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A queueing model of a foreground-background time-sharing

system with general service times and constant swap times.

by

J.G.A. van de Schoot

Summary.

A time-sharing system is modelled by a foreground-background queue with

Poisson arrivals and independent and identically distributed service times

with a general distribution function H. Waiting times in system are analysed

for jobs, which arrive in a stationary process, and the Laplace-Stieltjes

transforms of their distribution functions are derived.

This is done for a non-preemptive and a preemptive-resume priority rule

with several policies to deal with constant swap times, which have to be

attached each time the processor attends another job.

Some remarks about extensions to models with K > 2 queues are made.
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1. Introduction.

A simple implementation of a time-sharing system is the foreground-background

system (FB-system), in which many users are competing for service in the

single central processing unit (the CPU).

Jobs arrive according to a Poisson-process with rate A and join a first-in

first-out (FIFO) "foreground" queue (FQ) , where each job is processed maximal

ly up to Q units of time (the "time-slice"). If a job finishes within Q, it

leaves the system. Otherwise, it is interrupted and it joins the FIFO "back

ground" queue (BQ) , where it waits for further service (see figure 1.1)

)

FQ
x ::; Q

x > Q

BQ

...

fig. 1.1: an FB-system.

Fundamentally the FQ is higher in priority than the BQ. Two types of priority

rules will be analysed.

1. The preemptive-resume priority rule.

Upon arrival jobs in the FQ interrupt jobs in the BQ that may be us~ng the

CPU. Hence, jobs in the BQ may run only when the FQ is empty. A job ~n the

BQ resumes its processing from the point where it has been stopped.

2. The non-preemptive rule.

As in the previous case, jobs ~n the BQ start processing only when the FQ

is empty. However, once a job from the BQ has been started, it is run to

its end.

By this, the users who require a short processing time can be serviced rela~

tively fast and independent of system loading; faster by use of the former than

the latter rule.
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Each job requires a service time X with general distribution function H

independent of the others and of the arrival process. Since H is the distri

bution function of the computation time of jobs, we shall assume H to be

continuous.

This model 1S also used by Guimaraes [6J 1
). Similar models have been investi

gated with geometric (Kleinrock [7J) or exponential service times (Adiri and

Avi-Itzhak [IJ, Coffman [3J). It is well-known t however t that service times

in computer systems have large coefficients of variation (standard deviation

over mean) and are better characterized by distributions like the hyper

exponential (Fife [5J). In reference [IIJ pictures are given containing mean

waiting times, deviations and coefficients of variation as functions of the

time-slice Q for various rates A and hyperexponential distribution functions

H. These functions are derived from the work of Guimaraes. Although no general

conclusions could be drawu t it becomes clear t yet t that it is not difficult

to analyse an explicit FB time-sharing system with this model.

In this paper we will extend the above model by introduction of constant swap

times. Each time the CPU attends another job, a constant swap time (S, T or R)

will first be attached to its service time. When the job comes from the FQt

this swap time will be S; T when it comes from the BQ for the first time and

R when it comes from the BQ after preemption using the preemtive-resume

priority rule. In chapter II the Laplace-Stieltjes transforms (LST's) belonging

to the different waiting-time distributions in the system will be derived in

the case of R = 0 and for both priority rules. The case of R 7 0 using the pre

emptive-resume priority rule will be analysed in chapter III. For various po

licies, which attach R to the service time of a job, we will derive the LST

belonging to the total waiting time in system by making use of the unfinished

work functions and of methods as can be found 1n Kleinrock's work [8J.

In both chapters some remarks about extensions to models with k > 2 queues are

made.

1)
Repeatedly Guimaraes [6J is referred to, since this paper has mainly been

inspired by his work.
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II. The model with constant swap times Sand T.

In Guimaraes' model the CPU is processing jobs, exclusively. In a more

realistic model of a time-sharing system we will have to take into account

the other activities of the CPU, like: administration for identification

and protection of the different jobs, for storing and getting the data of

a job; data transport between primary and secondary memory making the

data available for use by the CPU. Truly, these activities will have to be

done on behalf of the treatment of the jobs, but the time spent on them

depends strongly on the Operating System of the particular organization,

in which the time-sharing system has been implemented. Since these activi

ties must be carried out just at the change-over to another queue or to

another job, we will enlarge the model by the introduction of the constant

swap times Sand T first.

The swap times will be assumed to be constant avoiding an unnecessarily more

complicated model. However, by assuming independence between the swap time

and all other stochastic variables in the model it wo~ld be easy to analyse

the same model, in which the swap time would be stochastic.

Hence we assume that a constant swap time S in needed, each time the CPU

starts processing a new job from the FQ. Furthermore, when a job from the BQ

enters the CPU for the first - and maybe only - time, a constant swap time T

is needed.An eventual resumption of a job from the BQ after an interruption

using the preemptive-resume priority rule occurs immediately at the point

where stopped (note that R = 0 in this chapter).

We denote by p the probability that a job requires a service time of more

than Q units of time and we define

{~
if X ::; Q Pr(x ::; Q) = - p

N(X) =
if X > Q Pr(x > Q) p

Then the total processing time 'P - swap times S and T included - of a job with

service time X equals X + S + N(X)oT and its distribution function 1.S <Po

Let 'PI be the total processing time - swap time S included - given to a job

in the FQ with distribution function <Plo Then

. {HX)
<pt(x) = I

if x ::; Q + S

if x > Q + S

Let 'P Z be the total remaining processing time of a job - swap time T included 

and its distribution function, given that X > Q, is <P
Z

'
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= l[~(x + Q + S) - ~(Q + S)],
p

<P > Q + S)

- HQ).

Then ~2(x) = Pr(~2 S x

where p = ) - H(Q) =
* * *By ~ , ~) and ~2 we denote the LST's of ~, ~I and ~z respectively, where

the LST of a distribution function F of x is defined as

00

* -sxF (s) = €e = f EXP[-sy]dF(y)
2,3) Re(s) 2 O.

-00

By 'r' t r and ur we denote the r-th moment of <P, <PI and <P2 respectively,

where the r-th moment of x is defined as sxr , for r E~.

By PI' Pz we denote the "utilization factor" of the system formed by the CPU

and the FQ respectively the BQ, where the utilization factor of a system is

defined as the ratio of the rate at which "work" enters the system to the maxi

mum rate (capacity) at which the system can perform this work; the work an

arriving job brings into the system equals the number of units of service

time it requires. So, in the case of a single-server system, the definition

of P becomes

p = (average arrival rate of jobs) x (average service time) .

Analyzing the waiting times we will study in all cases the processes under

steady state conditions only.

Define

nl = the waiting time 1n the FQ for a job arriving 1n a stationary process.

n2 = the total waiting time in the system plus the processing time in the FQ

for a job arriving in a stationary process, which requires more than Q

units of service time.

n3 the waiting time in the BQ caused by interrupts of the own background

service only for a job arriving in a stationary process, which requires

more than Q units of service time.

Yt = total time in the system (also called response time) conditioned on a

g1ven service time requirement t for a job arriving in a stationary

process.

€ 1S the expectation operator.

3). Especially when the exponent is complicated, we will use EXP[-xJ 1n stead
-xof e .
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Tt = the distribution function of Yt ·
T* the LST of Tt .t
T
r/t the r-th moment of Yt for r E:N

Further for i = 1, 2 and 3

W. = the distribution function of n.•
1 1

Q. the LST of W.
1 1

( i)
w the r-th moment of n. (r E ~).

r 1

Now, the above model looks like the model of Guimaraes replacing H, HI' HZ

and Q by ~, ~I' ~2 and (Q + S) respectively. Hence Guimaraes' results are

available immediately.

Using the method of imbedded Markov chains, Guimaraes has found the stationary

distributions and/or the LST of the queue size distribution (par. 3) and of

the waiting time distributions (par. 4) 1n his model without swap times. And

with them he computes the expectations of the various stochastic variables.

Note 11.1.: The waiting time n
3

and its contribution to hZ and Yt doesnot

occur in Guimaraes' work. Hence his derivations of QZ and T~(S) are incomplete

in the case of the preemptive-resume priority rule (see par. 4).

Complete derivations are

*VJZ(A - H(s»;

= Plb/(I - PI);

Q3(s)'Q(s + A - Af(s»'EXP[-Q(s + A - Af(s»J;

00 00 x (At)J
W2(x) L 5 5 G(j ) (x -At dW3 (y)dW(t - Q);= - t - y)e • 1

j=O y=O t=O J •

(2)
(wI + Q)/(I p)+w(3)·WI I I'

T~ (s) = Q3(s)'Q(s + A - Af(s»'EXP[-t(s + A - H (s» J if t > Q;

TIIt (wI + t)/(I - PI) + w~3) if t > Q.

(For details see [IIJ.)

Note II.Z.: The expectation w~l) should be w~l) = A(aZ - ZQ(a - a»/Z(I - Aa)

and the factor 1/(1 + p) may not occur in this formula. (See Guimaraes, par. 4.)
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Furthermore, Guimaraes gives a method to extend the foreground-background

model to a model with K > 2 queues in the case of the preemptive-resume

priority rule and S = T 0: Due to this priority rule, as far as the j-th

queue is concerned (j I, ... ,K), the queues j+I, ... ,K do not exist; also,

any job in the j-th queue has to wait for the completion of all jobs in the

queues I, ••. ,j-I, plus for the service of jobs in front of the j-th queue,

plus a delay caused by arrivals during these waiting times, plus a delay

caused by arrivals during its own service in the j-th queue.

Note 11.3.: Again, see note 11.2, this last factor has been omitted ~n

Guimaraes' work.

The order in which jobs are served in the queues I, ... ,j-I is irrelevant

with respect to the job in the j-th queue. Constructing a modified process

based on these considerations Guimaraes reduces the problem to the FB-systenl.

For the non-preemptive case the analysis of models with K > 2 queues (also

called Feed-Back algorithms) leads to the analysis of a complex Markov chain.

With regard to waiting times this has been carried out by Schrage [12J and

by Kleinrock and Muntz [9J for various priority disciplines. H. Keuning [IOJ

chooses another way to obtain the expectations of waiting times for models

with K > 2 queues, various priority rules and constant swap times. Using a

method introduced by Cobham [2J he splits an arriving job into portions

corresponding to the required quanta of processing time. However, he meets

with difficulties deriving the moments of order higher than one.
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III. Preemptive-resume priority rule.

1. Introduction.

In the foregoing chapter a constant swap time has been attached to the

service time of jobs t when they enter the CPU from the BQ for the first

timet providing for some additional activities. Using the preemptive-

resume priority rule t jobs can be interrupted in the BQ. And also t addition

al - maybe few - activities have to be performed just before resumption of

an interrupted job. Therefore t we extend the model by assuming that a

constant swap time R will be attached to the service time of an interrupted

job in the BQ. This swap should be performed just before resumption.

Now t different policies are imaginable to interrupt and later on to resume

the processing of a job in the BQ:

1) Upon arrival of a job in the empty FQ during the processing of a job

from the BQ, an immediate preemption of this processing is generated.

When the FQ ~s emptyagain t the interrupted processing is resumed at the

point where it has been stopped

a. after the constant swap time R has been performed.

b. after the constant swap time R has been performed, except ~n the case

that the interruption occurred during the swap. Then the CPU starts

processing of the real service immediately after a neWt complete swap

time R without completing the preempted swap - if no new arrivals in

the FQ disturb this whole.

c. after the constant swap time R has been performed in the case that the

real service of the job was preempted. Otherwise, ~n the case that the

treatment of a swap was preempted t the interrupted processing is resumed

immediately at the point where it has been stopped without attaching a

new swap time R.

2) Upon arrival of a job ~n the empty FQ during the treatment of a swap time

- T or R - the preemption is only just delayed t till this swap has been

completed t and the arriving jobs during this delay have to wait ~n the FQ.

Otherwise t an immediate preemption ~s generated. When the FQ is empty again,

the. interrupted job may be resumed at the point where stopped after, even

tually, a constant swap time R is performed first.
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The policy I.a. seems to be the "simplest" one from theoretical point of

view. However, this policy will not be used, or hardly, in practical im

plementations. For it contains the danger that the total service time of

a job in the BQ only grows and grows. This is possible when the expected

length of intervals of time in which an empty FQ is found, amounts less

than R units of time.

Though it looks like the policy l.a., the policy I.b. seems applicable

in simple implementations, for the activities during a swap time R may be

dependent of the current system loading.

Also the policy I.e. looks like the previous ones and it seems applicable

in simple implementations, too. For in certain cases it may occur that a

fixed amount of work must be done during each swap time R. Thus a second

swap would be abundant.

From the practical point of view the policies from 2. are the most interest

ing ones. For by them implementations are embraced, in which the change

over activities may and can be executed in "mutual exclusion". From theore

tical point of view these policies appear to be considerably more compli

cated than the policies from 1. Since in these cases waiting jobs can be

present in the FQ not only by its unfinished predecessors but also by an

unfinished swap-time processing.

From these considerations the great difference between the analysis of the

theoretical model and the analysis of the practical use of such a model

is obvious. It is the former which 1S applied in this paper, though the

latter has inspired the whole study.

2. The foreground queue.

The waiting time nI is not influenced by swap times R, S1nce the BQ does not

hinder the FQ at all. Hence, the foreground queue behaves like an MIGI \ queue

with general service distribution function ¢\(x).

Hence (see Kleinrock [8J among others)

QI(s) = s(I - PI)/(s

(I)
WI = At2/2(I - PI)

*-A+HI(s)) , Re(s) :::: 0

Re(s) :::: 0, if t ~ Q + S
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if t ~ Q + S .

3. The background queue: the general case of the policy I.

The waiting time n2 of a job requiring more than Q + S units of processing

time will be influenced and determined by the future pattern of arrivals.

Namely, an arriving job A will not only preempt the service of a job al

ready being in the BQ and being processed by the CPU at the arrival of A,

but also it will attach an amount of time (at most R) to its processing time.

Analyzing n2 we consider the stochastic processes

the unfinished work in FQ at time t.

(= the remaining time required to empty the FQ of

all jobs present at time t given that no new jobs

arrive)

and

U2(t) = the unfinished work in the BQ at time t.

These functions are sometimes referred to as the "virtual" waiting time at

time t since, for a FIFO system, it represents how long a (virtual) job would

wait in queue if it entered at time t; however, this waiting-time interpre

tation is good only for FIFO disciplines, whereas the unfinished work inter

pretation applies for all disciplines.

Kleinrock [8J uses something like it in his book to analyse the busy period

length and from this the waiting time in an Hlel I queue (par. 5.8 and 5.10).

His methods in those paragraphs have inspired the following analysis.

Consider the policy I.a. and let L. be the arrival time of the i-th job. An
~

arriving job A will ~ncrease UI with an amount of min{Q + S, ~A} and it will

increase U2 with ~2 = max{~A (Q + S),O}. Furthermore, if A interrupts the

processing of a job in the BQ, generally it increases Uz with an amount of R.
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An example of the functions UI and Uz during one "global" busy period Y

could be:

u,

/;

I

I
----------~

,.~ I "

I "-

I "

"

I
~(--------'-----------;------:----------'------j»

I

I
I,
I
I
i
I

I

!

fig. III. I: The unfinished work U
I

(in FQ) and Uz (in BQ)
during Y.

The waiting time nZ of a job requiring more than Q + S processing time and

arrived at time T. can be split up, as follows:
1

the unfinished work in the FQ at time T"
1

the unfinished work in the BQ at time T..
1

+ S) : the processing time of the job itself 1n the FQ.

the delay caused by the jobs arriving during 61 + (Q + S).

the delay in the FQ caused by the jobs arriving during the proces

sing time being started with U(Ti) = 6Z'

the delay in the FQ caused by the jobs arriving during the

processing time e (the attached swap times R included) of this

job in the BQ.
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+ Y4 the extra processing time caused by the swaps as a result of

its own arrival and of the future jobs arriving during the

processing time being start~d with U(T i ) = 82 .

In fig. 111.1 the job arriving at time T6 requires more than Q + S pro

cessing time. The above components of n2 of this job have been pictured

there. For the job arriving at time T4 we have SI = 0 and Y4 contains the

time needed to process the swap time R caused by its own arrival. And,

finally, YI = Y = Y = Y = 0 in the waiting time of the job arriving at
234

time Til.

Note that each job arriving during 81 + (Q + S) may be viewed as initiating

a local busy period in the FQ; each arriving job preempting the BQ processing

inibiates a local busy period in the FQ and enlarges the background processing

with size R; the local busy periods of YI , Y2 and Y4 do not depend on each

other.

Now, let X. be the length of the i-th foreground busy period and r its LST
~

from the M:IGI I system with service distribution function <l>1.

By use of the law of total probability and by conditioning on

(8 1 + (Q + S) = x; 82 + Y4 = u; e = y; j arrivals in x + y + u)

it follows that

* *= A (s + A - Ar(s» x8 (A - Ar(s» x

*x BI(s + A - Ar(s» x EXP[-(Q + S)(s + A - Ar(s»J

* * *where ~ ,8 and BI are the LST of the distribution function of 8 = 82 + Y4'

e and SI respectively and Re(s) ~ O. For a detailed proof of this formula

see [IIJ.

Since the FQ may be viewed upon as an MIGI I queue, it follows (see Kleinrock

[8J among others) that

Re(s) ~ 0 .

* *.The LST's 8 and ~ w~ll depend on the policy used, in as much as this policy

determines the amount of swap time, which will be attached to the background-
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processing time.

Finally it 1S easy to see that for t > Q + S

*Tt(s) = ~2(s)·EXP[-s(t - (Q + S»] Re(s) ~ 0 •

4. The background queue: e* and 6* for the policy l.a.

Let's consider the workload of a job A in the BQ throughout its processing

time 6. Only the arriving jobs preempting this processing influence the time

e by attaching a time R to it. Let T' be the relative time in which the CPU

processes job A. Then the workload 1S of the form as pictured in fig. 111.2.

work
load

~ job A 1S serviced

T'

fig. 111.2: the amount of work of a job 1n the BQ.

This function may be viewed upon as the unfinished work for one job. Hence,

this function is independent of the order of service: Therefore we may

divide the time e in parts of length Xi' where Xo equals the length ~2 and

X. equals the duration of the completion of the i-th swap being attached
1

during Xo' including the attached swap times R during this completion itself.

Defining v as the number of preemptions during Xo it holds 0 ~ i~ v and
•v

e Xo + L X., where the lengths X., 1 > 0, are independent and identically
i=l 1 1
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*distributed with distribution function I; the LST is I • The length Xo
~s independent of the X.'s and it has distribution function ~z obviously.

~,

By conditioning on (Xo = x; v = j) and by the law of total probability

it follows - compare [11J - that

8*(s) * *~Z(s + A - AI (s», Re(s) ;:: 0

Applying the same method on X. - i > 0 - instead of on e and defining the
~ *

LST of the Dirac delta probability density function uO(x - R) by R it

follows that

* * * *I (s) ~ R (s + A - AI (s» = EXP[-R(s + A - AI (s»J , Re(s) ;:: 0

and it is easy to show that this equation in I* has one unique solution within

the class of LST's of distribution functions.

To derive ~*, firstly we need Z*, the LST of the background busy period

length distribution. Using a method firstly published by Conway e.a. [4J and

used by Kleinrock [8, par. 5.10J we get B; - the LST of the distribution

*function o~ 8Z - and after that ~ .

So let's consider the unfinished work Uz during one background busy period

measured in time ignoring the time spent on the FQ. An example based on

fig. 111.1 is given in fig. 111.3.

T'

z
fig. 111.3: the unfinished work Uz in BQ during one background busy

period; LCFS-discipline.



- 14 -

The background busy period length Z is independent of the order of service~

Therefore we may divide Z in a sequence of intervals with length X. and Y.
~ J

(i ~ 0, j > 0). The duration of the first interval Xo equals ~Z' which is

the total remaining processing time of the job initiating this busy period.

For i > 0, X. is the length of time required to process the i-th job which
~

joins the BQ during XO' and all those jobs and swaps which occur during this

processing of the i-th job. For j > 0, Y. is the length of time required to
J

process the j-th swap which has been attached during XO' and all those jobs

and swaps which occur during this processing of the j-th swap.

Define v as the number of jobs with ~ > Q+S joining the BQ during Xo and

w as the number of jobs attaching R on Uz during XO' The order of service ~s

assumed to be: XO,Xv""'X j , Yw""'Y j ' Obviously it holds that

Z
v

Xo + L
i= j

X. +
~

w

L
i=l

Y., the interval lengths X. (i ~ 0) and Y. (j > 0)
~ ~ J

*Defining T (s) = £e

do not depend on each other, Xo has distribution function 'Z and the Xi's
-sX.

* ~(i > 0) are distributed exactly the same as Z. Therefore Z (8) = £e

(i > 0), too~

-sY.
~ for ~ > 0 and Re(s) ~ 0 it holds that

-sZ I£(e Xo = x, v =

To remove these conditions we need the following probability distributions

1. Pr(XO ~ x) = '2(x)

I -AX k2. Pr(w = k Xo = x) = e (Ax) /k~ =: Pk(x)

viz. only the jobs which arrive within Xo during the very processing

of the first job, preempt this processing and attach R to U2
3. Pr(v = j I Xo = x, w = k)

Following Guimaraes "a busy period initiated by k jobs" is a busy period,

in which k jobs have been or appear to have been arrived in fr.ont of it;

and f~k) is the probability of j arrivals in the BQ during a busy period
J

initiated by k jobs.

Now, K preemptions occur during Xo = x with the probability Pr(w = k

and each of them initiates a foreground busy period. The probability

arrivals in the BQ during these K foreground busy periods equals the

I Xo x)

of j

probabi-
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lity of j arrivals in the BQ during a foreground busy period initiated

by K jobs.

Hence Pr(v = j I Xo = x, w = k) = fik).

A busy period length initiated by K jobs in the FQ ~s equally distributed

as the sum of K independent busy periods initiated by 1 job ~n the FQ

- therefore as the K-th convolution of the density function of f~I). Let

F(k)(w) be the transform of f~k) and F(w) = F(I)(w). Then (see G~imaraes)
J

Q+S

I {f Pk(t)"d~(t)"fJ~k) + P"Pk(Q+S)"fJ~~~}
k=O o

F(k)(w) = [F(w)]k and F(w) ~s the unique solution of

Q+S

F(w) = f EXP[-At(I - F(w»Jd~(t) + P"W.EXP[-A(Q+S)(I - F(w»] .

o

Now, we are able to remove the three conditions and as proved in [IIJ it

holds that

* * * *z (s) = ~2(s + A - AT (s)"F[Z (s)J), Re(s) ~ 0

To derive T* we may apply the same method on Y.,- 1 $ i $ w -,as we used to
~

derive Z*. Splitting up Y. in a sequence of intervals as we did for Z and
1

by the fact that each processing of Y. starts with a fixed amount of work,
1

viz. R, it holds that

* * *T (s) = EXP[-R(s + A - AT (s)"F[Z (s)J) , Re(s) ~ 0 •

Taking the first derivative of Z* and setting s = 0 it follows after a

straightforward computation that the average background busy period length

1.S

u
l

E:Z = -- "I-AR P2---I-p
1

I-p
1

1 '-P tot

where Ptot = PI + P2; PI' P2 have been defined earlier as the utilization

factor in the EQ and BQ respectively.
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0)

By definition PI = At l and

d * IAp(- ds 8 (s) sPz

Note III. I

Note III.Z An intuitive derivation and interpretation of this simple result
* ..can be fount in [IIJ. The LST Y belong~ng to the global busy

period length and its expectation is derived there, too.

at an arrival moment, the order of

*derivation of the LST B2, and this

Since Sz equals the unfinished work U2
service plays an important part in the

order may no longer be choosen freely.

Following Kleinrock, now, we divide one background busy period length Z in

a sequence of intervals whose lengths X. (i ~ 0) are dependent random variables
1-

An example based on fig. 111.1 is given in fig. 111.4.

(jJ2

,, ,
",

",,

, , , , ,, , , ,,, , , ,, , , , , , ,

Z3 -r., 1:8 , :
Tt- I

Xo
)E

Tg T", i L;:t'
.

T',.....
XI

)Ie
X

2
t~;

)

Z

fig. 111.4: The unfinished work Uz in BQ during one background
busy period; FCFS-discipline.

The duration of the first interval Xo equals (jJ2' which is the total remaining

processing time of the job initiating this busy period. For i > 0, X. is the
~

length of time required to process all those jobs and swap times R, which
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arrive ~n the BQ or have been attached during the previous interval whose

duration is X. l' We let v. equal the number of jobs which arrive in the
~- ~

BQ during X. and w. equals the number of swap times R which have been attached
~ ~

during X.,i ~ O. Thus we see that
~

Z =
00

I
i=O

X.
~

and all its successors will be O. Furthermore,

sum of v. background-processing intervals
~

~2- plus the sum of w. swap-time intervals
~ *

density uO(x - R). Defining X.(y) = Pr(X. ~ y) and X.
~ ~ ~

to derive a recurrence relation among the X~ -see [11J
~

X.
~O

we know that X. 1 will be the
~+

-each of which distributed as

-each of which with

its LST we are able

where the possibility of an infinite sequence of such intervals is permitted.

Clearly, we define X. = 0 for those intervals that fall beyond the termination
~

of this busy period; for p < 1 it is known that with possibility 1 there will

be a finite i O for which

* * * *X.(s) = X. 1(A - AR (s)'F[~2(s)J),
~ ~-

~ ~ and Re(s) ~ 0 .

Now, we consider the time 6
2

of a tagged job A which arrives in the BQ during

Z and, in particular, in the interval of duration X.. By renewal theory
~

arguments it can be made rigorous that the probability of finding the system

in this state -X.- for Poisson arrivals equals EX.fEz.
~ ~

Clearly, for this job A the time 6
2

equals the sum of (1) the remaining time of

X. (i.e. the residual lifeY.), (2) the swap times which have been attached
~ ~

during X. already before the arrival of A in the BQ (the number equals W. in
~ l

duration X. - Y.) and (3) the background-processing intervals of all jobs,
1 1

which arrived during X. already before the arrival of A in the BQ (the number
. ~

equals V. in duration X. - Y.).
~ 1 ~

W. = k; V. = j), by use of the joint
1 ~

-which is known from renewal theory-,

*X. and by the knowledge that
1

Thus, by conditioning on (X. = x' Y. = y;
~ '~

probability density function of X. and Y.
1 l

by use of the recurrence relation among the

* (J') * *X. . = 1 ~ 0 and Xo = ~2 it follows
~O+J

-s6
E(e 2 I enter in busy period)

00 -s6
= L E(e 2 I enter in Xi)'EXifEZ

i=O



- 18 -

00

L [X~ I(S) - X~(s)J
. 0 ~+ ~
~=

*1 - q>2(s)
=

[s - A

Since P2 equals the probability to arrive ~n a background busy period we

get

1 - P2 + Ap
I-p

tot
I-p

1 [s - A +
Re(s) ;::: o .

Since for each job A Y4 equals the extra processing time caused by the swaps as

a result of its own arrival and of the future arrivals of jobs arriving during

the processing time of A being started with U2 (T i ) = 82 we define

w = {O if the background-processing ~s not interrupted by the arrival of A

1 if the background-processing is interrupted by the arrival of A.

Then it holds that Pr(w = 1) = P2, because job A interrupts the background

processing only when it arrives during a background busy period. Again, the

unfinished work functionU 2 does not depend on the order of service during

an interval of duration o. Therefore, by conditioning on w it is to show that

(compare [IIJ)

* * * *~ (s) = B2(s + A - AL (s»·{1 - P2 + P2L (s)} Re(s) ;::: 0

* *and where the LST L has been defined as in the derivation of e .

Concluding ~2' the LST of the distribution function of the total waiting time

in system (n 2), ~s known and also the r-th moments of it could be derived, now.

Furthermore, it holds that for t > Q + S



x < R

if x 2 R

if 0 ~ x < R
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a* * .5. The background queue: 0 and ~ for the po11cy l.b.

Comparing the policy I.b with the policy l.a we see that the only difference

between them occurs in the amount of work which will be attached to the function

U2 by new arrivals. However, using the policy l.b the attached swap time caused

by a preemption of the background-processing, while only x < R units of time

are spent since the previous preemption, amounts exactly x. In the other case

it amounts R.

Let r be the amount of work attached to U
2

caused by a preemption of the back

ground-processing and r(x) its probability density function. Using policy I.a

r(x) = uO(x - R), the Dirac delta probability density function. Now, using the

policy l.b and because of the Poisson-arrival proces with rate A it holds that

Pr(x ~ r < x + dx and preemption during swap-time processing)

- fa
Pr(x ~ interarrival time < x + dx)

and

Pr(x ~ r < x + dx and preemption not during swap-time processing)

= uO(x - R)oPr(preemption not during swap-time processing)

uO(x - R)Pr(interarrival time 2 R)

UO(x - R)e- AR .

Hence

r(x) = {>..e-;>.,x

uO(x - R)e- AX , if x 2 R

and

*R (s)

and

e::r =

I
S+A [A + s.EXP[-R(s + A)]], Re(s) 2 0

Using this R*, 1n exactly the same manner as 1n 111.4 the LST ~2 can be derived

for the policy l.b.

* *6. The background-queue:8 and ~ for the policy I.e.

Using the policy I.c it holds that

Pr(x ~ r < x + dx and preemption during swap-time processing)
-AR= uO(x)o(1 - e ) and

Pr(x ~ r < x + dx and preemption not during swap-time processing)
->..R

= uO(x - R)e
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-AR -AR
r(x) = uO(x)(1 - e ) + uO(x - R)e ,

* -ARR (s) = I - e + EXP[-R(s + A)], Re(s) ~ 0

-AREr = Re .

Now, us~ng this R*, ~n exactly the same manner as ~n 111.4 the LST ~2 can be

derived for the policy I.c.

7. Extension to models with K > 2 queues.

Like Guimaraes, see chapter II, we could try to extend our model to models

with K > 2 queues using the preemptive-resume priority rule and attaching

swap times before resumption in each queue. This could be done because of the

same considerations as used by Guimaraes. Namely, due to the priority rule,

as far as the j-th queue is concerned (j = I, .•. ,K), the queues j+l, ... ,K do

not exist; the order of processing the jobs in the queues 1, ... ,j-1 is ~rre

levant for the waiting time n~ of a job in the j-th queue; also now, a modi

fied process could be defined, ~n which the jobs in the queues 1, ... ,j-1 could

be processed in an order which may be chosen freely, yet. And so we could

try to reduce the problems to the FB-system splitting n; as done for K = 2.

However, a complete analysis of the problems met and of their solutions is

not available, till now. The amount of work, which has to be performed by

the CPU for a certain job, is influenced by the pattern of future arrivals

and so the independence among the jobs disappear.

8. The policy 2: delayed preemptive-resume priority.

Only a few remarks will be mentioned in this paper about the policy 2 as

described in 111.1. Firstly, the case R = 0 -hence a delay of preemptions may

occur only during swap time T- should be studied for getting experience with

this policy. One of the first tasks should contain an analysis of the duration

of the foreground busy period and the processing-time distribution in the FQ.

Doing this it could be helpful to split the stochastic process "unfinished

work in system" in (I) the unfinished work in the FQ, (2) the unfinished work

concerning T-swap times and (3) the remaining work in the BQ. In those analyses,

~n which the order of service is insignificant, the first two processes could

be considered as an FB-system with non-preemptive priority rule and in which

the background-processing contains only the T-swap times. Then the results of

Guimaraes are available.
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Yet, an analysis of the unfinished work seems useful, too, in the cases ~n

which the order of service plays an important part. Thus, an eventually

adapted method as used in the derivation of B; and some use of the renewal

theory appears to be useful, here too. After analysing the above case R = 0

it does not appear to be very difficult to extend the model for R ~ O.

From practical point of view it looks interesting in any case.
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