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SUMMARY

In this report a mathematical model is developed of an engine driving a single piston via a
crankshaft. The aim is to calculate the torsion in the crankshaft when the piston is moving freely.
The model is based on a second order ordinary differential equation, which is linearized.

Stable and unstable parameter regions are calculated with the aid of Floquet theory. Applying
numerical methods the evolution in time of the torsion is computed.

It turns out that for most parameter values the system is stable, but there is a discrete spectrum of
parameter values for which the system is unstable.

The torsion mainly follows the driving force, with a smaller oscillation super-imposed on it.
These oscillations result from the undriven eigenfrequencies of the system.
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1. Introduction

We study the torsional behaviour of the crankshaft in a gascompressor, which is used e.g. to keep
gas under pression in large scaled pipeline systems. Such a crankshaft transmits the rotating
motion of a driving engine to pistons which pump gas. A schematic sketch of the compressor is
presented in the following picture.
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Fig. 1.1.

The pistons perform a transversal motion in a cylinder. By this, gas is pumped in and out of the
cylinder. The mass forces and the load on the pistons cause torsion of the crankshaft.

Experience leams that the crankshaft is a vulnerable part of the gascompressor. Clearly the tor-
sion of the crankshaft must not become too large.

In this report we show how the amplitude of the torsional oscillations can be calculated for a
given parameter set describing a compressor. In our mathematical model only some aspects of the
real system are taken out. However, it contains still the essential features of the phenomenon
under consideration. A computer program is developed yielding results for a specific compressor
configuration. In this report we use this program as a tool to analyse the qualitative torsional
behaviour in more generality.



2. THE MATHEMATICAL MODEL

When trying to develop a mathematical model of a gascompressor we have to make some
assumptions. For instance, we assume that all friction forces in the moving parts are negligible
and, furthermore, that the driving engine is infinitely strong. L.e. it drives the crankshaft with a
constant angular velocity . Besides, neither the load nor the torsion of the crankshaft has any
influence on the speed of the engine.

We consider a compressor with one piston only. A clear insight of the single piston system is a
necessary condition for the analysis of the multiple piston system. Schematically, the single pis-
ton system can be depicted as in figures 2.1 and 2.2.

CRANKSHAFT (¥ ENGINE
&

CRANK

DRIVING SHAFT

CYLINDER

PISTON

‘GAS

Fig. 2.1.
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We have the following characteristic parameter values
moment of inertia of the crank Iergne = 10kg m?
mass of the piston Mp; =900kg
mass of the drivingshaft Mg =350kg
radius of the crankshaft R;=0.15m
radius of the crank R,=0.15m
length of the drivingshaft Li=1,0m
angular velocity of the crankshaft o=40rad/s
torsional stiffness of the crankshaft q=5-10°Nm
force applied on the piston by the gas Foqs,
[Fyes | S 3-10°N.

Our numerical analysis only involves the behaviour of the unloaded system, i.e. the system
‘without extemnal gas forces F,,. The analysis of this free system yields a first order prediction for
the behaviour of the loaded system. However, in the equations in the next section the role of the
gas forces is still explicitly mentioned.

In our model the engine drives the crankshaft with a constant angular velocity . Because of the
inertia of the system, parts of the crankshaft will be twisted. The angle A¢ of the crankshaft twist
is called the torsion. To put it differently, let ¢(¢) denote the angle of rotation of the ultimate left
hand side of the crankshaft (at the crank, see Fig. 2.1 and 2.2) at time ¢, then (A4) (¢) = ¢(t) — o¢.
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We assume that the torsion of the crankshaft varies linearly from O to (A¢) (¢) going from the ulti-
mate right hand side to the ultimate left hand side of the crankshaft.

If the mean torsion, i.e. A¢ divided by the length of the crankshaft exceeds a certain value, the
crankshaft breaks. With the aid of the equation of motion for the system we shall predict the
behaviour of A¢.

Our derivation of this equation of motion is based on the Lagrangian L of the system. This quan-
tity is defined as L = U -V, where U is the total kinetic energy and V the potential energy. In our
case it tumns out that L depends explicitly on ¢, ¢ and ¢. Having calculated L the equation of
motion follows from the Euler-Lagrange equation

oL _afa

where M, denotes the external moment caused by the gas pumped in and out of the cylinder. To
find the explicit expression for L(¢, ¢, 1) we derive expressions for the various energy terms in L.

The torsion generates a moment M(A¢) = G A¢ with G the torsional stiffness. The corresponding
potential energy V is given by

A¢
2.4) V= [ ME)de=1 Ga¢.

0
The total kinetic energy is the sum of the kinetic energies of the different parts of the
gascompressor. So

U = E, [piston] + E,;, [driving shaft] + E,;, [crank] + E, [crankshaft]

or, in abbreviation,
2.5 U= EP‘ +E 4+ Eqni + E.
For convenience we introduce the parameter A = % being the ratio of the length of the crank and

the length of the driving shaft.
Let V,; be the velocity of the piston and let M, be its mass. Then, cf. Fig. 2.2,

+2 . A
2.5.1) Epi=%Min3i=';-Mpi¢ snn24,1e2[1+____l :;’S"b%_}.
V1-22sin

Let M, be the mass of the driving shaft and /4, its moment of inertia. Let x(x,x;) be the center
of gravity of the driving shaft. Take constants o, @, b as pointed out if Fig. 2.3 below (a+b=1).
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Then Egy =1 My 1512+ 146’ Now
x3;=Rcos¢+alcosa
x2=bLsina

and
sina =Asin¢.

It follows that & = -A%ssii whence

)o
a 1]

al cose« !
Rees
) 4
Fig. 23.

A2 sin¢ cos ¢

i,=$[ksin¢+az. m}

i3 =2AbLé¢cosé.
Summarizing we get for E,,,

. 2
e =R
—A" SiIY
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-2 A2cos? ¢
+ ¢ ———F7=
2@ T Tante

. 2
M szpz [sin¢+ alsmq:costp] +
“ [ Vi-22cos? ¢

I
+ 2""2_2 +b?|{ cos?¢| .
Mg, L“(1-A7sin” ¢)
For the crank we have,

+2
253 Ecaw=1 loaut .

Finally we compute the kinetic energy of the crankshaft. It depends on the rotational velocity of
the crankshaft and on its moment of inertia /,. But its rotational velocity is not homogeneous but
varies linearly from o to $=m+A4°>. So

1
l .
254)  En=L11, TJ +§A¢)’dr=
0

=11, (@ +0Ad + -;7 AdD).

We henceforth assume that R << L i.e. A << 1. Correspondingly, we can linearize the kinetic
energy with respect to A:

@7 U =L ¢" [M,R? sin? §(1+2Acos ¢) +

+M¢,R2(sinz¢+2czksin2¢cos¢+[b2+ ] cos? ¢

+ Lerant) + 1 La(0? + 0Ad+ -;: AY).

This expression for U can be put in a more transparant form,
@7) U=t 19+l la(com+—<A¢)2)+ I; 0?

where /(¢) denotes the term between rectangular brackets.

Having derived the expression for the Lagrangian, we obtain a differential equation for the tor-
sion in the crankshaft from the Euler-Lagrange equation

@8 $U@+FL)+1 I9F +GG-0) - Meu @ =0.

We consider the situation that the crankshaft does not break. It follows that A¢ has to remain
small. In fact for the parameter values given above we have A¢ < 0.1 rad. (we observe that the
maximally allowed value for A¢ depends also on the length of the crankshaft). Since A¢ is
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assumed to remain small we can linearize equation (2.8). This way we get the following linear
equation of motion for the torsion:

2.9) A¢(I+ Is) + 86 (@) + AQL @? 17 =L (I} & +G — M)

’ 2
3 I'0® — Mg, =0.

Non dimensionalization yields
M
(2.10) §(I+— “)+§l’+§[1 1"_.1_(1')2+£2___L"’_
2 0 o
’ MSC-"
+1 3 r- —(?— =0

witht=wt, £(t) = Ad(r) and
It)=R?*[2\costsin® t(My; +a M) +

+sin® T (M + My) +

8 2
+[M¢L2 +b ] cos? t My] + I rans.



-11-

3. Stability analysis

Our stability analysis for the solutions of equation (2.10) is based on Floquet theory. First we
present some general theorems and properties.

Our equation, is of the following general type
(3.1 y+G(@)y +H(t)y =RL(t)

or, equivalently

(3.2) x=AM)x+£0)

where

x=@ ",

0 1 0
AO=| gy 6| * fO=|rRLp|

In our case A en fare periodic with period T..
First we look at the corresponding homogeneous equation

(3.3) x=A@)2x

It is not hard to see that if x(z) is a solution of (3.3) then X(t) = x(¢+T) is a solution of (3.3), also.
Hence, if X(¢) is a fundamental matrix of (3.3) then also X(¢t+7) is a fundamentaal matrix of
(3.3).

Property a.
Let X(¢) be a fundamental matrix of (3.3). Then there exists a nonsingular matrix C such that

X(@+T)=X(t)C for all t2 0. The matrix C is referred to as the discrete transition matrix. We
clearly have from C =X~1(0) X(T):

X@+mT)=X(@)C™", me Z,te R.

Property b.

Let X ;(z) and X, () be both fundamental matrices of (3.3) with corresponding discrete transition
matrices Cy and C,. Then the matrices C; and C, are similar, they have the same eigenvalues
and the same Jordon form. These eigenvalues which thus only depend on A(t), are referred to as
characteristic multipliers, or Floquet multipliers.

Now the following important theorem holds:

Theorem (Floquet).

The equation x = A(f) x has a non-trivial solution x, (f) with the property that x, (T +1) =Ax,(?),
t € R, if and only if A is a characteristic multiplier.

Let X(¢) be a fundamental matrix of (3.3) with X(0) = I. Then for every solution x(t) of (3.3) we
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have
x@+T)=2x(t) <> x()=X(a

with X(T)a =Aa.

Remark 1.

The equation (3.3) admits a non-trivial T-periodic solution if and only if it has a Floquet multi-
plier equal to one.

The T-periodic solutions are of the form x(t) = X(f) a with X(T) g = a.

Remark 2.
For the solution x, (¢) of (3.3) appearing in the above theorem we get
x(t+mT)=2"x(t), te R,me X.
It follows that if 1Al > 1 then Ix(t)| & 0ast — oo and, if IAl < 1,then Ix(2)| = 0ast — oo,
Next we consider the inhomogeneous equation
3.2) x=A(@)x+ f().
Let X(¢) be a fundamental matrix of (3.3) satisfying X(0) = /. Then the general solution of (3.2) is

t
x(0)=X() [0+ [ X7'(s) f(s) ds]
X er

where xo denotes any initial condition.
It follows that if x(¢) is a solution of (3.2) then also x(¢ +T) is a soluton of (3.2).
We also see that if x(0) = x(T) then x(t) =x(t+T), t € R. Now x(0) =x(T) if and only if

T
x0=X(T) [zo + [X71(s) fs)ds] , or
3 A

T
(3.4) XM -Dxo= (J)x" (s) f(s) ds.

If the matrix X(T") -/ is invertible then equation (3.4) has precisely one solution xo. Put dif-
ferently, if A = 1 is not a Floquet multiplier of (3.3) then (3.2) has exactly one T-periodic solution.
For our case (3.1) we determined the discrete transition matrix numerically and next calculated its
eigenvalues (which are the Floquet multipliers). In order to investigate the dependence of the sys-
tem on the parameters, we vary only one parameter while keeping the others constant. First, we
varied the torsional stiffness G, of the crankshaft. The remaining parameter values are

M4 =350, M,; =900, A=0.15, R=0.1S5,
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I50=75 and ©=36.
Our results are presented in Fig. 3.1 and in Fig. 32.

Floguet

"= s mz i - .7 4 T =
= 0 - - a - : - Pty =
x i o] i 3] R b AT DT

Pl
4.3

. 3
PN A O SUO P S LI G (.

/oL 1 . [ :
eI 2 RS S e R kdgl = [Eudnilitaid HESE SRR r
df'm.-f'.:r:;.n oV nE 7LLH5'..:C; m...L.LpLAE.

Fig. 3.1. The argument of the Floguet multiplier
as a function of the torsional stiffness G,.
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Toquet Multipliers as a function of 6o
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Fig. 3.2. The norm of the Floquet multiplier
as a function of the torsional stiffness G,.

Next, we varied the angular velocity o of the driving engine. Taking My, My, MR and I, ¢ 8s
above and setting G, = 5- 10° we get the following figures.



-15-

uet Multipliers as a function of Om
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Floquet Multipliers as a function of Omepa
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Fig. 3.4. The norm of the Floquet multplier
as a function of the angular velocity of the driving engine, w.

From what we have said before we can draw the conclusion that it may be unwise to choose
parameter settings that yield a Floquet multiplier of 1. Near G, =5-03- 105 (see Fig. 3.1) we
have such a point, where the Floquet multiplier is exactly 1. So in practice we should avoid this
value for G,.
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4. Analysis of Numerical Results

The differential equation describing the torsion of the crankshaft has been written as follows, cf.

(2.10) and (3.1)
@.1 E+G@)E+H()E=RL().

Here, § denotes the torsion; G,H and RL are functions dependant on ¢ only. We remark that
RL =-2G. Below we present plots of the functions G,H and RL. For these plots we used the
default set of parameters. As we see, the three functions are periodical with the same period as the
driving engine, except for H, which has a period half that of the driving engine. The Fourier spec-
tra of G,H and RL show clear peaks, where the peak at 12.8 Hz corresponds to an oscillation fre-
quency which is twice as high as the frequency of revolution of the driving engine (w=40rad/s
corresponds to a frequency of about 6.5 Hz). The function G is small compared to H. So we

expect that G has little influence on the behaviour of the torsion & of the crankshaft.

_Glt) plotted apainst time

SR .
o e P
135 i\ bt A [
900 LTS VA MV S R VA A A
00 N L W . S A RN
oAl A N \Tme
0.0 = — - 1
e L\ 0. }cg« xﬁl\s 137 13’\ 2.3 f 2§ 2& x!m"
s [t ]
N AN AN
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-1.80 V ' Y
During 2 revolutions of the engine.

Fig. 4.1. The function G(r) plotted against time.
We remark that RL(z) =-2 G(¢).
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We apply a Runge-Kutta method [1] to the above differential equation to solve it numerically.
The convergence of the numerical scheme can be checked in Table (4.1).



-21-

&t 3 4 dzrsdt
GO UME ST LATORS-0pT, BATTIMEDN

-

SRS
8. 717049007
-1 BTG

BT D08 AL UALRE-IE,
009817 GATE (2 -2AIBAE-IT,
LR DA 6T -0

20008, CHEE TR 2ebMgE-0eT. o EUTIEEME
gooews B Al ¥ LU
L0800 LI ANK

L N Y. £ S M

S ATTATE
ITT SR St

Table (4.1). Using the default of parameters, but
taking o =37 and G, =4-21- 105, we calculate a
numerical solution of equation (4.1). We use ever
decreasing time-steps, corresponding to 64, 128,
256 and 512 time steps per revolution of the
driving engine.

The symbol dt denotes the time step, ¢ the time and
@ the angle through which the driving engine
rotated during time . The symbol § denotes the
torsion and d&/dt its time-derivative.

The results of our calculations are depicted in the plots below. They show that the shape of the
curve through the (z, £) plane vaguely resembles that of the right hand side RL(z).

The Fourier spectrum shows very clear peaks, the highest of them at 12.8 Hz. Furthermore there
are clear peaks at 6.5 Hz. All three of these peaks are also found in the spectra of G,H and RL. It
seems though, as if most of the peaks above 19.2 Hz have canceled.
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The hypothesis that G(¢) plays only a minor role can be verified by putting G(t) = 0in (4.1) and
then again computing the torsion £ from the resulting equation. The plot in Fig. 4.9 indeed shows
that there is only a small difference with the actual G # O-case. The amplitude only slightly
increases but the shape of the curve in the (¢, &) plane hardly changes.
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In real world it is still common practice to carry out computations with averaged coefficients in
the ODE. If we average e.g. the dominant function H on the left hand side, we find, cf. Fig. 4.10,
that the difference with the original (¢,&)-curve is very big. We see that the somewhat unsmooth
shape of the (z,&)-curve in Fig. 4.7 and 4.9 now transforms into a curve consisting of a small, fast
oscillation superimposed on a large, slower oscillation.

The overall amplitude increases significantly. The fast oscillations stem from the undriven eigen-
frequencies of the system with RL = 0 as can be seen in Fig. 4.11 and Fig. 4.12.
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Fig. 4.11. The torsion £ plotied against time

Frequency modulations are canceled out whereas amplitude modulations increase. If we take
both RL and G zero and moreover average H, both frequency and amplitude modulation cancel

out.

Averaging H obviously has an effect on the undriven eigenfrequencies of the system.
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Fig. 4.13. The worsion ¢ plotied against time
when averaging H(¢) and setting RL(t) =0, and G(t) =0.

In the undriven eigenfrequencies, G(t) obviously brings in the amplitude modulation whereas
H(¢) brings in the frequency modulation.

If we take a crankshaft with a smaller torsional stiffness we expect the torsion to be larger. That
this is indeed the case can be checked in Fig. 4.14, where the torsional stiffness is 10 times
smaller than the default value. Although the torsion is still periodical in time, it reaches levels at
which the crankshaft will break. Indeed, the crankshaft can only withstand torsion up to values of
about 0.1 radials and with this stiffness the torsion exceeds this value of maximum amplitude. So
in practice it is not a stable situation we encounter, although in theory it is.
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Fig. 4.14. The torsion § plotied against time
when G, is taken 5- 0- 10°,

ten times smaller than the default value.

How the time evolution of the torsion depends on the initial conditions can be seen in Fig. 4.15
and Fig. 4.16. If we initially take § =-0.001 and dt/dt =0, we see from Fig. 4.15 that there are
hardly any changes noticeable. There is only a slight increase in the overall amplitude if we com-
pare with Fig. 4.7.
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with initial conditions § = -0.001 and d%/dt = 0.
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Fig. 4.16. The torsion § plotted against time,

with initial conditions § =-0.01 and d&/dr =0.

If we take & =-0.01 at time ¢ =0, the amplitude of the fast oscillations increases, resulting in a

higher overall-amplitude as well.
values where a Floquet multiplier of 1 occurs. However, in our simulations we have not detected

these phenomena.

We would expect the amplitude of the oscillation to blow up if we take G, near to one of the
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5. Conclusions

We modelled the unloaded driven single piston system. We derived a second order ordinary dif-
ferential equation for the torsion of the crankshaft. This differenital equation is linearized and
solved numerically with the help of a Runge-Kutta method. Parameter regions of stability and
instability are computed with the help of Floquet theory. We let vary the torsional stiffness of the
crankshaft and the rotational speed of the driving engine.

In both cases we see the same behaviour of the Floquet multiplier as a function of the varied
parameter. It leads to a discrete spectrum of parameter values where the system is possibly
unstable.

The time evolution of the system is computed and analyzed. It tums out that the torsion mainly
follows the driving force. A small, fast oscillation is superimposed on it, resulting from the eigen-
frequencies of the undriven system. We get a better insight in the role of the time dependant
coefficients in the differential equation by varying them and subsequently studying the torsion.

The results show that the default parameter set, which is used in practice, is a good choice.
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