,n,n) €g 237 o
compute SK’ = SK + R, PK’ = pub(SK’), —PKLS
and 8’ = sign(SK’,m)

——Lb  choose beg {0,1}

{R , Eb=0

K" 2=1 5 verify that
PK’=PK-g'g78? -0
S’ =S+1+n+mn ‘
PK’ = pub(SK") b=1
§ =sign(SK’,m) T~

Fig. 5.3. Confirmation Protocol 5.1 for undeniable signatures, unconditionally secure
for the signer.

Lemma 5.6, Protocol 5.1 is a perfect zero-knowledge interactive protocol to
convince the recipient that the signer knows a satisfying assignment for

“I know a SK such that PK = pub(SK) and § = sign(SK,m)”.
Proof. This protocol is a special case of the proof system for random setf-reducible

relations of [TW87]. This can easily be verified by using:
N= (q’m)s XN= (PKS), YN= SK:
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relation Ry on XxY: ((PK.$).SK)e Ry & PK = pub(SK) and § = sign(SK.m),
blinding: blind(SK.R) = SK+R, and i
A(PK,S.R) = (PK’,S"), where PK’ = PK -g'g2 g7 and $'=S+n +ry + mn. a

5.4.4. Disavowal protocol

We assume that the presumed signer wants to disavow a forged signature SF on a
'message m. We will first show a simplified protocol. To do so, the signer and the
recipient can perform the disavowal Protocol 5.2, which takes ! rounds. In each round

the signer chooses randomly R = (r{,r,,r3)€ Z;, computes

SK’ = SK+R,
PK’ = pub(SK"),

8 = sign(SK',m),
SF' = SF+r+n+mn,

and issues commitments on PK"'S’ and SF’ to the recipient. Then the recipient can
choose one out of the three challenges:
C1. Signer must open the commitments on PK' and SF", and must reveal R,
C2. Signer must open the commitments on PK’ and §’, and must reveal SK,
C3. Signer must convince the recipient that S'#SF’, without revealing these
numbers.

This is depicted in Figure 5.4, in which the (:) denotes commitments on numbers,
and the three possible challenges are indicated.

PK’

Cl. reveal C2. reveal SK*

C3. prove SF'#S’

Fig. 5.4. The three blobs and the three challenges that the verifier can ask for.

For blobs, wé will use the following efficient commitment scheme, which is
unconditionally secure for the signer. Let be Zq = {0,1,...,4-1]} be the value to be
committed to, and let the blob be

B(b,1)= g°H' (mod p),

where t€ {0,1,....g-1} and g,k are two generators of G, such that log, (k) is not
known (this blob construction was simultaneously proposed in [Ped91)). If one created
the blobs Ab,.1;) and B(b,,5), then one can also compute and open the blobs
Bb, +by, t; +15) and B(b;—b,, t;~t,). Hence the committed values in these blobs
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can be added and subtracted, and thus it is sufficient in Challenge 3 to prove that the
committed value SF'-$' is nonzero. But even this difference may not be revealed, so
the protocol needs the following blinding:

(Bb,0) = g”h" = B(br,tr) (mod p).

If req Z; = {1,...,g-1}, then br is uniformly distributed in Zq for b;t(), and br is
always 0 if b=0. Because Bb,z) and B(br,tr) together uniquely determine r, the

'signer may not reveal both Bb,7) and the pair br, tr at the same time; otherwise, b is

uniquely determined. Hence an additional level of commitments is needed for the

disavowal protocol, as shown in Figure 5.5.

The numbers SF’, S’ and r(SF'-S") are elements from Zq and thus we can
compute‘ the blobs BSF,x), B(S,+) and "B( r(SF'-8,#) by using the blob
construction above. But these blobs are elements from G, and we cannot compute the
blobs B( BSF',+),%), B( RS, #),%) and B( Br(SF'-S'),+),%) by the same blob
construction. Thus for the outer commitments we need an efficient embedding
A:GqH Zq, {for a prime ¢’ 2g). For instance, if we have that p=2g+l,
Gq = Z:, / {£1}, which is represented by {1,2,...,¢4}, then we can use the embedding:

_[x ifxefl,....qg~1)},
Ax) = ‘{o ifx=g.

C2. open A,C.c, reveal SK’

C3. open B,C,D, reveal r

C1. open

Fig. 5.5. The disavowal Protocol 5.2 with the three challenges C1,C2 and C3.

Disavewal protocol 5.2. (see Figure 5.5)

Repeat I' times:
The signer computes PK', SF' and S’ as indicated in the beginning of this
subsection, and chooses rey, {1,...,g-1}. He creates commitments A,b,B,¢.C as
indicated in Figure 5.5, computes &= r(SF'-S") (mod g), d={(bL) (mod p),
and creates the commitment D.
The recipient receives A, B, C, D and can choose one of the three challenges:



84 Chapter 5

Cl. Signer opens the commitments A, B, b, D, d and reveals R.
Recipient verifies the openings and that § #0, SF’ = SF + 1 + r, + mr; (modg),
and that PK’ = PK - g g7 g7 (modp).

C2. Signer opens the commitments A, C, ¢ and reveals SK".
Recipient verifies the openings and that PK' =pub(SK') and
8’ = sign(SK',m).

C3. Signer opens the commitments B, C, D and reveals r.
Recipient verifies the openings and that d = (b/c)” (mod p).

Lermama 5.7, This disavowal Protocol 5.2 is a perfect zero-knowledge interactive
protocol to convince the recipient that the presumed signer either knows a satisfying
assignment for

“I know a SK such that PK = pub(SK) and SF # sign(SK,m)”,

or can break the commitment scheme.

Sketch of the proof.

Completeness. It can easily be verified that if the signer knows such an SK and

behaves correctly, then he can answer all three challenges.

Soundness. We will prove that if the signer answers all three challenges, then the

recipient can either open a commitment in two ways, or he knows that SF'=S". If the

signer opens a commitment in two ways, we have proven the statement. So suppose that

he answers everything correctly: he reveals numbers SK', S, SF, d, r, 8 x, y, z that

satisfy b= BSFx), c= BS,y) and d = Az). If we define & = r(SF-S)

and z*:=r(xy), then A z¥)= Bbz). U (O%z*)=(8z), then the recipient

has a commitment that can be opened in two ways, and if (6%,z%)=(8z), then it is

easy to sec that SF' # §'.

Perfect zero-knowledge. We will show that each of the three cases can be simulated.

Cl. Choose R, §#0 and C randomly, and compute PK’'= PK-g'g?g; (modp),
SF' = SF + 1 + r, + mry (mod g), and commitments 4, b, B, d, D.

C2. Choose SK', B and D randomly, and compute PK' =pub(SK"), §' =
sign(SK',m), and commitments A, C, c.

C3. Choose b, ¢, r#0) and A randomly, and compute d=(bL), and commitments
B, C D.

It can be easily shown that in each case this simulator can answer the corresponding

challenge, and that in each case the joint probability distribution on the values visible

for the recipient is the same for the signer and the simulator. =]
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5.5. Convertible undeniable signatures unconditionally secure for the
signer

Convertible undeniable signatures were introduced in [BCDP90]. Briefly, these
signatures allow the signer of undeniable signatures to change his signatures to ordinary
digital signatures. In Section 5.4 an undeniable signature scheme was presented in
which the signer is unconditionally secure. This section combines the ideas of
[BCDP90] with Sections 5.3 and 5.4 by constructing an undeniable signature scheme
that is unconditionally secure for the signer and has the property that the signer can
convert the fail-stop undeniable signatures to plain fail-stop signatures.

Let p, g, g and & be as in Section 5.2. The secret key of person 4 is

SK = (x1,%2.¥1,¥2) € ZS,
and the corresponding public key is
PK = pub(SK) = (p, p2) = (g™, 8" h'2).
The undeniable signature of 4 on the message me Z, is
oy = sign(SK,m) = x;+my,; (mod g).
This signature is undeniable, because given PK, the signature is just a random number

in Zq. The signature scheme is unconditionally secure for the signer, because given

0y, it is impossible for a forger with unlimited computing power to construct o] =
sign(SK,m") for a new message m’# m. This follows from the same arguments as in
Lermmma 5.1 and 5.2. We mention that & can convert this signature to a fail-stop
signature by publishing

0y = Xp+my, (mod g),
which changes the undeniable signature into the fail-stop signature of Section 5.4.

Confirmation protocol

To verify the signature o, on a message m, A and the recipient compute
u=p,pyg ! (mod p), and 4 convinces him with a zero-knowledge protocol that he
knows a number &, such that u=h2 (mod p). Perfect zero-knowledge protocols for
this problem are well known (e.g. [CEvdG87]), so it can be proven that:

Theorem 5.8. There is a perfect zero-knowledge protocol for convincing someone of
having ©, satisfying u=h°? (mod p).
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Disavowal protocol
Disavowal of these signatures is slightly more complicated. A given number oe Z,, is
not A's signature on m if

pipy # g%h% (mod p),

where 0, = x,+my, (mod ¢). 4 can therefore convince someone that ¢ is not his
signature by convincing him that he knows numbers s and ¢ such that

ppy =g’k (modp), and o#s.

(because if c'was his signature this would mean that A4 knew log, k). The perfect zero-
knowledge protocol presented in Subsection 5.4.4 can be used as follows:

SK = (s,1), SK" = (s+n,t+n)

PK = p;py (modp), PK’ = PK-g"h" (modp),
S = s, §" = s+n(modyg),

SF = ¢, SF' = o+r (modg).

{Note that in this disavowal protocol we use the definition sign(SKm) =
sign((s,t),m) .= s.) :

5.6. Applications

In [PW91] an application of fail-stop signatures is suggested, called the 3-phase
protocol. Customers in an electronic payment system would use fail-stop signatures
when signing a request to the bank (for example for the withdrawal of money). These
signatures have the advantage over ordinary digital signatures that the customers need
not worry about the bank (which normally has more computing power than the
customer) being able to break the underlying assumptions of the signature scheme. In
this 3-phase protocol for making such requests, the customer only has to sign a single
bit with a fail-stop signature.

If the signature scheme of Subsection 5.3.3 is used, this 3-phase protocol can be
avoided and the customer needs only to send a single message to the bank in order to
sign the request.

5.7. Some open problems

For each message, the public key of the fail-stop signature presented in Subsection 5.3.3
is approximately 1000 bits (assuming a modulus of size 500 bits), the secret key is
approximately 2000 bits, and the signature of a 500-bit message is 1000 bits (long
messages can first be hashed into 500-bit messages). By using a hash function, we can
reduce the size of the public key (see Remark 5.1 in Subsection 5.3.3), Unknown is
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whether our construction for fail-stop signatures is the most efficient construction, and if
not, what the most efficient construction will be.



Efficient offline electronic checks’

6.1. Infroduction

In a “iraditional” payment system, the bank creates special objects (such as coins, paper
cash, checks, or credit cards) that are worth money: they can be used to pay a shop in
return for some goods, or to pay a person. The money can also be stored in some
account at the bank. It is assumed that it is infeasible for users to create these objects
themselves. In this system, the user’s privacy as regards the bank is not very high: the
bank can trace paper cash in principle by serial numbers; and by using checks or credit
cards, the bank knows who spent what amount and where.

In an electronic payment system, information (in the form of specially created
numbers) is used as money, and this information is stored by the users in their handhold
computer. These numbers must first be created either by the bank or by the bank and the
user together, and it is assumed that it is infeasible for the users to create electronic
money without the cooperation of the bank. But a user can copy numbers easily; and
because a copy of valid electronic money is still valid electronic money, he can spend
this copy at another shop (this is called double spending). This second shop cannot
detect that this money has already been used. So before the shop accepts the money, it
contacts the bank, which can verify that that electronic money has not been used before
(this is called an online connection). Only then will the shop accept the money.
Electronic coins are called unconditionally untraceable (the user has unconditional
privacy), if for each point in time the bank has no information (in the Shannon sense)
to link any payment until then to any creation of electronic money until then, even with

# This chapter is based on the paper “Efficient Offline Electronic Checks” by Bert den Boer, David Chaum, Eugéne
van Heyst, Stig Mjglsnes and Adri Steenbeek, which appeared in Advances in Cryptology-EUROCRYPT 89, §-1.
Quisquater and J. Vandewalle eds., Lecture Notes in Computer Science 434, Springer-Verlag, pp. 294-301.
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unlimited computing power (except when only one person has created and spent
money).

So in an electronic payment system three types of parties are involved: a bank, a
user (to be called Alice), and a shop, and there are three possible transactions
between them:

«  Withdrawal transaction between the bank and Alice: this is the creation phase of
the money and is done partly by Alice and partly by the bank. The bank
decreases Alice’s account by the value of the electronic money created.

» Payment transaction between Alice and the shop: Alice uses the electronic
money to pay at a shop.

* Deposit transaction between the shop and the bank: the shop transmits the
electronic numbers it has received from Alice to the bank, which verifies that
these numbers are correct and that they have not yet been spent. If so, the bank
increases the balance of the shop.

An online connection between the shop and the bank is very expensive, so we want a
payment system that replaces this online connection by an offline connection (this
means that the shop contacts the bank only occasionally, say once a day or once a week,
to transmit the numbers received). The first such system can be found in [CFN88],
which has the following properties:

* The shop does not need an online connection with the bank.

* During payment the user does not have to do computations.

* The withdrawal and payment of a check are unconditionally unlinkable.

» The system can be used for electronic checks. This means that the money can be

used for many values up to a certain maximum.

These properties seem to cause two major problems. The first is that a user can reuse
valid money and the second shop cannot detect this cheating (because of the offline
connection). After both deposits the bank detects this double spending, but it cannot
trace the user because her privacy was protected unconditionally. This problem is
ingeniously solved in [CFN88] by creating the money in such a Way that the privacy of
the user is protected unconditionally if she uses the money only once (as she is supposed
to), and that the bank can trace the user (with high probability) if she reuses that money
(see Figure 6.1).

The second major problem results from the use of checks. The amount for which a
check is spent, cannot be paid later te the bank (because of the unconditional privacy
requirement), and this amount is not known at the time of withdrawal. Therefore the
check has to be issued for the maximum value and must be able to be spent for many
lesser values. Later on the user must request the bank to refund the unspent part of the
check, and this is the fourth transaction needed in their payment system (see Figure 6.2).
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CHECK
4 ) 43 | 4
a, 81D/ 4, SID| a, SID a4€BID

CHECK

a1®ID a, D1D| a3 BID|

CHECK

§ @ a4

Second use of the check, with challenge 0101

Fig. 6.1. An illustration of how to prevent double spending in the offline case. A check

is created as a 2x4 matrix, in which the numbers a; are randomly chosen by Alice and
in which ID is her account number. During a payment, she will receive from the shop a
random 4-bit string and she will reveal from each column of the check only one number,
according to the challenge. Hence the identity of the wser is still protected

unconditionally.

But suppose that she spends this check twice, and that the first shop gives challenge

0001 and the second shop gives chall

0101. The t

revealed are indicated in

5

both cases. After both deposits the bank can trace Alice because a;B@,@ID)=ID. In
this small example the second shop will generate with probability 15/16 a different
challenge than the first shop, and thus the bank will be able to trace Alice with
probability 15/16. This probability can be made arbitrarily close to 1 by using a wider

matrix.
%
%
— - M
User Shop

Fig. 6.2. The four transactions in an electronic payment system for checks.

In this chapter we present a payment system that improves the efficiency of
[CFN88]; also, some functionalities are added. In the next section we give the setting of
our new payment system and the notation used. In Section 6.3 we describe the four
transactions, which are compared with [CFN88] in Section 6.4. In Sections 6.5 up to 6.9
we discuss the possibility of passing a check from person to person, the storage of the
checks, a demo of this payment system for an Apple Macintosh computer, the suggested
size of the parameters used, and some improvements of our scheme. In Section 6.10 we
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analyze several ways of cheating. We end with a brief overview of offline payment
systems that appeared in the literature after this paper, and some open problems.

6.2. Selting and notation

The underlying scheme of this payment system is the RSA-scheme. All calculations are
done modulo N, the factorization of which only the bank knows (in our formulas we
will omit this modular reduction). The check is a product of k/2 terms and these terms
are ordered lexicographically: the first j terms (called denomination part) are used for
the amount to be spent in a shop and the last k/2—j (called challenge part) to prevent
the check from being spent twice. The j terms in the denomination part have
denominations $1 (one dollar), $2,..., $2/72, $2/-1 respectively (or 1¢, 2¢,...,
$10.24,..., $2/-1/100), and thus each check can be spent for each integral value up to
$(2/-1) =829+ 21 + ... + 271, As in the original paper [CEN88], let
k  be a security parameter that is an even number,
Jj  be the number of denomination bits in a check (we assume that 5 £ j < 14; for
other values of j see Section 6.8),
f.g betwo-argument, collision-free one-way functions, with g such that if its first
- argument is fixed, the mapping is g-to-1 from the second argument onto the
range (for some integer g),
h  be an injective one-way function with one argument,
I be an injective k-argument one-way function,
ID; be Alice’s account number concatenated with a counter,

@ denote bitwise exclusive-or, and
I denote concatenation,

Essentially such a check is constructed as follows: for each term she randomly

chooses integers a,b,c, and d, and computes the term as f( g(allb,c), g(a®ID,d)),
thus each of these terms can be represented by the tree of Figure 6.3.

Fig. 6.3. Each term is constructed as such a tree, and the dotted lines indicate the
aumbers that must be revealed if the corresponding bit is “1” or “0™.

During payment, Alice will receive one bit for each term (challenge and
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denomination) of her check, and according to this bit she has to reveal some numbers of
how this term is constructed, see Figure 6.3. For instance, if this bit is “1”, then Alice
reveals the numbers allb, ¢, and g(a®iD,d). If later on she wants to request refund
for a denomination bit, she has to reveal the corresponding number b.

Thus, if Alice wants to both spend and request refund for the same denomination bit,
she reveals the same number b twice and will be caught cheating by the bank. And if
Alice reveals the answers to both challenges 0 and 1, then her identity can be computed

as a®(a®ID) = ID. This is a mathematical implementation of the idea of Figure 6.1.

Alice creates these terms herself, so a cut-and-choose protocol will be included in
the withdrawal transaction: Alice creates twice as many terms as needed and issues
them to the bank. The bank randomly chooses half of these terms and Alice has to
reveal their construction (i.e., she has to reveal d||b, ¢, a®ID and d for each of
these terms). The bank verifies these constructions of the opened terms, and if they are
all correct the bank will assume that (nearly) all the other terms are also correct. She
will sign these unopened terms, so that they become valid money.

For coins (i.e., checks with only one denomination), the user has unconditional
privacy, because

» The numbers a and g(a®ID.d) together contain no Shannon information
about ID, that is, each number is equally likely to be ID (because of the
definition of the function g). ‘

¢ The numbers ‘a®ID and g(alib,c) together contain no Shannon information
about ID.

« If all users withdraw money at the same time, and spend it at the same time, the
bank cannot link a payment with a withdrawal, because of the blinding used. (If
one person withdraws money and spends it immediately, the bank can link
withdrawal to payment, despite the blinding.)

For checks the privacy of each user is protected “almost” unconditionally: a user can
request refund for several checks at once, to keep the bank from learning the amount
spent for each check. Payments and refunds are unlinkable, except by the little that can
be learned from the total number of each type of unspent denomination.

In the next section the construction of the check and the four transactions will be
explained in more detail.

6.3. Transactions
As mentioned, the payment systemn consists of three parties (bank, user Alice and a

shop) and four transactions: withdrawal, payment, deposit, and refund. Each of these
transactions is a protocol between two of the three parties. The transactions do not need
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to be in this order: after withdrawal and payment, the refund of the check involved can
occur earlier or later than its deposit. Alice can also first request refund for part of the
check and later spend the rest of the check in a shop (see Figure 6.4).

withdrawal

. nﬁm/\mind l

tme

refund deposit payment
deposit refund deposit

Fig. 64. The three possible sequences of four transactions for one check.

In figures 6.5, 6.6, 6.7, and 6.8, describing these four transactions, the symbols [lj!,

O, EZ, Z:>, and @ are used to indicate computation, trivial computation (e.g.
table lookup), verification, transmission, and writing in an archive list, respectively.

6.3.1. Withdrawal Transaction

m’——) hash of candidates 2
L
A
candidate partition

Alice bank

o

Qfﬁ topened) candidates

A.

signature

b ]

Fig. 6.5. Withdrawal of a check.

(1) Alice chooses at random: r;, a;, b, ¢, d;, €, (1 £ 1 < k) and computes:

X; = g(a,-llb;,cg),

i = 8a;®ID,dy,

M, = fl.y) (called major term),

m; = hig(hb,e)) (called minor term),

o = MY m7-7"  (called blinded candidate).

These blinding factors r,4,b,¢.d.e are used as follows:

r:
a:
cde:
b:

to make the withdrawal and payment unlinkable,
to hide the identity of the user in a check unconditionally,
to hide the first argument in the function g unconditionally,

to prevent users from spending a denomination bit in a shop and

requesting for refund for the same denomination bit.
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All these computations can be made before connection with the bank, and during the
connection with the bank only the hash value a,.a,,...,0;) is sent.

{2) The bank partitions the integers 1,...,k randomly between two unordered sets S,
and S, both of k/2 elements. The partitioning is then sent to Alice.

(3) Alice orders the elements in the partition S, by the M; value of the corresponding
candidate, forming the ordered set T, (so T, is a permutation of §.). This set 7,
the ¢, ’s of the elements in T, and the r;, a;, by, ¢;, d;, ¢; of the candidates in Sp
are sent to the bank. The candidates in S, are said to be “opened”.

(4) The bank verifies that the hash of the blinded candidates revealed equals
(04, 00,...,04) and that every element of the opened partition is correctly formed.
(The opened partition can now be discarded by both parties, because it was only
used for the cut-and-choose protocol.) The bank takes a random integer R and
computes

D = [Z[(a,(i))l’17'3j+‘ i kli[z(a, 7 R1/31
i=1 i=f41
where #(i) is the /! element of T.; sends D and R to Alice; and reduces Alice’s
account by $(2~1), the maximum value of the check. The bank also stores R with
Alice’s account number in some list.
(5) Alice verifies the validity of this signature D by testing whether

[

aJ J -1 kI2 i
p'7? e’ - e -RY.
i=1 i=j+1

Let a,f be such that 3¢ + 178 = 1. From this signature D she computes the
following numbers:

. j ~ _
5 = Dty 1} [ (o)™ )™
J jHi-iN k2 i j
- H((M,@)S M ()" ) TiMe) "R
i=1 a i=j+]
L ai S i qi-1 kI2 o
c = [(0)3 qm)> R 1} TP THM, )P
' i1 " i=1 i=j+
J i1 i
= H(Mt(;))3 /17‘ H(M’(”)3 /17,
i=1 i=j+1
, - J _gi=l k2 i
o= (D)”-H(M,(i)) > H(M,(i)) 3

R17/3 H (m, 17/31““'

Number C is called signed check and will be used during payment, and number
€’ is called refund part and will be used during refund. The computations of C
and C' can be done more efficiently than the formulas suggest and can be
accomplished any time before payment.
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6.3.2. Payment Transaction

Alice . Shop

O—__theck's signature )—-6
r
i

P

Y ; \ "
o
Y
partial opening )—Q
L

Fig. 6.6. Payment of a check.

Alice can use the signed check C to pay in a shop. The first j terms of a check
(remember that a check is the product of k/2 ordered elements and each shop can
verify this ordering) have denominations $1, $2,..., $272, $2/~ respectively. So, every
integral amount smaller than $(27-1) can be paid with C; let (wy,...,w;) be the binary
representation of the amount of payment (so the amount is § Ef;; w; 2N,
(1) Alice gives C to the shop.
(2) The shop generates a binary challenge-vector (W ,...,Wip) and sends it to Alice.
(3) Alice gives the following partial opening of the check C (1 £ i £ k/2) (see also
Figure 6.3):
if wi=1, she reveals the corresponding ajllb;, ¢;, yi;
if w=0, she reveals x;, a;®ID,, d;.
(4) The shop verifies the partial opening, the check’s signature, and the ordering of the
M;’s in C. If these are “OK”, then he accepts this check as valid money.

6.3.3. Deposit Transaction ;

Shop bank

F W
>  spent check
i v

Fig. 6.7. Deposit of a check.

(1) The shop sends to the bank: C, the vector w=(wy,..,wy2) (amount and challenge
vector), and the partial opening.

(2) The bank verifies the signature, the partial opening, and the ordering of the M,’s in
C, just as the shop did.

(3) The bank has two searchable archive lists: one of spent checks and one of revealed
minor terms. In the first list the bank stores the number C and the corresponding
partial opening a; or ¢;®ID; (1 £ i £ k/2). In the last list he stores the revealed
b;’s. The bank consults the searchable lists to be sure, perhaps by sorting them, that
no b; has already been refunded and that no check has been spent twice. When
double spending of a check is found, the /D; can be reconstructed from any
difference in the corresponding vectors w and w', thereby revealing the cheater’s
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account number (see Figure 6.1). There will be a difference in the last k/2-j bits of

w and w' with probability 1-2/7%/2,

6.3.4. Refund Transaction

Alice bank

@ combined minors :

Fig. 6.8. Refund of a check.

(1) After each payment, but before the refund, the minor terms of several checks are
accumulated by Alice and g(b;,¢;) is computed for each w; =1. Alice sends the
bank the product of the C"s, the R’s, and in addition the g(b;e;) for each
denomination spent, and the b;,e; for the denominations not spent.

(2) The bank verifies the opened minor terms and their signature C’, much in the way
that checks are verified. The bank also verifies that the R’s were stored with Alice’s
account number.

(3) The bank verifies that the b;’s are not listed and stores them on its list of revealed
minor terms together with Alice’s account number, to prevent Alice from spending a
denomination bit after the refund.

Note that in case of requesting refund for multiple checks at once, Alice keeps the
bank from learning the amount spent for each check; only the total number of each type
of unspent denomination is revealed.

6.4. Comparison with (CFN88)

In our payment system three basic changes from [CFN88] were made to improve
efficiency:

* During the withdrawal transaction Alice initially sends to the bank not the
candidates for the check, but the value of the one-way function ! with the
candidates as its arguments. Hence she avoids sending half of the candidates.

» All the minor terms are signed together (still with different exponents) rather
than separately. Hence the bank has only to give one signature D per check,
while in [CFN88] the bank has to give j+1 signatures per check.

* In [CFN88] each major and minor term is blinded separately, while in our
scheme Alice sends a blinded product of the major and minor terms; hence she
needs only half as many blinding factors, only half as many bits are transmitted,
and the bank makes only one signature. When Alice receives the signed check,
though, she must do some calculations to obtain the signed check and the refund
part (i.e., to separate the major and minor terms). An additional one-way



98 Chapter 6

function A is introduced for this.

If we compare our new scheme with [CFN88] for the values k=40 and j=10, then
our new system saves 91% on the number of the signatures, saves 41% on the (other)
multiplications, saves 73% on the divisions, and saves 33% on the bit transmissions.

.6.5. Transferability

Transferability means that a person Alice (payer) can pay a person Bob (called payee)
electronic money, and Bob can use this money to pay another person or shop. In
[CFN88] this concept is not mentioned, and in [OO89] the first transferable offline
electronic payment system is presented. Their idea is that Bob gives Alice a challenge
(as usual) and receives the numbers corresponding to this challenge and a note signed
by Alice saying that that money now belongs to Bob. When Bob wants to spend this
money in a shop, he first transmits the transcript of the protocol with Alice, and after
receiving the challenge from the shop, he transmits the corresponding response.

But this system can easily be cheated: Alice can give the same money to several
persons, by asking the second payee (who cooperates with Alice) to issue her the same
challenge as the first payee. Both payees have a correct signed note, so they both can
spend the money without difficulty. The bank later detects this cheating, but can trace
neither Alice nor the payees.

In [Ant90] another way of constructing transferable offline cash is presented. Here
the basic concept needed to realize transferability is that of “checks” with no
denomination terms in them, that is, checks with no value. These “empty checks” can be
obtained freely from the bank. The challenge Bob issues to Alice is the outcome of the
one-way function f on Bob’s empty check. In this way the check paid to Bob is
connected to one of his empty checks. When he pays a shop with his new “check” (or
rather, coin, since it can only be spent for the amount for which he received it), he not
only issues the check data received during the previous payment transaction, but also
uses the empty check to answer a challenge issued by the shop (see Figure 6.9). Hence
Bob cannot double-spend this new check, or else he will with high probability reveal his
identity to the bank.

Suppose that Alice wants to give the check C; to two different payees, instead of
only one. Then both payees must use the same empty check C, (and.thus the same
challenge ch;), otherwise Alice’s identity will be revealed to the bank after both
deposits (see Figure 6.9). Hence both payees must know the construction of this empty
check G, in order to be able to respond to the shop’s random challenge. But this empty
check is created correctly, so it contains the identity of one of the payees. Thus if they
both spend this check, they will each receive a different challenge (with high
probability), and the payee’s identity will be revealed to the bank. Therefore no-one is
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likely to cooperate in this way.

) . ‘or, g
‘ - E e T
- G e
Aliee ™ Bab\, 2

Fig. 6.9, Transferability in our payment system.

6.6. Storage

For each check Alice has to store a lot of numbers in her computer. The numbers she
will store depend on which transactions already took place, and on the fact that memory
can be exchanged for computation. For instance, if Alice stores a;,b;,¢;,d;, then she can
compute M; as f{ g(aillbi,c;), glalbic;)), but she can also store M;. At the cost of
one memory location, then, she need not do computations. In the following overview we
use the “normal” time order (so refund after payment, see Figure 6.4), and we indicate
only the numbers that really need to be stored in her computer. Other numbers can be
recomputed: V
* before withdrawal: r;, a;, b;, ¢;, d;, ¢; for each candidate (i=1,...,k);
« after withdrawal: C, C', R and a;, b;, ¢;, d;, e; for each unopened candidate
(i=1(1),....4k12));
* after payment: C', R and b;, e; for each unopened candidate (i=
«1),...,Kk/2)).
By storing these numbers, Alice has to recompute the integers x;, y;, and g(b;,e;)
before payment or refund.
The memory that becomes available after a transaction can be used to store the
numbers of the candidates needed for a new check. This allows Alice to do all
computations before connecting the bank for a withdrawal.
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6.7. Demo

Hans Beuze and Peter Sliepenbeek implemented the payment system described in the
previous sections on an Apple Macintosh (see Figure 6.10), and Adri Steenbeek wrote
the numerical part of it. Diskettes containing this demo are available from the authors.
There is also an earlier version available for an IBM-PC.

& File Edit Windows Settings ] ]
Electronic Pagmient Sgstem% payment ]

Alice . Baken

Q> check’s signature 008 )
L 4
2 )
0.00 challenge .
o i R
partial spening 127)-@
Bakery Groerg
Fartial opening

Alice
used denominationa@B t 1 11@000
chalienge vector B1 126118186
a+u[1] =Depes3n2
d1] = (7536E2FFEDBASE2B225EB0874DDRSCCES! |

b &

Bakery

Shop book check1

Fig. 6.10. A screen dump of the Macintosh demo of this payment system.

6.8. Parometer values

We assume that the RSA-modulus N has 512 bits. We can of course take all integers to
have 512 bits, but this is not necessary for the security or the efficiency.

The variables used for unconditionally hiding information (c,d.e,r) are taken to be
512 bits. The size of b depends on the number of users: if twice in the lifetime of this
payment system the same b is generated, then the second user loses the money of the
related denomination bit. So if b has 128 bits, then the probability of this happening is
very close to zero. The identity ID can have 32 bits, and thus also its blinding factor a.
The outcome of the collision-free function g can be 128 bits (64 bits is too small). The
system will be useéd for low-value payments, so we can use j < 15 (allowing check
values £ $327.68). By taking k=100, the shop has a challenge of 35 bits.

Thus for a practical and reliable system we suggest the following parameter values:

k : 100 bits,
Da; : 32 bits,
b : 128 bits,
¢, dyrien,N 512 bits,

S : 128x 128512 bits,
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g 1 128x512—128 hits,
h : 128—512 bits,
J : 15 bits.

6.9. Improvements
6.9.1. Combining challenge and denomination bits

In our scheme each denomination bit and each challenge bit are in separate terms, but a
challenge bit and a denomination bit can be combined into one term. The advantage of
doing this is that fewer computations have to be performed, and fewer bits transmitted,
duri;xg the protocols. If j= /4, we can create a symmetric check: it no longer consists
of a separate denomination and a challenge part. To do so, Alice chooses during the
withdrawal transaction at random: ry, a;, b;, ¢;, d;, ¢; (1 < i < 3%/4), and computes:

X = g(bi’ci):

yi = 8(b.dy),

v = g(a.x),

w; = g'(aiQIDi'&yi)s
M; = f(v,w),

m; = h'(h(bioei))a

a =M -,
During the cut-and-choose operation /2 blinded candidates have to be opened, so a
check consists of k/4 terms. During the payment transaction, let (7y,...,7y4) be the
binary representation of the amount of payment, and (¥).....Jwa4) be the binary
challenge-vector. Then Alice gives a partial opening of the check, according to Table
6.1.

revealed numbers

=

Vi ,ai @lDi ,yi
1 |v,e Q)IDi 'bi ’di
0 Qp X Wi

—~ - o o|x
(=

1 az-,b,- ,Ci,Wi

Table 6.1. The revealed numbers for the payment and
challenge bits, if these are combined into one term.

The major term M; can be expressed by the tree in Figure 6.11 (the indices / are
omitted), in which the dotted lines indicate the numbers revealed during the payment
transaction: start in each of the main subtrees at a certain level (which depends on the
challenge bit), and if the payment bit is a one, go one level deeper in one of the main
subtrees.
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2
=1 g%

C/W yan N
a b ¢ a@®lD g d

Fig. 6.11. An expression of the major term and its opening, which depends on the
payment bit 7 and the challenge bit y.

6.9.2. More denomination bits per check

By using the same idea as in Subsection 6.9.1, the number of denomination bits in the
check can be doubled with little additional cosi. The minor térm is constructed as

m=h(g(by,e;), g{br,e2)) and the major term as the tree in Figure 6.12. Thus

number by is revealed if payment bit; is 1, and b, is revealed if payment bit, is 1

Using this method one may want to put all denomination bits into one term for
efficiency. But then there are problems with the security of the system, due to the cut-
and-choose protocol: suppose Alice creates &' terms and exactly one of them is
wrongly created. If she has to open k'~1 terms, then with probability 1/%’ she receives
the signature on the wrongly created term, so she can both spend and request refund for

this check, without being caught cheating.

A

chall ge=0

challenge=1 chailenge=0

payment 2:]

.............................. it

( payment =1 payment l=l)
B A T e T ot —.

gON) peyment =1)

7 -
bléﬁe a b c e a®ID b d

Fig. 6.12. An expression of the major term with two denominations {represented by
&1 and by). The way to open this major term, which depends on the payment bits
and the challenge bit, is also indicated.
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6.9.3. Anonymous refund

In the payment system presented here, the bank puts a random number R in the user’s
check in order to link the withdrawal to the refund, or, better: to link the refund to the
user’s correct identity. In order to have anonymous refund, the payment system can be
changed the following way: at the beginning of the withdrawal transaction, Alice
chooses at random r;, a;, b;, ¢;, d;, €;, z; (1 £ i < k) and computes:

xl. = g(aillbi"Z,-,Ci),
g(a; (‘BI . d;),

§ ~
W

fx;,
m; = h(g(b Il(z, @ ID;),e;)),
= Msf ml7. 71731‘

The bank will compute the signature

j j+1-i  k/2
17173741 1/17
D = [l(ayy) - Ty
i=1 i=j+1

without the number R. The refund can be anonymous, because if Alice tries to request
refund for an already spent denomination, her identity will be revealed to the bank: from

ail|billz; and b,||(z;®1ID;) the bank can compute ID;.

6.10. Several ways Alice, the shop, and the bank can try to cheat

In this section we discuss several ways Alice may try to cheat, how a shop and Alice
can conspire, and how the bank may try to cheat (Cheating 1, 4, and 5 can be found in
[CFN88]). Assume that Alice tries to spend $a at the shop and to get back $5 from the
bank, where a+b > (2/-1). Note that she cannot show the same b; both to the shop
when buying and to the bank when requesting for refund; if she does, she is caught
cheating.

Cheating 1: by Alice.
Alice constructs the blinded candidate ¢; improperly: she uses b, to create x; and b|
to create m;. She will create the other candidates «5,...,0; properly and in such a
way that M, is lexicographically the smallest of M,,...,.M;. With probability 1/2 the
candidate o; will not need to be opened during the cut-and-choose protocol. After
computing C and C' from the signature received from the bank, she can spend the
check C for the maximum amount; and by using C', she can still request for a refund
for b{, because b # b|. The number b; will have denomination $1 because it belongs
to the lexicographically first major term.

Instead of improperly creating ¢, she can also create ¢; improperly in the same
way (for some i). The advantage of cheating in ¢; is that it will belong to a higher
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denomination than $1 (so for instance, take i=j).

The original payment system [CFN88] is vulnerable to the same attack.

This attack is not prevented by using an ordering other than lexicographic in the
check; that only reduces the probability of success from 1/2 to j/, since in a check only
Jj of the k terms are used for the denominations. A better way to prevent this attack is
to allocate several minor terms per denomination. Then, if a denomination is used, Alice
has to reveal several b’s of several terms. Thus in order to both spend and request for
refund a denomination, all the &’s in these terms must be created improperly.

Cheating 2: by Alice.

Alice withdraws a check by using her name, but she requests the bank to refund this
check for the maximum value by not using her own name, and using Bob’s name
instead. After receiving this refund, she spends the check at the shop for the maximum
value. The bank detects this cheating only after the check is deposited, but it only knows
the name Bob and thus cannot trace Alice.

This attack is prevented in the payment system presented here, because during the
withdrawal the bank randomly generates for each refund term a number R and stores
this number with the user’s name (during withdrawal Alice has to use her own name).
Another way to prevent this attack is to require the user to identify herself during the
refund.

For anonymous refund (see Subsection 6.9.3), the system can be cheated by a
combination of Cheating 1 and 2: Alice creates o, improperly by using different &’s
in x; and m, and also using another account number than /D;. She will create
0,,...,0 properly and in such a way that M, is lexicographically the smallest of
M,,....M,. With probability 1/2 the candidate o; will not need to be opened. Now
she requests the bank to refund the check for the maximum amount by using C', and
afterwards she goes to a shop to spend check C for the denomination of b, only. After
deposit the bank detects this cheating, but cannot trace Alice. The same method of
allocating several minor terms per denomination can be used to prevent this attack.

Cheating 3: by Alice.

The order of 4;’s in C and C’ is the same. But Alice may want to change the order of
the terms in either € or €, so that some of the b;’s are no longer correlated, as for
instance:

C: b] b2 b3 fee b;

j
c: b%bl by .. b
denom: $1 $2 $4 ... $2/!

If this is possible, then Alice can spend this check C for $ 2{;} 28 =92/ -2) by
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revealing b,.,bs,..., b;; and she can request refund for $2 by using C’ and revealing
b,. But $(2-2) + $2 = $(2/~1) + $1, so now she has gained $1, without being

caught.

One way for Alice to accomplish this, therefore, is to order the elements of T,

wrongly so that the terms in C will be also ordered wrongly, and she has to reorder

o iy U7
them lexicographically. So she needs to compute C; = M13 (m Mé’m...Mf W l)Psl] )

where o is a non-identical permutation of {0,...,j~1} and P =[]} +1(M,(i)). Alice
could cheat with this signature C, as follows: she looks for j; such that
a() =jp<ji; she shows C; to the shop and spends $(X;,; 2’y using only
I ; 2%y from her check; and gets back from the bank $( 2/ ') by showing it C'. So
she can spend the check of value $(2/-1) for the amount
$(Siujy 2)+8(27) = $27 =1+ 822 (271772 1)), s0 she gained $(272 (27772 ~1)).
If we assume that Alice cannot compute RSA-roots (mod N) of random numbers, and
that f,g are good pseudo-random functions, then from Corollary 2.1 follows:

Corollary 6.1. Let P, M,...M; be random numbers from Zy. Then it is feasible for

Alice 1o find a non-identical permutation o of {0,...,j-1) and it is feasible to compute

300 117 ]1/17

_ 300 396D 3
cc,=[1 M M p

there is an iy (1 < iy < j) such that 30 =1 (mod17).

from C=\M"M3 .. M}"P¥ | if and only if

The proof, which is not so difficult, is omitted here. By using j=10, it is easy to see
that there are no numbers 1 < iy < j that satisfy 3% =1 (mod17). Hence this kind of
attack fails. But if the number of denomination bits (j) varies, the exponent used (17)
must also be changed according to Table 6.2, to prevent this kind of attack.

j+ 1...3]4,5]6,..,15]16,17  18,..,27
exponent | 5 7 17 19 29
Table 6.2. List of the exponent used for the banks signature on the
check, for several amounts of denomination bits (7).

A second way for Alice to cheat is to perform the withdrawal protocol properly, but
after receiving C and C', to change the order of the elements in . For this purpose

ol olj-1 (i)
3 37 3

17
she needs to compute C;s[(le)u m; ] , where o is a non-

identical permutation of {1,...,/}. Then Alice can cheat as follows: she looks for i;
such that o(i;) = i, > i;; she spends $( 2,»_.#,-' 2i) at the shop by using C; and when

requesting refund, she shows C, and b, ¢, to the bank, in order to get $(2) as refund



106 . Chapter 6

instead of $(2%). But from Corollary 2.1 it follows that Alice can compute C if and
only if 3,0 2Vpeic;u[3 ~a37%P e Z). If, however, o is not the identity
permutation, then there is an i such that o{i)y-i < 1 and thus a¢ Z. Hence Alice

cannot compute C,,where o is a non-identical permutation. So this second way does
not work.

‘Cheating 4: collusion between Alice and a shop

Alice spends her check at some shop and reuses this check for the same amount at the
colluding shop, which will issue the same challenge to Alice. The bank knows that with
very high probability one of the two shops is lying, but cannot determine which one, and
cannot trace Alice’s account. This attack can be avoided if the shop’s challenge has to
be generated by a pseudo-random device, the output of which cannot be modified by the
shop.

Another way to prevent this attack is for each shop always to use the same
challenge; and each of these different challenges is a word from a code with large
Hamming distance. Each shop stores all the checks it has ever received, so that a user
cannot reuse a check at the same shop. A combination of these two techniques can also
be used.

Cheating 5: by the bank.
The bank can generate valid money with Alice’s account number in it, and can double-
spend this check. To prevent this, Alice will use her own public-key system as follows.
During the withdrawal she generates integers z/,z7 (i = 1,...,k) and creates ID; as
IDIZNz7. Along with the blinded candidates she sends her signature on
gz, 2. Ng(z}. 7). After the cut-and-choose protocol the bank knows k/2 pairs
z/,z and after the reuse of this check it will receive another pair. Hence having k/2+1
pairs z;,z; and Alice’s signature, the bank has a valid proof that Alice reused her check.
We have assumed that no user can invert the function g and that even if the bank
can invert g, it cannot know which of the preimages was used by Alice. Hence with
high probability Alice can show another preimage and can therefore prove that the bank

has broken g. This, therefore, is a fail-stop signature (see Section 5.3).

6.11. Other offline payment systems

This scheme was presented in '89; since that time other offline payment systems have
also been proposed. We will mention four of them very briefly.

[OO89]: (see also Sections 2.7 and 6.5) The authors propose a payment scheme in
which the tradeoff between the degree of efficiency and the degree of
untraceability can be chosen. If the user has unconditional privacy, the
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[Hay90]:

[AntS0]:

[O091]:

efficiency is the same as in our scheme.

This is a variant of [CFN88], and it has the property that if a cheater is
revealed, then also all his previously used checks are revealed (called hot-
listing).

This is a variant of [CFN88]: neither the check nor the refund part are one
single number, but each can be split into separate parts. During payment -
therefore, deposit and refund, the amount of numbers to be transmitted is
fewer (for instance, one does not need to send x; or y;). This scheme is more
efficient than ours.

In our scheme a check can only be used once: the part of the check that has
not been spent can only be refunded. The authors propose a scheme in which
the user can subdivide the amount of the check into many pieces in any way
she chooses and each piece can be spent.

6.12. Some open problems

The conditions under which this payment system is reliable are not known. What can be
said about these conditions?

In the withdrawal transaction we have a cut-and-choose protocol, but it is better to
replace this protocol by another protocol, that is more efficient and easier to analyse.

In Section 6.5, [Ant90] proposed a methed to build transferability into this scheme,
but the amount of numbers needed to represent the money grows each time the money is
transferred. An open question is whether there exist more efficient methods for
establishing transferability.



Chameleon blobs, unconditionally
secure for the verifier

7.1. Introduction

A bit conumitment scheme is a scheme that allows a person to commit to a certain value
in such a way that he cannot change the committed value afterwards, and that the
recipient of this commitment (called blob) cannot learn its content. When these blobs
are created using cryptography, there is a public function B; if person % wants to
commit himself to value b, he chooses randomly a number r and his blob will be
B="B(b,r). Opening this blob to the recipient ¥ consists of revealing b and r, who
will verify that B = B(b,r) (see Section 1.6).

In this chapter we present the first blobs that use a new method of opening: in stead
of revealing b and r to ¥, P only reveals b and convinces ¥, by using a zero-
knowledge protocol, that he knows an r that satisfies B="B(b,r). For these new blobs
we may modify the definition of chameleon (see Section 7.2). Therefore, by using our
way of opening blobs, we are able to construct chameleon blobs that are unconditionally
secure for the verifier, which was proven in the literature to be impossible.

This chapter is organized as follows: in Section 7.2 we analyze why “normal”
chameleon blobs cannot be unconditionally secure for the verifier, we define two types
of chameleon (active and passive), and we argue why we use passive chameleon for our
new blobs. In Section 7.3 and 7.4 we create an efficient blob, based on the Certified
Discrete Log Assumption, which opens in this new way and we prove that it is a passive
chameleon blob that is unconditionally secure for the verifier (with an exponentially
small error probability). In Section 7.5 we give other blob constructions, and we also
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show that each “normal” blob can be transformed into a chameleon blob that uses a
zero-knowledge protocol for opening. Hence each simulatable blob that is
unconditionally secure for the verifier can be transformed into a chameleon blob that is
unconditionally secure for the verifier (with an exponentially small error probability).
We end in Section 7.6 with some open problems. ’

.1.2. Can chameleon blobs be unconditionclly secure for the verifier?

Consider the following two quotations. [BCC88] states (p. 175): “... blobs that are
unconditionally secure for V. (...) Of course, none of these blobs are chameleon.” The
reason for this statement is that unconditional security for the verifier is achieved by
requiring that for any blob there cannot exist a matching pair; this means that there
cannot simultaneously exist b;#b,, r |, r, such that Hb,r\) = HAb,r,). But
“chameleon” implies that % can construct numbers b;#zb,, r, r, such that
Bby,ry) = Kby,ry). Therefore a blob that is unconditionally secure for the verifier
cannot be chameleon.

{FS89] states (p. 532): “If furthermore, V has secret trapdoor information which
allows YV (unlike P} to compute matching pairs (...), the scheme is termed trapdoor
commitment scheme (or chameleon in [BCC88]).” The reason for this statement is that
in order to have blobs that 2 can only open in one way but ¥ in several ways, %/ must
have more (trapdoor) information than P.

According to these two quotations, chameleon blobs (trapdoor commitment
schemes) cannot be unconditionally secure for ¥,

In Section 1.6 a blob was called chameleon if V can generate a blob that he can
open in several ways. We define (for the first time) two kinds of chameleon:

* Active chameleon: this means that ¥ can generate b #b,, r|, r, such that
Bb,.r1) = Bbyry), and thus he can successfully perform the blob-
opening protocol with anybody.

» Passive chameleon: this means that V/ can generate a blob and that for this blob
he can create several transcripts of the blob-opening protocol for several
committed values.

{The same distinction can be made between passively and actively simulatable, but
in this chapter we will take “simulatable” to mean only actively simulatabie.) For
“normal” blobs these two kinds of chameleon are the same, but for our new blobs they
are different. In this chapter we will use the second kind of chameleon; the reason for
doing so is expressed in [BCCS88], page 167: “The advantage of chameleon blobs is
that they allow V to simulate in a straightforward way his entire conversation with P,
without ever encountering failures. Again, this remains true even if ‘V deviates
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arbitrarily from his stipulated behaviour.” -

We show that by using our way of opening a blob, we are able to construct (passive)
chameleon blobs that are unconditionally secure for the verifier and in which 2 has
some secret information instead of V. Hence these blobs can be opened in parallel.

73 Description of a new biob that uses an opening protocol

In this section we will first describe a new efficient blob, and in the next section we will
prove that itisa passive chameleon blob that is unconditionally secure for the verifier
(with an exponentially small error probability).

Let p be a large prime and let g be a generator of the multiplicative group Z;. We
assume that p—1 = 24, where ¢ is an odd number of which each divisor is larger than
2log p, and we use Assumption 1.2 (Certified Discrete Log Assumption).

Person P has a secret key se {1,2,...,p-2} and the corresponding public key will
be g' (modp). If he wants to commit himself to value be {0,1,...,f_log p_f }, he
randomly chooses a number re Z;, r % +1(mod p) and issues to Vthe blob

(r, rS+2b)‘

Vverifies that 7 % 1 (mod p). To open this blob, P reveals b and convinces ¥ that
the exponents used in r**2/r?® and g° are the same, by using the (computational)
zero-knowledge confirmation protocol of [Ch90]. The number of moves in this opening
protocol is 5, because P first has to issue b to ¥, and then they have to perform the 4-
move confirmation protocol. But this opening protocol can be reduced to 4 moves, as

indicated in Figure 7.1.

Prover P Verifier V
_.a.B
(__i_ choose ., B eg {0....,p -2}

exr? 2=y
choose 7 €g {0,...,p—2} —2IETZZY

verify x — @B
verify that
_—r yz—garﬂ+y and that
z= (gs)a(rs+2b/r2b)ﬁ+y

Fig. 7.1. The 4-move blob-opening protocol.

7.4. Propetties of the blob of Section 7.3

We will prove that this new blob of Section 7.3 is a passive chameleon blob that is
unconditionally secure for the verifier (for the blob’s properties see Section 1.5).
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*  Property (i): This new blob has property (i) trivially.

* Property (ii): During the confirmation protocol # can only change the committed
value in the blob with exponentially small probability 1/p (see [Ch90]); hence P
can open the blob in two different ways, only by choosing numbers re Z; and
by,b,e {0,...,Llogpl} such that b;=b, and P28 = 5*2% (mod p). Hence
r201-02! 2 1 (mod p). It is easy to see that the number of solutions to the equation
r? =1 (mod p) is equal to ged(d,p-1). Because bl;ﬁbzé {0,...,LIog p_}}, we have
that 2-by—by| < 2llogpl < each divisor of g. Thus gcd(2:|b,—byl, p) =
ged(2:by—b,l, 2g) = 2, and so the number of solutions to the equation
bl o {mod p) is two: namely r# +1(mod p). But these choices of r were
ruled out in the definition of the blob, and thus it is not possible for 2 to change the
committed value in the blob.

* Property (iii): The loglog p successive higher-order bits after the least significant
bit of a discrete logarithm are simultaneously hard [Per85] (see also Subsection
1.4.1). So for this property we use that the exponent in the blob is (s+25): if the
exponent would be (s+b), then ¥ can compute in polynomial time the least
significant bit of b.

o Simulatable: V can simulate blobs for each value be {0,...,Llogpl} by choosing
te{1,2,....p2M g} and creating the pair (g'.(2°g?®)") (i.e., the blob is
(r,r**?%), where r=g'). This blob is simulatable because ¥ can perform the

opening protocol of this blob (although he does not know s) with a verifier ¥, and

" cannot distinguish between an original blob and a simulated blob. Thus ¥

performs the protocol of Figure 7.2 instead of that of Figure 7.1, while 7/ cannot

detect the difference between these two protocols*. So it also satisfies property (iv).

Person 1/ Verifier 9
x=%" choose &, B eg {0,....p—2}
_ .8 .50
choose & e {0,....p—2} by=g".2=2(8)
verify x a8
verify that
y:i=(6-o) ' =B (modp-1) r y=g%(g")P*" and that

- +2b)t i\2b\B+
2= ()" (g2 [(g! PP
Fig. 7.2. The opening protocol for a simulated blob.

¥ Thus for normal undeniable signatures also, a forger can create on message g/ the valid signature g%%, and he can
perform the confirmation protocol succesfully, even without knowing s. This can be avoided if a hash value of the
message is signed.



Confusing chameleon blobs 113

» Passive chameleon: each person V can simulate a transcript: To create a blob, he
randomly chooses two numbers r,r e Z; and the blob will be (r,7,). To open

this blob, % randomly chooses the “committed” number be {0,...,Llog pl} and
creates a transcript of the confirmation protocol that uses these numbers. This is
possible because the confirmation protocol is zero-knowledge.

s Unconditionally secure for the verifier (with an exponentially small error
probability): because the committed value in the blob is uniquely determined by the
blob and the public key (remember that r £ +1 (mod p)); moreover, during the
confirmation protocol P can change the committed value in the blob only with
probability 1/p (which is exponentially small in log p), even if P has unlimited
cfomputing power [Ch90].

In the description of this blob we required that p-1 = 24 where g is odd, but this
restriction is not necessary. Write p = 24g+1 for ¢ odd, and require that each divisor
of g is larger than 2log p. To generate a blob, P randomly chooses re Z; such that

rzu #1(mod p). If P wants to commit himself to value be {O,...,f_log p,J}, his blob

will be

u
(r’ rs+2 b)

*

2 #1(mod p). It is easy to verify that P cannot open this blob in

2

and V verifies that r
two ways: there do not exist numbers re Z*p, P #1(modp) and b.bye

{0,....Llog p1} such that P12 o 2 (mod p).

7.5. Other constructions of blobs that use an opening protocol

The new blob presented in Section 7.3 is efficient. Other methods are known for
constructing chameleon blobs that are unconditionally secure for the verifier, but some
constructions turn out to be less efficient than the one in Section 7.3.

One construction is based on [BCC88] (with the Certified Discrete Log Assumption
1.2). Let p=2%+1 be a large prime, g odd, g a generator of Z’;, and let
£=i_log10g p_l. If 2 wants to commit himself to value be {0,1,...,2'-1}, he randomly
chooses a number re Z; such that the u+l least significant bits of r are zero, and
his blob will be

gr+b2“ (mod p).

To open this blob, P reveals b and performs the zero-knowledge protocol of
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[BCDvdG87] (which must be iterated several times, see also Protocol 4.1 in Subsection
4.3.1) to convince the recipient that he knows an integer s such that

i 3
0ss<f-1 and (gz”‘) = g™ 67" (mod p). 7.0

This blob is passive chameleon and unconditionally secure for the verifier: Suppose
‘that P can open this blob in two ways, Then Equation (7.1) implies that he can find

I+u

I+
numbers B, 5y, by, s,, b, such that gsl2 gblg“ sg522 ugbZZ“ = B (mod p), which
is equivalent to (because g is a generator of Z; ¥

C g2 b 2" = 52" 4 by 2% (mod p-1). (1.2)

Because p—1=2“g and ¢ odd, this equation is equivalent to:
(5y=5)2' = by~ by (modg). (7.3)
By using the fact that 0<y; <E‘%—l, s;eZ and b;e {0,..‘,2‘-1‘] (i = 1,2), we have

that (using interval notation mod g):

(51—82)21 (modq) & [O}U[Zl,q—zl), (74)
by—b (modg) e [0,2'-1]Ulg-2' +1,9). )

By combining Equations (7.3) and (7.4), we see that the only solution to Equation (7.1)
is 51 = 5, and b, = b,. Hence this blob is unconditionally secure for V. It is easy to
verify that this blob also satisfies the other blob properties and that it is chameleon (the
blob is {actively) simulatable, because no secret key is used in its construction).

We show a construction such that each simulatable blob that is constructed by using
a public function B, and for which the opening is the revealing of several numbers, can
be modified into a blob B’ that uses a zero-knowledge protocol for opening. Consider
the predicate

“Blob B contains the value b”.

Whenever this predicate is true, there exists a certificate » such that B="B(b,r);
knowing r, it is easy to verify that B =B(b,r). Now 2 and ¥ can efficiently build a
Boolean formula satisfiable if and only if this predicate is true (for instance by using
Cook’s constructive theorem [Cook71]}). Because the satisfiability of Boolean formulas
is NP-complete, and if P knows an r such that B=B(b,r), then P can use the basic
protocol of [BCC88] to convince 9/that this Boolean formula is satisfiable, and hence
that he knows r. In this protocol for proving the satisfiability of Boolean formulas,
other blobs have to be used, which we will call C (and that use function (). We assume
that the blobs B and C are simulatable.
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The properties of this blob B' are:

* Property (i): trivial.

* Property (ii): If P tries to open the blob B’ in another way than the one to which he
committed himself, he does not know a satisfying assignment for the Boolean
formula (according to property (ii) of blob B). Hence the best strategy that P can
follow is to guess the challenge he will receive from V, which means that he will be
correct with probability 1/2. Hence the probability that he will not be caught
cheating after k iterations of the protocol is 1/2%, and thus blob B’ has property
(ii).

¢ Simulatable: Because the blobs B and C are simulatable, this blob B’ is (actively)
simulatable, and thus it also has property (iv).

e Passive chameleon: In [BCC88] it is proven that the sequential execution of the
iterations of this protocol is zero-knowledge, because of property (iii) and (iv) of
blob C. Thus ‘4 can simulate his entire sequential conversation with P, without
knowing a satisfying assignment. Hence the blob B’ is passive chameleon and has
property (iii).

If blob B is chameleon, then the blob B’ is active chameleon, independent of
whether the blobs C are chameleon or not. If the blobs B and C are unconditionally
secure for the verifier, then the blob B’ is also unconditionally secure for 1 (except for
an exponentially small error probability).

We have now shown a construction to transform a simulatable blob B that is
unconditionally secure for the verifier, into a blob B’ that is both passive chameleon
and unconditionally secure for the verifier (with an exponentially small error
probability).

If the iterations of the protocol of [BCC88] have to be carried out in parallel and if
the blob B’ has to be both chameleon and unconditionally secure for the verifier, then
the blobs C used must also be chameleon and unconditionally secure for the verifier
(otherwise ‘¥ cannot simulate his entire parallel conversation with 2). But now the
blobs C are also of this new type that requires an opening protocol, so we are form the
frying-pan into the fire.

7.6. Some open problems

In the previous sections we constructed chameleon blobs unconditionally secure for the
verifier to commit to values of length loglog p. Can we construct these new kind of
blobs that can be used to commit to full length messages (or at least a hash value of, say,
size 128 bits)?
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Can there be found some applications for these new kind of blobs, other than
constructing a counter example?
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Notation

@

I
IN.Z,Q

ged(ay,....q,)

lem(ay,....q,)

alp
afb
ord ,(a)

(a\b)

log x
Inx
Lx]
[x]
-
acgs

a=b(mod m)

Sk

a

[a, ... a)]
a=b(modm)
Ziay,....a,}

bitwise exclusive-or.

concatenation.

the sets of positive integers, all integers and rational numbers
respectively.

the greatest common divisor of 4y,...,4,; defined for rational numbers

by ged(ay,.. ,,a,):=%"fi"”M

, where de IN, .d¢ 0, is such that
ad,....ade Z; this definition is independent of the choice of d.

the least common multiple of a;,....a,e Q (this is defined for rational
numbers analogously to the ged).

there is an integer ¢ such that ac = b; also defined for a,be Q.

there is no integer ¢ such that ac = b; also defined for a,b Q.

ord, (a)

the integer such that a-p is an integer not divisible by p, for p

prime and ae Z ,a#0.

the largest positive divisor of a which is not divisible by any prime
number dividing b, for a,be Z, a,b#0.

base-2 logarithm of x.

natural logarithm of x.

the largest integer < x.

the smallest integer 2 x.

transmission of the value x from one party to another party.

denotes the random selection of an element (that will be called a) from
S according to the uniform probability distribution; for any set S.

(b-a)me Z: this is defined for abe Q, melN, m 20; we shall
omit the suffix (mod m), if no confusion is likely to arise.

the set of vectors (ay,....a;) with a,,....q,€ S, for any set S.

Tow vector (a,,...,ap); if ac §%, then a,,....q,€ S.

the matrix with columns a,,...,a,.

ml(b-a)e Z*; this is defined for a,be @, m ke IN, m>0.
{3iéa;1,.....E €Z): the abelian group generated by a,,...,a.€
Q*.
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Qfa,,....a,} (25,8 1&,.....E € Q): the vector space generated by a,...,a,c QF.

<a><a,b> the groups generated by ¢ and generated by a,b respectively.

<a,b> aby+ .+ abg the scalar product of a = (@;.....q;) and
b= (by,....0p). A

ab @by, ifa=(ay,...a) and b= (by,....by).

N a composite, odd number; so N = pf‘ p,k‘ with p,,....p, distinct odd
primes and ky,....k€ IN; usually N = P@,for large primes P,Q.

y 4% the set {2 |a €N, 1< a < N, ged(a, N) =1].

Zp the set {0,1,...,p—1}, with p prime.

Z; the set {1,2,...,p~1}, with p prime.

G, the unique subgroup of Z; of order g, for gl(p—1) and p,q prime.

Q) Euler’s Totient function: p(N) =1Zy, | = [T, pff"l( p;— 1.

a’! {modN) the number be Z;, with ab = 1 (mod N); for ae Zjv.

Qy the ring {4 |a.d € Z, d >0, ged(d, p(N)) =1}.

AN Carmichael’s function: A(N) = 1cm(p{‘-‘“‘(pl 1o pf N p, - 1)) (for
N odd).

x4 (modN) the d™ RSA-root of x (mod N): the unique solution Se Zj to

¥ (mod N)

x? (mod N)
x4 (mod N)

In)

length(A,B)

54 = x (mod N) for xe Z); and de Z with ged(d,@(V)) = 1.

the number in Z;; which is congruent (x"‘f ¥ (modN) for ade Z
with ged(d,@N) =1 and xe Zy; if ald=a'lb’, then x#i=
xam,

the number Se Zy with § = x x5 ... xf* (mod N), for X=(x,...,.5)
€ (Z;,);‘ and a = (a,,....ap)€ (@N)k.

(xM,...x*)e (Z), for A=[a,..a)le @,)" and xe (Z})"
so (XA)B =x"B,

length of the binary representation of ne IN; the length of a negative
integer m, a rational number p/q (g#1), a vector ¢, and a matrix
A=(a;) are defined by: Um)=I(-m)+1, Kp/q)=Kp)+l(g)+],
Hey=2,lc))+1), and l(A) = Z; j(l(a,-, ;) +1), respectively.

I(A) + KB).



Sa’menvaﬂing

Dit proefschrift gaat over digitale (electronische) handtekeningen. Een handtekening is
een bewijs dat een bepaalde boodschap van de ondertekenaar afkomstig is. Een digitale
handtekening onder (een beter woord is “op”) een boodschap is dit ook, en heeft de
volgende eigenschappen:

+ De handtekening bestaat uit één of meerdere getallen, die verkregen zijn door
het toepassen van een wiskundige functie op de te tekenen boodschap. Hierdoor
verschilt de handtekening van boodschap tot boodschap.

‘» Iedereen kan controleren of de handtekening bij een boodschap correct is.

* Het is zo goed als onmogelijk om andermans handtekening bij een nienwe
boodschap te maken. Dus als iemand een oude boodschap (een beetje) verandert
klopt de handtekening niet meer.

Door deze drie eigenschappen is een digitale handtekening dus niet de PIN-code
van je bankpas, waarmee je in sommige winkels kunt betalen. Ook niet het wachtwoord
voor de toegang tot een computer. En het is ook niet het faxen van een document waar
je handtekening onderstaat.

Digitale handtekeningen kunnen door computers verwerkt worden en over een
telefoonlijn verstuurd worden. Het is niet zo dat er maar één methode is om digitale
handtekeningen te construeren. Er zijn verschillende constructies bekend en deze
verschillen in de gemaakte aannames en de (extra) eigenschappen die die handtekening
kan hebben, zoals: de ontvanger van een boodschap met handtekening kan die
handtekening wel controleren, maar hij weet niet wie het ondertekend heeft (zie ook
Hoofdstuk 4).

In het eerste hoofdstuk van dit proefschrift worden in het kort enkele bekende
cryptografische systemen behandeld (het RSA-systeem en het systeem gebaseerd op de
discrete logaritme), en enkele basisbegrippen uvit de moderne cryptografie (zoals blobs
en zero-knowledge). In de overige zes hoofdstukken worden drie verschillende aspecten
van digitale handtekeningen behandeld, namelijk nieuwe theoretische resultaten,
constructies van handtekeningen en toepassingen. Deze zes hoofdstukken kunnen
onafhankelijk van elkaar gelezen worden, behalve dat
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« Hoofdstuk 3 een vervolg is van Hoofdstuk 2, en dat
* in een bewijs in Hoofdstuk 4 en in Hoofdstuk 6 een stelling uit Hoofdstuk 2
gebruikt wordt.

In Hoofdstuk 2 en 3 geven we enkele nicuwe theoretische resultaten voor de
veiligheid van klassen handtekeningen systemen, die gebaseerd zijn op RSA.

In Hoofdstuk 2 initialiseert een bepaalde instantie een RSA-systeem met modulus N
en geeft s handtckeningen genaamd H,,....H, van bepaalde types aan een individu.
Elk zo’n handtekening is niet de wortel van een bepaald residu (zoals gebruikelijk is in
RSA), maar is het product van rationale machten van residuen modulo N, en de
gebruikte machten bepalen het type van de handtekening. Het individu probeert met de
verkregen handtekeningen een nieuwe handtekening H' te berekenen. Onze
hoofdstelling zegt dat als de gebruikte residuen willekeurig door die bepaalde instantic
gekozen zijn, dat dan het berekemen van H' wit H (... . H, van dezelfde
moeilijkheidsgraad is als het berekenen van een bepaalde RSA-wortel op een
willekeurig gekozen residu modulo N.

In Hoofdstuk 3 hebben we dezelfde situatie als in Hoofdstuk 2, maar nu worden
enkele van de in de handtekeningen gebruikte residuen door die instantie gekozen en de
overigen door het individu zelf (dus nu heeft het individu wel invioed op de verkregen
handtekeningen). Ook in dit geval wil het individu een nieuwe handtekening H’
berekenen uit de verkregen handtekeningen H,....H,. Als we aannemen dat:

¢ het individu zelf geen RSA-wortels op willekeurig gekozen residuen kan
berekenen, en dat
« het individu gebruikt in zijn berekeningen modulo N alleen vermenig-
vuldigingen en delingen,
dan zegt onze hoofdstelling dat het berekenen van H' uit Hy,....H; van dezelfde
moeilijkheidsgraad is als het oplossen van een bepaalde tweede graads vergelijking in
geheeltallige matrices.

In Hoofdstuk 4 en 5 geven we constructies voor drie nieuwe types van
handtekeningen, en een nieuwe, efficiente constructie voor de zogenaamde Fail-
stop handtekeningen.

In Hoofdstuk 4 introduceren we de zogenaamde “group signature” en we geven er
vier verschillende constructies voor. Zo'n handtekening is bedoeld voor een groep
personen en heeft de volgende drie eigenschappen:

» alleen personen uit die groep kunnen een handtekening zetten,

e de ontvanger van de handtekening kan verifiéren dat het een geldige
handtekening is, maar hij weet niet welk persoon die handtekening gezet heeft,

+ indien noodzakelijk kan een handtekening “geopend” worden, zodat de naam
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van de persoon die die handtekening gemaakt heeft bekend wordt.
Handtekeningen die de eerste twee eigenschappen hebben zijn al in de literatuur
bekend, maar de derde eigenschap is nieuw.

In Hoofdstuk 5 construeren we drie digitale handtekening systemen, waarbij
niemand de handtekening van iemand anders op een nieuwe boodschap kan maken,
zelfs niet met onbeperkte rekencapaciteit.

" Erzijn constructies bekend voor de volgende drie soorten handtekeningen:

» undeniable: een handtekening die niemand kan controleren, tenzij in overleg
met de ondertekenaar (op een zero-knowledge manier). Daarom kan iemand die
een goede handtekening heeft gekregen niemand anders hiervan overtuigen. En
een veronderstelde ondertekenaar kan een vervalste handtekening ontkennen.

* convertible: een undeniable handtekening met de extra eigenschap dat de
ondertekenaar deze kan veranderen in een gewone digitale handtekening door
enige getallen bekend te maken.

¢ fail-stop: als iemand een handiekening vervalst, dan kan de veronderstelde
ondertekenaar bewijzen dat het een vervalsing is.

We geven constructies zodat de eerste twee soorten handtekeningen voor het eerst de
extra eigenschap krijgen dat niemand de handiekening van iemand anders op een
nieuwe boodschap kan maken, zelfs niet met onbeperkte rekencapaciteit. Bovendien
geven we een nieuwe constructie voor fail-stop handtekeningen die veel efficienter is
dan de bestaande constructie.

In Hoofdstuk 6 en 7 geven we twee toepassingen van digitale handtekening
technicken: een nieuw electronisch betalingssysteem en een nieuw soort blob.

In Hoofdstuk 6 presenteren we een nieuw electronisch betalingssysteem, dat het
systeem van Chaum, Fiat en Naor vele malen efficienter maakt, en bovendien nieuwe
eigenschappen bezit. Betalen met je bankpas en je PIN-code in een winkel is wel
electronisch, maar het is niet wat wij bedoelen met een electronisch betalingssysteem.
Niemand kan de ingetoetste PIN-code controleren dan alleen de betaalautomaat, waar
de geheime sleutel van de bank in zit. Bovendien heeft de gebruiker geen privacy: de
bank weet precies waar, wanneer en voor hoeveel je hebt gekocht.

In een electronisch betalingssysteem zoals wij die hier beschouwen heeft iedere
gebruiker een kleine computer op zak. Hij gaat er eerst mee naar de bank om deze
computer “met geld te laten vullen”, dit wil zeggen met speciaal geconstrueerde getallen
waar de bank haar digitale handtekening op zet. Bij het betalen laat hij de constructie
van deze getallen en de handiekening van de bank zien, en de winkel kan zelf
controleren of het goed is, zonder een rechtstreeks contact met de bank. In dit systeem
kan de bank er niet achterkomen waar, wanneer en voor hoeveel je hebt gekocht.
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In Hoofdstuk 7 presenteren we een nieuw commitment systeem: dit is een systeem
waarbij je je kunt binden aan een bepaald getal, zonder dat de ontvanger van dit
commitment (0ok wel blob genaamd) weet welk getal het was, en zonder dat je achteraf
dit getal nog kunt veranderen (je geeft dit getal als het ware in een gesloten envelop). De
gebruikelijke constructie is met een wiskundige functie B, die de twee bovenstaande
eigenschappen moet hebben (in vaktermen: collision-free voor de maker en one-way
voor de ontvanger). Als iemand zich wil binden aan een getal b, kiest hij willekeurig
een getal r en zijn commitment wordt B=Hb,r), en hij geeft het getal B aan de
ander. Om later dit commitment B te openen maakt hij » en r bekend, zodat de
ontvanger B kan controleren.

Wij presenteren een nieuw soort blob: de maker maakt alleen b bekend en bewijst
dat hij r weet zonder r bekend te maken. Wij geven verschillende constructies en
toepassingen, en we construeren een “tegenspraak™ met een in de literatuur bekend
lemma.
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1.

Het protocol voor “Gradual and verifiable release of a secret” dat gepresenteerd
is in het gelijknamige artikel is niet correct, en daarom is Lemma 2 van dat
artikel ook niet correct.

Zie: Dit proefschrift, Sectie 4.3.1, en
Ernest Brickell, David Chaum, Ivan Damgird and Jeroen van de Graaf,
Gradual and verifiable release of a secret, Advances in Cryptology—
CRYPTO '87, C. Pomerance ed., LNCS 293, Springer-Verlag, pp. 156-
166.

2.

In de nederlandse taal worden begrippen gebruikt met betrekking tot
handtekeningen, die niet adequaat weergeven wat er met digitale
handtekeningen gebeurt, zoals: hand-tekening, ondertekenen, namaken.

3.
De volgende visualisatie van een blob
is aanschouwelijker dan een dichtgeplakte envelop.

00

4, ‘
Het kraken van een cryptosysteem houdt nog niet het afkraken van de auteurs in.

5.
Een cryptische uitspraak blijft beter bij.



6.

Het mensbeeld in de cryptologie getuigt van een zodanige argwaan tegenover
elkaar, dat, als dit het enige beschikbare mensbeeld zou zijn, de samenleving.
onleefbaar zou worden. Daarom is het noodzakelijk dat er vanuit verschillende
disciplines andere mensbeelden worden gepresenteerd.

7.

Het is terecht dat met behulp van de cryptologie het eigen bezit maximaal
beschermd wordt. Zo heeft men volledig de gelegenheid om zijn goederen uit
vrije wil in gemeenschap te brengen.

8.
Het religicuze leven met als centrum de Eucharistie heeft ten volle zin als ze
uviteindelijk gericht is op eenheid onder de mensen.

9.
Tegen de schijn in tendeert de wereld naar de eenheid.

10.
De uitspraak “toets de theorie aan de praktijk” geldt niet alleen voor onze studie,
maar ook voor ons leven.

11.
Ik bemin, dus ik ben.

Zie: De uitspraak “cogito ergo sum” van René Descartes, Discours de la
Méthode (1637).

12

Het “hora est” kan niet alleen verlossend werken bij een promotie, maar
eveneens bij een homilie, daarbij in het midden latend of dit voor spreker of
luisteraar geldt.



