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Introduetion 

The research described in this thesis constitutes the first phase of a project that is 

concemed with decision support systems for operational planning. Briefly 

summarized, the goal of the project is to develop generally applicable software 

tools to facilitate decision support system design. To give the context of our 

investigation let us begin with an overview of our motivations. 

Operational decision problems, also called operational planning problems, 

frequently occur in business environment, in particular in production or 

distribution processes. Regardless of what operational decision problems exactly 

are, we can already remark that solving such problems requires substantial 

computational efforts, thus seeking for computer support to manage these 

problems is a straightforward idea. Software systems providing this support are 

called decision support systems (DSSs). From the seventies on there were many 

projects in DSS development directed at different decision problems, following 

different approaches and resulting in different DSSs. Despite of the diversity of 

these projects there are several general observations to make about DSS 

development. Let us bere mention the following ones. 

a) Developing a DSS for a specific operational decision problem is a time and 

money consuming activity that is repeated for every specific decision problem. 

b) DSSs are mostly relying on Operational Research as theoretica! and practical 

background. 

c) The DSSs developed for different operational decision problems exhibit 

architectural and functional similarities. Apparently there is an underlying 

common structure of DSSs that might be investigated and made explicit. 
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It is al~o a remarkable fact that compared to the number of decision situations in 

practice there are only few decision support systems that operate supporting a real 

decision problem. 

In this thesis we performa theoretica} investigation to confirm the feasibîlity of a 

general metbod for developing DSSs. The essence of our approach is to make a 

theoretical model of DSSs and use this theoretica} model as a blueprint when 

constructing a DSS. We also have another intention with a theoretical model: 

gaining a good insight in the field, explaining related phenomena, and last but not 

least providing a clear terminology that facilitates funher discussion and research. 

We maintain two requirements with respect to our model. 

a) It is general enough to be able to model many different DSSs, that is it should 

have a broad application domain. 

b) It is sufficiently detailed so as to provide a 'high resolution' view of DSSs. 

This makes it possible to use this model as the basis of constructing DSSs. 

Such a model embodies a theoretical skeleton of decision support systems. Using 

such a general skeleton as a guideline can make DSS development systematic, 

thus probably less time consuming and erroneous than it is nowadays. This 

skeleton can also serve as the theoretica} basis of a generic software tooi that 

supports DSS development. 

Notice that the above requirements are somewhat counteracting each other. On 

one hand, stressing generality we may loose 'high resolution', i.e. detailed view. 

Maintaining little structure within a model means putting a few restrictions on the 

apptication domain but this often leads to a vague onderstanding of the modelled 

phenomenon. Furthermore, if our model gives a 'low resolution' image of DSSs, 

then there would be a large gap between theory and implementation, i.e. the 

blueprint would be too rough to use. On the other hand, if we make a highly 

detailed model with a rich structure then we necessarily include many assumptions 

about the application domain. Such a detailed model facilitates implementation 

but by having made many assumptions we may essentially reduce the dornain of 

application. 

We are trying to solve this contradiction between our goals by rnaking general 

models with parameters, that is certain variables with unspecified values. In 

addition, we want to use high level parameters, i.e. parameters the value of which 

can be an expression in a high level language with great expressive power. In 
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such a case the rigidity of using the same model for many different decision 

problems would be counterbalanced by the flexible parameters that are able to 

incorporate various information. 

Notice that by our approach constructing a decision suppon system would be 

reduced to specifying problem dependent values for the parameters of the general 

framework. Using a DSS development tooi based on an abstract DSS model with 

parameters, DSS development would become 'simp ie' instantiating, that is 

supplying input values of the parameters of the tooi. In such a way DSS 

development would require less effon than having to design the whole DSS. The 

first phase of our project - and hence this thesis is meant to establish a forma! 

basis for this approach. 

We remark that the approach sketched above is deviating from the common DSS 

approach. According to the commonly practiced method one mostly develops a 

problem specific decision suppon system that is applicable under tight conditions 

only. The software we are aiming at is applicable to a broad range of problems 

and is flexible by its parameters. Namely, if conditions in and around the decision 

problem change we can suit our system to the changes by redefining the 

parameters. The price of this flexibility is that our DSSs will be probably less 

efficient than those based on a tailored mathematica! programming method. This 

inefficiency, however, should be seen in the light of two other factors. First, a 

system can be relatively inefficient but still satisfactory if computation times 

remain within acceptable limits. Second, the development of a sophisticated, 

highly problem suited system is mostly very expensive which can make it 

unattractive. As the reader may have already realized, our approach towards 

DDSs shows eenaio features that are mostly associated with Anificial Intelligence 

(AI). In panicular, a highly parameterized system, the use of a language with 

great expressive power are mostly AI attributes. We admit that indeed we are 

trying to pass the traditional borders of DSS research and study the feasibility of 

an AI-like methodology for DSSs. 

We understand that the modelling-and-instantiating approach has its limitations. 

No matter how sophisticated our model is, there might be situations where it 

cannot be applied. This is the case if, for instanee the intrinsic structure of the 

model we give is inappropriate for descrihing the given situation, or for handling 
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the situation such problem dependent knowledge should be used that cannot be 

expressed by our parameters. Nevertheless, if we carry out the investigation 

thoroughly, it will be clear in advance where we can rely on the general model 

and what are the points in a DSS where problem specitic beuristics are preferable. 

During the development of our models we need to make certain choices, 

assumptions that influence our results. Tbraughout this thesis we are making 

these choices explicit. This provides the possibility of making other choices, 

hereby it helps to choose other courses of investigation. 

Our first restrietion is that we concentrale on automated decision making within 

a DSS, disregarding for example interfacing, data and model management aspects. 

This determines two main subjects of investigation: the problems to be solved by 

· a DSS and the problem solving methods used by a DSS. Keeping these two issues 

apart we get the explicit freedom to study and apply more solution methods to the 

same class of problems or to investigate the application domain of a certain 

problem solving method. 

This thesis is organized as follows. In Chapter 1 we give an overview of decision 

support systems and describe how a generic DSS model -a DSS skeleton is 

related to software tools, such as a decision support system, a decision support 

system shell or a decision support system generator. 

In Chapter 2 we develop a forma! model of operational planning problems where 

time is explicitly involved and we distinguish static and dynamic cases depending 

on the role of time. To test the applicability of our formalism we describe 

Travelling Salesman Problems (with and without time windows), Preeedenee 

Constrained Scheduling Problems, Time Table Problems and Ship Loading 

Problems in terms of the model. 

In Chapter 3 we briefly discuss three global problem solving paradigms: search, 

automated reasoning, mathematica! programming and we choose the search 

paradigm for further elaboration. We investigate search problems and define how 

can they be considered as a representation form of planning problems. We 

introduce a standard manner to transform an arbitrary planning problem to a 

search problem. 

In Chapter 4 we develop a model of search that incOiporates space search, graph 

search and local search explaining their relationship. We define a General Search 

Procedure (GSP) and describe Genetic Algorithms, Simulated Annealing, 
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Threshold Accepting, Depth-frrst Search, Breadth First Search and Best First 

Search as subtypes of our GSP. For stochastic optimization procedures we prove 

convergence propenies within our model. 

Chapter 5 is devoted to genetic algorithms. Beyond the advantage that they 

generalize other search methods, such as includes simulated annealing, threshold 

accepting or hili climbing, genetic algorithms show a reasonable performance on a 

wide class of problems and they can be easily adapted if the problem in question 

changes. We make a generalization of genetic algorithms and we obtain a type of 

search procedures where problem dependent (heuristic) componentscan be clearly 

located. Hereby we believe to reach a good balance, that is a widely applicable 

search procedure that is detailed enough to suppon designing problem oriented 

instances of it. 

In Chapter 6 we give the outlines of a generic software tooi facilitating DSS 

development relying on the previously given models. By the results of Chapter 2 

we can sketch the problem definition component based on a language in logica! 

fashion. Based on our view on search, the definition of a problem solving method 

requires the definition of the constituents of the GSP. Some of these constituents 

can be defined such that they are applicable for many problems. This reduces the 

definition of a search procedure to the definition of those components that require 

problem dependent knowledge, heuristics. 



CHAPTER 1 

Decision Support Systems 

When willing to set guidelines for designing decision support systems, the first 

straightforward question one has to answer is: what are DSSs? In this chapter we 

are trying to give our answer to this question. 

1.1 Brief Overview of DSS Bistory and Literature 

To answer the question about what a OSS is let us have a brief look upon their 

history. The name decision support system was first used by Gorry and Scott 

Morton (1971) and has made quite a career since then. Most of the authors of the 

field, however, do not give a clear definition of what they mean by this term, as it 

is observed by Sol (1985). Historically, DSSs originate from Electronk Data 

Processing (EDP) on the practical side, while their theoretica! backgrounds lay in 

Operational Research (OR). In Sol (1985) we find a short description of the 

software evolution that has lead to DSSs from EDP through Management 

lnformation Systems (MIS) in business environments, cf. Burch and Strater 

(1974), Naylor (1982). 

When it comes to the definition of a OSS there are at least two ways to do it: 

specifying the functions of a OSS or giving a description of its components. The 

most frequently quoted definition from Keen and Scott Morton (1978) belongs to 

the first type staring that a DSS 

6 
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- assists managers in their decision processes in semi structured tasks; 

- supports, rather than replaces, managerial judgment; 

- improves the effectiveness of decision making rather than its efficiency. 

Besides such broad definitions, cf. also Alter (1980), Keen (1986), there are more 

specific ones like that of Anthonisse, Lenstra and Savelsbergh (1988) who identify 

DSSs as interactive planning systems. Van Hee and Lapinski (1988) specify a 

DSS as a system assisting managers in the control of a business process. The 

functions of a DSS they distinguish are the following: 

- performing data management functions; 

evaluating decisions proposed by the user; 

generating decisions satisfying some user defined conditions. 

Observe that this definition puts up strong requirements about a DSS. According 

to this view a DSS can be told about a decision and it can make a decision. On 

one hand, this leads to a more restricted notion of a DSS than usual, on the other 

hand it has a big advantage: it is specific enough to be used to decide whether a 

given software system is a DSS or not. 

As for the components of a DSS there is no universally accepted view either. 

Sprague ( 1980) distinguishes a data base management system, a model base 

management system and a user interface called the dialog generation management 

system within a DSS. Bonczek, Holsapple and Whinston (1981) envisage a 

language system, a knowledge system and a problem processing system, while the 

system analysis of Sprague and Carlson ( 1982) yields four entities for 

representations, operations, memory aids and control mechanisms. 

From the software point of view DSSs are intended to be user friendly and 

interactive programs. The methods they apply, their architecture and the 

underlying philosophies are diverse, although an observation in Verbeek (1990) is 

remarkable: the majority of the lirerature on DSS belongs to the field of 

Operational Research. For several authors, e.g. Savelsbergh (1988), DSSs are but 

an "approach towards the practice of operations research", and even in the abstract 

framework for research on decision support systems Sprague (1980) mainly 

considers models of the equational type and methods of optimizatîon based on 

linear, dynamic or stochastic programming. Recently, another paradigm, Artificial 

Intelligence (Al) is entering the field of DSS. Bonczek, Holsapple and Whinston 

(1983) and Van Hee and Lapinski (1988) consider incorporating Artificial 

Intelligence methods into DSS; the approach of Eiben and van Hee (1990) bas a 
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strong AI accent as well. 

Throughout the development of Anificial Intelligence, cf. Nilsson (1982), 

Winston (1984), Shapiro and Eckroth (1987), many important notions were 

introduced. Here we mention two important contributions to the theory and 

practice of computing science: the notions of knowledge representation and 

symbolic computation. The main lesson we have learnt from knowledge 

representation, cf. Brachman, Levesque and Reiter ( 1989), is that the same 

abstract knowledge can be formulated and stored in entirely different ways, e.g. by 

equations, formulae, logica! frames. Symbolic computation is mostly understood 

as an alternative to classical numeric computation that is typical for OR methods, 

in particular mathematical programming. From the "application of theorem 

proving to problem solving", Green (1969), it has led to using logic as a language 

for computation, Kowalski (1974), and to logic programming, Lloyd (1987). 

Nowadays there are many working software systems that are based on automated 

logical reasoning; the best known merobers of this family are the so called expert 

systems, see Waterman (1986). Another important AI feature is the separation of 

domain knowledge and computation mechanism. This separation actvances 

flexibility in defining and modifying the problem at hand or the applied problem 

solving method. We believe that incorporating AI methods into DSS research and 

practice broadens the scope of DSSs and helps better understanding and exploiting 

of problem solving beuristics in decision support. 

1.2 Operational Decision Mak:ing 

To present our view on decision support systems let us first specify what we 

mean by a decision situation: in a decision situation a decision maker has to 

(re)act in an environment in order to preserve or achieve certain conditions. A 

decision is thus a control action of the decision maker that is meant to influence 

the environment. In general one can distinguish three classes of decision 

situations: those concerning strategie, tactic and operational issues. 

Example 1.1 

When setting up new factorles we encounter decisions at different levels. A 

strategie decision is e.g. to build four factorles in rour different countries. Such a 
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decision is to meet very general requirements, like that of being less dependent of 

local troubles, for instanee of natura! disasters or politica! changes. To make such 

a decision presumes awareness of the phenomenon of 'local trouble' and requires 

ability of estimating its likelihood. A strategie decision has a long term effect; 

since complete factorles cannot be moved without substantial effort they will 

probably remain at their locations for decades. 

A tactieal decision is to determine whether to instaU assembly lines or flexible 

production cells in each factory. Choosing between the two can rely on better 

formulated goals and more solid knowledge than in a strategie issue. Think of the 

fact that assembly lines are appropriate for a mass production, while flexible 

production cells are more suitable to order oriented production. Such a decision is 

easier to withdraw but still at high costs, so it probably will not be reconsidered 

for years. 

Operational decisions need to be taken daily or weekly, for example to de termine 

what to produce to satisfy the costurners orders. Such decisions are triggered by 

rather strictly formulated goals, e.g. we need to deliver 5000 of item number 2 

tomorrow, and might be made day by day. 

D 

The above classification is of course not strictly forma!; whether or not a 

decision is strategie ortactie is somewhat arbitrary. Nevertheless, in strategie and 

tactic decision situations there ·are so many factors to take into account and such 

an extent of uncertainty that every attempt to model them formally has serious 

limitations. Therefore, we only deal with operational decision problems along this 

study, that is we restriet ourselves to problems where 

decisions have a short term impact (several hours to several days); 

a sound model of the decision situation can be given. 

Such a restrietion about the application domain of a DSS seems to guarantee that 

we can handle problems within this domain and provide sufficient support to the 

users. This is, however, a hasty condusion since even these simplified situations 

can lead to forma! models that yield mathematically intraetabie problems, cf. 

Garey and Johnson (1979). 

Example 1.2 

To illustrate an operational decision problem let us take a time table problem in a 
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school. The data model of the decision environment consistsof the description of 

the relevant objects under consideration and the relationships between these 

objects. For instanee 

- classes, that is groups of students; 

subjects such as mathematics, geography, English, etc; 

teachers; 

- classrooms; 

- lecture hours; 

can be the objects given and the corresponding relations can teil which teacher is 

qualified to teach mathematics, how many English lessons do the classes need per 

week, etc. 

Furthermore we can formulate conditions that need to be satisfied, e.g. 

'a) In any classroom at any timethereis at most one teacher teaching one subject. 

b) The same class should not get the samesubject three times a day. 

c) Alllessons on the samesubject for the same class should be given by the same 

teacher. 

Such conditions are called constraints, they are either satisfied or violated and 

therefore are qualitative. 

The goal in this decision situation is to make a weekly schedule for the school 

such that each group gets every subject it needs in a week. To satisfy this goal a 

decision maker has to make elementary decisions, i.e. assignments of classes, 

subjects, teachers, classrooms and lecture hours and has to compose a correct and 

complete time table from such assignments. A correct time table satisfies all the 

constraints, a complete time table has all the lectures scheduled, that is each group 

gets each of the needed subjects. 

Besides constraints there can be criteria given. A criterion is a quantitative 

measure that rates a certain feature, e.g. the amount of idle lecture hours of a 

class. Criteria are often subjects of optimization, that is one can be aiming at 

decisions that realize the lowest or highest possible value due to a certain 

criterion. In a school we might prefer time tables that minimize the number of 

idle hours of each class. Criteria can also be used to enforce constraints by 

measuring the rate of violation of a certain constraint. For instance, a rnadelling 

decision can be that we delete constraint (b) above, add a criterion that measures 

how concentraled a subject is scheduled and we aim at a time table that keeps the 
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value of this criterion low. 

D 

Since clusters of decisions are often called plans we also use the term planner for 

a decision maker. On the sarne grounds we refer to our application domain as 

operational decision making or operational planning. 

It is an important factor in our world view that within the class of operational 

decision probierus we distinguish various problem types. By a problem type we 

mean a group of probierus that are of the same basic character, for instanee 

routing probierus or scheduling problems, see Lawler et al. (1989). Strictly 

speaking, one can consider the notion of problem type in two different ways. One 

possible view is to see a type as the set of all problem instances declared to 

belong to it. Another way is to consider a problem type as the abstract framework 

fixing the major outlines of a problem but still having parameters i.e. free 

variables with unspecified values. Problem instances belonging to a type can be 

obtained by giving values to these parameters. 

It is important to notice that the border between different problem types is 

arbitrary. For example, we can recognize a crudal difference between a travelling 

salesman problem and a chinese postman problem, see Garey and Johnson ( 1979), 

and describe them as two types. Nevertheless, we can also model them such that 

they are basically of the same character thus forming subtypes of the same 

problem type. 

1.3 Our View on Decision Support Systems 

Having discussed where DSSs can be applied let us give our view on what they 

are. With respect to their functions we maintain the view presented by Van Hee 

and Lapinski (1988), Eiben and Van Hee (1990). For maximal clarity let us 

repeat that in a OSS we distinguish the following basic functions: 

- perfonning data management functions; 

- evaluating decisions proposed by the user; 

generating decisions satisfying some user defined constrains and scoring high by 

possibly given criteria. 
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Example 1.2 continued 

A DSS for time tables can suppon its user by sitnply displaying an actual time 

table or by facilitating the lookup of the lectures of a certain teacher. Such 

activities fall under the data management functions mentioned above. 

Enabling the user to make changes on the actual time table the system can 

compute and display the effects of these changes, declaring a new time table 

correct or incorrect according to the given constraints, or calculating the 

conesponding value of a criterion, e.g. the number of lessons not yet scheduled. 

The thini, and most sophisticated tunetion mentioned above is that of generating 

time tables automatically. In this case the DSS compotes a complete and correct 

time table by itself or improves a certain partlal time table given by the user. 

0 

In this thesis we do not consider data mànagement and other related issues (such 

as user interface, man-machine interaction); ·bere we focus our attention on 

generating decisions. 

Besides the question what a DSS does, there is of course another one: how well 

it is doing it. There are several quality measures of a DSS. The most frequently 

considered ones are effectivity, efficiency, robustness and flexibility. 

Effectiveness is a measure of the obtained solutions with respect to some 

evaluation criteria, it is the degree of fulfillment of wishes regarding a solution, cf. 

Verbeek (1990). Robustness concerns the sensitivity of the system, i.e. how 

sensitive the solutions are for changes in data. Efficiency is the speed rate of the 

computation, measuring how fast the solutions can be obtained. Here we may 

distinguish the net speed, die computation time of the DSS, and gross · speed 

regarding the time used by the man-machine combination. Last but not least, 

flexibility concerns the efforts needed to adapt the DSS to structural changes in 

the planning environment or changes in the priorities of the planner. These 

features are not independent, there is for instanee a _ well-known counterbalance 

between efficiency and flexibility. One of the basic premises of our approach is 

that we prefer · the latter, rather having a highly flexible system applicable to a 

wide range of problems, than an efficient tooi for only a narrow application 

domain. 
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Example 1.2 continued 

It is typical for practical decision situations that the environment is changing over 

and over again. In a school it could mean that some teachers become ill or that 

the management begins to prefer fewer idle hours of classes to well spreading of 

subjects. This means that the constraints can vary or the criteria may change, 

which requires that the user can adapt his system easily. 

0 

With respect to the componentsof a DSS we basically distinguish three of them: 

a communication component, a problem description component (PDC) and a 

problem solving component (PSC). Since we are primarily interested in 

automated decision generation we direct our attention to the problem description 

and the problem solving components. Both the PDC and the PSC must be able to 

receive information from the user. When tilled up the PDC should contain a 

description of the decision or planning situation and the actual problem to be 

solved. Given the necessary inputs to the PSC it should contain a problem solving 

metbod that is suitable to handle the problem specified by the PDC. 

Example 1.2 continued 

The PDC of a DSS for time table problems should contain the sets of lectures, 

classrooms, teachers and lecture periods together with the basic relationships, e.g. 

the qualifications of the teachers. Also the elementary decisions should be given 

and the construction rules that define how to make a time table from them. 

Naturally, the constraints deterrnining the correctness of a time table must be 

represented in the PDC too. At last, the specification of possible criteria belongs 

to the PDC as welt. 

We can not say much about the PSC at this point since the way of problem 

solving is not deterrnined by the problem. For time tables we can apply different 

solution methods, from a classic OR method, see Even, Itai and Shamir (1976), to 

genetic algorithms, cf. Colorni, Dorigo and Maniezzo (1991). 

0 
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1.4 Making Decision Support Systems: DSS Shells, DSS 
Generators 

Now that we have a certain view on what a DSS is, let us consicter the question 

of how to make one. Sol (1985) reeommencts to investigate decision support 

system generators as DSS design environments that "bridge the gap between 

general tools and specific DSSs". Such general tools are software systems meant 

to reduce the efforts and costs of making a DSS. The main assumption behind 

using such tools is that DSSs have common general features conjoined by 

application specific ones. Distilling the common features we can construct a 

theoretica! skeleton of DSSs where the application specifïc constituents are absent. 

Such a skeleton can be seen as a frame containing parameters where application 

· specific information can be incorporated by specifying values for the parameters. 

Such a skeleton or frame can be used in two different ways to facilitate DSS 

development. The first possibility is to build a so called DSS shell, the second 

one is to build a DSS generator. 

A DSS shell is an implementation of the abstract DSS skeleton. Giving specific 

values to the parameters the shell becomes instantiated, thus by fumishing the 

shell with application specific information we obtain a complete DSS. 

Example 1.2 continued 

A DSS shen· to support the design of a DSS for time table problems can contain a 

subshell to specify the problem to solve. Within this problem description subshell 

we may distinguish further components, for instance: 

- a component for data modeHing to define the objects under consideration 

together with their relationships (e.g. the sets of classes, classrooms, teachers 

and lecture periods and the qualifications of the teachers, weekly neects of 

classes, etc.); 

- a component for constraint description that neects to be filled with the 

application specific constraints that have to be satisfied. 

Goal specification and construction rules of time tables can be hard coded in the 

system, since they are universal for all time table problems. 

The above items can be envisaged as parameters of the problem description 

subshell. For instance, the object specification sub-subshell may have 5 

parameters: G, S, T, C, H standing for the set of groups, subjects, teachers, 
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classrooms and lecture hours, respectively. This five tuple embodies type specific 

information about time table problems. To describe a particular time table 

problem we need to instantiate the shell by giving values for these parameters, i.e. 

a set of groups, a set of subjects, etc. 

D 

Let us remark that the notion of a shell is not restricted to DSSs. A system shell 

is generally meant as an implemented skeleton where only the frame of the whole 

system architecture is fixed, many parameters are unspecified. These parameters 

have to be given values in to obtain a complete system. According to a refined 

view not any system that has parameters is recognized as a shell (think of a 

program with input values), a shell is mostly seen as having high level parameters. 

Here we encounter a crudal issue about shells: whether or not a system is a shell 

depends on the level of its parameters. 

Analyzing the basis of high and low level di vision of information one can notice 

a strong correlation with the border between problem type and problem instance. 

Namely, information that defines a particular problem instanee within a given 

problem type is seen as low level one. Information, the modification of which 

leads to another problem (sub)type is seen as high level information. For easy 

reference to these two kinds of information let us make a convention using the 

term data for low level and knowledge for high level information. 

The second way of making use of an abstract DSS skeleton is to build a DSS 

generator based on it. A DSS generator is also based on an implemented DSS 

skeleton, its input is knowledge specifying a problem type and a solution metbod 

type, its output is a DSS as executable software. 

Observe the relation between the three notions we use: DSS, DSS shell, DSS 

generator. We see a DSS as a system with low level input parameters that can 

only receive data such as the number of classes, etc. These data define a problem 

instanee and an instanee of a solution method; having these two defined the DSS 

can make decisions as output. A DSS shell is a system with both high and low 

level parameters; incorporating knowledge through the high level parameters the 

shell becomes a DSS. A DSS generator bas only high level parameters receiving 

problem specific knowledge as input and producing a DSS as output. Notice that 

the difference between a shell and a generator resembles the difference between 
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an interpreter and a compilerfora formallanguage. 

After making these distinctions we can be more specific about flexible systems 

mentioned in the introduction. As it tums out from the foregoing we maintain the 

vision of having DSSs with low level parameters. These parameters are rigid, in 

the sense that setting them to new values leads only to instantial changes, thus we 

cannot expect great flexibility in a OSS. On the other hand DSS shells and DSS 

generators possess high level parameters for incorporating knowledge. Changing 

such knowledge (e.g. incorporating new constraints) changes the structure of the 

problem not only the instance. Thus, this is the level where flexibility can be 

included, that is strictly speaking we are not aiming at flexible DSSs but at 

flexible DSS tools shells and generators. 

A big advantage of using general tools like a DSS shell or a DSS generator is 

that it reduces the efforts and time of DSS design. The shortcoming of such an 

automated development is that the class of DSSs we can make is previously 

determined by the tooi. Namely, DSS shells and DSS generatorscan have wide or 

narrow application domains. This depends on the application domain of the DSS 

skeleton they are based upon, and after all upon whether the abstract DSS model 

used is general or not. 

Example 1.2 continued 

In the DSS shell sketched for time table problems the goal specification and plan 

construction were built-in features. This indicates that the shell was tailored for 

time table problems. Nevertheless, in a DSS applied for routing probieros these 

items might be entirely different. Therefore, a highly flexible DSS shell or DSS 

generator meant to treat time table problems as well as routing problems should be 

based on a general DSS model, such that specifying both problem types can be 

done by its parameters. 

Likewise, it is quite probable that solving a time table problem requires another 

salution metbod than solving a routing problem. Accordingly, in a flexible DSS 

shell or generator also the PSC should be based on a general model problem 

solving such that many different salution procedures can be defined by the 

parameters. 

0 
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The main goal of our project is to make a widely applicable DSS development 

tooi. First we are carrying out a theoretica! study. We want to create a DSS 

skeleton - an abstract framework of a DSS and establish a method to design 

DSSs guided by this skeleton. It is straightforward that we wish to have a 

skeleton with wide application domain. The major guidelines for our research can 

be summarized as follows: 

- we concentrate on the automatic decision making function of a DSS; 

we try to separate domain knowledge about the problem to be solved and 

procedural knowledge conceming the problem solving method; 

we aim at a widely applicable model of operarionat planning problems by 

means of high level parameters; 

we intend to make a widely applicable model of (a class of) solution methods 

applicable for such problems. 

An additional objective of our study is to obtain a clear terminology that suppons 

good onderstanding of the related phenomena and facilitates funher research and 

discussions. 

Before going into detailed studies let us introduce the basic taxonomy of 

planning. 

3 planner 

2 

modelled world 

the highest level; the planner is rnanipolating 
(creating and modifying) plans in order to find 
one that causes desired changes in the status of 
the world 

plans (decisions) are at the medium level in the 
hierarchy, we see them as executable entities, 
their execution changes the status of the world 

at the lowest level we find the world that can 
change its status by itself and can also be 
changed by executed plans; 

In this hierarchy entities of a certain level have influence on the ones on one 

level below: a plan changes the world, a manipulation modifles a plan. For 

instanee teacher x begins a lecture with class y at z o' clock is a plan, its 
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execution brings changes in the world. Executing the command interchange 

English and Mathernaties in the time table a plan (the time table) is changed, 

therefore it is a manipulation. 

In these tenns an operarionat planning problem has to do with the first two 

levels. Therefore, a model of planning problems should contain a model of the 

world and a model of plans extended by the facility of defining what kind of plan 

is wanted. We elaborate such a model in the next chapter. 

Problem solving can be associated with levels number 2 and 3. A model of 

solution methods should describe how to perfonn manipulations in order to 

achieve a desired plan. This will be investigated in Chapter 3 and Chapter 4. 
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Planning 

Like many other notions of computing science the term planning is loaded with 

an everyday meaning. Such notions unlike most of the mathematica! terms 

appear to have a formal meaning even without a definition. (Think, for instance, 

of the notion of plan as opposed toa consistently complete join semi-lattice.) This 

appearance causes a very undesirable effect, namely that relatively little effort is 

being made to clarify the foundations. The terminology of planning is far from 

being unambiguous, many interpretations can be given to the same word. 

In this chapter we investigate planning and establish our formal interpretation. . 

We present a conceptual model of planning problems. Setting the basic 

assumptions, identifying the most relevant factors and their relationships we are 

aiming at 

a coherent planning theory by systematic top-down analysis; 

- a good insight in the componentsof planning problems so that we can derive a 

method to specify planning problems. 

We try to make the choices consciously during the development of the theory, 

such that the restrictions and their reasons are clear. Hereby the application 

domain of the theory is visible and so are the possible extensions or restricted 

versions of our theory. Natorally we do not claim that our interpretation is the 

only good one, but it forms a sound format basis for further investigations. 

Notice that we did not explicitly mention that we study operational planning 

problems here but that is the application field we have chosen. 

19 
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2.1 Model of Planning Problems 

According to the hierarchy sketched in Chapter 1 the two layers we are concemed 

withare 

1) the wor/d which can change its status either by itself or by actions of the 

planner; 

2) actions and plans consisring of actions that are executable entities acting on 

the world; the effect of their execution is that the status of world changes. 

A planning situation includes the description of the cireumstances in the world, 

the description of plans and their influence on the world. A planning problem can 

be given in the context of a planning situation by giving an initial status of the 

world and certain goal status. Solving a planning problem the planner wants to 

·act towards changing the status of the world by a plan such that a goal status is 

reached. Often, there are also requirements about the way a goal status is reached, 

e.g. it must be done as cheap as possible. 

Although this interpretation of a planning problem smoothly matches our 

intuition, we slightly modify it. In the sequel we assume that solving a planning 

problem the planner wants to have a plan that can transform the initial status to a 

goal status. A solution of a planning problem is then a plan which, if executed, 

transforms the world to a goal status. The advantage of this reformulation is a 

consequent terminology where the solution of a planning problem is a plan and 

not the fact that a certain world status is reached. 

The first obvious step in elaborating our theory is to model the world by 

introducing wor/d states as abstract entities rnadelling the status of the world at a 

certain moment. lntuitively we consider world states as snapshots taken of the 

world at a certain moment. 

A crucial characteristic of planning problems is that time is involved. 

Depending upon the role of time we can distinguish two kinds of circumstances: 

in a static case the world does not change its status unless an action or plan is 

executed, in a dynamic one the status· of the world can be changed any time 

without being triggered. In the next sections we develop a detailed formal theory 

of planning problems extending the results of Ei ben (1989). 
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2.1.1 Static Case: the World as a State 

In the static case it is assumed that a world state is maintained until an action 

takes place, with other words, every change in the status of the world is caused by 

an action. 

Example 2.1.1.1 Blocks-World Problem (BWP) 

In the Blocks-World Problem, Nilsson (1982), we have a table, several blocks on 

the table and a robot arm that is able to put a block onto another one or onto the 

table. In the beginning the blocks are in an initial configuration. The objective is 

to make up a sequence of movements of the robot arm that converts the blocks to 

a given goal configuration. In terms of world states, actions and effect we can 

describe the BWP as follows. 

World: the table, the blocks and the robot arm; 

States: block configurations; 

In. state: initial configuration of the blocks; 

Actions: moving a block onto another one or onto the table; 

Effect: the configuration changes, since the position of the moved block 

changes; 

Plans: 

Goal: 

IJ 

sequences of actions (for one robot arm); 

blocks are in a given specific configuration. 

Example 2.1.1.2 Travelling Salesman Problem (TSP) 

The travelling salesman problem is well-known in OR, cf. BeUmore and 

Nemhauser (1968). lts basic version reflects a simple decisîon sîtuatîon that is 

still probably intraetabie in computational sense, i.e. it is NP-hard, see Garey and 

Johnson (1979). 

There is a number of cities given together with data descrihing the distances 

between them. A salesman bas to make the shortest possîble tour visiting all the 

cities and retuming to bis home city. 

World: the citîes and the moving agent, distances; 

States: position of the agent, list of visited cities; 
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In. state: start position of the moving agent (a city), no cities visited yet; 

Actions: moves from one city to another; 

Effect: the position of the agent changes, a city becomes visited; 

Plans: sequences of actions (for one agent); 

Chopter 2 

Goal: all the cities are visited exactly once, the agent is back to the start 

position, 

the total distance of the tour is minimal. 

D 

Observe that the items world, initial state and the first part of goal belong to the 

first layer of our taxonomy, actions and plans belong to the second one, while 

effect lays the necessary conneetion between the two layers. 

Remark 2.1.1.3 

Taking a static or dynamic model for a certain situation is not arbitrary. For 

instance, let us take time windows into account for TSP, cf. Savelsbergh (1988). 

If we do not want to incorporate time into the world states (and remain statie), 

then we need to introduce a state underway that is maintained for a period of time 

and then ceases (turns to being at a new city). This actually means that we apply 

a dynamic model. 

D 

There are three shortcomings of the scheme of the above examples. This scheme 

provides a too low resolution view on planning problems in the following sense. 

First, we cannot distinguish changing constituerits of the wörld from permanent 

ones, e.g. the actual position of the agent from the distances between cities. 

Entities of the frrst type can be changed by an action hence they should be 

included in the world states. Information of the second kind is characterized by 

not being changed by actions. Upholding this information by the states is 

superfluous, hence it should be put as background data. This problem will be 

discussed further in section 2.2. 

The second shortcoming is that we cannot distinguish possible and impossible 

actions. Namely, actions are not always executable in reality, consequently not 

every well constructed plan is executable either. Executable in reality is a notion 

with respect to the first layer, telling that something can or cannot be done. We 
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shall treat it on the second layer defining a predicate allowed such that allowed 

actions and plans are all executable. 

lixarnple 2.1.1.4 
Reasanabie definitions of allowability to the above examples are the following. 

BWP : moving block A onto block C is allowed if nothing is on A and nothing is 

onC; 

TSP : move from A to B is allowed if the agent is in A and B is not visited yet. 

IJ 

Third, when giving the goal in Example 2.1.1.2 we did not distinguish the 

condition about the state of the world (all the cities are visited exactly once, the 

agent is back to the start position) and the evaluation criterion for plans (the total 

distance of the tour is minima!). 

These observations lead to a more detailed vision of planning. 

In a planning situation we have the first and the second layer and their connection, 

that is 

1) a set of world states; 

2) a set of actions; 

3) a predicate allowed on actions with respect to states; 

4) a function effect which assigns a state to the pair of a state and an action. 

Furthennore, we need certain general composition rules that specify how to 

construct plans from actions and how to extend the predicate allowed and the 

function effect from actions to plans. 

A planning problem contains all the necessary infonnation on what is given and 

what is wanted, that is it consists of 

I) a planning situation; 

2) an initia! world state of this planning situation; 

3) a condition defining the goal states; 

4) an evaluation criterion for plans. 

A salution of a planning problem is a plan that - when applied to the initia! state -

leads to a goal state. An optima! solution is a salution if it realizes the minimal 
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(maximal} value of the given criterion. 

In the sequel we conven this detailed, still informal description into a 

mathematica! model. 

Definition 2.1.1.5 

A planning universe is an ordered triple (S, A, (T,<}} of non empty sets, where 

- S is a set of world states with a special element o e S called nil; 

- A is a set of actions; 

- (T, <) is an linearly ordered set of time instances. 

0 

The ordering <on Toften remains implicit, mentioning only T insteadof (T,<}. 

Definition 2.1.1.6 

An operation is a pair (a,t) e A x T and time : A x T -1 T is a projection 

function, such that 

V t e T : time(a,t) = t 

holds. 

0 

An operation (a,t) denotes the action a executed at the time t. Notice that hereby 

we modify our view assuming that it is an operation that changes a world state. 

To determine the set of applicable operations with respect to a certain state we 

introduce the following relation. Let us also remark that in our view operations 

have no duration. 

Definition 2.1.1. 7 

The allowability relaiion of a planning universe (S, A, n is arelation 

a: S x (A x n -1 {true,false}, 

such that 

V se S V a e A V t,t e T: a(s,(a,t}} = o.(s,(a,t)). 

lf a(s,(a,t}) then the operation (a,t) is allowed in the state s. 

0 
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Definition 2.1.1.8 

Let (S, A, 1) be a planning universe, a an allowability relation. An effect

junetion of (S, A, 1) is a function 

e:Sx(Ax1)-;S 

such that for every s e S, a e A, t,t e T: 

a) e(o,(a,t)) = o; 

b) a(s,(a,t)) = false ~ e(s,(a,t)) = o; 

c) e(s,(a,t)) = e(s,(a,t)). 

D 

25 

The function edescribes the effect of the operations on states, that is e(s,(a,t)) e S 

is the state obtained by applying the operation (a,t) to the state s. 

Observe that the condition of Definition 2.1.1.7 and (c) in Definition 2.1.1.8 

institute a sort of time independence. These conditions immediately follow from 

our view of static cases as given in the introduetion of this chapter. Namely, we 

presurne that without committing an operation a state is not changed, that is it 

keeps all its features and properties. At this level of abstraction we consider two 

properties of a state: which operations can be applied to it and what effect the 

operations have on it. The above definitions establish that for operations the 

included time instanee is irrelevant in determining WHA T happens, it is 

determining only WHEN it happens. Nevertheless, for plans (introduced later) the 

time instances will be necessary todetermine their effect, that is the WHAT, even 

in the static case. 

The kemel of the concept of allowed is enclosed in (b) in Definition 2.1.1.8 that 

founds the relation between e and a, in fact the relation between executable and 

allowed. Notice the role of the nil state o shown in (a). It is a universal absorber 

state that permits to formulate the effect of unexecutable operations the same way 

as that of executable ones: as a state transition. Formally, the usage of o makes it 

possible to define e as a complete (not partial) function on S x (A x 1). The 

notion of an executable operation is modelled as an operation that yields a state 

different from o. The predicate allowed is for a "syntactical" characterization of 

executability, in practice a will be used to specify the real domain of e. 
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Lemma 2.1.1.9 

Tl a e A Tl t e T : a(o,(a,t)) = false. 

Proof 

lt is obvious from the definitions. 

D 

Chopter 2 

At this point we have all the ingredients neerled to formalize the notion of a 

planning situation. 

Definition 2.1.1.10 

A (statie) planning situation is a 5-tuple 

(S, A, T, a, e), 

where the triple (S, A, 1) forms a planning universe, a is an allowability relation 

and e is an effect function on (S, A, 1). 

D 

A planning situation captures the most relevant factors of the world under 

consideration. To define a planning problem, however, we also need to know 

what a plan is and what the problem is, i.e. what kind of plan is wanted as a 

solution. 

Defmition 2. U .11 
A plan is a fini te set of operations. A plan P e 1'(Ax1) is called a section iff 

V o
1
,o

2 
e P : time(o

1
) time(o

2
). 

Hereby the function time can be defined for any non-empty section P by 

time(P) = time(o) 

taking o e P arbitrarily. 

lf P is a plan then a non empty section R ç;; P is called a maximal section of P if 

for every section Q ç;; P it holds that 

time(R) = time(Q) ::::} Q ç; R. 

D 

It is easy to see that we can uniquely divide any plan into disjoint maximal 

sections. Before the next definition reeall that for an arbitrary set X with 

cardinality n e IN a numbering is a bijeetion 
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v: {1, ... ,n) ->X. 

Definition 2.1.1.12 

If a plan P is divided into n maximal sections then the natura/ numbering of the 

secdons is a bijeetion 

v: { 1, ... ,n) ..... { P' e 1'(A x T) I P' is a maximal section of P ) 

such that 

V i,j e {1, ... ,n) : i< j ~ time (P.) < time (P .), 
l 1 

where P. denotes v(i) for the sake of convenience. 
l 

0 

Proposition 2.1.1.13 

For any plan there is one and only one natoral numbering. 

Proof 

lt is obvious, the ordering on T implies the existence, unicity follows from the 

unicity of the maximal sections. 

0 

Defmition 2.1.1.14 

[P 
1
, .. . ,P n] is the parrition of a plan P (denoted as P- [P 

1
, .. . ,P n]) if P 

1
, .. . ,P n 

are the maximal sections of P numbered by the natura! numbering. 

0 

The following proposition gives a simple characterization of the partition of a 

plan. 

Proposition 2.1.1.15 

For every planPit holds that P- [P1, .. . ,Pn] iff P 1, .. . ,Pn are sections such 

that 

n 
a) P =:; u P.; 

i=l l 

b) time(P 
1
) < time(P 2) < ... < time(P/ 

Proof 

The direction is self-evident by definition. 

To prove the {::::: direction let P 
1
, .• . ,P n be sections such that (a) and (b) hold. By 
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{b) we have that P 
1
, .. . ,P 

11 
are numbered in the natura! way, thus all we need to 

show is that they are all maximaL If they were not, then we had an i e { 1, ... ,n} 

and an o e P \ P. such that 
l 

time(o) = time(P .). 
' l 

But (a) implies that o e P. fora section P. (j "# i), hence 
J J 

time(P .) = time( o ), 
J 

thus 

time(P .) = time(P .) 
J l 

with i"# j which contradiets (b). 

D 

An important special case within our planning theory is obtained if we restriet 

· ourselves to sequentia! plans, where every section is a singleton. Due to 

Proposition 2.1. 1.15 such plans can be simply sequentialized by the time of their 

operations, that is they can be written in a form {o
1
, ... , o

11
} with time(o

1
) < ... 

< time(o ). 
11 

Now we have everything prepared to extend effect and allowed from operations 

to plans. Nevertheless, before we can define the effect of a plan based on the 

effects of its operations, we have to make a choice about the effect of a section. 

Hereby we encounter a hard problem: how to handle the effect of more operations 

at the same time. Here we sketch two ways of treating this problem. 

Basically we can either consider mutual influence between equitemporal actions 

or not. If we do, then we cannot determine the effect of a section from the single 

effect of its elements. In this case we have to define the effect of every section, 

thus we have to define an extended effect function as a primitive. 

We decide to assume the opposite of the above, that is that equitemporal actions 

do not interfere. Hence we can decompose the effect of a section which implies 

that the extended effect function wil! not be a primitive, it will be computed by 

the effect function e. 
Notice that this decision introduces new difficulties. For instance, if the 

operations o and o' act in parallel at the same time instanee then we can take 

either e(e(s,o),o') or e(e(s,o'),o) as the effect of {o, o'} on the state s. Thus, 

computing the effect of parallel actions sequentially introduces ambiguity, since a 

section with k different operations can be numbered in k! different ways that 
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detennine k! different sequences, thus we might have k! different outcomes. To 

exclude this ambiguity we define the effect of sections such that for ambiguous 

cases it yields the nil element o. 

Definition 2.1.1.16 

The extended ejfectfunction of a planning situation (S, A, T, a., e) 

e' : S x ~AxT) -++ S 

is defined for any s e S and finite P e ~AxT) in the following way: 

if P = 0 then e'(s, P) = s ; 

if P = {o
1
, .. . ,on) is a section with an arbitrary numbering of its operations and 

for every subset {il' ... ,ik) ç { 1, ... ,n} and every perrnutation 1t of 

{il' .. . ,ik) 

e( . .. e(s,o {" )) .. . ,o {' )) = e( .. e(s,o. ) .. . ,o. ) 
ltll ltlk 'I 'k 

holds, then 

e'(s, P) = e( .. . e(s, o
1
) ...• on) ; 

if P = {o1, .. . ,on} is a section and there exists a subset {il' .. . ,ik} ç {1, ... ,n} 

and a permutation 1t of {i
1
, •.• ,ik} such that 

e( .. . e(s,o {' J) .. . ,o r· )) -:1: e( .. . e(s,o. ) .. . ,o. ) 
ltll ltlk '1 'k 

then 

e'(s, P) = o; 

if P- [P
1
, .. . ,Pn] then e'(s, P) = e'( ... e'(s,P

1
) ... ,Pn). 

IJ 

Notice that the intuitive interpretation of time is forrnalized right here by using 

the natura! numbering to order the sections of a plan. This establishes that the 

effect of the operations with a smaller (earlier) assigned time instanee precedes the 

effect of the ones with a larger (later) time instance. 

Definition 2.1.1.17 

The extended allowability relation a.' establishes allowability of plans with respect 

to states. It is a Boolean function 

a.': S x ~AxT) -++ {true,false} 

such that for any s e S and finite P e ~AxT): 

if P = 0 and s = o then a.'(s, P) = false; 
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if P = 0 and s :;::. o then a.'(s, P) = true; 

if P = { o 
1 
, ... ,on} is a section with an arbitrary numbering ofits operations, then 

a.'(s, P) a.(s,o
1
) A a.(e'(s,{o

1
]), o

2
) A ••• A a.(e'(s,(o

1
, .. . ,on_

1
]), on); 

if P - [P
1
, •• • ,P ] then 

, n 
a.'(s, P) = a.'(s,P

1
) A ... A a.'(e'( ... e'(s,P

1
) •.. ,Pn_1),P/ 

We say that a planPis allowed in a state s if a.'(s, P) = true. 

0 

By the next proposition we show that allowed and effect are properly extended 

from operations to plans. 

Proposition 2.1.1.18 

-Let (S, A, T, a., e) be a planning situation, a.' the extended allowability relation 

and e' the extended effect function. Then for every s e S and P ç; A x T it holds 

that 

a.'(s, P) = false {::::} e'(s, P) = o. 

Proof 

For the sake of convenience we denote a.'(s, P) = false by..., a.'(s, P). 

1) The case of P = 0 is trivial by Definition 2.1.17. 

2) If Pis a section {o
1
, .. . ,on} then 

..., a.'(s, P) 

iff (by Definition 2.1.1.17) 

..., a.(s,o
1
) V ..., a.(e'(s,{o1}), o

2
)) V •.• V ..., a.(e'(s, {o

1
, •• . ,on_

1
}), on) 

iff (by Definition 2.1.1.8) 

e(s,o
1
) = o V e(e'(s,{o

1 
}), o2)) = o V .•• V e(e'(s, {o1, •. • ,on-l }), on)= o 

iff (by Definition 2.1.1.16) 

e'(s, P) = o 

3) If P- [P 
1
, .. . ,Pn] then 

..., a.'(s, P) 

iff (by Definition 2.1.1.17) 

..., a.'(s,P1) V ..• V ..., a.'(e'( ... e'(s,P1) ... ,Pn)) 

iff 
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3 k e { 1, .. . ,n} : .., o.'(e'( .. . e'(s,P 
1
) .. . ,P k)) 

iff (by (2) above) 

3 k e { 1, .. . ,n} : e'(e'( ... e'(s,P
1
) ... ,Pk_

1
),Pk) = o 

iff (by iterating (a) of Definition 2.1.1.8 and Definition 2.1.1.16) 

e'( .. . e'(s,P 1) .. . ,P n) = o 
iff (by Definition 2.1.1.16) 

e'(s, P) = o. 

0 

Definition 2.1.1.19 
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A planning problem is defmed by a planning situation (S, A, T, a, e) and a triple 

(s, y, K), where s e S is the initia/ state, y : S -+ { true, fa/se} is the goal condition, 

such that y(o) =fa/se and K : JI(A x T) -+ of is a (multidimensional) criterion to 

minimize. 

A plan P is a solution of the planning problem if 

"f(e'(s, P)) = true; 

it is an optima/ solution of the planning problem if it is a solution and 

V P' e JI(A x D : [y(e'(s, P'))::::} K(P) S K(P')], 

where for x= (x1, .. . ,xk) e IRk and x'= <x; ... . .xj) e of 
x s x' iff V ie {1, .. . ,k} : xi S: xj. 

0 

Let us make two remarks with respect to this definition. First, note that by the 

presence of K we are not restricted to optimization-like planning problems. If we 

are not aiming at any optimum then we can define K constant through 'P(A x T). 

The second is that K could be generalized to an arbitrary condition y ' on plans. In 

this case a planning problem would be (S, A, T, a, e) with (s, y, y ') and the 

condition V P' e JI(A x D : [y(e'(s, P'))::::} K(P) s IC(P')] would be a special case of 

'Y '(P). 

Proposition 2.1.1.20 

Every solution of a planning problem is allowed, that is if (S, A, T, a, e), (s, y, K) 

is a planning problem and P ç;; A x T is finite then "f(e'(s, P)) implies o.'(s, P). 

Proof It is a self-evident corollary of the definition of y and Proposition 2.1.1.18. 

0 
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2.1.2 Dynamic Case: the World as a Process 

Reeall the introduetion of Chapter 2.1; the characteristic feature in a dynamic 

situation is that a world state can change without ha ving an action executed. 

Example 2.1.2.1 Preeedenee Constrained Scheduling Prob1em (PCSP) 

We have a finite number of jobs and machines that can perform jobs. Given a 

predecessor relation on jobs, a description of the abilities of the machines (which 

job can be done on which machine) and the duration of performance for jobs and 

machines, we have to schedule the jobs on the machines such that no job is 

performed before its predecessors have been completed and the total processing 

time is minimal, cf. Garey and Johnson (1979). 

World: machines, jobs, which job can be done on which machine, predecessor 

relation on jobs, durations; 

States: pairs of machines and jobs (machine performing job), list of completed 

jobs; 

In. state: no machine is performing any job, no jobs completed; 

Actions: beginning a job on a machine; 

Allowed: a free machine is allowed to begin a not completed job if the 

predecessors of the job have already been completed and the machine 

has the ability to perform the given job; 

Effect: for a period: machine is performing job, later: machine free and job 

completed; 

Plans: sets of operations where more actions can take place at the same time; 

Goal: all the jobs are completed; 

Criterion: the total processing time is minimaL 

0 

Observe that in a PCSP one operation triggers two state transitions at two 

different time instances: first there is a new world state maintained for a period of 

time (the machine is busy with the job), then there is another state transition that 

leads to the final result of the given action (the machine becomes free and the job 

becomes completed). This phenomenon can be viewed as having a change in the 

world state that is not caused by an operation (at the time of the change). We 
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consider two possibilities to model dynamic worlds. 

First, we can drop the intuitive basis of world states and give up the view that a 

state is a snapshot of the world at a certain moment. lntroducing entities that 

rather belong to periods than to moments we can try to capture the problem by 

these new objects. 

The second possibility is to keep the state-snapshot vision but embedding states 

into a time flow. This would lead to the notion of a process and the replacement 

of the state-operation-new state construction by a process-operation-new process 

model as the next example illustrates. 

Example 2.1.22 

Let a 4-tuple (m.j,b,c) stand for a machine m, a job j, a beginning time b and 

completion time c to describe that m is performing j between b and c. Such a 

4-tuple gives a partial world description over the period of time between b and c. 

To obtain a complete view on what happens at a time instanee t we have to check 

the set of all these 4-tuples taking their 'projection' on t. Thus a set of such 

4-tuples can be seen as a world description. The tuple (mj,b,c) can be seen as 

some mixture of an operation and irs effect, that of beginning j on m at b, coupled 

by telling that m will be occupied between b and c and that j will be finished at c. 
A set of such 4-tuples thus also can be seen as some kind of plan. 

Let us keep states as given in Example 2.1.2.1. Introducing a predicate ready 

and a predicate busy we can identify a state by a set of atomie formulae that are 

true in that state. If we now introduce processes as parameterizations of the world 

states by time then the operation of beginningjon m at b tums the process f into 

the process g as exhibited below. 

s
2 

= {ready(])} 

s
1 

= {busy(m.j)} 

s =0 
0 

0 

s 
............ g 

·-·-·-·-·-·-·-~--------- f 

b c T 
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After studying the two possibilities we have chosen the second one. The reasoos 

to choose the process based approach are threefold. 

- The original interpretation of world states is kept: they can still be interpreted as 

modelling the world at a eertaio moment. 

- Takh1g processes as the basic entities changed by operations, we preserve the 

previous construction of planning problems: the notions operation, allowed and 

effect can benamrally extended to processes. 

- In Example 2.1.2.2 the operations, effects and states are mixed up, something 

that can be advantageous for an economical representation formalism, but not 

for a conceptual model that should clarify the matter. 

Therefore, in this section we extend the static world of states to a dynamic world 

by introducing processes as parameterizations of the world states by time. Taking 

· processes as the basic endties to be changed by operations, we introduce dynamic 

planning problems where an initia/ process and cenain goal processes are given 

and we want to have a plan that transforms the initia! process to a goal process. 

In the sequel we formalize this concept of planning preserving as much as 

possible from the static model. Definitions and propositions that are identical to 

those of section 2.1.1 are not repeated. 

Defmition 2.1.2.3 

A processof a planning universe (S, A, 1) is a panial function 

f : T ..... S \ ( o). We a lso introduce a special absorber process that will be 

denoted as 6 and called nil process. The notation FS,T stands for the set of all 

processes of the universe (S, A, 1) extended by the nil process. 

For notational convenience we shall denote F S.T by simply F if it can not lead to 

confusion. 

0 

Example 2.1.2.4 

Let us take an example from the so called qualitative physics, see Porbus (1984). 

A bal! is dropped above a flame at the moment t. Falling down it goes through 

several states eg. falling, falling and being heated and then finally being broken 

when reaching the ground. 
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h
0 

o -----
! 

hl - - - - - - - - - - - - - - - -

FLAME 

h2 ----------------

Let us introduce the predicates falling-at, heated and broken and let us again 

identify a state by a set of atomie formulae that are true in that state. Then the 

environment can be modeled by the following states and time instances: 

S v ( falling-at(h) } v v ( faffing-at(h) fl heated } v ( broken } 
hE[O,lOO] hE[O,lOO] 

T =IR~ 
and the falling ball dropped at time t can be described by the following process f. 

f('C) = 

(fal/ing-at(ht)} 

(falling-at(ht) fl heated} 

(falling-at(ht)} 

(broken} 

"f < I t_'C<t hf/ 
reac ame 

ift ~'C<t 
reachf/ame leaveflame 

ift ::;;'C<t. 
leaveflame h!lground 

.f < 
I t hit ground - 'C 

The exact value of h , t h"'- , t1 ,11 and thi d can be calculated by 
t reac ~,..me eave1 .ame tgroun 

the well-known Newtonian laws of mechanics if h
0
, h

1
, h

2 
are given. 

D 

Notice that a state is again identified by the set of atomie formulae that are true 

in it. We also rnaintaio the so called Closed World Assumption, stating that if an 

atom is not contained in a state s then it is not true ins. By this representation of 

states their inner structure is visible in the example: roughly, states are subsets of 

the set ( falling, heated, broken } . This implies that we have two possibilities of 

depicting a process. The first one is to indicate every state on the vertical axis, 

that is every element from 1'(( falling, heated, broken }). This leads to 8 items 

and the following figure. 
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s 

ffalling ,heated, 

broken) 

{ heated,broken} 

ffalling,broken} 

ffalling,heated) 

{broken) 

{heated} 

ffalling) 

0 

t t 
reachflame t leaveflame 

T 

The other possibility is that we indicate only the 'ingredients' of the states, that is 

each of falling, heated and broken and the actual state at a moment t can be 

obtained by upwards projection. This results in the following picture. 

broken 

heated 

falling 

t t reachflame 1leaveflame 1
hitground 

Notice that this is nothing but the well-known Gantt chart representation. 

Defmition 2.1.2.5 

A dynamic allowability relation of a planning universe (S, A, 1) is a relation 

ó:: F x (A x 1) {true,false). 

D 

Denoting time segments we shall use the following notational conventions: for any 

tE T 

tT= {HT:t<t}, ff= {teT:tS't); 

Tt = { 't E T : t < t L Tr = { 't E T : 't ::;; t ) . 
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Definition 2.1.2.6 
Let (S, A, T) be a planning universe, ó: be a dynamic allowability relation. A 

function 

ê:Fx(AxT)--1F 

is a dynamic effect-Junetion if it holds that for every f e F a e A, t e T: 

a) ê(ó,(a,t)) = à; 
b) .., ó:(/,(a,t)) {::::} ê(f,(a,t)) = ó; 

c) if ê(/,(a,r))"' à then (ê(/,(a,r)) t Tl = f t T{. 

0 

Here is a crucial difference between the static and the dynamic planning model! 

In the static case Definition 2.1.1.7 and point (c) of the Definition 2.1.1.8 

expressed independenee from the time instanee of an operation. Obviously, this 

independenee would not hold for processes that are essentially meant to describe 

changing situations. Point (c) of Definition 2.1.2.6 is to require that only the 

future, and never the past of a process is changed by an operation. 

Definition 2.1.2.7 
Let (S, A, T) be a planning universe. A dynamic planning situation of (S, A, T) is 

a 5-tuple 

(F, A, T, á, ê) 

where F = F S,T , á is a dynamic allowability relation and ê is a dynamic 

effect-function of (S, A, T). 

0 

Defmition 2.1.2.8 
The extended ejfectfunction of a dynamic planning situation (F, A, T, à, ê) 

ê' : F x 1\:A x T) --1 F 

is defined for any f e F and finite P e 1\:A x T) in the following way: 

if P = 0 then ê'(j, P) = f; 

if P = {o
1
, .. . ,on) is a section with an arbitrary numbering of its operations 

and for every subset {i
1
, .. . ,ik) ç { 1, ... ,n) and every pennutation n: of 

{il' .. . ,ik} 
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e( . . . e(f,o (' )) .. . ,o_r )) = e( •.• e(/,o. ) .. . ,o. ) 
'lt 'I •~otlk 't 'k 

holds, then 

ê'(f, P) = ê( .. . ê(f, o 1) ... , on) ; 

if P =, {o
1
, •• . ,on) is a section and there exists a subset {il' .. . ,ik) ç 

{ 1, ... ,n} and a pennutation n: of {i
1
, .. . ,ik) such that 

e( .. . e(/,o (' )) .. . ,o (' )) * e( .. . e(f,o. ) .. . ,o. ) 
'lt 11 'lt 1k 11 1k 

then 

ê'(f, P) = ó; 
if P - [P 1, .. . ,P n] then ê'(f, P) = ê'( .. . ê'(/ ,P 1) .. . ,P n). 

0 

. Notice that the basic feature of time is the same as for the static case: the effect 

of the operations with a smaller (earlier) assigned time instanee precedes the effect 

of the ones with a larger (later) one. 

Reeall point (c) ofDefinition 2.1.2.6 that can be infonnally understood as staring 

that the past of a process cannot be changed by an operarion. The question 

whether this property also holds for plans in general is answered by the following 

proposition. 

Proposition 2.1.2.9 (Past In varianee) 

LetfeF, P-[P
1
, ••• ,Pn], t;=time(Pi) foreveryie {l, ... ,n}. Then 

ê'(/, P) '# ó implies ê'(f, P) = f on n1. 

Proof 

1) n = 1 (Pis a section) 

Let P = P 1 = {o1, .. . ,ok}, k > 0 and t = time(P). Furthermore,let t0=! and 

f; = ê( ... ê(/O'o1) ... ,oi), 

fori e { 1, ... ,k}. 

Notice that ê'(f, P) * ó implies f. * ó for every i e { 1, ... ,k} and then by the 
I 

iterated application of point (c) of Definition 2.1.2.6 we have that 

f. t Tl = f. 
1 

t Tl for every i e { 1, . . .,k}, 
l l-

hence 

Ik t Tr = ... = / 1 t Tl = !0 t Tl. 
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thus 

ê'if, P) = f on Tl 

2) n > 1 

Let !0=! and f; = ê( •. • êlfr/1) ... ,Pi)' ie (1, ... ,n}. 

ê'if, P) ~ o implies f. ~ o and then by (1) and Definition 2.1.2.6 we obtain that 

' for every i e (1, ... ,n} 

f. t Tt. = f. 1 t Tt. ' , ,_ 'i 
as the tigure below illustrates it for n = 2. 

s 
--------------! 2 

-·-·-·-·-·-·-·-·-·- .............. f 
1 

Since P 
1
, .. . ,P nare numbered by the natural numbering 

Tli-I 1: TI; for every i e [ 1, .. . ,n}, 

thus 

In tn1 =/0 tn1 
0 

Definition 2.1.2.10 

----------!0 

T 

The extended allowabiliry relation à' of a dynamic planning situation 

(F, A, T, à, ê) establishes allowability of plans with respect to processes. It is a 

Boolean function 

à' : F x 1\:A x T) ...... [ true,false} 

such that for any f e F and fini te P e 1\::A x T) 

if P = 0 and f = o then a'if, P) = false; 

if P = 0 and f ~ o then a'if, P) = true; 

if P = [o
1
, .. . ,on} is a section with an arbitrary numbering of its operations then 

à'if, P) = alf,o
1
) A à(ê'if,(o

1}), o2) A ... A à(ê'(f,[o1, ... ,on_1}), on); 
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if P - [P 1, .. . ,P "l then 

d'(/, P) = éi'lf,P1) A ••• A d'(ê'( .. . ê'(/,P
1
) •. • .P"_1),P

11
). 

We say that a plan P is allowed w.r.t. a process f if éi'(j, P) = true. 

D 

Proposition 2.1.2.ll 

Let (F, A, T, éi, ê) be a dynamic planning situation, d' and ê' the corresponding 

extended allowability relation and the extended effect function, respectively. 

Then for every f e F and P e 1'(A x T) it holds that 

éi'(j, P) = false <=? è'(j, P) = 6. 
Proof 

It is analogous to the proof of Proposition 2.1.1.18 withf e Finsteadof se S. 

D 

Definition 2.1.2.12 

A dynamic planning problem is defmed by a dynarnic planning situation 

(F, A, T, éi, ê) and a triple (/0' y, IC), where fo e Fis the initia/ process, 

'Y : F -+ ( true,false} is the goal condition, such that y(o) = false and 

K : 1'(A x T) -+ ut is a (rnultidirnensional) criterion. 

A plan P is a solution of a dynamic planning problem iff 

y(ê'(/0' P)) = true; 

it is an optimal solution if it is a solution and 

\f P' e 1'(A x 1) : [y(ê'(/
0
, P')) ::::} lC(P) S: IC(P')], 

where for x= (x1, ... ,xk) e ut and x'= (xj •... .xt> e ut 
x:S:x' iff Vie {l, ... ,k) :x.s:x:. • • 

D 

Proposition 2.1.2.13 

Every solution of a planning problern is allowed, that is if (F, A, T, éi, ê), (j, y, IC) 

is a dynarnic planning problern and Pc:; A x T is finite then y(ê'(j, P)) implies 

éi'(/, P). 
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Proof 

It is straightforward from the definition of y and Proposition 2.1.2.11. 

0 

The structure represented by the five tuple (S, A, T, a, e) or (F, A, T, à, ê) can 

be considered as a model to describe planning situations where the elements of the 

tuples are the parameters. More precisely, we can specify a planning situation by 

a 6-tup1e (x, S, A, T, a, e), where x e {statie, dynamic} and the values of S, A, T, 

a, e must be such that (S, A, T, a, e) forms a static planning situation if x = static 

and (Fs T , A, T, a, e) forms a dynamic planning situation if x = dynamic. 
' Defining a planning situation we give a domain description or decision model; 

defining a triple ,(s
0
, y, te), respectively ifo• Y, te) determines a problem to solve. 

We believe that this framework carries those aspects of the world that are 

relevant for planning. The examples in section 2.2 justify this belief 

demonstrating how to use the formalism as a high level description language to 

specify planning problems. In the meanwhile, by such a practical exercise we 

gain a more detailed view about how these parameterscan be given and what kind 

of value they can have. In particular, the examples will serve as good illustration 

of parameters having expressions of a high level language as values. This will 

bring us closer to outline a method to define a planning problem within a DSS. 

2.1.3 The Role of Time 

Intuitively it is clear that the dynamic model of planning is a generalization of 

the static one. More precisely, we envisage that if the dependenee on time (the 

parameterization) is kept constant then we get the equivalent of a static planning 

model within a dynamic one. 

Likewise, says intuition, if we consicter a process as one object - a (meta) state 

then we can project a dynamic model into a static one. To investigate this 

question formally we can regard a planning situation as a space of objects (S or F) 

with a function on it (e or ê) and interpret 'being the equivalent of' by the 

following double definition. 
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Definition 2.1.3.1 

Let (S, A, 1) and (W, A, 1) be two plaiming universes, (S, A, T, a, e) and 

(F W,T , A, T, à, ê) be a static and a dynamic planning situation and let F denote 

FWT' 

We say that (S, A, T, a, e) has an isomorphic representation in (F, A, T, à, ê) if 

there exists an injection I : S ___, F such that 

I(o) = êJ 

and for every a e A, te Tand se S 

I(e(s,(a,t))) ê(I(s),(a,t)). 

(F, A, T, à, ê) has an isomorphic representation in (S, A, T, a, e) if there exists an 

injection J : F ___, S such that 

J(o) = o 
and for every a e A, te T andfe F 

J(ê(f,(a,t))) = e(J(f),(a,t)). 

0 

To illustrate the meaning of this definition us take the isomorphic representation 

of a static case in a dynamic one and consider the following figure. 

F 

s s' I !' I(S) 
0- - 1- --------tO 

I e ;; 
0--- -- ........ - --- ... 0 

s I f 

For an isomorphic representation of a static situation in a dynamic one an injection 

I is required such that I and effect commute, i.e. that I o e ê o I. Notice that if 

such an I can be given then the static situation can be handled by a dynamic one. 
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Namely, we can compute the effect of operations on states by applying 

e = r 1 
0 ê 0/. 

Proposition 2.1.3.2 
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Let (S, A, T, ct, e) be a static planning situation. If there exist s,z e S \ {o}, s:;:: z 

and 0 E A x T such that e(s,o) = z then there is no planning universe (W, A, n and 

dynamic planning situation (F W,T , A, T, à, ê) such that (S, A, T, ct, e) has an 

isomorphic representation in (F W,T, A, T, à, ê). 

Proof 

Let (S, A, T, ct, e) be a static planning situation, s,z e S \ {o}, s :;:: z and (a,t) e 

A x T such that 

· e(s,(a,t)) = z. 

lf (W, A, D is a planning universe and (F W,T, A, T, à, ê) is a dynamic planning 

situation such that (S, A, T, ct, e) has an isomorphic representation in 

(F W,T, A, T, à, ê) by an injection /, then 

/(s) :;:: /(z). 

On the other hand, point (c) of Definition 2.1.1.8 implies 

V 'te T: e(s,(a,'t)) = z 

and therefore 

ê(/(s),(a,'t)) = l(e(s,(a,'t))) = /(z) for every 'te T 

by Definition 2.1.3.1. Cbserve that by z:;:: o and the properties of I we have 

ê(/(s),(a,'t)):;:: ó for any 'te T. 

Then by (c) of Definition 2./.2.6 this latter implies 

ê(/(s),(a,'t)) t Tl l(s) t T'J. for every 'te T. 

Hence 

/(s) r n = /(z) t n for every 't E T 

thus 

/(s) = /(z), 

which is a contradiction. 

0 

Proposition 2.1.3.3 

Let (W, A, D be a planning universe and (F W,T , A, T, á, è) be a dynamic 

planning situation. If there exist f e F W.T \ { o}, a e A and t, 't e T (t :;:: 't) such that 
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ê(f,(a,t)) '# ê(j,(a,t)) then there is no planning universe (S, A, T) and static planning 

situation (S, A, T, a, e) such that (FWT , A, T, à, ê) has an isomorphic 

representation in (S, A, T, a, e). 

Proof 

Let (F W,T, A, T, à, ê) be a dynamic planning situation,/ e F W,T \ {6}, a e A and 

t,t e T (t '# t) be such that ê(j,(a,t)) '# ê(f,(a,t)). If (S, A, T, a, e) is a static 

planning situation such that (F W,T , A, T, à, ê) has a isomorphic representation in 

(S, A, T, a, e) by J, then 

J(ê(j,(a,t))) '# J(ê(f,(a;r))) 

since J is an injection. On the other hand, 

J(ê(j,(a,t))) = e(J(j),(a,t)) 

by Definition ~.1.3.1; furthermore by (c) of Definition 2.1.1.8 we have 

e(J(j),(a,t)) = e(J(j),(a,t)). 

This implies 

J(ê(j,(a,t))) = J(ê(j,(a,t))), 

which is a contradiction. 

IJ 

These propositions demonstrate that a non trivia! static (dynamic) planning 

situation cannot be isomorphically represented in a dynamic (statie) one. The 

proofs also show the souree of this fundamental mismatch: (c) of Definition 

2.1.1.8 and (c) of Definition 2.1.2.6 counteract each other. Since these points 

embody the very nature of the statie, respectively the dynamic case, from the 

above propositions we can conclude that static and dynamic models are deeply 

different by nature. 

The above results imply that maintaining only static (dynamic) models and 

computing the dynamic (statie) effect function through the appropriate mapping 

J -I o e o J (I -I o è o I) is impossible. We can, however, construct a mapping 

Ï from static to dynamic universes and a corresponding non-injective mapping ] 

from dynamic to static universes such that e =Jo é o l. This means that -

although not isomorphically - we can represent the information about a static case 

within a dynamic one. 
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F 

s s' Ï !' /(S) 

-~~--
- ---- -- -; 0 

J 
~0 

0--- - -1 - f--1- ---;o e. 
s. f 

Definition 2.1.3.4 

Let (F, A, T, ó., è) be a dynamic planning situation. A process f e F is called 

ray-tailed if there exists a time instanee t e T such that 

I;J 't ~ t : j('t) = f(t). (*) 

The notation f 1 stands for a rail-tailed process with t e T being the smallest time 

instanee satisfying (*). 

0 

Definition 2.1.3.5 

Fora static planning situation (S, A, T, a, e) a dynamic planning situation 

<Fs,T, A, T, ó., ê) is mirroring (S, A, T, a, e) if for every f e FS,T, a e A and 

t,'t e T the relation ó. and the function ê satisfy 

and 

ó.if,(a,t)) = a(f(t),(a,t)), 

! 
f('t) 

ê(f,(a,t))('t) = 
e(f(t),(a,t)) 

if 't < l 

if 't ~ t. 

The mirroring mappings Ï : S F and J : F -;-; S are defined as follows. 

Ï(s)(t) = s for every se S, te T 

and 
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for a ray-tailed process f 1 e F. 

0 

Proposition 2.1.3.6 

Let (S, A, T, a, e) be a static planning situation, <Fs,r, A, T, à, ê), l : S _, F and 

j : F -++ S be a dynamic planning situation and the mappings mirroring 

(S, A, T, a, e). Then it holds that e =jo ê o l, that is for every s e S and 

(a,t) e A x T 

e(s,(a,t)) = j(ê(Ï(s),(a,t))). 

Proof 

By definition we have that 

Ï(s) = s 

and 

ê(Ï (s),(a,t))(t) - [ s 

- e(s,(a,t)) 

and thus 

j(ê(Ï(s),(a,t))) 

0 
e(s,(a,t)). 

if 't < t 

if 't ;;:: t 

Notice, that even if we cannot consider a process of a planning universe as a 

state of another planning situation, we can regard it as an object of a space that is 

transformed into another object by a plan. The definition of the transition relation 

within the space of processes is self-evident. 

Definition 2.1.3.7 
Let (F, A, T, à, ê) be a dynamic planning situation. The transition relation » 

on Fis defined for any f, ge F by 

f » g iff 3 P e 1'(A x T) : e'(f, P) = g. 

0 

The relation » is clearly reflexive since 

'V f E F : e'(j,0) f 
holds by definition. With some surprise we realized that transitivity does not hold 
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for » · in genera!, although intuitively we had expected that if the process f can be 

tumed to g, and g to h then f can be tumed to h as wel!. Next we give a 

counterexample to show a case when this does not hold. 

Example 2.1.3.8 
Let us take (IR~, {a

1
, a2}, IR~) as a planning universe and letf,g,h, e F defined by 

the following. Let t1,t2 e IR~ and let a and e be such that: 

á(f,(a,t)) = true {::} [a = a
1 

At = t
1
] V [a = a2 At= t

2
]; 

d(g,(a,t)) = true {::} a = a
2 

At = t
2
; 

ê(f,(a
1
,t

1
)) = g; 

ê(f,(a
2
,t

2
)) i; 

é(g,(a2,t2)) = h. 

The next figure illustrates the relationship between the processes f, g, h and i. 

s 

f 

g 

h 

T 

On one hand, the general definitions of an allowability relation and an effect 

function are satisfied here thus this is a possible planning situation. 

On the other hand, è(f,(a,t)) can only beg or i or ó, which implies 

f » g A g » h A .., (f » h), 

that is transitivity does not hold in this case. 

D 
lnvestigating the cause of the subjective 'absurdity' of Example 2.1.3.8 we find 

it in having ê(f,(a2,t2)) * ê(g,(a2,t2)) although f g up to t2. This disdoses that 
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we intuitively maintain a hidden assumption that is violated here. This 

assumption informally says that it is only the past and the present that determine a 

situation, regardless to the future which would have come without extemal 

interference. Notice that being in a process, from 'within' we cannot distinguish 

two processes which have the same history up to now, i.e. at t
2 

we cannot teil 

whether we are in/ or g. Therefore we assume that at any moment the set of our 

possible actions and the effect of the actions is independent from the future. 

We admit that one might be reticent about the universa! validity of these 

features. Therefore we do not extend our theory with requiring these properties in 

general but we formulate them as two assumptions . 

. Detenninative Past Assumption 1 (DPA 1) 

Let (F, A, T, à., ê) be a dynamic planning situation. The Determinative Past 

Assumption 1 holds for (F, A, T, à., ê) if for any J,g e F and te T 

1 r TI g r Tt ~ &.ç = &. , - ;J gJ 

where à.~" stands for { (a,t) e A x TI "C = t A &.if,(a,t)) true }. 
J ,t 

0 

Detenninative Past Assumption 2 (DPA 2) 

Let (F, A, T, à., ê) be a dynamic planning situation. The Oeterminative Past 

Assumption 2 holds for (F, A, T, à., ê) if for any J,g e F and non empty section P 

such that time(P) = t 

1 r Tl g r TI ~ ê'if. P) = ê'(g, P). 

0 

These assumptions are not fully independent as the following proposition 

indicates. 

Proposition 2.1.3.9 

For every dynamic planning situation (F, A, T, à., ê) OPA 2 implies OPA 1, but 

the reverse does not necessarily hold. 

Proof 

Let (F, A, T, à., ê) be a dynamic planning situation and assume that OPA 2 holds 

but OPA 1 does not. Then we can take two processesf, ge F and te T such that 
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ttTr=g trr 
and 

á, '#Ó. . 
J•t g,t 

Without loss of generality we may assume 

áf,l \ ág,l * 0, 

thus we can choose an element (a,t) e d,. \ d . Then for (a,t) we have 
Jol g.l 

d(j,(a,t)) 1\ .., á(g,(a,t)). 

Th en the ~ direction of (b) from Definition 2.1.2.6 implies 

ê(g,(a,t)) = o 
and from the Ç::::: direction of (b) of Definition 2.1.2.6 it follows that 

ê(j,(a,t)) * ó. 
On the other hand DPA 2 implies 

ê(f,(a,t)) = ê'(j, P) = ê'(g, P) = è(g,(a,t)) 

for P = { (a,t)} which is a contradiction. 
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To see that DPA 1 ~ DPA 2 does not hold in general let us consider a dynamic 

planning situation (F, A, T, á, è) for which DPA 1 holds. Let the processes f,g 

and te T be such thatf'# g and 

JtTl=gtT{. 
it is easy to see that extending (FA, T, d, è) by introducing a new action a' I! A 

and defining 

d(h,(a;t)) = true ~ (h =/V h g) 1\ a= a' 1\ t t 
and 

è(j,(a',t)) = g and ê(g,(a',t)) = f 
results in a planning situation for which DPA 1 does hold but DPA 2 does not. 

0 

The following proposition proves that DPA 2 is a sufficient condition for the 

transitivity of the relation ». The proof is constructive, not only stating that there 

is a plan that turns f into h but also constructing it from the plans that turn f into g 

and g into h. 

Proposition 2.1.3.10 

Let (F, A, T, d, è) be a dynamic planning situation. lf DPA 2 holds for 

(F, A, T, d, è) then the relation » on Fis transitive. 
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Proof 

Let the processesf,g,h e F \ {6} and the plans P,Q ~A x T be such that 

ê'(j, P) = g and ê'(g,Q) = h. 

We show that there exists a plan R i: A x T such that 

ê'(j,R) = h. 

Let P- [P
1
, .. . ,P ] and Q- [Q

1
, .. . ,Q ] and let t. = time(P.), ie {1, ... ,n} 

n m 1 1 

and 
'ti= time(Q). ie {1, ... ,m). 

i) t
1 
~ t

1 
(Q starts notlater than P) 

ê'(j, P) = g :::::} f = g on T!1 
. by the past invariance proposition (2.1.2.9), so by t

1 
~ t

1 
f = g on n.1 

is obvious. Then OPA 2 implies that 

ê'(j, Ql) = ê'(g, Ql) 

thus 

ê'(j, Q) = ê'( .. . ê'(j, Q
1
) ... , Qm) = ê'( .. . ê'(g, Q

1
) ... , Qm) = ê'(g, Q), 

that is R = Q is satisfactory. 

ii) t
1 

> t
1 

(Q starts later than P) 

Let/.0 =/, f. e'(f.
1
,P.) foreveryie {l, ... ,n). Bytheiterativeapplicationof 

I I· I 

the past invariance property (Proposition 2.1.2.9) we obtain 

!i= g on T!i+l for every ie {I, ... ,n-1). 

Let k be such that k = max { i I ti < t 1 ) . 

Th en 

tk < 'tl ~ tk+l 
and 

Ik = g on T!k+l 

imply that 

Ik= g on n.1. 

Cbserve that OPA 2 leads to 

ê'(j,P I V ... V P kV Q) ê'(e' . . . (e'(j, P 1) ... , P k)' Q) = ê'(jk, Q) h, 

that is for R P
1 

v ... v Pk v Q we obtain 
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ê'(f, R) = h. 

0 

2.2 Examples of Planning Problems 

Section 2.1 presents two kinds of models of planning problems. A static model 

is appropriate if we can assume that any state lasts until an action is committed. 

If, however, we foresee that there are states that are maintained only for a eertaio 

period of time then a dynamic model can describe the case. In section 2.1 states, 

actions etc. were primitives of the theory. Here in section 2.2 we are going to 

have a look at the 'inside' of these primitives, that is we give a detailed 

description of five planning problems. 

For any description method it is very important that it is clear enough and 

relatively simple entities are used to describe a problem. This makes it easy to 

decide whether the forma! description matches the intuitive interpretation of the 

problem, in other words this makes a formal description a good interface between 

intuition and forma! treatment of the problem. Using the theoretica! model as a 

description framework imposes a eertaio method of problem specification. 

Descrihing a problem through defining S, A, T, a, e, s, y, IC implies that we can 

concentrate on a relatively small aspect of the problem at a time, e.g. what the 

world states should be like, or which conditions should hold before the application 

of an action. The whole model is then composed by these relatively simple 

components. 

To characterize a state as a snapshot about the world at a moment it seems to be 

natura! to list all those facts that hold in the world at that moment. Making just 

one step further we come to the idea of saying that a state IS a set of valid facts. 

We complete this view with the so called Closed World Assumption, assuming 

that a state s contains all the valid facts, i.e. if a fact is not contained in s then it is 

not true in s. Hereby we take a logic-based approach that enables us to handle 

facts, complex statements and validity with respect to states, cf. Pednault (1987), 

Treur (1988), van Langen and Treur (1989). 

Before we begin the forma) work we want to draw the readers attention to 

eertaio important aspects of the following examples. 
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As we have rnentioned after Remark 2.1.1.3 there are two kinds of facts: 

permanent ones that are not changed by an action and temporary ones that can be 

modified if an action is committed. Incorporating permanent facts in the states is 

superfluous, therefore in our construction we distinguish permanent functions and 

relations and temporary functions and relations. 

Permanent relations belong to the background information; we presurne that they 

are stored in a kind of database and can be directly quoted without any reference 

to the actual state. Therefore, we do not distinguish the re lation R c;;;; A x B and the 

corresponding relation symbol, but will also use the notation R(a,b) meaning the 

appropriate Boolean value. Similarly, we assume about permanent functions that 

they are always computed, that is if D : A x B _, IR is a permanent function then an 

expression of the form D(a,b) denotes a real number. 

By their very nature, temporary relations can not be given a truth value without a 

reference to the actual state. Therefore, for every temporary relation R we 

introduce a cortesponding relation symbol r with the same arity and define a state 

as a set of ground atoms constructed frorn these relation symbols. To interpret 

truth w.r.t. states we assume that a state is a complete collection of facts true in it, 

i.e. we assume that r(x) e s if and only if R(x) holds in s. 

To exclude infinite features we shall avoid the use of ternporary functions. We 

use function symbols only to denote narnes of actions, e.g. to(x,y) will be the 

name of the action of going frorn x t(} y. These ternporary function symbols are 

purely syntactic: an expression of the form to(x,y) has no value, it is but a name. 

In the sequel, narnes of function and re lation symbols in upper case indicate that 

we consider them as semantic objects, narnes in lower case stand for syntactic 

objects. 

Finally, let us make sorne abbreviations to simplify the notation. As it turns out 

from the foregoing, we use temporary relation and function syrnbols for special 

purposes. They are seen as purely syntactical objects, therefore we shall use an 

abbreviated way of set construction, namely: 

( r(xl' .. . ,xn) I XI E x l' .. • ,xn E xn } 

insteadof 

( expression E Expr 13 XI Ex 1 ... 3 xn E xn : expression = r(xl' .. . ,xn) }, 

where Expr denotes the set of all expressions used. 

We use two other notational conventions for there exists one and only one and 
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there exists at most one. For the sake of convenience 

3! x e X : q>(x) 

abbreviates the formula 

[3 x e X : <p(x)] /1. [V x,y e X : <p(x) A <p(y) ~x = y], 

while 

3? x e X : q>(x) 

stands for 

V x,y e X : q>(x) A <p(y) ~ x = y. 

2.2.1 Travelling Salesman Problem 

53 

Based on the informal descriprion in Example 2.1.1.2 we distinguish the 

following relevant entiries of the world: 

- Z = (z
1
, •.. ,z

11
) is thesetof constant symbols denoting the cities; 

- D : Z x Z -+ IR~ is a permanent distance function for cities; 

-AT is a temporary unary relarion pointing out the city where the agent is; 

- SEEN is a temporary unary relation to mark ei ties that have already been 

visited. 

Observe that no agent or salesman is mentioned in this description. Indeed, if 

we only presurne one agent, he can be simply omitted. We, however, will 

mention it sometimes as if it was present, ju st to make explanations easier. 

Formalizing the above view on the world we introduce 

- at, a unary re lation symbol corresponding to the relation AT; 

- seen, a unary relation symbol corresponding to the relation SEEN; 

- to, a binary function symbol (name), to(x,y) representing the action of going 

from city x to city y. 

Defmition 2.2.1.1 

A pre-state is a set V 

V ç ( at(x) I x e Z ) v [ seen(x) I x e Z ). 

The set of all pre-states will be denoted by S . 
p 

D 
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Definition 2.2.1.2 

A pre-state V e S is called correct if the agent is at one location at a time, that is 
p 

if 

3! X E Z : at(X) E V. 

D 

We assume that the position of the agent and the status 'being seen' of a city can 

only change by performing an action, that is we choose the static model version. 

The constituentsof the planning universe are : 

S = { V e S I V is correct }; 
p 

A = ( to(x,y) I x,y e Z }; 

T =IN. 

Definition 2.2.1.3 

The allowability relation for s e S, t. e T, x,y e Z is defined by 

a.(s, (to(x,y),t)) ~ 

1) at(x) e s and 

2) seen(y) f s. 

D 

Definition 2.2.1.4 

For every se S, te T, x,y e Z, if a.(s,(to(x,y),t)) then 

e(s, (to(x,y),t)) == (s\ [at(x)}) v (at(y), seen(y)}. 

IJ 

Let us have a look on the role of seen. We could have chosen world states 

descrihing only the actual position of the agent, that is containing only the at 

predicate. However, restricting ourselves to the static model would then imply 

that the information about the past (where the agent has already been) would be 

lost after each state transition. Therefore we incorporated seen in the states. 

Notice that a modeHing decision was taken that says that a location becomes seen 

when arriving at it. 
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Oefmilion 2.2.1.5 

A planning problem descrihing the travelling salesman problem can be given by 

the following items. 

s
0 

= {at(z1)}; 

y(s) 8 at(z1) e s A V ze Z : seen(z) e s; 

m 
K(P) = L D(x.,y.) 

i:} I I 

for any arbitrary P = ( (to(xl'y1),t1), ... , (to(xm,ym),tm) }. 

IJ 

It is common for TSPs that not a minimal value of K is required only a K value 

under a certain border B > 0. This, however, does not make TSP easier in the 

sense that it remains NP-complete, cf. Garey and Johnson (1979). 

Proposition 2.2.1.6 

For any V e S , a e A and te T, if V is correct and a(V,(a,t)), then e(V,(a,t)) e S 
p p 

is correct too. 

Proof 

By Definition 2.2.1.4 an eperation does not change the number of expressions of 

the forrn at(z) in a state. 

D 

2.2.2 Travelling Salesman Problem with Time Windows 

RecaU Remark 2.1.1.3 where we stated that the extension of TSP with time 

windows can not be expressed in a static model. Therefore we develop a dynamic 

model for TSP with time windows, cf. Savelsbergh (1988). 

We distinguish the following relevant entities of the world: 

- Z = {z
1
, ... ,zn} is thesetof constant symbols denoting the cities; 

- D : Z x Z -; IR~ is a permanent distance function for ei ties; 

- v e IR+ is the standard velocity of moving; 

- W: Z-; 'P(IN x IN), such that for every ze Zand we W(z), w = (w.l,w.2) 

w.l ~ w.2 holds and the interval [w.l, w.2] is a time window 
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belonging to z; 

- AT is a temporary unary relation pointing out the location where the agent is; 

- SEEN is a temporary unary relation to mark cities that have already been 

visited; 

- UNDERWAY is a temporary zeroary relation that stands for being between two 

cities. 

Pormalizing the above view on the world we introduce 

- at, a unary relation symbol corresponding to the relation AT; 

- seen, a unary relation symbol corresponding to the relation SEEN; 

- underway, a zeroary relation symbol corresponding to the relation UNDERWAY; 

- to, a binary function symbol (name), to(x,y) representing the action of going 

from city x to city y. 

Defmition 2.2.2.1 

A pre-state is a set V 

V ç; ( at(x) I x e Z} u ( seen(x) I x e Z} u (underway} 

The set of all pre-states is denoted by S . 
p 

IJ 

Defmition 2.2.2.2 

A pre-state V e S is called correct iff 
p 

1) ..., (underway e V A 3 x e Z : at(x) e V) and 

2) 3? X E Z : at(x) E V. 

IJ 

The constituents of the planning universe are: 

S = ( V e S I V is correct }; 
p 

A = ( to(x,y) I x,y e Z } ; 

T =IN. 

Let F denote the set of all processes of this planning universe. 

Definition 2.2.2.3 

A process f e F is correct if f(t) is correct for every t e dom(j). 

IJ 
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Definition 2.2.2.4 

The allowability re lation for f e F, te dom(j), x,y e Z is defined hy 

àif, (to(x,y),t)) {::::} 

1) at(x) e /(t) and 

2) seen(y) i f(t) and 

3) 3 we W(y): w.l < t + D(x,y)lv < w.2. 

D 

Definition 2.2.2.5 

For every f e F, te dom(j), x,y e Z, if aif,(to(x,y),t)) then 

't < t 

[ 

/('t) 

êif, (to(x,y),t))('t) = [f(t) \ {at(x)} ] u {underway) t :5: 't < t+D(x,y)/v 

/(t) u {at(y), seen(y)} t + D(x ,y) I v :5: 't 
D 

Definition 2.2.2.6 

A planning prohlem descrihing the travelling salesman prohlem with time 

windows can he given hy the following items. 

J
0
(t) = {at(z

1
)} for every te T; 

y(j) {::::} 3 te T : [ at(z
1
) e /(t) /\ V z e Z : seen(z) e /(t) ]; 

m 
K(P) = L. D(x.,y.) 

j:} I I 

for any arhitrary P = ( (to(x1,y
1
),t

1
), ... , (to(xm,ym)'tm) }. 

D 

Proposition 2.2.2. 7 

For any process f, a e A and t e dom(j), if fis correct and áif,(a,t)), then êif,(a,t)) 

is correct too. 

Proof 

It is trivia! hy Definition 2.2.2.4 and Definition 2.2.2.5. 

IJ 
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2.2.3 Preeedenee Constrained Scheduling Problem 

The problem we have sketched in Example 2.1.2.1 leads to the following items: 

- M and J are sets of constant symbols to denote the machines and the jobs; 

- PRE 'ç; J x J, a permanent relation prescrihing the preeedenee between jobs; 

ABLE ç; M x Ja permanent relation showing that a machine can perform a job; 

- D : ABLE ___, IR~ a permanent function that indicates the duration of the 

performance of a job on a machine; 

BUSY ç; M x J a temporary relation to teil that a machine is working on a job; 

READY ç; J a temporary relation to indicate that a job has been completed. 

In the formal description we shall use: 

busy, a binary relation symbol corresponding to the relation BUSY; 

ready, a unary relation symbol corresponding to READY; 

begin, a binary function symbol (name) denoting the action of beginning a job 

on a machine. 

Defmition 2.2.3.1 

A pre-state is a set V 

V ç;; { busy(m,j) I mE M,j E J) V {ready(/) Ij E J ). 

The set of all pre-states is denoted by S . 
D P 

The intention is clear, world states are the possible snapshots during the job 

performing process. The situation at a time instance, however, is not fully 

determined by the ongoing activities. Jobs completed earlier are influencing the 

situation as wel!. Hence, a choice needs to be made between either checking the 

history before decisions, or defining a representative of the relevant aspects of the 

history and completing the snapshots with it. .we have chosen the second 

possibility, this explains the role of ready. 

The world states are constructed such that in any state 
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- a machine is doing a job only if it is able to do that job and 

- a machine is doing at most one job 

- a job is being done on at most one machine 

- ready jobs are not being perfonned. 

Definiti.on 2.2.3.2 

A pre-state V e S is called correct iff 
p 

1) 'r/ (mJ) e M x J: busy(mJ) e V=:} ABLE(mj) and 

2) 'r/ m e M 3? j e J : busy(mJ) e V 

3) 'r/ j E J 3? m E M : busy(mj) E V 

and 

and 

4) 'r/ jE J: (ready(]) E V=:} -.3 mE M: busy(mJ) E V]. 

We take a planning universe consisting of: 

S = { V e S I V is correct } ; 
p 

A = ( begin(mJ) I m e M, j e 1 } ; 

T =IR~. 

and 

and 
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Furthennore, for reasans discussed in section 2.1.2 the we take a dynamic model 

and denote the set of all processes corresponding to this universe by F. 

The conditions to begin a job j on a machine m at a time instanee t are : 

j is not ready yet; 

m has the ability to performj; 

- all the predecessors of j are ready; 

- j is free at t; 

- m is free at t. 

Definition 2.2.3.3 

For every f e F, m e M, j e J and t e dom(j) 

&.(j, (begin(mJ),t)) H 

1) ready(j) E f(t) and 

2) ABLE(mJ) A and 

3) 'r/ j' e J : [ PRE(j J) =:} ready(j') E f(t)] and 

4) -.3 m' e M : busy(m' J) e f(t) and 

5) -.3 j' e J : busy(mj') e /(t). 
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The effect of an allowed operation begin(x,y) is that x performs y and that some 

of the events that would have happened disappear from the future. 

Definition 2.2..3.4 

For every f e F, m e M, j e J and t e dom(j) if àif,(begin(mJ),t)) then 

êif,(begin(mj),t))('t) = 

= [f(t) \ (busy(m, . ) v busy( . J) v (ready(])} )] v ( busy(mJ)} t S: t < t+D(mJ) 
[ 

f('t) 't < t 

[f(t) \ busy( . J)] v {ready(j)} t+D(mj) s; t 

where 

busy(m, . ) abbreviates the set (busy(mJ) Ij e J} 

and 

busy(. J) abbreviates the set {busy(mJ) I me M}. 

Definition 2.2.3.5 
A planning problem descrihing the PCSP problem can be determined by : 

!0(t) = 0 for all t e T; 

y(j) {::::} 3 t e TV j e J : ready(]) e f(t); 

K(P) = max { t + D(mj) I tE T, mE M, je], (begin(mJ),t) e P }. 

IJ 

It is usual for PCSPs that not an optima! plan is required, only a plan that is 

completed before a certain deadline D, Le. a plan with K(P) s; D, cf. Garey and 

Johnson (1979). 

Proposition 2.2.3.6 

lf/ e F, (a,t) e A x Tand àif,(a,t)) holds then êif,(a,t)) e F as well. 

Proof 

By simple case analysis basedon Definition 2.2.3.3 and Definition 2.2.3.4. 

D 
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2.2.4 Time Table Problem (TTP) 

In a TIP we have to make the weekly schedule of a finite set of teachers, 

subjects, classrooms and group of students. Here we develop a more complicated 

model than the classic ones from Even, Itai and Shamir (1976); Garey and 

Johnson (1979). We divide the week into non overlapping lecture periods with 

equal length L. Furthermore we know which teachers are qualified to give which 

subjects and how many lectures of a certain subject does a group of students need. 

The objective is to assign teachers, lectures, classrooms Jlnd time periods over a 

week such that every subject is given by a teacher qualified for it and every group 

of students gets the required number of lectures of every subject. Besides to this 

basic aim we also want to satisfy a didactic and organizational goal, in particular 

we want a time table that spreads the same subject over the whole week. 

Within the world we distinguish 

- G, a finite set of groups of students; 

Z, a finite set of subjects; 

- D, a finite set of teachers; 

- K, a fini te set of classrooms; 

H = { h
1
, .. . ,hM }, a finitesetof notoverlapping lecture hours with the same 

length L > 0 numbered consecutively such that if t. > 0 denotes the beginning 
I 

time of h. then 
I 

· h. = { x e IR It. S x< t. + L } and 
I I I 

. ti + L < ti+ 1 ; 

- ABLE ç: D x Z, is a permanent re lation to re present· which teachers are qualified 

to give which subjects; 

N: G x Z _,IN, is a permanent function, N(g,z) denoting the number of lectures 

of the subject z the group g needs to get in a week; 

BUSY ç: G x Z x D x K, a temporary relation expressing that a group is 

receiving a subject from a teacher in a classroom; 

GIVEN ç G x Z x D x IN, a temporary relation denoting how many times a group 

has received a subject from a teacher already. 
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On this basis we further introduce 

- busy, a 4-ary relation symbol that corresponds to the relation BUSY; 

- given, a 4-ary relation symbol corresponding to the relation G/VEN; 

- begin, a 4-ary function symbol (name) to denote the action of beginning to give 

a subject to a group by a teacher in a classroom. 

Definition 2.2.4.1 

A pre-state is a set V 

V!;; { busy(g,z,d,k) I g e G, z e Z, de D, k e K } V 

{ given(g,z,d,n) I ge G, ze Z, de D, n e IN }. 

The set of all pre-states is denoted by S . 
0 p 

We develop a dynamic model, where the world states are to describe ongoing 

activities such that in every state 

the teacher is qualified to teach the subject he is giving; 

a group gets a subject only if it is needed; 

the same group always gets the same subject from the same teacher; 

no subject is given more times then needed; 

one group is only busy with one thing at one place; 

one teacher is only busy with one. thing at one place; 

one classroom is only occupied for one activity. 

Definition 2.2.4.2 

A pre-state V e S is called correct iff 
p 

1) 'V (g,z,d,k) e G x Z x D x K: busy(g,z,d,k) e V~ ABLE(d,z) 

2) 'V (g,z,d,k) e G x Z x D x K: busy(g,z,d,k) e V~ N(g,z) > 0 

3) 'V (g,z,d,k) e G x Z x D x K: 

and 

and 

busy(g,z,d,k) e V~(-. 3 de D 3 n e IN : d*- d A given(g,z,d,n) e V) and 

4) "/ (g,z,d,k) e G x Z x D x K: busy(g,z,d,k) e V~ given(g,z,d,N(g,z)) I! V and 

5) 'V g e G 3? (z,d,k) e Z x D x K: busy(g,z,d,k) e V 

6) 'V de D 3? (g,z,k) e G x Z x K: busy(g,z,d,k) e V 

7) 'V k e K 3? (g,z,d) e G x Z x D : busy(g,z,d,k) e V. 

At (4) reeall that Nis a permanent function, thus N(g,z) is a real number. 

IJ 

and 

and 
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The planning universe is then (S, A, T), where 

S { V e S I V is correct } ; 
p 

A = { begin(g,z,d,k) 1 ge G, ze Z, de D, k e K }; 

T =IR~. 
Furthennore, let F denote the set of all processes of this planning uni verse. 

Definition 2.2.4.3 

For every je F, ge G, ze Z, de D, keK, te dom(j) 

éilf,(begin(g,z,d,k),t)) ~ 

1) ABLE(d,z) and 

2) N(g,z) > 0, and 

3) -ad e D 3 n e lH : d* d A given(g,z,d',n) e f(t) and 

4) given(g,z,N(g,z) é f(t) and 

5) -a (z',d,k') e Z x D x K: (z',d,k') * (z,d,k) A busy(g,z',d,k') e f(t) and 

6) -a (g',z',k') e G x Z x K: (g',z',k') * (g,z,k) A busy(g',z',d,k') e f(t) and 

7) -a (g',z',d) e G x Z x D : (g',z',d) * (g,z,d) A busy(g',z',d,k) e f(t) and 

8) 3 h. e H: t = t . . 
I I 

D 

Defmition 2.2.4.4 
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For every f e F, g e G, z e Z, d E D, k e K, te dom(j) if éilf,(begin(g,z,d,k),t)) 

holds then 

1 

f(t) 

èlf,(begin(g ,z,d,k),t))( t) = f( t)-~< u { busy(g ,z,d,k)} 

f(t) 

t < t 

t5:t<t+L, 

t+L~t 

* where f('t) = 

l
f(t) u {given(g,z,d,l)J 

= [f(t) \ {given(g,z,d,x)}] u {given(g,z,d,.x+l)} 

if -a x e lH : given(g,z,d,x) e f(t) 

if x e lH and given(g,z,d,x) ef(t) 

D 
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Defmition 2.2.4.5 

The planning problem that describes the TIP can be determined by the following. 

J0(t) = 0 for all t e T; 

'fff> ~ V gE G V zE Z 3 dE D : given(g,z,d,N(g,z)) e f(hM+L). 

The criterion K is constructed from two other criteria K
1 

and 1<2 that measure the 

number of 'double' and 'triple' lectures. 

K
1
(P) = 2. 2. 2. I {ie {l, ... ,M-1) 13 k,k' EK: (begin(g,z,d,k),ti) EP A 

gEG zEZ dED 
(begin(g,z,d,k'),t. 

1
) E P } I 

I+ 

K
2
(P) = 2. 2. 2. I { ie { l, ... ,M-2} 13 k,k' ,k" e K: (begin(g,z,d,k),9 E P A 

gEG zEZ dED 

K(P) = K
1 
(P) + 10 · ~(P). 

D 

Proposition 2.2.4.6 

(begin(g,z,d,k'),t. 1) E P A 
I+ 

(begin(g,z,d,k"),t. 2) E P } I 
I+ 

If f E F and &q,(a,t)) holds for the operation (a,t) then ê(j,(a,t)) E F too. 

Proof 

Let a = begin(g,z,d,k) forsomeg E G, z e Z, dE D and k E K, tE T arbitrary. We 

have to verify that the conditions (1), ... ,(7) of Definition 2.2.4.2 hold for 

e(j,(a,t))(t). 

Fort < t it is obvious, since e(j,(a,t))(t) = f(t) by Definition 2.2.4.4. 

If t ::::; t < t + M then 

ê(j,(a,t))(t) = f(t) u {busy(g,z,d,k)} 

by definition and it is easy to see that (1), ... ,(7) of Definition 2.2.4.3 are 

sufficient to 

imply (1), ... ,(7) of Definition 2.2.4.2. 

If t + M ~ t then we only have to check (2) and ( 4) from Definition 2.2.4.1 since 
* j(t) only differs from f(t) by an atom of the form given(g,z,y). In this case it is 

enough to notice that 

V busy(g,z,d,k) E e(j,(a,t))(t) : busy(g,z,d,k) e j(t) 
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thus if (2) and (4) would not hold for e(f,(a,t))(t) then they would not hold for f(t) 

either. 

0 

2.2.5 Ship Loading Problem 

In this problem we have a ship visiting a set of harbours, loading and unloading 

containers at each harbour, cf.van Hee (1985). Knowing the trip of the ship, the 

load- and unload needs of the harbours and assuming the ship is empty at the 

beginning, we need to make a loading plan for the harbours such that 

all the load- and unload needs of the harbours are met; 

- the loading and unloading work is minima!; 

- the ship always remains stable. 

To make a world description we need 

- H = {h
1
, ... , hn} a set of harbours numbered in the order the ship is visiting 

them; 

- U a finite set of units (containers); 

- W : U -; IR~, a permanent weight function on units; 

- X E IN, Y E IN, Z E IN, standing for the length, width and height of the block 

shaped storage depot of the ship; 

- IN : H -; 'P(U), a permanent function giving the load needs of the harbours; 

- UN : H-; 1'(U), a permanent function giving the unload needs of the harbours, 

such that 

V iE { 1, .. . ,n} : [ lN(h.) n UN(h.) = 0 11 UN(h.) ç V LN(h.) ]; 
I I I }<i } 

- ONSHIP ç U x { 1, ... , X} x { 1, ... , f) x { 1, ... , Z} a temporary relation to 

describe the position of the units on the ship; 

- INHARBOUR ç U x H a temporary relation to describe units at the harbours; 

- AT ç Ha temporary relation showing the position of the ship. 

To the temporary relations and for the actions we define 

- onship, a 4-ary predicate symbol corresponding to ONSHIP; 

- inharbour, a binary predicate symbol corresponding to INHARBOUR; 

- at, a unary predicate symbol corresponding to AT; 
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- move, a binary function symbol denoting a move from a harbour to another 

harbour; 

- load, a 5-ary function symbol denoting the toading of a unit at a harbour to a 3 

dirnensional position; 

- unloàd, a 5-ary function symbol denoting the unloading of a unit at a harbour 

from a 3 dimensional position. 

Definition 2.2.5.I 

Pre-states are defined as subsets of the following set: 

{ at(h) I h E H } u 

{ onship(u,x,y,z) I u E U, x E {I, ... ,X}, y E {I, .. . ,Y}, zE {I, ... ,Z} } u 

( inharbour(u,h) I u E U, hE H }. 

· The set of all pre-states is again denoted by S . 
p 

IJ 

To make the fonnulae shorter in the sequel we shall use 

Q (x,y,z): 

to abbreviate 

Q XE {1, ... ,X} Q y E ( 1, ... ,Y} Q zE ( 1, ... ,Z} : 

where Q is the quantifïer V, 3, 3! or 3?. 

Definition 2.2.5.2 

V E S is correct iff 
p 

1) 3! h E H : at(h) E V 

2) V u E U 3? x,y,z : onship(u,x,y,z) E V 

3) V x,y,z 3? u E U : onship(u,x,y,z) E V 

4) V u E U V (x,y,z) : 

and 

and 

and 

onship(u,x,y,z) E V::::} [ z > 1 ::::} 3 v E U: onship(v,x,y,z-1) E V] and 

5) V u E U V (x,y,z) : onship(u,x,y,z) E V::::} [--, 3 h E H : inharbour(u,h) E V] and 

6) V (u,h) E U x H: inharbour(u,h) E V::::} [--, 3 (x,y,z) : onship(u,x,y,z) E V] and 

7) V u E U 3? h E H : inharbour(u,h) E V. 

D 

S = ( V E S I V is correct ) ; 
p 
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A= 
{ move(h,h') I h,h' e H } u 
( load(u,h,x,y,z) I u e U, he H, x e { 1, ... ,X), y e { 1, .. . ,Y}, ze ( 1, ... ,Z} } u 

( unload(u,h,x,y,z) I u e U, he H, x e (1, ... ,X), y e {1, ... ,Y}, ze (1, ... ,Z} }; 

T =IN. 

We observe that a state can only be changed by actions, thus we develop a static 

model. The allowability condition is defined for each action. 

Definition 2.2.5.3 

a) o.(s,(move(h.,h.),t)) ~ 
I J 

1) at(h.) es and 
I 

2) j =i+ 1 and 

3) 0.8 
< mleft(s) 

- mright(s) 
$; 1.2 and 

where the latter two conditions are to guarantee the stability of the ship, ha ving 

y LX12J z 

mlet/s) I I I I w(uHLX12J+l-x) X·Y·Z 
;:::: +~; 

y=l x=l r-l { ue U I onship(u,x,y,z) e s } 

and 
y x z 

mrighls) I I I L w(u)·(x-l(X+l)/2j) X·Y·Z 
+-4-

y=l X= LX/2 J +1 z=l ( ue U I onship(u,x,y,z) e s } 

x lY12J z 

mfi (s) I I I L w(u)·(lY12J+2-y) X·Y·Z 
or +~; 

x=l y=l z=l ( ueU I onship(u,x,y,z) E s } 

and 
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x y z 

I I I 
x=l y= lY12 J +1 z=l { ueU I onship(u,x,y,z) e s } 

where i x J stands for the standard entier function. 

b) a.(s,(load(u,h,x,y,z),t)) {::::} 

1) at(h) e s and 

2) inharbour(u,h) e s, and 

3) -ave U : onship(v,x,y,z) e s and 

4) 3 v e U: onship(v,x,y,z-1) e s. 

c) a.(s,(unload(u,h,x,y,z),t)) {::::} 

1) at(h) e s and 

2) onship(u,x,y,z) e s, and 

3) -a v e U : onship(v,x,y,z+ 1) e s. 

D 

Definition 2.2.5.4 

The effect of allowed operations is as follows: 

a) e(s,(move(h.,h ),t)) = (s \ {at(h.)}) u {at(h.)}, 
l 1 l 1 

b) e(s,(load(u,h,x,y,z),t)) = (s \ { inharbour(u,h)}) u { onship(u,x,y,z)}, 

c) e(s,(unload(u,h,x,y,z),t)) = (s \ { onship(u,x,y,z)}) u { inharbour(u,h)}. 

D 

Defmition 2.2.5.5 

A ship loading problem is specified by the above (S,A,T,a.,e) and the following s
0
, 

y and IC. 

s
0 

{ at(h
1
) } ; 

y(s) {::::} 'V u e U 'V he H: u e LN(h)::::} inharbour(u,h) f s and 

'V u e U 'V he H: u E UN(h)::::} inharbour(u,h) E s }. 

The objective function IC is to measure the total work done by a plan: 

IC(P) IPI. 

D 
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Proposition 2.2.5.6 

For any V e S , a e A and t e T, if V is correct and a.(V,(a,t)) then e(V,(a,t)) is 
p 

correct too. 

Proof 

It is straightforward by case analysis. Let us show here the case of a = 
unload(u,h,x,y,z). Then it holds that for the items of Definition 2.2.5.2 

(1) is obvious; 

(2), (3) and (5) follow from the fact that e deletes an onship from the correct V; 

(4) holds since by (3) of (c) of the Definition 2.2.5.3 we always unload from the 

top of a stack and V is correct; 

(6) is guaranteed by (c) of Definition 2.2.5.4; 

(7) follows from (2) of (c) of Definition 2.2.5.3 and (5) from Definition 2.2.5.2. 

D 

After having completed these five examples an articulated methad of planning 

problem definition has arisen. This methad of specifying planning probierus by 

means of the model of section 2.1 is 

- general, it applies to all our cases, and it seems sound to presurne that it wil! be 

satisfactory to other planning probierus as well; 

- facilitating clear onderstanding of the problem at hand by supporting and aiso 

forcing precise analysis; 

- moduiar, that is we can concentrate on one simple aspect at a time and the 

whole probiem description is composed by the general model. 

This method and its application in DSS development will be further discussed in 

Chapter 6. An important result of the above examples is that they provide an 

insight of the structure of the parameters, for instanee how allowability relations 

look like and how they can be defined. This insight can be the basis of designing 

a forma! language for defining planning problems. 

Finally let us mention a special aspect of forma! planning proble!ns. Namely, 

such a planning problem can be viewed as the interface between reality and 

forma! problem solving. It is well-known that the rnadelling step we make from a 

real problem R to a forma! model M is of crucial importance. 
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a 
R 

If the model M does not describe the relevant parts of R appropriately, then all 

further computational efforts using M can be done for nothing. It is therefore 

quite an unpleasant fact that the correctness of such a modeHing step cannot be 

rigorously proved, only intuitively justified. The reason for this is trivial: since 

one end of the are a is an informal entity, we cannot establish formal relationships 

along a, i.e. between R and M. Nevertheless, once we have created a formal 

model M the correctness of any further treatment of M can be rigorously 

investigated. After having defined search problems in Chapter 3 we return to this 

question. 



CHAPTER3 

Search Problems 

Similarly to planning the terms problem and problem solving have many 

interpretations. Without wanting to open a long discussion about what they 

'really' mean, we. summarize three general views on problem solving, cf. Sirnon 

(1983). 

1) Problem solving by search 

Based on the intuitive picture of a given problem one determines what kind of 

entities can be accepted as solutions of the problem, e.g. one can ex:pect a plan, a 

number, a formula, or a string as solution. Thereafter one defines the set of all 

entities that are of the same kind as the ex:pected solution, e.g. the set of all plans, 

the set of real numbers, the well formed formulae of a given language, or the set 

of all strings over an alphabet. In this case a formal solution is a special element 

of this set satisfying some requirements, e.g. a plan turning the initia! state into a 

state satisfying the goal condition y, the smallest real number with a given 

propeny, a formula being true in a given semantic model, or a string beginning 

with a eenaio prefix:. The above set is considered as a space where we search for 

a solution. The search takes place by transitions in the space; one mostly uses 

transition operators that, when applied to an element of the space, yield another 

element. By this paradigm problem solving is starting at an initia! element and 

making successive transitions in attempt to reach a solution. 

71 
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2) Problem solving by logical reasoning 

According to this view, one frrst has to set up a logica! framework with general 

axioms and deduction rules, together with specific axioms descrihing the problem. 

A solution is understood as a formula (a deduction of a formula, a substimtion in a 

formul~) in the given logic. Problem solving then consists of making logical 

derivations until a desired formula (deduction, substimtion) is reached. This 

approach is commonly although not exclusively - applied within Anificial 

Intelligence. 

3) Problem solving by mathematica! programming 

By this approach we formalize the intuitive problem by defining a set of variables 

and a so called objective function on these variables. Thereafter we define a 

· solution as a variabie assignment that realizes the lowest (highest) value of the 

objective function. The characteristic feature of those problems that can be 

treated by this approach is that the problem originally contains a measure to be 

optimized, or that such a measure can be defined in a natura! way such that the 

solutions we have in rnind can be identified by having a minimal (maxima!) value 

according to this measure. Following this approach, problem solving is mostly 

done by numerical computation airning at calculating a variabie assignment with a 

minimal (maximal) objective function value. This approach is mostly associated 

with Operational Research. 

Observe that the above problem solving metaphors are not mutually exclusive as 

the following example demonstrates. 

Example 3.1 

Consider a forward reasoning first-Qrder theorem prover aiming at constructing a 

proof for a theorem q> from some axioms by some inference rules. On one hand, 

every application of the inference rules is clearly a reasoning step that leads to 

new information (propositions). 

On the other hand, regarding first order formulae - including the axioms - as 

elements of a space we can consicter the inference rules as transition operators. 

Namely, an inference rule if A then B, respectively if A and B then C can be 

viewed as a transition operator that tums the object A to B, respectively A A B to 

C. The deduction process then becomes searching a path to the desired theorem. 
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Furthennore, if we can ~asonably define 'distance' between fonnulae, then the 

worldng of the theorem prover can also be seen as optimization, i.e. aiming at a 

minimal distance between the end of the deduction chain and q>. 

0 

The solution finding phase in a DSS requires problem solving abilities. When 

choosing among the above paradigms one should consider the following. 

Search is a wide spread problem solving concept that bas been the subject of 

many investigations and the basis of several implementations. There is a huge 

variety of solution finding methods that are characterized as 'search algorithms'. 

They differ a lot in spirit, application domain and perfonnance. Ahlswede and 

Wegner (1987) see search as perfonning a sequence of tests each test cutting the 

search space; the goal of the search is to identify an object within the space. 

Aigner (1988) discusses probabilistic search to handle optimization-Hke problems, 

in partienlar applied to game playing. Charniak and MeDennou (1985) consider 

search within artificial intelligence; they depiet it as the "theory of guessing" and 

discuss space search based upon the usage of transition operators. Kanal and 

Kumar (1988) classify search algorithms for handling discrete optimization 

problems, while Pearl (1984) focuses on incorporating beuristics fonnally. 

Automated reasoning grew out of classical logic by showing that resolution 

based theorem proving can be the underlying mechanism of problem solving, cf. 

Green (1969). It made its breakthrough in the mid seventies by introducing the 

principle of "using logic as programming language", Kowalski (1974). This idea 

bas led to numerous practical applications and bas formed the theoretica! ground . 

of the family of logic programming languages, cf. Lloyd (1987), Sterling and 

Shapiro (1986). The field is still being intensively investigated, Minker (1988). A 

great advantage of automated logical reasoning methods is that the language of 

logic bas a great expressive power and is easy to read, that is user friendly. A 

generally experienced disadvantage of automated reasoning systems is their low 

perfonnance. Automated reasoning as a problem solving paradigm is mostly 

related to Artificial Intelligence; in practice it often occurs under the narnes logic 

programming, deductive databases and is applied in expen systems, cf. Waterman 

(1986), or knowledge based systems, see Addis (1986), Davis and Lenat (1982), 

Eiben and Schuwer (1990). 
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Optimization can be discovered in many a1gorithms that traditionally beloog to 

Operational Research. Methods that can be globally classified as mathematical 

programming have been applied to a wide class of problems, see e.g. Kolen and 

Lenstra (1990), Minoux (1986), Nemhauser and Wolsey (1988), Papadimitriou and 

Steiglitz (1982). These methods have booked remarkable results, although the 

theoretica! and practical boundaries are also recognized, Garey and Johnson 

(1979), Hansen (1989). Roughly speaking we can describe mathematical 

programming methods as efficient but rigid. This means that they perform well 

under tight conditions, which makes the application domaio of a eertaio algorithm 

rather limited. 

To handle planning problems we have chosen the search paradigm for more 

reasons. Partly because in this way we expect more flexibility then in OR 

methods, partly because (heuristic) search is sometimes seen as a possible link 

between OR and AI, cf.Oiover and Greenberg (1989). 

To give a detailed, though still informal summary of applying the space search 

concept for problem solving, let us take planning probieros for example. 

a) We define a search space and the correspondence between the elements of 

the search space and plans. This latter is to guarantee that having found an 

element in the search space rneans sarnething in the planning context. 

b) We give goal condilions that specify a subspace of the whole search space. A 

solution of the search problem is rneant as an element of this subspace; in 

other words it is an element that satisfies the goal conditions. Every element 

of the search space can be considered as a candidate for being a solution, 

therefore we call them candidates in the sequel. Obviously, the goal 

conditions must be given in such a way that solutions of the search problem 

correspond to solutions of the planning problem. 

c) There are transition operators or manipu/ations defined on the search space. 

Applying a transition operator (manipulation) to a candidate results in another 

candidate. 

d) A search problem is solved by traversing the search space by means of the 

transition operators (manipulations) defined in (c), i.e. by stepping from 

candidate to candidate. A search procedure is a metbod that prescribes the 

way the consecutive steps are taken. 
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By this approach we simplify problem solving in the following sense. If the 

search space and the manipulations are d.efined then at any point of the search 

space we have limited choices: we have to chose a possible manipulation at that 

point. The 'only' remaining difficulty is to d.ecide which manipulations should be 

taken in order to reach a solution. It is typical for practical planning problems 

that the obtained search problem is intractable, cf. Garey and Johnson (1979). 

The above points (a), (b), (c) and (d) imply a natutal construction hierarchy for 

d.esigning a search based problem solving method. Logically and chronologically 

one has to proceed by specifying the following items 

1) the search space: where we search; 

2) goal conditions specifying solutions within the search space: what we search; 

3) the rnanipulations: the elementary steps by which we search; 

4) the search method to prescribe how we search. 

There is a natura! division of these four points into two groups: (1) and (2) 

contain what is needed, while (3) and (4) specify how we are trying to obtain it. 

From the viewpoint of planning problems we can also justify this distinction of 

the two groups. (1) and (2) embody a translation of the planning problem to the 

search context, remaining at problem specification, while (3) and (4) constitute a 

method to handle the resulted problem, thus they belong to problem solving. This 

motivates our terminology: when talkingabout a search problem we roughly mean 

(1) and (2), the term search procedure covers (3) and (4). In the rest of Chapter 3 

and in Chapter 4 we give a format treatment of the search paradigm by 

investigating these two notions. 

3.1 Model of Search Problems 

The basis of our view on search is that we are looking for an element in a space. 

As a consequence, a solution of a search problem is a point of the search space, 

hence points of the space can be seen as candidate solutions. This formalization 

looks harmless, though it has consequences that might be counterintuitive at the 

first glance. 
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Example 3.1.1 

Let us consider a shortest path problem in a graph G = (N,E), Papadimitriou and 

Steigliz (1982). Since the expected solution of such a problem is a path in the 

graph G, the candidates of a corresponding search problem should be (partial) 

paths as wel!. A natura! way of defining a search space is thus defining it as the 

set of all paths in G. The surprising consequence of this is that the search will 

take place in the space of all paths and not in the set N of all nodes, the 'natura!' 

space of G. 

D 

There is another remarkable lesson ofthis example. Notice that knowing what 

kind of objects we want as solutions (eg. paths) we have defined a search space 

, that consists of the same kind of objects. This shows that the definition of 

solutions intuitively precedes the definition of candidates. The forma! relationship 

is, however, reversed: the search space should be defined first and then the goal 

conditions on it. 

Example 3.1.2 

Let us consicter the planning problems of Chapter 2.2. For all of them we can 

define candidates as being plans, a solution of the search probiemis a candidate 
-,, 

(plan) that turns the initia! state (or process) into a goal state (or process). Notice 

that in this case the search terminology perfectly matches the planning 

terminology: the solutions of the search problems are exactly the solutions of the 

planning problem. 

D 

Example 3.1.3 

Regarding a theorem prover as, a search procedure the candidates of a 

corresponding search space can be finite sequences of well formed formulae 

forming a correct deduction from the axioms. 

D 

In practical cases we have observed a resemblance in the way the candidates are 

defined. 
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a) First, one defines elementary objects to construct the candidates from, e.g. 

edges and nodes to make up a path, operations to build plans from, or 

formulae that occur in a deduction. 

b) Then one specifies a way of construction and defines candidates as complex 

objects correctly constructed from the elementary objects. We used path 

construction in Example 3.1.1, set construction in Example 3.1.2 and finite 

sequence satisfying the definition of tieduetion in Example 3.1.3. 

We do not investigate this regularity in defining the èandidates any further. In the 

sequel candidates and the free search space will be primitives regardless of their 

inner structure. 

Defioition 3.1.4 

A set C of candidates is called the free search space. 

D 

To define the goal of the search we have to specify which candidates are 

satisfactory to terminate with. 

Defioition 3.1.5 

A goal condition over the free search space C is a Boolean function 

<p : C --j ( true ,false} 
g 

over candidates. The goal space is the set 

D 
C = { c e C I <p (c) = true }. 

g g 

Observe that the free search space defined for a given problem can be too wide, 

i.e. there can be candidates that we cannot interpret in the terms of the problem. 

A reason for this can be that the elementary objects and the construction rules to 

build the candidates are not defined sharp enough: there are meaningless or 

unwanted constructions that must be filtered out. 

Example 3.1.6 

Let us consider the TSP (Chapter 2.2.1) with sets of operations as candidates. 

Obviously, the set { (to(x,y),t), (to(x,z),t) } where y ;~: z belongs to an unexecutable 

plan, therefore it should be excluded as a candidate in the search space. 



78 Chapter 3 

Restricting ourselves to candidates that beloog to allowed plans Proposition 

2.1.1.20 guarantees that the considered candidates beloog to executable plans. 

0 

In practice, such a restrietion on the free search space is often expressed as a 

conjunction of more conditions which we shall call constraints in the sequel. The 

restrietion in Example 3.1.6 is needed to filter out impossible plans from among 

the candidates. Such constraints can be considered as hard constraints in the 

sense that they are rooted in the planning problem itself, they are not to express 

some subjeelive human wishes. Nevertheless, there can be possible but unwanted 

candidates depending on the preferences of the planner. Constraints that are used 

to exclude such candidates are mostly called soft constraints. The difference in 

the usage of hard and soft constraints is that the planner has to satisfy hard 

constraints while he has the freedom to enforce of reject soft constraints. 

Example 3.1.7 

A hard constraint for the TSP with the candidates from Example 3.1.2 can be 

'I' {::::} the plan c is allowed with respect to the initial world state. 

Possible soft constraints are for instance: 

'1'
1 

{::::} in the plan c the city z
3 

is visited before the city z
5 

, or 

'1'
2 

{::::} in the plan c the city z
2 

is visited last before retuming home. 

0 

At the present level of abstraction we shall not distinguish soft and hard 

constraints. We melt them together into one feasibility condition according to the 

following definition. 

Definition 3.1.8 

A feasibility condition over the free search space C is a Boolean function 

cp/ C-; (true,false} 

over candidates; candidates with cp
1 

(c) = true are feasible, with cp
1 

(c) =fa/se are 

infeasible. 

The feasible search space is 

c
1

= ( c E C I fPjc) true }. 

0 
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Definition 3.1.9 

A search problem is a 3-tuple (C, <pf <p g)' where C is a set of candidates, the free 

search space, <pf: C-+ {true, false} and <p g : C -+ { true,false} are the feasibility 

condition and the goal condition, respectively. A solution of a search problem is 

a candidate c e C for which 

<p
1

(c)=true and <pg(c)=true 

hol ds. 

0 

In practice, soft and hard constraints play a different role: the hard constraint 

must be satisfied by the planner, while he has the freedom to modify (add or 

delete) soft constraints. Doing so, he obviously changes the search problem as 

well, since according to these modifications the feasibility condition changes. 

From this point of view, hard constraints can be considered as defining condition 

of the broadest reasonable search problem. 

Example 3.1.10 

Let us reeall Example 3.1.7. With the constraints 'lf, '1'
1 

and 'l'z given there we 

can define three different search problems (C, 'lf, <p ), (C, 'lf A 'tf
1
, <p ) and g g 

(C, 'lf A 'tf
2
, <p ), where (C, 'lf, <p ) carries the broadest feasible search space. 

g g 

0 

Practice proves that most of the search procedures restriet the search to the 

feasible search space. According to this view we could have defined a search 

problem as a pair (D, <p ), where D is a set of candidates, <p is a goal condition. g g 
This puts the role of <pf in a yet other light: we can consider the free search space 

C as a preliminary definition of the actual search space and regard <pf as the 

completion needed to define this actual search space (c e C I <pjc)}. The reasons 

to define a search problem as a triple are twofold. First, not all the search 

procedures deal with feasible candidates only. Second, we consider the role and 

the notion of the feasibility condition so important that we do not want to 'hide' it 

within the set D from (D, <p ). For the sake of convenience, however, the term 
g 

search space will be often used as a synonym of the feasible search space. 

Accordingly, the term candidate will often stand for a feasible candidate in the 

sequel. 
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There is an important class of probieros that are often solved by search methods, 

therefore we want to model them with our general definition of a search problem. 

Definition 3.1.11 

An optimization problem is either a minimization problem or a maximization 

problem. A minimization problem is a pair (C, /), where C is an arbitrary set, 

1: C --+ IR is the so called objective lunction. The aim in a minimization problem 

is to find a minimum of I over C, that is a c e C such that 

'rJ deC :l(c) !.l(á). 

A maximization problem can be defined analogously, requiring a maximum of I 
over C, i.e. a c e C such that 

'rJ de C :l(c) ~l(d). 

By an optimization problem we always mean a minimizarion problem in the 

sequel. Notice that this does not lead to any loss in generality, since any 

maximization problem can easily be transformed to an equivalent minimization 

problem and vice versa. 

Observe that in the definition of a minimum there is a universal quantifier that 

ranges over the whole C. This means that verifying that a certain c e C is a 

minimum can be very difficult even if C is finite. Furthermore, in practice it is 

not always needed to find an absolute minimum of f. Therefore one often 

considers a decision problem, see Garey and Johnson (1979) or recognition 

problem, cf. Nemhauser and Wolsey (1988) where a candidate c e C is wanted 

such that it satisfies 

l(c) SD, 

with D being a bound given in advance. 

Let us remark that such a decision problem is not necessarily easy to solve in a 

mathematica! sense. A great deal of the NP-complete problems listed in Garey 

and Johnson (1979) are decision probieros (recognition problems) in the above 

sense. 

It is clear that both optimization probieros and decision problems can be seen as 

search problems: an optimization problem (C, /) can be expressed as a search 

problem (C, q>f'q>g)' where 
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<p (c) = true {:::::} 'r/ deC :f(c) Sf(á), 
g 

while a decision problem with a given bound D corresponds to 

<p (c) = true {:::::} f(c) <;, D. 
g 

81 

According to the high level parameterization concept, we consicter the elements 

of the 3-tuple (C, <pi ,<pg) as parameters that need to be set in order to define a 

search problem. 

3.2 Relationship Between Planning Problems and Search 
Problems 

Our objective by investigating search problems is obvious: we want to apply 

them in a DSS to solve planning problems. To formulate we exactly mean by this 

we examine the relationship between planning probieros and search problems in 

this section. 

Observe that the mathematica! models of planning problems in Chapter 2 are 

'human friendly'. This means that the formalism, the usage of abstract entities 

e.g. a plan, effect, etc., facilitates a natura) mapping between the model and the 

real world. This feature supports the construction and the understanding of such 

mode Is. 

A solution method, however, is preferably efficient, which might counteract 

understandability. The reason is that for the sake of efficiency the candidates 

should be easy-to-handle by the search procedure, i.e. candidates should have a 

simple structure. Therefore, in the search problem one probably prefers another 

representation of reality, a representation that supports computation. 

Notice that although a mathematica! problem model may imply some 

preferences for certain forms of the candidates, it is primarily the search procedure 

that requires a certain form. In principle there can be more 'procedure friendly' 

representations given to the same mathematica! problem model. 

Example 3.2.1 

Imagine we have a planning problem defined in the abstract tenns of Chapter 2. 

If we have a discrete programming procedure to apply then descrihing it in terms 

of 0 1 matrices is algorithm friendly. However, if we want to solve the given 
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problem by SLDNF-derivation, cf. Lloyd (1987), then a Hom-clause 

representation form is algorithm friendly and 0 - 1 matrices are not. 

0 

From the above it is obvious that a translation step is needed to establish the 

correspondence between the objects of a planning problem and the ones used in a 

search problem. Such a translation should of course not only assign candidates to 

plans (and vice versa) but should also guarantee that 

- feasibility of candidates correctly reflects allowability of plans, and 

- solutions of the search problem correspond to solutions of the planning problem. 

Next we are going to work out the details how a search problem can be defined to 

a planning problem. For the sake of convenience we restriet ourselves to dynamic 

·planning problems; Proposition 2.1.3.6 ensm-es that we do not loose generality by 

this restriction. 

Definition 3.2.2 

Let (F, A, T, à, ê), (/
0

, y, K") be a dynamic planning problem and let C be an 

arbitrary set intended to be the free search space. A translation function or 

representation function is a partial function 

R : 'P(A x T) -+-+ C. 

According to the second name of R, the candidate R(P) is called the 

representation of the plan P. 

0 

The name translation function fits the intuitive view of switching from planning 

context to search context. The name representation function is closer to the 

conventional AI terminology, where the form of an abstract object is often called 

its representation. 

Definition 3.2.2 gives the formal interpretation of 'the candidate corresponding 

to the plan P': it is R(P). Also 'the plan corresponding to the candidate c' is 

defined hereby: it is a plan P satisfying R(P) = c. This latter, however, is only 

uniquely determined if R is injective, i.e. 

R-1(c) = { P e 1\A x T) I R(P) c } 

is a singleton. 
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To be able to talk about 'the plan corresponding to the candidate c' even if this 

latter is not the case we have to define an interpretation function in the following 

sen se. 

Defmition 3.2.3 

Let (F, A, T, ó:, è), (/
0
, y, K) and C be as before and let R be a translation function. 

An interpretation function corresponding toR is a function 

I : C -H 1'(A x T) 

such that 

'V c E dom(/) : I(c) e R-1(c). 

The plan /(c) is the interpretation of the candidate c (in terms of the planning 

problem). 

D 

The relationship between the translation and the interpretation is determined in 

the definition of the interpretation function that implies that 

V c E dom(/) : R(/(c)) :::: c 

always holds. Nevertheless, it is easy to see that 

V P e dom(R) : /(R(P)) = P 

does not necessarily hold in general. 

Defmition 3.2.4 

Let (F, A, T, ó:, ê), (/0, y, K) be a planning problem, C be an arbitrary set intended 

to be the free search space and let R and I be a representation and an 

interpretation function between 1'(A x T) and C. Furthermore, let <pf and <p g be a 

feasibility condition and a goal condition over C, respectively. We say that <pf fits 

(F, A, T, ó:, ê), (/
0

, y, K), C, R and I if for any c e C 

<pf (c) =} ó:'lfoJ(c)). 

We say that <pgfits (F, A, T, ó:, ê), lfo· y, K), C, Rand I if for any c e C 

<p g (c) =} [ y(è'ifoJ(c))) and 'V de C : y(è'lf0,i(d))) =} K(/(c)) s; K(/(d)) ]. 

If <pf and <pg fit (F, A, T, ó:, ê), lfo· y, K), C, R and I then we say that the search 

problem (C, <pf <p g) fits the planning problem (F, A, T, ó:, ê), (/0, y, K). 

D 



84 Chapter 3 

With the aid of the last definition we can fonnalize the basis of solving planning 

problems by search: having defined a planning problem we have to specify a 

search problem that fits it. Only then can we interpret a solution of the search 

problem as a plan and obtain a solution of the planning problem by search, thus 
' only then can we solve planning problems by search. 

Reeall the figure and our remark about formal planning problems at the end of 

section 2.2. From that point of view we can illustrate the role of search problems 

by the next figure 

a b 
R M' 

where M' denotès a search problem. 

As we have mentioned, the correctness of the step a can only be intuitively 

justified. The relationship between two formal models, however, can be fonnally 

defined and this is exactly the purpose of Defmition 3.2.4. Let us also remark that 

the formal defmition of a planning problem is sometimes is omitted in practice. 

This means that M is skipped and one immediately makes M' by defining plans as 

candidates with the appropriate feasibility and goal conditions. Obviously, this 

implies that in such a case it is M' that has to be related to R and therefore it is 

the correctness of M' that is justified on an intuitive ground. 

Definition 3.2.5 
Let (F, A, T, á, ê), (J0, y, IC) be an arbitrary planning problem, C a set (the 

intended search space), R a representation function and I an interpretation function 

Thefeasibility condition derivedfrom (F, A, T, á, ê), (jO' y, IC), C, R J is given by 

! 
á(J

0
J(c)) if c e dom(!) 

cp/(c) = 
fa/se otherwise 

The goal condition derivedfrom (F, A, T, á, ê), (jO' y;IC), C, R, I is defined as 

l 
true if c e dom(!) and y(ê'(j~(c))) and 

cp g (C) = 'r/ dE C : i'(ê'(j~(d))) ~ IC(I(c)} ~ IC(/(d)) 

fa/se otherwise 

D 
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Definition 3.2.6 

Let (F, A, T, á, ê), ifo• y, K) be a planning problem. The notural search problem 

corresponding to (F, A, T, á, ê), (/0, y, IC) is (C, <pf'<pg) where C = 1'(A x T), 

R = idc , I == R-1
, <pf and <p g are the feasibility condition and the goal condition 

derived from this C, R and /. 

0 

Observe that in the natura! search problem corresponding to a planning problem 

the derived feasibility and goal condition satisfy 

<pf (P) {::::} á'ifo,P) 

and 

<p g (P} {::::} 'f(ê'ifo,P)) and 'V P' e ~A x T) : y(è'(J0,P'}) ::::} IC(P} s; IC(P'}. 

Let us remark that in Example 3.1.2 we meant natura! search problems but we 

expressed it informally since we did not have the formal vocabulary yet. 

As we have mentioned in the introduetion of this chapter a search space is 

mostly defined with an eye on an intended solution method such that the form of 

the candidates is suited to the given method. Since the metbod we have in mind 

is handling lists or tables rather than sets of operations (see later in Chapter 5} we 

present a standard way of defining a search space containing tables. 

Por the sake of convenience let us suppose that every action can be identified by 

a name and a finite list of parameters. (Recall that in each example of section 2.2 

the set of actions A was defined in such a way.) Formally this means that we 

assume that in a planning problem we have a finite set AN = {act1, .. . ,actK) of 

action narnes each name having a fixed arity n .. Funhermore, we assume that for 
I 

every ie (1, ... ,K) andj e {1, ... ,n.) there is a finite set Xi given that forms the 
I } 

domain of the j-th parameter of the i-th action name. The set of all actions in this 

case is 
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Now, if we funher assume that each X~ is numbered, then to any plan a set of 
J 

operations - we can define a list of operations uniquely through the following 

steps. 

1) Let' US denote the standard lexicographic ordering on X! X ••• X X~. by -<i 
I 

for every i e ( 1, ... J(}. Then we can define a lexicographic ordering « on 

the set of actions by 

act.(x
1
, ... ,x )«act.(y

1
, ... ,y) R i<jV 

1 ni J nj 

[i = j A (x
1
, .. . ,x ) -<. (y1, .. . ,y )] n. 1 n. 

I I 

2) Basedon « and the ordering <on T wedefine an ordering <l on A x T as 

follows: 

(a,t) <l (a',t') R t < t' V [t = t' A a « a']. 

Notice that any plan P uniquely determines its <l-ordered version. Strictly 

speaking, since <l is a linear ordering the following can be easily seen: if P is a 

plan with n operations then there is a list P<J = [o1, ... , on] such that 

VoeAxT:[oeP R o=o.forsomeie (1, ... ,n}] 
I 

and 

V i e { 1, . . . , n-1 } : 0. <1 0. I . 
I 1+ 

It can be often convenient to write plans in table form instead of a list form, see 

for example the coming section or Chapter 5. To obtain such a form for a plan 

with m operations we first have to make the list P<l in the form 

<1 [ 1 1 ) ) ( m m P = (act. (x
1
, .. . ,x ,t

1
, ... , act. (x

1
, .. • ,x ),t ) ]. 

1
1 

n. 1 n. m 

Then the table 

act. 
11 

1 
xl 

1(P) 

1 
XN 

tl 

11 m lm 

act. 
I 
m 

xm 
1 
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is uniquely defined, where N = max( n
1
, ... , nK) and if the action name in the 

j-th column (j e ( 1, ... ,m)) has an arity n < N then the (n+ 1)-th, ... , N-th 

positions of that column are filled up with a special symbol, say *. 

Defmition 3.2.7 

Let (F, A, T, à, ê) be a planning situation where 

K . . 
A= U { act.(x

1
, ..• ,X ) lx

1 
EX~, .. . ,X E X 1 

) 
i=l I ni ni ni 

The default search space corresponding to this planning situation is the set 

C =U [.~1 [tacti)xX!x ... xx!_x{*)x ... x{*)xT] ]m 
meiN I- 1 

and the corresponding default represenration function is obtained by the above 

construction, i.e. it is 

R : 1'(A x T) C, 

such that 

R(P) l(P<l). 

The default interpretationfunction is I= R-1
. 

D 

Notice that the default feasibility and goal conditions determine a search 

problem that fits the given planning problem. Nonetheless, it can happen that we 

wanttosave the 'roundabout' through Rand I and want to define cp
1 

and cpg by a 

'shortcut', immediately in terms of candidates. In such a case we have to in vent 

conditions cpf and r.p g such that the truth value of cp
1 

(c) and r.p g(c) can be 

determined by examining c only, without computing I(c) and the rest to it. In this 

case we also have to prove that these non default conditions fit the given planning 

problem, R and I. In section 3.3 we present an illustration of this matter. 

Reeall the basic taxonomy of planning introduced at the end of Chapter I. In the 

light of this chapter it can be refined as the following figure indicates: 
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-, 
.-------------~ ,_, __ 

search problem 

R 

modelled world 

L 

3.3 Examples of Search Problems 

In this section we present certain search probieros that correspond to the 

planning problems of Chapter 2.2. 

3.3.1 Travelling Salesman Problem 

Let us take the TSP form section 2.2.1 with thesetof cities Z = {z
1
, ... , zn}. 

Since we only have one action name in this example we can omit the reference to 

it and define a simplified version of the default search space as 

C = V (Z x Z x 1)m . 
me IN 

The set C is thus the set of finite tables with flrst and second rows consisting of 

cities and the third row containing time instances. 

For a <J-ordered plan P = [ (to(u
1
,v

1
),t

1
), ... , (to(uk,vk),tk) ] the default 

representation function is 
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R(P) = [:: 
tl 

(*) 

Next we define a non-default feasibility condition. 

fonn (*) 

For a candidate c e C of the 

<pf (c) {:::} 'r/ i E { 1, ... ,k-1 } : t. '* t. l 
I l+ 

'r/ ie [ 1, ... ,k-1} : vi = ui+l 

Proposition 3.3.1.1 

If <pf (c) = true then a.'(s0, /(c)). 

Proof 

and 

and 

It is obvious that a feasible candidate c has the fonn 

[
zl vl · · · vk·l] 

c = v1 v2 . . . vk 

tl t2 . . . tk 

Then we have to show that 

a.'( {at(z1)}, { (to(z1.v1),t1), (to(vl'v2),t1) .. ,(to(vk-l'vk)'tk) } ) = true, 

which follows easily from the definitions of section 2.2.1. 

IJ 

We can alsodefine an evaluation criterion for any candidate in the fonn (*) by 

k 
lC(c) = I D(u.,v.), 

i=l l l 

and specify a non-default goal condition by 

\jf(c) {:::} <pf (c) and 

k=n and 
V :: Z • 

n 1 ' 
and 

<p g (c) {:::} \jf(c) and 

'r/ de C : ['lf(d} =} K(c) ~ K(d)]. 



90 Chapter 3 

3.3.2 Preeedenee Constrained Scheduling Problem 

Applying the default metbod with omitting the reference to the (unique) action 

name we obtain the following search space, representation function and 

interpretation function. 

C = u (J x M x T)k . 
keiN 

Fora <1-ordered plan P = [ (begin(xl'y1),t1), .. . ,(begin(xk,yk),tt>) let 

We define a non-<kfault feasibility condition for an arbitrary candidate c e C of 

the above form as follows 

<Jl/C) <=* 
a) I:J i,le (1, .. . , k} :xi~x1 and 

b) I:J ie ( 1, ... , k} : ABLE(xi'yi) and 

c) I:J j E ( I' ... , k} I:J j E J : 

[PRE(j,yi) =* 3 l e ( 1, ... ,i-1) : y1 =jA t1 + D(xl'yl) < ti] and 

d) I:J ie {1, ... , k} ...,3/ e (i, .. . ,k}: [x1 =x) A [t1 <ti +D(xi'yi)]. 

Proposition 3.3.2.1 

I:J c e C : <pf (c) =* à(/0, l(c)) 

Proof 

We give the sketch of the proof remarking that the above (a), ... ,(d) imply the 

conditions (I), ... ,( 4) of Definition 2.2.3.3, while (5) of Definition 2.2.3.3 follows 

from (a). 

D 

A non-default goal condition for an arbitrary c e C can be given by 

'JI(c) <=* <pf (c) and 

k =Lil; 

and 
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<p g (c) {::::} 'lf(c) and 

V dE c : ['lf(d)::::} lC(C) s 1C(d)], 

where 

lC(C) = max { t. + D(x.,y.) I ie { 1, .. ~,k} }. 
I I I 

It is straightforward that for any candidate with <pg (c) = true l(c) is an optimal 

solution of the planning problem given in Definition 2.2.3.5. 

3.3.3 Time Table Problem 

Here again we can omit the reference to the name of the actions obtaining the 

following. 

C = u (G x Z x D x K x Dm . 
me IN 

Fora <J-ordered plan P [ (begin(x1,yl'u1,v1),q1), ... ,(begin(xm,ym,um,vm),qm)] 

XI x m 
yl ym 

R(P) = UI u (*) 
m 

VI V 
m 

ql qm 

and/ = R-1
• 

We define a non-default feasibility condition for an arbitrary candidate c e C in 

the above form as follows: 

<pf (c) {:::::} 

a) V ie [I, ... , m} : ABLE(u.,y.) and 
I I 

b) Vie{l, ... ,m}:N(x.,y.)>O and 
I I 

c) Vie {l, ... ,m}-,3je {l, ... ,m) :xi XJ"'Yi yjAui*uj and 

d) VgeGVzeZ:I{ie{l, ... ,m)lx. gAy.=z)l SN(g,z) and 
I I 

e) V ie {1, .. . ,m) -,3je (1, ... ,m} :x.=x.Aq.=q.Ay.*y.Au.'f.u.Av.*v. 
Ij Ij Ij IJ Ij 

and 

f) Vie {l, ... ,m)-,3je {l, ... ,m} :u. u.Aq. q.Ax.*x.Ay.*y.Av.*v. 
Ij IJ IJ IJ IJ 

and 
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g) V ie {l, ... ,m] -aje {l, ... ,m] :v.=v.Aq.=q.Ax.-:f:.x.Ay.-:f:.y.Au.-:f:.u. 
t 1 t 1111111 

h) V ie I 1, ... , m] : qi e I t1, ... ,tM]. 

Proposition 3.3.2.1 

V c E C : q>f (c) ~ à(/
0

, l(c)) 

Proof 

and 

It is obvious, the above points (a), ... ,(h) imply the conditions (1), ... ,(8) of 

Definition 2.2.4.3, respectively. 

D 

We give a non-default goal conditionforacE C in the form (*) by 

· \jf(c) ~ q>f (c) and 

and 

m = I I N(g,z); 
gEG :EZ 

q>g(c) ~ \jf(c) and 

V dE C : [\jf(d) ~ K(c) s; K(d)], 

where 

K(C) = K1(c) + 10 · JS(C) 

with 

K
1
(c) = 

I I I lnEil, ... ,L-1]13ije{l, ... ,m]:x.=gAy.=zAq.=t A 
gE G :EZ t t t n 

and 

K
2
(c) = 

I I I { n E {1, ... ,L-2} 13 ij,/ E {1, ... ,m}: x. g Ayi =zA qi = tn A 
gEG zEZ 1 

x.=gAy.=zAq.=t 1 A 
1 1 1 n+ 

XI= gA Yt =zA ql = tn+2 ) I 
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3.3.4 Ship Loading Problem 

We present the default search space to illustrate a case where there are more 

action names. IntheShip Loading Problem we have AN = I move, load, unload } 

with arity(move) = 2, arity(load) = arity(unload) = 5. Here we have to use the 

*-notation, i.e. apply the extended version of move actions of the form 

move(h.,h~ *,*,*), 
I J 

where hi,h} e H. 

The default search space is thus 

C = U [ {move} x H x H I*} x { *} v 

me IN 
(load} x U x H (1, ... ,X} x (1, ... ,Y} x { 1, ... ,Z) V 

lunload} x U x H ( 1, ... ,X) x ( 1, ... ,Y} x ( 1, ... ,Z} 

with the default representation function: 

name1 narnek 

a• a" 
bi bk. 

R(P) c• èk. 

dl dk. 

êi êk 

t l tk 

]

m 

Observe that a candidate can be divided into blocks such that within each block 

there are only columns where the action name is either load or unload and 

different blocks are separated by a column belonging to a move action. 
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Search Procedures 

In this chapter we consider search procedures. We are aiming at a general 

model that captures a large class of search procedures with the same formalism. 

4.1 Space Search, Graph Search, Local Search 

The term search is often extended by certain adjectives, so that one often speaks 

about space search, graph search, neighbourhood search or local search. In this 

section we give a brief overview of these types of search and presentour vision on 

their relationship. In particular, we take space search as a basis and claim that all 

the others can be seen as variants of this one. 

Roughly, we can associate space search with a view based on using so called 

transition operators: a transition operator transforms a candidate (an element of the 

search space) into another candidate, cf. Charniak and McDermott (1985). In 

typical graph search · methods such as breadth first search or depth first search, 

Pearl (1984), it is presumed that a set of edges is given between the points of the 

search space. Accordingly, the search takes place along the edges, that is a step 

from a candidate to another candidate is possible if there is an edge between them. 

In neighbourhood search or local search one assumes that the search space is 

divided into overlapping regions, called neighbourhoods, see Aarts and Korst 

94 
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(1989), and that steps from a candidate care only possible to candidates contained 

in the neighbourhood of c. 

Definition 4.1.1 
Given a search space C, a transition operator or a manipulation is a parrial 

function 

m:C+~C. 

D 

To avoid any possibility for confusion between operations (Definition 2.1.1.6) and 

operators (Definition 4.1.1) we shall use the name manipulation in the sequel. 

Example 4.1.2 

Let us take an arbitrary planning problem and the natural search problem 

betonging to it by Definition 3.2.6. To any operation (a,t) we can define a 

manipulation m( ) such that applying m( ) to a candidate (plan) P the result is a,t a,t 

[ 

P v { (a,t)} if (a,t) E P 

P .1 {(a,t)} = 
P \ {(a,t)} if (a,t) e P 

Another example can be the shift manipulation m
1 

defined for any te T that delays 

the actionsof a plan. Formally, applying m toa candidate P the result is a new 
t 

candidate 

mr<P) { (a,t') e A x TI t' = t + t, (a,t) e P }. 

D 

Definition 4.1.3 

If we have a set M of manipulations on the set C then the set 

EM = { (c,m(c)) E C XC I mE M, c E dom(m)} 

is regarded as the set of edges induced by M on the vertices C and the graph 

GM (C,EM) 

is called the graph induced by M on C. 

D 

By the above definition we can naturally envision manipulations as edges 

between candidates, or rather, we can see the narnes of manipulations as labels on 
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edges. The notion of the induced graph helps us to enlighten a souree of 

confusion that often occurs if one loosely speaks about a search graph. Namely, if 

the original problem is given in terms of a graph, for instanee a shortest path 

problem within a graph G = (N,E), then we actually have two graphs. The 

original graph G is used to define the search space C where a candidate is a path 

within G. The induced graph GM = (C,EM)' however, is used to structure the 

search space according to a given set M of manipulations. Therefore, simply 

talking about a search graph can be misleading; for full clarity one should specify 

whether G or G M is meant. 

We can also model neighbourhood search by manipulations according to the next 

definition. 

Definition 4.1.4 

lf we have a setMof manipulations on the set C, then the neighbourhoodfunction 

induced by M is 

NM: C....., 'P(C), 

such that for every c e C 

N M(c) = ( m(c) e C I m e M, c e dom(m) ) . 

For any c e C the neighbourhood of c induced by Mis the set N M(c), a candidate 

c' e N(c) is a neighbour of c. 

D 

Example 4.1.5 

A well-known type of local search algorithms for travelling salesman problems is 

based on the usage of k-exchanges (k e IN), cf. Lin (1965), Lin and Kernighan 

(1973). A k-exchange in our terms is an operator that produces a new candidate 

(tour) from an old one. An important issue of this type of algorithms is how to 

deal with local optima, where the term local optimum in fact refers to a candidate 

that is optima! in the neighbourhood induced by the set of all possible 

k-exchanges. 

D 

There is a remarkable assumption often made in local search or neighbourhood 

search algorithms. Namely, local search procedures (neighbourhood search 
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procedures) are often assumed to tenninate with a candidate that is optima! in its 

neighbourhood. This means that we can characterize local search (neighbourhood 

search) as space search by a set of manipulations M tenninating with a candidate 

c satisfying 

f{c) = min{ f(c') I c' e N M(c) ) . 

Notice that for defining min we need an objective function f : C _, IR on the set of 

candidates such that min can be defined by the f values of the candidates. 

Therefore, we associate local search procedures (neighbourhood search 

procedures) with optimization problems. Observe that the above property of local 

search methods is crucial for distinguishing them. Namely, if we only keep the 

stepping-to-a-neighbour property then local search becomes graph search (space 

search) under another name. 

Genetic algorithms, cf. Goldberg (1989), Grefenstette (1985, 1987), Schaffer 

(1989), fonn an important class of search procedures and they can not be 

described by the fonner notion of a manipulation that turns a candidate into 

another candidate. Namely, a genetic manipulation typically needs two parents 

(candidates) to produce a set of children (new candidates). Such a relation 

between the candidates can be expressed by an extended fonn of manipulations. 

Definiûon 4.1.6 

Given a search space C, a hyper manipulation is a partial function 

m : 1'(C)-+-~ 1'(C). 

D 

Obviously, ordinary manipulations can be seen as hyper manipulations defined on 

singletons. 

To define the hyper graph induced by a set M of hyper manipulations we can 

either 

- maintain the candidate-vertex correspondence and use hyper edges going from 

set-of-vertices to set-of-vertices, or 

- identifying a vertex by a set of candidates, thus use hyper vertices and usual 

(hyper) vertex-to-(hyper)vertex edges. 

We chose the second possibility which leads to the following definition. 
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Defmition 4.1. 7 

If we have a set M of hyper manipulations on the space C, then the hyper graph 

induced by M is 

GM, = (1'(C),EM) 

where 

EM = { (x,m(x)) e 1'(C) x 1'(C) I mEM, x E dom(m) }. 

D 

Notice that using hyper graphs includes using ordinary graphs: an ordinary graph 

can be considered as a special hyper graph having only edges between hyper 

nodes that are singletons. 

· By having defined a search space and manipulations we know what to search, 

where and by which steps. Nevenheless, we still have to determine how to 

search. This means that we have to specify a metbod that prescribes the 

consecutive steps of the search process. This metbod is mostly called the search 

strategy, search procedure, search method or search algorithm; we shall mostly 

use the name search procedure. In the rest of this section we identify the most 

essential components of search procedures and put them together into a General 

Search Procedure. 

4.2 The General Search Procedure 

Our General Search Procedure (GSP) is an iterative generate-and-test procedure. 

For the sake of generality we take a search procedure iterating a set of candidates, 

called population, in each iteration cycle. Generating and testing in this case 

means that the procedure is creating new populations (candidates) and testing 

them whether they suffice as a solution. 
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Scheme of the General Search Procedure 

lnitialize a set of candidates 
while not Goal do 

begin 
Select a subset from the set of candidates 
Produce new candidates from the selected ones 
Add the new candidates to the old ones 
Reduce the extended set of candidates 

end 

99 

Notice where the generate and test components are included in the above 

scheme. Generation of new candidates is done by Select and Produce, while 

testing happens at checking the Goal and at applying Reduce. 

We consider this scheme as the skeleton of our problem solver within a DSS. 

This skeleton specifies the main outlines of a search method using lnitialize, Goal, 

Select, Produce andReduce as parameters. Giving values tothese parameters we 

obtain a complete search procedure. A very important question is: which of the 

above parameters can be set problem independently and which of them needs to 

carry problem dependent knowledge or heuristics. If, for instanee we can define 

such values for Goal, Select and Reduce that can be used over a broad domaio of 

search problems then we reduced the efforts of designing a problem specific 

search procedure to making lnitialize and Produce. 

Before the exact definition of the GSP we make a yet other generalization. In 

the sequel we also wish to consider methods maintaining extra structure on the 

actual set of candidates, i.e. on the populations. In particular we want to cover 

cases of ha ving lists of candidates, not only sets. Therefore we shall use lists of 

candidates as populations with the standard operations e, ç, u, tî etc., meaning the 
* straightforward definition of these operations for lists. We introduce C to denote 

the set of all finite lists over C, en (n e !N) stands for the set of lists with n 

elements. 

In the sequel we unfold the scheme of the GSP. Our main concern will be the 

exact identification of the parameters of the search procedure by formalizing the 

terms Goal Select, Produce, Reduce and at the end of this section we have a 

closer look on lnitialize. In section 4.4 we investigate which conditions on the 

parameters imply desirabie properties of the GSP, namely convergence. 
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To model random search we introduce functions with so called random 

parameters in our procedure. What do we mean by a randomly parameterized 

function with domain X and range Y? Strictly speaking we take a set of functions 

1 ç; X __, Y, a probability space (Q, A, f) and a random variabie J : Q __, '!. Then 

j(ro) : X__, Y is a function with the desired signature for any roe Q. Therefore 

we call ro a random parameter and consicter J as a randomly parameterized 

function from X to Y. For notational simplicity we often write the signature of 

J : Q __, (X __, Y) in an equivalent form of J : Q x X __, Y. 

To have random Selection, Production and Reduction we fix a basic manner to 

obtain random parameters for them. Namely, we introduce three finite sets B, r, 

d to provide parameters for Se/ection, Production and Reduction, respectively and 

.attach a random variabie that delivers the values of these parameters. 

Definition 4.2.1 

A basic sampleprocessis a tuple (Q, A, f, B, r, d, {Z e Q __, B x r x d In e IN)), 
n 

where 

- (Q, A, f) forms a probability space; 

- B, r, d are finite sets; 

- z E Q __, B x r x d (n E IN) is a sequence of independent random variables 
n 

such that for every n e IN 

· also Z .1, Z .2 and Z .3 are independent and 
n n n 

· \f p eB: f[ {roe Q I Z .l(ro) = Pl] > 0, 
n 

· \f 'Y e r : f[ { ro e Q 1 z .2(ro) = y} ] > 0, 
n 

· \f 8 E d: f[ {roE Q I Z .3(ro) = 8}] > 0. 
n 

0 

Having a basic sample process the triple z (ro) E B x r x d is taken for the 
n 

parameters in the n-th iteration cycle of the GSP. Notice that if we take singletons 

for B. rand d then we obtain a deterministic case. In the sequel we assume that 

a basic sample process (Q, .A, lP, B, r, d, {Z e Q __, B x r x dI n e IN}) is given. 
n 

The introduetion of random parameters requires that we extend the signature of 

hyper manipulations. 
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Definition 4.2.2 

A random hyper manipulation is a partial function with the signature 
* * m:rxc ++C. 

101 

For random hyper manipulations the set of all parent-lists is the set of all those 

lists of candidates that are capable of producing offspring: 
* p M = (XE C 13 mEM 3 y E r: (y,x) E dom(m) }. 

D 

If it can not lead to confusion then we shall often omit the predicates 'random' 

and 'hyper' only mentioning manipulations. 

From now on we assume that next to the search space C and a basic sample 

process alsoasetof manipulations Mis given. 

Definition 4.2.3 

A selection tunetion is to select a set of parent-lists from the actual population. It 
* is a partial function F s : B x C ++ 'P(P M)' where 

* V p e B V x e C V y e F /P,x) : y ç; x. 

D 

Definition 4.2.4 

A production tunetion is to produce the children of a parent-list by the previously 
* given manipulations. lt is a function FP : r x P M _, C , such that 

V y E r V x E p M 3 mEM: Fp(y,x) = m(y,x). 

0 

Notice that by this definition we allow that there are more random hyper 

manipulations that are used alternating in the successive production steps. 

Defmition 4.2.5 

A reduction tunetion reduces the set of old and newborn candidates and 

determines the 'survivors' for the next iteration cycle. Formally it is a function 
* * * F : ö x C x C _, C , such that 

r 

* * V~ E ö V x E c V y E c : F,(~,x,y) ç; x u y. 

D 
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Definition 4.2.6 

An evaluation function is to de termine whether a population is good to terrninate 

with. Here we shall use it with the signature 
* F ; C __, {true,false}. 

e 

0 

In practice the above functions F , F , F and F may depend on some extra 
s p r e 

parameters too (eg. the number of iterations made) but here we do not denote this 

dependence. 

Let(O, A. lP, B, r, A, {Z e 0 __, B x r x A I n e IN}) be a basic sample process. 
n 

lts incorporation in the GSP happens by drawing an roe 0 randomly and taking 

· the corresponding realizations of Z , that is (p ;y ,8 ) = Z (co), as the random 
n 111111 11 

parameters in the n-th iteration cycle of the procedure. 

* Furtherrnore, let x . . e C and let F J F , Fr' F be a seleetion, a produetion, a 
1m1 " p e 

reduction and an evaluation function, respectively. The unfolded version of the 

schema of the GSP is as follows: 

General Search Procedure 

x :=x .. 
lnll 

WHILE NOT F (x) DO 
e 

BEGIN 

get p, y and 8 

y := F/P· x) 

z := u F (y, q) 
qey P 

x := F (8, x, z) r 
END 

Output the aetual population 

From now on a seareh procedure is understood as an instanee of the GSP. To 

specify sueh an instanee one needs to define C, M, F, F , F, F and x . . e C. 
s p r e lntt 

These items can therefore be seen as parameters, the valnes of these parameters 

deterrnine the procedure. This motivates the following definition. 
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Definition 4.2.7 

Given a basic sample process, a corresponding stoellastic search procedure is a 

7-tuple 

(C,M,x .. ,F ,F ,F_,F ), 
1n1tspre 

* where Cis an arbitrary set, Mis a set of hyper manipulations on C, x . . e C , Fs' 
lnlt 

F , F and F are a selection, a production, a reduction, and an evaluation 
p r e 

function, respectively. 

A deterministic search procedure is a search procedure that belongs to a basic 

sample process where the sets B, r and A are singletons. 

D 

When considering deterministic search procedures we shall often omit the 

reference to the random parameters (3, y and o. In such cases we use a defective 

signature of the functions of the GSP leaving out B, r and A from their domain. 

A search procedure is creating populations successively. This results in a 

sequence of populations which will be called evolution. For an exact definition of 

this notion we introduce the transition function. 

Defmition 4.2.8 

The transition function betonging to a search procedure is a function 
* * F

1 
: (B x r x A) x C C 

to create the next population 'in one go'. Formally it is defined as 

Fl(fl,y,o),x) = F,(o, x, u F/y,q)). 

qEF (fl,x) 
s 

D 

Definition 4.2.9 

The evotution betonging to a search procedure is a sequence 
* {X(ro)eC lneiN), 

n 
where 

Xo(ro) = xinit' 

Xn+l(ro) = FlZn(ro),Xn<ro)) for n:?: 0. 

D 
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To provide an easier reading of the formulae we often leave out the symbol oo 

from the notation, and abbreviate Xn(oo) by Xn. In such cases IP[property(Xn)] 

means lP[ {ooe Q lproperty(Xn(oo))} ]. 

Norlee that we obtain different evolutions for different initial populations. 

Therefore we use a notation that indicates the dependenee on the initia! 

population: 

- {X I n e IN} n x denotes the evolution with x= x. . and 
11Ul 

- lP [ •. x .. ] x n stands for lP[ .. Xn .. I X0 = x]. 

The question whether we can apply a (stochastic) search procedure to solve a 

search problem can be divided into two questions: 

- whether the search procedure is suited to the given search problem, and 

-_ whether we can hope that the search procedure finds a solution of the given 

search problem. 

The following definition is to formalize what we mean by "suited to" above. 

Definition 4.2.10 

A search procedure (C, M, x _ _, F, F , F-' F) fits a search prob/em (D, <pi, <p ) 
lnlt s p r e g 

if 

C = Dl = { de D I q>fä) } 

and 
* V x e C : [ (3 c e x : <p (c)) :::} F (x) ]. 

g e 
D 

There are more possibilities to formalize the kemel of the second question above 

"whether we can hope that". The weakest forma! conditions could be for instanee 

lP [3neiN3ceD :ceX]>O 
xinit g n 

or 

3 n e IN : lP [ 3 c e D : c e X ] > 0, 
xinit g n 

where D = { d e D I <p (ä) } . g g 
The following proposition shows that there is no difference between these two 

formulations. 
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Proposition 4.2.11 

* For every x e C , evolution {X In e IN} and c e C 
11 x 

3 n e IN : lP [c e X ] > 0 (':c:} lP [ 3 n e IN : c e X ] > 0. x 11 x 11 

Proof 
* 
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Let US take an arbitrary x E c 'c E c and introduce A ={roE n I c Ex (ro)) as 
n n 

an abbreviation and observe that V A =(roE n 13k E IN: c E Xk(ro)). 
· nEIN 11 

::::} 

IfO < IP)Ak] fora certain k e IN, then 

0 < lP [Ak] :::; L lP [A ] = lP [ V A ]. 
x nEIN x 11 x nEIH 11 

Ç::: 

If lP [ v A ] = 0 and thère is no k e IN with 0 < IPx[Ak] then 
x neiN 11 

lP [ V A ] = L lP [A ] = 0 
x neiN 11 neiN x 11 

which is a contradiction. 
0 

Definition 4.2.12 

A search procedure (C, M, x . . , F , F , F , F ) is likely to so/ve a search problem 
muspre 

(D, q>f, q> 
8

) if 

(C, M, x . . , Fs' F, Fr' F) fits (D, q>f' q>) mil p e g 
and 

lP [ 3 n e IN 3 c e D : c e X ] > 0. 
xi11it g 11 

0 

Observe that whether or not a search procedure is likely to solve a search 

problem is formally dependent on the initial population x. . . This is fully 
llut 

conform to our intuition and stresses the importance of having a good method to 

create an initial population. This, however, is not easy in general; it can be quite 

difficult to create an element of C, that is - in terms of the search problem to 

create a feasible candidate de D
1 

Notice that as a matter of fact there are two phases within a search procedure, an 

initialization phase and an iteration phase. In the initialization phase an initial 

population is created, that is a set of feasible candidates. In the iteration phase 
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new feasible candidates are produced repeatedly from the old ones in order to 

reach a solution. 

In general we can not say much about how to construct initia! candidates. It is, 

however, remarkable that the creation of a good initia! candidate can often be 

carried out iteratively. To see how reeall the remark after Definition 3.1.3 where 

we observed that it is common to define candidates as certain constructions based 

on a set of elementary objects and some construction rules. Next we sketch an 

iterative way of initialization for a search problem (D, q>f, q> 
8

) where the elements 

of the free search space D are constructed from a set of elementary objects by a 

finite set of construction rules. Let us denote the empty construction by e. Then 

the construction of a feasible candidate can be performed by the following search 

procedure. 

Scheme of the lterative Construction (IC) procedure 

x [e] 

WHILE NOT 3 de x : q>jd) DO 

BEGIN 

F /[dl) = {[d]} 

Produce d by modifying d according to a construction rule or its inverse 

F/[dl, [d]) = [d] 

END 

Note that this is a single point search procedure maintaining a population with 

cardinality 1. Observe that the lnitialization step, Goal, Selection and Reduction 

are defined problem independently here. This means that if we want to perform 

the initialization phase of a complete search procedure by another search 

procedure then we can easily apply the IC procedure only ha ving to define its way 

of Production. In other words it is Production where the problem dependent 

beuristics belong. 

For the special case when the search problem belongs to a planning problem we 

can give a more detailed version a subtype of the IC procedure. Let 

(".P(A x T), q>/ , q> ;> be the natura! search problem corresponding to a planning 

problem, seç definition 3.2.6. To create a feasible initia! plan we take another 
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search problem (1\A x 1), ~I , ~ g)' where 

~j.P) = true, 

and 

Definition 4.2.13 
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The lterative Plan Constructiontor lnitialization (IPCI) procedure is for the above 

search problem; formally it is (è, M, P . . , Ps' P , P, P) as defined below. 
mil pre 

è = 1'(A x 1). 

Let 
1 

m(a,t)(P) = P \ ( (a,t)} 

and 

m2
( )(P) = P u ( (a,t)} 
a,/ 

for every (a,t) E A x Tand P E 1'(A x T) and let us define M as 
- 1 2 

M = { m( ) I (a,t) E A x T } u { m( ) I (a,t) E A x T } . 
a,/ a,/ 

pinit = [01· 

F ([P]) = ( [P]}. 
s 

\ 

m~a,t}P) for an (a,t) E cp~ if <D 

F/[P]) = 

m2
( )(P) for an (a,t) E P if ..., <D a,t 

where cp~ = ( (x,y) E A x TI cpfP u ( (x,y)}) }, <D stands fora problem dependent 

condition and also the choice of taking an operation (a,t) E cp~ for m~a.t)(P) and 

2 an operation (a,t) E P for m(a,t}P) is problem dependent 

p ([P], [Q]) = [Q]. 
r 

0 

Observe that the IPCI procedure is constructing a feasible plan from the empty 

plan by actding and deleting operations. This means that we could partially 

automate the construction phase of search procedures applied to planning. Of 
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course, we do not claim that we hereby answered the question of 'how to 

construct an initial plan when solving a planning problem by search'. Instead, we 

presented a framework that pennits to sharpen this question to 'by which 

condition <I> and which way of choosing (a,t) can we construct an initial plan 

when solving a planning problem by search'. This implies that if one applies the 

IPCI procedure to a certain problem then defining these items is sufficient to have 

an initial feasible plan constructed. 

In the same spirit we can also apply the IC procedure to solve a whole search 

problem. Let ('P(A x D. epi , ep g) be the natural search problem corresponding to a 

planning problem. Through defining another search problem (1'(A x n, epi, q)g) by 

q)jP) = true, 

and 

ep (P) {:::} ep iP) 1\ ep (P). 
g r g 

we can obviously apply the IC procedure to construct a solution for 

('P(A x n, epi, ep g), i.e. to construct a plan P with epfP) A ep g<P). 

Defmition 4.2.14 

The /terative Plan Construction for Solution (IPCS) procedure is (C, M, P . . , Fs' 
lnlt 

F , Fr' F ) where each component is the same as in the IPCI procedure except 
p e 

that 

F ([P]) ::; true {:::} epiP) 1\ ep (P). 
e 1' g 

D 

Notice again, that we hereby did not answer the question of 'how to solve a 

planning problem by construction'. We, however, presented a procedure that 

reduces this question to 'by which condition <I> and which way of choosing (a,t) 

can we solve a planning problem by construction'. Several methods based on 

using dispatch rules can be considered as special cases of the above IPCS 

procedure. 

In the sequel we focus our attention on the 'real' search phase of search 

procedures; in 4.4 we investigate properties of iterative procedures applied for 

optimization problems. 
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4.3 Examples of Search Procedures 

Reeall that by developing the GSP we were aiming at identifying the most 

essential components of a wide class of search procedures. To justify that we 

have achieved this aim we specify types within the framework of the GSP that 

coincide with well-known types of algorithms. These algorithms appear under 

different labels like heuristic search, graph search, local search, neighbourhood 

search in the literature, and in this section we show that they all can be considered 

as special cases of our GSP. 

4.3.1 Genetic Algorithms 

Genetic algorithms, cf. Goldberg (1989), are approximation algorithms applied to 

a search pmblem where q> is defined by an objective function f : C ___, IR. In a 
g 

classica! genetic algorithm (GA) a candidate c e C is a finite binary sequence with 

a fixed length k > 1. The standard genetic production methods are crossover of 

two parents and mutation of single candidates. Genetic crossover takes two 

sequences (u1, .. . ,uk)' (v1, ... ,vk), a randomly chosen position n e ( 1, .. .,~k) and 

creates two children: 

(ul' ... ,un·l'vn' .. . ,vk)' (vl' .. . ,vn-1' un' ... ,uk). 

The standard mutation changes one value at a randomly chosen position in a 

candidate, producing (u1, .. . ,1-un' ... ,uk) from (u1, .. . ,u/ 

The typical genetic selection and reduction are based on a survival-of-the-fittest 

mechanism, preferring candidates with a low objective function value (in case of 

minimization). 

The appropriate, although panial, instantiation of the GSP resulting in such a GA 

is the following. 

k c = {0,1) . 

and let cross : r x c2 ___, c2 and mut : r x c1 ___, cl stand for the usual crossover 

and mutation. 

M = {cross, mut }; 

[ 

c ross('y, [ c ,d]) 
F (y, x)= 

P mut(y,[c]) 

if x= [c,d] 

if x= [c] 
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Mostly there is a random Selection and Reduction mechanism in GAs that is based 

on the objective function value (fitness) of the candidates. It is typically made 

such that fitter candidates (with a lower objective function value) have a larger 

chance, to become a parent and to survive. 

4.3.2 Simulated Annealing 

lust as GAs simulated annealing algorithms, cf. Aarts and Korst (1989), van 

Laarhoven (1988), are for function optimization where the goal is determined by 

an objective function f: C _, IR over the search space C. To obtain a simulated 

annealing (SA) algorithm weneed to take an arbitrary random manipulation 

and 

m: r x c1 _,cl 

~ ç;; (0,1], 

M={m}, 

F
8
([c)) = {[c]), 

F (y,[c]) = [m(y,c)], 

;(S,[c].[d]) = [ [d] 

[c) 

. rt(c) - f(d)] 
1f expl P > 5 

otherwi se 

where 0 < o s I by the definition of ~ and p > 0 is the so called cooling 

parameter decreasing along the evolution. 

We remark that the usual simulated annealing (SA) terminology uses the notion 

of neighbourhoods. At the first sight it seems that SA algorithms rely on 

neighbourhoods independent from the manipulations of the search procedure. 

Deeper analysis, however, displays that SA people do not presurne the presence of 

neighbourhoods given beforehand; they intuitively refer to the neighbourhoods 

induced by M as defined in Definition 4.1.4. 

Observe that a simulated annealing algorithm can be considered as special GA, 

where children are produced exclusively by mutation. 
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4.3.3 Threshold Accepting, Hili Climbing 

Threshold accepting (TA), Dueck and Scheuer (1988), is very similar to Simulated 

Annealing. The essential difference between TA and SA is in the different 

acceptance mechanisms, i.e. reduction functions. Namely, TA accepts a newly 

generated candidate if it is not much worse than the old one, while SA does it 

only with a probability. To describe TA let C, M, F and F the same as in s p 
section 4.3.2. Furthermore let 

8 = {S} with S;::: 0, 

[ 

[d] if f(d) -f(c) > -ö 
F/ö,[c],[d]) = 

[é] otherwise 

A well-known instanee of Threshold Accepting is Hill Climbing where S = 0. 

From the foregoing it is easy to see that Threshold Accepting and Hill Climbing 

can be considered as special forms of simulated annealing. 

4.3.4 Depth First Search 

Depth first search (DFS), cf. Pearl (1984), is generally considered as a tree 

search algorithm assuming that during the search we are moving between the 

nodes of a tree along the edges. This feature show that DFS belongs to graph 

search procedures in the sense described in and after Definition 4.1.2. The name 

'depth first' can be understood by observing that a DFS procedure always 

produces children of the first element of the population (a list) and places the new 

children in front of the old elements. This indeed can be seen as searching in 

depth - if only we take the depth of a candidate as the number of its ancestors. A 

depth first search procedure can be applied to an arbitrary search problem 

(D, q>f q>
8

) with. 

C=Df 

* m: C-+-~ C is arbitrary, 

M={m}, 

F ([c
1
, .. . ,c ]) = [c.], 

s n 1 



112 

such that c. is the first one of c
1
, .. . ,c with c. e dom(m). 

I n I 

F ([c]) = m(c), 
p 

F ((c
1
, .. . ,c ], (d

1
, .. . ,d ]) = [d

1
, ... , d , c. 

1
, .. . ,c ], 

r n n n 1+ n 
such that c. is the first one of c1, .. . ,c with c. e dom(m). 

.. I n I 

F ([c
1
, .. . ,c ]) Ç::;} 3 ie { 1, ... ,n} : q> (c.). 

e n g 1 

Chapter4 

Cbserve that by this schema a depth first search procedure can be defined by only 
* defining a manipulation m : C -H C and giving an initia! candidate. 

4.3.5 Breadth First Search 

Breadth first search (BFS), cf. Pearl (1984), is very similar to depth first search 

· only differing in the way the list is reordered after generating the children. In 

other words it is only the selection function that distinguishes BFS and DFS. To 

obtain breadth frrst search as an instanee of the GSP let all the components be as 

in section 4.3.4 except that 

F,([cl, ... ,en]' [dl, ... ,dn]) = [ci+l' .. . ,en' dl, ... , dn], 

such that c. is the frrst one of c
1
, .. . ,c with c. e dom(m). 

I n I 

Notice that similarly to DFS we can fully define a breadth first search procedure 

by the applied manipulation and initia! candidate. 

4.3.6 Best First Search 

Best first search (BES), cf. Pearl (1984), requires some measure to define 'best', 

i.e. we need an objective function f: C _,IR to define q> in (C, q>f q> ). g g 
Furthermore let 

* m : C -H C be an arbitrary manipulation and 

M { m}, 

F (x) e { [c] ç; x I c e dom(m) and 'rJ de x : /(c) S,f{d) }, 
s 

F ([c]) = m(c), 
p 

The characteristic behaviour of a BFS procedure is determined by the specific 

selection function. The reduction function (reordering the list) does not play a 

crucial role, therefore we omit its specification. 
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4.4 Convergence of Stochastic Search Procedures 

In this chapter we investigate a special type of search: approximation procedures 

for combinatorial problems, Papadimitriou and Steigliz (1982). In combinatorial 

optimization the search space C is always finite and the goal of the search is 

determined by means of an objective function f : C --! IR requiring that the search 

stops when an optimum (minimum) of fis reached. This objective function is 

guiding the search, candidates and populations can be compared according to their 

objective function value. By this feature we can distinguish special class of 

iterative search procedures. If there is an objective function to be optimized then 

the evolution is obviously 'trying' to reach better and better populations, therefore 

the. name improvemenr procedure is appropriate. In this section we derive general 

conditions that imply that improvement procedures lead to an optimum, cf. Eiben, 

Aarts and van Hee (1991). 

Further on in this section we assume that a basic sample process 

(Q, A. lP, B, r, L\, (Z : n E IN }) and a search procedure (C, M, x . . , F, F , F, F ) 
n muspre 

are given. 

To formulate our first two lemmas as generally as possible we temporarily 
* * introduce a new random variabie Y : Q --! (C --! C ) for every n e IN such that 

n 
Yn(ro)(.x) = F

1
(Zn(ro),x) 

and thus 

Xn(ro) = Yn(ro)(Xn-l(ro)) 

The assumption about the independenee of the Z 's naturally transfers to the Y 's, 
n n 

* * i.e. it is assumed for every n E IN and Fi ç; C --! C (0 :;; i :::; n): 

n 
IP[Y E F 11 y l E F 1 11 .. 11 yo E F ol = n IP[Y. E F .]. 

n n n- n- i=O t t 

The first lemma expresses a simple rewriting rule. 

Lemma 4.4.1 
* IP[X = y I X 1 = z] 

n n-
IP[Yn-l(z) = y] "J n;?; I, V x,y,z E C . 

Proof 
lt is trivia!, we only remark that the independenee of the Y 's is necessary. 

n 

D 
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* By definition each x (ro) is an element of c for every (t) E n. Therefore we 
n 

can consicter X not only as an abbreviation of X (ro) but also as a random 
n n 

* variabie X ; 0 __. C . On this basis the question whether an evolution 
n 

{X I n·e IN} isa Markov chain is formally correct. 
n x 

Lemma4.4.2 

{X I n e IN} is a Markov chain, and if the Z 's (Y 's) have the same distribution 
n x n n 

then the chain is homogeneous. 

Proof 
* Let n > 0, x i E C (i e {1 •.. . ,n+ 1 }). Then by the independenee and Lemma 

4.4.1 we get 

IP[Xn+l = xn+l I Xn xn A ... A X0 =x] = 

IP[Yn(xn) = xn+l I Yn. 1(xn-l) xn A ..• A Y0(x) = x1 ] = 
IP[Y (x ) =x 

1
] = 

n n n+ 

IP[X 
1 

= x 
1 

I X = x ], 
n+ n+ n n 

which proves the Markov property. 

If the Y 's have the same distribution then by Lemma 4.4.1 
n 

IP[X =yfX =z] = IP[X =yiX =z] 
m .!'1-1 n n-1 

* is self-evident for any y,z E C and m,n e IN. 

D 

The fact that the Z 's have the same distribution can be seen as 'the way of 
n 

producing offsprings remains basically the same from generation to generation'. 

This does not hold, for instanee in SA algorithms, where the control parameter p 

is decreasing, hence the distribution of F , and hereby the distribution of F is 
r 1 

changing. 

To establish convergence we have to express formally that the algorithm tencts to 

an optimum. Observe that we defined the search space in general as a set without 

any norm or distance measure. Therefore we can not expect convergence saying 

that X (n oo) is getting close to an optimum. What remains is to require that X 
n n 

contains an optimum, or rather, that the chance of containing an optimum is 

growing to 1. 
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Let C = { c e C I c is a minimum of f } . 
opt 

Definition 4.4.3 

The chain {X In e IN) is monotone if 
n x 

'<JneiN:min{f(c)lceX 
1
)smin{f(c)lceX ). 

n+ n 

Remark 4.4.4 

Observe that 

'<Je eC VneiN:c eX :::} c eX 
opt opt opt n opt n+1 

is not necessarily true, but 

VneiN:X lîC :;t0:::} X 
1

1îC :;t0 
n opt n+ opt 

always holcts for monotone chains. 

D 

Lemma4.4.5 

If {X I n e IN) is monotone then the following assertions are equivalent: 
n x 

a) lP [ 3 n e IN : X lî C :;t 0] = 1, 
x n opt 

b) lP [l i m X lî C :;t 0] = 1, 
x n-;oo n opt 

c) I im lP [(X lî C ! :;t 0] = 1 
n-too x n op 

Proof 
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Notice that if A = {roe 0 I X (ro) lî C :;t 0} and {X In e IN} is monotone 
n n opt n 

then the sets A
1
, .. . ,An, . . . form a monotone sequence due to Remark 4.4.4. 

The existence and the equality of lim lP [A ] and lP [l im A ] for monotone 
x n x n n-;oo n-too 

sequences is a well-known result of elementary measure theory. This implies the 

equivalence of (b) and (c). 

The equivalence of (a) and (b) is straightforward if we consicter that in this case 

lim A = u A. 
n-too fl neiN n 

D 

Definition 4.4.6 
* For any x e C the set of all populations that may occur in {X I n e IN) is 

fl x 

* succ(x) = {yeC 13neiN:IP[Xn=yiX
0

=x]>0). 
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* Furthennore, if U ç: C then 

D 

· succ(U) = v succ(x). 
xEU 

Chapter4 

The next theorem is our basic convergence result. The main idea underlying the 

proof is to have upper bounds on the probability of taking the wrong way, i.e. 

making steps in the search space that do not reach any optimum. 

Theorem 4.4. 7 
* Let U ç: C and let the following hold 

a) {X In e IN} is monotone for every x e U, 
1l x 

·b) 11k e IN (k E IN) such that 11k -+ oo (k-+ oo) and 

00 

Ek E (0,1) (k E IN) such that il Ek = 0 and 
k=O 

'V y e succ(U) : IP[X () C = 0 I X = y] s; Ek holds for every k e IN. 
nk+l opt "k 

Then lP [I im (X () C ) :;; 0] = 1 for every x e U. 
x n-1"" n opt 

Proof 
* Let us introduce H = { y e C I y (\ C = 0 } and choose an initial population 

opt 
x eH() U. 

Furthennore let pk = IP[X () C = 0 I x
0 

= x] (k > 0). 
nk opt 

Then for any k > 0 we have 

p = ~ IP[X (\ C 0 I X = y] · IP[X = y I X
0 

=x] s; 
k+l ~ nk+l opt nk nk 

yEH 

~ E • IP[X = y I X =x] = 
~ k nk 0 
yEH 

E • ~ IP[X = y I X =x] 
k ~ nk 0 

yEH 
Ek. pk. 

This implies that 

k 

Pk+l s; n ek · 
i=l 

Hence 
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00 

limiP[Xn nC
0
pt=01X0 =x] = limpk S: 11 ek = 0. 

k-1oo k n-1oo k=l 

Notice that the monotonicity of {X I n e IN} implies that the sequence 
n x 

lP (X f"' C 
1 
= 0] (n e IN) is non increasing and then from nk -1 oo (k -+ oo) we. x n op 

have that 

lim lP [X f"' C = 0] :s; lim lP [X f"' C = 0] = 0, 
n-1oo x n opt k-1co x nk opt 

consequently 

I im lP [X f"' C ;ë 0] = 1 
n-1co x n opt 

holds. Then by lemma 4.4.5 we obtain almost sure convergence: 

lP [(limX nC );t0] = 1. 
x n-1oo n op 

D 

Theorem 4.4.8 

* Let x e C and the following éonditions be satisfied: 

a) {X In e IN} is monotone, and 
n x 

b) {X I n e IN} is homogeneous, and n x 
c) lP [ 3 n ~ k : X f"' C ;ë 0 I Xk = y ] > 0 for every y e succ(x) and k e IN. 

x n . opt 

Then lP [(I im X f"' C ) ;ë 0] = 1. 
x n-1oo n opt 

Proof 

We apply Theotem 4.4.7 with U = (x} by constructing a sequence n
0
, n

1
, ... 

and a sequence E
0

, E
1
,. • • so that they satisfy its condition (b). 

Let y e succ(x) and 

M =min{neiNIIP[X nC ;ë01X0 y]>O} y n opt 
be the minimum number of steps required to find an optimum with positive 

chance when taking y as initial population. 

According to (b) and (c) M is finite for every y e succ(x). Then 
y 

M = max {M I y e succ(x) ) 
y 

* is finite because C is finite, thus succ(x) is finite. Hence 

'V y e succ(x) : IP[XM f"' C ;ë 0 I X0 = y] > 0 
opt 

holds by the monotonicity, and thus 

'V y e succ(x) : IP[XM f"' C = 0 I X0 = y] < 1. (i) 
opt 

lntroducing the abbreviation 
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p y = IP[X M f'l C opt = 0 I X0 = y] 

we can define 

p = max {py I y e succ(x) }. . 

Norlee that by (i) and the finiteness of succ(x) we have that p < 1 and 

'r/ y·~ succ(x): IP[XM f'l C = 01X
0 

= y] ~ p. 
opt 
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Let nk = M • k and ek = p (k e IN). Observe that nk .... oo (k .... oo) hold, and so 

does .. 
fi Ek = 0 since p < 1. 

k=O 
What remains is to show that 

'r/ y e succ(x) : r(X f'l C = 0 I X = y] ~ t::k for every k ~ 0. (ii) 
nk+l opt nk 

_By the homogeneity we have that for every y e succ(x) 

IP[XM·(k+l) f'l Copt = 0 I XM·k = y] = IP[XM f'l C0pt = 01 X0 = y] ::;; p 

holds. This proves (ii), and hereby also the proof of the theorem is complete. 

D 

Loosely applying Definition 4.2.12 we can consider this theorem as stating: if an 

optimization procedure is likely to solve a problem and its evolution is 

homogeneons and monotone then it surely solves the problem. 

Definition 4.4.9 
* * * The rednetion fnnction F : A x C x C ...... C is conservative if it always r 

preserves the best f valne, that is at least one of the optima. Formally this means 

that 

* F (~.x, y) f'l MIN '1: 0 for every x,y e C and ~ e A, 
r xy 

where 

MIN = { c ex u y I 'r/ de x v y :j(c) ~j(d)} 
x:y . 

contains the minima of x u y. 

D 

Lemma 4.4.10 

lf the rednetion function is conservative then the evolntion (X I n e IN} is 
11 x 

monotone. 



0 

SearchProcedures 

Proof 
* Notice that for any arbitrary y,z e C and Se IJ. 

min{ f(c) I c e z } ~ min{ f(c) I c e z u y } ~ min{ f(c) I c e F (S,z,y) } 
r 

if F is conservative. By the definition of the transition function we have 
r 

Xn+l = F/Sn, Xn' u F/yn,q)) 
qeF (~ ,x ) 

s n n 
which implies 

min{f(c) I c eX 
1

} ~ min{f(c) I c eX}. 
n+ n 

IJ 
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Next we come to our original purpose to fmd restrictions on the functions of a 

search procedure such that together they imply convergence. 

Definition 4.4.11 

The set of manipulations M connects the search space C if for every c,d e C the 

candidate d is reachable from c by manipulations, that is: 

3 n e IN 3 c
1 

e C . .. 3 ene C: c = c
1 

Ad= en A 

'</ie {1, ... ,n-1}: ([c.],[c. 
1
]) E EM, 

I I+ 

where E M is the set of edges induced by M. 

IJ 

In the followirtg three definitions we define the same predicate for the selection, 

the production and the reduction function. We shall call them generous if they 

give a positive chance to every candidate, to become a parent, to be bom and to 

survive, respectively. 

Definition 4.4.12 

If for every c e C it holds that [c] e u dom(m) then the selection function is 
mEM 

generous if in every iteration cycle, that is for every n e IN 

* '</x e C '</ c ex: lP[ [c] e F (Z .1, x)] > 0. 
s n 

D 

Definition 4.4.13 

The production function generous if for every n e IN 
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'r/ c E C 'r/ dE C : ([c],[d]) E EM => f[ [d] = F (Z .2, [c]) ] > 0. - p n 

D 

Definition 4.4.14 

The reduction function is generous if for every n e IN 
* 'r/ x,y E C 'r/ c EX V y: lP[ c E F (Z .3, X, y)] > 0. 

r n 

D 

Remark 4.4.15 
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We remark that the generousity of F _, F and F imply that for every n e IN 
> p r 

* a) V x e C 'r/ c e x 3 ~ e B : lP[ Z .1 = ~] > 0 I\ [c] e F (~,x). n s 

b) V c E C 'r/ dE C: ([c],[d]) E EM => 
3 y E r : lP[ Z .2 = y] > 0 A [d] F (y,[c]). 

n p 

* C) V X,y E C 'rf C E X V y 3 Ö E !!. lP[ Z .3 = ö] > 0 A c E F (ö,x,y). 
n r 

Theorem 4.4.16 

Let us assume that the drawings Z 's have the same distribution. Let the selection, 
n 

the production and the reduction function be generous. Funhermore let the 

reduction function be conservative and let the given set of manipulations M 

conneet C. Then for any initia! population lP [/ im(X n C ~ "# 0] = 1. 
x n--;oo n op 

Proof 

The proof goes via Theorem 4.4.8, we show that its conditions (a), (b) and (c) 
* hold for any x e C . 

a) F is now conservative and therefore (X I n e IN} is monotone by Lemma 
r n x 

4.4.10. 

b) Since Z 's have the same distribution {X I n e IN} is homogeneaus by 
n n x 

Lemma 4.4.2. 

c) We show more than necessary, namely we prove 
* 'rf y E C 'rf C E C : lP [3 n E IN : C E X ) > 0: 

opt opt y opt n 
Let c e C and c

0 
e y arbitrary. By the connectivity condition on M we 

Opl - Opl 

have that there exists an n e IN and a sequence c
1
, ... , c from C, such that c = 

n opt 
c and 

n 
([c0],[c1]) E EM 1\ ([c

1
],[c2]) E EM A ... A ([cn_1],[cn]) e EM. 

Then we have 
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= 

l lr/ct e F
1
(Z1,y) A ... A ene FlZn' .. F

1
(Zl'y) ... ) A z1 = z1 A ... 

zl' .. ,zn 

= 

" ll Ir [Z. = z.] .i.J i-1 y l l 
(z

1
, .. ,zn)eH-

where 

H = {(z1, .. . ,zn) e (B x r x A)n I c1 e Flz
1
,y) A .•. 1\ 

AZ = z] 
n n 

(*) 

enE Ft<zn' .. . Ft<z1,y) ... )}. 

lf H:;: 0 then (*) is positive by Remark 4.4.15 which proves Ir [c eX ] > 0. 
y opt n 

Showing H -:#= 0 is thus sufficient to prove the theorem. Therefore we need to 

construct a sequence z
1
, .. . ,z such that c. e F (z., ... F (z

1
,y) ... ) holds for 

n t t t t 
any i e { l, ... ,n). Observe that 

the generousity of Fs implies 3 ~ 1 eB: [c0] e F/~ 1 ,y) and 

the generousity ofFP implies 3 'Yt Er: [cl] F/yl,[co]), 

hence 

cl e U F/yl,q). 

qeFs(pl,y) 

Then by the generousity of F we have that 
r 

3 o1 e A: c1 e F,(o1,y, U FP(y1,q) ). 

qEFs(pl,y) 

Hereby we proved the existence of a z
1 
= (~l'yl'o 1 ) for which it holds that 

c1 e F,(zl'y). 

In the same way we can construct z
2 

= (p
2

,y
2
,o

2
) such that 

c
2 

e F,<z
2
,y), 
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and so on until we have (zl' ... ,zn) E (B x r x ól satisfying 

c 1 E F
1
(z1,y) A ... A enE F,(zn, .. . F/zl'y) ... ). 

This verifies that H :;:. 0 and completes the proof of the theorem. 

D 

Chapter 4 

Next we relax the requirements on M at the cost of a further restrietion of the 

reduction function. 

Definition 4.4.17 

The set of manipulations M quasi connects C if there exists a souree element 

a e C such that any d e C is reachable from a by manipulations. Fonnally it 

means that 

3 n e IN 3 c1 e C ... 3 ene C: [ 0' = c1 Ad= en A 

'</ie { 1, ... ,n-1} : ([ci],[ci+l]) e EM ], 

where E M is the set of edges induced by M. 

D 

Definition 4.4.18 

If the given set of manipulations M quasi connects C and a e C a souree element 

as given in Definition 4.4.17 then the reduction function is called a-preserving if 
* '</ .x,y e C '</ 5 e d : a e .x :::} a e F (l>,.x,y). 

r 

D 

Lemma 4.4.19 
* Let .x e C and a e C be a souree element. If a e .x and the reduction function is 

a-preserving, then 

'</ y e succ(.x) : a e y. 

Proof The proof is trivia!. 

D 

Theorem 4.4.20 

Let us assume that the drawings Z 's have the same distribution. Let the selection, 
n 

the production and the reduction function be generous and the reduction function 

be conservative. Furthennore let the given set of manipulations M quasi conneet 

C, a e C be a souree element and let the reduction function be a-preserving. 
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Then for any initia! population x with a e x it holds that 

lP [l im (X n C \ * 0] = 1. 
x n-;oo n opt' 

Proof 

123 

* Again, the proof is basedon Theorem 4.4.8. Let us take x e C such that a e x. 
The conditions (a) and (b) of Theorem 4.4.8 hold by the same reasoning as in the 

proof of Theorem 4.4.16. 

c) We show that 

'rJ y e succ(x) 'rJ c t e C : lP [ 3 n e IN : c t e X ] > 0. 
op opty op n 

Let y e succ(x) and c te C t be arbitrary. Due to a ex and Lemma 4.4.19 
op op 

we have that a e y. 

Then taking c
0 

= a the quasi connectivity condition on M implies 

3 n e IN 3 c1 e C ... 3 ene C: a== c
1 

Ad= en A 

'rJ iE { 1, ... ,n-1} : ([c .],[c. 
1
]) E EM. 

I I+ 

The rest of the proof is identical to that of Theorem 4.4.18. 

0 

Notice that for simu1ated annealing Theorem 4.4.8, Theorem 4.4.16 and Theorem 

4.4.20 cannot be applied. As we remarked after Lemma 4.4.2, in a simulated 

annealing algorithm the control parameter is decreasing, hence the distribution of 

the transition function is changing. Therefore, it is only Theorem 4.4.7 that we 

can apply to SA, since in its conditions only monotonicity of the evolution is 

required, homogeneity is not. At first sight it seems that we can not apply this 

theorem either, since the evolution of a standard SA algorithm is not monotone. 

This problem, however, is easy to overcome by slightly modifying standard SA 

such that it preserves its characteristic features but becomes monotone. In the 

following definition we present extended SA where we maintain an extra element 

in the population: a best candidate seen so far. 

Defmition 4.4.21 

We define extended simuiared annealing (ESA) as the following instanee of GSP . 

.1., Mand F are the sameasin section 4.3.2. 
p 

Furthermore let 

F/fl,[c,ct)) = [c] for every fl e B 

and 
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l [d,cb'] 
F,(ö,[c,cb],[d]) = 

[c,cb'] 

where, 

. [f(c) • f(d)] 
1f exp p 

otherwi se 

c' = 
b 

if f(d) "2/(cb) 
and 

if f(d) <[(eb) 

p e IR is the usual control parameter for SA. 

0 

Chapter4 

>Ö 

It is easy to see the the above reduction function is conservative, hence the 

evolution belonging to an ESA algorithm is always monotone. Notice that for 

.ESA the successive populations of the evolution are all from c2
. From now on a 

standard population will be denoted by a list [c,cb] if we want to emphasize the 

presence of 'the best seem so far' or by a list [c, . ] if we concentrale on the 'real' 

element c and c b does not play a role. For a perfect matching with the usual SA 

terminology we take the viewpoint of neighbourhood search, that is instead of 

using manipulations we shall express ourselves in terms of neighbourhoods. This 
* means that if N : C _, C denotes the neighbourhood function induced by M, then 

we rewrite the production function in the form 

F (y, [c]) e N(c). 
p 

Furthermore, we adopt the following assumptions from Aarts and Korst (1989). 

1) The inhomogeneous Markov chain of the evolution is a sequence of 

homogeneaus Markov ebains of the same finite length L. This means that we 

keep the control parameter constant for L cycli, i.e. in the i-th cycle we use the 

control parameter pi (i e IN) which is defined by a sequence p~ (k e IN
0 

) as follows: 

pi=pk if k·L <iS (k+l)·L; 

2) IN(c) I = K for every c e C; 

3) IP[F ( Z .2, [c]) = [d]] = liK for every c e C, de N(c) and n e IN. 
p n 
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Theorem 4.4.22 

Let C be the search space andf: C IR be the objective function. Let us consicter 

an ESA algorithm for which the above conditions (1), (2) and (3) hold. 

Furthermore, we assume that for any evolution (X In e IN} 
n x 

(4) 'r/ c,d e C 3 n;;: 1 3 c
0 

, ... , c
11 

e C such that c0 = c and d = c
11 

and 

IPx[Xk+l = [ck+l'.] IXk = [ck'.]] > 0, k e (0, 1, ... ,n-1} 

and 

(5) p' ;;: (L+1)·A ke IN 
k log(k+D) 

hold, where 

D > 0 is an arbitrary constant, 

A = max { f(c) - f(d) I c e C, de N(c) }, 

L (the length of the homogeneous subchains) is the maximum of the 

minimum number of steps required to reach an optimum from y for all 

y e c2 

are assumed to be finite. 

Then lP [lim X n C ;t 0] 
x n-+oo 11 opt 

1 for any initia! x e cl. 
Proof 

Let x e c2 be the initia! population. 

a) It is easy to see that the evolution belonging to ESA is always monotone due 

to eb. 

b) We construct nk e lH and ek e (0,1] (k > 0) such that nk -+ "" (k .... oo) and .. 
TI ek = 0 and 

k=l 

'r/ y e c2 : lP [X 11 C = 0 I X = y] :::;; ek holds for every k e IN. 
x nk+l opt 11k 

This construction wil! be done by the following steps. 

bl) Wedetermine lP [X. 
1 
= [c. 

1
, . ] I X.= [c., . ] ] depending on the control 

X l+ I+ I I 

parameter. 

b2) By (b1) and (5) wededuce an upper bound ek for 

IPX[Xk·L !1 copl = 01 x(k-l)·L = y]. 

b3) We show that f1 ek = 0, then applying Theorem 4.4.7 with nk = k·L the 
k=l 

proof is complete. 
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bi) f [X. I = [e. I' . ] I X.= [e., . ] ] 
X I+ I+ I I 

= 

f [ F (Z .. l, [e., . ]) = [e.]] · f [ F (Z .. 2, [e.]) = [e. I]] · 
XSI I I Xpl I I+ 

·lP x[ F,(Zï3, [ei,. ,ci+l]) =[ei+!'.]] 

= 

+ 
liK x exp [ (j(ci):ci+l)) ] 

b2) According to the definition of L, from any y e c2 we can reach an optimum 

in not more than L steps. If monotonicity holds then we do not loose optimal 

objective function values, thus from any y e c2 we can reach an optimum in 

· exactly L steps as welt. This implies that for any k > 0, y e cfl there exist 

y0 , .. . , yL from C
2 

such that Yo y, YL (\ Copt :F: 0 and 

f [X(k I) L . 1 = y. 1 I X(k I) L . = y. ] > 0 for every i e { 0, ... ,L-1 } . 
X • • +I+ I+ - ' +I I 

Hence 

= 

L + 
.IT liK x exp [ _ (/(er /(ei+ I)) ] 
1=0 pk 

where e. e C is such y. = [e ., . ] for every i e { 0, ... ,L-1}. 
I I I 

Then by the definition of !!. we have 

+ 
exp[ ~] ::; exp[ _ if(ei)~(ci+l)) ] 

and by the lower bound on pk we obtain that 

exp [ - lofi 1+D) J s exp [ - ~] hol cts, hence 
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L + [ i~O 1/K · exp[ _ (j"(ci)~(ci+l)) ] ~ [liK· exp 

This leads to 

[ [ 
log+(k

1
+D) ] ]L· IP[Xk·L Îl Copt * 01 X{k-I)·L = y] ~ liK· exp r, 

which is equivalent to 

[ [ 
log+(k

1
+D) ] ]L 

IP[Xk· L Îl Copt = 0 I X{k-l)·L = y] < 1 - 1/K · exp r, 

that is 

1 

IP[Xk·L Îl Copt = 01 X(k-l)·L = y] < 1 
1 (k+D )r+T 

-KL. k+D . 

1 

b3) Choosing nk = k · L and 
_ 1 (k+D)r+T 

ek - 1 - Jf · k+D weneed to prove 

00 

n ek o 
k=l 

which requires 

n 
lim n ek 0. 
n-"'" k=l 

To prove this reeall from mathematica! analysis that for any sequence ak e IR 

(k e IN) it holds that 

n "" 
1 im n 0 ak) o iff :L log(l - ak) 
n--;oo k=l k=l 

= .. oe 

Noticing that log(l - ak} :; ak is generally true we can conclude that 

"" n 
:L ak = "" implies lim IT (1 ak) = o. 

k=l n--;oo k= 1 
1 

1 (k+D~L+T Now choosing ak = J<L · k+ we have ek = 1 - ak and 
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n 
This latter implies I i m n Ek = 0 and completes the proof of the theorem. 

n--+oo k= 1 

D 

Notice that based on our general convergence results for stochastic search we 

could prove almost sure convergence for extended simulated annealing in a 

straightforward way. This is a stronger form of convergence than the stochastic 

one provedunder the same conditions in Aarts and Korst (1989). Besides the new 

convergence results this approach opens the way to convergence proofs through a 

general approach considering muitkandidate populations. 
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Searching by Generalized Genetic Algorithms 

In Chapter 1 we emphasized the flexibility of the problem solving component of 

a DSS development tooi. Therefore, we would like to have a generic algorithm 

that can be easily set to several different problem solving methods. We know that 

using the same generic algorithm for many different problem types with only 

some fine tuning on a given problem leads to a loss in efficiency. Nevertheless, 

the use of such an algorithm could save much effort when designing the problem 

solving component of a DSS; moreover it could provide an easy way of adapting 

it if the former version is not applicable anymore. 

The GPS presented in the previous chapter is such a generic procedure. lts 

generality, however, is also somewhat disadvantageous. Having a procedure 

where more details are fixed, there are fewer components that one has to make 

oneself when applying the procedure in a specific case. This means that using a 

more specific version of the GSP as default search procedure could provide more 

support in DSS design then the General Search Procedure. 

In this chapter we study genetic algorithms (GAs) as possible nominees for 

embodying a good balance between being general and detailed. Our reasons to 

choose GAs are threefold. 

First, genetic algorithms are more and more recognized as robust problem 

sol vers. Goldberg (1989) illustrates their performance by the following figure 

129 
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efficiency 
appücation specifïc 
algorithm 
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genetic 
algorithms 

enumeration 

class of problems 

Our second reason was the observation made in Chapter 4 that GAs offer a 

framework incorporating simulated annealing, threshold accepting and hili 

climbing. This implies that taking GAs as default search procedures we still have 

a considerable freedom. 

Third, several authors mention the importance of a so called adapter function in 

decision making, cf. van Hee (1985). Verbeek (1990) describes this function as 

one "to acquire knowledge from plans already constructed in the form of detecting 

quality characteristics". This feature can be understood in two ways: 

I) trying to gain knowledge from examining several planning sessions and 

making up new planning heuristics; or 

2) regarding one planning session where we evaluate plans we make during 

planning and try to detect correlations betweentheir structure and quality. 

If we take the latter interpretation then we find a striking resemblance with the 

basic genetic principle, since a GA works by pursuing good quality gene patterns 

that contribute to a high fitness value. 

Genetic algorithms are (stochastic) search methods based on biologica! 

principles. Although they have numerous applications in classifier systems and 

self-leaming systems, cf. Grefenstette (1985,1987), Schaffer (1989), primarily they 
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are approximation algorithms to find the maximum (minimum) of an objective 

function over a finite search space. The biologica! analogies have helped a lot 

with inventing and investigating genetic algorithms, Holland (1975), De Jong 

(1980), Goldberg (1989). We fee!, however, that these analogies form an obstacle 

in the sense that there are certain GA conventions that could be dropped without 

dropping the basic principles bebind GAs. What are these basic principles? In 

our opinion, they are the following. 

a) GAs are applied to a search space the points of which are finite sequences 

over an alphabet. The elements of a sequence are called genes, the sequences 

are seen as individuals or genotypes. 

b) The objective function on the search space (or rather, a transformed version of 

it) is viewed as fitness of the individuals. The goal of a GA is to find 

individuals with maximal fitness value. 

c) In an attempt to find an individual with a maximal fitness value, GAs try to 

detect and exploit correlation between the positioning of genes in individuals. 

As we described it insection 4.3.1, GAs perform this by taking two parentsas 

samples and creating offspring from the genes of the parents. 

Ad (a). 

Determining the syntax of the individuals in a certain problem is often seen as a 

coding step. Again in biologica! terminology. one often considers the entities of 

the original problem, e.g. tours between cities or schedules of a job shop, as 

fenotypes that are coded to genotypes. Using sequences for genotypes is, 

however, not always the most natural choice. For instanee if we have different 

types of genes then sequences are not the most appropriate way to structure them. 

For example, for job shop scheduling the sequence 

ul' .. . ,jn' ml ... , mn' 11 ... , 1n] 

and the table 

t 
n 

can both represent a schedule where the job j. is performed by the machine m. 
I I 

beginning at the timet .. The table, however, seems to be a more natura! choice, 
I 

not mentioning the easiness of distinguishing different types of genes simply by 

the row they are found in. 
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Considering classica! genotypes as one dimensional ones, tables as two 

dimensional ones, one can easily tigure cubic ones etc, for any dimension n e IN. 
By such a generalization we remain within the borders of being 'genetic' if only 

our offspring production shows genetic features. As Suh and van Gucht (1987) 
' state: "the selection of good representations and recombination operators is highly 

correlated". 

Ad (b) 

Surprisingly enough classic GAs optimize according to one fitness function 

although nature certainly judges its creatures by more criteria. This convention of 

GAs can be dropped too taking different priorities into account by using multiple 

fitness functions. This extension also allows us to apply different criteria at 

· selecting parents and at choosing the survivors of a population. Si nee in Ei ben 

and van Hee (1990) we discussed this matter in a broader context we do not go 

into details here. 

Ad (c). 

On one hand, restricting the number of parents to two is literally a natuml 

restriction; biological offspring production never exceeds this nurnber. On the 

other hand, this restrietion is odd since most of the GA people are familiar with 

probability theory, one of the main principles of which is: more samples -more 
certainty. For GAs it would mean that having more parents one could expectedly 

increase the certainty of detecting the strong gene configurations. Preserving the 

GA principles one could take n (n ~ 2) parents and define gene recombination 

operators that produce children of them. 

Although such production functions might not be crossover-like, they still should 

be considered as genetic ones if they are for propagating strong gene patterns. De 

Jong (1985,1987) addresses the probieros of new representations and new gene 

recombination methods stressing the imponance "to invent new operators better 

suited to the [new] representation". 
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5.1 Multiparent Production 

In this section we define a generalized form of gene recombination based on the 

classic sequential genotypes where in general n (n > 0) parents can produce 

children. We present a general offspring production procedure that incorporates 

many known gene recombination operators. Hereby we are aiming at multiple 

objectives: 

1) We explicitly point out the fact that crossover is only one way of creating 

children and so is our procedure. This may give impetus to inventing other 

non standard methods. 

2) Within the frameworkof our procedure we identify components that might be 

problem specific. Hereby we locate where beuristics can be incorporated, with 

other words where domain knowledge can be used. 

3) Our general procedure can be used as a framework that facilitates designing 

different recombination operators. Hereby it supports one of the crucial steps 

of creating a GA. 

Let V be a finite set, L :?: 1 and let us take the search space C = V L. In the 

genetic terminology a candidate c is called a genotype. When interested in the 

inside of candidates we shall denote them as 

c = (c.l, ... , c.L), 

where c.i e V (i e ( 1, ... , L)) are the ge nes of c. 

Definition 5.1.1 

Let c e C be a genotype. A marker is a number k e {1, ... , L), the gene marked 

by k in c is c .k. 

0 

To make a child of n parents c
1 

= (c
1
.1, ... , c

1
.L), ... , en= (cn.1, ... , cn.L) we 

scan their genes. More precisely, we mark one gene of them each and make the 

child gene by gene choosing from the marked genes. The hint and the first 

examples of such production functions is due to Nuijten (1990). 
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PROCEDURE scan 

BEGIN 

initialize markers k
1
, ... , k n 

j := 1 

WHILE j-;,L DO 

BEGIN 

Chapter 5 

piek one gene c .. k. of the marked genes c
1
.k

1
, ... , c .k of the parents and 

1 1 n n 
let c .. k. be the j-th gene of the child 

I I 

update the markers 

j := j +I 

END 

END 

Notice that scan can be seen as a highly parameterized procedure; the main 

outlines are set but initialize, piek and update need to be given to obtain different 

recombination methods. Many known genetic operators can be considered as a 

special form of scanning with n = 2, distinguished by different initialize, piek and 

update mechanisms. 

Example 5.1.2 (I-point crossover) 

The classical I-point crossover operadon (described in section 4.3.I) can be 

obtained by the following. Let n = 2, initialize the markers as k
1 

= 1, ... , kn = I 

and let us choose the j-th gene of the child by 

[ 

k ifl-;,j-;,[ 

piek( I c rk1, c2.k2 )) = ::.k: if 1 < j < N 
where 1 E { 1, ... , N} is drawn randomly. 

Furthermore let us apply a simple update shifting the markers to the right by one 

position in each cycle. 

D 

Observe that in the I-point crossover initialize, piek and update are problem 

independent. There are more sophisticated crossovers known that use domain 

knowledge when picking the actual gene of the child and also their updating 

mechanism is tailored. 
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Example 5.1.3 (Heuristic crossover) 

This method, cf. Grefenstette et al. (1985), is elaborated for the Travelling 

Salesman Problem. The set V is the set of cities and a tour is coded by adjacency 

representation as a permutation of cities. The method makes use of a function 

D : V x V-. IR+ that represents the distance between the cities. 

We can describe heuristic crossover as scanning to produce a child c by: 

- n = 2; 

- taking a random city c .1 e V as the staring point of the child's tour; 

- initializing the markers at those genes (cities) that follow c.1 in the parents; 

- picking that city for cj U> l) that provides the shorter edge teaving c.(i-1) or if 

D 

the shoTter edge wou1d introduce a cycle in the child the picking randomly a 

one that does not introduce a cycle; 

update the markers such that the marked cities follow the last picked city in the 

given parent 

The name of the above method shows how the authors envisage it. Sensing that 

the presence of a problem dependent factor (using the distances) is characteristic 

they named their crossover heuristic. Liepins et aL ( 1987) also studîed this 

crossover calling it greedy. This name shows what is important for them: not the 

fact that prob1em dependent domain knowledge is used but the way it is used. 

In Mühlenbein (1989) chi1dren are produced by a so called p-sexual voting 

recombination. It is a real multiparent method for p parents, although the name 

p-sexual is not a very good one. Namely, the author does not distinguish different 

sexes among the individuals requiring that one parent of each sex is needed for 

mating. The other characteristic feature is voting. Interpreted in our terms it is a 

yet another heuristic where piek chooses the gene with the highest occurrence 

among the marked genes if only it occurs more times then a threshold. 

In our tests (see later) we used a scanning procedure for PCSP, generating newly 

ordered sequences of jobs by similar piek heuristics. 

Example 5.1.4 

We use the scan procedure to L long sequences of jobs (symbols of an alphabet 

V). A child of n (n ;::: 2) parents is created by: 

- initializing the markers as k
1 

= 1, ... , kn 1; 
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- for the j-th gene of the child we piek that marked gene of the parents that 

belongs to the job with the longest processing time; 

c 

update after creatîng the Fth gene of the child c happens by setting 

k. min( l e (j, ... , N) I c..l è (c.1, ... , c.j) ) for each parent c. 
l , l I 

(ie (1, ... , n}). 

Notice also that the applicatîon domain of the above update is not restricted to 

PCSP. It can be applîed for any problem where the individuals are permutations 

of the elements of the alphabet V, for instanee TSP. In such a case the child of 

permutarions should be a permutation as well and this is exactly what this update 

is taking care of. Hereby we can solve a problem of permutation representation 

·mentioned in Grefenstette et al. (1985), namely that of legal tour generation. 

5.2 Multidimensional Genotypes 

In this sectien we study extended genotypes. We observe that several authors, 

e.g. Mühlenbein (1989), Genits and Hogeweg (1991), Colomi, Dorigo and 

Maniezzo (1991) apply tables as genetypes instead of the usual gene sequences. 

Formalizing such extensions we introduce n-dimensional genetypes and in 

particu1ar we investigate the case of 2-dimensions. Hereby we are aiming at 

making the possibility of using non sequentia! genetypes explicit. 

Definition 5.2.1 

Let V be a finite set. the alphabet. An n-dimensional genorype can be defined as 

an n-dimensional matrix over A, where the elementsof the matrix have n indices. 

In particular, a 2-dimensional genotype of (size K · L) is a table 

wherev .. e Vforeveryie (1, ... ,K},je {1, ... ,L}. 
I) 

D 
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A bit more sophisticated form of 2-dimensional genotypes is obtained if we 

distinguish different types of genes and use the spatial relationships to structure 

them. 

Definition 5.2.2 

Let V 
1
, •.. , V K be fini te sets and let each Vi be interpreted as a type of gene. A 

structured 2-dimensiona/ genotype (with size K·L) is a table 

where v .. e V. for every ie { 1, ... , K), je { 1, ... , L}. 
Ij I 

D 

Example 5.2.3 

The case of job shop mentioned before belongs to this latter sort of 2-dimensional 

genotypes. It can be described by ha ving V 
1 

the set of jobs, V 
2 

the set of 

machines and v
3 

the set of time instances in consideration. In our tests we used 

this coding. 

IJ 

There are obviously numerous ways to produce children from tables as parents. 

- Mühlenbeim (1989) uses a pointwise construction method; 

- Colorni, Dorigo and Maniezzo (1991) use a crossover-like method making 

children from the rows of the parents; 

- Oerrits and Hogeweg (1991) apply column exchanges in a problem specitic 

way. 

The latter two can be seen as 'Cartesian recombination' between parent tables or 

as a generalization of 1-dimensional crossover if we consicter rows (columns) as 

meta genes. Next we elaborate a child production method combining Cartesian 

and genetic features. For the sake of convenience we consicter the case of K = 2 

and row exchanges as a basis. 

Let us assume that we have two sets of genes V
1 

and V
2 

and the individuals are 

structured two dimensional genotypes of the form 
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[
VIl '''VIL l 
v21 ... v2L 

L L 
where [ v11 ..• VIL] E V1 and [ v21 ... V2L] E V2 . 

Chapter 5 

Furtheqnore, let us assume that we have two one dimensional multiparent 

production functions F
1 

on v
1
L, F

2 
on v

2
L each creating a child of n parents. Let 

[ v~ 1 • • • v~L I 
·' vn v 21 ... 2L 

be n individuals for the sake of convenience abbreviated as 

Below we display the possibilities of obtaining children by row exchanges, F 
1 

and 

F2. 

1 vj n 1 n 
v2 2 v2 F 2(v2 , ... , v2) 

1 
VI 

i 
VI [:l] [F2(v~ :: .. , v~ l 
n 

VI 

F1 (v~ , ... , v~) 
[F1(v: ~i·., V~ : [F1(v:. · · .. v? l 

F2(v2, ... , v2) 
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[ vv~; I The element denotes the child obtained by combining the first row of the 

i-th parent with the second row of the f·th parent F I (v~ , ..... , v~) and 

F 2(vi , ... , v;) denote the one dimensional child obtained by applying the one 

production functions F I and F 2 to the first, respectively second rows of the above 

tab les. 

Observe that the n2 elements at the upper left .side are purely 'Cartesian', the 

(n+ 1 )2 n2 elements of the last row and the last column are really genetic ones. 

It is easy to see that in general (n+ 1 )K ebild.ren can be produced in this way, 

where nK are purely Cartesian and (n+l)K- nK are really genetic. 

The above figure can help to make offspring production methods on ones own. 

Any set of the children displayed above (for instanee the ones in the last row) can 

be taken as offspring of these parents. The possibilities are still manifold even for 

K 2, e.g. column exchanges or exchanges of sub-rectangles. 

5.3 Selection, Rednetion and Evaluation 

Besides the set of manipulations and a production function, in the default search 

procedure we have to define selection, rednetion and evaluation functions as well. 

Below we discuss how these functions can be defined and we give a set of options 

that are typical in genetic algorithms but can be used in generaL 

The standard way in a GA is to select (reduce) basedon the objective function 

value of the candidates. However, some natura! principles with respect to 

selection (reduction) presurne properties of the objective function that do not 

always hold. In such a case we have to make use of the objective function 

indirectly. 

l) Let g be is a non negative transformed version of the original objective 

function f such that candidates with a larger g value are better, i.e. have a 

smaller f value. This function g is mostly called the fitness function. A 

frequently applied random selection (reduction) methad is to select (reduce) 

randomly giving higher chance to fit candidates, e.g. by a distribution 
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assigning the probability 

P(c,n) 
g(c) 

:E g(d) 
de X 

n 

Chapter 5 

to the camlidare c in the n-th population X . Notice that such a selection 
n 

(reduction) function is generous in the sense of Definitions 4.4.12 and 4.4.14 

if g is positive. 

2) Another possibility is a best first like selection (reduction), choosing only elite 
* candidates, that is choosing such that for every ~ e B, ö e 11, x,y e C 

I:J c E V F (~.X) 1:J d E (X\ V F (~,x)) : g(c) ';?. g(d), 
s s 

or 

I:J c e F (ö,x,y) I:J de (x v y \ F (ö,x,y)) : g(c):?. g(d). r r 
3) A third way can be to combine the first two ideas and if there must be n 

(n > 1) candidates chosen (for being a parent or to survive) then choosing 

k < n elite ones and n- kat random. 

4) A special way of reduction is to let every newly produced child to survive, i.e. 

having a reduction function satisfying 

x ç; F (ö,x,y) 
r 

* for every ö e /1, x,y e C . 

5) In case we have a souree element 0' in the search space (see Definition 4.4.17), 

then a 0'-preserving reduction function may be needed. In this case the souree 

element 0' always 'survives' together with some other candidates that can be 

chosen according to thè above principles. 

The evaluation function of a search procedure p1ays the role of the terrnination 

condirion. The natural choice of setting F equivalent to the goal condition of the 
e 

given search problem is not always applicable in practice. As we discussed it in 

section 3.1, this can occur if an optimization is to be solved. In such a case one 

often applies terrnination conditions such as for instance: 

a) F (X ) = true <:==> min { f(c) I c EX ] ~ D 
e n n 

where D is a given bound; 

b) F (X ) = true <:==> min I f(c) I c e X 1 ] min {f(c) I c e X } ~ D 
e n n- n 

where D > 0 is a border given in advance; 
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c) F (X)= true Ç:::} n '?. N 
e n 

with Ne IN given in advance. 

Notice that every option listed above for a selection, reduction and evaluation 

function is problem independent; they can be applied to optimization problems in 

generaL Their use is not restricted to genetic algorithms, which makes it possible 

to include these sets of options in a generic DSS development tooi. Hereby we 

can reduce the efforts of DSS development by allowing the DSS designer to chose 

one of these options when creating a DSS. 



CHAPTER 6 

Towards a Software Tool for DSS Design 

In the previous chapters we developed a model of planning problems and a 

model of search as problem solving method. Here we sketch how a generic 

software tooi for DSS design can be based on these models. Strictly speaking, we 

do not consicter the design of a complete DSS, we restriet ourselves to the problem 

definition an~ problem solving components. 

6.1 Problem Definition Component 

The module of a DSS tooi that facilitates problem definition must be able to 

receive and interpret information needed for the definition of a planning problem. 

According to the model elaborated in Chapter 2 this module is receiving as input: 

- background data; 

- the definition of possible actions and time instances; 

- the definition of pre-states; 

- the correctness condition defining states; 

- allowability conditions and a goal condition; 

- the effect description; 

- the evaluation criterion; 

- the definition of an initia! state. 

142 
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Let us note that for the sake of convenience we use a static planning terminology 

along this chapter, that is we always refer to a 'state' instead of a 'state or 

process', etc. 

On the above basis we can expect the following functions from this module. 

Accepting a problem description, i.e. the definition of a planning problem. 

- Facilitating the modification of the problem description by allowing 

modification of the data and the above given items (e.g. redefining allowability 

or the evaluation criterion). 

The DSS created in this way should then be able to perform the following tasks. 

- Representing and displaying plans. 

Supporting hand made planning by allowing the user to manipulate plans. 

- Computing a' and e' automatically from the definitions of a and e. 
Answering queries like 

· is the pre-state s a state (i.e. does it satisfy the correctness condition)? 

· is the operation o (plan P) allowed at state s? 

· which state is obtained if we apply the operation o (plan P) to state s? 

· does the state s satisfy the goal condition? 

· is the plan P a solution of the planning problem? 

· what is the value .of plan P according to the given criterion? 

As the language of the problem definition module we propose the following. 

There must be a data language to define relevant objects, permanent functions 

and permanent relations that wil! be used. Por the TSP in section 2.2.1 the data 

should describe the setZand the function D. Data modelling is an important part 

of software development but it would go beyond the purpose of this chapter to 

discuss it in details. Nevertheless, let us remark that relational algebra is 

advisable for data description since it provides a theoretically and practically 

proved approach for data modeHing and it can be smoothly linked to a logic 

fashioned language introduced below. 

Note that based on the given data and standard arithmetics, we have the 

following at our disposal: 
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- constants (objects from the data description and arithmetic constants e.g. the 

real numbers); 

- function symbols denoting permanent functions and standard arithmetic 

functions; 

- relation symbols denoting permanent relations and standard arithmetic relations. 

These items determine a flrst order language such that the truth value of its 

formulae can be computed by the given data and an arithmetic computation unit. 

Next, let us extend the this first order language by adding relation symbols 

denoting temporary relations and let us denote the resulting flrst order language by 

L. Hereby the pre-states are determined as sets of temporary atoms, that is atoms 

containing only relation symbols denoting temporary relations. Notice that the 

truth value of a formula of L that contains a temporary atom can be computed 

·with respect to pre-states only. The deflnition of the truth value of a temporary 

atom r(x) with respect to a pre-state s can be based on the identiflcation of 

r(x) e s and s r(x). Thereafter, the truth value of every atom (temporary and 

permanent) can be determined and the truth of an arbitrary forrnula of L with 

respect to a pre-state can be deflned by standard formula induction. 

A correctness condition that defines states as pre-states satisfying this condition 

can be given as a well formed formula (wff) in L. Remember that for TSP this 

formula was: 

3! x e Z : at(x). 

Note that the goal condition is also a statement about states, therefore L is also 

appropriate to express it. Insection 2.2.1 we used the formula 

at(z 
1
) A V z e Z : seen(z); 

Naturally, we also have to deflne the narnes of actions. If the set of time 

instances is also known for instanee IR by default - then hereby the set of 

operations becomes defined and so does the set of all plans. To deflne the 

allowability of operations we need requirements about the state an operation is 

applied to. Also these conditions of allowability can be expressed in L, possibly 

by one condition for each different action. Since in a TSP we had only one action 

- to(x,y)- we needed only one formula as a condition: 

at(x) A ..., seen(y). 
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Observe that states are fonnally sets of atoms hence their changes are easy to 

express in tenns of v and \ . This implies that we need to surpass the first order 

language L and introduce an effect language EL in a functional fashion based on 

set operations. Again, we can expect that to each action there belongs a correct 

expression of EL, for instanee for to(x,y) we gave 

(s\ {at(x)}) v {at(y), seen(y)} 

in section 2.2.1. 

Finally, evaluation criteria can be defined as arithmetic expressions possibly 

relying on the given data. The criterion in case of the TSP was 

m 
K({ (to(xl'y1),t

1), ... , (to(x ,y"),t ) )) = î. D(x.,y.). 
m m i=l 1 1 

The definition of an initial state requires that we explicitly give a set of atoms of 

L that satisfies the correctness condition. For the TSP the set 

{at(z
1
)} 

was given as initial state. 

Notice that such a logic fashioned language for problem specification is human 

friendly in the sense that non-experts without much experience are likely to read 

and write sentences of such a language. This feature makes it possible that the 

access to these items be left free after the DSS design phase, that is that even the 

user of the DSS is allowed to modify these parameters. Observe that hereby the 

flexibility of the DSS tool can be carried over to the DSS itself. 

Next to the definition of a planning problem the DSS tool must also support the 

definition of a search problem. The search problem (C, !pf !p g) should be defined 

such that it fits the given planning problem. If there is no hard argument against 

it, then we suggest that the default free search space is used together with the 

default representation and interpretation function (see section 3.2). Note that these 

can be created automatically from description of the planning problem. 

The functions of the submodule facilitating search problem definition can then 

be listed as follows. 

- Taking the default search problem betonging to the given planning problem. 
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Adding extra conditions on plans restricting the default feasibility and goal 

conditions. 

- Defining non-default feasibility and goal conditions to a given planning 

problem. 

- Supporting the definition of feasibility and goal conditions on plans without 

having defined the full planning problem (recall the remarks after definition 

3.2.4). 

Notice that the necessary data and the set of plans can be defined without 

formally defining the world states, allowability and the effect function. If we have 

- constants (objects from the data description and arithmetic constants e.g. the 

real numbers); 

- function symbols denoting permanent functions and standard arithmetic 

functions; 

- relation symbols denoting permanent relations and standard arithmetic relations 

together with the set of actions and time instances, then the set of all plans is 

determined and so is a first order language L' !: L wherein we can express 

feasibility and goal conditions for a format search problem. This permits that we 

omit the analysis and the specificadon of states and effects immediately defining 

plans as candidates and <p/ and <p g by wffs in L'. Let us remark that in the 

examples of Chapter 3 the given <p/ and <p g were expressed in such a manner. For 

the TSP in section 3.3.1 we had the default form of candidates, that is 

[:: : : : :: l 
tl tk 

where a column 

[;: l 
I 

belonged to an operation (to(u.,v .),t.). The feasibility condition for a candidate in 
I I I 

the above form was given as 

'V ie {1, ... ,k-1} : t1:;;: ti+l 11 'V ie { 1, ... ,k-1} : v1 = ui+l 11 u1 = z1 
The evaluation criterion K for a candidate in the above form was defined as 

k 
L D(u.,v.), 

i=l l I 

and the goal condition was given as 
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V ie (l, ... ,k-1) :t."#t.
1 

1\ Vie (l, ... ,k-1) :v.=u.
1

/\ u
1

=z
1 

1\ k=n 
I I+ I I+ 

1\ v n = zl . 

Reeall that an appropriate search problem is not only depending on the given 

planning problem but also on the intended salution methad. With respect to a 

salution methad we have basically two choices: either an construction or an 

iteration methad can be applied. Choosing between the two the following 

arguments can be considered: 

- for highly constrained problems it can be very difficult to produce feasible 

offspring of candidates, thus a (stepwise) construction methad can be easier than 

iteration in the space of feasible candidates; 

- if there are evaluation criteria involved then we have an optimization problem, 

in which case iteration, in particular improvement, is the commonly made 

choice; 

- construction may be applied even for optimization; in section 4.2 we presented 

a general construction methad in an iterative fashion, based on the use of 

beuristics (dispatch rules) to extend the empty plan step by step towards a good 

plan. 

Notice that if the planning problem is defined, then correct feasibility and goal 

conditions for an appropriate search problem can be derived automatically. 

6.2 Solution Metbod Definition Component 

The module of a DSS tool that facilitates the definition of a problem solving 

methad must be able to receive and interpret information needed to define a 

search procedure. The language to define a search procedure should be 

appropriate to define manipulations on plans, initialization and the selection, 

praduction, reduction and evaluation functions. Two kinds of choices for such a 

language are: 

- an executable specification language, e.g. ExSpect, cf. van Hee, Somers and 

Voorhoeve (1989); 

- an imperative programming language (Pascal, C). 
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Notice that these options for the specification language of the solution method are 

lacking the human friendliness of logic fashioned languages. This implies that the 

user of the DSS would have only limited access to the inside of problem solving 

mechanism. Nevenheless, we can assembie a library of (parameterized) 

components of search procedures (e.g. several kinds of selection functions) and 

support the composition of a search procedure from this library. This library can 

be used within the DSS tooi - thus in the DSS development phase as well as 

within the DSS. By allowing the user to (re)compose procedures and by letting 

him tune the parameters of the components it is possible to provide flexibility for 

the problem solving section too. This seems to be a promising approach as far as 

selection, reduction and evaluation are concerned. Other items, however, such as 

the set of manipulations and offspring production seem to be too problem 

· dependent to be defined in a generally usabie manner. Nevertheless, if we restriet 

ourselves to the generalized genetic framework discussed in Chapter 5, then we 

can provide guidelines even for defining manipulations and offspring production. 

We return to this question later, after discussing other aspects of defining a search 

procedure. 

If we already have a search problem that fits the original planning problem then 

a search procedure has to be defined. Since the search space is already 

deterrnined, c. . , M, F , F , F and F need to be defined, that is the initia! 
mlt spr e 

candidate(s), the set of manipulations, the selection function, the production 

function, the reduction function and the evaluation function. By the following 

figure we give a global illustration of how a search procedure can be defined. By 

1-- X and X --; we mean that the item X has to be given by the DSS designer. 

The interpretation of [ 1-- X ] is that the item X does not necessarily have to be 

defined, it can be chosen from a set of provided options. The textual explanation 

is given below. 
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Construction 

?(a,t)-; 
<])-; 

IPCS 
procedure 

?(a,t)-; 
<I) 

IPCI 
procedure 
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Iteration 

[ t-F F F ] 
c s e 

t-M 

The notation above denotes an and-node in the graph, 

indicating that both branches have to be taken. 

If one wants to find a solution by construction then by the Iterative Plan 

Construction for Solution procedure (Definition 4.2.14) we can offer a reasonable 

support. Namely in the IPCS procedure M, P . . , P , P and P are already 
mu s r e 

defined. The system designers work is thus reduced to complete the definition of 

the production function by 

- determining the condition <I> that tells whether to extend or shrink the actual 

plan; 

finding good beuristics (dispatch rules) to choose the operation (a,t) that is 

added to I subtracted from the actual plan. 

If one is willing to apply an iteration (improvement) procedure then an 

initialization and an iteration part have to be made. 

We can offer support for initialization by the Iterative Plan Construction for 

Initialization procedure as given in Definition 4.2.13. Here again, most of the 

components are already defined and only the definition of the production function 

has to be completed by 
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- detennining the condition $ that tells whether to extend or shrink the actual 

plan; 

- finding good heuristics to choose the operation (a,t) that is added to I subtracted 

from the actual plan. 

lf one chooses a non improvement iteration method then we can offer two 

generic procedures in this spirit: depth first search and breadth first search, defined 

insection 4.3.4. and 4.3.5. As we remarkedit there, these procedurescan be hard 

coded in advance, only leaving two parameters free: the applied manipulation 
* m : D -H D and an initia! candidate. 

For having an impravement procedure one has to define each of M, F , F , F , 
s p r 

F . We pay special attention to this case and discuss it below. 
e 

Defining manipulations is a highly problem dependent step where we can offer 

little suppon in generaL Nonetheless, if one agrees to work within the generalized 

genetic framework discussed in Chapter 5, then he can rely on the procedure scan. 
Taking it as the general way to describe manipulations the design is better shaped: 

init, piek and update have to be given. Since within this framework one can 

define many different kinds of offspring production methods, we advise to use it, 

unless the manipulations the designer has in mind do not fit this form. 

Designing a selection function to choose the parents from the actual population 

can be reasonably supported in generaL In section 5.3 we listed some generally 

applicable options, for example: 

- select parents fully at random; 

select only elite parents, that is candidates that are better then other candidates 

according to some criterion; 

- select a number of elite parents and some other ones randomly. 

Next to such problem independent possibilities one can apply heuristics, that is a 

problem dependent manner of selecting, relying on the given domain knowledge. 

The production function generates the children of the chosen parents. If for 

every parent-list there is only one manipulation applicable then the production 

mechanism is determined by Mand F. If, however, there are more possibilities, 
s 
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e.g. different mutations possible then the role of F is important. Standard ways 
p 

to handle such cases are choosing yet other manipulations in turn, or defining F 
p 

such that it chooses between the given possibilities randomly according to a given 

distribution. 

Sirnilarly to the selection function we can reasonably support the definition of F 
r 

by options. The basic principles to choose the survivors are very similar to those 

of se1ecting the parentsas the items (1) (5) insection 5.3 indicate. 

Reeall the remark after Definition 3.1.11 about the difficulties to verify 

optimality. Therefore we present three practically applicable evaluation functions: 

giving a bound B > 0 and defining the value of F (x) true if f(c) ::;; B holds 
e 

for a candidate c e x; 

- stopping if the improvement by the last iteration step remains under a certain 

level; 

- stopping if the number of iteration cycli reaches a limit. 

There is a condusion we can draw from the foregoing: the crucial factors in 

designing a search procedure are the manipulations and the production function. 

These should be suited to the problem and at the moment we do not see many 

possibilities to provide automatic support for their definition. Let us point out 

another step that seems to be crucial: initialization. Although we could present a 

general construction-initialization procedure, we foresee that it can be 

advantageous to make the initialization step by a more problem suited algorithm. 
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Final Remarks 

The field of decision support systems is "lacking conceptual research-oriented 

articles", as reported by Elam, Huber and Hurt (1986). In practice, the 

development of a DSS is mostly a case-bounded activity, repeated for every new 

decision problem. Iri this thesis we describe a mainly theoretica! investigation 

directed at setting the outlines of a generic DSS development tooi. Concentrating 

on the automatic decision generation function within a DSS we distinguish two 

main issues of interest: problem description and problem sol ving. We study them 

both independently and elaborate a theoretica! model of planning problems and 

search procedures. The underlying idea of our approach is to have these models 

implemented by software that facilitates the definition of instances of the models. 

By building decision support systems with the aid of such a tooi, DSS design 

could he carried out more systematically and with less effort than by the case 

specific practice of today. 

Based on the notions of world states, actions and time we work out a planning 

theory. Time is explicitly present in our model of planning problems, which 

makes it possible to notice and handle difficulties of parallel actions. Discovering 

the limits of modeHing only static world situations we introduce dynamic planning 

models and clarify their relationship to static ones. Finally, observing conflicts 

between intuition and the formal model, we discover the importance of the so 

152 



Final Remarks 153 

called Delenninative Past Assumption in dynamic planning situations. By the 

theory we obtain a clear terminology and a general framework facilitating the 

definition of specific planning problems. Hereby we also lay the basis of the 

problem definition component of a generic DSS tool. 

As for the problem solving part, we model stochastic space search procedures. 

The elaborated model incorporates features of graph search and local search 

methods, enlightening their relationships. By the General Search Procedure we 

distinguish the most essential components of a wide scale of search methods, 

ranging from depth first search to genetic algorithms. ModeHing successive 

iteration cycli of the search by Markov chains, we prove general convergence 

results for methods applied to optimization problems, in particular simulated 

annealing. Special attention is paid to genetic algorithms. By generalizing 

classica! genetic features we obtain a class of search procedures that can serve as 

a default problem solving method in DSSs. 

To gain early feedback whether our problem solving approach is practicabie we 

made a shell prototype based on the General Search Procedure. This prototype 

was implemented in C++ and it supported the definition of genetic-like search 

procedures for different optimization problems, cf. Nuijten (1990). With the aid 

of the shell we could define a search procedure and obtain an executable program 

to run evolutions. Plans were represented in a table (list) form as discussed in 

Chapter 3. By the absence of the problem definition component, feasibility and 

goal conditions had to be defined in the spirit of section 3.3. A set of options for 

each of the selection, reduction and the evaluation function was implemented in a 

problem independent manner as discussed in the foregoing. Support at the 

definition of a search procedure was thus partly realized by providing the 

possibility of choosing among these options. Hence, using this shell it was 

enough to concentrale on the design of the predicted problem dependent 

components such as initialization, the manipulations and offspring production. 

For the latter two we applied the generalized genetic framework using scanning 

with the heuristics described in Example 5.1.3 and Example 5.1.4. We have 

defined mutation and multiparent production as manipulations, the production 

function applied them randomly with a certain given distribution. 
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We experienced that it was simple to define search procedures by using our 

shell. More precisely, we found that it was quite easy to compose a genetic-like 

search procedure by the given options - if only we have coded manipulations and 

initialization already. Although the shell is just a prototype we gained feedback 

about the practicability of our approach to DSS design and confrrmed that one can 

develop the decision generating subsystem of a DSS based on our notions. 

The usefulness of such a shell is of course also depending on the quality of the 

search procedures created with the aid of it. To test it we applied the shell for 

making impravement algorithms for handling TSP and PCSP. We made runs to 

test the efficiency and the effectivity of the procedures. For the TSP we ran 500 

tests with a 120 city problem from Grötschel (1977) and obtained an average tour 

length of 7952.7 (14.6% above the optimum). For the PCSP we took the FIS2 

înstance with 10 machines and 100 jobs from Fischer (1963). After 500 runs the 

average length of the obtained schedules was 1037.6 (11.6% above the optimum). 

The efficiency of our procedures was moderate: the computation times were 

between 10-15 minutes on a Sun SP ARC station for each problem. 

From a practical point of view, we can say that the aim of a decision generation 

procedure is not to find a theoretically optimal decision, but to find better 

decisions than a man would do. To make a rough comparison with human 

planners, the same problem instances were also given to ten colleagues. We 

observed that for the TSP they slightly outperformed our procedure by achieving 

an average tour length of 7738.3 (11.5% above optimum) within about 10-15 

minutes, while the figures for the PCSP are 1080.8 (16.2% above the optimum) 

obtained after 1-3 hours of thinking. 

These results have an illustrative value demonstrating that taking search 

procedures as the basis of problem solving in a DSS is a sound approach. 

Whether or not this approach is really practicabie will, however, only be certain if 

more realistic (harder) problems can also be handled within acceptable 

computation times. 

Future work has to be directed at mainly practical issues. The implementation of 

a problem definition component has to be carried out based on the language we 

sketched in section 6.1. Here we will have to handle questions about data 

management and interfacing. The prototype of the component supporting the 

definition of a problem solving metbod has to be extended such that a good 
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balance is reached between being free and having restrictions by built in features 

when composing a search procedure. A library of components of search 

procedures has to be made and made accessible to the DSS designer as well as the 

user of the created DSS. Here the issue of man-machine interaction during 

problem solving has to be treated. At last, the border between the DSS tooi and 

DSSs has to be defined. This means that for both the problem definition and the 

solution metbod definition component it neects to be decided which parameters are 

fixed by the DSS designer and which ones can be modified later by the user of the 

created DSS. 
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Samenvatting 

In dit proefschrift wordt een onderzoek beschreven dat gericht is op het 

verkrijgen van generieke softwaregereedschappen die het ontwikkelen van 

decision support systems (DSS) voor operationele planningsproblemen uit de 

praktijk makkelijker, sneller en dus goedkoper maken dan de hedendaagse 

technieken. Wij beperken ons tot het (semi-) automatisch genereren van 

beslissingen, zodat man-machine interactie, user interfaces, data- en 

modelmanagement buiten beschouwing worden gelaten. Een theoretisch 

onderzoek wordt uitgevoerd dat zich richt op het formeel modelleren van 

planningsproblemen en oplosmethoden. 

Eerst wordt in Hoofdstuk 2 een theoretisch model van planningsproblemen 

uitgewerkt en worden theoretische aspecten van zulke problemen besproken. 

Daarna worden vijf planningsproblemen gespecificeerd met behulp van de 

aangeboden theorie. Hierdoor ontstaan richtlijnen voor een wijze waarop een 

formele beschrijving van een planningsprobleem gegeven kan worden. 

Zoekend naar een passende algemene oplosmethode bestuderen wij 'zoeken', 

'logische redenering' en 'mathematisch programmeren', waarna het paradigma 

'zoeken' gekozen wordt. Wij geven een model van zoekproblemen en 

onderzoeken de relatie tussen planningsproblemen en zoekproblemen. In 

Hoofdstuk 4 wordt op zoekmethoden ingegeaan. Hierbij introduceren wij een 

Algemene ZoekMethode (AZM) en beschrijven enkele bekende typen van 

algoritmen als specialisaties van de AZM. Vervolgens worden convergentie

stellingen bewezen die aangeven aan welke eisen de componenten van een 

zoekmethode moeten voldoen om convergentie van het zoeken naar een oplossing 

te garanderen. Een veelbelovende klasse van zoekmethoden, genetische 

algoritmen (GAs), wordt in meer detail bestudeerd. Interessante eigenschappen 

van GAs zijn dat zij in een ruime probleemklasse redelijk presteren en 

gemakkelijk aangepast kunnen worden als het probleem binnen die klasse -

verandert. 

Aan het einde van het proefschrift maken wij een stap in de richting van de 

volgende onderzoeksfase: het realiseren van generieke software die op basis van 

de voorafgaande theorie het ontwikkelen van een beslissingsondersteunend 

systeem vergemakkelijkt. Door de bevindingen van Hoofdstuk 2 beschikken wij 
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over een geparameteriseerd model dat een grote klasse van planningsproblemen 

omvat. Doordat het model hoog niveau parameters heeft (d.w.z. parameters die 

expressies van een taal met een grote expressieve kracht als waarde kunnen 

hebben) is het specificeren van concrete instantiaties relatief eenvoudig. Voor het 

model van oplosmethoden gaat deze laatste eigenschap in mindere mate op. 

Hoewel bij het definiëren van een zoekprocedure men gebruik kan maken van de 

AZM, kan het geven van een volledige definitie nogal veel werk vereisen. Er zijn 

echter componenten van de AZM waarvoor een op brede schaal bruikbare 

invulling kan worden gegeven. Als bovendien de meer beperkte klasse van 

genetische algoritmen wordt beschouwd, is het mogelijk om richtlijnen te geven 

voor de ontwikkeling van de overige componenten van een zoekprocedure. 

Het door dit proefschrift beschreven onderzoek is theoretisch van aard; het legt 

de conceptuele basis voor een methode en generieke software voor 

DSS-ontwikkeling. De echte praktische bruikbaarheid van onze benadering kan 

niettemin alleen door nadere tests met een volledig uitgebouwd tooi vastgesteld 

worden. 
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Stellingen behorend bij het proefschrift 

A MEntOD R>R DESIGNING DECISION SUPPORT SYSTEMS R>R 
OPERATIONAL PLANNING 

van A.E. Eiben 

I. Theorem I in UI stelt dat als een logisch programmaP geen interne variabelen 
heeft en dichotoom is, er een complementair programma voor P bestaat. In 
deze stelling is echter de conditie van dichotomie overbodig. 

[ 11 Sato, T. and Tamaki, H., Transforrnational logic program synthesis, 
Proceedings of the International Conference on Fifth Generation Computer 
Systems, ed. by ICOT, Nonh-Holland, 1984. 

2. Het onderscheid tussen statische en dynamische planningssituaties is 
essentieel. Doordat de tijd in beide situaties een verschillende rol speelt, zijn 
de cruciale eigenschappen van die twee situaties onverenigbaar. (zie 
Hoofdstuk 2 van dit proefschrift) 

3. De term graafalgoritme kan op twee verschillende manieren geïnterpreteerd 
worden. Omdat die twee interpretaties zelden onderscheiden worden, ontstaat 
er verwarring in het woordgebruik. (zie Hoofdstuk 3 van dit proefschrift) 

4. De biologische analogieën die meegeholpen hebben met het funderen van 
genetische algoritmen, cf. [ 1,2), zijn belemmerend. Namelijk, door het niet 
beperken van genotypen tot eindige 0-l rijen, het toelaten van meer dan twee 
ouders en het toepassen van niet crossover-achtige genetische recombinatie 
wordt een ruimere klasse van genetische algoritmen verkregen dan nu wordt 
gebruikt. (zie Hoofdstuk 5 van dit proefschrift) 

[I] Holland, J.H., Adaptation in Natura/ and Artificial Systems, Univ. of 
Michigan Press, 1975. 

[2] Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine 
Learning, Addison-Wesley, 1989. 

5. De relatieve inefficiëntie van een algemeen toepasbaar algoritme ten opzichte 
van een toegesneden algoritme wordt onbelangrijk als de betreffende 
executietijden onder een bepaalde grens vallen. Daar veel praktische 
problemen toch van een beperkte omvang zijn en de gebruikte hardware steeds 
krachtiger wordt, geeft deze observatie bestaansrecht aan algemeen toepasbare 
maar (nog) trage oplossingstechnieken. 



6. Omdat probleemspecificaties de brug vormen tussen ret!le problemen en de 
wereld van formele oplosmethoden, valt het fonneel niet te bewijzen dat een 
specificatie correct is. Daarom is de intuïtieve verificatie van de correctheid 
van een specificatie van dennate groot belang dat specificatiemethoden 
gebaseerd op een taal waarvan het niveau voldoende hoog is, ronder twijfel 
zijn aan te bevelen. 

7. In {I) definieen Mars kennissystemen als systemen waar "zo goed mogelijk 
een scheiding is aangebracht tussen toepassingsgebied-<>nafhankelijke 
afleidingsregels en toepassingsgebied-!ipecifieke kennis". De aanwezigheid 
van zo'n scheiding heeft echter zulke grote voordelen, dat het niet beperkt zou 
moeten blijven tot redeneersystemen binnen Al. Met name zijn systemen aan 
te bevelen waar wwel binnen de component voor proldeernbeschrijving als 
binnen de component voor probleemoplossing een scheiding tussen 
toepassingsgebied-<>nafhankelijke en toepassingsgebied-specifieke kennis 
verwezenlijkt is. 

[1) Mars, N., Onderzoek van niveau: Kennistechnologie in wording, 
Informatie, jrg. 30, nr. 2, pp. 84-90, 1988. 

8. Het praktisch bruikbaar maken van logisch programmeren heeft rampzalige 
gevolgen voor de theorie daarvan. Met name het gebruik van dynamic clauses 
maakt dat de semantiek van een PROLOO-programma op losse schroeven 
komt te staan. 

9. Een Nederlands gezegde luidt: "kleren maken de man". In het Hongaars 
wordt echter gezegd: "kleren maken de man niet". Dit laatste zal bij velen 
minder in de smaak vallen; het roept namelijk de vraag op "wat maakt de man 
dan wel?". 

10. Het streven van Hongarije om zich bij Europa aan te sluiten kan pas serieus 
genomen worden als het woord cosmopoliet daar niet langer als politiek 
scheldwoord wordt gebruikt. 

11. Het gerecht waarvan in {I) de bereidingswijze wordt gegeven, is ook heel 
lekker als men truffels door gerookte achterham vervangt. 

I IJ Makowsky, J.A., Abstract Embedding Relations, in Model-Theoretica/ 
Logies, eds. Barwise, J. and Feferman, S., Springer-Verlag, 1985. 


