

A method for designing decision support systems for
operational planning
Citation for published version (APA):
Eiben, A. E. (1991). A method for designing decision support systems for operational planning. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR354562

DOI:
10.6100/IR354562

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR354562
https://doi.org/10.6100/IR354562
https://research.tue.nl/en/publications/88b4dc9b-5cdb-4f01-a9aa-bdf775e24913

A Methodfor

Designing Decision Support Systems

for Operational Planning

A.E. Eiben

A Method for

Designing Decision Support Systems

for Operational Planning

A Method for

Designing Decision Support Systems

for Operational Planning

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de

Technische Universiteit Eindhoven, op gezag van

de Rector Magnificus, prof. dr. J.H. van Lint, voor

een commissie aangewezen door het College

van Dekanen in het openbaar te verdedigen op

dinsdag 2 juli 1991 om 16.00 uur

door

ÁGOSTON ENDRE EIBEN
geboren te Budapest

druk: wibro dîssertaUedrukkerij, helmona.

Dit proefschrift is goedgekeurd door de promotoren:

Prof. dr. K.M. van Hee

en

Prof.dr. E.H.L. Aarts

Acknowledgements

First of all, I am grateful to Kees van Hee for accepting me as a PhD student

back in 1987, as well as for his valuable ideas and suggestions conceming my

work.

Similarly, I am grateful to Emîle Aarts who has contributed a great deal to the

conceptual maturity and the clarity of this thesis.

Many thanks go to Wim Nuijten for his stimulating participation in discussions

that have always resulted in a better understanding of the subject.

I also want to thank Arjan de Vet for helping me by reading drafts of my thesis.

I owe special thanks to Fem du Buisson, without whom I would never have

gotten through the administrative difficulties of university life.

This research was carried out as an NFI project funded by the Dutch

Organization for Scientific Research (NWO). I thank the NWO and the

Eindhoven University of Technology for providing all the facilities needed for a

successful study.

I wish to express my gratitude to my parents who gave me the first împulses for

choosing a scientific career and kept me from leaving the path too early.

Finally, I am more than grateful to my wîfe Berenice for her patience in times of

stress.

Contents

Introduetion . 1

1 Decision Support Systems . 6

-1.1 Brief Overview of DSS Ristory and Literature. 6

1.2 Operational Decision Making . 8

1.3 Our View on Decision Support Systems . 11

1.4 Making Decision Support Systems: DSS Shells, OSS Generators 14

_ 2 Planning . 19

2.1 Model of Planning Prob1ems. 20

2.1.1 Static Case: the World as a State.. 21.

2.1.2 Dynamic Case: the World as a Process. 32

2.1.3 The Role of Time. 41

2.2 Examples of Planning Problems . 51

2.2.1 Travelling Salesman Prob1em . 53

2.2.2 Travelling Salesman Problem with Time Windows. 55

2.2.3 Preeedenee Constrained Scheduling Problem. 58

2.2.4 Time Table Problem. 61

2.2.5 Ship Loading Problem. 65

3 Search Problems . 71

3.1 Model of Search Prob1ems. 75

3.2 Relationship between Planning Problems and Search Problems 81

3.3 Examples of Search Problems. 88

3.3.1 Travelling Salesman Problem. 88

3.3.2 Preeedenee Constrained Scheduling Problem. 90

3.3.3 Time Table Problem. 91

3.3.4 Ship Loading Problem. 93

4 Search Procedures. 94

4.1 Space Search, Graph Search, Local Search 94

4.2 The General Search Procedure . 98

4.3 Examples of Search Procedures. 109

4.3.1 Genetic Algorithms. 109

4.3.2 Simulated Annealing . 110

4.3.3 Threshold Accepting, Hili Climbing 111

4.3.4 Depth First Search . 111

4.3.5 Breadth First Search . 112

4.3.6 Best First Search . 112

4.4 Convergence of Stochastic Search Procedures 113

5 Se arching by Generalized Genetic Algorithms. 129

5.1 MultiparentProduction 133

5.2 Multidimensional Genotypes . 136

5.3 Selection, Reduction and Evaluation . 139

6 Towards a Software Too1 for DSS Design 142

6.1 Problem Definition Component. 142

6.2 Solution Metbod Definition Component. 147

7 Final Remarks . 152

References . 156

Samenvatting . 162

Introduetion

The research described in this thesis constitutes the first phase of a project that is

concemed with decision support systems for operational planning. Briefly

summarized, the goal of the project is to develop generally applicable software

tools to facilitate decision support system design. To give the context of our

investigation let us begin with an overview of our motivations.

Operational decision problems, also called operational planning problems,

frequently occur in business environment, in particular in production or

distribution processes. Regardless of what operational decision problems exactly

are, we can already remark that solving such problems requires substantial

computational efforts, thus seeking for computer support to manage these

problems is a straightforward idea. Software systems providing this support are

called decision support systems (DSSs). From the seventies on there were many

projects in DSS development directed at different decision problems, following

different approaches and resulting in different DSSs. Despite of the diversity of

these projects there are several general observations to make about DSS

development. Let us bere mention the following ones.

a) Developing a DSS for a specific operational decision problem is a time and

money consuming activity that is repeated for every specific decision problem.

b) DSSs are mostly relying on Operational Research as theoretica! and practical

background.

c) The DSSs developed for different operational decision problems exhibit

architectural and functional similarities. Apparently there is an underlying

common structure of DSSs that might be investigated and made explicit.

2 I ntroduction

It is al~o a remarkable fact that compared to the number of decision situations in

practice there are only few decision support systems that operate supporting a real

decision problem.

In this thesis we performa theoretica} investigation to confirm the feasibîlity of a

general metbod for developing DSSs. The essence of our approach is to make a

theoretical model of DSSs and use this theoretica} model as a blueprint when

constructing a DSS. We also have another intention with a theoretical model:

gaining a good insight in the field, explaining related phenomena, and last but not

least providing a clear terminology that facilitates funher discussion and research.

We maintain two requirements with respect to our model.

a) It is general enough to be able to model many different DSSs, that is it should

have a broad application domain.

b) It is sufficiently detailed so as to provide a 'high resolution' view of DSSs.

This makes it possible to use this model as the basis of constructing DSSs.

Such a model embodies a theoretical skeleton of decision support systems. Using

such a general skeleton as a guideline can make DSS development systematic,

thus probably less time consuming and erroneous than it is nowadays. This

skeleton can also serve as the theoretica} basis of a generic software tooi that

supports DSS development.

Notice that the above requirements are somewhat counteracting each other. On

one hand, stressing generality we may loose 'high resolution', i.e. detailed view.

Maintaining little structure within a model means putting a few restrictions on the

apptication domain but this often leads to a vague onderstanding of the modelled

phenomenon. Furthermore, if our model gives a 'low resolution' image of DSSs,

then there would be a large gap between theory and implementation, i.e. the

blueprint would be too rough to use. On the other hand, if we make a highly

detailed model with a rich structure then we necessarily include many assumptions

about the application domain. Such a detailed model facilitates implementation

but by having made many assumptions we may essentially reduce the dornain of

application.

We are trying to solve this contradiction between our goals by rnaking general

models with parameters, that is certain variables with unspecified values. In

addition, we want to use high level parameters, i.e. parameters the value of which

can be an expression in a high level language with great expressive power. In

Introduetion 3

such a case the rigidity of using the same model for many different decision

problems would be counterbalanced by the flexible parameters that are able to

incorporate various information.

Notice that by our approach constructing a decision suppon system would be

reduced to specifying problem dependent values for the parameters of the general

framework. Using a DSS development tooi based on an abstract DSS model with

parameters, DSS development would become 'simp ie' instantiating, that is

supplying input values of the parameters of the tooi. In such a way DSS

development would require less effon than having to design the whole DSS. The

first phase of our project - and hence this thesis is meant to establish a forma!

basis for this approach.

We remark that the approach sketched above is deviating from the common DSS

approach. According to the commonly practiced method one mostly develops a

problem specific decision suppon system that is applicable under tight conditions

only. The software we are aiming at is applicable to a broad range of problems

and is flexible by its parameters. Namely, if conditions in and around the decision

problem change we can suit our system to the changes by redefining the

parameters. The price of this flexibility is that our DSSs will be probably less

efficient than those based on a tailored mathematica! programming method. This

inefficiency, however, should be seen in the light of two other factors. First, a

system can be relatively inefficient but still satisfactory if computation times

remain within acceptable limits. Second, the development of a sophisticated,

highly problem suited system is mostly very expensive which can make it

unattractive. As the reader may have already realized, our approach towards

DDSs shows eenaio features that are mostly associated with Anificial Intelligence

(AI). In panicular, a highly parameterized system, the use of a language with

great expressive power are mostly AI attributes. We admit that indeed we are

trying to pass the traditional borders of DSS research and study the feasibility of

an AI-like methodology for DSSs.

We understand that the modelling-and-instantiating approach has its limitations.

No matter how sophisticated our model is, there might be situations where it

cannot be applied. This is the case if, for instanee the intrinsic structure of the

model we give is inappropriate for descrihing the given situation, or for handling

4 I ntroduction

the situation such problem dependent knowledge should be used that cannot be

expressed by our parameters. Nevertheless, if we carry out the investigation

thoroughly, it will be clear in advance where we can rely on the general model

and what are the points in a DSS where problem specitic beuristics are preferable.

During the development of our models we need to make certain choices,

assumptions that influence our results. Tbraughout this thesis we are making

these choices explicit. This provides the possibility of making other choices,

hereby it helps to choose other courses of investigation.

Our first restrietion is that we concentrale on automated decision making within

a DSS, disregarding for example interfacing, data and model management aspects.

This determines two main subjects of investigation: the problems to be solved by

· a DSS and the problem solving methods used by a DSS. Keeping these two issues

apart we get the explicit freedom to study and apply more solution methods to the

same class of problems or to investigate the application domain of a certain

problem solving method.

This thesis is organized as follows. In Chapter 1 we give an overview of decision

support systems and describe how a generic DSS model -a DSS skeleton is

related to software tools, such as a decision support system, a decision support

system shell or a decision support system generator.

In Chapter 2 we develop a forma! model of operational planning problems where

time is explicitly involved and we distinguish static and dynamic cases depending

on the role of time. To test the applicability of our formalism we describe

Travelling Salesman Problems (with and without time windows), Preeedenee

Constrained Scheduling Problems, Time Table Problems and Ship Loading

Problems in terms of the model.

In Chapter 3 we briefly discuss three global problem solving paradigms: search,

automated reasoning, mathematica! programming and we choose the search

paradigm for further elaboration. We investigate search problems and define how

can they be considered as a representation form of planning problems. We

introduce a standard manner to transform an arbitrary planning problem to a

search problem.

In Chapter 4 we develop a model of search that incOiporates space search, graph

search and local search explaining their relationship. We define a General Search

Procedure (GSP) and describe Genetic Algorithms, Simulated Annealing,

I ntroduction 5

Threshold Accepting, Depth-frrst Search, Breadth First Search and Best First

Search as subtypes of our GSP. For stochastic optimization procedures we prove

convergence propenies within our model.

Chapter 5 is devoted to genetic algorithms. Beyond the advantage that they

generalize other search methods, such as includes simulated annealing, threshold

accepting or hili climbing, genetic algorithms show a reasonable performance on a

wide class of problems and they can be easily adapted if the problem in question

changes. We make a generalization of genetic algorithms and we obtain a type of

search procedures where problem dependent (heuristic) componentscan be clearly

located. Hereby we believe to reach a good balance, that is a widely applicable

search procedure that is detailed enough to suppon designing problem oriented

instances of it.

In Chapter 6 we give the outlines of a generic software tooi facilitating DSS

development relying on the previously given models. By the results of Chapter 2

we can sketch the problem definition component based on a language in logica!

fashion. Based on our view on search, the definition of a problem solving method

requires the definition of the constituents of the GSP. Some of these constituents

can be defined such that they are applicable for many problems. This reduces the

definition of a search procedure to the definition of those components that require

problem dependent knowledge, heuristics.

CHAPTER 1

Decision Support Systems

When willing to set guidelines for designing decision support systems, the first

straightforward question one has to answer is: what are DSSs? In this chapter we

are trying to give our answer to this question.

1.1 Brief Overview of DSS Bistory and Literature

To answer the question about what a OSS is let us have a brief look upon their

history. The name decision support system was first used by Gorry and Scott

Morton (1971) and has made quite a career since then. Most of the authors of the

field, however, do not give a clear definition of what they mean by this term, as it

is observed by Sol (1985). Historically, DSSs originate from Electronk Data

Processing (EDP) on the practical side, while their theoretica! backgrounds lay in

Operational Research (OR). In Sol (1985) we find a short description of the

software evolution that has lead to DSSs from EDP through Management

lnformation Systems (MIS) in business environments, cf. Burch and Strater

(1974), Naylor (1982).

When it comes to the definition of a OSS there are at least two ways to do it:

specifying the functions of a OSS or giving a description of its components. The

most frequently quoted definition from Keen and Scott Morton (1978) belongs to

the first type staring that a DSS

6

Decision Support Systems 7

- assists managers in their decision processes in semi structured tasks;

- supports, rather than replaces, managerial judgment;

- improves the effectiveness of decision making rather than its efficiency.

Besides such broad definitions, cf. also Alter (1980), Keen (1986), there are more

specific ones like that of Anthonisse, Lenstra and Savelsbergh (1988) who identify

DSSs as interactive planning systems. Van Hee and Lapinski (1988) specify a

DSS as a system assisting managers in the control of a business process. The

functions of a DSS they distinguish are the following:

- performing data management functions;

evaluating decisions proposed by the user;

generating decisions satisfying some user defined conditions.

Observe that this definition puts up strong requirements about a DSS. According

to this view a DSS can be told about a decision and it can make a decision. On

one hand, this leads to a more restricted notion of a DSS than usual, on the other

hand it has a big advantage: it is specific enough to be used to decide whether a

given software system is a DSS or not.

As for the components of a DSS there is no universally accepted view either.

Sprague (1980) distinguishes a data base management system, a model base

management system and a user interface called the dialog generation management

system within a DSS. Bonczek, Holsapple and Whinston (1981) envisage a

language system, a knowledge system and a problem processing system, while the

system analysis of Sprague and Carlson (1982) yields four entities for

representations, operations, memory aids and control mechanisms.

From the software point of view DSSs are intended to be user friendly and

interactive programs. The methods they apply, their architecture and the

underlying philosophies are diverse, although an observation in Verbeek (1990) is

remarkable: the majority of the lirerature on DSS belongs to the field of

Operational Research. For several authors, e.g. Savelsbergh (1988), DSSs are but

an "approach towards the practice of operations research", and even in the abstract

framework for research on decision support systems Sprague (1980) mainly

considers models of the equational type and methods of optimizatîon based on

linear, dynamic or stochastic programming. Recently, another paradigm, Artificial

Intelligence (Al) is entering the field of DSS. Bonczek, Holsapple and Whinston

(1983) and Van Hee and Lapinski (1988) consider incorporating Artificial

Intelligence methods into DSS; the approach of Eiben and van Hee (1990) bas a

8 Chapter 1

strong AI accent as well.

Throughout the development of Anificial Intelligence, cf. Nilsson (1982),

Winston (1984), Shapiro and Eckroth (1987), many important notions were

introduced. Here we mention two important contributions to the theory and

practice of computing science: the notions of knowledge representation and

symbolic computation. The main lesson we have learnt from knowledge

representation, cf. Brachman, Levesque and Reiter (1989), is that the same

abstract knowledge can be formulated and stored in entirely different ways, e.g. by

equations, formulae, logica! frames. Symbolic computation is mostly understood

as an alternative to classical numeric computation that is typical for OR methods,

in particular mathematical programming. From the "application of theorem

proving to problem solving", Green (1969), it has led to using logic as a language

for computation, Kowalski (1974), and to logic programming, Lloyd (1987).

Nowadays there are many working software systems that are based on automated

logical reasoning; the best known merobers of this family are the so called expert

systems, see Waterman (1986). Another important AI feature is the separation of

domain knowledge and computation mechanism. This separation actvances

flexibility in defining and modifying the problem at hand or the applied problem

solving method. We believe that incorporating AI methods into DSS research and

practice broadens the scope of DSSs and helps better understanding and exploiting

of problem solving beuristics in decision support.

1.2 Operational Decision Mak:ing

To present our view on decision support systems let us first specify what we

mean by a decision situation: in a decision situation a decision maker has to

(re)act in an environment in order to preserve or achieve certain conditions. A

decision is thus a control action of the decision maker that is meant to influence

the environment. In general one can distinguish three classes of decision

situations: those concerning strategie, tactic and operational issues.

Example 1.1

When setting up new factorles we encounter decisions at different levels. A

strategie decision is e.g. to build four factorles in rour different countries. Such a

Decision Support Systems 9

decision is to meet very general requirements, like that of being less dependent of

local troubles, for instanee of natura! disasters or politica! changes. To make such

a decision presumes awareness of the phenomenon of 'local trouble' and requires

ability of estimating its likelihood. A strategie decision has a long term effect;

since complete factorles cannot be moved without substantial effort they will

probably remain at their locations for decades.

A tactieal decision is to determine whether to instaU assembly lines or flexible

production cells in each factory. Choosing between the two can rely on better

formulated goals and more solid knowledge than in a strategie issue. Think of the

fact that assembly lines are appropriate for a mass production, while flexible

production cells are more suitable to order oriented production. Such a decision is

easier to withdraw but still at high costs, so it probably will not be reconsidered

for years.

Operational decisions need to be taken daily or weekly, for example to de termine

what to produce to satisfy the costurners orders. Such decisions are triggered by

rather strictly formulated goals, e.g. we need to deliver 5000 of item number 2

tomorrow, and might be made day by day.

D

The above classification is of course not strictly forma!; whether or not a

decision is strategie ortactie is somewhat arbitrary. Nevertheless, in strategie and

tactic decision situations there ·are so many factors to take into account and such

an extent of uncertainty that every attempt to model them formally has serious

limitations. Therefore, we only deal with operational decision problems along this

study, that is we restriet ourselves to problems where

decisions have a short term impact (several hours to several days);

a sound model of the decision situation can be given.

Such a restrietion about the application domain of a DSS seems to guarantee that

we can handle problems within this domain and provide sufficient support to the

users. This is, however, a hasty condusion since even these simplified situations

can lead to forma! models that yield mathematically intraetabie problems, cf.

Garey and Johnson (1979).

Example 1.2

To illustrate an operational decision problem let us take a time table problem in a

10 Chapter 1

school. The data model of the decision environment consistsof the description of

the relevant objects under consideration and the relationships between these

objects. For instanee

- classes, that is groups of students;

subjects such as mathematics, geography, English, etc;

teachers;

- classrooms;

- lecture hours;

can be the objects given and the corresponding relations can teil which teacher is

qualified to teach mathematics, how many English lessons do the classes need per

week, etc.

Furthermore we can formulate conditions that need to be satisfied, e.g.

'a) In any classroom at any timethereis at most one teacher teaching one subject.

b) The same class should not get the samesubject three times a day.

c) Alllessons on the samesubject for the same class should be given by the same

teacher.

Such conditions are called constraints, they are either satisfied or violated and

therefore are qualitative.

The goal in this decision situation is to make a weekly schedule for the school

such that each group gets every subject it needs in a week. To satisfy this goal a

decision maker has to make elementary decisions, i.e. assignments of classes,

subjects, teachers, classrooms and lecture hours and has to compose a correct and

complete time table from such assignments. A correct time table satisfies all the

constraints, a complete time table has all the lectures scheduled, that is each group

gets each of the needed subjects.

Besides constraints there can be criteria given. A criterion is a quantitative

measure that rates a certain feature, e.g. the amount of idle lecture hours of a

class. Criteria are often subjects of optimization, that is one can be aiming at

decisions that realize the lowest or highest possible value due to a certain

criterion. In a school we might prefer time tables that minimize the number of

idle hours of each class. Criteria can also be used to enforce constraints by

measuring the rate of violation of a certain constraint. For instance, a rnadelling

decision can be that we delete constraint (b) above, add a criterion that measures

how concentraled a subject is scheduled and we aim at a time table that keeps the

Decision Support Systems 11

value of this criterion low.

D

Since clusters of decisions are often called plans we also use the term planner for

a decision maker. On the sarne grounds we refer to our application domain as

operational decision making or operational planning.

It is an important factor in our world view that within the class of operational

decision probierus we distinguish various problem types. By a problem type we

mean a group of probierus that are of the same basic character, for instanee

routing probierus or scheduling problems, see Lawler et al. (1989). Strictly

speaking, one can consider the notion of problem type in two different ways. One

possible view is to see a type as the set of all problem instances declared to

belong to it. Another way is to consider a problem type as the abstract framework

fixing the major outlines of a problem but still having parameters i.e. free

variables with unspecified values. Problem instances belonging to a type can be

obtained by giving values to these parameters.

It is important to notice that the border between different problem types is

arbitrary. For example, we can recognize a crudal difference between a travelling

salesman problem and a chinese postman problem, see Garey and Johnson (1979),

and describe them as two types. Nevertheless, we can also model them such that

they are basically of the same character thus forming subtypes of the same

problem type.

1.3 Our View on Decision Support Systems

Having discussed where DSSs can be applied let us give our view on what they

are. With respect to their functions we maintain the view presented by Van Hee

and Lapinski (1988), Eiben and Van Hee (1990). For maximal clarity let us

repeat that in a OSS we distinguish the following basic functions:

- perfonning data management functions;

- evaluating decisions proposed by the user;

generating decisions satisfying some user defined constrains and scoring high by

possibly given criteria.

12 Chapter 1

Example 1.2 continued

A DSS for time tables can suppon its user by sitnply displaying an actual time

table or by facilitating the lookup of the lectures of a certain teacher. Such

activities fall under the data management functions mentioned above.

Enabling the user to make changes on the actual time table the system can

compute and display the effects of these changes, declaring a new time table

correct or incorrect according to the given constraints, or calculating the

conesponding value of a criterion, e.g. the number of lessons not yet scheduled.

The thini, and most sophisticated tunetion mentioned above is that of generating

time tables automatically. In this case the DSS compotes a complete and correct

time table by itself or improves a certain partlal time table given by the user.

0

In this thesis we do not consider data mànagement and other related issues (such

as user interface, man-machine interaction); ·bere we focus our attention on

generating decisions.

Besides the question what a DSS does, there is of course another one: how well

it is doing it. There are several quality measures of a DSS. The most frequently

considered ones are effectivity, efficiency, robustness and flexibility.

Effectiveness is a measure of the obtained solutions with respect to some

evaluation criteria, it is the degree of fulfillment of wishes regarding a solution, cf.

Verbeek (1990). Robustness concerns the sensitivity of the system, i.e. how

sensitive the solutions are for changes in data. Efficiency is the speed rate of the

computation, measuring how fast the solutions can be obtained. Here we may

distinguish the net speed, die computation time of the DSS, and gross · speed

regarding the time used by the man-machine combination. Last but not least,

flexibility concerns the efforts needed to adapt the DSS to structural changes in

the planning environment or changes in the priorities of the planner. These

features are not independent, there is for instanee a _ well-known counterbalance

between efficiency and flexibility. One of the basic premises of our approach is

that we prefer · the latter, rather having a highly flexible system applicable to a

wide range of problems, than an efficient tooi for only a narrow application

domain.

Decision Support Systems 13

Example 1.2 continued

It is typical for practical decision situations that the environment is changing over

and over again. In a school it could mean that some teachers become ill or that

the management begins to prefer fewer idle hours of classes to well spreading of

subjects. This means that the constraints can vary or the criteria may change,

which requires that the user can adapt his system easily.

0

With respect to the componentsof a DSS we basically distinguish three of them:

a communication component, a problem description component (PDC) and a

problem solving component (PSC). Since we are primarily interested in

automated decision generation we direct our attention to the problem description

and the problem solving components. Both the PDC and the PSC must be able to

receive information from the user. When tilled up the PDC should contain a

description of the decision or planning situation and the actual problem to be

solved. Given the necessary inputs to the PSC it should contain a problem solving

metbod that is suitable to handle the problem specified by the PDC.

Example 1.2 continued

The PDC of a DSS for time table problems should contain the sets of lectures,

classrooms, teachers and lecture periods together with the basic relationships, e.g.

the qualifications of the teachers. Also the elementary decisions should be given

and the construction rules that define how to make a time table from them.

Naturally, the constraints deterrnining the correctness of a time table must be

represented in the PDC too. At last, the specification of possible criteria belongs

to the PDC as welt.

We can not say much about the PSC at this point since the way of problem

solving is not deterrnined by the problem. For time tables we can apply different

solution methods, from a classic OR method, see Even, Itai and Shamir (1976), to

genetic algorithms, cf. Colorni, Dorigo and Maniezzo (1991).

0

14 Chapter 1

1.4 Making Decision Support Systems: DSS Shells, DSS
Generators

Now that we have a certain view on what a DSS is, let us consicter the question

of how to make one. Sol (1985) reeommencts to investigate decision support

system generators as DSS design environments that "bridge the gap between

general tools and specific DSSs". Such general tools are software systems meant

to reduce the efforts and costs of making a DSS. The main assumption behind

using such tools is that DSSs have common general features conjoined by

application specific ones. Distilling the common features we can construct a

theoretica! skeleton of DSSs where the application specifïc constituents are absent.

Such a skeleton can be seen as a frame containing parameters where application

· specific information can be incorporated by specifying values for the parameters.

Such a skeleton or frame can be used in two different ways to facilitate DSS

development. The first possibility is to build a so called DSS shell, the second

one is to build a DSS generator.

A DSS shell is an implementation of the abstract DSS skeleton. Giving specific

values to the parameters the shell becomes instantiated, thus by fumishing the

shell with application specific information we obtain a complete DSS.

Example 1.2 continued

A DSS shen· to support the design of a DSS for time table problems can contain a

subshell to specify the problem to solve. Within this problem description subshell

we may distinguish further components, for instance:

- a component for data modeHing to define the objects under consideration

together with their relationships (e.g. the sets of classes, classrooms, teachers

and lecture periods and the qualifications of the teachers, weekly neects of

classes, etc.);

- a component for constraint description that neects to be filled with the

application specific constraints that have to be satisfied.

Goal specification and construction rules of time tables can be hard coded in the

system, since they are universal for all time table problems.

The above items can be envisaged as parameters of the problem description

subshell. For instance, the object specification sub-subshell may have 5

parameters: G, S, T, C, H standing for the set of groups, subjects, teachers,

Decision Support Systems 15

classrooms and lecture hours, respectively. This five tuple embodies type specific

information about time table problems. To describe a particular time table

problem we need to instantiate the shell by giving values for these parameters, i.e.

a set of groups, a set of subjects, etc.

D

Let us remark that the notion of a shell is not restricted to DSSs. A system shell

is generally meant as an implemented skeleton where only the frame of the whole

system architecture is fixed, many parameters are unspecified. These parameters

have to be given values in to obtain a complete system. According to a refined

view not any system that has parameters is recognized as a shell (think of a

program with input values), a shell is mostly seen as having high level parameters.

Here we encounter a crudal issue about shells: whether or not a system is a shell

depends on the level of its parameters.

Analyzing the basis of high and low level di vision of information one can notice

a strong correlation with the border between problem type and problem instance.

Namely, information that defines a particular problem instanee within a given

problem type is seen as low level one. Information, the modification of which

leads to another problem (sub)type is seen as high level information. For easy

reference to these two kinds of information let us make a convention using the

term data for low level and knowledge for high level information.

The second way of making use of an abstract DSS skeleton is to build a DSS

generator based on it. A DSS generator is also based on an implemented DSS

skeleton, its input is knowledge specifying a problem type and a solution metbod

type, its output is a DSS as executable software.

Observe the relation between the three notions we use: DSS, DSS shell, DSS

generator. We see a DSS as a system with low level input parameters that can

only receive data such as the number of classes, etc. These data define a problem

instanee and an instanee of a solution method; having these two defined the DSS

can make decisions as output. A DSS shell is a system with both high and low

level parameters; incorporating knowledge through the high level parameters the

shell becomes a DSS. A DSS generator bas only high level parameters receiving

problem specific knowledge as input and producing a DSS as output. Notice that

the difference between a shell and a generator resembles the difference between

16 Chapter I

an interpreter and a compilerfora formallanguage.

After making these distinctions we can be more specific about flexible systems

mentioned in the introduction. As it tums out from the foregoing we maintain the

vision of having DSSs with low level parameters. These parameters are rigid, in

the sense that setting them to new values leads only to instantial changes, thus we

cannot expect great flexibility in a OSS. On the other hand DSS shells and DSS

generators possess high level parameters for incorporating knowledge. Changing

such knowledge (e.g. incorporating new constraints) changes the structure of the

problem not only the instance. Thus, this is the level where flexibility can be

included, that is strictly speaking we are not aiming at flexible DSSs but at

flexible DSS tools shells and generators.

A big advantage of using general tools like a DSS shell or a DSS generator is

that it reduces the efforts and time of DSS design. The shortcoming of such an

automated development is that the class of DSSs we can make is previously

determined by the tooi. Namely, DSS shells and DSS generatorscan have wide or

narrow application domains. This depends on the application domain of the DSS

skeleton they are based upon, and after all upon whether the abstract DSS model

used is general or not.

Example 1.2 continued

In the DSS shell sketched for time table problems the goal specification and plan

construction were built-in features. This indicates that the shell was tailored for

time table problems. Nevertheless, in a DSS applied for routing probieros these

items might be entirely different. Therefore, a highly flexible DSS shell or DSS

generator meant to treat time table problems as well as routing problems should be

based on a general DSS model, such that specifying both problem types can be

done by its parameters.

Likewise, it is quite probable that solving a time table problem requires another

salution metbod than solving a routing problem. Accordingly, in a flexible DSS

shell or generator also the PSC should be based on a general model problem

solving such that many different salution procedures can be defined by the

parameters.

0

Decision Support Systems 17

The main goal of our project is to make a widely applicable DSS development

tooi. First we are carrying out a theoretica! study. We want to create a DSS

skeleton - an abstract framework of a DSS and establish a method to design

DSSs guided by this skeleton. It is straightforward that we wish to have a

skeleton with wide application domain. The major guidelines for our research can

be summarized as follows:

- we concentrate on the automatic decision making function of a DSS;

we try to separate domain knowledge about the problem to be solved and

procedural knowledge conceming the problem solving method;

we aim at a widely applicable model of operarionat planning problems by

means of high level parameters;

we intend to make a widely applicable model of (a class of) solution methods

applicable for such problems.

An additional objective of our study is to obtain a clear terminology that suppons

good onderstanding of the related phenomena and facilitates funher research and

discussions.

Before going into detailed studies let us introduce the basic taxonomy of

planning.

3 planner

2

modelled world

the highest level; the planner is rnanipolating
(creating and modifying) plans in order to find
one that causes desired changes in the status of
the world

plans (decisions) are at the medium level in the
hierarchy, we see them as executable entities,
their execution changes the status of the world

at the lowest level we find the world that can
change its status by itself and can also be
changed by executed plans;

In this hierarchy entities of a certain level have influence on the ones on one

level below: a plan changes the world, a manipulation modifles a plan. For

instanee teacher x begins a lecture with class y at z o' clock is a plan, its

18 Chapter 1

execution brings changes in the world. Executing the command interchange

English and Mathernaties in the time table a plan (the time table) is changed,

therefore it is a manipulation.

In these tenns an operarionat planning problem has to do with the first two

levels. Therefore, a model of planning problems should contain a model of the

world and a model of plans extended by the facility of defining what kind of plan

is wanted. We elaborate such a model in the next chapter.

Problem solving can be associated with levels number 2 and 3. A model of

solution methods should describe how to perfonn manipulations in order to

achieve a desired plan. This will be investigated in Chapter 3 and Chapter 4.

CHAPfER 2

Planning

Like many other notions of computing science the term planning is loaded with

an everyday meaning. Such notions unlike most of the mathematica! terms

appear to have a formal meaning even without a definition. (Think, for instance,

of the notion of plan as opposed toa consistently complete join semi-lattice.) This

appearance causes a very undesirable effect, namely that relatively little effort is

being made to clarify the foundations. The terminology of planning is far from

being unambiguous, many interpretations can be given to the same word.

In this chapter we investigate planning and establish our formal interpretation. .

We present a conceptual model of planning problems. Setting the basic

assumptions, identifying the most relevant factors and their relationships we are

aiming at

a coherent planning theory by systematic top-down analysis;

- a good insight in the componentsof planning problems so that we can derive a

method to specify planning problems.

We try to make the choices consciously during the development of the theory,

such that the restrictions and their reasons are clear. Hereby the application

domain of the theory is visible and so are the possible extensions or restricted

versions of our theory. Natorally we do not claim that our interpretation is the

only good one, but it forms a sound format basis for further investigations.

Notice that we did not explicitly mention that we study operational planning

problems here but that is the application field we have chosen.

19

20 Chapter 2

2.1 Model of Planning Problems

According to the hierarchy sketched in Chapter 1 the two layers we are concemed

withare

1) the wor/d which can change its status either by itself or by actions of the

planner;

2) actions and plans consisring of actions that are executable entities acting on

the world; the effect of their execution is that the status of world changes.

A planning situation includes the description of the cireumstances in the world,

the description of plans and their influence on the world. A planning problem can

be given in the context of a planning situation by giving an initial status of the

world and certain goal status. Solving a planning problem the planner wants to

·act towards changing the status of the world by a plan such that a goal status is

reached. Often, there are also requirements about the way a goal status is reached,

e.g. it must be done as cheap as possible.

Although this interpretation of a planning problem smoothly matches our

intuition, we slightly modify it. In the sequel we assume that solving a planning

problem the planner wants to have a plan that can transform the initial status to a

goal status. A solution of a planning problem is then a plan which, if executed,

transforms the world to a goal status. The advantage of this reformulation is a

consequent terminology where the solution of a planning problem is a plan and

not the fact that a certain world status is reached.

The first obvious step in elaborating our theory is to model the world by

introducing wor/d states as abstract entities rnadelling the status of the world at a

certain moment. lntuitively we consider world states as snapshots taken of the

world at a certain moment.

A crucial characteristic of planning problems is that time is involved.

Depending upon the role of time we can distinguish two kinds of circumstances:

in a static case the world does not change its status unless an action or plan is

executed, in a dynamic one the status· of the world can be changed any time

without being triggered. In the next sections we develop a detailed formal theory

of planning problems extending the results of Ei ben (1989).

Planning 21

2.1.1 Static Case: the World as a State

In the static case it is assumed that a world state is maintained until an action

takes place, with other words, every change in the status of the world is caused by

an action.

Example 2.1.1.1 Blocks-World Problem (BWP)

In the Blocks-World Problem, Nilsson (1982), we have a table, several blocks on

the table and a robot arm that is able to put a block onto another one or onto the

table. In the beginning the blocks are in an initial configuration. The objective is

to make up a sequence of movements of the robot arm that converts the blocks to

a given goal configuration. In terms of world states, actions and effect we can

describe the BWP as follows.

World: the table, the blocks and the robot arm;

States: block configurations;

In. state: initial configuration of the blocks;

Actions: moving a block onto another one or onto the table;

Effect: the configuration changes, since the position of the moved block

changes;

Plans:

Goal:

IJ

sequences of actions (for one robot arm);

blocks are in a given specific configuration.

Example 2.1.1.2 Travelling Salesman Problem (TSP)

The travelling salesman problem is well-known in OR, cf. BeUmore and

Nemhauser (1968). lts basic version reflects a simple decisîon sîtuatîon that is

still probably intraetabie in computational sense, i.e. it is NP-hard, see Garey and

Johnson (1979).

There is a number of cities given together with data descrihing the distances

between them. A salesman bas to make the shortest possîble tour visiting all the

cities and retuming to bis home city.

World: the citîes and the moving agent, distances;

States: position of the agent, list of visited cities;

22

In. state: start position of the moving agent (a city), no cities visited yet;

Actions: moves from one city to another;

Effect: the position of the agent changes, a city becomes visited;

Plans: sequences of actions (for one agent);

Chopter 2

Goal: all the cities are visited exactly once, the agent is back to the start

position,

the total distance of the tour is minimal.

D

Observe that the items world, initial state and the first part of goal belong to the

first layer of our taxonomy, actions and plans belong to the second one, while

effect lays the necessary conneetion between the two layers.

Remark 2.1.1.3

Taking a static or dynamic model for a certain situation is not arbitrary. For

instance, let us take time windows into account for TSP, cf. Savelsbergh (1988).

If we do not want to incorporate time into the world states (and remain statie),

then we need to introduce a state underway that is maintained for a period of time

and then ceases (turns to being at a new city). This actually means that we apply

a dynamic model.

D

There are three shortcomings of the scheme of the above examples. This scheme

provides a too low resolution view on planning problems in the following sense.

First, we cannot distinguish changing constituerits of the wörld from permanent

ones, e.g. the actual position of the agent from the distances between cities.

Entities of the frrst type can be changed by an action hence they should be

included in the world states. Information of the second kind is characterized by

not being changed by actions. Upholding this information by the states is

superfluous, hence it should be put as background data. This problem will be

discussed further in section 2.2.

The second shortcoming is that we cannot distinguish possible and impossible

actions. Namely, actions are not always executable in reality, consequently not

every well constructed plan is executable either. Executable in reality is a notion

with respect to the first layer, telling that something can or cannot be done. We

Planning 23

shall treat it on the second layer defining a predicate allowed such that allowed

actions and plans are all executable.

lixarnple 2.1.1.4
Reasanabie definitions of allowability to the above examples are the following.

BWP : moving block A onto block C is allowed if nothing is on A and nothing is

onC;

TSP : move from A to B is allowed if the agent is in A and B is not visited yet.

IJ

Third, when giving the goal in Example 2.1.1.2 we did not distinguish the

condition about the state of the world (all the cities are visited exactly once, the

agent is back to the start position) and the evaluation criterion for plans (the total

distance of the tour is minima!).

These observations lead to a more detailed vision of planning.

In a planning situation we have the first and the second layer and their connection,

that is

1) a set of world states;

2) a set of actions;

3) a predicate allowed on actions with respect to states;

4) a function effect which assigns a state to the pair of a state and an action.

Furthennore, we need certain general composition rules that specify how to

construct plans from actions and how to extend the predicate allowed and the

function effect from actions to plans.

A planning problem contains all the necessary infonnation on what is given and

what is wanted, that is it consists of

I) a planning situation;

2) an initia! world state of this planning situation;

3) a condition defining the goal states;

4) an evaluation criterion for plans.

A salution of a planning problem is a plan that - when applied to the initia! state -

leads to a goal state. An optima! solution is a salution if it realizes the minimal

24 Chapter 2

(maximal} value of the given criterion.

In the sequel we conven this detailed, still informal description into a

mathematica! model.

Definition 2.1.1.5

A planning universe is an ordered triple (S, A, (T,<}} of non empty sets, where

- S is a set of world states with a special element o e S called nil;

- A is a set of actions;

- (T, <) is an linearly ordered set of time instances.

0

The ordering <on Toften remains implicit, mentioning only T insteadof (T,<}.

Definition 2.1.1.6

An operation is a pair (a,t) e A x T and time : A x T -1 T is a projection

function, such that

V t e T : time(a,t) = t

holds.

0

An operation (a,t) denotes the action a executed at the time t. Notice that hereby

we modify our view assuming that it is an operation that changes a world state.

To determine the set of applicable operations with respect to a certain state we

introduce the following relation. Let us also remark that in our view operations

have no duration.

Definition 2.1.1. 7

The allowability relaiion of a planning universe (S, A, n is arelation

a: S x (A x n -1 {true,false},

such that

V se S V a e A V t,t e T: a(s,(a,t}} = o.(s,(a,t)).

lf a(s,(a,t}) then the operation (a,t) is allowed in the state s.

0

Planning

Definition 2.1.1.8

Let (S, A, 1) be a planning universe, a an allowability relation. An effect­

junetion of (S, A, 1) is a function

e:Sx(Ax1)-;S

such that for every s e S, a e A, t,t e T:

a) e(o,(a,t)) = o;

b) a(s,(a,t)) = false ~ e(s,(a,t)) = o;

c) e(s,(a,t)) = e(s,(a,t)).

D

25

The function edescribes the effect of the operations on states, that is e(s,(a,t)) e S

is the state obtained by applying the operation (a,t) to the state s.

Observe that the condition of Definition 2.1.1.7 and (c) in Definition 2.1.1.8

institute a sort of time independence. These conditions immediately follow from

our view of static cases as given in the introduetion of this chapter. Namely, we

presurne that without committing an operation a state is not changed, that is it

keeps all its features and properties. At this level of abstraction we consider two

properties of a state: which operations can be applied to it and what effect the

operations have on it. The above definitions establish that for operations the

included time instanee is irrelevant in determining WHA T happens, it is

determining only WHEN it happens. Nevertheless, for plans (introduced later) the

time instances will be necessary todetermine their effect, that is the WHAT, even

in the static case.

The kemel of the concept of allowed is enclosed in (b) in Definition 2.1.1.8 that

founds the relation between e and a, in fact the relation between executable and

allowed. Notice the role of the nil state o shown in (a). It is a universal absorber

state that permits to formulate the effect of unexecutable operations the same way

as that of executable ones: as a state transition. Formally, the usage of o makes it

possible to define e as a complete (not partial) function on S x (A x 1). The

notion of an executable operation is modelled as an operation that yields a state

different from o. The predicate allowed is for a "syntactical" characterization of

executability, in practice a will be used to specify the real domain of e.

26

Lemma 2.1.1.9

Tl a e A Tl t e T : a(o,(a,t)) = false.

Proof

lt is obvious from the definitions.

D

Chopter 2

At this point we have all the ingredients neerled to formalize the notion of a

planning situation.

Definition 2.1.1.10

A (statie) planning situation is a 5-tuple

(S, A, T, a, e),

where the triple (S, A, 1) forms a planning universe, a is an allowability relation

and e is an effect function on (S, A, 1).

D

A planning situation captures the most relevant factors of the world under

consideration. To define a planning problem, however, we also need to know

what a plan is and what the problem is, i.e. what kind of plan is wanted as a

solution.

Defmition 2. U .11
A plan is a fini te set of operations. A plan P e 1'(Ax1) is called a section iff

V o
1
,o

2
e P : time(o

1
) time(o

2
).

Hereby the function time can be defined for any non-empty section P by

time(P) = time(o)

taking o e P arbitrarily.

lf P is a plan then a non empty section R ç;; P is called a maximal section of P if

for every section Q ç;; P it holds that

time(R) = time(Q) ::::} Q ç; R.

D

It is easy to see that we can uniquely divide any plan into disjoint maximal

sections. Before the next definition reeall that for an arbitrary set X with

cardinality n e IN a numbering is a bijeetion

Planning 27

v: {1, ... ,n) ->X.

Definition 2.1.1.12

If a plan P is divided into n maximal sections then the natura/ numbering of the

secdons is a bijeetion

v: { 1, ... ,n) { P' e 1'(A x T) I P' is a maximal section of P)

such that

V i,j e {1, ... ,n) : i< j ~ time (P.) < time (P .),
l 1

where P. denotes v(i) for the sake of convenience.
l

0

Proposition 2.1.1.13

For any plan there is one and only one natoral numbering.

Proof

lt is obvious, the ordering on T implies the existence, unicity follows from the

unicity of the maximal sections.

0

Defmition 2.1.1.14

[P
1
, .. . ,P n] is the parrition of a plan P (denoted as P- [P

1
, .. . ,P n]) if P

1
, .. . ,P n

are the maximal sections of P numbered by the natura! numbering.

0

The following proposition gives a simple characterization of the partition of a

plan.

Proposition 2.1.1.15

For every planPit holds that P- [P1, .. . ,Pn] iff P 1, .. . ,Pn are sections such

that

n
a) P =:; u P.;

i=l l

b) time(P
1
) < time(P 2) < ... < time(P/

Proof

The direction is self-evident by definition.

To prove the {::::: direction let P
1
, .• . ,P n be sections such that (a) and (b) hold. By

28 Chopter 2

{b) we have that P
1
, .. . ,P

11
are numbered in the natura! way, thus all we need to

show is that they are all maximaL If they were not, then we had an i e { 1, ... ,n}

and an o e P \ P. such that
l

time(o) = time(P .).
' l

But (a) implies that o e P. fora section P. (j "# i), hence
J J

time(P .) = time(o),
J

thus

time(P .) = time(P .)
J l

with i"# j which contradiets (b).

D

An important special case within our planning theory is obtained if we restriet

· ourselves to sequentia! plans, where every section is a singleton. Due to

Proposition 2.1. 1.15 such plans can be simply sequentialized by the time of their

operations, that is they can be written in a form {o
1
, ... , o

11
} with time(o

1
) < ...

< time(o).
11

Now we have everything prepared to extend effect and allowed from operations

to plans. Nevertheless, before we can define the effect of a plan based on the

effects of its operations, we have to make a choice about the effect of a section.

Hereby we encounter a hard problem: how to handle the effect of more operations

at the same time. Here we sketch two ways of treating this problem.

Basically we can either consider mutual influence between equitemporal actions

or not. If we do, then we cannot determine the effect of a section from the single

effect of its elements. In this case we have to define the effect of every section,

thus we have to define an extended effect function as a primitive.

We decide to assume the opposite of the above, that is that equitemporal actions

do not interfere. Hence we can decompose the effect of a section which implies

that the extended effect function wil! not be a primitive, it will be computed by

the effect function e.
Notice that this decision introduces new difficulties. For instance, if the

operations o and o' act in parallel at the same time instanee then we can take

either e(e(s,o),o') or e(e(s,o'),o) as the effect of {o, o'} on the state s. Thus,

computing the effect of parallel actions sequentially introduces ambiguity, since a

section with k different operations can be numbered in k! different ways that

Planning 29

detennine k! different sequences, thus we might have k! different outcomes. To

exclude this ambiguity we define the effect of sections such that for ambiguous

cases it yields the nil element o.

Definition 2.1.1.16

The extended ejfectfunction of a planning situation (S, A, T, a., e)

e' : S x ~AxT) -++ S

is defined for any s e S and finite P e ~AxT) in the following way:

if P = 0 then e'(s, P) = s ;

if P = {o
1
, .. . ,on) is a section with an arbitrary numbering of its operations and

for every subset {il' ... ,ik) ç { 1, ... ,n} and every perrnutation 1t of

{il' .. . ,ik)

e(. .. e(s,o {")) .. . ,o {')) = e(.. e(s,o.) .. . ,o.)
ltll ltlk 'I 'k

holds, then

e'(s, P) = e(.. . e(s, o
1
) ...• on) ;

if P = {o1, .. . ,on} is a section and there exists a subset {il' .. . ,ik} ç {1, ... ,n}

and a permutation 1t of {i
1
, •.• ,ik} such that

e(.. . e(s,o {' J) .. . ,o r·)) -:1: e(.. . e(s,o.) .. . ,o.)
ltll ltlk '1 'k

then

e'(s, P) = o;

if P- [P
1
, .. . ,Pn] then e'(s, P) = e'(... e'(s,P

1
) ... ,Pn).

IJ

Notice that the intuitive interpretation of time is forrnalized right here by using

the natura! numbering to order the sections of a plan. This establishes that the

effect of the operations with a smaller (earlier) assigned time instanee precedes the

effect of the ones with a larger (later) time instance.

Definition 2.1.1.17

The extended allowability relation a.' establishes allowability of plans with respect

to states. It is a Boolean function

a.': S x ~AxT) -++ {true,false}

such that for any s e S and finite P e ~AxT):

if P = 0 and s = o then a.'(s, P) = false;

30 Chapter 2

if P = 0 and s :;::. o then a.'(s, P) = true;

if P = { o
1
, ... ,on} is a section with an arbitrary numbering ofits operations, then

a.'(s, P) a.(s,o
1
) A a.(e'(s,{o

1
]), o

2
) A ••• A a.(e'(s,(o

1
, .. . ,on_

1
]), on);

if P - [P
1
, •• • ,P] then

, n
a.'(s, P) = a.'(s,P

1
) A ... A a.'(e'(... e'(s,P

1
) •.. ,Pn_1),P/

We say that a planPis allowed in a state s if a.'(s, P) = true.

0

By the next proposition we show that allowed and effect are properly extended

from operations to plans.

Proposition 2.1.1.18

-Let (S, A, T, a., e) be a planning situation, a.' the extended allowability relation

and e' the extended effect function. Then for every s e S and P ç; A x T it holds

that

a.'(s, P) = false {::::} e'(s, P) = o.

Proof

For the sake of convenience we denote a.'(s, P) = false by..., a.'(s, P).

1) The case of P = 0 is trivial by Definition 2.1.17.

2) If Pis a section {o
1
, .. . ,on} then

..., a.'(s, P)

iff (by Definition 2.1.1.17)

..., a.(s,o
1
) V ..., a.(e'(s,{o1}), o

2
)) V •.• V ..., a.(e'(s, {o

1
, •• . ,on_

1
}), on)

iff (by Definition 2.1.1.8)

e(s,o
1
) = o V e(e'(s,{o

1
}), o2)) = o V .•• V e(e'(s, {o1, •. • ,on-l }), on)= o

iff (by Definition 2.1.1.16)

e'(s, P) = o

3) If P- [P
1
, .. . ,Pn] then

..., a.'(s, P)

iff (by Definition 2.1.1.17)

..., a.'(s,P1) V ..• V ..., a.'(e'(... e'(s,P1) ... ,Pn))

iff

Planning

3 k e { 1, .. . ,n} : .., o.'(e'(.. . e'(s,P
1
) .. . ,P k))

iff (by (2) above)

3 k e { 1, .. . ,n} : e'(e'(... e'(s,P
1
) ... ,Pk_

1
),Pk) = o

iff (by iterating (a) of Definition 2.1.1.8 and Definition 2.1.1.16)

e'(.. . e'(s,P 1) .. . ,P n) = o
iff (by Definition 2.1.1.16)

e'(s, P) = o.

0

Definition 2.1.1.19

31

A planning problem is defmed by a planning situation (S, A, T, a, e) and a triple

(s, y, K), where s e S is the initia/ state, y : S -+ { true, fa/se} is the goal condition,

such that y(o) =fa/se and K : JI(A x T) -+ of is a (multidimensional) criterion to

minimize.

A plan P is a solution of the planning problem if

"f(e'(s, P)) = true;

it is an optima/ solution of the planning problem if it is a solution and

V P' e JI(A x D : [y(e'(s, P'))::::} K(P) S K(P')],

where for x= (x1, .. . ,xk) e IRk and x'= <x;xj) e of
x s x' iff V ie {1, .. . ,k} : xi S: xj.

0

Let us make two remarks with respect to this definition. First, note that by the

presence of K we are not restricted to optimization-like planning problems. If we

are not aiming at any optimum then we can define K constant through 'P(A x T).

The second is that K could be generalized to an arbitrary condition y ' on plans. In

this case a planning problem would be (S, A, T, a, e) with (s, y, y ') and the

condition V P' e JI(A x D : [y(e'(s, P'))::::} K(P) s IC(P')] would be a special case of

'Y '(P).

Proposition 2.1.1.20

Every solution of a planning problem is allowed, that is if (S, A, T, a, e), (s, y, K)

is a planning problem and P ç;; A x T is finite then "f(e'(s, P)) implies o.'(s, P).

Proof It is a self-evident corollary of the definition of y and Proposition 2.1.1.18.

0

32 Chapter 2

2.1.2 Dynamic Case: the World as a Process

Reeall the introduetion of Chapter 2.1; the characteristic feature in a dynamic

situation is that a world state can change without ha ving an action executed.

Example 2.1.2.1 Preeedenee Constrained Scheduling Prob1em (PCSP)

We have a finite number of jobs and machines that can perform jobs. Given a

predecessor relation on jobs, a description of the abilities of the machines (which

job can be done on which machine) and the duration of performance for jobs and

machines, we have to schedule the jobs on the machines such that no job is

performed before its predecessors have been completed and the total processing

time is minimal, cf. Garey and Johnson (1979).

World: machines, jobs, which job can be done on which machine, predecessor

relation on jobs, durations;

States: pairs of machines and jobs (machine performing job), list of completed

jobs;

In. state: no machine is performing any job, no jobs completed;

Actions: beginning a job on a machine;

Allowed: a free machine is allowed to begin a not completed job if the

predecessors of the job have already been completed and the machine

has the ability to perform the given job;

Effect: for a period: machine is performing job, later: machine free and job

completed;

Plans: sets of operations where more actions can take place at the same time;

Goal: all the jobs are completed;

Criterion: the total processing time is minimaL

0

Observe that in a PCSP one operation triggers two state transitions at two

different time instances: first there is a new world state maintained for a period of

time (the machine is busy with the job), then there is another state transition that

leads to the final result of the given action (the machine becomes free and the job

becomes completed). This phenomenon can be viewed as having a change in the

world state that is not caused by an operation (at the time of the change). We

Planning 33

consider two possibilities to model dynamic worlds.

First, we can drop the intuitive basis of world states and give up the view that a

state is a snapshot of the world at a certain moment. lntroducing entities that

rather belong to periods than to moments we can try to capture the problem by

these new objects.

The second possibility is to keep the state-snapshot vision but embedding states

into a time flow. This would lead to the notion of a process and the replacement

of the state-operation-new state construction by a process-operation-new process

model as the next example illustrates.

Example 2.1.22

Let a 4-tuple (m.j,b,c) stand for a machine m, a job j, a beginning time b and

completion time c to describe that m is performing j between b and c. Such a

4-tuple gives a partial world description over the period of time between b and c.

To obtain a complete view on what happens at a time instanee t we have to check

the set of all these 4-tuples taking their 'projection' on t. Thus a set of such

4-tuples can be seen as a world description. The tuple (mj,b,c) can be seen as

some mixture of an operation and irs effect, that of beginning j on m at b, coupled

by telling that m will be occupied between b and c and that j will be finished at c.
A set of such 4-tuples thus also can be seen as some kind of plan.

Let us keep states as given in Example 2.1.2.1. Introducing a predicate ready

and a predicate busy we can identify a state by a set of atomie formulae that are

true in that state. If we now introduce processes as parameterizations of the world

states by time then the operation of beginningjon m at b tums the process f into

the process g as exhibited below.

s
2

= {ready(])}

s
1

= {busy(m.j)}

s =0
0

0

s
............ g

·-·-·-·-·-·-·-~--------- f

b c T

34 Chapter 2

After studying the two possibilities we have chosen the second one. The reasoos

to choose the process based approach are threefold.

- The original interpretation of world states is kept: they can still be interpreted as

modelling the world at a eertaio moment.

- Takh1g processes as the basic entities changed by operations, we preserve the

previous construction of planning problems: the notions operation, allowed and

effect can benamrally extended to processes.

- In Example 2.1.2.2 the operations, effects and states are mixed up, something

that can be advantageous for an economical representation formalism, but not

for a conceptual model that should clarify the matter.

Therefore, in this section we extend the static world of states to a dynamic world

by introducing processes as parameterizations of the world states by time. Taking

· processes as the basic endties to be changed by operations, we introduce dynamic

planning problems where an initia/ process and cenain goal processes are given

and we want to have a plan that transforms the initia! process to a goal process.

In the sequel we formalize this concept of planning preserving as much as

possible from the static model. Definitions and propositions that are identical to

those of section 2.1.1 are not repeated.

Defmition 2.1.2.3

A processof a planning universe (S, A, 1) is a panial function

f : T S \ (o). We a lso introduce a special absorber process that will be

denoted as 6 and called nil process. The notation FS,T stands for the set of all

processes of the universe (S, A, 1) extended by the nil process.

For notational convenience we shall denote F S.T by simply F if it can not lead to

confusion.

0

Example 2.1.2.4

Let us take an example from the so called qualitative physics, see Porbus (1984).

A bal! is dropped above a flame at the moment t. Falling down it goes through

several states eg. falling, falling and being heated and then finally being broken

when reaching the ground.

Planning 35

h
0

o -----­
!

hl - - - - - - - - - - - - - - - -

FLAME

h2 ----------------

Let us introduce the predicates falling-at, heated and broken and let us again

identify a state by a set of atomie formulae that are true in that state. Then the

environment can be modeled by the following states and time instances:

S v (falling-at(h) } v v (faffing-at(h) fl heated } v (broken }
hE[O,lOO] hE[O,lOO]

T =IR~
and the falling ball dropped at time t can be described by the following process f.

f('C) =

(fal/ing-at(ht)}

(falling-at(ht) fl heated}

(falling-at(ht)}

(broken}

"f < I t_'C<t hf/
reac ame

ift ~'C<t
reachf/ame leaveflame

ift ::;;'C<t.
leaveflame h!lground

.f <
I t hit ground - 'C

The exact value of h , t h"'- , t1 ,11 and thi d can be calculated by
t reac ~,..me eave1 .ame tgroun

the well-known Newtonian laws of mechanics if h
0
, h

1
, h

2
are given.

D

Notice that a state is again identified by the set of atomie formulae that are true

in it. We also rnaintaio the so called Closed World Assumption, stating that if an

atom is not contained in a state s then it is not true ins. By this representation of

states their inner structure is visible in the example: roughly, states are subsets of

the set (falling, heated, broken } . This implies that we have two possibilities of

depicting a process. The first one is to indicate every state on the vertical axis,

that is every element from 1'((falling, heated, broken }). This leads to 8 items

and the following figure.

36 Chapter 2

s

ffalling ,heated,

broken)

{ heated,broken}

ffalling,broken}

ffalling,heated)

{broken)

{heated}

ffalling)

0

t t
reachflame t leaveflame

T

The other possibility is that we indicate only the 'ingredients' of the states, that is

each of falling, heated and broken and the actual state at a moment t can be

obtained by upwards projection. This results in the following picture.

broken

heated

falling

t t reachflame 1leaveflame 1
hitground

Notice that this is nothing but the well-known Gantt chart representation.

Defmition 2.1.2.5

A dynamic allowability relation of a planning universe (S, A, 1) is a relation

ó:: F x (A x 1) {true,false).

D

Denoting time segments we shall use the following notational conventions: for any

tE T

tT= {HT:t<t}, ff= {teT:tS't);

Tt = { 't E T : t < t L Tr = { 't E T : 't ::;; t) .

Planning 37

Definition 2.1.2.6
Let (S, A, T) be a planning universe, ó: be a dynamic allowability relation. A

function

ê:Fx(AxT)--1F

is a dynamic effect-Junetion if it holds that for every f e F a e A, t e T:

a) ê(ó,(a,t)) = à;
b) .., ó:(/,(a,t)) {::::} ê(f,(a,t)) = ó;

c) if ê(/,(a,r))"' à then (ê(/,(a,r)) t Tl = f t T{.

0

Here is a crucial difference between the static and the dynamic planning model!

In the static case Definition 2.1.1.7 and point (c) of the Definition 2.1.1.8

expressed independenee from the time instanee of an operation. Obviously, this

independenee would not hold for processes that are essentially meant to describe

changing situations. Point (c) of Definition 2.1.2.6 is to require that only the

future, and never the past of a process is changed by an operation.

Definition 2.1.2.7
Let (S, A, T) be a planning universe. A dynamic planning situation of (S, A, T) is

a 5-tuple

(F, A, T, á, ê)

where F = F S,T , á is a dynamic allowability relation and ê is a dynamic

effect-function of (S, A, T).

0

Defmition 2.1.2.8
The extended ejfectfunction of a dynamic planning situation (F, A, T, à, ê)

ê' : F x 1\:A x T) --1 F

is defined for any f e F and finite P e 1\:A x T) in the following way:

if P = 0 then ê'(j, P) = f;

if P = {o
1
, .. . ,on) is a section with an arbitrary numbering of its operations

and for every subset {i
1
, .. . ,ik) ç { 1, ... ,n) and every pennutation n: of

{il' .. . ,ik}

38 Chapter 2

e(. . . e(f,o (')) .. . ,o_r)) = e(•.• e(/,o.) .. . ,o.)
'lt 'I •~otlk 't 'k

holds, then

ê'(f, P) = ê(.. . ê(f, o 1) ... , on) ;

if P =, {o
1
, •• . ,on) is a section and there exists a subset {il' .. . ,ik) ç

{ 1, ... ,n} and a pennutation n: of {i
1
, .. . ,ik) such that

e(.. . e(/,o (')) .. . ,o (')) * e(.. . e(f,o.) .. . ,o.)
'lt 11 'lt 1k 11 1k

then

ê'(f, P) = ó;
if P - [P 1, .. . ,P n] then ê'(f, P) = ê'(.. . ê'(/ ,P 1) .. . ,P n).

0

. Notice that the basic feature of time is the same as for the static case: the effect

of the operations with a smaller (earlier) assigned time instanee precedes the effect

of the ones with a larger (later) one.

Reeall point (c) ofDefinition 2.1.2.6 that can be infonnally understood as staring

that the past of a process cannot be changed by an operarion. The question

whether this property also holds for plans in general is answered by the following

proposition.

Proposition 2.1.2.9 (Past In varianee)

LetfeF, P-[P
1
, ••• ,Pn], t;=time(Pi) foreveryie {l, ... ,n}. Then

ê'(/, P) '# ó implies ê'(f, P) = f on n1.

Proof

1) n = 1 (Pis a section)

Let P = P 1 = {o1, .. . ,ok}, k > 0 and t = time(P). Furthermore,let t0=! and

f; = ê(... ê(/O'o1) ... ,oi),

fori e { 1, ... ,k}.

Notice that ê'(f, P) * ó implies f. * ó for every i e { 1, ... ,k} and then by the
I

iterated application of point (c) of Definition 2.1.2.6 we have that

f. t Tl = f.
1

t Tl for every i e { 1, . . .,k},
l l-

hence

Ik t Tr = ... = / 1 t Tl = !0 t Tl.

Planning 39

thus

ê'if, P) = f on Tl

2) n > 1

Let !0=! and f; = ê(•. • êlfr/1) ... ,Pi)' ie (1, ... ,n}.

ê'if, P) ~ o implies f. ~ o and then by (1) and Definition 2.1.2.6 we obtain that

' for every i e (1, ... ,n}

f. t Tt. = f. 1 t Tt. ' , ,_ 'i
as the tigure below illustrates it for n = 2.

s
--------------! 2

-·-·-·-·-·-·-·-·-·- f
1

Since P
1
, .. . ,P nare numbered by the natural numbering

Tli-I 1: TI; for every i e [1, .. . ,n},

thus

In tn1 =/0 tn1
0

Definition 2.1.2.10

----------!0

T

The extended allowabiliry relation à' of a dynamic planning situation

(F, A, T, à, ê) establishes allowability of plans with respect to processes. It is a

Boolean function

à' : F x 1\:A x T) [true,false}

such that for any f e F and fini te P e 1\::A x T)

if P = 0 and f = o then a'if, P) = false;

if P = 0 and f ~ o then a'if, P) = true;

if P = [o
1
, .. . ,on} is a section with an arbitrary numbering of its operations then

à'if, P) = alf,o
1
) A à(ê'if,(o

1}), o2) A ... A à(ê'(f,[o1, ... ,on_1}), on);

40 Chapter 2

if P - [P 1, .. . ,P "l then

d'(/, P) = éi'lf,P1) A ••• A d'(ê'(.. . ê'(/,P
1
) •. • .P"_1),P

11
).

We say that a plan P is allowed w.r.t. a process f if éi'(j, P) = true.

D

Proposition 2.1.2.ll

Let (F, A, T, éi, ê) be a dynamic planning situation, d' and ê' the corresponding

extended allowability relation and the extended effect function, respectively.

Then for every f e F and P e 1'(A x T) it holds that

éi'(j, P) = false <=? è'(j, P) = 6.
Proof

It is analogous to the proof of Proposition 2.1.1.18 withf e Finsteadof se S.

D

Definition 2.1.2.12

A dynamic planning problem is defmed by a dynarnic planning situation

(F, A, T, éi, ê) and a triple (/0' y, IC), where fo e Fis the initia/ process,

'Y : F -+ (true,false} is the goal condition, such that y(o) = false and

K : 1'(A x T) -+ ut is a (rnultidirnensional) criterion.

A plan P is a solution of a dynamic planning problem iff

y(ê'(/0' P)) = true;

it is an optimal solution if it is a solution and

\f P' e 1'(A x 1) : [y(ê'(/
0
, P')) ::::} lC(P) S: IC(P')],

where for x= (x1, ... ,xk) e ut and x'= (xj •... .xt> e ut
x:S:x' iff Vie {l, ... ,k) :x.s:x:. • •

D

Proposition 2.1.2.13

Every solution of a planning problern is allowed, that is if (F, A, T, éi, ê), (j, y, IC)

is a dynarnic planning problern and Pc:; A x T is finite then y(ê'(j, P)) implies

éi'(/, P).

Planning 41

Proof

It is straightforward from the definition of y and Proposition 2.1.2.11.

0

The structure represented by the five tuple (S, A, T, a, e) or (F, A, T, à, ê) can

be considered as a model to describe planning situations where the elements of the

tuples are the parameters. More precisely, we can specify a planning situation by

a 6-tup1e (x, S, A, T, a, e), where x e {statie, dynamic} and the values of S, A, T,

a, e must be such that (S, A, T, a, e) forms a static planning situation if x = static

and (Fs T , A, T, a, e) forms a dynamic planning situation if x = dynamic.
' Defining a planning situation we give a domain description or decision model;

defining a triple ,(s
0
, y, te), respectively ifo• Y, te) determines a problem to solve.

We believe that this framework carries those aspects of the world that are

relevant for planning. The examples in section 2.2 justify this belief

demonstrating how to use the formalism as a high level description language to

specify planning problems. In the meanwhile, by such a practical exercise we

gain a more detailed view about how these parameterscan be given and what kind

of value they can have. In particular, the examples will serve as good illustration

of parameters having expressions of a high level language as values. This will

bring us closer to outline a method to define a planning problem within a DSS.

2.1.3 The Role of Time

Intuitively it is clear that the dynamic model of planning is a generalization of

the static one. More precisely, we envisage that if the dependenee on time (the

parameterization) is kept constant then we get the equivalent of a static planning

model within a dynamic one.

Likewise, says intuition, if we consicter a process as one object - a (meta) state

then we can project a dynamic model into a static one. To investigate this

question formally we can regard a planning situation as a space of objects (S or F)

with a function on it (e or ê) and interpret 'being the equivalent of' by the

following double definition.

42 Chapter 2

Definition 2.1.3.1

Let (S, A, 1) and (W, A, 1) be two plaiming universes, (S, A, T, a, e) and

(F W,T , A, T, à, ê) be a static and a dynamic planning situation and let F denote

FWT'

We say that (S, A, T, a, e) has an isomorphic representation in (F, A, T, à, ê) if

there exists an injection I : S ___, F such that

I(o) = êJ

and for every a e A, te Tand se S

I(e(s,(a,t))) ê(I(s),(a,t)).

(F, A, T, à, ê) has an isomorphic representation in (S, A, T, a, e) if there exists an

injection J : F ___, S such that

J(o) = o
and for every a e A, te T andfe F

J(ê(f,(a,t))) = e(J(f),(a,t)).

0

To illustrate the meaning of this definition us take the isomorphic representation

of a static case in a dynamic one and consider the following figure.

F

s s' I !' I(S)
0- - 1- --------tO

I e ;;
0--- -- - --- ... 0

s I f

For an isomorphic representation of a static situation in a dynamic one an injection

I is required such that I and effect commute, i.e. that I o e ê o I. Notice that if

such an I can be given then the static situation can be handled by a dynamic one.

Planning

Namely, we can compute the effect of operations on states by applying

e = r 1
0 ê 0/.

Proposition 2.1.3.2

43

Let (S, A, T, ct, e) be a static planning situation. If there exist s,z e S \ {o}, s:;:: z

and 0 E A x T such that e(s,o) = z then there is no planning universe (W, A, n and

dynamic planning situation (F W,T , A, T, à, ê) such that (S, A, T, ct, e) has an

isomorphic representation in (F W,T, A, T, à, ê).

Proof

Let (S, A, T, ct, e) be a static planning situation, s,z e S \ {o}, s :;:: z and (a,t) e

A x T such that

· e(s,(a,t)) = z.

lf (W, A, D is a planning universe and (F W,T, A, T, à, ê) is a dynamic planning

situation such that (S, A, T, ct, e) has an isomorphic representation in

(F W,T, A, T, à, ê) by an injection /, then

/(s) :;:: /(z).

On the other hand, point (c) of Definition 2.1.1.8 implies

V 'te T: e(s,(a,'t)) = z

and therefore

ê(/(s),(a,'t)) = l(e(s,(a,'t))) = /(z) for every 'te T

by Definition 2.1.3.1. Cbserve that by z:;:: o and the properties of I we have

ê(/(s),(a,'t)):;:: ó for any 'te T.

Then by (c) of Definition 2./.2.6 this latter implies

ê(/(s),(a,'t)) t Tl l(s) t T'J. for every 'te T.

Hence

/(s) r n = /(z) t n for every 't E T

thus

/(s) = /(z),

which is a contradiction.

0

Proposition 2.1.3.3

Let (W, A, D be a planning universe and (F W,T , A, T, á, è) be a dynamic

planning situation. If there exist f e F W.T \ { o}, a e A and t, 't e T (t :;:: 't) such that

44 Chapter 2

ê(f,(a,t)) '# ê(j,(a,t)) then there is no planning universe (S, A, T) and static planning

situation (S, A, T, a, e) such that (FWT , A, T, à, ê) has an isomorphic

representation in (S, A, T, a, e).

Proof

Let (F W,T, A, T, à, ê) be a dynamic planning situation,/ e F W,T \ {6}, a e A and

t,t e T (t '# t) be such that ê(j,(a,t)) '# ê(f,(a,t)). If (S, A, T, a, e) is a static

planning situation such that (F W,T , A, T, à, ê) has a isomorphic representation in

(S, A, T, a, e) by J, then

J(ê(j,(a,t))) '# J(ê(f,(a;r)))

since J is an injection. On the other hand,

J(ê(j,(a,t))) = e(J(j),(a,t))

by Definition ~.1.3.1; furthermore by (c) of Definition 2.1.1.8 we have

e(J(j),(a,t)) = e(J(j),(a,t)).

This implies

J(ê(j,(a,t))) = J(ê(j,(a,t))),

which is a contradiction.

IJ

These propositions demonstrate that a non trivia! static (dynamic) planning

situation cannot be isomorphically represented in a dynamic (statie) one. The

proofs also show the souree of this fundamental mismatch: (c) of Definition

2.1.1.8 and (c) of Definition 2.1.2.6 counteract each other. Since these points

embody the very nature of the statie, respectively the dynamic case, from the

above propositions we can conclude that static and dynamic models are deeply

different by nature.

The above results imply that maintaining only static (dynamic) models and

computing the dynamic (statie) effect function through the appropriate mapping

J -I o e o J (I -I o è o I) is impossible. We can, however, construct a mapping

Ï from static to dynamic universes and a corresponding non-injective mapping]

from dynamic to static universes such that e =Jo é o l. This means that -

although not isomorphically - we can represent the information about a static case

within a dynamic one.

Planning 45

F

s s' Ï !' /(S)

-~~--
- ---- -- -; 0

J
~0

0--- - -1 - f--1- ---;o e.
s. f

Definition 2.1.3.4

Let (F, A, T, ó., è) be a dynamic planning situation. A process f e F is called

ray-tailed if there exists a time instanee t e T such that

I;J 't ~ t : j('t) = f(t). (*)

The notation f 1 stands for a rail-tailed process with t e T being the smallest time

instanee satisfying (*).

0

Definition 2.1.3.5

Fora static planning situation (S, A, T, a, e) a dynamic planning situation

<Fs,T, A, T, ó., ê) is mirroring (S, A, T, a, e) if for every f e FS,T, a e A and

t,'t e T the relation ó. and the function ê satisfy

and

ó.if,(a,t)) = a(f(t),(a,t)),

!
f('t)

ê(f,(a,t))('t) =
e(f(t),(a,t))

if 't < l

if 't ~ t.

The mirroring mappings Ï : S F and J : F -;-; S are defined as follows.

Ï(s)(t) = s for every se S, te T

and

46 Chapter 2

for a ray-tailed process f 1 e F.

0

Proposition 2.1.3.6

Let (S, A, T, a, e) be a static planning situation, <Fs,r, A, T, à, ê), l : S _, F and

j : F -++ S be a dynamic planning situation and the mappings mirroring

(S, A, T, a, e). Then it holds that e =jo ê o l, that is for every s e S and

(a,t) e A x T

e(s,(a,t)) = j(ê(Ï(s),(a,t))).

Proof

By definition we have that

Ï(s) = s

and

ê(Ï (s),(a,t))(t) - [s

- e(s,(a,t))

and thus

j(ê(Ï(s),(a,t)))

0
e(s,(a,t)).

if 't < t

if 't ;;:: t

Notice, that even if we cannot consider a process of a planning universe as a

state of another planning situation, we can regard it as an object of a space that is

transformed into another object by a plan. The definition of the transition relation

within the space of processes is self-evident.

Definition 2.1.3.7
Let (F, A, T, à, ê) be a dynamic planning situation. The transition relation »

on Fis defined for any f, ge F by

f » g iff 3 P e 1'(A x T) : e'(f, P) = g.

0

The relation » is clearly reflexive since

'V f E F : e'(j,0) f
holds by definition. With some surprise we realized that transitivity does not hold

Planning 47

for » · in genera!, although intuitively we had expected that if the process f can be

tumed to g, and g to h then f can be tumed to h as wel!. Next we give a

counterexample to show a case when this does not hold.

Example 2.1.3.8
Let us take (IR~, {a

1
, a2}, IR~) as a planning universe and letf,g,h, e F defined by

the following. Let t1,t2 e IR~ and let a and e be such that:

á(f,(a,t)) = true {::} [a = a
1

At = t
1
] V [a = a2 At= t

2
];

d(g,(a,t)) = true {::} a = a
2

At = t
2
;

ê(f,(a
1
,t

1
)) = g;

ê(f,(a
2
,t

2
)) i;

é(g,(a2,t2)) = h.

The next figure illustrates the relationship between the processes f, g, h and i.

s

f

g

h

T

On one hand, the general definitions of an allowability relation and an effect

function are satisfied here thus this is a possible planning situation.

On the other hand, è(f,(a,t)) can only beg or i or ó, which implies

f » g A g » h A .., (f » h),

that is transitivity does not hold in this case.

D
lnvestigating the cause of the subjective 'absurdity' of Example 2.1.3.8 we find

it in having ê(f,(a2,t2)) * ê(g,(a2,t2)) although f g up to t2. This disdoses that

48 Chapter 2

we intuitively maintain a hidden assumption that is violated here. This

assumption informally says that it is only the past and the present that determine a

situation, regardless to the future which would have come without extemal

interference. Notice that being in a process, from 'within' we cannot distinguish

two processes which have the same history up to now, i.e. at t
2

we cannot teil

whether we are in/ or g. Therefore we assume that at any moment the set of our

possible actions and the effect of the actions is independent from the future.

We admit that one might be reticent about the universa! validity of these

features. Therefore we do not extend our theory with requiring these properties in

general but we formulate them as two assumptions .

. Detenninative Past Assumption 1 (DPA 1)

Let (F, A, T, à., ê) be a dynamic planning situation. The Determinative Past

Assumption 1 holds for (F, A, T, à., ê) if for any J,g e F and te T

1 r TI g r Tt ~ &.ç = &. , - ;J gJ

where à.~" stands for { (a,t) e A x TI "C = t A &.if,(a,t)) true }.
J ,t

0

Detenninative Past Assumption 2 (DPA 2)

Let (F, A, T, à., ê) be a dynamic planning situation. The Oeterminative Past

Assumption 2 holds for (F, A, T, à., ê) if for any J,g e F and non empty section P

such that time(P) = t

1 r Tl g r TI ~ ê'if. P) = ê'(g, P).

0

These assumptions are not fully independent as the following proposition

indicates.

Proposition 2.1.3.9

For every dynamic planning situation (F, A, T, à., ê) OPA 2 implies OPA 1, but

the reverse does not necessarily hold.

Proof

Let (F, A, T, à., ê) be a dynamic planning situation and assume that OPA 2 holds

but OPA 1 does not. Then we can take two processesf, ge F and te T such that

Planning

ttTr=g trr
and

á, '#Ó. .
J•t g,t

Without loss of generality we may assume

áf,l \ ág,l * 0,

thus we can choose an element (a,t) e d,. \ d . Then for (a,t) we have
Jol g.l

d(j,(a,t)) 1\ .., á(g,(a,t)).

Th en the ~ direction of (b) from Definition 2.1.2.6 implies

ê(g,(a,t)) = o
and from the Ç::::: direction of (b) of Definition 2.1.2.6 it follows that

ê(j,(a,t)) * ó.
On the other hand DPA 2 implies

ê(f,(a,t)) = ê'(j, P) = ê'(g, P) = è(g,(a,t))

for P = { (a,t)} which is a contradiction.

49

To see that DPA 1 ~ DPA 2 does not hold in general let us consider a dynamic

planning situation (F, A, T, á, è) for which DPA 1 holds. Let the processes f,g

and te T be such thatf'# g and

JtTl=gtT{.
it is easy to see that extending (FA, T, d, è) by introducing a new action a' I! A

and defining

d(h,(a;t)) = true ~ (h =/V h g) 1\ a= a' 1\ t t
and

è(j,(a',t)) = g and ê(g,(a',t)) = f
results in a planning situation for which DPA 1 does hold but DPA 2 does not.

0

The following proposition proves that DPA 2 is a sufficient condition for the

transitivity of the relation ». The proof is constructive, not only stating that there

is a plan that turns f into h but also constructing it from the plans that turn f into g

and g into h.

Proposition 2.1.3.10

Let (F, A, T, d, è) be a dynamic planning situation. lf DPA 2 holds for

(F, A, T, d, è) then the relation » on Fis transitive.

50 Chapter 2

Proof

Let the processesf,g,h e F \ {6} and the plans P,Q ~A x T be such that

ê'(j, P) = g and ê'(g,Q) = h.

We show that there exists a plan R i: A x T such that

ê'(j,R) = h.

Let P- [P
1
, .. . ,P] and Q- [Q

1
, .. . ,Q] and let t. = time(P.), ie {1, ... ,n}

n m 1 1

and
'ti= time(Q). ie {1, ... ,m).

i) t
1
~ t

1
(Q starts notlater than P)

ê'(j, P) = g :::::} f = g on T!1
. by the past invariance proposition (2.1.2.9), so by t

1
~ t

1
f = g on n.1

is obvious. Then OPA 2 implies that

ê'(j, Ql) = ê'(g, Ql)

thus

ê'(j, Q) = ê'(.. . ê'(j, Q
1
) ... , Qm) = ê'(.. . ê'(g, Q

1
) ... , Qm) = ê'(g, Q),

that is R = Q is satisfactory.

ii) t
1

> t
1

(Q starts later than P)

Let/.0 =/, f. e'(f.
1
,P.) foreveryie {l, ... ,n). Bytheiterativeapplicationof

I I· I

the past invariance property (Proposition 2.1.2.9) we obtain

!i= g on T!i+l for every ie {I, ... ,n-1).

Let k be such that k = max { i I ti < t 1) .

Th en

tk < 'tl ~ tk+l
and

Ik = g on T!k+l

imply that

Ik= g on n.1.

Cbserve that OPA 2 leads to

ê'(j,P I V ... V P kV Q) ê'(e' . . . (e'(j, P 1) ... , P k)' Q) = ê'(jk, Q) h,

that is for R P
1

v ... v Pk v Q we obtain

Planning 51

ê'(f, R) = h.

0

2.2 Examples of Planning Problems

Section 2.1 presents two kinds of models of planning problems. A static model

is appropriate if we can assume that any state lasts until an action is committed.

If, however, we foresee that there are states that are maintained only for a eertaio

period of time then a dynamic model can describe the case. In section 2.1 states,

actions etc. were primitives of the theory. Here in section 2.2 we are going to

have a look at the 'inside' of these primitives, that is we give a detailed

description of five planning problems.

For any description method it is very important that it is clear enough and

relatively simple entities are used to describe a problem. This makes it easy to

decide whether the forma! description matches the intuitive interpretation of the

problem, in other words this makes a formal description a good interface between

intuition and forma! treatment of the problem. Using the theoretica! model as a

description framework imposes a eertaio method of problem specification.

Descrihing a problem through defining S, A, T, a, e, s, y, IC implies that we can

concentrate on a relatively small aspect of the problem at a time, e.g. what the

world states should be like, or which conditions should hold before the application

of an action. The whole model is then composed by these relatively simple

components.

To characterize a state as a snapshot about the world at a moment it seems to be

natura! to list all those facts that hold in the world at that moment. Making just

one step further we come to the idea of saying that a state IS a set of valid facts.

We complete this view with the so called Closed World Assumption, assuming

that a state s contains all the valid facts, i.e. if a fact is not contained in s then it is

not true in s. Hereby we take a logic-based approach that enables us to handle

facts, complex statements and validity with respect to states, cf. Pednault (1987),

Treur (1988), van Langen and Treur (1989).

Before we begin the forma) work we want to draw the readers attention to

eertaio important aspects of the following examples.

52 Chapter 2

As we have rnentioned after Remark 2.1.1.3 there are two kinds of facts:

permanent ones that are not changed by an action and temporary ones that can be

modified if an action is committed. Incorporating permanent facts in the states is

superfluous, therefore in our construction we distinguish permanent functions and

relations and temporary functions and relations.

Permanent relations belong to the background information; we presurne that they

are stored in a kind of database and can be directly quoted without any reference

to the actual state. Therefore, we do not distinguish the re lation R c;;;; A x B and the

corresponding relation symbol, but will also use the notation R(a,b) meaning the

appropriate Boolean value. Similarly, we assume about permanent functions that

they are always computed, that is if D : A x B _, IR is a permanent function then an

expression of the form D(a,b) denotes a real number.

By their very nature, temporary relations can not be given a truth value without a

reference to the actual state. Therefore, for every temporary relation R we

introduce a cortesponding relation symbol r with the same arity and define a state

as a set of ground atoms constructed frorn these relation symbols. To interpret

truth w.r.t. states we assume that a state is a complete collection of facts true in it,

i.e. we assume that r(x) e s if and only if R(x) holds in s.

To exclude infinite features we shall avoid the use of ternporary functions. We

use function symbols only to denote narnes of actions, e.g. to(x,y) will be the

name of the action of going frorn x t(} y. These ternporary function symbols are

purely syntactic: an expression of the form to(x,y) has no value, it is but a name.

In the sequel, narnes of function and re lation symbols in upper case indicate that

we consider them as semantic objects, narnes in lower case stand for syntactic

objects.

Finally, let us make sorne abbreviations to simplify the notation. As it turns out

from the foregoing, we use temporary relation and function syrnbols for special

purposes. They are seen as purely syntactical objects, therefore we shall use an

abbreviated way of set construction, namely:

(r(xl' .. . ,xn) I XI E x l' .. • ,xn E xn }

insteadof

(expression E Expr 13 XI Ex 1 ... 3 xn E xn : expression = r(xl' .. . ,xn) },

where Expr denotes the set of all expressions used.

We use two other notational conventions for there exists one and only one and

Planning

there exists at most one. For the sake of convenience

3! x e X : q>(x)

abbreviates the formula

[3 x e X : <p(x)] /1. [V x,y e X : <p(x) A <p(y) ~x = y],

while

3? x e X : q>(x)

stands for

V x,y e X : q>(x) A <p(y) ~ x = y.

2.2.1 Travelling Salesman Problem

53

Based on the informal descriprion in Example 2.1.1.2 we distinguish the

following relevant entiries of the world:

- Z = (z
1
, •.. ,z

11
) is thesetof constant symbols denoting the cities;

- D : Z x Z -+ IR~ is a permanent distance function for cities;

-AT is a temporary unary relarion pointing out the city where the agent is;

- SEEN is a temporary unary relation to mark ei ties that have already been

visited.

Observe that no agent or salesman is mentioned in this description. Indeed, if

we only presurne one agent, he can be simply omitted. We, however, will

mention it sometimes as if it was present, ju st to make explanations easier.

Formalizing the above view on the world we introduce

- at, a unary re lation symbol corresponding to the relation AT;

- seen, a unary relation symbol corresponding to the relation SEEN;

- to, a binary function symbol (name), to(x,y) representing the action of going

from city x to city y.

Defmition 2.2.1.1

A pre-state is a set V

V ç (at(x) I x e Z) v [seen(x) I x e Z).

The set of all pre-states will be denoted by S .
p

D

54 Chapter 2

Definition 2.2.1.2

A pre-state V e S is called correct if the agent is at one location at a time, that is
p

if

3! X E Z : at(X) E V.

D

We assume that the position of the agent and the status 'being seen' of a city can

only change by performing an action, that is we choose the static model version.

The constituentsof the planning universe are :

S = { V e S I V is correct };
p

A = (to(x,y) I x,y e Z };

T =IN.

Definition 2.2.1.3

The allowability relation for s e S, t. e T, x,y e Z is defined by

a.(s, (to(x,y),t)) ~

1) at(x) e s and

2) seen(y) f s.

D

Definition 2.2.1.4

For every se S, te T, x,y e Z, if a.(s,(to(x,y),t)) then

e(s, (to(x,y),t)) == (s\ [at(x)}) v (at(y), seen(y)}.

IJ

Let us have a look on the role of seen. We could have chosen world states

descrihing only the actual position of the agent, that is containing only the at

predicate. However, restricting ourselves to the static model would then imply

that the information about the past (where the agent has already been) would be

lost after each state transition. Therefore we incorporated seen in the states.

Notice that a modeHing decision was taken that says that a location becomes seen

when arriving at it.

Planning ss

Oefmilion 2.2.1.5

A planning problem descrihing the travelling salesman problem can be given by

the following items.

s
0

= {at(z1)};

y(s) 8 at(z1) e s A V ze Z : seen(z) e s;

m
K(P) = L D(x.,y.)

i:} I I

for any arbitrary P = ((to(xl'y1),t1), ... , (to(xm,ym),tm) }.

IJ

It is common for TSPs that not a minimal value of K is required only a K value

under a certain border B > 0. This, however, does not make TSP easier in the

sense that it remains NP-complete, cf. Garey and Johnson (1979).

Proposition 2.2.1.6

For any V e S , a e A and te T, if V is correct and a(V,(a,t)), then e(V,(a,t)) e S
p p

is correct too.

Proof

By Definition 2.2.1.4 an eperation does not change the number of expressions of

the forrn at(z) in a state.

D

2.2.2 Travelling Salesman Problem with Time Windows

RecaU Remark 2.1.1.3 where we stated that the extension of TSP with time

windows can not be expressed in a static model. Therefore we develop a dynamic

model for TSP with time windows, cf. Savelsbergh (1988).

We distinguish the following relevant entities of the world:

- Z = {z
1
, ... ,zn} is thesetof constant symbols denoting the cities;

- D : Z x Z -; IR~ is a permanent distance function for ei ties;

- v e IR+ is the standard velocity of moving;

- W: Z-; 'P(IN x IN), such that for every ze Zand we W(z), w = (w.l,w.2)

w.l ~ w.2 holds and the interval [w.l, w.2] is a time window

56 Chapter 2

belonging to z;

- AT is a temporary unary relation pointing out the location where the agent is;

- SEEN is a temporary unary relation to mark cities that have already been

visited;

- UNDERWAY is a temporary zeroary relation that stands for being between two

cities.

Pormalizing the above view on the world we introduce

- at, a unary relation symbol corresponding to the relation AT;

- seen, a unary relation symbol corresponding to the relation SEEN;

- underway, a zeroary relation symbol corresponding to the relation UNDERWAY;

- to, a binary function symbol (name), to(x,y) representing the action of going

from city x to city y.

Defmition 2.2.2.1

A pre-state is a set V

V ç; (at(x) I x e Z} u (seen(x) I x e Z} u (underway}

The set of all pre-states is denoted by S .
p

IJ

Defmition 2.2.2.2

A pre-state V e S is called correct iff
p

1) ..., (underway e V A 3 x e Z : at(x) e V) and

2) 3? X E Z : at(x) E V.

IJ

The constituents of the planning universe are:

S = (V e S I V is correct };
p

A = (to(x,y) I x,y e Z } ;

T =IN.

Let F denote the set of all processes of this planning universe.

Definition 2.2.2.3

A process f e F is correct if f(t) is correct for every t e dom(j).

IJ

Planning 57

Definition 2.2.2.4

The allowability re lation for f e F, te dom(j), x,y e Z is defined hy

àif, (to(x,y),t)) {::::}

1) at(x) e /(t) and

2) seen(y) i f(t) and

3) 3 we W(y): w.l < t + D(x,y)lv < w.2.

D

Definition 2.2.2.5

For every f e F, te dom(j), x,y e Z, if aif,(to(x,y),t)) then

't < t

[

/('t)

êif, (to(x,y),t))('t) = [f(t) \ {at(x)}] u {underway) t :5: 't < t+D(x,y)/v

/(t) u {at(y), seen(y)} t + D(x ,y) I v :5: 't
D

Definition 2.2.2.6

A planning prohlem descrihing the travelling salesman prohlem with time

windows can he given hy the following items.

J
0
(t) = {at(z

1
)} for every te T;

y(j) {::::} 3 te T : [at(z
1
) e /(t) /\ V z e Z : seen(z) e /(t)];

m
K(P) = L. D(x.,y.)

j:} I I

for any arhitrary P = ((to(x1,y
1
),t

1
), ... , (to(xm,ym)'tm) }.

D

Proposition 2.2.2. 7

For any process f, a e A and t e dom(j), if fis correct and áif,(a,t)), then êif,(a,t))

is correct too.

Proof

It is trivia! hy Definition 2.2.2.4 and Definition 2.2.2.5.

IJ

58 Chopter 2

2.2.3 Preeedenee Constrained Scheduling Problem

The problem we have sketched in Example 2.1.2.1 leads to the following items:

- M and J are sets of constant symbols to denote the machines and the jobs;

- PRE 'ç; J x J, a permanent relation prescrihing the preeedenee between jobs;

ABLE ç; M x Ja permanent relation showing that a machine can perform a job;

- D : ABLE ___, IR~ a permanent function that indicates the duration of the

performance of a job on a machine;

BUSY ç; M x J a temporary relation to teil that a machine is working on a job;

READY ç; J a temporary relation to indicate that a job has been completed.

In the formal description we shall use:

busy, a binary relation symbol corresponding to the relation BUSY;

ready, a unary relation symbol corresponding to READY;

begin, a binary function symbol (name) denoting the action of beginning a job

on a machine.

Defmition 2.2.3.1

A pre-state is a set V

V ç;; { busy(m,j) I mE M,j E J) V {ready(/) Ij E J).

The set of all pre-states is denoted by S .
D P

The intention is clear, world states are the possible snapshots during the job

performing process. The situation at a time instance, however, is not fully

determined by the ongoing activities. Jobs completed earlier are influencing the

situation as wel!. Hence, a choice needs to be made between either checking the

history before decisions, or defining a representative of the relevant aspects of the

history and completing the snapshots with it. .we have chosen the second

possibility, this explains the role of ready.

The world states are constructed such that in any state

Planning

- a machine is doing a job only if it is able to do that job and

- a machine is doing at most one job

- a job is being done on at most one machine

- ready jobs are not being perfonned.

Definiti.on 2.2.3.2

A pre-state V e S is called correct iff
p

1) 'r/ (mJ) e M x J: busy(mJ) e V=:} ABLE(mj) and

2) 'r/ m e M 3? j e J : busy(mJ) e V

3) 'r/ j E J 3? m E M : busy(mj) E V

and

and

4) 'r/ jE J: (ready(]) E V=:} -.3 mE M: busy(mJ) E V].

We take a planning universe consisting of:

S = { V e S I V is correct } ;
p

A = (begin(mJ) I m e M, j e 1 } ;

T =IR~.

and

and

59

Furthennore, for reasans discussed in section 2.1.2 the we take a dynamic model

and denote the set of all processes corresponding to this universe by F.

The conditions to begin a job j on a machine m at a time instanee t are :

j is not ready yet;

m has the ability to performj;

- all the predecessors of j are ready;

- j is free at t;

- m is free at t.

Definition 2.2.3.3

For every f e F, m e M, j e J and t e dom(j)

&.(j, (begin(mJ),t)) H

1) ready(j) E f(t) and

2) ABLE(mJ) A and

3) 'r/ j' e J : [PRE(j J) =:} ready(j') E f(t)] and

4) -.3 m' e M : busy(m' J) e f(t) and

5) -.3 j' e J : busy(mj') e /(t).

60 Chapter 2

The effect of an allowed operation begin(x,y) is that x performs y and that some

of the events that would have happened disappear from the future.

Definition 2.2..3.4

For every f e F, m e M, j e J and t e dom(j) if àif,(begin(mJ),t)) then

êif,(begin(mj),t))('t) =

= [f(t) \ (busy(m, .) v busy(. J) v (ready(])})] v (busy(mJ)} t S: t < t+D(mJ)
[

f('t) 't < t

[f(t) \ busy(. J)] v {ready(j)} t+D(mj) s; t

where

busy(m, .) abbreviates the set (busy(mJ) Ij e J}

and

busy(. J) abbreviates the set {busy(mJ) I me M}.

Definition 2.2.3.5
A planning problem descrihing the PCSP problem can be determined by :

!0(t) = 0 for all t e T;

y(j) {::::} 3 t e TV j e J : ready(]) e f(t);

K(P) = max { t + D(mj) I tE T, mE M, je], (begin(mJ),t) e P }.

IJ

It is usual for PCSPs that not an optima! plan is required, only a plan that is

completed before a certain deadline D, Le. a plan with K(P) s; D, cf. Garey and

Johnson (1979).

Proposition 2.2.3.6

lf/ e F, (a,t) e A x Tand àif,(a,t)) holds then êif,(a,t)) e F as well.

Proof

By simple case analysis basedon Definition 2.2.3.3 and Definition 2.2.3.4.

D

Planning 61

2.2.4 Time Table Problem (TTP)

In a TIP we have to make the weekly schedule of a finite set of teachers,

subjects, classrooms and group of students. Here we develop a more complicated

model than the classic ones from Even, Itai and Shamir (1976); Garey and

Johnson (1979). We divide the week into non overlapping lecture periods with

equal length L. Furthermore we know which teachers are qualified to give which

subjects and how many lectures of a certain subject does a group of students need.

The objective is to assign teachers, lectures, classrooms Jlnd time periods over a

week such that every subject is given by a teacher qualified for it and every group

of students gets the required number of lectures of every subject. Besides to this

basic aim we also want to satisfy a didactic and organizational goal, in particular

we want a time table that spreads the same subject over the whole week.

Within the world we distinguish

- G, a finite set of groups of students;

Z, a finite set of subjects;

- D, a finite set of teachers;

- K, a fini te set of classrooms;

H = { h
1
, .. . ,hM }, a finitesetof notoverlapping lecture hours with the same

length L > 0 numbered consecutively such that if t. > 0 denotes the beginning
I

time of h. then
I

· h. = { x e IR It. S x< t. + L } and
I I I

. ti + L < ti+ 1 ;

- ABLE ç: D x Z, is a permanent re lation to re present· which teachers are qualified

to give which subjects;

N: G x Z _,IN, is a permanent function, N(g,z) denoting the number of lectures

of the subject z the group g needs to get in a week;

BUSY ç: G x Z x D x K, a temporary relation expressing that a group is

receiving a subject from a teacher in a classroom;

GIVEN ç G x Z x D x IN, a temporary relation denoting how many times a group

has received a subject from a teacher already.

62 Chapter 2

On this basis we further introduce

- busy, a 4-ary relation symbol that corresponds to the relation BUSY;

- given, a 4-ary relation symbol corresponding to the relation G/VEN;

- begin, a 4-ary function symbol (name) to denote the action of beginning to give

a subject to a group by a teacher in a classroom.

Definition 2.2.4.1

A pre-state is a set V

V!;; { busy(g,z,d,k) I g e G, z e Z, de D, k e K } V

{ given(g,z,d,n) I ge G, ze Z, de D, n e IN }.

The set of all pre-states is denoted by S .
0 p

We develop a dynamic model, where the world states are to describe ongoing

activities such that in every state

the teacher is qualified to teach the subject he is giving;

a group gets a subject only if it is needed;

the same group always gets the same subject from the same teacher;

no subject is given more times then needed;

one group is only busy with one thing at one place;

one teacher is only busy with one. thing at one place;

one classroom is only occupied for one activity.

Definition 2.2.4.2

A pre-state V e S is called correct iff
p

1) 'V (g,z,d,k) e G x Z x D x K: busy(g,z,d,k) e V~ ABLE(d,z)

2) 'V (g,z,d,k) e G x Z x D x K: busy(g,z,d,k) e V~ N(g,z) > 0

3) 'V (g,z,d,k) e G x Z x D x K:

and

and

busy(g,z,d,k) e V~(-. 3 de D 3 n e IN : d*- d A given(g,z,d,n) e V) and

4) "/ (g,z,d,k) e G x Z x D x K: busy(g,z,d,k) e V~ given(g,z,d,N(g,z)) I! V and

5) 'V g e G 3? (z,d,k) e Z x D x K: busy(g,z,d,k) e V

6) 'V de D 3? (g,z,k) e G x Z x K: busy(g,z,d,k) e V

7) 'V k e K 3? (g,z,d) e G x Z x D : busy(g,z,d,k) e V.

At (4) reeall that Nis a permanent function, thus N(g,z) is a real number.

IJ

and

and

Planning

The planning universe is then (S, A, T), where

S { V e S I V is correct } ;
p

A = { begin(g,z,d,k) 1 ge G, ze Z, de D, k e K };

T =IR~.
Furthennore, let F denote the set of all processes of this planning uni verse.

Definition 2.2.4.3

For every je F, ge G, ze Z, de D, keK, te dom(j)

éilf,(begin(g,z,d,k),t)) ~

1) ABLE(d,z) and

2) N(g,z) > 0, and

3) -ad e D 3 n e lH : d* d A given(g,z,d',n) e f(t) and

4) given(g,z,N(g,z) é f(t) and

5) -a (z',d,k') e Z x D x K: (z',d,k') * (z,d,k) A busy(g,z',d,k') e f(t) and

6) -a (g',z',k') e G x Z x K: (g',z',k') * (g,z,k) A busy(g',z',d,k') e f(t) and

7) -a (g',z',d) e G x Z x D : (g',z',d) * (g,z,d) A busy(g',z',d,k) e f(t) and

8) 3 h. e H: t = t . .
I I

D

Defmition 2.2.4.4

63

For every f e F, g e G, z e Z, d E D, k e K, te dom(j) if éilf,(begin(g,z,d,k),t))

holds then

1

f(t)

èlf,(begin(g ,z,d,k),t))(t) = f(t)-~< u { busy(g ,z,d,k)}

f(t)

t < t

t5:t<t+L,

t+L~t

* where f('t) =

l
f(t) u {given(g,z,d,l)J

= [f(t) \ {given(g,z,d,x)}] u {given(g,z,d,.x+l)}

if -a x e lH : given(g,z,d,x) e f(t)

if x e lH and given(g,z,d,x) ef(t)

D

64 Chapter 2

Defmition 2.2.4.5

The planning problem that describes the TIP can be determined by the following.

J0(t) = 0 for all t e T;

'fff> ~ V gE G V zE Z 3 dE D : given(g,z,d,N(g,z)) e f(hM+L).

The criterion K is constructed from two other criteria K
1

and 1<2 that measure the

number of 'double' and 'triple' lectures.

K
1
(P) = 2. 2. 2. I {ie {l, ... ,M-1) 13 k,k' EK: (begin(g,z,d,k),ti) EP A

gEG zEZ dED
(begin(g,z,d,k'),t.

1
) E P } I

I+

K
2
(P) = 2. 2. 2. I { ie { l, ... ,M-2} 13 k,k' ,k" e K: (begin(g,z,d,k),9 E P A

gEG zEZ dED

K(P) = K
1
(P) + 10 · ~(P).

D

Proposition 2.2.4.6

(begin(g,z,d,k'),t. 1) E P A
I+

(begin(g,z,d,k"),t. 2) E P } I
I+

If f E F and &q,(a,t)) holds for the operation (a,t) then ê(j,(a,t)) E F too.

Proof

Let a = begin(g,z,d,k) forsomeg E G, z e Z, dE D and k E K, tE T arbitrary. We

have to verify that the conditions (1), ... ,(7) of Definition 2.2.4.2 hold for

e(j,(a,t))(t).

Fort < t it is obvious, since e(j,(a,t))(t) = f(t) by Definition 2.2.4.4.

If t ::::; t < t + M then

ê(j,(a,t))(t) = f(t) u {busy(g,z,d,k)}

by definition and it is easy to see that (1), ... ,(7) of Definition 2.2.4.3 are

sufficient to

imply (1), ... ,(7) of Definition 2.2.4.2.

If t + M ~ t then we only have to check (2) and (4) from Definition 2.2.4.1 since
* j(t) only differs from f(t) by an atom of the form given(g,z,y). In this case it is

enough to notice that

V busy(g,z,d,k) E e(j,(a,t))(t) : busy(g,z,d,k) e j(t)

Planning 65

thus if (2) and (4) would not hold for e(f,(a,t))(t) then they would not hold for f(t)

either.

0

2.2.5 Ship Loading Problem

In this problem we have a ship visiting a set of harbours, loading and unloading

containers at each harbour, cf.van Hee (1985). Knowing the trip of the ship, the

load- and unload needs of the harbours and assuming the ship is empty at the

beginning, we need to make a loading plan for the harbours such that

all the load- and unload needs of the harbours are met;

- the loading and unloading work is minima!;

- the ship always remains stable.

To make a world description we need

- H = {h
1
, ... , hn} a set of harbours numbered in the order the ship is visiting

them;

- U a finite set of units (containers);

- W : U -; IR~, a permanent weight function on units;

- X E IN, Y E IN, Z E IN, standing for the length, width and height of the block

shaped storage depot of the ship;

- IN : H -; 'P(U), a permanent function giving the load needs of the harbours;

- UN : H-; 1'(U), a permanent function giving the unload needs of the harbours,

such that

V iE { 1, .. . ,n} : [lN(h.) n UN(h.) = 0 11 UN(h.) ç V LN(h.)];
I I I }<i }

- ONSHIP ç U x { 1, ... , X} x { 1, ... , f) x { 1, ... , Z} a temporary relation to

describe the position of the units on the ship;

- INHARBOUR ç U x H a temporary relation to describe units at the harbours;

- AT ç Ha temporary relation showing the position of the ship.

To the temporary relations and for the actions we define

- onship, a 4-ary predicate symbol corresponding to ONSHIP;

- inharbour, a binary predicate symbol corresponding to INHARBOUR;

- at, a unary predicate symbol corresponding to AT;

66 Chap1er 2

- move, a binary function symbol denoting a move from a harbour to another

harbour;

- load, a 5-ary function symbol denoting the toading of a unit at a harbour to a 3

dirnensional position;

- unloàd, a 5-ary function symbol denoting the unloading of a unit at a harbour

from a 3 dimensional position.

Definition 2.2.5.I

Pre-states are defined as subsets of the following set:

{ at(h) I h E H } u

{ onship(u,x,y,z) I u E U, x E {I, ... ,X}, y E {I, .. . ,Y}, zE {I, ... ,Z} } u

(inharbour(u,h) I u E U, hE H }.

· The set of all pre-states is again denoted by S .
p

IJ

To make the fonnulae shorter in the sequel we shall use

Q (x,y,z):

to abbreviate

Q XE {1, ... ,X} Q y E (1, ... ,Y} Q zE (1, ... ,Z} :

where Q is the quantifïer V, 3, 3! or 3?.

Definition 2.2.5.2

V E S is correct iff
p

1) 3! h E H : at(h) E V

2) V u E U 3? x,y,z : onship(u,x,y,z) E V

3) V x,y,z 3? u E U : onship(u,x,y,z) E V

4) V u E U V (x,y,z) :

and

and

and

onship(u,x,y,z) E V::::} [z > 1 ::::} 3 v E U: onship(v,x,y,z-1) E V] and

5) V u E U V (x,y,z) : onship(u,x,y,z) E V::::} [--, 3 h E H : inharbour(u,h) E V] and

6) V (u,h) E U x H: inharbour(u,h) E V::::} [--, 3 (x,y,z) : onship(u,x,y,z) E V] and

7) V u E U 3? h E H : inharbour(u,h) E V.

D

S = (V E S I V is correct) ;
p

Planning 61

A=
{ move(h,h') I h,h' e H } u
(load(u,h,x,y,z) I u e U, he H, x e { 1, ... ,X), y e { 1, .. . ,Y}, ze (1, ... ,Z} } u

(unload(u,h,x,y,z) I u e U, he H, x e (1, ... ,X), y e {1, ... ,Y}, ze (1, ... ,Z} };

T =IN.

We observe that a state can only be changed by actions, thus we develop a static

model. The allowability condition is defined for each action.

Definition 2.2.5.3

a) o.(s,(move(h.,h.),t)) ~
I J

1) at(h.) es and
I

2) j =i+ 1 and

3) 0.8
< mleft(s)

- mright(s)
$; 1.2 and

where the latter two conditions are to guarantee the stability of the ship, ha ving

y LX12J z

mlet/s) I I I I w(uHLX12J+l-x) X·Y·Z
;:::: +~;

y=l x=l r-l { ue U I onship(u,x,y,z) e s }

and
y x z

mrighls) I I I L w(u)·(x-l(X+l)/2j) X·Y·Z
+-4-

y=l X= LX/2 J +1 z=l (ue U I onship(u,x,y,z) e s }

x lY12J z

mfi (s) I I I L w(u)·(lY12J+2-y) X·Y·Z
or +~;

x=l y=l z=l (ueU I onship(u,x,y,z) E s }

and

68 Chapter 2

x y z

I I I
x=l y= lY12 J +1 z=l { ueU I onship(u,x,y,z) e s }

where i x J stands for the standard entier function.

b) a.(s,(load(u,h,x,y,z),t)) {::::}

1) at(h) e s and

2) inharbour(u,h) e s, and

3) -ave U : onship(v,x,y,z) e s and

4) 3 v e U: onship(v,x,y,z-1) e s.

c) a.(s,(unload(u,h,x,y,z),t)) {::::}

1) at(h) e s and

2) onship(u,x,y,z) e s, and

3) -a v e U : onship(v,x,y,z+ 1) e s.

D

Definition 2.2.5.4

The effect of allowed operations is as follows:

a) e(s,(move(h.,h),t)) = (s \ {at(h.)}) u {at(h.)},
l 1 l 1

b) e(s,(load(u,h,x,y,z),t)) = (s \ { inharbour(u,h)}) u { onship(u,x,y,z)},

c) e(s,(unload(u,h,x,y,z),t)) = (s \ { onship(u,x,y,z)}) u { inharbour(u,h)}.

D

Defmition 2.2.5.5

A ship loading problem is specified by the above (S,A,T,a.,e) and the following s
0
,

y and IC.

s
0

{ at(h
1
) } ;

y(s) {::::} 'V u e U 'V he H: u e LN(h)::::} inharbour(u,h) f s and

'V u e U 'V he H: u E UN(h)::::} inharbour(u,h) E s }.

The objective function IC is to measure the total work done by a plan:

IC(P) IPI.

D

Planning 69

Proposition 2.2.5.6

For any V e S , a e A and t e T, if V is correct and a.(V,(a,t)) then e(V,(a,t)) is
p

correct too.

Proof

It is straightforward by case analysis. Let us show here the case of a =
unload(u,h,x,y,z). Then it holds that for the items of Definition 2.2.5.2

(1) is obvious;

(2), (3) and (5) follow from the fact that e deletes an onship from the correct V;

(4) holds since by (3) of (c) of the Definition 2.2.5.3 we always unload from the

top of a stack and V is correct;

(6) is guaranteed by (c) of Definition 2.2.5.4;

(7) follows from (2) of (c) of Definition 2.2.5.3 and (5) from Definition 2.2.5.2.

D

After having completed these five examples an articulated methad of planning

problem definition has arisen. This methad of specifying planning probierus by

means of the model of section 2.1 is

- general, it applies to all our cases, and it seems sound to presurne that it wil! be

satisfactory to other planning probierus as well;

- facilitating clear onderstanding of the problem at hand by supporting and aiso

forcing precise analysis;

- moduiar, that is we can concentrate on one simple aspect at a time and the

whole probiem description is composed by the general model.

This method and its application in DSS development will be further discussed in

Chapter 6. An important result of the above examples is that they provide an

insight of the structure of the parameters, for instanee how allowability relations

look like and how they can be defined. This insight can be the basis of designing

a forma! language for defining planning problems.

Finally let us mention a special aspect of forma! planning proble!ns. Namely,

such a planning problem can be viewed as the interface between reality and

forma! problem solving. It is well-known that the rnadelling step we make from a

real problem R to a forma! model M is of crucial importance.

70 Chapter 2

a
R

If the model M does not describe the relevant parts of R appropriately, then all

further computational efforts using M can be done for nothing. It is therefore

quite an unpleasant fact that the correctness of such a modeHing step cannot be

rigorously proved, only intuitively justified. The reason for this is trivial: since

one end of the are a is an informal entity, we cannot establish formal relationships

along a, i.e. between R and M. Nevertheless, once we have created a formal

model M the correctness of any further treatment of M can be rigorously

investigated. After having defined search problems in Chapter 3 we return to this

question.

CHAPTER3

Search Problems

Similarly to planning the terms problem and problem solving have many

interpretations. Without wanting to open a long discussion about what they

'really' mean, we. summarize three general views on problem solving, cf. Sirnon

(1983).

1) Problem solving by search

Based on the intuitive picture of a given problem one determines what kind of

entities can be accepted as solutions of the problem, e.g. one can ex:pect a plan, a

number, a formula, or a string as solution. Thereafter one defines the set of all

entities that are of the same kind as the ex:pected solution, e.g. the set of all plans,

the set of real numbers, the well formed formulae of a given language, or the set

of all strings over an alphabet. In this case a formal solution is a special element

of this set satisfying some requirements, e.g. a plan turning the initia! state into a

state satisfying the goal condition y, the smallest real number with a given

propeny, a formula being true in a given semantic model, or a string beginning

with a eenaio prefix:. The above set is considered as a space where we search for

a solution. The search takes place by transitions in the space; one mostly uses

transition operators that, when applied to an element of the space, yield another

element. By this paradigm problem solving is starting at an initia! element and

making successive transitions in attempt to reach a solution.

71

72 Chapter3

2) Problem solving by logical reasoning

According to this view, one frrst has to set up a logica! framework with general

axioms and deduction rules, together with specific axioms descrihing the problem.

A solution is understood as a formula (a deduction of a formula, a substimtion in a

formul~) in the given logic. Problem solving then consists of making logical

derivations until a desired formula (deduction, substimtion) is reached. This

approach is commonly although not exclusively - applied within Anificial

Intelligence.

3) Problem solving by mathematica! programming

By this approach we formalize the intuitive problem by defining a set of variables

and a so called objective function on these variables. Thereafter we define a

· solution as a variabie assignment that realizes the lowest (highest) value of the

objective function. The characteristic feature of those problems that can be

treated by this approach is that the problem originally contains a measure to be

optimized, or that such a measure can be defined in a natura! way such that the

solutions we have in rnind can be identified by having a minimal (maxima!) value

according to this measure. Following this approach, problem solving is mostly

done by numerical computation airning at calculating a variabie assignment with a

minimal (maximal) objective function value. This approach is mostly associated

with Operational Research.

Observe that the above problem solving metaphors are not mutually exclusive as

the following example demonstrates.

Example 3.1

Consider a forward reasoning first-Qrder theorem prover aiming at constructing a

proof for a theorem q> from some axioms by some inference rules. On one hand,

every application of the inference rules is clearly a reasoning step that leads to

new information (propositions).

On the other hand, regarding first order formulae - including the axioms - as

elements of a space we can consicter the inference rules as transition operators.

Namely, an inference rule if A then B, respectively if A and B then C can be

viewed as a transition operator that tums the object A to B, respectively A A B to

C. The deduction process then becomes searching a path to the desired theorem.

Search Problems 73

Furthennore, if we can ~asonably define 'distance' between fonnulae, then the

worldng of the theorem prover can also be seen as optimization, i.e. aiming at a

minimal distance between the end of the deduction chain and q>.

0

The solution finding phase in a DSS requires problem solving abilities. When

choosing among the above paradigms one should consider the following.

Search is a wide spread problem solving concept that bas been the subject of

many investigations and the basis of several implementations. There is a huge

variety of solution finding methods that are characterized as 'search algorithms'.

They differ a lot in spirit, application domain and perfonnance. Ahlswede and

Wegner (1987) see search as perfonning a sequence of tests each test cutting the

search space; the goal of the search is to identify an object within the space.

Aigner (1988) discusses probabilistic search to handle optimization-Hke problems,

in partienlar applied to game playing. Charniak and MeDennou (1985) consider

search within artificial intelligence; they depiet it as the "theory of guessing" and

discuss space search based upon the usage of transition operators. Kanal and

Kumar (1988) classify search algorithms for handling discrete optimization

problems, while Pearl (1984) focuses on incorporating beuristics fonnally.

Automated reasoning grew out of classical logic by showing that resolution

based theorem proving can be the underlying mechanism of problem solving, cf.

Green (1969). It made its breakthrough in the mid seventies by introducing the

principle of "using logic as programming language", Kowalski (1974). This idea

bas led to numerous practical applications and bas formed the theoretica! ground .

of the family of logic programming languages, cf. Lloyd (1987), Sterling and

Shapiro (1986). The field is still being intensively investigated, Minker (1988). A

great advantage of automated logical reasoning methods is that the language of

logic bas a great expressive power and is easy to read, that is user friendly. A

generally experienced disadvantage of automated reasoning systems is their low

perfonnance. Automated reasoning as a problem solving paradigm is mostly

related to Artificial Intelligence; in practice it often occurs under the narnes logic

programming, deductive databases and is applied in expen systems, cf. Waterman

(1986), or knowledge based systems, see Addis (1986), Davis and Lenat (1982),

Eiben and Schuwer (1990).

74 Chapter 3

Optimization can be discovered in many a1gorithms that traditionally beloog to

Operational Research. Methods that can be globally classified as mathematical

programming have been applied to a wide class of problems, see e.g. Kolen and

Lenstra (1990), Minoux (1986), Nemhauser and Wolsey (1988), Papadimitriou and

Steiglitz (1982). These methods have booked remarkable results, although the

theoretica! and practical boundaries are also recognized, Garey and Johnson

(1979), Hansen (1989). Roughly speaking we can describe mathematical

programming methods as efficient but rigid. This means that they perform well

under tight conditions, which makes the application domaio of a eertaio algorithm

rather limited.

To handle planning problems we have chosen the search paradigm for more

reasons. Partly because in this way we expect more flexibility then in OR

methods, partly because (heuristic) search is sometimes seen as a possible link

between OR and AI, cf.Oiover and Greenberg (1989).

To give a detailed, though still informal summary of applying the space search

concept for problem solving, let us take planning probieros for example.

a) We define a search space and the correspondence between the elements of

the search space and plans. This latter is to guarantee that having found an

element in the search space rneans sarnething in the planning context.

b) We give goal condilions that specify a subspace of the whole search space. A

solution of the search problem is rneant as an element of this subspace; in

other words it is an element that satisfies the goal conditions. Every element

of the search space can be considered as a candidate for being a solution,

therefore we call them candidates in the sequel. Obviously, the goal

conditions must be given in such a way that solutions of the search problem

correspond to solutions of the planning problem.

c) There are transition operators or manipu/ations defined on the search space.

Applying a transition operator (manipulation) to a candidate results in another

candidate.

d) A search problem is solved by traversing the search space by means of the

transition operators (manipulations) defined in (c), i.e. by stepping from

candidate to candidate. A search procedure is a metbod that prescribes the

way the consecutive steps are taken.

Search Problems 75

By this approach we simplify problem solving in the following sense. If the

search space and the manipulations are d.efined then at any point of the search

space we have limited choices: we have to chose a possible manipulation at that

point. The 'only' remaining difficulty is to d.ecide which manipulations should be

taken in order to reach a solution. It is typical for practical planning problems

that the obtained search problem is intractable, cf. Garey and Johnson (1979).

The above points (a), (b), (c) and (d) imply a natutal construction hierarchy for

d.esigning a search based problem solving method. Logically and chronologically

one has to proceed by specifying the following items

1) the search space: where we search;

2) goal conditions specifying solutions within the search space: what we search;

3) the rnanipulations: the elementary steps by which we search;

4) the search method to prescribe how we search.

There is a natura! division of these four points into two groups: (1) and (2)

contain what is needed, while (3) and (4) specify how we are trying to obtain it.

From the viewpoint of planning problems we can also justify this distinction of

the two groups. (1) and (2) embody a translation of the planning problem to the

search context, remaining at problem specification, while (3) and (4) constitute a

method to handle the resulted problem, thus they belong to problem solving. This

motivates our terminology: when talkingabout a search problem we roughly mean

(1) and (2), the term search procedure covers (3) and (4). In the rest of Chapter 3

and in Chapter 4 we give a format treatment of the search paradigm by

investigating these two notions.

3.1 Model of Search Problems

The basis of our view on search is that we are looking for an element in a space.

As a consequence, a solution of a search problem is a point of the search space,

hence points of the space can be seen as candidate solutions. This formalization

looks harmless, though it has consequences that might be counterintuitive at the

first glance.

76 Chapter 3

Example 3.1.1

Let us consider a shortest path problem in a graph G = (N,E), Papadimitriou and

Steigliz (1982). Since the expected solution of such a problem is a path in the

graph G, the candidates of a corresponding search problem should be (partial)

paths as wel!. A natura! way of defining a search space is thus defining it as the

set of all paths in G. The surprising consequence of this is that the search will

take place in the space of all paths and not in the set N of all nodes, the 'natura!'

space of G.

D

There is another remarkable lesson ofthis example. Notice that knowing what

kind of objects we want as solutions (eg. paths) we have defined a search space

, that consists of the same kind of objects. This shows that the definition of

solutions intuitively precedes the definition of candidates. The forma! relationship

is, however, reversed: the search space should be defined first and then the goal

conditions on it.

Example 3.1.2

Let us consicter the planning problems of Chapter 2.2. For all of them we can

define candidates as being plans, a solution of the search probiemis a candidate
-,,

(plan) that turns the initia! state (or process) into a goal state (or process). Notice

that in this case the search terminology perfectly matches the planning

terminology: the solutions of the search problems are exactly the solutions of the

planning problem.

D

Example 3.1.3

Regarding a theorem prover as, a search procedure the candidates of a

corresponding search space can be finite sequences of well formed formulae

forming a correct deduction from the axioms.

D

In practical cases we have observed a resemblance in the way the candidates are

defined.

Search Problems 77

a) First, one defines elementary objects to construct the candidates from, e.g.

edges and nodes to make up a path, operations to build plans from, or

formulae that occur in a deduction.

b) Then one specifies a way of construction and defines candidates as complex

objects correctly constructed from the elementary objects. We used path

construction in Example 3.1.1, set construction in Example 3.1.2 and finite

sequence satisfying the definition of tieduetion in Example 3.1.3.

We do not investigate this regularity in defining the èandidates any further. In the

sequel candidates and the free search space will be primitives regardless of their

inner structure.

Defioition 3.1.4

A set C of candidates is called the free search space.

D

To define the goal of the search we have to specify which candidates are

satisfactory to terminate with.

Defioition 3.1.5

A goal condition over the free search space C is a Boolean function

<p : C --j (true ,false}
g

over candidates. The goal space is the set

D
C = { c e C I <p (c) = true }.

g g

Observe that the free search space defined for a given problem can be too wide,

i.e. there can be candidates that we cannot interpret in the terms of the problem.

A reason for this can be that the elementary objects and the construction rules to

build the candidates are not defined sharp enough: there are meaningless or

unwanted constructions that must be filtered out.

Example 3.1.6

Let us consider the TSP (Chapter 2.2.1) with sets of operations as candidates.

Obviously, the set { (to(x,y),t), (to(x,z),t) } where y ;~: z belongs to an unexecutable

plan, therefore it should be excluded as a candidate in the search space.

78 Chapter 3

Restricting ourselves to candidates that beloog to allowed plans Proposition

2.1.1.20 guarantees that the considered candidates beloog to executable plans.

0

In practice, such a restrietion on the free search space is often expressed as a

conjunction of more conditions which we shall call constraints in the sequel. The

restrietion in Example 3.1.6 is needed to filter out impossible plans from among

the candidates. Such constraints can be considered as hard constraints in the

sense that they are rooted in the planning problem itself, they are not to express

some subjeelive human wishes. Nevertheless, there can be possible but unwanted

candidates depending on the preferences of the planner. Constraints that are used

to exclude such candidates are mostly called soft constraints. The difference in

the usage of hard and soft constraints is that the planner has to satisfy hard

constraints while he has the freedom to enforce of reject soft constraints.

Example 3.1.7

A hard constraint for the TSP with the candidates from Example 3.1.2 can be

'I' {::::} the plan c is allowed with respect to the initial world state.

Possible soft constraints are for instance:

'1'
1

{::::} in the plan c the city z
3

is visited before the city z
5

, or

'1'
2

{::::} in the plan c the city z
2

is visited last before retuming home.

0

At the present level of abstraction we shall not distinguish soft and hard

constraints. We melt them together into one feasibility condition according to the

following definition.

Definition 3.1.8

A feasibility condition over the free search space C is a Boolean function

cp/ C-; (true,false}

over candidates; candidates with cp
1

(c) = true are feasible, with cp
1

(c) =fa/se are

infeasible.

The feasible search space is

c
1

= (c E C I fPjc) true }.

0

Search Problems 79

Definition 3.1.9

A search problem is a 3-tuple (C, <pf <p g)' where C is a set of candidates, the free

search space, <pf: C-+ {true, false} and <p g : C -+ { true,false} are the feasibility

condition and the goal condition, respectively. A solution of a search problem is

a candidate c e C for which

<p
1

(c)=true and <pg(c)=true

hol ds.

0

In practice, soft and hard constraints play a different role: the hard constraint

must be satisfied by the planner, while he has the freedom to modify (add or

delete) soft constraints. Doing so, he obviously changes the search problem as

well, since according to these modifications the feasibility condition changes.

From this point of view, hard constraints can be considered as defining condition

of the broadest reasonable search problem.

Example 3.1.10

Let us reeall Example 3.1.7. With the constraints 'lf, '1'
1

and 'l'z given there we

can define three different search problems (C, 'lf, <p), (C, 'lf A 'tf
1
, <p) and g g

(C, 'lf A 'tf
2
, <p), where (C, 'lf, <p) carries the broadest feasible search space.

g g

0

Practice proves that most of the search procedures restriet the search to the

feasible search space. According to this view we could have defined a search

problem as a pair (D, <p), where D is a set of candidates, <p is a goal condition. g g
This puts the role of <pf in a yet other light: we can consider the free search space

C as a preliminary definition of the actual search space and regard <pf as the

completion needed to define this actual search space (c e C I <pjc)}. The reasons

to define a search problem as a triple are twofold. First, not all the search

procedures deal with feasible candidates only. Second, we consider the role and

the notion of the feasibility condition so important that we do not want to 'hide' it

within the set D from (D, <p). For the sake of convenience, however, the term
g

search space will be often used as a synonym of the feasible search space.

Accordingly, the term candidate will often stand for a feasible candidate in the

sequel.

80 Chapter 3

There is an important class of probieros that are often solved by search methods,

therefore we want to model them with our general definition of a search problem.

Definition 3.1.11

An optimization problem is either a minimization problem or a maximization

problem. A minimization problem is a pair (C, /), where C is an arbitrary set,

1: C --+ IR is the so called objective lunction. The aim in a minimization problem

is to find a minimum of I over C, that is a c e C such that

'rJ deC :l(c) !.l(á).

A maximization problem can be defined analogously, requiring a maximum of I
over C, i.e. a c e C such that

'rJ de C :l(c) ~l(d).

By an optimization problem we always mean a minimizarion problem in the

sequel. Notice that this does not lead to any loss in generality, since any

maximization problem can easily be transformed to an equivalent minimization

problem and vice versa.

Observe that in the definition of a minimum there is a universal quantifier that

ranges over the whole C. This means that verifying that a certain c e C is a

minimum can be very difficult even if C is finite. Furthermore, in practice it is

not always needed to find an absolute minimum of f. Therefore one often

considers a decision problem, see Garey and Johnson (1979) or recognition

problem, cf. Nemhauser and Wolsey (1988) where a candidate c e C is wanted

such that it satisfies

l(c) SD,

with D being a bound given in advance.

Let us remark that such a decision problem is not necessarily easy to solve in a

mathematica! sense. A great deal of the NP-complete problems listed in Garey

and Johnson (1979) are decision probieros (recognition problems) in the above

sense.

It is clear that both optimization probieros and decision problems can be seen as

search problems: an optimization problem (C, /) can be expressed as a search

problem (C, q>f'q>g)' where

Search Problems

<p (c) = true {:::::} 'r/ deC :f(c) Sf(á),
g

while a decision problem with a given bound D corresponds to

<p (c) = true {:::::} f(c) <;, D.
g

81

According to the high level parameterization concept, we consicter the elements

of the 3-tuple (C, <pi ,<pg) as parameters that need to be set in order to define a

search problem.

3.2 Relationship Between Planning Problems and Search
Problems

Our objective by investigating search problems is obvious: we want to apply

them in a DSS to solve planning problems. To formulate we exactly mean by this

we examine the relationship between planning probieros and search problems in

this section.

Observe that the mathematica! models of planning problems in Chapter 2 are

'human friendly'. This means that the formalism, the usage of abstract entities

e.g. a plan, effect, etc., facilitates a natura) mapping between the model and the

real world. This feature supports the construction and the understanding of such

mode Is.

A solution method, however, is preferably efficient, which might counteract

understandability. The reason is that for the sake of efficiency the candidates

should be easy-to-handle by the search procedure, i.e. candidates should have a

simple structure. Therefore, in the search problem one probably prefers another

representation of reality, a representation that supports computation.

Notice that although a mathematica! problem model may imply some

preferences for certain forms of the candidates, it is primarily the search procedure

that requires a certain form. In principle there can be more 'procedure friendly'

representations given to the same mathematica! problem model.

Example 3.2.1

Imagine we have a planning problem defined in the abstract tenns of Chapter 2.

If we have a discrete programming procedure to apply then descrihing it in terms

of 0 1 matrices is algorithm friendly. However, if we want to solve the given

82 Chapter 3

problem by SLDNF-derivation, cf. Lloyd (1987), then a Hom-clause

representation form is algorithm friendly and 0 - 1 matrices are not.

0

From the above it is obvious that a translation step is needed to establish the

correspondence between the objects of a planning problem and the ones used in a

search problem. Such a translation should of course not only assign candidates to

plans (and vice versa) but should also guarantee that

- feasibility of candidates correctly reflects allowability of plans, and

- solutions of the search problem correspond to solutions of the planning problem.

Next we are going to work out the details how a search problem can be defined to

a planning problem. For the sake of convenience we restriet ourselves to dynamic

·planning problems; Proposition 2.1.3.6 ensm-es that we do not loose generality by

this restriction.

Definition 3.2.2

Let (F, A, T, à, ê), (/
0

, y, K") be a dynamic planning problem and let C be an

arbitrary set intended to be the free search space. A translation function or

representation function is a partial function

R : 'P(A x T) -+-+ C.

According to the second name of R, the candidate R(P) is called the

representation of the plan P.

0

The name translation function fits the intuitive view of switching from planning

context to search context. The name representation function is closer to the

conventional AI terminology, where the form of an abstract object is often called

its representation.

Definition 3.2.2 gives the formal interpretation of 'the candidate corresponding

to the plan P': it is R(P). Also 'the plan corresponding to the candidate c' is

defined hereby: it is a plan P satisfying R(P) = c. This latter, however, is only

uniquely determined if R is injective, i.e.

R-1(c) = { P e 1\A x T) I R(P) c }

is a singleton.

Search Problems 83

To be able to talk about 'the plan corresponding to the candidate c' even if this

latter is not the case we have to define an interpretation function in the following

sen se.

Defmition 3.2.3

Let (F, A, T, ó:, è), (/
0
, y, K) and C be as before and let R be a translation function.

An interpretation function corresponding toR is a function

I : C -H 1'(A x T)

such that

'V c E dom(/) : I(c) e R-1(c).

The plan /(c) is the interpretation of the candidate c (in terms of the planning

problem).

D

The relationship between the translation and the interpretation is determined in

the definition of the interpretation function that implies that

V c E dom(/) : R(/(c)) :::: c

always holds. Nevertheless, it is easy to see that

V P e dom(R) : /(R(P)) = P

does not necessarily hold in general.

Defmition 3.2.4

Let (F, A, T, ó:, ê), (/0, y, K) be a planning problem, C be an arbitrary set intended

to be the free search space and let R and I be a representation and an

interpretation function between 1'(A x T) and C. Furthermore, let <pf and <p g be a

feasibility condition and a goal condition over C, respectively. We say that <pf fits

(F, A, T, ó:, ê), (/
0

, y, K), C, R and I if for any c e C

<pf (c) =} ó:'lfoJ(c)).

We say that <pgfits (F, A, T, ó:, ê), lfo· y, K), C, Rand I if for any c e C

<p g (c) =} [y(è'ifoJ(c))) and 'V de C : y(è'lf0,i(d))) =} K(/(c)) s; K(/(d))].

If <pf and <pg fit (F, A, T, ó:, ê), lfo· y, K), C, R and I then we say that the search

problem (C, <pf <p g) fits the planning problem (F, A, T, ó:, ê), (/0, y, K).

D

84 Chapter 3

With the aid of the last definition we can fonnalize the basis of solving planning

problems by search: having defined a planning problem we have to specify a

search problem that fits it. Only then can we interpret a solution of the search

problem as a plan and obtain a solution of the planning problem by search, thus
' only then can we solve planning problems by search.

Reeall the figure and our remark about formal planning problems at the end of

section 2.2. From that point of view we can illustrate the role of search problems

by the next figure

a b
R M'

where M' denotès a search problem.

As we have mentioned, the correctness of the step a can only be intuitively

justified. The relationship between two formal models, however, can be fonnally

defined and this is exactly the purpose of Defmition 3.2.4. Let us also remark that

the formal defmition of a planning problem is sometimes is omitted in practice.

This means that M is skipped and one immediately makes M' by defining plans as

candidates with the appropriate feasibility and goal conditions. Obviously, this

implies that in such a case it is M' that has to be related to R and therefore it is

the correctness of M' that is justified on an intuitive ground.

Definition 3.2.5
Let (F, A, T, á, ê), (J0, y, IC) be an arbitrary planning problem, C a set (the

intended search space), R a representation function and I an interpretation function

Thefeasibility condition derivedfrom (F, A, T, á, ê), (jO' y, IC), C, R J is given by

!
á(J

0
J(c)) if c e dom(!)

cp/(c) =
fa/se otherwise

The goal condition derivedfrom (F, A, T, á, ê), (jO' y;IC), C, R, I is defined as

l
true if c e dom(!) and y(ê'(j~(c))) and

cp g (C) = 'r/ dE C : i'(ê'(j~(d))) ~ IC(I(c)} ~ IC(/(d))

fa/se otherwise

D

Search Problems 85

Definition 3.2.6

Let (F, A, T, á, ê), ifo• y, K) be a planning problem. The notural search problem

corresponding to (F, A, T, á, ê), (/0, y, IC) is (C, <pf'<pg) where C = 1'(A x T),

R = idc , I == R-1
, <pf and <p g are the feasibility condition and the goal condition

derived from this C, R and /.

0

Observe that in the natura! search problem corresponding to a planning problem

the derived feasibility and goal condition satisfy

<pf (P) {::::} á'ifo,P)

and

<p g (P} {::::} 'f(ê'ifo,P)) and 'V P' e ~A x T) : y(è'(J0,P'}) ::::} IC(P} s; IC(P'}.

Let us remark that in Example 3.1.2 we meant natura! search problems but we

expressed it informally since we did not have the formal vocabulary yet.

As we have mentioned in the introduetion of this chapter a search space is

mostly defined with an eye on an intended solution method such that the form of

the candidates is suited to the given method. Since the metbod we have in mind

is handling lists or tables rather than sets of operations (see later in Chapter 5} we

present a standard way of defining a search space containing tables.

Por the sake of convenience let us suppose that every action can be identified by

a name and a finite list of parameters. (Recall that in each example of section 2.2

the set of actions A was defined in such a way.) Formally this means that we

assume that in a planning problem we have a finite set AN = {act1, .. . ,actK) of

action narnes each name having a fixed arity n .. Funhermore, we assume that for
I

every ie (1, ... ,K) andj e {1, ... ,n.) there is a finite set Xi given that forms the
I }

domain of the j-th parameter of the i-th action name. The set of all actions in this

case is

86 Chapter 3

Now, if we funher assume that each X~ is numbered, then to any plan a set of
J

operations - we can define a list of operations uniquely through the following

steps.

1) Let' US denote the standard lexicographic ordering on X! X ••• X X~. by -<i
I

for every i e (1, ... J(}. Then we can define a lexicographic ordering « on

the set of actions by

act.(x
1
, ... ,x)«act.(y

1
, ... ,y) R i<jV

1 ni J nj

[i = j A (x
1
, .. . ,x) -<. (y1, .. . ,y)] n. 1 n.

I I

2) Basedon « and the ordering <on T wedefine an ordering <l on A x T as

follows:

(a,t) <l (a',t') R t < t' V [t = t' A a « a'].

Notice that any plan P uniquely determines its <l-ordered version. Strictly

speaking, since <l is a linear ordering the following can be easily seen: if P is a

plan with n operations then there is a list P<J = [o1, ... , on] such that

VoeAxT:[oeP R o=o.forsomeie (1, ... ,n}]
I

and

V i e { 1, . . . , n-1 } : 0. <1 0. I .
I 1+

It can be often convenient to write plans in table form instead of a list form, see

for example the coming section or Chapter 5. To obtain such a form for a plan

with m operations we first have to make the list P<l in the form

<1 [1 1)) (m m P = (act. (x
1
, .. . ,x ,t

1
, ... , act. (x

1
, .. • ,x),t)].

1
1

n. 1 n. m

Then the table

act.
11

1
xl

1(P)

1
XN

tl

11 m lm

act.
I
m

xm
1

Search Problems 87

is uniquely defined, where N = max(n
1
, ... , nK) and if the action name in the

j-th column (j e (1, ... ,m)) has an arity n < N then the (n+ 1)-th, ... , N-th

positions of that column are filled up with a special symbol, say *.

Defmition 3.2.7

Let (F, A, T, à, ê) be a planning situation where

K . .
A= U { act.(x

1
, ..• ,X) lx

1
EX~, .. . ,X E X 1

)
i=l I ni ni ni

The default search space corresponding to this planning situation is the set

C =U [.~1 [tacti)xX!x ... xx!_x{*)x ... x{*)xT]]m
meiN I- 1

and the corresponding default represenration function is obtained by the above

construction, i.e. it is

R : 1'(A x T) C,

such that

R(P) l(P<l).

The default interpretationfunction is I= R-1
.

D

Notice that the default feasibility and goal conditions determine a search

problem that fits the given planning problem. Nonetheless, it can happen that we

wanttosave the 'roundabout' through Rand I and want to define cp
1

and cpg by a

'shortcut', immediately in terms of candidates. In such a case we have to in vent

conditions cpf and r.p g such that the truth value of cp
1

(c) and r.p g(c) can be

determined by examining c only, without computing I(c) and the rest to it. In this

case we also have to prove that these non default conditions fit the given planning

problem, R and I. In section 3.3 we present an illustration of this matter.

Reeall the basic taxonomy of planning introduced at the end of Chapter I. In the

light of this chapter it can be refined as the following figure indicates:

88 Chapter 3

-,
.-------------~ ,_, __

search problem

R

modelled world

L

3.3 Examples of Search Problems

In this section we present certain search probieros that correspond to the

planning problems of Chapter 2.2.

3.3.1 Travelling Salesman Problem

Let us take the TSP form section 2.2.1 with thesetof cities Z = {z
1
, ... , zn}.

Since we only have one action name in this example we can omit the reference to

it and define a simplified version of the default search space as

C = V (Z x Z x 1)m .
me IN

The set C is thus the set of finite tables with flrst and second rows consisting of

cities and the third row containing time instances.

For a <J-ordered plan P = [(to(u
1
,v

1
),t

1
), ... , (to(uk,vk),tk)] the default

representation function is

Search Problems 89

R(P) = [::
tl

(*)

Next we define a non-default feasibility condition.

fonn (*)

For a candidate c e C of the

<pf (c) {:::} 'r/ i E { 1, ... ,k-1 } : t. '* t. l
I l+

'r/ ie [1, ... ,k-1} : vi = ui+l

Proposition 3.3.1.1

If <pf (c) = true then a.'(s0, /(c)).

Proof

and

and

It is obvious that a feasible candidate c has the fonn

[
zl vl · · · vk·l]

c = v1 v2 . . . vk

tl t2 . . . tk

Then we have to show that

a.'({at(z1)}, { (to(z1.v1),t1), (to(vl'v2),t1) .. ,(to(vk-l'vk)'tk) }) = true,

which follows easily from the definitions of section 2.2.1.

IJ

We can alsodefine an evaluation criterion for any candidate in the fonn (*) by

k
lC(c) = I D(u.,v.),

i=l l l

and specify a non-default goal condition by

\jf(c) {:::} <pf (c) and

k=n and
V :: Z •

n 1 '
and

<p g (c) {:::} \jf(c) and

'r/ de C : ['lf(d} =} K(c) ~ K(d)].

90 Chapter 3

3.3.2 Preeedenee Constrained Scheduling Problem

Applying the default metbod with omitting the reference to the (unique) action

name we obtain the following search space, representation function and

interpretation function.

C = u (J x M x T)k .
keiN

Fora <1-ordered plan P = [(begin(xl'y1),t1), .. . ,(begin(xk,yk),tt>) let

We define a non-<kfault feasibility condition for an arbitrary candidate c e C of

the above form as follows

<Jl/C) <=*
a) I:J i,le (1, .. . , k} :xi~x1 and

b) I:J ie (1, ... , k} : ABLE(xi'yi) and

c) I:J j E (I' ... , k} I:J j E J :

[PRE(j,yi) =* 3 l e (1, ... ,i-1) : y1 =jA t1 + D(xl'yl) < ti] and

d) I:J ie {1, ... , k} ...,3/ e (i, .. . ,k}: [x1 =x) A [t1 <ti +D(xi'yi)].

Proposition 3.3.2.1

I:J c e C : <pf (c) =* à(/0, l(c))

Proof

We give the sketch of the proof remarking that the above (a), ... ,(d) imply the

conditions (I), ... ,(4) of Definition 2.2.3.3, while (5) of Definition 2.2.3.3 follows

from (a).

D

A non-default goal condition for an arbitrary c e C can be given by

'JI(c) <=* <pf (c) and

k =Lil;

and

Search Problems 91

<p g (c) {::::} 'lf(c) and

V dE c : ['lf(d)::::} lC(C) s 1C(d)],

where

lC(C) = max { t. + D(x.,y.) I ie { 1, .. ~,k} }.
I I I

It is straightforward that for any candidate with <pg (c) = true l(c) is an optimal

solution of the planning problem given in Definition 2.2.3.5.

3.3.3 Time Table Problem

Here again we can omit the reference to the name of the actions obtaining the

following.

C = u (G x Z x D x K x Dm .
me IN

Fora <J-ordered plan P [(begin(x1,yl'u1,v1),q1), ... ,(begin(xm,ym,um,vm),qm)]

XI x m
yl ym

R(P) = UI u (*)
m

VI V
m

ql qm

and/ = R-1
•

We define a non-default feasibility condition for an arbitrary candidate c e C in

the above form as follows:

<pf (c) {:::::}

a) V ie [I, ... , m} : ABLE(u.,y.) and
I I

b) Vie{l, ... ,m}:N(x.,y.)>O and
I I

c) Vie {l, ... ,m}-,3je {l, ... ,m) :xi XJ"'Yi yjAui*uj and

d) VgeGVzeZ:I{ie{l, ... ,m)lx. gAy.=z)l SN(g,z) and
I I

e) V ie {1, .. . ,m) -,3je (1, ... ,m} :x.=x.Aq.=q.Ay.*y.Au.'f.u.Av.*v.
Ij Ij Ij IJ Ij

and

f) Vie {l, ... ,m)-,3je {l, ... ,m} :u. u.Aq. q.Ax.*x.Ay.*y.Av.*v.
Ij IJ IJ IJ IJ

and

92 Chapter 3

g) V ie {l, ... ,m] -aje {l, ... ,m] :v.=v.Aq.=q.Ax.-:f:.x.Ay.-:f:.y.Au.-:f:.u.
t 1 t 1111111

h) V ie I 1, ... , m] : qi e I t1, ... ,tM].

Proposition 3.3.2.1

V c E C : q>f (c) ~ à(/
0

, l(c))

Proof

and

It is obvious, the above points (a), ... ,(h) imply the conditions (1), ... ,(8) of

Definition 2.2.4.3, respectively.

D

We give a non-default goal conditionforacE C in the form (*) by

· \jf(c) ~ q>f (c) and

and

m = I I N(g,z);
gEG :EZ

q>g(c) ~ \jf(c) and

V dE C : [\jf(d) ~ K(c) s; K(d)],

where

K(C) = K1(c) + 10 · JS(C)

with

K
1
(c) =

I I I lnEil, ... ,L-1]13ije{l, ... ,m]:x.=gAy.=zAq.=t A
gE G :EZ t t t n

and

K
2
(c) =

I I I { n E {1, ... ,L-2} 13 ij,/ E {1, ... ,m}: x. g Ayi =zA qi = tn A
gEG zEZ 1

x.=gAy.=zAq.=t 1 A
1 1 1 n+

XI= gA Yt =zA ql = tn+2) I

Search Problems 93

3.3.4 Ship Loading Problem

We present the default search space to illustrate a case where there are more

action names. IntheShip Loading Problem we have AN = I move, load, unload }

with arity(move) = 2, arity(load) = arity(unload) = 5. Here we have to use the

*-notation, i.e. apply the extended version of move actions of the form

move(h.,h~ *,*,*),
I J

where hi,h} e H.

The default search space is thus

C = U [{move} x H x H I*} x { *} v

me IN
(load} x U x H (1, ... ,X} x (1, ... ,Y} x { 1, ... ,Z) V

lunload} x U x H (1, ... ,X) x (1, ... ,Y} x (1, ... ,Z}

with the default representation function:

name1 narnek

a• a"
bi bk.

R(P) c• èk.

dl dk.

êi êk

t l tk

]

m

Observe that a candidate can be divided into blocks such that within each block

there are only columns where the action name is either load or unload and

different blocks are separated by a column belonging to a move action.

CHAPfER 4

Search Procedures

In this chapter we consider search procedures. We are aiming at a general

model that captures a large class of search procedures with the same formalism.

4.1 Space Search, Graph Search, Local Search

The term search is often extended by certain adjectives, so that one often speaks

about space search, graph search, neighbourhood search or local search. In this

section we give a brief overview of these types of search and presentour vision on

their relationship. In particular, we take space search as a basis and claim that all

the others can be seen as variants of this one.

Roughly, we can associate space search with a view based on using so called

transition operators: a transition operator transforms a candidate (an element of the

search space) into another candidate, cf. Charniak and McDermott (1985). In

typical graph search · methods such as breadth first search or depth first search,

Pearl (1984), it is presumed that a set of edges is given between the points of the

search space. Accordingly, the search takes place along the edges, that is a step

from a candidate to another candidate is possible if there is an edge between them.

In neighbourhood search or local search one assumes that the search space is

divided into overlapping regions, called neighbourhoods, see Aarts and Korst

94

Search Procedures 95

(1989), and that steps from a candidate care only possible to candidates contained

in the neighbourhood of c.

Definition 4.1.1
Given a search space C, a transition operator or a manipulation is a parrial

function

m:C+~C.

D

To avoid any possibility for confusion between operations (Definition 2.1.1.6) and

operators (Definition 4.1.1) we shall use the name manipulation in the sequel.

Example 4.1.2

Let us take an arbitrary planning problem and the natural search problem

betonging to it by Definition 3.2.6. To any operation (a,t) we can define a

manipulation m() such that applying m() to a candidate (plan) P the result is a,t a,t

[

P v { (a,t)} if (a,t) E P

P .1 {(a,t)} =
P \ {(a,t)} if (a,t) e P

Another example can be the shift manipulation m
1

defined for any te T that delays

the actionsof a plan. Formally, applying m toa candidate P the result is a new
t

candidate

mr<P) { (a,t') e A x TI t' = t + t, (a,t) e P }.

D

Definition 4.1.3

If we have a set M of manipulations on the set C then the set

EM = { (c,m(c)) E C XC I mE M, c E dom(m)}

is regarded as the set of edges induced by M on the vertices C and the graph

GM (C,EM)

is called the graph induced by M on C.

D

By the above definition we can naturally envision manipulations as edges

between candidates, or rather, we can see the narnes of manipulations as labels on

96 Chapter4
'

edges. The notion of the induced graph helps us to enlighten a souree of

confusion that often occurs if one loosely speaks about a search graph. Namely, if

the original problem is given in terms of a graph, for instanee a shortest path

problem within a graph G = (N,E), then we actually have two graphs. The

original graph G is used to define the search space C where a candidate is a path

within G. The induced graph GM = (C,EM)' however, is used to structure the

search space according to a given set M of manipulations. Therefore, simply

talking about a search graph can be misleading; for full clarity one should specify

whether G or G M is meant.

We can also model neighbourhood search by manipulations according to the next

definition.

Definition 4.1.4

lf we have a setMof manipulations on the set C, then the neighbourhoodfunction

induced by M is

NM: C....., 'P(C),

such that for every c e C

N M(c) = (m(c) e C I m e M, c e dom(m)) .

For any c e C the neighbourhood of c induced by Mis the set N M(c), a candidate

c' e N(c) is a neighbour of c.

D

Example 4.1.5

A well-known type of local search algorithms for travelling salesman problems is

based on the usage of k-exchanges (k e IN), cf. Lin (1965), Lin and Kernighan

(1973). A k-exchange in our terms is an operator that produces a new candidate

(tour) from an old one. An important issue of this type of algorithms is how to

deal with local optima, where the term local optimum in fact refers to a candidate

that is optima! in the neighbourhood induced by the set of all possible

k-exchanges.

D

There is a remarkable assumption often made in local search or neighbourhood

search algorithms. Namely, local search procedures (neighbourhood search

SearchProcedures 97

procedures) are often assumed to tenninate with a candidate that is optima! in its

neighbourhood. This means that we can characterize local search (neighbourhood

search) as space search by a set of manipulations M tenninating with a candidate

c satisfying

f{c) = min{ f(c') I c' e N M(c)) .

Notice that for defining min we need an objective function f : C _, IR on the set of

candidates such that min can be defined by the f values of the candidates.

Therefore, we associate local search procedures (neighbourhood search

procedures) with optimization problems. Observe that the above property of local

search methods is crucial for distinguishing them. Namely, if we only keep the

stepping-to-a-neighbour property then local search becomes graph search (space

search) under another name.

Genetic algorithms, cf. Goldberg (1989), Grefenstette (1985, 1987), Schaffer

(1989), fonn an important class of search procedures and they can not be

described by the fonner notion of a manipulation that turns a candidate into

another candidate. Namely, a genetic manipulation typically needs two parents

(candidates) to produce a set of children (new candidates). Such a relation

between the candidates can be expressed by an extended fonn of manipulations.

Definiûon 4.1.6

Given a search space C, a hyper manipulation is a partial function

m : 1'(C)-+-~ 1'(C).

D

Obviously, ordinary manipulations can be seen as hyper manipulations defined on

singletons.

To define the hyper graph induced by a set M of hyper manipulations we can

either

- maintain the candidate-vertex correspondence and use hyper edges going from

set-of-vertices to set-of-vertices, or

- identifying a vertex by a set of candidates, thus use hyper vertices and usual

(hyper) vertex-to-(hyper)vertex edges.

We chose the second possibility which leads to the following definition.

98 Chapter4

Defmition 4.1. 7

If we have a set M of hyper manipulations on the space C, then the hyper graph

induced by M is

GM, = (1'(C),EM)

where

EM = { (x,m(x)) e 1'(C) x 1'(C) I mEM, x E dom(m) }.

D

Notice that using hyper graphs includes using ordinary graphs: an ordinary graph

can be considered as a special hyper graph having only edges between hyper

nodes that are singletons.

· By having defined a search space and manipulations we know what to search,

where and by which steps. Nevenheless, we still have to determine how to

search. This means that we have to specify a metbod that prescribes the

consecutive steps of the search process. This metbod is mostly called the search

strategy, search procedure, search method or search algorithm; we shall mostly

use the name search procedure. In the rest of this section we identify the most

essential components of search procedures and put them together into a General

Search Procedure.

4.2 The General Search Procedure

Our General Search Procedure (GSP) is an iterative generate-and-test procedure.

For the sake of generality we take a search procedure iterating a set of candidates,

called population, in each iteration cycle. Generating and testing in this case

means that the procedure is creating new populations (candidates) and testing

them whether they suffice as a solution.

Search Procedures

Scheme of the General Search Procedure

lnitialize a set of candidates
while not Goal do

begin
Select a subset from the set of candidates
Produce new candidates from the selected ones
Add the new candidates to the old ones
Reduce the extended set of candidates

end

99

Notice where the generate and test components are included in the above

scheme. Generation of new candidates is done by Select and Produce, while

testing happens at checking the Goal and at applying Reduce.

We consider this scheme as the skeleton of our problem solver within a DSS.

This skeleton specifies the main outlines of a search method using lnitialize, Goal,

Select, Produce andReduce as parameters. Giving values tothese parameters we

obtain a complete search procedure. A very important question is: which of the

above parameters can be set problem independently and which of them needs to

carry problem dependent knowledge or heuristics. If, for instanee we can define

such values for Goal, Select and Reduce that can be used over a broad domaio of

search problems then we reduced the efforts of designing a problem specific

search procedure to making lnitialize and Produce.

Before the exact definition of the GSP we make a yet other generalization. In

the sequel we also wish to consider methods maintaining extra structure on the

actual set of candidates, i.e. on the populations. In particular we want to cover

cases of ha ving lists of candidates, not only sets. Therefore we shall use lists of

candidates as populations with the standard operations e, ç, u, tî etc., meaning the
* straightforward definition of these operations for lists. We introduce C to denote

the set of all finite lists over C, en (n e !N) stands for the set of lists with n

elements.

In the sequel we unfold the scheme of the GSP. Our main concern will be the

exact identification of the parameters of the search procedure by formalizing the

terms Goal Select, Produce, Reduce and at the end of this section we have a

closer look on lnitialize. In section 4.4 we investigate which conditions on the

parameters imply desirabie properties of the GSP, namely convergence.

100 Chapter 4

To model random search we introduce functions with so called random

parameters in our procedure. What do we mean by a randomly parameterized

function with domain X and range Y? Strictly speaking we take a set of functions

1 ç; X __, Y, a probability space (Q, A, f) and a random variabie J : Q __, '!. Then

j(ro) : X__, Y is a function with the desired signature for any roe Q. Therefore

we call ro a random parameter and consicter J as a randomly parameterized

function from X to Y. For notational simplicity we often write the signature of

J : Q __, (X __, Y) in an equivalent form of J : Q x X __, Y.

To have random Selection, Production and Reduction we fix a basic manner to

obtain random parameters for them. Namely, we introduce three finite sets B, r,

d to provide parameters for Se/ection, Production and Reduction, respectively and

.attach a random variabie that delivers the values of these parameters.

Definition 4.2.1

A basic sampleprocessis a tuple (Q, A, f, B, r, d, {Z e Q __, B x r x d In e IN)),
n

where

- (Q, A, f) forms a probability space;

- B, r, d are finite sets;

- z E Q __, B x r x d (n E IN) is a sequence of independent random variables
n

such that for every n e IN

· also Z .1, Z .2 and Z .3 are independent and
n n n

· \f p eB: f[{roe Q I Z .l(ro) = Pl] > 0,
n

· \f 'Y e r : f[{ ro e Q 1 z .2(ro) = y}] > 0,
n

· \f 8 E d: f[{roE Q I Z .3(ro) = 8}] > 0.
n

0

Having a basic sample process the triple z (ro) E B x r x d is taken for the
n

parameters in the n-th iteration cycle of the GSP. Notice that if we take singletons

for B. rand d then we obtain a deterministic case. In the sequel we assume that

a basic sample process (Q, .A, lP, B, r, d, {Z e Q __, B x r x dI n e IN}) is given.
n

The introduetion of random parameters requires that we extend the signature of

hyper manipulations.

SearchProcedures

Definition 4.2.2

A random hyper manipulation is a partial function with the signature
* * m:rxc ++C.

101

For random hyper manipulations the set of all parent-lists is the set of all those

lists of candidates that are capable of producing offspring:
* p M = (XE C 13 mEM 3 y E r: (y,x) E dom(m) }.

D

If it can not lead to confusion then we shall often omit the predicates 'random'

and 'hyper' only mentioning manipulations.

From now on we assume that next to the search space C and a basic sample

process alsoasetof manipulations Mis given.

Definition 4.2.3

A selection tunetion is to select a set of parent-lists from the actual population. It
* is a partial function F s : B x C ++ 'P(P M)' where

* V p e B V x e C V y e F /P,x) : y ç; x.

D

Definition 4.2.4

A production tunetion is to produce the children of a parent-list by the previously
* given manipulations. lt is a function FP : r x P M _, C , such that

V y E r V x E p M 3 mEM: Fp(y,x) = m(y,x).

0

Notice that by this definition we allow that there are more random hyper

manipulations that are used alternating in the successive production steps.

Defmition 4.2.5

A reduction tunetion reduces the set of old and newborn candidates and

determines the 'survivors' for the next iteration cycle. Formally it is a function
* * * F : ö x C x C _, C , such that

r

* * V~ E ö V x E c V y E c : F,(~,x,y) ç; x u y.

D

102 Chapter 4

Definition 4.2.6

An evaluation function is to de termine whether a population is good to terrninate

with. Here we shall use it with the signature
* F ; C __, {true,false}.

e

0

In practice the above functions F , F , F and F may depend on some extra
s p r e

parameters too (eg. the number of iterations made) but here we do not denote this

dependence.

Let(O, A. lP, B, r, A, {Z e 0 __, B x r x A I n e IN}) be a basic sample process.
n

lts incorporation in the GSP happens by drawing an roe 0 randomly and taking

· the corresponding realizations of Z , that is (p ;y ,8) = Z (co), as the random
n 111111 11

parameters in the n-th iteration cycle of the procedure.

* Furtherrnore, let x . . e C and let F J F , Fr' F be a seleetion, a produetion, a
1m1 " p e

reduction and an evaluation function, respectively. The unfolded version of the

schema of the GSP is as follows:

General Search Procedure

x :=x ..
lnll

WHILE NOT F (x) DO
e

BEGIN

get p, y and 8

y := F/P· x)

z := u F (y, q)
qey P

x := F (8, x, z) r
END

Output the aetual population

From now on a seareh procedure is understood as an instanee of the GSP. To

specify sueh an instanee one needs to define C, M, F, F , F, F and x . . e C.
s p r e lntt

These items can therefore be seen as parameters, the valnes of these parameters

deterrnine the procedure. This motivates the following definition.

SearchProcedures 103

Definition 4.2.7

Given a basic sample process, a corresponding stoellastic search procedure is a

7-tuple

(C,M,x .. ,F ,F ,F_,F),
1n1tspre

* where Cis an arbitrary set, Mis a set of hyper manipulations on C, x . . e C , Fs'
lnlt

F , F and F are a selection, a production, a reduction, and an evaluation
p r e

function, respectively.

A deterministic search procedure is a search procedure that belongs to a basic

sample process where the sets B, r and A are singletons.

D

When considering deterministic search procedures we shall often omit the

reference to the random parameters (3, y and o. In such cases we use a defective

signature of the functions of the GSP leaving out B, r and A from their domain.

A search procedure is creating populations successively. This results in a

sequence of populations which will be called evolution. For an exact definition of

this notion we introduce the transition function.

Defmition 4.2.8

The transition function betonging to a search procedure is a function
* * F

1
: (B x r x A) x C C

to create the next population 'in one go'. Formally it is defined as

Fl(fl,y,o),x) = F,(o, x, u F/y,q)).

qEF (fl,x)
s

D

Definition 4.2.9

The evotution betonging to a search procedure is a sequence
* {X(ro)eC lneiN),

n
where

Xo(ro) = xinit'

Xn+l(ro) = FlZn(ro),Xn<ro)) for n:?: 0.

D

104 Chapter 4

To provide an easier reading of the formulae we often leave out the symbol oo

from the notation, and abbreviate Xn(oo) by Xn. In such cases IP[property(Xn)]

means lP[{ooe Q lproperty(Xn(oo))}].

Norlee that we obtain different evolutions for different initial populations.

Therefore we use a notation that indicates the dependenee on the initia!

population:

- {X I n e IN} n x denotes the evolution with x= x. . and
11Ul

- lP [•. x ..] x n stands for lP[.. Xn .. I X0 = x].

The question whether we can apply a (stochastic) search procedure to solve a

search problem can be divided into two questions:

- whether the search procedure is suited to the given search problem, and

-_ whether we can hope that the search procedure finds a solution of the given

search problem.

The following definition is to formalize what we mean by "suited to" above.

Definition 4.2.10

A search procedure (C, M, x _ _, F, F , F-' F) fits a search prob/em (D, <pi, <p)
lnlt s p r e g

if

C = Dl = { de D I q>fä) }

and
* V x e C : [(3 c e x : <p (c)) :::} F (x)].

g e
D

There are more possibilities to formalize the kemel of the second question above

"whether we can hope that". The weakest forma! conditions could be for instanee

lP [3neiN3ceD :ceX]>O
xinit g n

or

3 n e IN : lP [3 c e D : c e X] > 0,
xinit g n

where D = { d e D I <p (ä) } . g g
The following proposition shows that there is no difference between these two

formulations.

Search Procedures

Proposition 4.2.11

* For every x e C , evolution {X In e IN} and c e C
11 x

3 n e IN : lP [c e X] > 0 (':c:} lP [3 n e IN : c e X] > 0. x 11 x 11

Proof
*

105

Let US take an arbitrary x E c 'c E c and introduce A ={roE n I c Ex (ro)) as
n n

an abbreviation and observe that V A =(roE n 13k E IN: c E Xk(ro)).
· nEIN 11

::::}

IfO < IP)Ak] fora certain k e IN, then

0 < lP [Ak] :::; L lP [A] = lP [V A].
x nEIN x 11 x nEIH 11

Ç:::

If lP [v A] = 0 and thère is no k e IN with 0 < IPx[Ak] then
x neiN 11

lP [V A] = L lP [A] = 0
x neiN 11 neiN x 11

which is a contradiction.
0

Definition 4.2.12

A search procedure (C, M, x . . , F , F , F , F) is likely to so/ve a search problem
muspre

(D, q>f, q>
8

) if

(C, M, x . . , Fs' F, Fr' F) fits (D, q>f' q>) mil p e g
and

lP [3 n e IN 3 c e D : c e X] > 0.
xi11it g 11

0

Observe that whether or not a search procedure is likely to solve a search

problem is formally dependent on the initial population x. . . This is fully
llut

conform to our intuition and stresses the importance of having a good method to

create an initial population. This, however, is not easy in general; it can be quite

difficult to create an element of C, that is - in terms of the search problem to

create a feasible candidate de D
1

Notice that as a matter of fact there are two phases within a search procedure, an

initialization phase and an iteration phase. In the initialization phase an initial

population is created, that is a set of feasible candidates. In the iteration phase

106 Cho.pter 4

new feasible candidates are produced repeatedly from the old ones in order to

reach a solution.

In general we can not say much about how to construct initia! candidates. It is,

however, remarkable that the creation of a good initia! candidate can often be

carried out iteratively. To see how reeall the remark after Definition 3.1.3 where

we observed that it is common to define candidates as certain constructions based

on a set of elementary objects and some construction rules. Next we sketch an

iterative way of initialization for a search problem (D, q>f, q>
8

) where the elements

of the free search space D are constructed from a set of elementary objects by a

finite set of construction rules. Let us denote the empty construction by e. Then

the construction of a feasible candidate can be performed by the following search

procedure.

Scheme of the lterative Construction (IC) procedure

x [e]

WHILE NOT 3 de x : q>jd) DO

BEGIN

F /[dl) = {[d]}

Produce d by modifying d according to a construction rule or its inverse

F/[dl, [d]) = [d]

END

Note that this is a single point search procedure maintaining a population with

cardinality 1. Observe that the lnitialization step, Goal, Selection and Reduction

are defined problem independently here. This means that if we want to perform

the initialization phase of a complete search procedure by another search

procedure then we can easily apply the IC procedure only ha ving to define its way

of Production. In other words it is Production where the problem dependent

beuristics belong.

For the special case when the search problem belongs to a planning problem we

can give a more detailed version a subtype of the IC procedure. Let

(".P(A x T), q>/ , q> ;> be the natura! search problem corresponding to a planning

problem, seç definition 3.2.6. To create a feasible initia! plan we take another

Search Procedures

search problem (1\A x 1), ~I , ~ g)' where

~j.P) = true,

and

Definition 4.2.13

107

The lterative Plan Constructiontor lnitialization (IPCI) procedure is for the above

search problem; formally it is (è, M, P . . , Ps' P , P, P) as defined below.
mil pre

è = 1'(A x 1).

Let
1

m(a,t)(P) = P \ ((a,t)}

and

m2
()(P) = P u ((a,t)}
a,/

for every (a,t) E A x Tand P E 1'(A x T) and let us define M as
- 1 2

M = { m() I (a,t) E A x T } u { m() I (a,t) E A x T } .
a,/ a,/

pinit = [01·

F ([P]) = ([P]}.
s

\

m~a,t}P) for an (a,t) E cp~ if <D

F/[P]) =

m2
()(P) for an (a,t) E P if ..., <D a,t

where cp~ = ((x,y) E A x TI cpfP u ((x,y)}) }, <D stands fora problem dependent

condition and also the choice of taking an operation (a,t) E cp~ for m~a.t)(P) and

2 an operation (a,t) E P for m(a,t}P) is problem dependent

p ([P], [Q]) = [Q].
r

0

Observe that the IPCI procedure is constructing a feasible plan from the empty

plan by actding and deleting operations. This means that we could partially

automate the construction phase of search procedures applied to planning. Of

108 Chapter4

course, we do not claim that we hereby answered the question of 'how to

construct an initial plan when solving a planning problem by search'. Instead, we

presented a framework that pennits to sharpen this question to 'by which

condition <I> and which way of choosing (a,t) can we construct an initial plan

when solving a planning problem by search'. This implies that if one applies the

IPCI procedure to a certain problem then defining these items is sufficient to have

an initial feasible plan constructed.

In the same spirit we can also apply the IC procedure to solve a whole search

problem. Let ('P(A x D. epi , ep g) be the natural search problem corresponding to a

planning problem. Through defining another search problem (1'(A x n, epi, q)g) by

q)jP) = true,

and

ep (P) {:::} ep iP) 1\ ep (P).
g r g

we can obviously apply the IC procedure to construct a solution for

('P(A x n, epi, ep g), i.e. to construct a plan P with epfP) A ep g<P).

Defmition 4.2.14

The /terative Plan Construction for Solution (IPCS) procedure is (C, M, P . . , Fs'
lnlt

F , Fr' F) where each component is the same as in the IPCI procedure except
p e

that

F ([P]) ::; true {:::} epiP) 1\ ep (P).
e 1' g

D

Notice again, that we hereby did not answer the question of 'how to solve a

planning problem by construction'. We, however, presented a procedure that

reduces this question to 'by which condition <I> and which way of choosing (a,t)

can we solve a planning problem by construction'. Several methods based on

using dispatch rules can be considered as special cases of the above IPCS

procedure.

In the sequel we focus our attention on the 'real' search phase of search

procedures; in 4.4 we investigate properties of iterative procedures applied for

optimization problems.

Search Procedures 109

4.3 Examples of Search Procedures

Reeall that by developing the GSP we were aiming at identifying the most

essential components of a wide class of search procedures. To justify that we

have achieved this aim we specify types within the framework of the GSP that

coincide with well-known types of algorithms. These algorithms appear under

different labels like heuristic search, graph search, local search, neighbourhood

search in the literature, and in this section we show that they all can be considered

as special cases of our GSP.

4.3.1 Genetic Algorithms

Genetic algorithms, cf. Goldberg (1989), are approximation algorithms applied to

a search pmblem where q> is defined by an objective function f : C ___, IR. In a
g

classica! genetic algorithm (GA) a candidate c e C is a finite binary sequence with

a fixed length k > 1. The standard genetic production methods are crossover of

two parents and mutation of single candidates. Genetic crossover takes two

sequences (u1, .. . ,uk)' (v1, ... ,vk), a randomly chosen position n e (1, .. .,~k) and

creates two children:

(ul' ... ,un·l'vn' .. . ,vk)' (vl' .. . ,vn-1' un' ... ,uk).

The standard mutation changes one value at a randomly chosen position in a

candidate, producing (u1, .. . ,1-un' ... ,uk) from (u1, .. . ,u/

The typical genetic selection and reduction are based on a survival-of-the-fittest

mechanism, preferring candidates with a low objective function value (in case of

minimization).

The appropriate, although panial, instantiation of the GSP resulting in such a GA

is the following.

k c = {0,1) .

and let cross : r x c2 ___, c2 and mut : r x c1 ___, cl stand for the usual crossover

and mutation.

M = {cross, mut };

[

c ross('y, [c ,d])
F (y, x)=

P mut(y,[c])

if x= [c,d]

if x= [c]

110 Clwpter4

Mostly there is a random Selection and Reduction mechanism in GAs that is based

on the objective function value (fitness) of the candidates. It is typically made

such that fitter candidates (with a lower objective function value) have a larger

chance, to become a parent and to survive.

4.3.2 Simulated Annealing

lust as GAs simulated annealing algorithms, cf. Aarts and Korst (1989), van

Laarhoven (1988), are for function optimization where the goal is determined by

an objective function f: C _, IR over the search space C. To obtain a simulated

annealing (SA) algorithm weneed to take an arbitrary random manipulation

and

m: r x c1 _,cl

~ ç;; (0,1],

M={m},

F
8
([c)) = {[c]),

F (y,[c]) = [m(y,c)],

;(S,[c].[d]) = [[d]

[c)

. rt(c) - f(d)]
1f expl P > 5

otherwi se

where 0 < o s I by the definition of ~ and p > 0 is the so called cooling

parameter decreasing along the evolution.

We remark that the usual simulated annealing (SA) terminology uses the notion

of neighbourhoods. At the first sight it seems that SA algorithms rely on

neighbourhoods independent from the manipulations of the search procedure.

Deeper analysis, however, displays that SA people do not presurne the presence of

neighbourhoods given beforehand; they intuitively refer to the neighbourhoods

induced by M as defined in Definition 4.1.4.

Observe that a simulated annealing algorithm can be considered as special GA,

where children are produced exclusively by mutation.

SearchProcedures 111

4.3.3 Threshold Accepting, Hili Climbing

Threshold accepting (TA), Dueck and Scheuer (1988), is very similar to Simulated

Annealing. The essential difference between TA and SA is in the different

acceptance mechanisms, i.e. reduction functions. Namely, TA accepts a newly

generated candidate if it is not much worse than the old one, while SA does it

only with a probability. To describe TA let C, M, F and F the same as in s p
section 4.3.2. Furthermore let

8 = {S} with S;::: 0,

[

[d] if f(d) -f(c) > -ö
F/ö,[c],[d]) =

[é] otherwise

A well-known instanee of Threshold Accepting is Hill Climbing where S = 0.

From the foregoing it is easy to see that Threshold Accepting and Hill Climbing

can be considered as special forms of simulated annealing.

4.3.4 Depth First Search

Depth first search (DFS), cf. Pearl (1984), is generally considered as a tree

search algorithm assuming that during the search we are moving between the

nodes of a tree along the edges. This feature show that DFS belongs to graph

search procedures in the sense described in and after Definition 4.1.2. The name

'depth first' can be understood by observing that a DFS procedure always

produces children of the first element of the population (a list) and places the new

children in front of the old elements. This indeed can be seen as searching in

depth - if only we take the depth of a candidate as the number of its ancestors. A

depth first search procedure can be applied to an arbitrary search problem

(D, q>f q>
8

) with.

C=Df

* m: C-+-~ C is arbitrary,

M={m},

F ([c
1
, .. . ,c]) = [c.],

s n 1

112

such that c. is the first one of c
1
, .. . ,c with c. e dom(m).

I n I

F ([c]) = m(c),
p

F ((c
1
, .. . ,c], (d

1
, .. . ,d]) = [d

1
, ... , d , c.

1
, .. . ,c],

r n n n 1+ n
such that c. is the first one of c1, .. . ,c with c. e dom(m).

.. I n I

F ([c
1
, .. . ,c]) Ç::;} 3 ie { 1, ... ,n} : q> (c.).

e n g 1

Chapter4

Cbserve that by this schema a depth first search procedure can be defined by only
* defining a manipulation m : C -H C and giving an initia! candidate.

4.3.5 Breadth First Search

Breadth first search (BFS), cf. Pearl (1984), is very similar to depth first search

· only differing in the way the list is reordered after generating the children. In

other words it is only the selection function that distinguishes BFS and DFS. To

obtain breadth frrst search as an instanee of the GSP let all the components be as

in section 4.3.4 except that

F,([cl, ... ,en]' [dl, ... ,dn]) = [ci+l' .. . ,en' dl, ... , dn],

such that c. is the frrst one of c
1
, .. . ,c with c. e dom(m).

I n I

Notice that similarly to DFS we can fully define a breadth first search procedure

by the applied manipulation and initia! candidate.

4.3.6 Best First Search

Best first search (BES), cf. Pearl (1984), requires some measure to define 'best',

i.e. we need an objective function f: C _,IR to define q> in (C, q>f q>). g g
Furthermore let

* m : C -H C be an arbitrary manipulation and

M { m},

F (x) e { [c] ç; x I c e dom(m) and 'rJ de x : /(c) S,f{d) },
s

F ([c]) = m(c),
p

The characteristic behaviour of a BFS procedure is determined by the specific

selection function. The reduction function (reordering the list) does not play a

crucial role, therefore we omit its specification.

Search Procedures

4.4 Convergence of Stochastic Search Procedures

In this chapter we investigate a special type of search: approximation procedures

for combinatorial problems, Papadimitriou and Steigliz (1982). In combinatorial

optimization the search space C is always finite and the goal of the search is

determined by means of an objective function f : C --! IR requiring that the search

stops when an optimum (minimum) of fis reached. This objective function is

guiding the search, candidates and populations can be compared according to their

objective function value. By this feature we can distinguish special class of

iterative search procedures. If there is an objective function to be optimized then

the evolution is obviously 'trying' to reach better and better populations, therefore

the. name improvemenr procedure is appropriate. In this section we derive general

conditions that imply that improvement procedures lead to an optimum, cf. Eiben,

Aarts and van Hee (1991).

Further on in this section we assume that a basic sample process

(Q, A. lP, B, r, L\, (Z : n E IN }) and a search procedure (C, M, x . . , F, F , F, F)
n muspre

are given.

To formulate our first two lemmas as generally as possible we temporarily
* * introduce a new random variabie Y : Q --! (C --! C) for every n e IN such that

n
Yn(ro)(.x) = F

1
(Zn(ro),x)

and thus

Xn(ro) = Yn(ro)(Xn-l(ro))

The assumption about the independenee of the Z 's naturally transfers to the Y 's,
n n

* * i.e. it is assumed for every n E IN and Fi ç; C --! C (0 :;; i :::; n):

n
IP[Y E F 11 y l E F 1 11 .. 11 yo E F ol = n IP[Y. E F .].

n n n- n- i=O t t

The first lemma expresses a simple rewriting rule.

Lemma 4.4.1
* IP[X = y I X 1 = z]

n n-
IP[Yn-l(z) = y] "J n;?; I, V x,y,z E C .

Proof
lt is trivia!, we only remark that the independenee of the Y 's is necessary.

n

D

114 Chapter4

* By definition each x (ro) is an element of c for every (t) E n. Therefore we
n

can consicter X not only as an abbreviation of X (ro) but also as a random
n n

* variabie X ; 0 __. C . On this basis the question whether an evolution
n

{X I n·e IN} isa Markov chain is formally correct.
n x

Lemma4.4.2

{X I n e IN} is a Markov chain, and if the Z 's (Y 's) have the same distribution
n x n n

then the chain is homogeneous.

Proof
* Let n > 0, x i E C (i e {1 •.. . ,n+ 1 }). Then by the independenee and Lemma

4.4.1 we get

IP[Xn+l = xn+l I Xn xn A ... A X0 =x] =

IP[Yn(xn) = xn+l I Yn. 1(xn-l) xn A ..• A Y0(x) = x1] =
IP[Y (x) =x

1
] =

n n n+

IP[X
1

= x
1

I X = x],
n+ n+ n n

which proves the Markov property.

If the Y 's have the same distribution then by Lemma 4.4.1
n

IP[X =yfX =z] = IP[X =yiX =z]
m .!'1-1 n n-1

* is self-evident for any y,z E C and m,n e IN.

D

The fact that the Z 's have the same distribution can be seen as 'the way of
n

producing offsprings remains basically the same from generation to generation'.

This does not hold, for instanee in SA algorithms, where the control parameter p

is decreasing, hence the distribution of F , and hereby the distribution of F is
r 1

changing.

To establish convergence we have to express formally that the algorithm tencts to

an optimum. Observe that we defined the search space in general as a set without

any norm or distance measure. Therefore we can not expect convergence saying

that X (n oo) is getting close to an optimum. What remains is to require that X
n n

contains an optimum, or rather, that the chance of containing an optimum is

growing to 1.

SearchProcedures

Let C = { c e C I c is a minimum of f } .
opt

Definition 4.4.3

The chain {X In e IN) is monotone if
n x

'<JneiN:min{f(c)lceX
1
)smin{f(c)lceX).

n+ n

Remark 4.4.4

Observe that

'<Je eC VneiN:c eX :::} c eX
opt opt opt n opt n+1

is not necessarily true, but

VneiN:X lîC :;t0:::} X
1

1îC :;t0
n opt n+ opt

always holcts for monotone chains.

D

Lemma4.4.5

If {X I n e IN) is monotone then the following assertions are equivalent:
n x

a) lP [3 n e IN : X lî C :;t 0] = 1,
x n opt

b) lP [l i m X lî C :;t 0] = 1,
x n-;oo n opt

c) I im lP [(X lî C ! :;t 0] = 1
n-too x n op

Proof

115

Notice that if A = {roe 0 I X (ro) lî C :;t 0} and {X In e IN} is monotone
n n opt n

then the sets A
1
, .. . ,An, . . . form a monotone sequence due to Remark 4.4.4.

The existence and the equality of lim lP [A] and lP [l im A] for monotone
x n x n n-;oo n-too

sequences is a well-known result of elementary measure theory. This implies the

equivalence of (b) and (c).

The equivalence of (a) and (b) is straightforward if we consicter that in this case

lim A = u A.
n-too fl neiN n

D

Definition 4.4.6
* For any x e C the set of all populations that may occur in {X I n e IN) is

fl x

* succ(x) = {yeC 13neiN:IP[Xn=yiX
0

=x]>0).

116

* Furthennore, if U ç: C then

D

· succ(U) = v succ(x).
xEU

Chapter4

The next theorem is our basic convergence result. The main idea underlying the

proof is to have upper bounds on the probability of taking the wrong way, i.e.

making steps in the search space that do not reach any optimum.

Theorem 4.4. 7
* Let U ç: C and let the following hold

a) {X In e IN} is monotone for every x e U,
1l x

·b) 11k e IN (k E IN) such that 11k -+ oo (k-+ oo) and

00

Ek E (0,1) (k E IN) such that il Ek = 0 and
k=O

'V y e succ(U) : IP[X () C = 0 I X = y] s; Ek holds for every k e IN.
nk+l opt "k

Then lP [I im (X () C) :;; 0] = 1 for every x e U.
x n-1"" n opt

Proof
* Let us introduce H = { y e C I y (\ C = 0 } and choose an initial population

opt
x eH() U.

Furthennore let pk = IP[X () C = 0 I x
0

= x] (k > 0).
nk opt

Then for any k > 0 we have

p = ~ IP[X (\ C 0 I X = y] · IP[X = y I X
0

=x] s;
k+l ~ nk+l opt nk nk

yEH

~ E • IP[X = y I X =x] =
~ k nk 0
yEH

E • ~ IP[X = y I X =x]
k ~ nk 0

yEH
Ek. pk.

This implies that

k

Pk+l s; n ek ·
i=l

Hence

Search Procedures llT

00

limiP[Xn nC
0
pt=01X0 =x] = limpk S: 11 ek = 0.

k-1oo k n-1oo k=l

Notice that the monotonicity of {X I n e IN} implies that the sequence
n x

lP (X f"' C
1
= 0] (n e IN) is non increasing and then from nk -1 oo (k -+ oo) we. x n op

have that

lim lP [X f"' C = 0] :s; lim lP [X f"' C = 0] = 0,
n-1oo x n opt k-1co x nk opt

consequently

I im lP [X f"' C ;ë 0] = 1
n-1co x n opt

holds. Then by lemma 4.4.5 we obtain almost sure convergence:

lP [(limX nC);t0] = 1.
x n-1oo n op

D

Theorem 4.4.8

* Let x e C and the following éonditions be satisfied:

a) {X In e IN} is monotone, and
n x

b) {X I n e IN} is homogeneous, and n x
c) lP [3 n ~ k : X f"' C ;ë 0 I Xk = y] > 0 for every y e succ(x) and k e IN.

x n . opt

Then lP [(I im X f"' C) ;ë 0] = 1.
x n-1oo n opt

Proof

We apply Theotem 4.4.7 with U = (x} by constructing a sequence n
0
, n

1
, ...

and a sequence E
0

, E
1
,. • • so that they satisfy its condition (b).

Let y e succ(x) and

M =min{neiNIIP[X nC ;ë01X0 y]>O} y n opt
be the minimum number of steps required to find an optimum with positive

chance when taking y as initial population.

According to (b) and (c) M is finite for every y e succ(x). Then
y

M = max {M I y e succ(x))
y

* is finite because C is finite, thus succ(x) is finite. Hence

'V y e succ(x) : IP[XM f"' C ;ë 0 I X0 = y] > 0
opt

holds by the monotonicity, and thus

'V y e succ(x) : IP[XM f"' C = 0 I X0 = y] < 1. (i)
opt

lntroducing the abbreviation

118

p y = IP[X M f'l C opt = 0 I X0 = y]

we can define

p = max {py I y e succ(x) }. .

Norlee that by (i) and the finiteness of succ(x) we have that p < 1 and

'r/ y·~ succ(x): IP[XM f'l C = 01X
0

= y] ~ p.
opt

Chapter4

Let nk = M • k and ek = p (k e IN). Observe that nk oo (k oo) hold, and so

does ..
fi Ek = 0 since p < 1.

k=O
What remains is to show that

'r/ y e succ(x) : r(X f'l C = 0 I X = y] ~ t::k for every k ~ 0. (ii)
nk+l opt nk

_By the homogeneity we have that for every y e succ(x)

IP[XM·(k+l) f'l Copt = 0 I XM·k = y] = IP[XM f'l C0pt = 01 X0 = y] ::;; p

holds. This proves (ii), and hereby also the proof of the theorem is complete.

D

Loosely applying Definition 4.2.12 we can consider this theorem as stating: if an

optimization procedure is likely to solve a problem and its evolution is

homogeneons and monotone then it surely solves the problem.

Definition 4.4.9
* * * The rednetion fnnction F : A x C x C C is conservative if it always r

preserves the best f valne, that is at least one of the optima. Formally this means

that

* F (~.x, y) f'l MIN '1: 0 for every x,y e C and ~ e A,
r xy

where

MIN = { c ex u y I 'r/ de x v y :j(c) ~j(d)}
x:y .

contains the minima of x u y.

D

Lemma 4.4.10

lf the rednetion function is conservative then the evolntion (X I n e IN} is
11 x

monotone.

0

SearchProcedures

Proof
* Notice that for any arbitrary y,z e C and Se IJ.

min{ f(c) I c e z } ~ min{ f(c) I c e z u y } ~ min{ f(c) I c e F (S,z,y) }
r

if F is conservative. By the definition of the transition function we have
r

Xn+l = F/Sn, Xn' u F/yn,q))
qeF (~ ,x)

s n n
which implies

min{f(c) I c eX
1

} ~ min{f(c) I c eX}.
n+ n

IJ

119

Next we come to our original purpose to fmd restrictions on the functions of a

search procedure such that together they imply convergence.

Definition 4.4.11

The set of manipulations M connects the search space C if for every c,d e C the

candidate d is reachable from c by manipulations, that is:

3 n e IN 3 c
1

e C . .. 3 ene C: c = c
1

Ad= en A

'</ie {1, ... ,n-1}: ([c.],[c.
1
]) E EM,

I I+

where E M is the set of edges induced by M.

IJ

In the followirtg three definitions we define the same predicate for the selection,

the production and the reduction function. We shall call them generous if they

give a positive chance to every candidate, to become a parent, to be bom and to

survive, respectively.

Definition 4.4.12

If for every c e C it holds that [c] e u dom(m) then the selection function is
mEM

generous if in every iteration cycle, that is for every n e IN

* '</x e C '</ c ex: lP[[c] e F (Z .1, x)] > 0.
s n

D

Definition 4.4.13

The production function generous if for every n e IN

120

'r/ c E C 'r/ dE C : ([c],[d]) E EM => f[[d] = F (Z .2, [c])] > 0. - p n

D

Definition 4.4.14

The reduction function is generous if for every n e IN
* 'r/ x,y E C 'r/ c EX V y: lP[c E F (Z .3, X, y)] > 0.

r n

D

Remark 4.4.15

Chapter4

We remark that the generousity of F _, F and F imply that for every n e IN
> p r

* a) V x e C 'r/ c e x 3 ~ e B : lP[Z .1 = ~] > 0 I\ [c] e F (~,x). n s

b) V c E C 'r/ dE C: ([c],[d]) E EM =>
3 y E r : lP[Z .2 = y] > 0 A [d] F (y,[c]).

n p

* C) V X,y E C 'rf C E X V y 3 Ö E !!. lP[Z .3 = ö] > 0 A c E F (ö,x,y).
n r

Theorem 4.4.16

Let us assume that the drawings Z 's have the same distribution. Let the selection,
n

the production and the reduction function be generous. Funhermore let the

reduction function be conservative and let the given set of manipulations M

conneet C. Then for any initia! population lP [/ im(X n C ~ "# 0] = 1.
x n--;oo n op

Proof

The proof goes via Theorem 4.4.8, we show that its conditions (a), (b) and (c)
* hold for any x e C .

a) F is now conservative and therefore (X I n e IN} is monotone by Lemma
r n x

4.4.10.

b) Since Z 's have the same distribution {X I n e IN} is homogeneaus by
n n x

Lemma 4.4.2.

c) We show more than necessary, namely we prove
* 'rf y E C 'rf C E C : lP [3 n E IN : C E X) > 0:

opt opt y opt n
Let c e C and c

0
e y arbitrary. By the connectivity condition on M we

Opl - Opl

have that there exists an n e IN and a sequence c
1
, ... , c from C, such that c =

n opt
c and

n
([c0],[c1]) E EM 1\ ([c

1
],[c2]) E EM A ... A ([cn_1],[cn]) e EM.

Then we have

Search Procedures 121

=

l lr/ct e F
1
(Z1,y) A ... A ene FlZn' .. F

1
(Zl'y) ...) A z1 = z1 A ...

zl' .. ,zn

=

" ll Ir [Z. = z.] .i.J i-1 y l l
(z

1
, .. ,zn)eH-

where

H = {(z1, .. . ,zn) e (B x r x A)n I c1 e Flz
1
,y) A .•. 1\

AZ = z]
n n

(*)

enE Ft<zn' .. . Ft<z1,y) ...)}.

lf H:;: 0 then (*) is positive by Remark 4.4.15 which proves Ir [c eX] > 0.
y opt n

Showing H -:#= 0 is thus sufficient to prove the theorem. Therefore we need to

construct a sequence z
1
, .. . ,z such that c. e F (z., ... F (z

1
,y) ...) holds for

n t t t t
any i e { l, ... ,n). Observe that

the generousity of Fs implies 3 ~ 1 eB: [c0] e F/~ 1 ,y) and

the generousity ofFP implies 3 'Yt Er: [cl] F/yl,[co]),

hence

cl e U F/yl,q).

qeFs(pl,y)

Then by the generousity of F we have that
r

3 o1 e A: c1 e F,(o1,y, U FP(y1,q)).

qEFs(pl,y)

Hereby we proved the existence of a z
1
= (~l'yl'o 1) for which it holds that

c1 e F,(zl'y).

In the same way we can construct z
2

= (p
2

,y
2
,o

2
) such that

c
2

e F,<z
2
,y),

122

and so on until we have (zl' ... ,zn) E (B x r x ól satisfying

c 1 E F
1
(z1,y) A ... A enE F,(zn, .. . F/zl'y) ...).

This verifies that H :;:. 0 and completes the proof of the theorem.

D

Chapter 4

Next we relax the requirements on M at the cost of a further restrietion of the

reduction function.

Definition 4.4.17

The set of manipulations M quasi connects C if there exists a souree element

a e C such that any d e C is reachable from a by manipulations. Fonnally it

means that

3 n e IN 3 c1 e C ... 3 ene C: [0' = c1 Ad= en A

'</ie { 1, ... ,n-1} : ([ci],[ci+l]) e EM],

where E M is the set of edges induced by M.

D

Definition 4.4.18

If the given set of manipulations M quasi connects C and a e C a souree element

as given in Definition 4.4.17 then the reduction function is called a-preserving if
* '</ .x,y e C '</ 5 e d : a e .x :::} a e F (l>,.x,y).

r

D

Lemma 4.4.19
* Let .x e C and a e C be a souree element. If a e .x and the reduction function is

a-preserving, then

'</ y e succ(.x) : a e y.

Proof The proof is trivia!.

D

Theorem 4.4.20

Let us assume that the drawings Z 's have the same distribution. Let the selection,
n

the production and the reduction function be generous and the reduction function

be conservative. Furthennore let the given set of manipulations M quasi conneet

C, a e C be a souree element and let the reduction function be a-preserving.

SearchProcedures

Then for any initia! population x with a e x it holds that

lP [l im (X n C \ * 0] = 1.
x n-;oo n opt'

Proof

123

* Again, the proof is basedon Theorem 4.4.8. Let us take x e C such that a e x.
The conditions (a) and (b) of Theorem 4.4.8 hold by the same reasoning as in the

proof of Theorem 4.4.16.

c) We show that

'rJ y e succ(x) 'rJ c t e C : lP [3 n e IN : c t e X] > 0.
op opty op n

Let y e succ(x) and c te C t be arbitrary. Due to a ex and Lemma 4.4.19
op op

we have that a e y.

Then taking c
0

= a the quasi connectivity condition on M implies

3 n e IN 3 c1 e C ... 3 ene C: a== c
1

Ad= en A

'rJ iE { 1, ... ,n-1} : ([c .],[c.
1
]) E EM.

I I+

The rest of the proof is identical to that of Theorem 4.4.18.

0

Notice that for simu1ated annealing Theorem 4.4.8, Theorem 4.4.16 and Theorem

4.4.20 cannot be applied. As we remarked after Lemma 4.4.2, in a simulated

annealing algorithm the control parameter is decreasing, hence the distribution of

the transition function is changing. Therefore, it is only Theorem 4.4.7 that we

can apply to SA, since in its conditions only monotonicity of the evolution is

required, homogeneity is not. At first sight it seems that we can not apply this

theorem either, since the evolution of a standard SA algorithm is not monotone.

This problem, however, is easy to overcome by slightly modifying standard SA

such that it preserves its characteristic features but becomes monotone. In the

following definition we present extended SA where we maintain an extra element

in the population: a best candidate seen so far.

Defmition 4.4.21

We define extended simuiared annealing (ESA) as the following instanee of GSP .

.1., Mand F are the sameasin section 4.3.2.
p

Furthermore let

F/fl,[c,ct)) = [c] for every fl e B

and

124

l [d,cb']
F,(ö,[c,cb],[d]) =

[c,cb']

where,

. [f(c) • f(d)]
1f exp p

otherwi se

c' =
b

if f(d) "2/(cb)
and

if f(d) <[(eb)

p e IR is the usual control parameter for SA.

0

Chapter4

>Ö

It is easy to see the the above reduction function is conservative, hence the

evolution belonging to an ESA algorithm is always monotone. Notice that for

.ESA the successive populations of the evolution are all from c2
. From now on a

standard population will be denoted by a list [c,cb] if we want to emphasize the

presence of 'the best seem so far' or by a list [c, .] if we concentrale on the 'real'

element c and c b does not play a role. For a perfect matching with the usual SA

terminology we take the viewpoint of neighbourhood search, that is instead of

using manipulations we shall express ourselves in terms of neighbourhoods. This
* means that if N : C _, C denotes the neighbourhood function induced by M, then

we rewrite the production function in the form

F (y, [c]) e N(c).
p

Furthermore, we adopt the following assumptions from Aarts and Korst (1989).

1) The inhomogeneous Markov chain of the evolution is a sequence of

homogeneaus Markov ebains of the same finite length L. This means that we

keep the control parameter constant for L cycli, i.e. in the i-th cycle we use the

control parameter pi (i e IN) which is defined by a sequence p~ (k e IN
0

) as follows:

pi=pk if k·L <iS (k+l)·L;

2) IN(c) I = K for every c e C;

3) IP[F (Z .2, [c]) = [d]] = liK for every c e C, de N(c) and n e IN.
p n

SearchProcedures 125

Theorem 4.4.22

Let C be the search space andf: C IR be the objective function. Let us consicter

an ESA algorithm for which the above conditions (1), (2) and (3) hold.

Furthermore, we assume that for any evolution (X In e IN}
n x

(4) 'r/ c,d e C 3 n;;: 1 3 c
0

, ... , c
11

e C such that c0 = c and d = c
11

and

IPx[Xk+l = [ck+l'.] IXk = [ck'.]] > 0, k e (0, 1, ... ,n-1}

and

(5) p' ;;: (L+1)·A ke IN
k log(k+D)

hold, where

D > 0 is an arbitrary constant,

A = max { f(c) - f(d) I c e C, de N(c) },

L (the length of the homogeneous subchains) is the maximum of the

minimum number of steps required to reach an optimum from y for all

y e c2

are assumed to be finite.

Then lP [lim X n C ;t 0]
x n-+oo 11 opt

1 for any initia! x e cl.
Proof

Let x e c2 be the initia! population.

a) It is easy to see that the evolution belonging to ESA is always monotone due

to eb.

b) We construct nk e lH and ek e (0,1] (k > 0) such that nk -+ "" (k oo) and ..
TI ek = 0 and

k=l

'r/ y e c2 : lP [X 11 C = 0 I X = y] :::;; ek holds for every k e IN.
x nk+l opt 11k

This construction wil! be done by the following steps.

bl) Wedetermine lP [X.
1
= [c.

1
, .] I X.= [c., .]] depending on the control

X l+ I+ I I

parameter.

b2) By (b1) and (5) wededuce an upper bound ek for

IPX[Xk·L !1 copl = 01 x(k-l)·L = y].

b3) We show that f1 ek = 0, then applying Theorem 4.4.7 with nk = k·L the
k=l

proof is complete.

126 Chapter 4

bi) f [X. I = [e. I' .] I X.= [e., .]]
X I+ I+ I I

=

f [F (Z .. l, [e., .]) = [e.]] · f [F (Z .. 2, [e.]) = [e. I]] ·
XSI I I Xpl I I+

·lP x[F,(Zï3, [ei,. ,ci+l]) =[ei+!'.]]

=

+
liK x exp [(j(ci):ci+l))]

b2) According to the definition of L, from any y e c2 we can reach an optimum

in not more than L steps. If monotonicity holds then we do not loose optimal

objective function values, thus from any y e c2 we can reach an optimum in

· exactly L steps as welt. This implies that for any k > 0, y e cfl there exist

y0 , .. . , yL from C
2

such that Yo y, YL (\ Copt :F: 0 and

f [X(k I) L . 1 = y. 1 I X(k I) L . = y.] > 0 for every i e { 0, ... ,L-1 } .
X • • +I+ I+ - ' +I I

Hence

=

L +
.IT liK x exp [_ (/(er /(ei+ I))]
1=0 pk

where e. e C is such y. = [e ., .] for every i e { 0, ... ,L-1}.
I I I

Then by the definition of !!. we have

+
exp[~] ::; exp[_ if(ei)~(ci+l))]

and by the lower bound on pk we obtain that

exp [- lofi 1+D) J s exp [- ~] hol cts, hence

Search Procedures 127

L + [i~O 1/K · exp[_ (j"(ci)~(ci+l))] ~ [liK· exp

This leads to

[[
log+(k

1
+D)]]L· IP[Xk·L Îl Copt * 01 X{k-I)·L = y] ~ liK· exp r,

which is equivalent to

[[
log+(k

1
+D)]]L

IP[Xk· L Îl Copt = 0 I X{k-l)·L = y] < 1 - 1/K · exp r,

that is

1

IP[Xk·L Îl Copt = 01 X(k-l)·L = y] < 1
1 (k+D)r+T

-KL. k+D .

1

b3) Choosing nk = k · L and
_ 1 (k+D)r+T

ek - 1 - Jf · k+D weneed to prove

00

n ek o
k=l

which requires

n
lim n ek 0.
n-"'" k=l

To prove this reeall from mathematica! analysis that for any sequence ak e IR

(k e IN) it holds that

n ""
1 im n 0 ak) o iff :L log(l - ak)
n--;oo k=l k=l

= .. oe

Noticing that log(l - ak} :; ak is generally true we can conclude that

"" n
:L ak = "" implies lim IT (1 ak) = o.

k=l n--;oo k= 1
1

1 (k+D~L+T Now choosing ak = J<L · k+ we have ek = 1 - ak and

128 Chapter 4

n
This latter implies I i m n Ek = 0 and completes the proof of the theorem.

n--+oo k= 1

D

Notice that based on our general convergence results for stochastic search we

could prove almost sure convergence for extended simulated annealing in a

straightforward way. This is a stronger form of convergence than the stochastic

one provedunder the same conditions in Aarts and Korst (1989). Besides the new

convergence results this approach opens the way to convergence proofs through a

general approach considering muitkandidate populations.

CHAPTER5

Searching by Generalized Genetic Algorithms

In Chapter 1 we emphasized the flexibility of the problem solving component of

a DSS development tooi. Therefore, we would like to have a generic algorithm

that can be easily set to several different problem solving methods. We know that

using the same generic algorithm for many different problem types with only

some fine tuning on a given problem leads to a loss in efficiency. Nevertheless,

the use of such an algorithm could save much effort when designing the problem

solving component of a DSS; moreover it could provide an easy way of adapting

it if the former version is not applicable anymore.

The GPS presented in the previous chapter is such a generic procedure. lts

generality, however, is also somewhat disadvantageous. Having a procedure

where more details are fixed, there are fewer components that one has to make

oneself when applying the procedure in a specific case. This means that using a

more specific version of the GSP as default search procedure could provide more

support in DSS design then the General Search Procedure.

In this chapter we study genetic algorithms (GAs) as possible nominees for

embodying a good balance between being general and detailed. Our reasons to

choose GAs are threefold.

First, genetic algorithms are more and more recognized as robust problem

sol vers. Goldberg (1989) illustrates their performance by the following figure

129

130

efficiency
appücation specifïc
algorithm

Chapter 5

genetic
algorithms

enumeration

class of problems

Our second reason was the observation made in Chapter 4 that GAs offer a

framework incorporating simulated annealing, threshold accepting and hili

climbing. This implies that taking GAs as default search procedures we still have

a considerable freedom.

Third, several authors mention the importance of a so called adapter function in

decision making, cf. van Hee (1985). Verbeek (1990) describes this function as

one "to acquire knowledge from plans already constructed in the form of detecting

quality characteristics". This feature can be understood in two ways:

I) trying to gain knowledge from examining several planning sessions and

making up new planning heuristics; or

2) regarding one planning session where we evaluate plans we make during

planning and try to detect correlations betweentheir structure and quality.

If we take the latter interpretation then we find a striking resemblance with the

basic genetic principle, since a GA works by pursuing good quality gene patterns

that contribute to a high fitness value.

Genetic algorithms are (stochastic) search methods based on biologica!

principles. Although they have numerous applications in classifier systems and

self-leaming systems, cf. Grefenstette (1985,1987), Schaffer (1989), primarily they

Searching by Generalized Genetic Algorithms 131

are approximation algorithms to find the maximum (minimum) of an objective

function over a finite search space. The biologica! analogies have helped a lot

with inventing and investigating genetic algorithms, Holland (1975), De Jong

(1980), Goldberg (1989). We fee!, however, that these analogies form an obstacle

in the sense that there are certain GA conventions that could be dropped without

dropping the basic principles bebind GAs. What are these basic principles? In

our opinion, they are the following.

a) GAs are applied to a search space the points of which are finite sequences

over an alphabet. The elements of a sequence are called genes, the sequences

are seen as individuals or genotypes.

b) The objective function on the search space (or rather, a transformed version of

it) is viewed as fitness of the individuals. The goal of a GA is to find

individuals with maximal fitness value.

c) In an attempt to find an individual with a maximal fitness value, GAs try to

detect and exploit correlation between the positioning of genes in individuals.

As we described it insection 4.3.1, GAs perform this by taking two parentsas

samples and creating offspring from the genes of the parents.

Ad (a).

Determining the syntax of the individuals in a certain problem is often seen as a

coding step. Again in biologica! terminology. one often considers the entities of

the original problem, e.g. tours between cities or schedules of a job shop, as

fenotypes that are coded to genotypes. Using sequences for genotypes is,

however, not always the most natural choice. For instanee if we have different

types of genes then sequences are not the most appropriate way to structure them.

For example, for job shop scheduling the sequence

ul' .. . ,jn' ml ... , mn' 11 ... , 1n]

and the table

t
n

can both represent a schedule where the job j. is performed by the machine m.
I I

beginning at the timet .. The table, however, seems to be a more natura! choice,
I

not mentioning the easiness of distinguishing different types of genes simply by

the row they are found in.

132 Chapter 5

Considering classica! genotypes as one dimensional ones, tables as two

dimensional ones, one can easily tigure cubic ones etc, for any dimension n e IN.
By such a generalization we remain within the borders of being 'genetic' if only

our offspring production shows genetic features. As Suh and van Gucht (1987)
' state: "the selection of good representations and recombination operators is highly

correlated".

Ad (b)

Surprisingly enough classic GAs optimize according to one fitness function

although nature certainly judges its creatures by more criteria. This convention of

GAs can be dropped too taking different priorities into account by using multiple

fitness functions. This extension also allows us to apply different criteria at

· selecting parents and at choosing the survivors of a population. Si nee in Ei ben

and van Hee (1990) we discussed this matter in a broader context we do not go

into details here.

Ad (c).

On one hand, restricting the number of parents to two is literally a natuml

restriction; biological offspring production never exceeds this nurnber. On the

other hand, this restrietion is odd since most of the GA people are familiar with

probability theory, one of the main principles of which is: more samples -more
certainty. For GAs it would mean that having more parents one could expectedly

increase the certainty of detecting the strong gene configurations. Preserving the

GA principles one could take n (n ~ 2) parents and define gene recombination

operators that produce children of them.

Although such production functions might not be crossover-like, they still should

be considered as genetic ones if they are for propagating strong gene patterns. De

Jong (1985,1987) addresses the probieros of new representations and new gene

recombination methods stressing the imponance "to invent new operators better

suited to the [new] representation".

Searching by Generalized Genetic Algorithms 133

5.1 Multiparent Production

In this section we define a generalized form of gene recombination based on the

classic sequential genotypes where in general n (n > 0) parents can produce

children. We present a general offspring production procedure that incorporates

many known gene recombination operators. Hereby we are aiming at multiple

objectives:

1) We explicitly point out the fact that crossover is only one way of creating

children and so is our procedure. This may give impetus to inventing other

non standard methods.

2) Within the frameworkof our procedure we identify components that might be

problem specific. Hereby we locate where beuristics can be incorporated, with

other words where domain knowledge can be used.

3) Our general procedure can be used as a framework that facilitates designing

different recombination operators. Hereby it supports one of the crucial steps

of creating a GA.

Let V be a finite set, L :?: 1 and let us take the search space C = V L. In the

genetic terminology a candidate c is called a genotype. When interested in the

inside of candidates we shall denote them as

c = (c.l, ... , c.L),

where c.i e V (i e (1, ... , L)) are the ge nes of c.

Definition 5.1.1

Let c e C be a genotype. A marker is a number k e {1, ... , L), the gene marked

by k in c is c .k.

0

To make a child of n parents c
1

= (c
1
.1, ... , c

1
.L), ... , en= (cn.1, ... , cn.L) we

scan their genes. More precisely, we mark one gene of them each and make the

child gene by gene choosing from the marked genes. The hint and the first

examples of such production functions is due to Nuijten (1990).

134

PROCEDURE scan

BEGIN

initialize markers k
1
, ... , k n

j := 1

WHILE j-;,L DO

BEGIN

Chapter 5

piek one gene c .. k. of the marked genes c
1
.k

1
, ... , c .k of the parents and

1 1 n n
let c .. k. be the j-th gene of the child

I I

update the markers

j := j +I

END

END

Notice that scan can be seen as a highly parameterized procedure; the main

outlines are set but initialize, piek and update need to be given to obtain different

recombination methods. Many known genetic operators can be considered as a

special form of scanning with n = 2, distinguished by different initialize, piek and

update mechanisms.

Example 5.1.2 (I-point crossover)

The classical I-point crossover operadon (described in section 4.3.I) can be

obtained by the following. Let n = 2, initialize the markers as k
1

= 1, ... , kn = I

and let us choose the j-th gene of the child by

[

k ifl-;,j-;,[

piek(I c rk1, c2.k2)) = ::.k: if 1 < j < N
where 1 E { 1, ... , N} is drawn randomly.

Furthermore let us apply a simple update shifting the markers to the right by one

position in each cycle.

D

Observe that in the I-point crossover initialize, piek and update are problem

independent. There are more sophisticated crossovers known that use domain

knowledge when picking the actual gene of the child and also their updating

mechanism is tailored.

Searching by Generalized Genetic Algorithms 135

Example 5.1.3 (Heuristic crossover)

This method, cf. Grefenstette et al. (1985), is elaborated for the Travelling

Salesman Problem. The set V is the set of cities and a tour is coded by adjacency

representation as a permutation of cities. The method makes use of a function

D : V x V-. IR+ that represents the distance between the cities.

We can describe heuristic crossover as scanning to produce a child c by:

- n = 2;

- taking a random city c .1 e V as the staring point of the child's tour;

- initializing the markers at those genes (cities) that follow c.1 in the parents;

- picking that city for cj U> l) that provides the shorter edge teaving c.(i-1) or if

D

the shoTter edge wou1d introduce a cycle in the child the picking randomly a

one that does not introduce a cycle;

update the markers such that the marked cities follow the last picked city in the

given parent

The name of the above method shows how the authors envisage it. Sensing that

the presence of a problem dependent factor (using the distances) is characteristic

they named their crossover heuristic. Liepins et aL (1987) also studîed this

crossover calling it greedy. This name shows what is important for them: not the

fact that prob1em dependent domain knowledge is used but the way it is used.

In Mühlenbein (1989) chi1dren are produced by a so called p-sexual voting

recombination. It is a real multiparent method for p parents, although the name

p-sexual is not a very good one. Namely, the author does not distinguish different

sexes among the individuals requiring that one parent of each sex is needed for

mating. The other characteristic feature is voting. Interpreted in our terms it is a

yet another heuristic where piek chooses the gene with the highest occurrence

among the marked genes if only it occurs more times then a threshold.

In our tests (see later) we used a scanning procedure for PCSP, generating newly

ordered sequences of jobs by similar piek heuristics.

Example 5.1.4

We use the scan procedure to L long sequences of jobs (symbols of an alphabet

V). A child of n (n ;::: 2) parents is created by:

- initializing the markers as k
1

= 1, ... , kn 1;

136 Chapter 5

- for the j-th gene of the child we piek that marked gene of the parents that

belongs to the job with the longest processing time;

c

update after creatîng the Fth gene of the child c happens by setting

k. min(l e (j, ... , N) I c..l è (c.1, ... , c.j)) for each parent c.
l , l I

(ie (1, ... , n}).

Notice also that the applicatîon domain of the above update is not restricted to

PCSP. It can be applîed for any problem where the individuals are permutations

of the elements of the alphabet V, for instanee TSP. In such a case the child of

permutarions should be a permutation as well and this is exactly what this update

is taking care of. Hereby we can solve a problem of permutation representation

·mentioned in Grefenstette et al. (1985), namely that of legal tour generation.

5.2 Multidimensional Genotypes

In this sectien we study extended genotypes. We observe that several authors,

e.g. Mühlenbein (1989), Genits and Hogeweg (1991), Colomi, Dorigo and

Maniezzo (1991) apply tables as genetypes instead of the usual gene sequences.

Formalizing such extensions we introduce n-dimensional genetypes and in

particu1ar we investigate the case of 2-dimensions. Hereby we are aiming at

making the possibility of using non sequentia! genetypes explicit.

Definition 5.2.1

Let V be a finite set. the alphabet. An n-dimensional genorype can be defined as

an n-dimensional matrix over A, where the elementsof the matrix have n indices.

In particular, a 2-dimensional genotype of (size K · L) is a table

wherev .. e Vforeveryie (1, ... ,K},je {1, ... ,L}.
I)

D

Searching by Generalized Genetic Algorithms 137

A bit more sophisticated form of 2-dimensional genotypes is obtained if we

distinguish different types of genes and use the spatial relationships to structure

them.

Definition 5.2.2

Let V
1
, •.. , V K be fini te sets and let each Vi be interpreted as a type of gene. A

structured 2-dimensiona/ genotype (with size K·L) is a table

where v .. e V. for every ie { 1, ... , K), je { 1, ... , L}.
Ij I

D

Example 5.2.3

The case of job shop mentioned before belongs to this latter sort of 2-dimensional

genotypes. It can be described by ha ving V
1

the set of jobs, V
2

the set of

machines and v
3

the set of time instances in consideration. In our tests we used

this coding.

IJ

There are obviously numerous ways to produce children from tables as parents.

- Mühlenbeim (1989) uses a pointwise construction method;

- Colorni, Dorigo and Maniezzo (1991) use a crossover-like method making

children from the rows of the parents;

- Oerrits and Hogeweg (1991) apply column exchanges in a problem specitic

way.

The latter two can be seen as 'Cartesian recombination' between parent tables or

as a generalization of 1-dimensional crossover if we consicter rows (columns) as

meta genes. Next we elaborate a child production method combining Cartesian

and genetic features. For the sake of convenience we consicter the case of K = 2

and row exchanges as a basis.

Let us assume that we have two sets of genes V
1

and V
2

and the individuals are

structured two dimensional genotypes of the form

138

[
VIl '''VIL l
v21 ... v2L

L L
where [v11 ..• VIL] E V1 and [v21 ... V2L] E V2 .

Chapter 5

Furtheqnore, let us assume that we have two one dimensional multiparent

production functions F
1

on v
1
L, F

2
on v

2
L each creating a child of n parents. Let

[v~ 1 • • • v~L I
·' vn v 21 ... 2L

be n individuals for the sake of convenience abbreviated as

Below we display the possibilities of obtaining children by row exchanges, F
1

and

F2.

1 vj n 1 n
v2 2 v2 F 2(v2 , ... , v2)

1
VI

i
VI [:l] [F2(v~ :: .. , v~ l
n

VI

F1 (v~ , ... , v~)
[F1(v: ~i·., V~ : [F1(v:. · · .. v? l

F2(v2, ... , v2)

Searching by Generalized Genetic Algorithms 139

[vv~; I The element denotes the child obtained by combining the first row of the

i-th parent with the second row of the f·th parent F I (v~ , , v~) and

F 2(vi , ... , v;) denote the one dimensional child obtained by applying the one

production functions F I and F 2 to the first, respectively second rows of the above

tab les.

Observe that the n2 elements at the upper left .side are purely 'Cartesian', the

(n+ 1)2 n2 elements of the last row and the last column are really genetic ones.

It is easy to see that in general (n+ 1)K ebild.ren can be produced in this way,

where nK are purely Cartesian and (n+l)K- nK are really genetic.

The above figure can help to make offspring production methods on ones own.

Any set of the children displayed above (for instanee the ones in the last row) can

be taken as offspring of these parents. The possibilities are still manifold even for

K 2, e.g. column exchanges or exchanges of sub-rectangles.

5.3 Selection, Rednetion and Evaluation

Besides the set of manipulations and a production function, in the default search

procedure we have to define selection, rednetion and evaluation functions as well.

Below we discuss how these functions can be defined and we give a set of options

that are typical in genetic algorithms but can be used in generaL

The standard way in a GA is to select (reduce) basedon the objective function

value of the candidates. However, some natura! principles with respect to

selection (reduction) presurne properties of the objective function that do not

always hold. In such a case we have to make use of the objective function

indirectly.

l) Let g be is a non negative transformed version of the original objective

function f such that candidates with a larger g value are better, i.e. have a

smaller f value. This function g is mostly called the fitness function. A

frequently applied random selection (reduction) methad is to select (reduce)

randomly giving higher chance to fit candidates, e.g. by a distribution

140

assigning the probability

P(c,n)
g(c)

:E g(d)
de X

n

Chapter 5

to the camlidare c in the n-th population X . Notice that such a selection
n

(reduction) function is generous in the sense of Definitions 4.4.12 and 4.4.14

if g is positive.

2) Another possibility is a best first like selection (reduction), choosing only elite
* candidates, that is choosing such that for every ~ e B, ö e 11, x,y e C

I:J c E V F (~.X) 1:J d E (X\ V F (~,x)) : g(c) ';?. g(d),
s s

or

I:J c e F (ö,x,y) I:J de (x v y \ F (ö,x,y)) : g(c):?. g(d). r r
3) A third way can be to combine the first two ideas and if there must be n

(n > 1) candidates chosen (for being a parent or to survive) then choosing

k < n elite ones and n- kat random.

4) A special way of reduction is to let every newly produced child to survive, i.e.

having a reduction function satisfying

x ç; F (ö,x,y)
r

* for every ö e /1, x,y e C .

5) In case we have a souree element 0' in the search space (see Definition 4.4.17),

then a 0'-preserving reduction function may be needed. In this case the souree

element 0' always 'survives' together with some other candidates that can be

chosen according to thè above principles.

The evaluation function of a search procedure p1ays the role of the terrnination

condirion. The natural choice of setting F equivalent to the goal condition of the
e

given search problem is not always applicable in practice. As we discussed it in

section 3.1, this can occur if an optimization is to be solved. In such a case one

often applies terrnination conditions such as for instance:

a) F (X) = true <:==> min { f(c) I c EX] ~ D
e n n

where D is a given bound;

b) F (X) = true <:==> min I f(c) I c e X 1] min {f(c) I c e X } ~ D
e n n- n

where D > 0 is a border given in advance;

Searching by Generalized Genetic Algorithms 141

c) F (X)= true Ç:::} n '?. N
e n

with Ne IN given in advance.

Notice that every option listed above for a selection, reduction and evaluation

function is problem independent; they can be applied to optimization problems in

generaL Their use is not restricted to genetic algorithms, which makes it possible

to include these sets of options in a generic DSS development tooi. Hereby we

can reduce the efforts of DSS development by allowing the DSS designer to chose

one of these options when creating a DSS.

CHAPTER 6

Towards a Software Tool for DSS Design

In the previous chapters we developed a model of planning problems and a

model of search as problem solving method. Here we sketch how a generic

software tooi for DSS design can be based on these models. Strictly speaking, we

do not consicter the design of a complete DSS, we restriet ourselves to the problem

definition an~ problem solving components.

6.1 Problem Definition Component

The module of a DSS tooi that facilitates problem definition must be able to

receive and interpret information needed for the definition of a planning problem.

According to the model elaborated in Chapter 2 this module is receiving as input:

- background data;

- the definition of possible actions and time instances;

- the definition of pre-states;

- the correctness condition defining states;

- allowability conditions and a goal condition;

- the effect description;

- the evaluation criterion;

- the definition of an initia! state.

142

Towards a Software Toolfor DSS Design 143

Let us note that for the sake of convenience we use a static planning terminology

along this chapter, that is we always refer to a 'state' instead of a 'state or

process', etc.

On the above basis we can expect the following functions from this module.

Accepting a problem description, i.e. the definition of a planning problem.

- Facilitating the modification of the problem description by allowing

modification of the data and the above given items (e.g. redefining allowability

or the evaluation criterion).

The DSS created in this way should then be able to perform the following tasks.

- Representing and displaying plans.

Supporting hand made planning by allowing the user to manipulate plans.

- Computing a' and e' automatically from the definitions of a and e.
Answering queries like

· is the pre-state s a state (i.e. does it satisfy the correctness condition)?

· is the operation o (plan P) allowed at state s?

· which state is obtained if we apply the operation o (plan P) to state s?

· does the state s satisfy the goal condition?

· is the plan P a solution of the planning problem?

· what is the value .of plan P according to the given criterion?

As the language of the problem definition module we propose the following.

There must be a data language to define relevant objects, permanent functions

and permanent relations that wil! be used. Por the TSP in section 2.2.1 the data

should describe the setZand the function D. Data modelling is an important part

of software development but it would go beyond the purpose of this chapter to

discuss it in details. Nevertheless, let us remark that relational algebra is

advisable for data description since it provides a theoretically and practically

proved approach for data modeHing and it can be smoothly linked to a logic

fashioned language introduced below.

Note that based on the given data and standard arithmetics, we have the

following at our disposal:

144 Chapter6

- constants (objects from the data description and arithmetic constants e.g. the

real numbers);

- function symbols denoting permanent functions and standard arithmetic

functions;

- relation symbols denoting permanent relations and standard arithmetic relations.

These items determine a flrst order language such that the truth value of its

formulae can be computed by the given data and an arithmetic computation unit.

Next, let us extend the this first order language by adding relation symbols

denoting temporary relations and let us denote the resulting flrst order language by

L. Hereby the pre-states are determined as sets of temporary atoms, that is atoms

containing only relation symbols denoting temporary relations. Notice that the

truth value of a formula of L that contains a temporary atom can be computed

·with respect to pre-states only. The deflnition of the truth value of a temporary

atom r(x) with respect to a pre-state s can be based on the identiflcation of

r(x) e s and s r(x). Thereafter, the truth value of every atom (temporary and

permanent) can be determined and the truth of an arbitrary forrnula of L with

respect to a pre-state can be deflned by standard formula induction.

A correctness condition that defines states as pre-states satisfying this condition

can be given as a well formed formula (wff) in L. Remember that for TSP this

formula was:

3! x e Z : at(x).

Note that the goal condition is also a statement about states, therefore L is also

appropriate to express it. Insection 2.2.1 we used the formula

at(z
1
) A V z e Z : seen(z);

Naturally, we also have to deflne the narnes of actions. If the set of time

instances is also known for instanee IR by default - then hereby the set of

operations becomes defined and so does the set of all plans. To deflne the

allowability of operations we need requirements about the state an operation is

applied to. Also these conditions of allowability can be expressed in L, possibly

by one condition for each different action. Since in a TSP we had only one action

- to(x,y)- we needed only one formula as a condition:

at(x) A ..., seen(y).

Towards a Software Toolfor DSS Design 145

Observe that states are fonnally sets of atoms hence their changes are easy to

express in tenns of v and \ . This implies that we need to surpass the first order

language L and introduce an effect language EL in a functional fashion based on

set operations. Again, we can expect that to each action there belongs a correct

expression of EL, for instanee for to(x,y) we gave

(s\ {at(x)}) v {at(y), seen(y)}

in section 2.2.1.

Finally, evaluation criteria can be defined as arithmetic expressions possibly

relying on the given data. The criterion in case of the TSP was

m
K({ (to(xl'y1),t

1), ... , (to(x ,y"),t))) = î. D(x.,y.).
m m i=l 1 1

The definition of an initial state requires that we explicitly give a set of atoms of

L that satisfies the correctness condition. For the TSP the set

{at(z
1
)}

was given as initial state.

Notice that such a logic fashioned language for problem specification is human

friendly in the sense that non-experts without much experience are likely to read

and write sentences of such a language. This feature makes it possible that the

access to these items be left free after the DSS design phase, that is that even the

user of the DSS is allowed to modify these parameters. Observe that hereby the

flexibility of the DSS tool can be carried over to the DSS itself.

Next to the definition of a planning problem the DSS tool must also support the

definition of a search problem. The search problem (C, !pf !p g) should be defined

such that it fits the given planning problem. If there is no hard argument against

it, then we suggest that the default free search space is used together with the

default representation and interpretation function (see section 3.2). Note that these

can be created automatically from description of the planning problem.

The functions of the submodule facilitating search problem definition can then

be listed as follows.

- Taking the default search problem betonging to the given planning problem.

146 Chapter6

Adding extra conditions on plans restricting the default feasibility and goal

conditions.

- Defining non-default feasibility and goal conditions to a given planning

problem.

- Supporting the definition of feasibility and goal conditions on plans without

having defined the full planning problem (recall the remarks after definition

3.2.4).

Notice that the necessary data and the set of plans can be defined without

formally defining the world states, allowability and the effect function. If we have

- constants (objects from the data description and arithmetic constants e.g. the

real numbers);

- function symbols denoting permanent functions and standard arithmetic

functions;

- relation symbols denoting permanent relations and standard arithmetic relations

together with the set of actions and time instances, then the set of all plans is

determined and so is a first order language L' !: L wherein we can express

feasibility and goal conditions for a format search problem. This permits that we

omit the analysis and the specificadon of states and effects immediately defining

plans as candidates and <p/ and <p g by wffs in L'. Let us remark that in the

examples of Chapter 3 the given <p/ and <p g were expressed in such a manner. For

the TSP in section 3.3.1 we had the default form of candidates, that is

[:: : : : :: l
tl tk

where a column

[;: l
I

belonged to an operation (to(u.,v .),t.). The feasibility condition for a candidate in
I I I

the above form was given as

'V ie {1, ... ,k-1} : t1:;;: ti+l 11 'V ie { 1, ... ,k-1} : v1 = ui+l 11 u1 = z1
The evaluation criterion K for a candidate in the above form was defined as

k
L D(u.,v.),

i=l l I

and the goal condition was given as

Towards a Software Too/for DSS Design 147

V ie (l, ... ,k-1) :t."#t.
1

1\ Vie (l, ... ,k-1) :v.=u.
1

/\ u
1

=z
1

1\ k=n
I I+ I I+

1\ v n = zl .

Reeall that an appropriate search problem is not only depending on the given

planning problem but also on the intended salution methad. With respect to a

salution methad we have basically two choices: either an construction or an

iteration methad can be applied. Choosing between the two the following

arguments can be considered:

- for highly constrained problems it can be very difficult to produce feasible

offspring of candidates, thus a (stepwise) construction methad can be easier than

iteration in the space of feasible candidates;

- if there are evaluation criteria involved then we have an optimization problem,

in which case iteration, in particular improvement, is the commonly made

choice;

- construction may be applied even for optimization; in section 4.2 we presented

a general construction methad in an iterative fashion, based on the use of

beuristics (dispatch rules) to extend the empty plan step by step towards a good

plan.

Notice that if the planning problem is defined, then correct feasibility and goal

conditions for an appropriate search problem can be derived automatically.

6.2 Solution Metbod Definition Component

The module of a DSS tool that facilitates the definition of a problem solving

methad must be able to receive and interpret information needed to define a

search procedure. The language to define a search procedure should be

appropriate to define manipulations on plans, initialization and the selection,

praduction, reduction and evaluation functions. Two kinds of choices for such a

language are:

- an executable specification language, e.g. ExSpect, cf. van Hee, Somers and

Voorhoeve (1989);

- an imperative programming language (Pascal, C).

148 Chapter 6

Notice that these options for the specification language of the solution method are

lacking the human friendliness of logic fashioned languages. This implies that the

user of the DSS would have only limited access to the inside of problem solving

mechanism. Nevenheless, we can assembie a library of (parameterized)

components of search procedures (e.g. several kinds of selection functions) and

support the composition of a search procedure from this library. This library can

be used within the DSS tooi - thus in the DSS development phase as well as

within the DSS. By allowing the user to (re)compose procedures and by letting

him tune the parameters of the components it is possible to provide flexibility for

the problem solving section too. This seems to be a promising approach as far as

selection, reduction and evaluation are concerned. Other items, however, such as

the set of manipulations and offspring production seem to be too problem

· dependent to be defined in a generally usabie manner. Nevertheless, if we restriet

ourselves to the generalized genetic framework discussed in Chapter 5, then we

can provide guidelines even for defining manipulations and offspring production.

We return to this question later, after discussing other aspects of defining a search

procedure.

If we already have a search problem that fits the original planning problem then

a search procedure has to be defined. Since the search space is already

deterrnined, c. . , M, F , F , F and F need to be defined, that is the initia!
mlt spr e

candidate(s), the set of manipulations, the selection function, the production

function, the reduction function and the evaluation function. By the following

figure we give a global illustration of how a search procedure can be defined. By

1-- X and X --; we mean that the item X has to be given by the DSS designer.

The interpretation of [1-- X] is that the item X does not necessarily have to be

defined, it can be chosen from a set of provided options. The textual explanation

is given below.

Towards a Software Toolfor DSS Design

Construction

?(a,t)-;
<])-;

IPCS
procedure

?(a,t)-;
<I)

IPCI
procedure

149

Iteration

[t-F F F]
c s e

t-M

The notation above denotes an and-node in the graph,

indicating that both branches have to be taken.

If one wants to find a solution by construction then by the Iterative Plan

Construction for Solution procedure (Definition 4.2.14) we can offer a reasonable

support. Namely in the IPCS procedure M, P . . , P , P and P are already
mu s r e

defined. The system designers work is thus reduced to complete the definition of

the production function by

- determining the condition <I> that tells whether to extend or shrink the actual

plan;

finding good beuristics (dispatch rules) to choose the operation (a,t) that is

added to I subtracted from the actual plan.

If one is willing to apply an iteration (improvement) procedure then an

initialization and an iteration part have to be made.

We can offer support for initialization by the Iterative Plan Construction for

Initialization procedure as given in Definition 4.2.13. Here again, most of the

components are already defined and only the definition of the production function

has to be completed by

150 Chapter 6

- detennining the condition $ that tells whether to extend or shrink the actual

plan;

- finding good heuristics to choose the operation (a,t) that is added to I subtracted

from the actual plan.

lf one chooses a non improvement iteration method then we can offer two

generic procedures in this spirit: depth first search and breadth first search, defined

insection 4.3.4. and 4.3.5. As we remarkedit there, these procedurescan be hard

coded in advance, only leaving two parameters free: the applied manipulation
* m : D -H D and an initia! candidate.

For having an impravement procedure one has to define each of M, F , F , F ,
s p r

F . We pay special attention to this case and discuss it below.
e

Defining manipulations is a highly problem dependent step where we can offer

little suppon in generaL Nonetheless, if one agrees to work within the generalized

genetic framework discussed in Chapter 5, then he can rely on the procedure scan.
Taking it as the general way to describe manipulations the design is better shaped:

init, piek and update have to be given. Since within this framework one can

define many different kinds of offspring production methods, we advise to use it,

unless the manipulations the designer has in mind do not fit this form.

Designing a selection function to choose the parents from the actual population

can be reasonably supported in generaL In section 5.3 we listed some generally

applicable options, for example:

- select parents fully at random;

select only elite parents, that is candidates that are better then other candidates

according to some criterion;

- select a number of elite parents and some other ones randomly.

Next to such problem independent possibilities one can apply heuristics, that is a

problem dependent manner of selecting, relying on the given domain knowledge.

The production function generates the children of the chosen parents. If for

every parent-list there is only one manipulation applicable then the production

mechanism is determined by Mand F. If, however, there are more possibilities,
s

Towards a Software Toolfor DSS Design 151

e.g. different mutations possible then the role of F is important. Standard ways
p

to handle such cases are choosing yet other manipulations in turn, or defining F
p

such that it chooses between the given possibilities randomly according to a given

distribution.

Sirnilarly to the selection function we can reasonably support the definition of F
r

by options. The basic principles to choose the survivors are very similar to those

of se1ecting the parentsas the items (1) (5) insection 5.3 indicate.

Reeall the remark after Definition 3.1.11 about the difficulties to verify

optimality. Therefore we present three practically applicable evaluation functions:

giving a bound B > 0 and defining the value of F (x) true if f(c) ::;; B holds
e

for a candidate c e x;

- stopping if the improvement by the last iteration step remains under a certain

level;

- stopping if the number of iteration cycli reaches a limit.

There is a condusion we can draw from the foregoing: the crucial factors in

designing a search procedure are the manipulations and the production function.

These should be suited to the problem and at the moment we do not see many

possibilities to provide automatic support for their definition. Let us point out

another step that seems to be crucial: initialization. Although we could present a

general construction-initialization procedure, we foresee that it can be

advantageous to make the initialization step by a more problem suited algorithm.

CHAPTER 7

Final Remarks

The field of decision support systems is "lacking conceptual research-oriented

articles", as reported by Elam, Huber and Hurt (1986). In practice, the

development of a DSS is mostly a case-bounded activity, repeated for every new

decision problem. Iri this thesis we describe a mainly theoretica! investigation

directed at setting the outlines of a generic DSS development tooi. Concentrating

on the automatic decision generation function within a DSS we distinguish two

main issues of interest: problem description and problem sol ving. We study them

both independently and elaborate a theoretica! model of planning problems and

search procedures. The underlying idea of our approach is to have these models

implemented by software that facilitates the definition of instances of the models.

By building decision support systems with the aid of such a tooi, DSS design

could he carried out more systematically and with less effort than by the case

specific practice of today.

Based on the notions of world states, actions and time we work out a planning

theory. Time is explicitly present in our model of planning problems, which

makes it possible to notice and handle difficulties of parallel actions. Discovering

the limits of modeHing only static world situations we introduce dynamic planning

models and clarify their relationship to static ones. Finally, observing conflicts

between intuition and the formal model, we discover the importance of the so

152

Final Remarks 153

called Delenninative Past Assumption in dynamic planning situations. By the

theory we obtain a clear terminology and a general framework facilitating the

definition of specific planning problems. Hereby we also lay the basis of the

problem definition component of a generic DSS tool.

As for the problem solving part, we model stochastic space search procedures.

The elaborated model incorporates features of graph search and local search

methods, enlightening their relationships. By the General Search Procedure we

distinguish the most essential components of a wide scale of search methods,

ranging from depth first search to genetic algorithms. ModeHing successive

iteration cycli of the search by Markov chains, we prove general convergence

results for methods applied to optimization problems, in particular simulated

annealing. Special attention is paid to genetic algorithms. By generalizing

classica! genetic features we obtain a class of search procedures that can serve as

a default problem solving method in DSSs.

To gain early feedback whether our problem solving approach is practicabie we

made a shell prototype based on the General Search Procedure. This prototype

was implemented in C++ and it supported the definition of genetic-like search

procedures for different optimization problems, cf. Nuijten (1990). With the aid

of the shell we could define a search procedure and obtain an executable program

to run evolutions. Plans were represented in a table (list) form as discussed in

Chapter 3. By the absence of the problem definition component, feasibility and

goal conditions had to be defined in the spirit of section 3.3. A set of options for

each of the selection, reduction and the evaluation function was implemented in a

problem independent manner as discussed in the foregoing. Support at the

definition of a search procedure was thus partly realized by providing the

possibility of choosing among these options. Hence, using this shell it was

enough to concentrale on the design of the predicted problem dependent

components such as initialization, the manipulations and offspring production.

For the latter two we applied the generalized genetic framework using scanning

with the heuristics described in Example 5.1.3 and Example 5.1.4. We have

defined mutation and multiparent production as manipulations, the production

function applied them randomly with a certain given distribution.

154 Chapter 7

We experienced that it was simple to define search procedures by using our

shell. More precisely, we found that it was quite easy to compose a genetic-like

search procedure by the given options - if only we have coded manipulations and

initialization already. Although the shell is just a prototype we gained feedback

about the practicability of our approach to DSS design and confrrmed that one can

develop the decision generating subsystem of a DSS based on our notions.

The usefulness of such a shell is of course also depending on the quality of the

search procedures created with the aid of it. To test it we applied the shell for

making impravement algorithms for handling TSP and PCSP. We made runs to

test the efficiency and the effectivity of the procedures. For the TSP we ran 500

tests with a 120 city problem from Grötschel (1977) and obtained an average tour

length of 7952.7 (14.6% above the optimum). For the PCSP we took the FIS2

înstance with 10 machines and 100 jobs from Fischer (1963). After 500 runs the

average length of the obtained schedules was 1037.6 (11.6% above the optimum).

The efficiency of our procedures was moderate: the computation times were

between 10-15 minutes on a Sun SP ARC station for each problem.

From a practical point of view, we can say that the aim of a decision generation

procedure is not to find a theoretically optimal decision, but to find better

decisions than a man would do. To make a rough comparison with human

planners, the same problem instances were also given to ten colleagues. We

observed that for the TSP they slightly outperformed our procedure by achieving

an average tour length of 7738.3 (11.5% above optimum) within about 10-15

minutes, while the figures for the PCSP are 1080.8 (16.2% above the optimum)

obtained after 1-3 hours of thinking.

These results have an illustrative value demonstrating that taking search

procedures as the basis of problem solving in a DSS is a sound approach.

Whether or not this approach is really practicabie will, however, only be certain if

more realistic (harder) problems can also be handled within acceptable

computation times.

Future work has to be directed at mainly practical issues. The implementation of

a problem definition component has to be carried out based on the language we

sketched in section 6.1. Here we will have to handle questions about data

management and interfacing. The prototype of the component supporting the

definition of a problem solving metbod has to be extended such that a good

Final Remarks 155

balance is reached between being free and having restrictions by built in features

when composing a search procedure. A library of components of search

procedures has to be made and made accessible to the DSS designer as well as the

user of the created DSS. Here the issue of man-machine interaction during

problem solving has to be treated. At last, the border between the DSS tooi and

DSSs has to be defined. This means that for both the problem definition and the

solution metbod definition component it neects to be decided which parameters are

fixed by the DSS designer and which ones can be modified later by the user of the

created DSS.

References

Aarts, E.H.L. and Korst, J., Simulated Annealing and Boltzmann Machines, Wiley
and Sons, 1989.

Addis, T.R., Designing knowiedge-based systems, Kogan Page, 1986.

Ahlswede, R. and Wegener, 1., Search Problems, Wiley and Sons, 1987.

Aigner, M., Combinatorial Search, Wiley and Sons, 1988.

Alter, S.L., Decision support systems: current practice and continuing challenges.
Addison-Wesley, 1980.

Anthonisse, J.M., Lenstra, J.K. and Savelsbergh, M.W.P., Behind the screen: DSS
from an OR point of view, Decision Support Systems 4, pp. 413-419, 1988.

Bellmore, M., and Nemhauser, G.L., The Traveling Salesman Problem: A Survey,
Operations Research 17, pp. 538-558, 1968.

Bonczek, R.H., Holsappe, C.W. and Whinston, A.B., Foundations of Decision
Suppon Systems, Academie Press, New York, 1981.

Bonczek, R.H., Holsappe, C.W. and Whinston, A.B., Specification of modelling
and knowledge in decision support systems, in Processes and Tools for Decision
Support, ed. Sol, H.G., North-Holland, 1983.

Brachman, R.J., Levesque, H.J. and Reiter, R. (eds.), Proceedings of the First
International Conference on Principles of Knowledge Representation and
Reasoning, Morgan Kaufmann, 1989.

Burch, J.C. and Strater, F.R., Information Systems: Theory and Practice,
Hamilton, 197 4.

Chamiak, E. and McDermott, D., Introduetion to Artificial Intelligence,
Addison-Wesley, 1985.

Colorni, A., Dorigo, M. and Maniezzo, V., Applying Evolutionary Algorithms to
Solve the Time-tabie Problem, in Parallel Problem Solving from Nature, Lecture
Notes in Computer Science, vol. 486, eds. Schwefel, H.-P. and Maenner, R.,
Springer-Verlag, 1991.

Davis, R. and Lenat, D.B., Knowiedge-based Expert Systems in Artificial
Intelligence, McGraw Hili, 1982.

De Jong, K., Adaptive system design: a genetic approach, IEEE Transactions on
Systems, Man and Cybernetics 10, pp. 566-574, 1980.

156

References 157

De Jong, K, Genetic Algorithms: A 10 Year Perspective, in Proceedings of the
International Conference on Genetic Algorithms, ed. Grefenstette, J., Lawrence
Erlbaum Associates, 1985.

De Jong, K, On Using GAs to Search Problem Spaces, Proceedings of the 2nd
International Coriference on Genetic Algorithms, ed. Grefenstette, J., Lawrence
Erlbaum Associates, 1987.

Dueck, G. and Scheuer, T., Threshold Accepting: A general Purpose Optimization
Algorithm Superior to Simulated Annealing, manuscript 1988.

Eiben, A.E., Modeling Planning Problems, in Proceedings of MFDBS 89, Lecture
Notes in Computer Science, vol. 364, eds. Demetrovics, J and Thalheim, B.,
Springer-Verlag, 1989.

Eiben, A.E., Aarts, E.H.L. and van Hee, KM., Oiobal Convergence of Genetic
Algorithms: A Markov Chain Analysis, in Parallel Problem Solving from Nature,
Lecture Notes in Computer Science, vol. 486, eds. Schwefel, H.-P. and Maenner,
R., Springer-Verlag, 1991.

Eiben, A.E. and van Ree, KM., Knowledge Representation and Search Methods
for Decision Support Systems, in Data, Expert Knowledge and Decisions, eds.
Gaul, W. and Schader, M., Springer Verlag, 1990.

Eiben, A.E. and Schuwer, R.V., Knowiedge-based Systems: a Forma! Model,
Proceedings of the Third Dutch Conference on Artificial lntelligence, 1990. (in
Dutch)

Elam, J.J., Huber, G.P. and Hurt, M.E., An examination of the DSS literature
(1975-1985), inDecision Support Systems: A Decade in Perspective, eds. McLean,
E.R. and Sol, H.G., North-Holland, 1986.

Even, S., Itai, A. and Shamir, A., On the Complexity of Timetable and
Multicommodity Flow Problems, STAM Journal on Computing 5, pp. 691-703,
1976.

Fisher, H. and Thompson, G.L., Probabilistic Learning Combinations of Local
Job-shop Scheduling Rules, in lndustrial Scheduling, eds. Muth, J.F. and
Thompson, G.L., Prentice Hall, 1963.

Forbus, K.D., Qualitative Process Theory, Artificial lntelligence 24, pp. 85-168,
1984.

Garey, R.M. and Johnson, D.S., Computers and lntractability: A Guide to the
Theory of NP-Completeness, Freeman and Co., 1979.

Genesereth, M.R. and Nilsson, N.J., Logica/ Foundations of Artificiallntelligence,
Morgan Kaufmann, 1987.

Gerrits, M. and Hogeweg, P., A Genetic Algorithm application on the search for
minimal mulation phylectic trees, an NP-complete problem, in Parallel Problem
Solving from Nature, Lecture Notes in Computer Science, vol. 486, eds. Schwefel,
H.-P. and Maenner, R., Springer-Verlag, 1991.

158 References

G1over, F. and Greenberg, liJ., New approaches for beuristic search: A bilateral
linkage with artificia1 intelligence, European Journalof Operational Research 39,
pp. 119-130, 1989.

Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine
Learnillg, Addison-Wesley, Reading MA, 1989.

Gorry, O.A. and Scott Morton, M.S., A framework for management information
systems, Sloan Management Review 13, pp. 55-70, 1971.

Green, C., App1ication of Theorem Proving to Problem So1ving, Proceedings of
the First International Joint Conference on Artificial Intelligence, North-Holland,
1969.

Grefenstette, J.J. (ed.}, Proceedings of the International Conference on Genetic
Algorithms, Lawrence Erlbaum Associates, 1985.

Grefenstette, J.J. (ed.), Proceedings of the 2nd International Conference on
·Genette Algorithms, Lawrence Erlbaum Associates, 1987.

Grefenstette, J., Gopal, R., Rosmaita, B. and Van Gucht, D., Genetic Algorithms
for the Travelling Salesman Problem, Proceedings of the 2nd International
Conference on Genetic Algorithms, ed. Grefenstette, J., Lawrence Erlbaum
Associates, 1985.

Grötschel, M., Polyedrische Characterisierungen Kombinatorischer Optimierungs­
probleme, PhD. Thesis, Hain, Meisenheim am Glan, 1977. (in German}

Hansen, P., A short discussion of the OR crisis, European Journal of Operational
Research 38, pp. 277-281, 1989.

van Hee, K.M., Information systems and decision support, Informatie 27, pp.
978-986, 1985. (in Dutch}

van Hee, K.M., Decision support systems for logistics, in Databases, ed. J.
Paredaens, Academie Pre ss, London, 1987.

van Hee, K.M. and Lapinski, A., OR and AI Approaches to Decision Support
Systems, Decision Support Systems 4, pp. 447-459, 1988.

van Hee, K.M., Somers, L.J. and Voorhoeve, M., Executable Specifications for
Distributed Systems, in lnformation System Concepts: An In-depth Analysis, eds.
Falkenberg, E.D. and Lindgreen, P., North-Holland, 1989.

Holland, J.H., Adaptation in Natura/ and Artificial Systems, Univ. of Michigan
Press, Ann Arbor, 1975.

Kanal, L. and Kumar, V. (eds.}, Search in Artificiallntelligence, Springer-Verlag,
1988.

References 159

Kanal, L. and Kumar, V., The CDP: A Unifying Pormulation for Reuristic Search,
Dynamic Programming, and Branch-and-Bound, in Search in Artificial
Intelligence, eds. Kanal, L. and Kumar, V., Springer-Verlag, 1988.

Keen, P.G.W., Adaptive Design for Decision Support Systems, Database 12,
1980.

Keen, P.G.W., Decision Support Systems: The Next Decade, inDecision Support
Systems: A Decade in Perspective, eds. McLean, E.R. and Sol, H.G.,
North-Rolland, 1986.

Keen, P.G.W. and Scott Morton, M.S., Decision Support Systems: An
Organizational Perspective, Addison-Wesley, 1978.

Kolen, A.W.J. and Lenstra, J.K., Combinatorics in operations research, Report
BS-R9024, Centre forMathernaties and Computer Science, Amsterdam, 1990.

Kowalski, R., Predicate Logic as Programming Language, Proceedings of the IFIP
Congress, North-Rolland, 1974.

van Laarhoven, P.J.M., Theoretica! and computational aspects of simulated
annealing, CWI Tracts, Centre for Mathernaties and Computer Science,
Amsterdam, 1988.

van Laarhoven, P.J.M., Aarts, E.R.L. and Lenstra, J.K., Job shop scheduling by
simulated annealing, Report OS-R8809, Centre for Mathernaties and Computer
Science, Amsterdam, 1988.

van Langen, P. and Treur, J., Representing Wor/d Situations and Information
States by Many-sorted Partial Models, Report PE8904, University of Amsterdam,
1989.

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. and Shmoys, D.B., Sequencing
and Scheduling: Algorithms and Complexity, Designing Decision Support Systems
Notes, Eindhoven University of Technology, 1989.

Liepins, G.E., Rilliard, M.R., Palmer, M. and Morrow, M., Greedy genetics,
Proceedings of the 2nd International Conference on Genetic Algorithms, ed.
Grefenstette, J., Lawrence Erlbaum, 1987.

Lin, S. Computer Solutions of the Traveling Saleman Problem, The Bel! System
Technica! Journa/44, pp. 2245-2269, 1965.

Lin, S. and Kemighan, B.W., An Effective Reuristic Algorithm for the
Travelling-Salesman Problem, Operations Research 21, pp. 498-518, 1973.

Lloyd., J.W., Foundations of Logic Programming, Second Edition,
Springer-Verlag, 1987.

Minker, J., Foundations of Deductive Databases and Logic Programming, Morgan
Kaufman, 1988.

160 References

Minoux, M., Mathematica[Programming Theory and Algorithms, Wiley and Sons,
1986.

Mitra, G. (ed.), Mathematica[Models for Decision Support, NATO ASI Series,
Computer and Systems Sciences, vol. 48, Springer-Verlag, 1988.

Mühlenbein, H., Parallel Genetic Algorithms, Population Genetics and
Combinatorial Optimization, Proceedings of the 3rd International Conference on
Genetic Algorithms, ed. Schaffer, J.D., Morgan Kaufmann, 1989.

Naylor, T.H., Decision Support Systems or what happened to MIS?, Interfaces 12,
pp. 92-94, 1982.

Nemhauser, G.L. and Wolsey, L.A., Integer and Combinatorial Optimization,
Wiley and Sons, 1988.

Nilsson, N.J., Principlesof Artificiallntelligence, Springer-Verlag, 1982.

Nuijten, W.P.M., Genetic Algorithms and Job Shop Scheduling, Masters Thesis,
Eindhoven University of Technology, 1990. (in Dutch)

Papadimitriou, C.H. and Steiglitz, K., Combinatorial Optimization: Algorithms
and Complexity, Prentice-Hall, Englewood Cliffs, N.J., 1982.

Pearl, J., Heuristics: Intelligent Search Strategies for Computer Problem Solving,
Addison- Wesley, 1984.

Pearl, J. (ed.), Search and Heuristics, North-Holland, 1983.

Pednault, E.P.D., Formulating multiagent, dynamic-world problems in the classica!
planning framework, in Proceedings of the 1986 Workshop on Reasoning about
Actions and Plans, eds. Georgeff, M.P. and Lansky, A.L., Morgan Kaufmann,
1987.

Savelsbergh, M.W.P., Computer Aided Routing, Ph.D. Thesis, Centre for
Mathernaties and Computer Science, Amsterdam, 1988.

Savory, S.E. (ed.), Artificial lntelligence and Expert Systems, Chichester:
Horwood, 1988.

Schaffer, J.D. (ed.), Proceedings of the 3rd lnternational Conference on Genetic
Algorithms, Morgan Kaufmann, 1989.

Shapiro, S.C. and Eckroth, D. (eds.), Encyclopedia of Artificial lntelligence,
Wiley, 1987.

Simon, H.A., Search and Reasoning in Problem Solving, Artificiallntelligence 21,
pp. 7-29, 1983.

Sol, H.G., DSS: Buzzword or OR challenge?, European Journal of Operational
Research 22, pp. 1-8, 1985.

Relerences 161

Sprague, R.H., A framework for research on decisiori support systems, in Decision
Support Systems: Issues and Challenges, ed. Fich, G. and Sprague, R.H.,
Pergamon Press, 1980.

Sprague, R.H., DSS in context, Deelsion Support Systems 3, pp. 197-202, 1987.

Sprague, R.H. and Carlson, E.D, Building Ejfective Decision Support Systems,
Prentice-Hall, 1982.

Sterling, Land Shapiro, E., The Art of Prolog, MIT Press, 1986.

Suh, J.Y. and van Gucht, D., Incorporating heuristic information into genetic
search, Proceedings of the 2nd International Conference on Genetic Algorithms,
ed. Grefenstette, J., Lawrence Erlbaum Associate, 1987.

Treur, J., Reasoning about partial models, actions and plans, Report P8813,
University of Amsterdam, 1988.

Turban, E.R. and Watkins, P.R., Applied Expert Systems, North Holland, 1988.

Verbeek, P.J., Learning About DSS: Two Case Studies on Manpower Planning in
an Airline, PhD. Thesis, Rotterdam University, 1990.

Waterman, D.A., A Giude to Expert Systems, Addison-Wesley, 1986.

Winston, P.H., Artificial Intelligence, Second Edition, Addison-Wesley, 1984.

Samenvatting

In dit proefschrift wordt een onderzoek beschreven dat gericht is op het

verkrijgen van generieke softwaregereedschappen die het ontwikkelen van

decision support systems (DSS) voor operationele planningsproblemen uit de

praktijk makkelijker, sneller en dus goedkoper maken dan de hedendaagse

technieken. Wij beperken ons tot het (semi-) automatisch genereren van

beslissingen, zodat man-machine interactie, user interfaces, data- en

modelmanagement buiten beschouwing worden gelaten. Een theoretisch

onderzoek wordt uitgevoerd dat zich richt op het formeel modelleren van

planningsproblemen en oplosmethoden.

Eerst wordt in Hoofdstuk 2 een theoretisch model van planningsproblemen

uitgewerkt en worden theoretische aspecten van zulke problemen besproken.

Daarna worden vijf planningsproblemen gespecificeerd met behulp van de

aangeboden theorie. Hierdoor ontstaan richtlijnen voor een wijze waarop een

formele beschrijving van een planningsprobleem gegeven kan worden.

Zoekend naar een passende algemene oplosmethode bestuderen wij 'zoeken',

'logische redenering' en 'mathematisch programmeren', waarna het paradigma

'zoeken' gekozen wordt. Wij geven een model van zoekproblemen en

onderzoeken de relatie tussen planningsproblemen en zoekproblemen. In

Hoofdstuk 4 wordt op zoekmethoden ingegeaan. Hierbij introduceren wij een

Algemene ZoekMethode (AZM) en beschrijven enkele bekende typen van

algoritmen als specialisaties van de AZM. Vervolgens worden convergentie­

stellingen bewezen die aangeven aan welke eisen de componenten van een

zoekmethode moeten voldoen om convergentie van het zoeken naar een oplossing

te garanderen. Een veelbelovende klasse van zoekmethoden, genetische

algoritmen (GAs), wordt in meer detail bestudeerd. Interessante eigenschappen

van GAs zijn dat zij in een ruime probleemklasse redelijk presteren en

gemakkelijk aangepast kunnen worden als het probleem binnen die klasse -

verandert.

Aan het einde van het proefschrift maken wij een stap in de richting van de

volgende onderzoeksfase: het realiseren van generieke software die op basis van

de voorafgaande theorie het ontwikkelen van een beslissingsondersteunend

systeem vergemakkelijkt. Door de bevindingen van Hoofdstuk 2 beschikken wij

162

Samenvatting 163

over een geparameteriseerd model dat een grote klasse van planningsproblemen

omvat. Doordat het model hoog niveau parameters heeft (d.w.z. parameters die

expressies van een taal met een grote expressieve kracht als waarde kunnen

hebben) is het specificeren van concrete instantiaties relatief eenvoudig. Voor het

model van oplosmethoden gaat deze laatste eigenschap in mindere mate op.

Hoewel bij het definiëren van een zoekprocedure men gebruik kan maken van de

AZM, kan het geven van een volledige definitie nogal veel werk vereisen. Er zijn

echter componenten van de AZM waarvoor een op brede schaal bruikbare

invulling kan worden gegeven. Als bovendien de meer beperkte klasse van

genetische algoritmen wordt beschouwd, is het mogelijk om richtlijnen te geven

voor de ontwikkeling van de overige componenten van een zoekprocedure.

Het door dit proefschrift beschreven onderzoek is theoretisch van aard; het legt

de conceptuele basis voor een methode en generieke software voor

DSS-ontwikkeling. De echte praktische bruikbaarheid van onze benadering kan

niettemin alleen door nadere tests met een volledig uitgebouwd tooi vastgesteld

worden.

Curriculum Vitae

De schrijver van dit proefschrift werd op 14 juni 1961 geboren te Budapest,

Hongarije. Hier behaalde hij in 1979 zijn diploma aan het Árpád Gymnasium. Na

de militaire dienst startte hij met de studie wiskunde aan de Eötvös Loránd

Universiteit te Budapest in 1980; in 1985 studeerde hij af op een onderzoek over

logisch programmeren. Vanaf september 1985 was hij werkzaam bij de Expert

Systems Department van Computing Applications and Co. te Budapest als

knowledge engineer bij diagnostische systemen en deed als zodanig praktische en

theoretische kennis op het gebied van Kunstmatige Intelligentie op. In februari

i987 kwam hij naar Nederland waar hij sinds maart 1987 als onderzoeker in

opleiding bij de Sectie Informatiesystemen aan de Technische Universiteit

Eindhoven werkt. Het hier verrichte onderzoek word begeleid door prof.dr. K.M.

van Hee en maakt deel uit van een NFI project dat gefinancierd wordt door de

Nederlandse Organisatie voor Wetenschappelijk Onderzoek. Sinds het aflopen

van de door NWO gefinancierde periode is hij in dienst bij de Technische

Universiteit Eindhoven.

Stellingen behorend bij het proefschrift

A MEntOD R>R DESIGNING DECISION SUPPORT SYSTEMS R>R
OPERATIONAL PLANNING

van A.E. Eiben

I. Theorem I in UI stelt dat als een logisch programmaP geen interne variabelen
heeft en dichotoom is, er een complementair programma voor P bestaat. In
deze stelling is echter de conditie van dichotomie overbodig.

[11 Sato, T. and Tamaki, H., Transforrnational logic program synthesis,
Proceedings of the International Conference on Fifth Generation Computer
Systems, ed. by ICOT, Nonh-Holland, 1984.

2. Het onderscheid tussen statische en dynamische planningssituaties is
essentieel. Doordat de tijd in beide situaties een verschillende rol speelt, zijn
de cruciale eigenschappen van die twee situaties onverenigbaar. (zie
Hoofdstuk 2 van dit proefschrift)

3. De term graafalgoritme kan op twee verschillende manieren geïnterpreteerd
worden. Omdat die twee interpretaties zelden onderscheiden worden, ontstaat
er verwarring in het woordgebruik. (zie Hoofdstuk 3 van dit proefschrift)

4. De biologische analogieën die meegeholpen hebben met het funderen van
genetische algoritmen, cf. [1,2), zijn belemmerend. Namelijk, door het niet
beperken van genotypen tot eindige 0-l rijen, het toelaten van meer dan twee
ouders en het toepassen van niet crossover-achtige genetische recombinatie
wordt een ruimere klasse van genetische algoritmen verkregen dan nu wordt
gebruikt. (zie Hoofdstuk 5 van dit proefschrift)

[I] Holland, J.H., Adaptation in Natura/ and Artificial Systems, Univ. of
Michigan Press, 1975.

[2] Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, 1989.

5. De relatieve inefficiëntie van een algemeen toepasbaar algoritme ten opzichte
van een toegesneden algoritme wordt onbelangrijk als de betreffende
executietijden onder een bepaalde grens vallen. Daar veel praktische
problemen toch van een beperkte omvang zijn en de gebruikte hardware steeds
krachtiger wordt, geeft deze observatie bestaansrecht aan algemeen toepasbare
maar (nog) trage oplossingstechnieken.

6. Omdat probleemspecificaties de brug vormen tussen ret!le problemen en de
wereld van formele oplosmethoden, valt het fonneel niet te bewijzen dat een
specificatie correct is. Daarom is de intuïtieve verificatie van de correctheid
van een specificatie van dennate groot belang dat specificatiemethoden
gebaseerd op een taal waarvan het niveau voldoende hoog is, ronder twijfel
zijn aan te bevelen.

7. In {I) definieen Mars kennissystemen als systemen waar "zo goed mogelijk
een scheiding is aangebracht tussen toepassingsgebied-<>nafhankelijke
afleidingsregels en toepassingsgebied-!ipecifieke kennis". De aanwezigheid
van zo'n scheiding heeft echter zulke grote voordelen, dat het niet beperkt zou
moeten blijven tot redeneersystemen binnen Al. Met name zijn systemen aan
te bevelen waar wwel binnen de component voor proldeernbeschrijving als
binnen de component voor probleemoplossing een scheiding tussen
toepassingsgebied-<>nafhankelijke en toepassingsgebied-specifieke kennis
verwezenlijkt is.

[1) Mars, N., Onderzoek van niveau: Kennistechnologie in wording,
Informatie, jrg. 30, nr. 2, pp. 84-90, 1988.

8. Het praktisch bruikbaar maken van logisch programmeren heeft rampzalige
gevolgen voor de theorie daarvan. Met name het gebruik van dynamic clauses
maakt dat de semantiek van een PROLOO-programma op losse schroeven
komt te staan.

9. Een Nederlands gezegde luidt: "kleren maken de man". In het Hongaars
wordt echter gezegd: "kleren maken de man niet". Dit laatste zal bij velen
minder in de smaak vallen; het roept namelijk de vraag op "wat maakt de man
dan wel?".

10. Het streven van Hongarije om zich bij Europa aan te sluiten kan pas serieus
genomen worden als het woord cosmopoliet daar niet langer als politiek
scheldwoord wordt gebruikt.

11. Het gerecht waarvan in {I) de bereidingswijze wordt gegeven, is ook heel
lekker als men truffels door gerookte achterham vervangt.

I IJ Makowsky, J.A., Abstract Embedding Relations, in Model-Theoretica/
Logies, eds. Barwise, J. and Feferman, S., Springer-Verlag, 1985.

