EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

A method for designing decision support systems for
operational planning

Citation for published version (APA):

Eiben, A. E. (1991). A method for designing decision support systems for operational planning. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR354562

DOI:
10.6100/IR354562

Document status and date:
Published: 01/01/1991

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR354562
https://doi.org/10.6100/IR354562
https://research.tue.nl/en/publications/88b4dc9b-5cdb-4f01-a9aa-bdf775e24913

A Method for

Designing Decision Support Systems
for Operational Planning

A. E. Eiben

A Method for
Designing Decision Support Systems

for Operational Planning

A Method for

Designing Decision Support Systems
for Operational Planning

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de

Technische Universiteit Eindhoven, op gezag van

de Rector Magnificus, prof. dr. J.LH. van Lint, voor

een commissie aangewezen door het College

van Dekanen in het openbaar te verdedigen op
dinsdag 2 juli 1991 om 16.00 uur

door

AGOSTON ENDRE EIBEN
geboren te Budapest

druk: wibro dissertatiedrukkerij, helmond.

Dit proefschrift is'goedgekeurd door de promotoren:
Prof. dr. K.M. van Hee

en

Prof.dr. E.H.L. Aarts

Acknowledgements

First of all, I am grateful to Kees van Hee for accepting me as a PhD student
back in 1987, as well as for his valuable ideas and suggestions concerning my
work.

Similarly, I am grateful to Emile Aarts who has contributed a great deal to the
conceptual maturity and the clarity of this thesis.

Many thanks go to Wim Nuijten for his stimulating participation in discussions
that have always resulted in a better understanding of the subject.

I also want to thank Arjan de Vet for helping me by reading drafts of my thesis.

I owe special thanks to Fem du Buisson, without whom 1 would never have
gotten through the administrative difficulties of university life.

This research was carried out as an NFI project funded by the Dutch
Organization for Scientific Research (NWQ), I thank the NWO and the
Eindhoven University of Technology for providing all the facilities needed for a
successful study, .

I wish to express my gratitude to my parents who gave me the first impulses for
choosing a scientific career and kept me from leaving the path too early.

Finally, I am more than grateful to my wife Berenice for her patience in times of
Stress.

Contents

Introduction e 1
1 Decision Support Systemns i 6
1.1 Brief Overview of DSS History and Literature. 6
1.2 Operational Decision Making e e 8
1.3 Our View on Decision Support Systems. 11
1.4 Making Decision Support Systems: DSS Shells, DSS Generators 14

2Planning e 19
2.1 Model of Planning Problems. 20
2.1.1 StaticCase:the WorldasaState 21

2.1.2 Dynamic Case: the WorldasaProcess. 32

213 TheRoleof Time. e e e 41

2.2 Examples of Planning Problems 51
2.2.1 Travelling Salesman Problem 53

2.2.2 Travelling Salesman Problem with Time Windows. 35

2.2.3 Precedence Constrained Scheduling Problem. 58

224 Time Table Problem 61

2.2.5 Ship Loading Problem. e 65
3SearchProblems i 71
3.1 Modelof SearchProblems.o, 75
3.2 Relationship between Planning Problems and Search Problems 81
3.3 Examples of Search Problems. 88
3.3.1 Travelling Salesman Problem 88

3.3.2 Precedence Constrained Scheduling Problem. 90

333 Time Table Problem 91

3.34 Ship Loading Problem. 93

4 Search Procedures. e 94

4.1 Space Search, Graph Search, Local Search 94
4.2 The General Search Procedure 98
4.3 Examples of Search Procedures., 109
4.3.1 Genetic Algorithms. i 109

432 Simulated Annealing, 110

4.3.3 Threshold Accepting, Hill Climbing 111

434 DepthFirst Search i i 111

435 Breadth First Search 112

436 BestFirst Search e e e e 112

4.4 Convergence of Stochastic Search Procedures. 113
5 Searching by Generalized Genetic Algorithms. 129
5.1 Multiparent Production o 133
5.2 Multidimensional Genotypes 136
5.3 Selection, Reduction and Evaluation 139

6 Towards a Software Tool for DSS Design. 142
6.1 Problem Definition Component. 142
6.2 Solution Method Definition Component 147
TERinal Remarks e 152
References e e 156

Samenvatting e e e ‘ 162

Introduction

The research described in this thesis constitutes the first phase of a project that is
concerned with decision support systems for operational planning. Briefly
summarized, the goal of the project is to develop generally applicable software
tools to facilitate decision support system design. To give the context of our
investigation let us begin with an overview of our motivations.

Operational decision problems, also called operational planning problems,
frequently occur in business environment, in particular in production or
distribution processes. Regardless of what operational decision problems exactly
are, we can already remark that solving such problems requires substantial
computational efforts, thus seeking for computer support to manage these
problems is a straightforward idea. Software systems providing this support are
called decision support systems (DSSs). From the seventies on there were many
projects in DSS development directed at different decision problems, following
different approaches and resulting in different DSSs. Despite of the diversity of
these projects there are several general observations to make about DSS
development. Let us here mention the following ones. '

a) Developing a DSS for a specific operational decision problem is a time and
money consuming activity that is repeated for every specific decision problem.

b) DSSs are mostly relying on Operational Research as theoretical and practical
background.

¢) The DS8Ss developed for different operational decision problems exhibit
architectural and functional similarities. Apparently there is an underlying
common structure of DSSs that might be investigated and made explicit.

1

2 Introduction

It is also a remarkable fact that compared to the number of decision situations in
practice there are only few decision support systems that operate supporting a real
decision problem,

In this thesis we perform a theoretical investigation to confirm the feasibility of a
general method for developing DSSs. The essence of our approach is to make a
theoretical model of DSSs and use this theoretical model as a blueprint when
constructing a DSS. We also have another intention with a theoretical model:
gaining a good insight in the field, explaining related phenomena, and last but not
least providing a clear terminology that facilitates further discussion and research.
We maintain two requirements with respect to our model.

a) It is general enough to be able to model many different DSSs, that is it should
have a broad application domain.
b) It is sufficiently detailed so as to provide a "high resolution” view of DSSs.
This makes it possible to use this model as the basis of constructing DSSs.
Such a model embodies a theoretical skeleton of decision support systems. Using
such a general skeleton as a guideline can make DSS development systematic,
thus probably less time consuming and erroneous than it is nowadays. This
skeleton can also serve as the theoretical basis of a generic software tool that
supports DSS development.

Notice that the above requirements are somewhat counteracting each other. On
one hand, stressing generality we may loose *high resolution’, i.e. detailed view.
Maintaining little structure within a model means putting a few restrictions on the
application domain but this often leads to a vague understanding of the modelled
phenomenon. Furthermore, if our model gives a 'low resolution’ image of DS§Ss,
then there would be a large gap between theory and implementation, i.e. the
blueprint would be top rough to use. On the other hand, if we make a highly
detailed model with a rich structure then we necessarily include many assumptions
about the application domain. Such a detailed model facilitates implementation
but by having made many assumptions we may essentially reduce the domain of
application.

We are trying to solve this contradiction between our goals by making general
models with parameters, that is certain variables with unspecified values. In
addition, we want to use high level parameters, i.e. parameters the value of which
can be an expression in a high level language with great expressive power. In

Introduction 3

such a case the rigidity of using the same model for many different decision
problems would be counterbalanced by the flexible parameters that are able to
incorporate various information.

Notice that by our approach constructing a decision support system would be
reduced to specifying problem dependent values for the parameters of the general
framework. Using a DSS development tool based on an abstract DSS model with
parameters, DSS development would become ’‘simple’ instantiating, that is
supplying input values of the parameters of the tool. In such a way DSS
development would require less effort than having to design the whole DSS. The
first phase of our project - and hence this thesis - is meant to establish a formal
basis for this approach.

We remark that the approach sketched above is deviating from the common DSS
approach. According to the commonly practiced method one mostly develops a
problem specific decision support system that is applicable under tight conditions
only. The software we are aiming at is applicable to a broad range of problems
and is flexible by its parameters. Namely, if conditions in and around the decision
problem change we can suit our system to the changes by redefining the
parameters. The price of this flexibility is that our DSSs will be probably less
efficient than those based on a tailored mathematical programming method. This
inefficiency, however, should be seen in the light of two other factors. First, a
system can be relatively inefficient but still satisfactory if computation times
remain within acceptable limits. Second, the development of a sophisticated,
highly problem suited system is mostly very expensive which can make it
unattractive. As the reader may have already realized, our approach towards
DDSs shows certain features that are mostly associated with Artificial Intelligence
(AD. In particular, a highly parameterized system, the use of a language with
great expressive power are mostly Al attributes. We admit that indeed we are
trying to pass the traditional borders of DSS research and study the feasibility of
an Al-like methodology for DSSs.

We understand that the modelling-and-instantiating approach has its limitations.
No matter how sophisticated our model is, there might be situations where it
cannot be applied. This is the case if, for instance the intrinsic structure of the
model we give is inappropriate for describing the given situation, or for handling

4 Introduction

the situation such problem dependent knowledge should be used that cannot be
expressed by our parameters. Nevertheless, if we carry out the investigation
thoroughly, it will be clear in advance where we can rely on the general model
and what are the points in a DSS where problem specific heuristics are preferable.

During the development of our models we need to make certain choices,
assumptions that influence our results. Throughout this thesis we are making
these choices explicit. This provides the possibility of making other choices,
hereby it helps to choose other courses of investigation.

Our first restriction is that we concentrate on automated decision making within
a DSS, disregarding for example interfacing, data and model management aspects.
This determines two main subjects of investigation: the problems to be solved by
“a DSS and the problem solving methods used by a DSS. Keeping these two issues

apart we get the explicit freedom to study and apply more solution methods to the
same class of problems or to investigate the application domain of a certain
problem solving method.
This thesis is organized as follows. In Chapter 1 we give an overview of decision
support systems and describe how a generic DSS model -a DSS skeleton - is
related to software tools, such as a decision support system, a decision support
system shell or a decision support system generator.

In Chapter 2 we develop a formal model of operational planning problems where
time is explicitly involved and we distinguish static and dynamic cases depending
on the role of time. To test the applicability of our formalism we describe
Travelling Salesman Problems (with and without time windows), Precedence
Constrained Scheduling Problems, Time Table Problems and Ship Loading
Problems in terms of the model.

In Chapter 3 we briefly discuss three global problem solving paradigms: search,
automated reasoning, mathematical programming and we choose the search
paradigm for further elaboration. We investigate search problems and define how
can they be considered as a representation form of planning problems. We
introduce a standard manner to transform an arbitrary planning problem to 2
search problem.

In Chapter 4 we develop a model of search that incorporates space search, graph
search and local search explaining their relationship. We define a General Search
Procedure (GSP) and describe Genetic Algorithms, Simulated Annealing,

Introduction ‘5

Threshold Accepting, Depth-first Search, Breadth First Search and Best First
Search as subtypes of our GSP. For stochastic optimization procedures we prove
convergence properties within our model.

Chapter 5 is devoted to genetic algorithms. Beyond the advantage that they
generalize other search methods, such as includes simulated annealing, threshold
accepting or hill climbing, genetic algorithms show a reasonable performance on a
wide class of problems and they can be easily adapted if the problem in question
changes. We make a generalization of genetic algorithms and we obtain a type of
search procedures where problem dependent (heuristic) components can be clearly
located. Hereby we believe to reach a good balance, that is a widely applicable
search procedure that is detailed enough to support designing problem oriented
instances of it.

In Chapter 6 we give the outlines of a generic software tool facilitating DSS
development relying on the previously given models. By the results of Chapter 2
we can sketch the problem definition component based on a language in logical
fashion. Based on our view on search, the definition of a problem solving method
requires the definition of the constituents of the GSP. Some of these constituents
can be defined such that they are applicable for many problems. This reduces the
definition of a search procedure to the definition of those components that require
problem dependent knowledge, heuristics.

CHAPTER 1

Decision Support Systems

When willing to set guidelines for designing decision support systems, the first
straightforward question one has to answer is: what are DSSs? In this chapter we
are trying to give our answer to this question.

1.1 Brief Overview of DSS History and Literature

To answer the question about what a DSS is let us have a brief look upon their
history. The name decision support systern was first used by Gorry and Scott
Morton (1971) and has made quite a career since then. Most of the authors of the
field, however, do not give a clear definition of what they mean by this term, as it
is observed by Sol (1985). Historically, DSSs originate from Electronic Data
Processing (EDP) on the practical side, while their theoretical backgrounds lay in
Operational Resecarch (OR). In Sol (1985) we find a short description of the
software evolution that has lead to DSSs from EDP through Management
Information Systems (MIS) in business environments, cf. Burch and Strater
(1974), Naylor (1982).)

When it comes to the definition of a DSS there are at least two ways to do it
specifying the functions of a DSS or giving a description of its components. The
most frequently quoted definition from Keen and Scott Morton (1978) belongs to
the first type stating that a DSS

Decision Support Systems 7

- assists managers in their decision processes in semi structured tasks;

- supports, rather than replaces, managerial judgment;

- improves the effectiveness of decision making rather than its efficiency.

Besides such broad definitions, cf. also Alter (1980), Keen (1986), there are more
specific ones like that of Anthonisse, Lenstra and Savelsbergh (1988) who identify
DSSs as interactive planning systems. Van Hee and Lapinski (1988) specify a
DSS as a system assisting managers in the control of a business process. The
functions of a DSS they distinguish are the following:

- performing data management functions;

- evaluating decisions proposed by the user;

- generating decisions satisfying some user defined conditions.

Observe that this definition puts up strong requirements about a2 DSS. According
to this view a DSS can be told about a decision and it can make a decision. On
one hand, this leads to a more restricted notion of a DSS than usual, on the other
hand it has a big advantage: it is specific enough to be used to decide whether a
given software system is a DSS or not.

As for the components of a DSS there is no universally accepted view either.
Sprague (1980) distinguishes a data base management system, a model base
management system and a user interface called the dialog generation management
system within a DSS. Bonczek, Holsapple and Whinston (1981) envisage a
language system, a knowledge system and a problem processing system, while the
system analysis of Sprague and Carlson (1982) vyields four entities for
representations, operations, memory aids and control mechanisms.

From the software point of view DSSs are intended to be user friendly and
interactive programs. The methods they apply, their architecture and the
underlying philosophies are diverse, although an observation in Verbeek (1990) is
remarkable: the majority of the literature on DSS belongs to the field of
Operational Research. For several authors, e.g. Savelsbergh (1988), DSSs are but
an "approach towards the practice of operations research”, and even in the abstract
framework for research on decision support systems Sprague (1980) mainly
considers models of the equational type and methods of optimization based on
linear, dynamic or stochastic programming. Recently, another paradigm, Artificial
Intelligence (Al) is entering the field of DSS. Bonczek, Holsapple and Whinston
(1983) and Van Hee and Lapinski (1988) consider incorporating Artificial
Intelligence methods into DSS; the approach of Eiben and van Hee (1990) has a

8 Chapter 1

strong Al accent as well.

Throughout the development of Artificial Intelligence, cf. Nilsson (1982),
Winston (1984), Shapiro and Eckroth (1987), many important notions were
introduced. Here we mention two important contributions to the theory and
practicé of computing science: the notions of knowledge representation and
symbolic computation. The main lesson we have learnt from knowledge
representation, cf. Brachman, lLevesque and Reiter (1989), is that the same
abstract knowledge can be formulated and stored in entirely different ways, e.g. by
equations, formulae, logical frames. Symbolic computation is mostly understood
as an alternative to classical numeric computation that is typical for OR methods,
in particular mathematical programming. From the "application of theorem
proving to problem solving”, Green (1969), it has led to using logic as a language
‘for computation, Kowalski (1974), and to logic programming, Lloyd (1987).
Nowadays there are many working software systems that are based on automated
logical reasoning; the best known members of this family are the so called expert
systems, sce Waterman (1986). Another important Al feature is the separation of
domain knowledge and computation mechanism. This separation advances
flexibility in defining and modifying the problem at hand or the applied problem
solving method. We believe that incorporating Al methods into DSS research and
practice broadens the scope of DSSs and helps betier understanding and exploiting
of problem solving heuristics in decision support.

1.2 Operational Decision Making

To present our view on decision support systems let us first specify what we
mean by a decision situation: in a decision situation a decision maker has to
(re)act in an environment in order to preserve or achieve certain conditions. A
decision is thus a control action of the decision maker that is meant to influence
the environment, In general one can distinguish three classes of decision
situations: those concerning strategic, tactic and operational issues.

Example 1.1
When setting up new factories we encounter decisions at different levels. A
strategic decision is e.g. to build four factories in four different countries. Such a

Decision Support Systems 9

decision is to meet very general requirements, like that of being less dependent of
local troubles, for instance of natural disasters or political changes. To make such
a decision presumes awareness of the phenomenon of ’local trouble’ and requires
ability of estimating its likelihood. A strategic decision has a long term effect;
since complete factories cannot be moved without substantial effort they will
probably remain at their locations for decades.

A tactical decision is to determine whether to install assembly lines or flexible
production cells in each factory. Choosing between the two can rely on better
formulated goals and more solid knowledge than in a strategic issue. Think of the
fact that assembly lines are appropriate for a mass production, while flexible
production cells are more suitable to order oriented production. Such a decision is
easier to withdraw but still at high costs, so it probably will not be reconsidered
for years.

Operational decisions need to be taken daily or weekly, for example to determine
what to produce to satisfy the costumers orders. Such decisions are triggered by
rather strictly formulated goals, e.g. we need to deliver 5000 of item number 2
tomorrow, and might be made day by day.

0

The above classification is of course not strictly formal, whether or not a
decision is strategic or tactic is somewhat arbitrary. Nevertheless, in strategic and
tactic decision situations there are so many factors to take into account and such
an extent of uncertainty that every attempt to model them formally has serious
limitations. Therefore, we only deal with operational decision problems along this
study, that is we restrict ourselves to problems where
- decisions have a short term impact (several hours to several days);

- a sound model of the decision situation can be given.

Such a restriction about the application domain of a DSS seems to guarantee that
we can handle problems within this domain and provide sufficient support to the
users. This is, however, a hasty conclusion since even these simplified situations
can lead to formal models that yield mathematically intractable problems, cf.
Garey and Johnson (1979).

Example 1.2
To illustrate an operational decision problem let us take a time table problem in a

10 , Chapter 1

school. The data model of the decision environment consists of the description of
the relevant objects under consideration and the relationships between these
objects. For instance

classes, that is groups of students;

subjci:ts such as mathematics, geography, English, etc;
teachers;

classrooms;

i

i

1

1

lecture hours;

can be the objects given and the corresponding relations can tell which teacher is

qualified to teach mathematics, how many English lessons do the classes need per

week, etc.

Furthermore we can formulate conditions that need to be satisfied, e.g.

‘a) In any classroom at any time there is at most one teacher teaching one subject.

b) The same class should not get the same subject three times a day.

¢) All lessons on the same subject for the same class should be given by the same
teacher.

Such conditions are called constraints, they are either satisfied or violated and

therefore are qualitative.

The goal in this decision situation is to make a weekly schedule for the school
such that each group gets every subject it needs in a week. To satisfy this goal a
decision maker has to make elementary decisions, i.e. assignments of classes,
subjects, teachers, classrooms and lecture hours and has to compose a correct and
complete time table from such assignments. A correct time table satisfies all the
constraints, a complete time table has all the lectures scheduled, that is each group
gets each of the needed subjects.

Besides constraints there can be criteria given. A criterion is a quantitative
measure that rates a certain feature, e.g. the amount of idle lecture hours of a
class. Criteria are often subjects of optimization, that is one can be aiming at
decisions that realize the lowest or highest possible value due to a certain
criterion. In a school we might prefer time tables that minimize the number of
idle hours of each class. Criteria can also be used to enforce constraints by
measuring the rate of violation of a certain constraint. For instance, a modelling
decision can be that we delete constraint (b) above, add a criterion that measures
how concentrated a subject is scheduled and we aim at a time table that keeps the

Decision Support Systems 11

value of this criterion low.

0

Since clusters of decisions are often called plans we also use the term planner for
a decision maker. On the same grounds we refer to our application domain as
operational decision making or operational planning.

It is an important factor in our world view that within the class of operational
decision problems we distinguish various problem types. By a problem type we
mean a group of problems that are of the same basic character, for instance
routing problems or scheduling problems, see Lawler et al. (1989). Sirictly
speaking, one can consider the notion of problem type in two different ways. One
possible view is to see a type as the set of all problem instances declared to
belong to it. Another way is to consider a problem type as the abstract framework
fixing the major outlines of a problem but still having parameters ie. free
variables with unspecified values. Problem instances belonging to a type can be
-obtained by giving values to these parameters.

It is important to notice that the border between different problem types is
arbitrary. For example, we can recognize a crucial difference between a travelling
salesman problem and a chinese postman problem, see Garey and Johnson (1979),
and describe them as two types. Nevertheless, we can also model them such that
they are basically of the same character thus forming subtypes of the same
problem type.

1.3 Our View on Decision Support Systems

Having discussed where DSSs can be applied let us give our view on what they
are. With respect to their functions we maintain the view presented by Van Hee
and Lapinski (1988), Eiben and Van Hee (1990). For maximal clarity let us
repeat that in a DSS we distinguish the following basic functions:

- performing data management functions;

- evaluating decisions proposed by the user;

- generating decisions satisfying some user defined constrains and scoring high by
possibly given criteria.

12 ; ’Chapler 1

Example 1.2 continued ‘
A DSS for trime tables can support its user by simply displaying an actual time
table or by facilitating the lookup of the lectures of a certain teacher. Such
activities fall under the data management functions mentioned above.

Enabliﬁg the user to make changes on the actual time table the system can
compute and display the effects of these changes, declaring a new time table
correct or incorrect according to the given constraints, or calculating the
corresponding value of a criterion, ¢.g. the number of lessons not yet scheduled.
The third, and most sophisticated function mentioned above is that of generating
time tables automatically. In this case the DSS computes a complete and correct
time table by itself or improves a certain partial time table given by the user.

0

In this thesis we do not consider data management and other related issues (such‘
as user interface, man-machine interaction); here we focus our attention on
generating decisions.

~ Besides the question what a DSS does, there is of course another one: how well
it is doing it. There are several quality measures of a DSS. The most frequently
considered ones are effectivity, efficiency, robustness and flexibility.
Effectiveness is a measure of the obtained solutions with respect to some
evaluation criteria, it is the degree of fulfillment of wishes regarding a solution, cf.
Verbeek (1990). Robustness concerns the sensitivity of the system, ie. how
sensitive the solutions are for changes in data. Efficiency is the speed rate of the
computation, measuring how fast the solutions can be obtained. Here we may
distinguish the net speed, the computation time of the DSS, and gross speed
regarding the time used by the man-machine combination. Last but not least,
flexibility concerns the efforts needed to adapt the DSS to structural changes in
the planning environment or changes in the priorities of the planner. These
features are not independent, there is for instance a well-known counterbalance
between efficiency and flexibility. One of the basic premises of our approach is
that we prefer the latter, rather having a highly flexible system applicable to a
wide range of problems, than an efficient tool for only a narrow application
domain.

Decision Support Systems 13

Example 1.2 continued

It is typical for practical decision situations that the environment is changing over
and over again. In a school it could mean that some teachers become ill or that
the management begins to prefer fewer idle hours of classes to well Spreading of
subjects. This means that the constraints can vary or the criteria may change,
which requires that the user can adapt his system easily.

0

With respect to the components of a DSS we basically distinguish three of them:
a communication component, a problem description component (PDC) and a
problem solving component (PSC). Since we are primarily interested in
automated decision generation we direct our attention to the problem description
and the problem solving components. Both the PDC and the PSC must be able to
receive information from the user. When filled up the PDC should contain a
description of the decision or planning situation and the actual problem to be
solved. Given the necessary inputs to the PSC it should contain a problem solving
method that is suitable to handle the problem specified by the PDC.

Example 1.2 continued

The PDC of a DSS for time table problems should contain the sets of lectures,
classrooms, teachers and lecture periods together with the basic relationships, e.g.
the qualifications of the teachers. Also the elementary decisions should be given
and the construction rules that define how to make a time table from them.
Naturally, the constraints determining the correctness of a time table must be
represented in the PDC too. At last, the specification of possible criteria belongs
to the PDC as well.

We can not say much about the PSC at this point since the way of problem
solving is not determined by the problem. For time tables we can apply different
solution methods, from a classic OR method, see Even, Itai and Shamir (1976), to
genetic algorithms, cf. Colorni, Dorigo and Maniezzo (1991).

0

14 Chapter 1

1.4 Making Decision Support Systems: DSS Shells, DSS
Generators

Now that we have a certain view on what a DSS is, let us consider the question
of how to make one. Sol (1985) recommends to investigate decision support
system generators as DSS design environments that "bridge the gap between
general tools and specific DSSs”. Such general tools are software systems meant
to reduce the efforts and costs of making a DSS. The main assumption behind
using such tools is that DSSs have common general features conjoined by
application specific ones. Distilling the common features we can construct a
theoretical skeleton of DSSs where the application specific constituents are absent.
Such a skeleton can be seen as a frame containing parameters where application
“specific information can be incorporated by specifying values for the parameters.
Such a skeleton or frame can be used in two different ways to facilitate DSS
development. The first possibility is to build a so called DSS shell, the second
one is to build a DSS generator.

A DSS shell is an implementation of the abstract DSS skeleton. Giving specific
values to the parameters the shell becomes instantiated, thus by furnishing the
shell with application specific information we obtain a complete DSS.

Example 1.2 continued

A DSS shell to support the design of a DSS for time table problems can contain a

subshell to specify the problem to solve. Within this problem description subshell

we may distinguish further components, for instance:

- a component for data modelling to define the objects under consideration
together with their relationships (e.g. the sets of classes, classrooms, teachers
and lecture periods and the qualifications of the teachers, weekly needs of
classes, etc.);

- a component for constraint description that needs to be filled with the
application specific constraints that have to be satisfied.

Goal specification and construction rules of time tables can be hard coded in the

system, since they are universal for all time table problems.

The above items can be envisaged as parameters of the problem description

subshell. For instance, the object specification sub-subshell may have 5

parameters; G, S, T, C, H standing for the set of groups, subjects, teachers,

Decision Support Systems 15

classrooms and lecture hours, respectively. This five tuple embodies type specific
information about time table problems. To describe a particular time table
problem we need to instantiate the shell by giving values for these parameters, i.e.
a set of groups, a set of subjects, etc.

0

Let us remark that the notion of a shell is not restricted 1o DSSs. A system shell
is generally meant as an implemented skeleton where only the frame of the whole
system architecture is fixed, many parameters are unspecified. These parameters
have 10 be given values in to obtain a complete system. According to a refined
view not any system that has parameters is recognized as a shell (think of a
program with input values), a shell is mostly seen as having high level parameters.
Here we encounter a crucial issue about shells: whether or not a system is a shell
depends on the level of its parameters.

Analyzing the basis of high and low level division of information one can notice
a strong correlation with the border between problem type and problem instance.
Namely, information that defines a particular problem instance within a given
problem type is seen as low level one. Information, the modification of which
leads to another problem (sub)type is seen as high level information. For easy
reference to these two kinds of information let us make a convention using the
term data for low level and knowledge for high level information.

The second way of making use of an abstract DSS skeleton is to build a DSS
generator based on it. A DSS generator is also based on an implemented DSS
skeleton, its input is knowledge specifying a problem type and a solution method
type, its output is a DSS as executable software.

Observe the relation between the three notions we use: DSS, DSS shell, DSS
generator. We see a DSS as a system with low level input parameters that can
only receive data such as the number of classes, etc. These data define a problem
instance and an instance of a solution method; having these two defined the DSS
can make decisions as output. A DSS shell is a system with both high and low
level parameters; incorporating knowledge through the high level parameters the
shell becomes a DSS. A DSS generator has only high level parameters receiving
problem specific knowledge as input and producing a DSS as output. Notice that
the difference between a shell and a generator resembles the difference between

16 Chapter 1

an interpreter and a compiler for a formal language.

After making these distinctions we can be more specific about flexible systems
mentioned in the introduction. As it turns out from the foregoing we maintain the
vision of having DSS8s with low level parameters. These parameters are rigid, in
the sense that setting them to new values leads only to instantial changes, thus we
cannot expect great flexibility in a DSS. On the other hand DSS shells and DSS
generators possess high level parameters for incorporating knowledge. Changing
such knowledge (e.g. incorporating new constraints) changes the structure of the
problem not only the instance. Thus, this is the level where flexibility can be
included, that is strictly speaking we are not aiming at flexible DSSs but at
flexible DSS tools - shells and generators.

" A big advantage of using general tools like a DSS shell or a DSS generator is
that it reduces the efforts and time of DSS design. The shortcoming of such an
automated development is that the class of DSSs we can make is previously
determined by the tool. Namely, DSS shells and DSS generators can have wide or
narrow application domains. This depends on the application domain of the DSS$
skeleton they are based upon, and after all upon whether the abstract DSS model
used is general or not.

Example 1.2 continued

In the DSS shell sketched for time table problems the goal specification and plan
construction were built-in features. This indicates that the shell was tailored for
time table problems. Nevertheless, in a DSS applied for routing problems these
items might be entirely different. Therefore, a highly flexible DSS shell or DSS
generator meant to treat time table problems as well as routing problems should be
based on a general DSS model, such that specifying both problem types can be
done by its parameters.

Likewise, it is quite probable that solving a time table problem requires another
solution method than solving a routing problem. Accordingly, in a flexible DSS
shell or generator also the PSC should be based on a general model problem
solving such that many different solution procedures can be defihed by the
parameters.

[

Decision Support Systems 17

The main goal of our project is to make a widely applicable DSS development
tool. First we are carrying out a theoretical study. We want to create a DSS
skeleton - an abstract framework of a DSS - and establish a method tw design
DSSs guided by this skeleton. It is straightforward that we wish to have a
skeleton with wide application domain. The major guidelines for our research can
be summarized as follows:

- we concentrate on the automatic decision making function of a DSS;

- we try to separate domain knowledge about the problem to be solved and
procedural knowledge concerning the problem solving method;

- we aim at a widely applicable model of operational planning problems by
means of high level parameters;

- we intend to make a widely applicable model of (a class of) solution methods
applicable for such problems.

An additional objective of our study is to obtain a clear terminology that supports

good understanding of the related phenomena and facilitates further research and

discussions. ’

Before going into detailed studies let us introduce the basic taxonomy of
planning.

the highest level; the planner is manipulating

3 planner {creating and modifying) plans in order to find
one that causes desired changes in the status of
the world

plans (decisions) are at the medium level in the
2 plans hierarchy, we see them as executable entities,
their execution changes the status of the world

at the lowest level we find the world that can
1 modelled world change its status by itself and can also be
changed by executed plans;

In this hierarchy entities of a certain level have influence on the ones on one
level below: a plan changes the world, a manipulation modifies a plan. For
instance teacher x begins a lecture with class y at z o'clock is a plan, its

18 Chapter 1

execution brings changes in the world. Executing the command interchange
English and Mathematics in the time table a plan (the time table) is changed,
therefore it is a manipulation.

In these terms an operational planning problem has to do with the first two
levels. Therefore, a model of planning problems should contain a model of the
world and a model of plans extended by the facility of defining what kind of plan
is wanted. We elaborate such a model in the next chapter.

Problem solving can be associated with levels number 2 and 3. A model of
solution methods should describe how to perform manipulations in order to
achieve a desired plan. This will be investigated in Chapter 3 and Chapter 4.

CHAPTER 2

Planning

Like many other notions of computing science the term planning is loaded with
an everyday meaning. Such notions - unlike most of the mathematical terms -
appear to have a formal meaning even without a definition. (Think, for instance,
of the notion of plan as opposed to a consistently complete join semi-lattice.) This
appearance causes a very undesirable effect, namely that relatively little effort is
being made to clarify the foundations. The terminology of planning is far from
being unambiguous, many interpretations can be given to the same word.

In this chapter we investigate planning and establish our formal interpretation.
We present a conceptual model of planning problems. Setting the basic
assumptions, identifying the most relevant factors and their relationships we are
aiming at
- a coherent planning theory by systematic topklown analysis;

- a good insight in the components of planning problems so that we can derive a
method to specify planning problems.

We try to make the choices consciously during the development of the theory,

such that the restrictions and their reasons are clear. Hereby the application

domain of the theory is visible and so are the possible extensions or restricted

versions of our theory. Naturally we do not claim that our interpretation is the

only good one, but it forms a sound formal basis for further investigations.

Notice that we did not explicitly mention that we study operational planning
problems here but that is the application field we have chosen.

19

20 Chapter 2

2.1 Model of Planning Problems

According to the hierarchy skeiched in Chapter 1 the two layers we are concerned

with are)

1) the world which can change its status either by itself or by actions of the
planner;

2) actions and plans consisting of actions that are executable entities acting on
the world; the effect of their execution is that the status of world changes.

A planning situation includes the description of the circumstances in the world,

the description of plans and their influence on the world. A planning problem can

be given in the context of a planning situation by giving an initial status of the

world and certain goal status. Solving a planning problem the planner wants to

‘act towards changing the status of the world by a plan such that a goal status is

reached. Often, there are also requirements about the way a goal status is reached,

e.g. it must be done as cheap as possible.

Although this interpretation of a planning problem smoothly matches our
intuition, we slightly modify it. In the sequel we assume that solving a planning
problem the planner wants to have a plan that can transform the initial status to a
goal status. A solution of a planning problem is then a plan which, if executed,
transforms the world to a goal status. The advantage of this reformulation is a
consequent terminology where the solution of a planning problem is a plan and
not the fact that a certain world status is reached.

The first obvious step in elaborating our theory is to model the world by
introducing world states as abstract entities modelling the status of the world at a
certain moment. Intuitively we consider world states as snapshots taken of the
world at a certain moment,

A crucial characteristic of planning problems is that time is involved.
Depending upon the role of time we can distinguish two kinds of circumstances:
in a static case the world does not change its status unless an action or plan is
executed, in a dynamic one the status of the world can be changed any time
without being triggered. In the next sections we develop a detailed formal theory
of planning problems extending the results of Eiben (1989).

Planning 21

2.1.1 Static Case: the World as a State

In the static case it is assumed that a world state is maintained until an action
takes place, with other words, every change in the status of the world is caused by
an action.

Example 2.1.1.1 Blocks-World Problem (BWP)

In the Blocks-World Problem, Nilsson (1982), we have a table, several blocks on
the table and a robot arm that is able to put a block onto another one or onto the
table. In the beginning the blocks are in an initial configuration. The objective is
to make up a sequence of movements of the robot arm that converts the blocks to
a given goal configuration. In terms of world states, actions and effect we can
describe the BWP as follows.

World: the table, the blocks and the robot arm;

States: block configurations;

In, state: initial configuration of the blocks;

Actions: moving a block onto another one or onto the table;

Effect: the configuration changes, since the position of the moved block
changes;

Plans: sequences of actions (for one robot arm);

Goal: blocks are in a given specific configuration.

[

Example 2.1.1.2 Travelling Salesman Problem (TSP)

The travelling salesman problem is well-known in OR, cf. Bellmore and
Nemhauser (1968). Its basic version reflects a simple decision situation that is
still probably intractable in computational sense, i.e. it is NP-hard, see Garey and
Johnson {1979).

There is a number of cities given together with data describing the distances
between them. A salesman has to make the shortest possible tour visiting all the
cities and returning to his home city.

World: the cities and the moving agent, distances;
States: position of the agent, list of visited cities;

22 Chapter 2

In. state: start position of the moving agent (a city), no cities visited yet;

Actions: moves from one city to another;

Effect: the position of the agent changes, a city becomes visited;

Plans: sequences of actions (for one agent);

Goal: all the cities are visited exactly once, the agent is back to the start
position, ‘

the total distance of the tour is minimal.

0

Observe that the items world, initial state and the first part of goal belong to the
first layer of our taxonomy, actions and plans belong to the second one, while
effect lays the necessary connection between the two layers.

Remark 2.1.1.3

Taking a static or dynamic model for a certain situation is not arbitrary. For
instance, let us take tme windows into account for TSP, cf. Savelsbergh (1988).
If we do not want to incorporate time into the world states (and remain static),
then we need to introduce a state underway that is maintained for a period of time
and then ceases (turns to being at a new city). This actually means that we apply
a dynamic model.

0

There are three shortcomings of the scheme of the above examples. This scheme
provides a too low resolution view on planning problems in the following sense.
First, we cannot distinguish changing constituerits of the world from permanent
ones, e.g. the actual position of the agent from the distances between cities.
Entities of the first type can be changed by an action hence they should be
included in the world states. Information of the second kind is characterized by
not being changed by actions. Upholding this information by the states is
superfluous, hence it should be put as background data. This problem will be
discussed further in section 2.2.

The second shortcoming is that we cannot distinguish possible and impossible
actions. Namely, actions are not always executable in reality, consequently not
every well constructed plan is executable either. Executable in reality is a notion
with respect to the first layer, telling that something can or cannot be done. We

Planning 23

shall treat it on the second layer defining a predicate allowed such that allowed
actions and plans are all executable.

Example 2.1.14

Reasonable definitions of allowability to the above examples are the following.

BWP : moving block A onto block C is allowed if nothing is on A and nothing is
on C;

TSP : move from A to B is allowed if the agent is in A and B is not visited yet.

Il

Third, when giving the goal in Example 2.1.1.2 we did not distinguish the
condition about the state of the world (all the cities are visited exactly once, the
agent is back to the start position) and the evaluation criterion for plans (the total
distance of the tour is minimal).

These observations lead to a more detailed vision of planning.

In a planning situation we have the first and the second layer and their connection,
that is

1) a set of world states;

2) a set of actions;

3) a predicate allowed on actions with respect to states;

4) a function effect which assigns a state to the pair of a state and an action.
Furthermore, we need certain general composition rules that specify how to
construct plans from actions and how to extend the predicate allowed and the
function effect from actions to plans.

A planning problem contains all the necessary information on what is given and
what is wanted, that is it consists of

1) a planning situation;

2) an initial world state of this planning situation;

3) a condition defining the goal states;

4) an evaluation criterion for plans.

A solution of a planning problem is a plan that - when applied to the initial state -
leads to a goal state. An optimal solution is a solution if it realizes the minimal

24 Chapter 2

(maximal) value of the given criterion.

In the sequel we convert this detailed, still informal description into a
mathematical model.

Definition 2.1.1.5

A planning universe is an ordered triple (S, A, (T,<)) of non empty sets, where
- S is a set of world states with a special element o € S called nil;

- A is a set of actions;

- (T,<)is an linearly ordered set of time instances.

I

“The ordering < on T often remains implicit, mentioning only T instead of (T,<).

Definition 2.1.1.6
An operation is a pair (af) ¢ A X T and time: AXT — T is a projection
function, such that
VieT:time(at) =1t
holds.

I

An operation (a,f) denotes the action a executed at the time 1. Notice that hereby
we modify our view assuming that it is an operation that changes a world state.
To determine the set of applicable operations with respect to a certain state we
introduce the following relation. Let us also remark that in our view operations
have no duration.

Definition 2.1.1.7

The allowability relation of a planning universe (S, A, T) is a relation
a:Sx{AXT) — {true, false},

such that
VYseSVae AVite T:oals(an) = als,(ar).

If afs.{at)) then the operation (a,f) is allowed in the state 5.

0

Planning 25

Definition 2.1.1.8
Let (§, A, T) be a planning universe, o an allowability relation. An effecr-
Junction of (S, A, T) is a function
e:SxAxNH—-§
such that forevery se S,ae A, t,1eT:
a) e(m@n)) = o
b) a(s,(a0) =false & e(s(a0) = o;
¢) e(san) = es(ar1).

0

The function e describes the effect of the operations on states; that is e(s,(@,)) e §
is the state obtained by applying the operation (a,) to the state s.

Observe that the condition of Definition 2.1.1.7 and (c¢) in Definition 2.1.1.8
institute a sort of time independence. These conditions immediately follow from
our view of static cases as given in the introduction of this chapter. Namely, we
presume that without committing an operation a state is not changed, that is it
keeps all its features and properties. At this level of abstraction we consider two
properties of a state: which operations can be applied to it and what effect the
operations have on it. The above definitions establish that for operations the
included time instance is irrelevant in determining WHAT happens, it is
determining only WHEN it happens. Nevertheless, for plans (introduced later) the
time instances will be necessary to determine their effect, that is the WHAT, even
in the static case.

The kemnel of the concept of allowed is enclosed in (b) in Definition 2.1.1.8 that
founds the relation between ¢ and @, in fact the relation between execurable and
allowed. Notice the role of the nil state o shown in (a). It is a universal absorber
state that permits to formulate the effect of unexecutable operations the same way
as that of executable ones: as a state transition. Formally, the usage of ¢ makes it
possible to define e as a complete (not partial) function on § x (A x 7). The
notion of an executable operation is modelled as an operation that yields a state
different from o. The predicate allowed is for a:‘syntactical" characterization of
executability, in practice o will be used to specify the real domain of e

26 Chapter 2

Lemma 2.1.1.9

YaeAVYre T:o(nlan) = false.
Proof

It is obvious from the definitions.

[

At this point we have all the ingredients needed to formalize the notion of a
planning situation.

Definition 2.1.1.10
A (static) planning situation is a 5-tupic
S.AT ¢ e,
“where the triple (S, A, T) forms a planning universe, « is an allowability relation
and e is an effect fanction on (5, A, 7).

0

A planning situation captures the most relevant factors of the world under
consideration.” To define a planning problem, however, we also need to know
what a plan is and what the problem is, ie. what kind of plan is wanted as a
solution.

Definition 2.1.1.11
A plan is a finite set of operations. A plan P € PAXT) is called a section iff
v 01,0, € P: :ime(ol) = time(az).
Hereby the function time can be defined for any non-empty section P by
time(P) = time(o)
taking o € P arbitrarily.
If P is a plan then a non empty section R ¢ P is called a maximal section of P if
for every section Q C P it holds that
time(R) = time(() = Q¢R.

[

It is easy to see that we can uniquely divide any plan into disjoint maximal
sections. Before the next definition recall that for an arbitrary set X with
cardinality #» € N a numbering is a bijection

Planning 27

v:{l,... n} =X

Definition 2.1.1.12
If a plan P is divided into n maximal sections then the natural numbering of the
sections is a bijection
vi{l,... n}) = {PeBAXT)IP is amaximal section of P }
such that
Vije{l,.. . n}:i<j & time (Pi) < time (P].),
where P‘. denotes v(i) for the sake of convenience.

0

Proposition 2.1.1.13

For any plan there is one and only one natural numbering.

Proof

It is obvious, the ordering on T implies the existence, unicity follows from the
unicity of the maximal sections.

0

Definition 2.1.1.14
[Pl, .. ,,Pn] is the partition of a plan P (denoted as P ~ [Pi’ .. .,Pn]) if Pi' .. .,Pn
are the maximal sections of P numbered by the natural numbering.

U

The following proposition gives a simple characterization of the partition of a
plan.

Proposition 2.1.1.15
For every plan P it holds that P ~ [Pl’ .. .,Pn} iff Pl’ - .,Pn are sections such
that

n
a) P=vu P,

=1 !
b) rime(P,) < time(P,) < ... < time(P).
Proof

The = direction is self-evident by definition.
To prove the & direction let P], - .,Pn be sections such that (a) and (b) hold. By

28 Chapter 2

{b) we have that Pl, . .,Pn are numbered in the natural way, thus all we need to
show is that they are all maximal. If they were not, then we had an i ¢ (1, .. ,n)
andanoe P \Pi such that

timez’(o) = zime(Pi).
But (a) implies that 0 € P, for a section P}. (j # 1), hence

time(Pj) = time(o),
thus

time(P) = time(PI.)

with § # j which contradicis (b).

i

An important special case within our planning theory is obtained if we restrict
‘ourselves to sequential plans, where every section is a singleton. Due to
Proposition 2.1.1.15 such plans can be simply sequentialized by the time of their
operations, that is they can be written in a form {ol, .. .,’on] with u’me{ol) <L
< zime(on).

Now we have everything prepared to extend effect and allowed from operations
to plans. Nevertheless, before we can define the effect of a plan based on the
effects of its operations, we have to make a choice about the effect of a section.
Hereby we encounter a hard problem: how to handle the effect of more operations
at the same time. Here we sketch two ways of treating this problem.

Basically we can either consider mutual influence between equitemporal actions
or not. If we do, then we cannot determine the effect of a section from the single
effect of its elements. In this case we have to define the effect of every section,
thus we have to define an extended effect function as a primitive.

We decide to assume the opposite of the above, that is that equitemporal actions
do not interfere. Hence we can decompose the effect of a section which implies
that the extended effect function will not be a primitive, it will be computed by
the effect function e. .

Notice that this decision introduces new difficulties. For instance, if the
operations ¢ and ¢' act in parallel at the same time instance then we can take
either e(e(s,0),0") or e(e(s,0),0) as the effect of {o, o'} on the state 5. Thus,
computing the effect of parallel actions sequentially introduces ambiguity, since a
section with k& different operations can be numbered in &/ different ways that

Planning 29

determine k! different sequences, thus we might have k! different outcomes. To
exclude this ambiguity we define the effect of sections such that for ambiguous
cases it yields the nil element 0.

Definition 2.1.1.16
The extended effect function of a planning situation (S, A, T, a., €)
e SXPAXT) » §
is defined for any s € § and finite P ¢ PAXT) in the following way:
if P=@ then (s, P) = s
if P= {01’ .. .,on] is a section with an arbitrary numbering of its operations and
for every subset [il, .. ;,ik] ¢ (1,...n) and every permutation ® of
{il, .. .,ik]
e(... e(s,on(!_l)) .. .,omk)) = e(..e(s,oil) .. .,oik)
holds, then
e Py = e .. .es, 01) A on) ;
if P= (01, .. .,on] is a section and there exists a subset {il, .. .,ik} ¢c{l,...n}
and a permutation w of {il, N k} such that

e(..e(s,o_,.)..,0 .0 #e(..es0.)...,0)
1:(11) n(tk) 2 lk
then
€@, P) = o;

if P~ [Pl, .. .,Pn] then €'(s, P) = €'(.. .e‘(s,f’l) .. .,Pn).

Il

Notice that the intuitive interpretation of time is formalized right here by using
the natural numbering to order the sections of a plan. This establishes that the
effect of the operations with a smaller {earlier) assigned time instance precedes the
effect of the ones with a larger (later) time instance.

Definition 2.1.1.17
The extended allowability relation o' establishes allowability of plans with respect
to states. It is a Boolean function
o' ;S X KAXT) +~ (true, false)
such that for any s € S and finite P ¢ HAXT):
if P=@ and s=np then o'(s, P) = false;

30 Chapter 2

if P=@ and s#0 then o'(s, P) = true;

if P= {01"“’03} is a section with an arbitrary numbering of its operations, then
a's, P) = a(s,ol) A a(e‘(s,{oll), 02) A...A a(e’(s,{ol, - .,on-l}), on);

if P -\[P], .. .,Pn] then
o'(s, P) = a‘(s,Pl) AL AT, . .e‘(s,Pl) .. .,Pn_l),Pn).

We say that a plan P is allowed in a state s if o'(s, P) = true.

0

By the next proposition we show that allowed and effect are properly extended
from operations to plans.

Proposition 2.1.1.18
‘Let (5, A, T, o, e) be a planning situation, o' the extended allowability relation
and ¢’ the extended effect function. Then for every s € S and P ¢ A x T it holds
that

o'(s, P) = false & €'(s,P)=n.
Proof
For the sake of convenience we denote o'(s, P) = false by - o'(s, P).

1) The case of P = @ is trivial by Definition 2.1.17.

2) If Pis a section (01, .. .,on) then
- Q'(s, P)
iff (by Definition 2.1.1.17)
~afs0) V nales{o)) o)) V...V mole’ls, {o), .. 0, 1) 0)
iff (by Definition 2.1.1.8)
eso) =0 V ele(s{o}) o)) =o V...V e€(s, {o),...0, Do) =0
iff (by Definition 2.1.1.16)
es P) =0 '

3) IfP- [Pl, .. .,Pn] then

- o'(s, P)
iff (by Definition 2.1.1.17)

- a’(s,Pl) V...V ~o'e'(.. .e’(s,Pl) .. .,Pﬂ))
iff

Planning 31

ke {l,...n}:~a'(.. .(;'(s,Pl) .. "Pk))
iff (by (2) above)
ke {l,... n}:e(.. .e'(s,Pl) .. "Pk-l)’Pk) =n
iff (by iterating (a) of Definition 2.1.1.8 and Definition 2.1.1.16)
e(...e6P) .. .,Pn) =p
iff (by Definition 2.1.1.16)
e'(s, P) = no.

0

Definition 2.1.1.19
A planning problem is defined by a planning situation (5, A, T, &, €) and a triple
(s, 7. ¥), where s € S is the initial state, ¥ : § — {true, false} is the goal condition,
such that ¥(o) = false and x : A X T) — le is a (multidimensional) criterion to
minimize.
A plan P is a solution of the planning problem if
Ye'(s, P)) = true;
it is an optimal solution of the planning problem if it is a solution and
VPeAxT):[ve@s, PY) = x(P) < x(PY],

where forx=(x1,...,xk)eﬂlk and x'= (x},...,xl'c)eﬂ%k
x<x' iff Vie {1,.. .k} :x£$x;,.

0

Let us make two remarks with respect 1o this definition. First, note that by the
presence of K we are not restricted to optimization-like planning problems. If we
are not aiming at any optimum then we can define k constant through A x 7).
The second is that ¥ could be generalized to an arbitrary condition ¥ ' on plans. In
this case a planning problem would be (S, A, T, &, &) with (s, v, v ") and the
condition VP' € PA x T) : [Ye'(s, P)) = k(P) £ ¥(P)] would be a special case of
Y '(P).

Proposition 2.1.1.20

Every solution of a planning problem is allowed, that is if (5, A, T, o, €), (5, v, ¥)
is a planning problem and P ¢ A x T is finite then y¥(e'(s, P)) implies a'(s, P).
Proof It is a self-evident corollary of the definition of ¥ and Proposition 2.1.1.18.

0

32 Chapter 2

2.1.2 Dynamic Case: the World as a Process

Recall the introduction of Chapter 2.1; the characteristic feature in a dynamic
situation is that a world state can change without having an action executed.

Example 2.1.2.1 Precedence Constrained Scheduling Problem (PCSP)

We have a finite number of jobs and machines that can perform jobs. Given a
predecessor relation on jobs, a description of the abilities of the machines (which
job can be done on which machine) and the duration of performance for jobs and
machines, we have to schedule the jobs on the machines such that no job is
performed before its predecessors have been completed and the total processing
time is minimal, cf. Garey and Johnson (1979).

World: machines, jobs, which job can be done on which machine, predecessor
relation on jobs, durations;

States: pairs of machines and jobs (machine performing job), list of completed
jobs;

In, state: no machine is performing any job, no jobs completed;

Actions: beginning a job on a machine;

Allowed:a free machine is allowed to begin a not completed job if the
predecessors of the job have already been completed and the machine
has the ability to perform the given job;

Effect: for a period: machine is performing job, later: machine free and job
completed;

Plans: sets of operations where more actions can take place at the same time;

Goal: all the jobs are completed;

Criterion: the total processing time is minimal.

I

Observe that in a PCSP one operation triggers two state transitions at two
different time instances: first there is a new world state maintained for a period of
time (the machine is busy with the job), then there is another state transition that
leads to the final result of the given action (the machine becomes free and the job
becomes completed). This phenomenon can be viewed as having a change in the
world state that is not caused by an operation (at the time of the change). We

Planning ‘ 33

consider two possibilities to model dynamic waorlds.

First, we can drop the intuitive basis of world states and give up the view that a
state is a snapshot of the world at a certain moment. Introducing entities that
rather belong to periods than to moments we can try to capture the problem by
these new objects.

The second possibility is to keep the state-snapshot vision but embedding states
into a time flow. This would lead to the notion of a process and the replacement
of the state-operation-new state construction by a process-operation-new process
model as the next example illustrates.

Example 2.1.2.2 V

Let a 4-tuple (my,b,c) stand for a machine m, a job j, a beginning time b and
completion time ¢ to describe that m is performing j between b and ¢. Such a
4-tuple gives a partial world description over the period of time between b and ¢.
To obtain a complete view on what happens at a time instance ¢ we have to check
the set of all these 4-tuples taking their "projection’ on z. Thus a set of such
4-tuples can be seen as a world description. The tuple (m,j,b,c) can be seen as
some mixture of an operation and its effect, that of beginning j on m at b, coupled
by telling that m will be occupied between b and ¢ and that j will be finished at c.
A set of such 4-tuples thus also can be seen as some kind of plan.

Let us keep states as given in Example 2.1.2.1. Introducing a predicate ready
and a predicate busy we can identify a state by a set of atomic formulae that are
true in that state. If we now introduce processes as parameterizations of the world
states by time then the operation of beginning j on m at b turns the process f into
the process g as exhibited below.

S
5, = {ready(D} | e g

51 = {busy(mj)} | = - -

s =0 [f

34 Chapter 2

After studying the two possibilitics we have chosen the second one. The reasons
to choose the process based approach are threefold.

- The original interpretation of world states is kept: they can still be interpreted as
modelling the world at a certain moment.

- Takiﬁg processes as the basic entities changed by operations, we preserve the
previous construction of planning problems: the notions operation, allowed and
effect can be naturally extended to processes. "

- In Example 2.1.2.2 the operations, effects and states are mixed up, something
that can be advantageous for an economical rcpresentatioh formalism, but not
for a conceptual model that should clarify the matter.

Therefore, in this section we extend the static world of states to a dynamic world

by introducing processes as parameterizations of the world states by time. Taking

‘processes as the basic entities to be changed by operations, we introduce dynamic

planning problems where an initial process and certain goal processes are given

and we want to have a plan that transforms the initial process to a goal process.

In the sequel we formalize this concept of planning preserving as much as

possible from the static model. Definitions and propositions that are identical to

those of section 2.1.1 are not repeated.

Definition 2.1.2.3

A process of a planning universe (S, A, T) is a partial function
' f: T+ 8\ (o). We also introduce a special absorber process that will be
denoted as O and called nil process. The notation FS,T stands for the set of all
processes of the universe (S, A, T) extended by the nil process.
For notational convenience we shall denote F ST by simply F if it can not lead to

confusion.

0

Example 2.1.2.4

Let us take an example from the so called qualitative physics, see Forbus (1984).
A ball is dropped above a flame at the moment ¢. Falling down it goes through
several states eg. falling, falling and being heated and then finally being broken
when reaching the ground.

Planning | 35

hy ---- O ------
!
I EEEEEEEEE
FLAME
hy <o

ground

Let us introduce the predicates falling—at, heated and broken and let us again
identify a state by a set of atomic formulae that are true in that state. Then the
environment can be modeled by the following states and time instances:

S = v | falling—atth) Y u v | falling—at(h) A heated } u (broken }
hef0,100] he[0,100]

T=R
0
and the falling ball dropped at time ¢ can be described by the following process f.

{fallfng—at(ht)} ifr<t< treackﬂame
{fal!ing—ai(}g‘) A heated) if f,.eag;;ﬁm st< tz‘eaveﬂame
fln =) ; <
{fallmg-at(ht)} if !{eaveﬂame =t< Iﬁffg?’ ound
| {broken} if I&itgrozmd st

The exact value of hT e Hflame’ tleaveﬂame and i ground can be calculated by

the well-known Newtonian laws of mechanics if hﬂ’ hl‘ h2 are given.

0

Notice that a state is again identified by the set of atomic formulae that are true
in it. We also maintain the so called Closed World Assumption, stating that if an
atom is not contained in a state s then it is not true in 5. By this representation of
states their inner structure is visible in the example: roughly, states are subsets of
the set { falling, heated, broken }. This implies that we have two possibilities of
depicting a process. The first one is to indicate every state on the vertical axis,
that is every element from ({ falling, heated, broken }). This leads to 8 items
and the following figure.

36 Chapter 2

S

{falling heated,
broken) -
{heated broken) -
{falling,broken} -
{falling heated) -
{broken) + e
{heated) +
{falling) +
2 r

T

¥

+ ! i T
! t [
reachflame leaveflame hitground

3
The other possibility is that we indicate only the "ingredients’ of the states, that is

each of falling, heated and broken and the actual state at a moment ¢ can be
obtained by upwards projection. This results in the following picture.

broken ; e
heated
falling
! T
[4 13 4 i.
reachflame leaveflame hitground

Notice that this is nothing but the well-known Gantt chart representation.

Definition 2.1.2.5
A dynamic allowability relation of a planning universe (S, A, T) is a relation
& F X {AXT)— (true, false}.

0

Denoting time segments we shall use the following notational conventions: for any

teT
T={teT:t<t}), ={teT:ts1);

Tt={1eT:t<t}), Tt={(1eT:t51}.

Planning | 37

Definition 2.1.2.6
Let (S, A, T) be a planning universe, & be a dynamic allowability relation. A
function
é:FXAXT)—-F
is a dynamic effect-function if it holds that for every fe F ae A, te T:
a) &nlan) = 6
b) ~aff(an) & éf(an) =5
c) ife(flan)#0 then (e(fla) ! Tt = fI Tt
0

Here is a crucial difference between the static and the dynamic planning model!
In the static case Definition 2.1.1.7 and point (c) of the Definition 2.1.1.8
expressed independence from the time instance of an operation. Obviously, this
independence would not hold for processes that are essentially meant to describe
changing situations. Point (¢) of Definition 2.1.2.6 is to requirc that only the
future, and never the past of a process is changed by an operation.

Definition 2.1.2.7
Let (S, A, T) be a planning universe. A dynamic planning situarion of (S, A, T) is
a 5-tuple

(F,A, T, &,¢)
where F = F ST & is a dynamic allowability relation and e is a dynamic
effect-function of (S, A, T).

0

Definition 2.1.2.8

The extended effect function of a dynamic planning situation (F, A, T, @, €)
&:FXPAxT) — F

is defined for any f & F and finite P € A x T) in the following way:

if P=@ then &'(f,P) = f,

if P= {01, o .,on] is a section with an arbitrary numbering of its operations
and for every subset {i
{i P .,ik}

e .,ik] ¢ {1,...,n} and every permutation ® of

38 Chapter 2

e(...efo
holds, then
e, Py = e...eff, ol)m, on) N
if P= {ol,on} is a section and there exists a subset [il, - .,ik] c
{1, .. .n)} and a permutation 1t of {il, .. "ik] such that
e.. .e(f,on(il)) .. .,om.k)) * e.. .e(f,ol.]) 0)

n(x

) = e(...effo,)...0
D) T) 0y)

k
then
e, P) = 0;
if P~ [Pl, .. .,Pn] then e'(f,P) = é'(.. .é'(f,Pl) .. .,P”).

0

. Notice that the basic feature of time is the same as for the static case: the effect
of the operations with a smaller (earlier) assigned time instance precedes the effect
of the ones with a larger (later) one,

Recall point (c) of Definition 2.1.2.6 that can be informally understood as stating
that the past of a process cannot be changed by an operation. The question
whether this property also holds for plans in general is answered by the following
proposition.

- Proposition 2.1.2.9 (Past Invariance) ~
ILet feF, P~ [Pl, .. .,Pn], 1= time(Pi) foreveryie {1,...,n}. Then

é'(f, P) # 0 implies é'(f, P) =f on T{l.

Proof
1) a=1 (P isa section)
Let P = Pl = {"1’ .. .,ok},' k>0 and r = time(P). Furthermore, let f0=f and
Si=e.. é(f{yol)‘. -0
forze {1,.. .k}
Notice that e'(f P) # 0 implies f #0 foreveryie [1 . .k} and then by the
iterated application of point {c) of Deﬁnmon 2.1.2.6 we have that
fl. I Tt =fi-l b Tt foreveryie [1,.. .k},
hence
fk TT{:...:fl TT{=f0 I Tt,

Planning 39

thus
ef,Py=f onTt
2) n>1
Let f0=f and f = e(.. 'é(f(}’Pl) P, e {1,...n}.
&'(f, P) # 0 implies f‘ # 0 and then by (1) and Definition 2.1.2.6 we obtain that
foreveryie (1,.. .1}
fi1 Ty =y 1Ty
as the figure below illustrates it for n = 2.

S
~~~~~~~~~~~~~~ f2
st vt vttt 5 2 % A A & A e e s s s s fl
_________________________________________________ fO
3 t T

Since P, .. P arc numbered by the natural numbering
Tli-l c T;‘. foreveryie {1,.. .n},

thus
LTy =5t Ty

0

Definition 2.1.2.10
The extended allowability relation & of a dynamic planning situation
(F, A, T, &, &) establishes allowability of plans with respect to processes. It is a

* Boolean function

G :FXPAXT) — {true, false}
such that for any f ¢ F and finite P € A x T)
if P=0@ and f=0 then o'(f, P) = false;
if P=0 and f#0 then o'(f, P) = true;
if P= {01’ .. .,on} is 4 section with an arbitrary numbering of its operations then

&P = af.0,) A e o oph.. . AR Lo, . .0, 1) 0



40 Chapter 2

if P~ [Pl, .. .,Pn] then
&, Py = d’(f,Pl) AL AEEYC.. .é’(f,Pl) .. *’Pn-l)’Pu)’

We say that a plan P is allowed w.r.t. a process f if &'(f, P) = true.

0

Proposition 2.1.2.11

Let (F, A, T, &, &) be a dynamic planning situation, & and &' the corresponding
extended allowability relation and the extended effect function, respectively.
Then for every f ¢ F and P € A x T) it holds that

&'(f, P) = false & e'(f,P)=40.
Proof ‘
It is analogous to the proof of Proposition 2.1.1.18 with f e F instead of s € S.

0

Definition 2.1.2.12 ,
A dynamic planning problem is defined by a dynamic planning situation
(F, A, T, &, &) and a wriple (fo, ¥, x), where fo € F is the initial process,

¥ : F — (true, false} is the goal condition, such that ¥(0) = false and
K : MA x T) = B¥ is a (multidimensional) criterion.
A plan P is a solution of a dynamic planning problem iff
Yy P)) = true;
it is an optimal solution if it is a solution and
VP e AXT): [?(é'(fo: P)) = x(P) £ x(P)},
where for x = (.xl, .. .,xk) € [Rk and x'= (x}, .. .,xp € (R‘k
x<x iff Yie{l,.. . k) .'xin;..

[

Proposition 2.1.2.13 )

Every solution of a planning problem is allowed, that is if (F, A, T, &, &), (f, 1. x)
is a dynamic planning problem and P ¢ A x T is finite then ¥(é’(f, P)) implies

a'(f, P).



Planning . 41

Proof
It is straightforward from the definition of ¥ and Proposition 2.1.2.11.

0

The structure represented by the five tuple (S, A, T, o, €) or (F, A, 7T, &, &) can
be considered as a model to describe planning situations where the elements of the
tuples are the parameters. More precisely, we can specify a planning situation by
a 6tuple (x, S, A, T, o, €), where x € {static, dynamic} and the values of S, A, T,
o, ¢ must be such that (5, A, T, a, ¢) forms a static planning situation if x = static
and (FS,T , A T, a, ¢) forms a dynamic planning situation if x = dynamic.
Defining a planning situation we give a domain description or decision model;
defining a triple (s,,, ¥ ), respectively (fo, ¥, k) determines a problem to solve.

We believe that this framework carries those aspects of the world that are
relevant for planning. The examples in section 2.2 justify this belief
demonstrating how to use the formalism as a high level description language to
specify planning problems. In the meanwhile, by such a practical exercise we
gain a more detailed view about how these parameters can be given and what kind
of value they can have. In particular, the examples will serve as good illustration
of parameters having expressions of a high level language as values. This will
bring us closer to outline a method to define a planning problem within a D8S.

2.1.3 The Role of Time

Intuitively it is clear that the dynamic model of planning is a generalization of
the static one. More precisely, we envisage that if the dependence on time (the
parameterization) is kept constant then we get the equivalent of a static planning
model within a dynamic one.

Likewise, says intuition, if we consider a process as one object - a (meta) state -
then we can project a dynamic model into a static one. To investigate this
question formally we can regard a planning situation as a space of objects (§ or F)
with a function on it (¢ or ¢) and interpret "being the equivalent of by the
following double definition.



42 , Chapter 2

Definition 2.1.3.1
Let (5, A, T) and (W, A, T) be two planning universes, (5, 4, T, «, €) and

(FWT , A, T, & &) be a static and a dynamic planning situation and let F denote

FW,T -

We say that (S, A, T, &, ) has an isomorphic representation in (F, A, T, &, é) if
there exists an injection [ : S — F such that \
Io)=0
and foreveryae A, te Tandse S
Ie(s(an)) = eds),(ar).
(F, A, T, &, &) has an isomorphic representation in (S, A, T, &, e) if there exists an
injection J: F — § such that
Jo)=no
and foreveryae A, te Tandfe F
Je(f(a.n) = el.(an).
I

To illustrate the meaning of this definition us take the isomorphic representation
of a static case in a dynamic one and consider the following figure.

. . Lol PR
YR —— e - - 0
0 — = = = = = = e
s i f

For an isomorphic representation of a static situation in a dynamic one an injection
I is required such that [ and effect commute, i.e. that / c e = € o I. Notice that if
such an J can be given then the static situation can be handled by a dynamic one.



Planning 43

Namely, we can compute the effect of operations on states by applying
-1 ~
e=]"oéol

Proposition 2.1.3.2
Let (S, A, T, 0, e) be a static planning situation, If there exist 5,2 € S\ {n}, s # z
and o € A x T such that e(s,0) = z then there is no planning universe (W, A, T) and

dynamic planning situation (F A, T, G, &) such that (S, A, 7, ¢, ¢) has an

wT’
isomorphic representation in (F
Proof
Let (5, A, T, 0, e) be a static planning situation, s,z € S\ {0}, s # z and (@,0) ¢
A x T such that

- efs,{a,n) = 2
If (W, A, T} is a planning universe and (F

WT AT, G e.

wr AT &, &) is a dynamic planning
situation such that (S, A, T, &, e) has an isomorphic representation in

(F A, T, &, ¢) by an injection I, then

w,r’
I(s) # 1(2).

On the other hand, point (c) of Definition 2.1.1.8 implies
VteT:e(s,(a1) =1z

and therefore
eds)(ar) = Ke@s,(a)) = I(z) foreveryteT

by Definition 2.1.3.1. Observe that by z # 0 and the properties of / we have
ed(), (@) #0 foranyteT.

Then by {c) of Definition 2.1.2.6 this latter implies

eldis)(at) I Tr=Is) | Tt foreveryteT.

Hence
I$) 1Tt = K2) ' Tr  foreveryte T
thus
I(s) = I(2),
which is a contradiction.
[

Proposition 2.1.3.3

Let (W, A, T) be a planning universe and (F A, T, &, ¢€) be a dynamic

wT '
planning situation. If there exist fe FW T\ {o},aeAand r,t e T (¢t #7) such that



44 Chapter 2

e(f(an) # é(f,(a,1)) then there is no planning universe (S, 4, T} and static planning

situation (S, A, T, o, e) such that (F A, T, & &) has an isomorphic

wT "’
representation in (5, A, T, ., e).
Proof
Let (FWT' A, T, &, &) be a dynamic planning situation, f € FWI‘\ {0}, ae Aand

tte T (1#1) be such that é(f{a,n)) # é(f,(an)). If (S, A, T, a, ¢ is a static

planning situation such that (F

(S,A, T, e) by J, then
J(e(f(a,0) # J(e(f.(a 1))

since J is an injection. On the other hand,
J(e(f(a.n)) = elJ(N.(an)

-by Definition 2.1.3.1; furthermore by (c) of Definition 2.1.1.8 we have
elJ(H,(a.) = e(J(N.(a1).

This implies
Je(f{a,0) = J(e(f(aD)),

which is a contradiction.

I

W A, T, 6, &) has a isomorphic representation in

These propositions demonstrate that a non trivial static {dynamic) planning
situation cannot be isomorphically represented in a dynamic (static) one. The
proofs also show the source of this fundamental mismatch: {¢) of Definition
2.1.1.8 and (c) of Definition 2.1.2.6 counteract each other. Since these points
embody the very nature of the static, respectively the dynamic case, from the
above propositions we can conclude that static and dynamic models are deeply
different by nature.

The above results imply that maintaining only static (dynamic) models and
computing the dynamic (static) effect function through the appropriate mapping
J -1, eod (I -1, ¢ o [} is impossible. We can, however, construct 2 mapping
I from static to dynamic universes and a corresponding non-injective mapping J
from dynamic to static universes such that e =J oé o I. This means that -
although not isomorphically - we can represent the information about a static case
within a dynamic one.



Planning 45

Definition 2.1.3.4
Let (F, A, T, &, &) be a dynamic planning situation. A process f € F is called
ray-tailed if there exists a time instance t e T such that

Yoty = fi). *)
The notation f ! stands for a rail-tailed process with t € T being the smallest time
instance satisfying (*).

0

Definition 2.1.3.5
For a static planning situation (S, A, T, a, €) a dynamic planning situation

(FS T A, T, Q,é) is mirroring (S,A, T, a,e) if for every fe FS r

1,0e T the relation & and the function ¢ satisfy

a(a.n) = afn.(a.n),

and

ae A and

fm if ’[ <t
ef(an(r) =
e(fin,an) T2t

The mirroring mappings I:S—F and J:F - S are defined as follows.
Is)(t) = s forevery se S, 1eT
and



46 . Chapter 2

JfhH = fo for a ray-tailed process f ¢ F.
1

Proposition 2.1.3.6

Let (S, A, T, o, e) be a static planning situation, (FS r AT 6,8),1:5—Fand

J : F + § be a dynamic planning situation and the mappings mirroring
(S, A, T, o, e). Then it holds that e=J oé o, thatis for every s € § and
(ane AxT

e(s(an) = JEed©),@n).

Proof
By definition we have that
It) = s
and
s ift<t
ed(9),(an) =
e(sfan) ifzt21«
and thus
Jed@s)@n) = els(an).

0

Notice, that even if we cannot consider a process of a planning universe as a
state of another planning situation, we can regard it as an object of a space that is
transformed into another object by a plan. The definition of the transition relation
within the space of processes is self-evident.

Definition 2.1.3.7
Let (F, A, T, &, ¢) be a dynamic planning situation. The transition relation »
on F is defined for any f, g € F by
fr»g iff 3PePAXT) e, P)=g.
0

The relation » is clearly reflexive since
VfeF:e(fd)=f

holds by definition. With some surprise we realized that transitivity does not hold



Planning 47

for » in general, although intuitively we had expected that if the process f can be
turned to g, and g to k then f can be turned to h as well. Next we give a
counterexample to show a case when this does not hold.

Example 2.1.3.8

Let us take ([R(";, (al, a2], IRS) as a planning universe and let f,g,h, € F defined by

the following. Let ¢, € Ry and let & and e be such that:
aff(an) =true & [a= a, At = t1] Via= a, A= t2];
alg(a) = true & a= a, At= Ly
e(fa 1)) =&
e(flayt,)) = §;

é(glayty) = h.
The next figure illustrates the relationship between the processes f, g, & and i.

3

f 1, T
On one hand, the general definitions of an allowability relation and an effect
function are satisfied here thus this is a possible planning situation.
On the other hand, é(f,(a,9)) can only be g or i or g, which implies
fr»g Ag»h A-(f»h),
that is transitivity does not hold in this case.

0

Investigating the cause of the subjective "absurdity’ of Example 2.1.3.8 we find

itin having e(f(a, 1,)) # é(g,(az,: )) although f = g up tor,. This discloses that



48 Chapter 2

we intuitively maintain a hidden assumption that is violated here.  This
assumption informally says that it is only the past and the present that determine a
situation, regardless to the future which would have come without external
interference. Notice that being in a process, from 'within’ we cannot distinguish
two prbcesscs which have the same history up to now, i.e. at 1, we cannot tell
whether we are in f or g. Therefore we assume that at any moment the set of our
possible actions and the effect of the actions is independent from the future.

We admit that one might be reticent about the universal validity of these
features. Therefore we do not extend our theory with requiring these properties in
general but we formulate them as two assumptions.

-Determinative Past Assumption 1 (DPA 1)
Let (F, A, T, &, ¢) be a dynamic planning situation. The Determinative Past
Assumption 1 holds for (F, A, T, &, e¢)if forany f,ge F and e T

[1Tt=g 1Tt = df.[ = dg",

where &, stands for { (g 1)e AXTIt =1 A& (a1) = true }.

it
0

Determinative Past Assumption 2 (DPA 2)
Let (F, A, T, &, ¢) be a dynamic planning situation. The Determinative Past
Assumption 2 holds for (F, A, T, &, e) if for any f,g € F and non empty section P
such that time(P) = ¢

FITe=g 1Tt = & P)=¢é(g P)
0

These assumptions are not fully independent as the following proposition
indicates.

Proposition 2.1.3.9 :

For every dynamic planning situation (F, A, T, &, ¢) DPA 2 implies DPA 1, but
the reverse does not necessarily hold.

Proof

Let (F, A, T, &, &) be a dynamic planning situation and assume that DPA 2 holds
but DPA 1 does not. Then we can take two processes f, g € F and 1 ¢ T such that



Planning 49

fiTt=g Tt
and
f t :‘
Without loss of generality we may assume
f, . \ ag’l 0,

thus we can choose an element (a,)) € &, \ &g ¢ Then for (a,f) we have

1

aff(a.n) A - a(gla).
Then the = direction of (b) from Definition 2.1.2.6 implies

e(gan)=an
and from the ¢ direction of (b) of Definition 2.1.2.6 it follows that

e(f{an) # 0.
On the other hand DPA 2 implies

e(flan) = e, P) = &g, P) = eg(an)
for P = {(a,)} which is a contradiction.
To see that DPA 1 = DPA 2 does not hold in general let us consider a dynamic
planning situation (F, A, T, &, &) for which DPA 1 holds. Let the processes f.g
and ¢ € T be such that f# g and

f1Tt=g 1Ty
it is easy to see that extending (F A, T, @, &) by introducing a new action @' ¢ A
and defining

ah@g) =true & (h=fVh= g)Aa-a At=t
and

ef(@n) =g and e(gl@n)=f
results in a planning situation for which DPA 1 does hold but DPA 2 does not.

0

The following proposition proves that DPA 2 is a sufficient condition for the
transitivity of the relation ». The proof is constructive, not only stating that there
is a plan that turns f into A but also constructing it from the plans that turn finto g
and g into A.

Proposition 2.1.3.10
Let (F, A, T, &, é) be a dynamic planning situation. If DPA 2 holds for
(F, A, T, &, &) then the relation » on F is transitive.



50 Chapier 2

Proof

Let the processes f,g,h € F\ {51} and the plans P,Q ¢ A x T be such that
e(,P)=g and é'(g,0) = A

We show that there exists a plan R ¢ A x T such that
e'(f.R) = h.

Let P ~ [Pl, .. .,Pn] and O ~ [Ql, .. .,Qm] and let i = tz'me(Pl.), ie{l,...,n)

and
T = time(Q‘.), ie {1,...m].

1) T, < 1 (@ starts not later than P)

€f,P)=¢g = f=g onTy
-by the past invariance proposition (2.1.2.9), so by T, St
f=gon T T
is obvious. Then DPA 2 implies that
¢,0) = &g Q)
thus
YO = #8000 = 8. ¥ 0) ... 0,) =G O
that is R = Q is satisfactory.

1

ii) T, > (Q starts later than P)
Let fo = f, fl = e'(fi-l’Pi) for every i e {1, .. .,n). By the iterative application of
the past invariance property (Proposition 2.1.2.9) we obtain

fi = g on T£i+1 forevery ie {1,...n-1].

Lctkbcsuchthatkzmax{z’i%«tl }.

Then

L<T S
and

fr=gonTy
imply that

fk =gonTy,.

Observe that DPA 2 leads to

é'(f,P1 U...UP U o) = e'le.. (e, Pl) R Pk), Q) = é'(fk, Q) = h,
that is for R -_-Plu...quuQ we obtain



Planning 51

2.2 Examples of Planning Problems

Section 2.1 presents two kinds of models of planning problems. A static model
is appropriate if we can assume that any state lasts until an action iS committed.
If, however, we foresee that there are states that are maintained only for a certain
period of time then a dynamic model can describe the case. In section 2.1 states,
actions etc. were primitives of the theory. Here in section 2.2 we are going to
have a look at the ’inside’ of these primitives, that is we give a detailed
description of five planning problems.

For any description method it is very important that it is clear enough and
relatively simple entities are used to describe a problem. This makes it easy to
decide whether the formal description matches the intuitive interpretation of the
problem, in other words this makes a formal description a good interface between
intuition and formal treatment of the problem. Using the theoretical model as a
description framework imposes a certain method of problem specification.
Describing a problem through defining S, A, T, @, e, s, ¥, x implies that we can
concentrate on a relatively small aspect of the problem at a time, e.g. what the
world states should be like, or which conditions should hold before the application
of an action. The whole model is then composed by these relatively simple
components.

To characterize a state as a snapshot about the world at a moment it seems to be
natural to list all those facts that hold in the world at that moment. Making just
one step further we come to the idea of saying that a state IS a set of valid facts.
We complete this view with the so called Closed World Assumption, assuming
that a state s contains all the valid facts, i.e. if a fact is not contained in s then it is
not true in s. Hereby we take a logic-based approach that enables us to handle
facts, complex statements and validity with respect to states, cf. Pednault (1987),
Treur (1988), van Langen and Treur (1989).

Before we begin the formal work we want to draw the readers attention to
certain important aspects of the following examples.



52 Chapter 2

As we have mentioned after Remark 2.1.1.3 there are two kinds of facts:
permanent ones that are not changed by an action and temporary ones that can be
modified if an action is committed. Incorporating permanent facts in the states is
superfluous, therefore in our construction we distinguish permanent functions and
relations and temporary functions and relations.

Permanent relations belong to the background information; we presume that they
are stored in a kind of database and can be directly quoted without any reference
to the actual state. Therefore, we do not distinguish the relation R ¢ A x B and the
corresponding relation symbol, but will also use the notation R(a,b) meaning the
appropriate Boolean value. Similarly, we assume about permanent functions that
they are always computed, that is if D : A x B — R is a permanent function then an
expression of the form D(a,b) denotes a real number.

By their very nature, temporary relations can not be given a truth value without a
reference to the actual state. Therefore, for every temporary relation R we
introduce a corresponding relation symbol 7 with the same arity and define a state
as a set of ground atoms constructed from these relation symbols. To interpret
truth w.r.t. states we assume that a state is a complete collection of facts true in it,
i.e. we assume that r(x) € s if and only if R(x) holds in s.

To exclude infinite features we shall avoid the use of temporary functions. We
use function symbols only to denote names of actions, e.g. to{x,y) will be the
name of the action of going from x toy. These temporary function symbols are
purely syntactic: an expression of the form ro(x,y) has no value, it is but a name.

In the sequel, names of function and relation symbols in upper case indicate that

~we consider them as semantic objects, names in lower case stand for syntactic
 objects.

Finally, let us make some abbreviations to simplify the notation. As it turns out
from the foregoing, we use temporary relation and function symbols for special
purposes. They are seen as purely syntactical objects, therefore we shall use an
abbreviated way of set construction, namely:

{ r(xl, .. .;::”)lx1 eXl, .. .,xneX” }
instead of

{ expression € Expri3 x € );’1 ... 3 x € Xn : expression = r(xl, .. .,xn) 1,
where Expr denotes the set of all expressions used.

We use two other notational conventions for there exists one and only one and



Planning 53

there exists at most one. For the sake of convenience
AxeX: o)
abbreviates the formula
BAxeX: o] A NxyeX: o) Aphy)=x=y],
while
FxeX: o)
stands for
Vxye X : o) ApQ) =x =y

2.2.1 Travelling Salesman Problem

Based on the informal description in Example 2.1.12 we distinguish the
following relevant entities of the world:
-Z= {zl, .. .,zﬂ] is the set of constant symbols denoting the cities;

-D:ZXZ— TR; is a permanent distance function for cities;

- AT is a temporary unary relation pointing out the city where the agent is;

-SEEN is a temporary unary relation to mark cities that have already been
visited.

Observe that no agent or salesman is mentioned in this description. Indeed, if
we only presume one agent, he can be simply omitted. We, however, will
mention it sometimes as if it was present, just to make explanations easier.
Formalizing the above view on the world we introduce
- at, a unary relation symbol corresponding to the relation AT;

- seen, a unary relation symbol corresponding to the relation SEEN;
-to, a binary function symbol (name), fo(x,y) representing the action of going
from city x to city y. ‘

Definition 2.2.1.1

A pre-state is a set V
Vecla)ixeZ}u{seen(x)lxe Z}.

The set of all pre-states will be denoted by Sp.

il



54 Chaprer 2

Definition 2.2.1.2
A prestate Ve Sp is called correct if the agent is at one location at a time, that is
if

AdxeZ:arx)e V.

0

We assume that the position of the agent and the status "being seen’ of a city can
only change by performing an action, that is we choose the static model version.

The constituents of the planning universe are :
S={Ve Spl V is correct };
A={to@xyixyeZ};

T=N

Definition 2.2.1.3 :

The allowability relation for 5¢ §,te T, x,y € Z is defined by
als, (Lo(x.y)D)) &

1) arx) e s and

2) seen(y) ¢ s.

0

Definition 2.2.1.4

Forevery se §,teT,xye Z, if a(s,(to(x,y),r)) then
e(s, Gox,y),0)) = (s\ {ar(x)}) v {ar(y), seen(y)}.

i

Let us have a look on the role of seen. We could have chosen world states
describing only the actual position of the agent, that is containing only the at
predicate. However, restricting ourselves 1o the static model would then imply
that the information about the past (where the agent has already been) would be
lost after each state transition. Therefore we incorporated seen in the states.
Notice that a modelling decision was taken that says that a location becomes seen
when arriving at it.



Planning 35

Definition 2.2.1.5
A planning problem describing the travelling salesman problem can be given by
the following items. '

5y = larz)};

) & a:(zl) €5 AVzeZ:seen(z)e s,

m
K(P) = 21 D(x,y)
.

for any arbitrary P = { (to(xl,yl),tl), e (to(xm,ym),tm) }.

1l

It is common for TSPs that not a minimal value of x is required only a x value
under a certain border B > 0. This, however, does not make TSP easier in the
sense that it remains NP-complete, cf. Garey and Johnson (1979).

Proposition 2.2.1.6

For any Ve Sp, ae Aandte T, if Vis correct and a(V,(a,1)), then e(V(a,1)) € Sp
is correct too.

Proof

By Definition 2.2.1.4 an operation does not change the number of expressions of
the form at(z) in a state.

0

2.2.2 Travelling Salesman Problem with Time Windows

Recall Remark 2.1.1.3 where we stated that the extension of TSP with time
windows can not be expressed in a static model. Therefore we develop a dynamic
model for TSP with time windows, cf. Savelsbergh (1988).

We distinguish the following relevant entities of the world:
-Z= {zl, . .,zn} is the set of constant symbols denoting the cities;

-DZXZ - [R;; is a permanent distance function for cities;

- ve R" is the standard velocity of moving;
- W:Z— PNxWN), such thatforeveryze Zand we W(2), w=(w.1,w2)
w.l € w.2 holds and the interval {w.1, w.2] is a time window



56 Chapter 2

belonging to z;
- AT is a temporary unary relation pointing out the location where the agent is;
- SEEN is a temporary unary relation to mark cities that have already been
visited;
- UNDERWAY is a temporary zeroary relation that stands for being between two
cities.

Formalizing the above view on the world we introduce

- at, aunary relation symbol corresponding to the relation AT;

- seen, a unary relation symbol corresponding to the relation SEEN;,

- underway, a zeroary relation symbol corresponding to the relation UNDERWAY;

- to, a binary function symbol (name), to(x,y) representing the action of going
from city x to city y.

Definition 2.2.2.1
A pre-state is a set V

Vel{ax)1xe Z} u{ seen(x) | x e Z} U {underway)
The set of all pre-states is denoted by Sp.

0

Definition 2.2.2.2

A pre-state V e S is called correct iff

1) - (underwayeV A IxeZ:ar(x)eV) and
2) FxeZ:atx)e V.

I

The constituents of the planning universe are:
S={Ve SpIViscorrect IR
A={toxy)ixyeZ);
T=N. :
Let F denote the set of all processes of this planning universe.

Definition 2.2.2.3
A process f € F is correct if f(1) is correct for every t € dom(f).

]



Planning 57

Definition 2.2.2.4
The allowability relation for fe F, t € dom(f), x,y € Z is defined by

aff, (to(x,y).0)) &

1) at(x) € f( and

2) seen(y) e f(t) and

3) IweW®) :wl<t+Dxylv<w?.

i
Definition 2.2.2.5 ;
For every fe F, te dom(f), x,y € Z, if aff,(to(x,y),1)) then

@ : T< ¢
e(f, o, ), = {1 [f()\ {ar(x)) 1 v {underway) ¢ < 1 < t+D(x,y)lv
0 (o) v {aKy), seen(y)} t+Dxy)/v<n
Definition 2.2.2.6

A planning problem describing the travelling salesman problem with time
windows can be given by the following items.

fo(t) = {at(zl)] for every te T;

YH) & Jte T:[at(zl)ef(t) AN VzeZ:seen(2)e f(t)];

m
K(P) =X D(x,y)
i=1 !
for any arbitrary P = { (to(xl,y]),tl), . (to(xm,ym),tm) }.

I

Proposition 2.2.2.7

For any process f, a € A and t e dom(f), if f is correct and &(f,(a,1)), then e(f(a.5))
is correct too.

Proof

It is trivial by Definition 2.2.2.4 and Definition 2.2.2.5.

Il



58 Chapter 2

2.2.3 Precedence Constrained Scheduling Problem

The problem we have sketched in Example 2.1.2.1 leads to the following items:
- M and J are sets of constant symbols to denote the machines and the jobs;
PREcJxJ, a permanent relation prescribing the precedence between jobs;

]

ABLE ¢ M x J a permanent relation showing that a machine can perform a job;

- D : ABLE — [RZ a permanent function that indicates the duration of the
performance of a job on a machine;

1

BUSY ¢ M x J a temporary relation to tell that a machine is working on a job;

READY ¢ J a temporary relation 1o indicate that a job has been completed.
In the formal description we shall use:

- busy, a binary relation symbol corresponding to the relation BUSY;

- ready, a unary relation symbol corresponding to READY,;

- begin, a binary function symbol (name) denoting the action of beginning a job
on a machine.

Definition 2.2.3.1

A pre-state is a set V
Velbusyimj)imeM,jeJYu{readv(yljeld ).

The set of all pre-states is denoted by §

x
0

The intention is clear, world states are the possible snapshots during the job
performing process. The situation at a time instance, however, is not fully
determined by the ongoing activities. Jobs completed earlier are influencing the
situation as well. Hence, a choice needs to be made between either checking the
history before decisions, or defining a representative of the relevant aspects of the
history and completing the snapshots with it. ‘We have chosen the second
possibility, this explains the role of ready.

The world states are constructed such that in any state



Planning A 59

- a machine is doing a job only if it is able to do that job and

i

a machine is doing at most one job and

a job is being done on at most one machine and

!

ready jobs are not being performed.

Definition 2.2.3.2

A prestate Ve § is called correcr iff

) V{mjye MxJ:busy(nj)e V= ABLE(m,j) and
2) VYmeM3ITjeJ: busyimjeV and
3y VjeJI?me M: busy(mj)e V and
4) VYjelJ:lready(leV=-dmeM: busyimj)e V].

We take a planning universe consisting of:

S={Ve Spriscorrect b

A= { beginimj) me M, jeJ);

T=R),.
Furthermore, for reasons discussed in section 2.1.2 the we take a dynamic model
and denote the set of all processes corresponding to this universe by F.

The conditions to begin a job j on a machine m at a time instance ¢ are :
- jis not ready yvet; '

- m has the ability to perform j;

- all the predecessors of j are ready;

- jisfree at 1;

- mis free at 1.

Definition 2.2.3.3
Foreveryf ¢ F, me M, jeJ and t e dom(f)

aff, (begin(mj).0) <

1) ready(j) ¢ f) and
2y ABLE(mj) A and
3) VjielJ:[PRE(Y jy=ready(§)e f()] and
4 -dm €M : busy(m' j) e f() and

5 -3dj eJ:busyimy’) € f(r).



60 Chapter 2
The effect of an allowed operation begin(x,y) is that x performs y and that some

of the events that would have happened disappear from the future.

Definition 2.2.3.4
Forevery fe F, me M, jeJ and te dom(f) if G(f,(begin(mj),5)) then

é(f.(begin(m j),n)(1) =
fir) 1<t
=1 [\ (busy(m, . ) v busy( . j) v {ready(D} ] v {busy(m)) <7t <t+D(my)
LAD \ busy( . NIV {ready(j)} t+D(mj) <t
where ‘

busy(m, . ) abbreviates the set {busy(mj)1je J}
and
busy( . J) abbreviates the set {busy(mj)ime M).

Definition 2.2.3.5

A planning problem describing the PCSP problem can be determined by :
fo(t) =@ forallreT;
YH © JreTVjeld: ready(y) ¢ fit);
KPy=max{t+Dimj)lteT,me M, je J, (beginimj),t)e P }.

a

It is usual for PCSPs that not an optimal plan is required, only a plan that is
completed before a certain deadline D, ie. a plan with x(P) € D, ¢f. Garey and
Johnson (1979).

Proposition 2.2.3.6

Iffe F, (a,0) € AxT and &{f,(a,1)) holds then é{f,{a,)) ¢ F as well.
Proof
By simple case analysis based on Definition 2.2.3.3 and Definition 2.2.3.4.

0



Planning 61

2.2.4 Time Table Problem (TTP)

In a TTP we have to make the weekly schedule of a finite set of teachers,
subjects, classrooms and group of students. Here we develop a more complicated
model than the classic ones from Even, Itai and Shamir (1976); Garey and
Johnson (1979). We divide the week into non overlapping lecture periods with
equal length L. Furthermore we know which teachers are qualified to give which
subjects and how many lectures of a certain subject does a group of students need.
The objective is to assign teachers, lectures, classrooms and time periods over a
week such that every subject is given by a teacher qualified for it and every group
of students gets the required number of lectures of every subject. Besides to this
basic aim we also want to satisfy a didactic and organizational goal, in particular
we want a time table that spreads the same subject over the whole week.

Within the world we distinguish

- G, afinite set of groups of students;

- Z, a finite set of subjects;

- D, a finite set of teachers;

- K, a finite set of classrooms;

- H={ hl’ . .,hM }, a finite set of not overlapping lecture hours with the same
length L > O numbered consecutively such that if t > 0 denotes the beginning
time of &, then

hl.: {xe[Rl:in<zl.+L} and
ti + L < £i+1 H

-ABLE ¢ D x Z, is a permanent relation to represent which teachers are qualified
to give which subjects;

- N:G xZ - N, is a permanent function, N{g,z) denoting the number of lectures
of the subject z the group g needs to get in a week;

- BUSY ¢ G x Z x D x K, a temporary relation expressing that a group is
receiving a subject from a teacher in a classroom;

- GIVEN ¢ G x Z x D x N, a temporary telation denoting how many times a group
has received a subject from a teacher already.



62 Chapter 2

On this basis we further introduce

- busy, a 4-ary relation symbol that corresponds to the relation BUSY;

- given, a 4-ary relation symbol corresponding to the relation GIVEN,

- begin, a 4-ary function symbol (name) to denote the action of beginning to give
a subj’ect to a group by a teacher in a classroom.

Definition 2.2.4.1
A pre-state is aset V
Ve busy(gzdk)lge G,zeZ, de D,ke K } v
{ given{g,zdn)ige G,2ze 2, de D, ne N }.
The set of all pre-states is denoted by Sp.

U

We develop a dynamic model, where the world states are to describe ongoing
activities such that in every state
- the teacher is qualified to teach the subject he is giving;
- a group gets a subject only if it is needed;
- the same group always gets the same subject from the same teacher;
- no subject is given more times then needed;
- one group is only busy with one thing at one place;
- one teacher is only busy with one thing at one place;
- one classroom is only occupied for one activity.

Definition 2.2.4.2

A pre-state V e S_is called correct iff

) Vigedkie GxZxD xK: busy(g,zdk)e V= ABLE(,z) and
2) Vigzdhe GXZxDxK :busy(gzdkye V=N(gz >0 and

3) Vigodkle GXZXDxK:

busy(gzdkye V=(-3deD3IneW:d¢d Agiven(gzd,n)e V) and
4) V(gzdk)e GxZxDxK :busy(g,zdk)e V= given(g,zdN(gz2) ¢ V and
5) Vge G (z,dk)e Zx D xK : busy(g,zdk) e V and
6) Yde DI (gzk)e GXxZxK : busy(g,2z,dk)e V and
7) Vke K3?(g2,dye GXZxD : busy(g,z,dk)e V.
At (4) recall that N is a permanent function, thus N(g,z) is a real number.

[



Planning - 63

The planning universe is then (S, A, T), where
S={Ve Spriscorrecz X
A= {begin(gzdk)ige G zeZ, de D, keK};
T =Ry
Furthermore, let F denote the set of all processes of this planning universe.

Definition 2.2.4.3
Foreveryfe F,ge G,ze Z, de D, ke K, t € dom(f)

&ff,(begin{g.2.d,k),0) o

1) ABLE(d,z) and
2) N{g,z)>0, , and
3)y ddeD3InelN:d=d Agiven(g,zd.n) e () and
4) given(g,z,N(g,2) ¢ f(1) and

5) d@Edk)YeZxDxK: (2, dk)#(zdk) Abusy(g,z,d.k)e 1) and
6) (g7 k)e GXZxK:(gsk)#(g2k Abusy(g,2.dk)e (1) and
D A dYe GXxZxD (g2 d)+ (g2.d) Abusy(g,2\d k)e ft) and
8) EhieH:t=ti.

{1

Definition 2.2.4.4

Foreveryfe F,ge G,ze Z,de D, ke K, t e dom(f) if &(f(begin(g,z,d k),t))
holds then

v T<t
e(f(begin(g,z.d.k),n)t) = f)y v ibusy(gzdb)} t1st<t+ L,
. f(’:)*  t+L<1
where f(1) =
Ay v {given(g,z,d, 1)) if Jxel: given(g,z,dx) e £

f)\ {given(g,z,d.x)}) v {given(g,z,dx+1)} if x € N and given(g,2,d x) ef(z}

0



64 Chapter 2

Definition 2.2.4.5
The planning problem that describes the TTP can be determined by the following.
fo® = @ forallreT:

YH & Vge GVzeZ3de D: given(g,2,dN(g,n) ¢ f(hM-i-L).
The criterion x is constructed from two other criteria K, and K, that measure the
number of ‘double’ and ‘triple’ lectures.
KI(P) =3 ¥ 3 Hie{(l,..M1}13kk ek: (begin(g,z,d,k),ti) eP A

g€G 2€Z deD
(begin(g,z,d,k‘),tm) e P}

K2(P) =3 2 X Hiel{l,. M3 K eK: (begin(gzdlit)e P A
2€G €Z deD ! )
(begin(g,z,d,k’),ti+l) eP A

(begin(g.z.d k")t ,) € P )|

K(P) = KI(P) +10 - K2(P).
(]

Proposition 2.2.4.6

If f € Fand {f(a,5)) holds for the operation (a,f) then é(f,(a.0)) € F too.

Proof

Let a = begin(g,z.dk) forsome ge G,z2e€ Z,de D and ke K, 1€ T arbitrary. We
have to verify that the conditions (1), . . .,(7) of Definition 2.2.4.2 hold for
e(f.(a,n)(1).

For © < ¢ it is obvious, since e{f,(a.n)(1) = f{t) by Definition 2.2.4.4.

Ifr<t<t+ Mthen

e(fan)(t) = flry v {busy(g.z.d b))}
by definition and it is easy to see that (1), . . .,(7) of Definition 2.24.3 are
sufficient to ‘
imply (1), . . .,(7) of Definition 2.2.4.2.
If £t + M < 1 then we only have to check (2) and (4) from Definition 2.2.4.1 since
f(r)* only differs from f{(t) by an atom of the form given(g,z,y). In this case it is
enough to notice that

Y busy(g,2,d.k) € e{f.(a,0)(t) : busy(g,2.d.k) e (1)



Planning 65

thus if (2) and (4) would not hold for e(f,(a,t))(t) then they would not hold for f(1)
either.

[

2.2.5 Ship Loading Problem

In this problem we have a ship visiting a set of harbours, loading and unloading
containers at each harbour, cf. van Hee (1985). Knowing the trip of the ship, the
load- and unload needs of the harbours and assuming the ship is empty at the
beginning, we need to make a loading plan for the harbours such that
-~ all the load- and unload needs of the harbours are met;

- the loading and unloading work is minimal;
- the ship always remains stable.

To make a world description we need
-H= {hl, Ce e hn] a set of harbours numbered in the order the ship is visiting
them;

¥

U a finite set of units (containers);,

- Wil - [Rg, a permanent weight function on units;

XelN, Yel Ze N standing for the length, width and height of the block
shaped storage depot of the ship;

- LN : H — PU), a permanent function giving the load needs of the harbours;
UN : H — XU), a permanent function giving the unload needs of the harbours,
such that

Vie{l,.. . n}: [ LN(h) n UN(h) = 2 A UN(hi) Q‘U'LN(}:.) IR
ONSHIP c Ux {1, .., X} x{L,..., Y} x{1,.., Z{Qa temporary relation to
describe the position of the units on the ship;

i

i

INHARBOUR ¢ U x H atemporary relation to describe units at the harbours;

I

AT ¢ H a temporary relation showing the position of the ship.

To the temporary relations and for the actions we define

- onship, a 4-ary predicate symbol corresponding to ONSHIF;

- inharbour, a binary predicate symbol corresponding to INHARBOUR;
- at, a unary predicate symbol corresponding to AT;



66 Chapter 2

- move, a binary function symbol denoting a move from a harbour to another
harbour;

- load, a 5-ary function symbol denoting the loading of a unit at a harbour to a 3
dimensional position;

- unload, a S-ary function symbol denoting the unloading of a unit at a harbour
from a 3 dimensional position.

Definition 2.2.5.1

Pre-states are defined as subsets of the following set:
{arth)lhe H} U
{ onshipux,y,2)tue U xe(1,.. X}, ye(l,...Y},ze{l,.. . Z}}u
( inharbour(u,h) tue U, he H ).

"The set of all pre-states is again denoted by Sp.

[

To make the formulae shorter in the sequel we shall use

Q (xyz):

to abbreviate

Oxell,.. X)Qye{l,.. .Y})Qze[l,...Z}:

where Q is the quantifier V, 3, 3! or 37.

Definition 2.2.5.2
Ve Sp is correct iff
1) heH:atth)eV and
2) Yue U3I?x)y,z: onship(uxyz) eV and
3) Vxy,z3?2ue U: onship(uxyz)eV and
4 YueUVY(xy?:

onship(uxy,2)e V=[z>1=3ve U: onship(vx,y,z-1) e V] and

5) Yue UY (x,y,2) : onship(u.x,y,z) ¢ V= [~ he H: inharbour(u,h) e V] and
6) V (uh)e UxH :inharbour(uh) e V=[-3 (x,y,2) : onship(u,x,y,z) ¢ V] and
7) Yue U3I? he H: inharbour(uh) ¢ V.

[

S=(Ve Spriscorrect};



Planning 67

A=

{ move(h WY hh e H} v

{ loadu,hxy2)lue U he Hoxe {1,...X}),ye{l,.. . Y},ze (1,.. 2} } v
{ unloaduhxy2)\lue U he H, xe {1,.. X}, ye{l,.. . Y}, ze {1,.. .2} };
T=N

We observe that a state can only be changed by actions, thus we develop a static
model. The allowability condition is defined for each action.

Definition 2.2.5.3

a) a(s,(move(&f,}zj),:)) &
1) az(hx.) €5 and
2) j=i+1 and

m, . ($)

3) 08 < " <12 and
m .
right

4) 08 < mww-{-;f"’(s) <12
T mbacks o

where the latter two conditions are to guarantee the stability of the ship, having

Phep(S) = 2 2 z 2 W) ((X12)410) xrz,

y=1  x=1 =1 { ueU | onship(ux,y,z) € s }

and
™ ionlS) 2 E 2 2 WG|z | X 12
y=1 1= !_sz_i 2=l { ueU | onship(uxyz) € s }
X z
mfor(s) 2 2 2 2 w(u)- ([Y2]+2-y) & X-Y-Z .

y=1 =1 { ucU | onshiptux,y,z) € s }

and



68 Chapter 2

X Y z .
my & = 2 z E Z ww)- (- (+D2]) ‘X_X_Z

x=1 y=|¥R]+1 z=1 { uelU | onshiplux,y,2) € s }

where {x | stands for the standard entier function.

by oafs,(oad(u,hxy,z),D) &
1) ah)es and
2) inharbour(u,h) e s, and
3) 3veU:onshipvxyzes and
4) Jve U:onshipvxyz-lyes

¢y ofs(unload(u,hxy,2),t) &
1) atlh)es and
2) onship(uxy,zz)es, and
3y -dve U:onshiplvxyz+l)es.

i

Definition 2.2.5.4

The effect of allowed operations is as follows:

a) e(s,(move(h,h).0) = (s\{at(h)}) v arh)},

b) e(s,(Joad(i,hx,y,2),t)y = (s\ {inharbour(u,h)}) v {onship(u.xy.z)},
¢) e(s,(unload(uhx,y,2),0)) = (s\ {onship(ux,y.2)}) U {inharbour(u,h)}.

0

Definition 2.2.5.5
A ship loading problem is specified by the above (S,A,T,¢te) and the following S5
¥ and X.

s,={ath) };

Ys) & YuelUVhe H:ue IN(h) = inharbour(uh) ¢ s and

Yue UV he H:ue UN(h) = inharbour(u,h) ¢ s }.

The objective function x is to measure the total work done by a plan:

K(P) = IPL.

0



Planning 69

Proposition 2.2.5.6

For any V ¢ Sp, ac Aand te T, if Vis correct and o{V,{a,1)) then e(V,(a,0)) is

correct too.

Proof

It is straightforward by case analysis. Let us show here the case of a =

unload{u,h.x,y,z). Then it holds that for the items of Definition 2.2.5.2

{1) is obvious;

(2), (3) and (5) follow from the fact that e deletes an onship from the correct V;

(4) holds since by (3) of {c) of the Definition 2.2.5.3 we always unload from the
top of a stack and V is correct;

(6) is guaranteed by (c) of Definition 2.2.5.4;

(7) follows from (2) of (¢) of Definition 2.2.5.3 and (5) from Definition 2.2.5.2.

0

After having completed these five examples an articulated method of planning
problem definition has arisen. This method of specifying planning problems by
means of the model of section 2.1 is
- general, it applies to all our cases, and it seems sound to presume that it will be

satisfactory to other planning problems as well;

- facilitating clear understanding of the problem at hand by supporting and also
forcing precise analysis;

- modular, that is we can concentrate on one simple aspect at a time and the
whole problem description is composed by the general model.

This method and its application in DSS development will be further discussed in

Chapter 6. An important result of the above examples is that they provide an

insight of the structure of the parameters, for instance how allowability relations

look like and how they can be defined. This insight can be the basis of designing

a formal language for defining planning problems.

Finally let us mention a special aspect of formal planning problems. Namely,
such a planning problem can be viewed as the interface between reality and
formal problem solving. It is well-known that the modelling step we make from a
real problem R to a formal model M is of crucial importance.



70 Chapter 2

R —_— M

If the model M does not describe the relevant parts of R appropriately, then all
further\computational efforts using M can be done for nothing. It is therefore
quite an unpleasant fact that the correctness of such a modelling step cannot be
rigorously proved, only intuitively justified. The reason for this is trivial: since
one end of the arc a is an informal entity, we cannot establish formal relationships
along a, i.e. between R and M. Nevertheless, once we have created a formal
model M the correctness of any further treatment of M can be rigorously
investigated. After having defined search problems in Chapter 3 we return to this
question.



CHAPTER 3

Search Problems

v Similérly to planning the terms problem and problem solving have many
interpretations. Without wanting to open a long discussion about what they
‘really’ mean, we summarize three general views on problem solving, cf. Simon
{(1983).

1) Problem solving by search

Based on the intuitive picture of a given problem one determines what kind of
entities can be accepted as solutions of the problem, e.g. one can expect a plan, a
number, a formula, or a string as solution. Thereafter one defines the set of all
entities that are of the same kind as the expected solution, e.g. the set of all plans,
the set of real numbers, the well formed formulae of a given language, or the set
of all strings over an alphabet. In this case a formal solution is a special element
of this set satisfying some requirements, e.g. a plan turning the initial state into a
state satisfying the goal condition v, the smallest real number with a given
property, a formula being true in a given semantic model, or a string beginning
with a certain prefix. The above set is considered as a space where we search for
a solution. The search takes place by transitions in the space; one mostly uses
transition operators that, when applied to an element of the space, yield another
element. By this paradigm problem solving is starting at an initial element and
making successive transitions in attempt to reach a solution.

71



72 Chapter 3

2} Problem solving by logical reasoning

According to this view, one first has to set up a logical framework with general
axioms and deduction rules, together with specific axioms describing the problem.
A solution is understood as a formula (a deduction of a formula, a substitution in a
formulz\l) in the given logic. Problem solving then consists of making logical
derivations until a desired formula (deduction, substitution) is reached. This
approach is commonly - although not exclusively - applied within Artificial
Intelligence.

3) Problem solving by mathematical programming 7

By this approach we formalize the intuitive problem by defining a set of variables
and a so called objective function on these variables. Thereafter we define a -
“solution as a variable assignment that realizes the lowest (highest) value of the
objective function. The characteristic feature of those problems that can be
treated by this approach is that the problem originally contains a measure to be
optimized, or that such a measure can be defined in a natural way such that the
solutions we have in mind can be identified by having a minimal (maximal) value
according to this measure. Following this approach, problem solving is mostly
done by numerical computation aiming at calculating a variable assignment with a
minimal (maximal) objective function value. This approach is mostly associated
with Operational Research.

Observe that the above problem solving metaphors are not mutually exclusive as
the following example demonstrates.

Example 3.1

Consider a forward reasoning first-order theorem prover aiming at constructing a
proof for a theorem ¢ from some axioms by some inference rules. On one hand,
every application of the inference rules is clearly a reasoning step that leads to
new information (propositions). }

On the other hand, regarding first order formulae - including the axioms - as
elements of a space we can consider the inference rules as transition operators.
Namely, an inference rule if A then B, respectively if A and B then C can be
viewed as a transition operator that turns the object A to B, respectively A A B to
C. The deduction process then becomes searching a path to the desired theorem.



Search Problems 73

Furthermore, if we can reasonably define ’distance’ between formulae, then the
working of the theorem prover can also be seen as optimization, i.e. aiming at a
minimal distance between the end of the deduction chain and ¢.

0

The solution finding phase in a DSS requires problem solving abilities. When
choosing among the above paradigms one should consider the following.

Search is a wide spread problem solving concept that has been the subject of
many investigations and the basis of several implementations. There is a huge
variety of solution finding methods that are characterized as 'search algorithms',
They differ a lot in spirit, application domain and performance. Ahlswede and
Wegner (1987) see search as performing a sequence of tests each test cutting the
search space; the goal of the search is to identify an object within the space.
Aigner (1988) discusses probabilistic search to handle optimization-like problems,
in particular applied to game playing. Charniak and McDermott (1985) consider
search within artificial intelligence; they depict it as the "theory of guessing” and
discuss space search based upon the usage of transition operators. Kanal and
Kumar (1988) classify search algorithms for handling discrete optimization
problems, while Pearl (1984) focuses on incorporating heuristics formally.

Automated reasoning grew out of classical logic by showing that resolution
based theorem proving can be the underlying mechanism of problem solving, cf.
Green (1969). It made its breakthrough in the mid seventies by introducing the
principle of "using logic as programming language”, Kowalski (1974). This idea
has led to numerous practical applications and has formed the theoretical ground
of the family of logic programming languages, cf. Lloyd (1987), Sterling and
Shapiro (1986). The field is still being intensively investigated, Minker (1988). A
great advantage of automated logical reasoning methods is that the language of
logic has a great expressive power and is easy to read, that is user friendly. A
generally experienced disadvantage of automated reasoning systems is their low
performance. Automated reasoning as a problem solving paradigm is mostly
related to Artificial Intelligence; in practice it often occurs under the names logic
programming, deductive databases and is applied in expert systems, cf. Waterman
(1986), or knowledge based systems, see Addis (1986), Davis and Lenat (1982),
Eiben and Schuwer (1990).



74 , Chapter 3

Optimization can be discovered in many algorithms that traditionally belong to
Operational Research. Methods that can be globally classified as mathematical
programming have been applied to a wide class of problems, see ¢.g. Kolen and
Lenstra (1990), Minoux (1986), Nemhauser and Wolsey (1988), Papadimitriou and
Steiglitz (1982). These methods have booked remarkable results, although the
theoretical and practical boundaries are also recognized, Garey and Johnson
(1979), Hansen (1989). Roughly speaking we can describe mathematical
programming methods as efficient but rigid. This means that they perform well
under tight conditions, which makes the application domain of a certain algorithm
rather limited.

To handle planning problems we have chosen the search paradigm for more
‘reasons. Partly because in this way we expect more flexibility then in OR
methods, partly because (heuristic) search is sometimes seen as a possible link
between OR and Al cf. Glover and Greenberg (1989).

To give a detailed, though still informal summary of applying the space search
concept for problem solving, let us take planning problems for example.

a) We define a search space and the correspondence between the elements of
the search space and plans, This latter is to guarantee that having found an
element in the search space means something in the planning context.

b) We give goal conditions that specify a subspace of the whole search space. A
solution of the search problem is meant as an element of this subspace; in
other words it is an element that satisfies the goal conditions. Every element
of the search space can be considered as a candidate for being a solution,
therefore we call them candidates in the sequel. Obviously, the goal
conditions must be given in such a way that solutions of the search problem
correspond to solutions of the planning problem.

¢) There are transition operators or manipulations defined on the search space.
Applying a transition operator (manipulation) to a candidate results in another
candidate. ,

d) A search problem is solved by traversing the search space by means of the
transition operators (manipulations) defined in (c), i.e. by stepping from
candidate to candidate. A search procedure is a method that prescribes the
way the consecutive steps are taken.



Search Problems 75

By this approach we simplify problem solving in the following sense. If the
search space and the manipulations are defined then at any point of the search
space we have limited choices: we have to chose a possible manipulation at that
point. The "only’ remaining difficulty is to decide which manipulations should be
" taken in order to reach a solution. It is typical for practical planning problems
that the obtained search problem is intractable, cf. Garey and Johnson (1979).

The above points (a), (b), (¢) and (d) imply a natural construction hierarchy for
designing a search based problem solving method. Logically and chronologically
one has to proceed by specifying the following items
1) the search space: where we search;

2) goal conditions specifying solutions within the search space: what we search;
3) the manipulations: the elementary steps by which we search;
4) the search methad to prescribe how we search.

There is a natural division of these four points into two groups: (1) and (2)
contain what is needed, while (3) and (4) specify how we are trying to obtain it.
From the viewpoint of planning problems we can also justify this distinction of
the two groups. (1) and (2) embody a translation of the planning problem to the
search context, remaining at problem specification, while (3) and (4) constitute a
method to handle the resulted problem, thus they belong to problem solving. This
motivates our terminology: when talking about a search problem we roughly mean -
(1) and (2), the term search procedure covers (3) and (4). In the rest of Chapter 3
and in Chapter 4 we give a formal weatment of the search paradigm by
investigating these two notions.

3.1 Model of Search Problems

The basis of our view on search is that we are looking for an element in a space.
As a consequence, a solution of a search problem is a point of the search space,
hence points of the space can be seen as candidate solutions. This formalization
looks harmless, though it has consequences that might be counterintuitive at the
first glance.



76 Chapter 3

Example 3.1.1

Let us consider a shortest path problem in a graph G = (N,E), Papadimitriou and
Steigliz (1982). Since the expected solution of such a problem is a path in the
graph G, the candidates of a corresponding search problem should be (partial)
paths as well. A natural way of defining a search space is thus defining it as the
set of all paths in G. The surprising consequence of this is that the search will
take place in the space of all paths and not in the set N of all nodes, the 'natural’
space of G.

0

There is another remarkable lesson of this example. Notice that knowing what
kind of objects we want as solutions (eg. paths) we have defined a search space
“that consists of the same kind of objects. This shows that the definition of
solutions intuitively precedes the definition of candidates. The formal relationship
is, however, reversed: the search space should be defined first and then the goal
conditions on it.

Example 3.1.2 ;

Let us consider the planning problems of Chapter 2.2. For all of them we can
define candidates as being plans, a solution of the search problem.is a candidate
(plan) that turns the initial state (or process) into a goal state (or process). Notice
that in this case the search terminology perfectly matches the planning
terminology: the solutions of the search problems are exactly the solutions of the
planning problem.

U

Example 3.1.3

Regarding a theorem prover as a search procedure the candidates of a
corresponding search space can be finite sequences of well formed formulae
forming a correct deduction from the axioms.

0

In practical cases we have observed a resemblance in the way the candidates are
defined.



Search Problems 77

a) First, one defines elementary objects to construct the candidates from, e.g.
edges and nodes to make up a path, operations to build plans from, or
formulae that occur in a deduction.

b) Then one specifies a way of construction and defines candidates as complex
objects correctly constructed from the elementary objects. We used path
construction in Example 3.1.1, set construction in Example 3.1.2 and finite
sequence satisfying the definition of deduction in Example 3.1.3.

We do not investigate this regularity in defining the candidates any further. In the

sequel candidates and the free search space will be primitives regardless of their

inner structure,

Definition 3.14
A set C of candidates is called the free search space.

0

To define the goal of the search we have to specify which candidates are
satisfactory 1o terminate with.

Definition 3.1.5

A goal condition over the free search space C is a Boolean function
P, C — {true, false}

over candidates. The goal space is the set
Cg: {ce CI(pg(C):true }.

0

Observe that the free search space defined for a given problem can be too wide,
i.e. there can be candidates that we cannot interpret in the terms of the problem.
A reason for this can be that the elementary objects and the construction rules to
build the candidates are not defined sharp enough: there are meaningless or
unwanted constructions that must be filtered out.

Example 3.1.6

Let us consider the TSP (Chapter 2.2.1) with sets of operations as candidates.
Obviously, the set { (fo(x,y).1), (to(x,2),t) } where y # z belongs 10 an unexecutable
plan, therefore it should be excluded as a candidate in the search space.



78 Chapter 3

Restricting ourselves to candidates that belong to allowed plans Proposition
2.1.1.20 guarantees that the considered candidates belong to executable plans.

0

In préctice, such a restriction on the free search space is often expressed as a
conjunction of more conditions which we shall call constraints in the sequel. The
restriction in Example 3.1.6 is needed to filter out impossible plans from among
the candidates. Such constraints can be considered as hard constraints in the
sense that they are rooted in the planning problem itself, they are not to express
some subjective human wishes. Nevertheless, there can be possible but unwanted
candidates depending on the preferences of the planner. Constraints that are used
to exclude such. candidates are mostly called soft constraints. The difference in
‘the usage of hard and soft constraints is that the planner has to satisfy hard
constraints while he has the freedom to enforce of reject soft constraints.

Example 3.1.7
A hard constraint for the TSP with the candidates from Example 3.1.2 can be
¥ & the plan ¢ is allowed with respect to the initial world state.
Possible soft constraints are for instance:
Yy, & in the plan ¢ the 4city z, is visited before the city 25, or
v, & in the plan ¢ the city z, is visited last before returning home.

0

At the present level of abstraction we shall not distinguish soft and hard
constraints. We melt them together into one feasibility condition according to the
following definition.

Definition 3.1.8
A feasibility condition over the free search space C is a Boolean function
P C — {true, false}
over candidates; candidates with <pf (¢) = true are feaszble with (pf (¢) = false are
infeasible.
The feasible search space is
C ={ceC1(pj(c)=true}.

0 f



Search Problems 79

Definition 3.1.9
A search problem is a 3-tuple (C, cpj, q)g), where C is a set of candidates, the free
search space, cpf: C — {true, false} and (pg : C - {true, false) are the feasibility
condition and the goal condition, respectively. A solution of a search problem is
" a candidate ¢ € C for which

q:sf (¢) = true and cpg (¢) = true
holds.

{

In practice, soft and hard constraints play a different role: the hard constraint
must be satisfied by the planner, while he has the freedom to modify (add or
delete) soft constraints. Doing so, he obviously changes the search problem as
well, since according to these meodifications the feasibility condition changes.
From this point of view, hard constraints can be considered as defining condition
of the broadest reasonable search problem.

Example 3.1.10

Let us recall Example 3.1.7. With the constraints v, v, and v, given there we
can define three different search problems (C, v, q)g), (C.yA W q)g) and
(C,yA Yo q)g), where (C, v, q)g) carries the broadest feasible search space.

0

Practice proves that most of the search procedures restrict the search to the
feasible search space. According to this view we could have defined a search
problem as a pair (D, (pg), where D is a set of candidates, ¢ is a goal condition.
This puts the role of @, in a yet other light: we can consider the free search space
C as a preliminary definition of the actual search space and regard ¢, as the
completion needed to define this actual search space {ce C | (p/(c)}. The reasons
to define a search problem as a triple are twofold. First, not all the search
procedures deal with feasible candidates only. Second, we consider the role and
the notion of the feasibility condition so important that we do not want to 'hide' it
within the set D from (D, ¢ ). For the sake of convenience, however, the term
search space will be often used as a synonym of the feasible search space.
Accordingly, the term candidate will often stand for a feasible candidate in the
sequel.



80 Chapter 3

There is an important class of problems that are often solved by search methods,
therefore we want to model them with our general definition of a search problem.

Definition 3.1.11
An opfimization problem is either a minimization problem or a maximization
problem. A minimization problem is a pair (C, f), where C is an arbitrary set,
f: C —Ris the so called objective function. The aim in a minimization problem
is to find a minimum of f over C, that is a ¢ € C such that

Yde C:flc) € fid).
A maximization problem can be defined analogously, requiring a maximum of f
over C,i.e. ac e C such that

Vde C:fic)zf(d).
U

By an optimization problem we always mean a minimization problem in the
sequel. Notice that this does not lead to any loss in generality, since any
maximization problem can easily be transformed to an equivalent minimization
problem and vice versa.

Observe that in the definition of a minimum there is a universal quantifier that
ranges over the whole C. This means that verifying that a certain c ¢ C is a
minimum can be very difficult even if C is finite. Furthermore, in practice it is
not always needed to find an absolute minimum of f. Therefore one often
considers a decision problem, see (Garey and Johnson (1979) or recognition
problem, cf. Nemhauser and Wolsey (1988) where a candidate ¢ € C is wanted
such that it satisfies

floysDh,
with D being a bound given in advance.

Let us remark that such a decision problem is not necessarily easy to solve in a
mathematical sense. A great deal of the NP-complete problems listed in Garey
and Johnson (1979) are decision problems (recognition problems) in the above
sense.

It is clear that both optimization problems and decision problems can be seen as
search problems: an optimization problem (C, f) can be expressed as a search
problem (C, (pf ,rpg), where



Search Problems 81

(pg (c)=true &= Yde C:flc)sf(d),
while a decision problem with a given bound D corresponds to
(pg (c) =true = Ko)<D.

According to the high level parameterization concept, we consider the elements
of the 3-tuple (C, <pf "Pg) as parameters that need to be set in order to define a
search problem.

3.2 Relationship Between Planning Problems and Search
Problems

Qur objective by investigating search problems is obvious: we want to apply
them in a DSS to solve planning problems. To formulate we exactly mean by this
we examine the relationship between planning problems and search problems in
this section. ;

Observe that the mathematical models of planning problems in Chapter 2 are
"human friendly’. This means that the formalism, the usage of abstract entities
e.g. a plan, effect, etc., facilitates a natural mapping between the model and the
real world. This feature supports the construction and the understanding of such
models.

A solution method, however, is preferably efficient, which might counteract
understandability. The reason is that for the sake of efficiency the candidates
should be easy-to-handle by the search procedure, ie. candidates should have a
simple structure, Therefore, in the search problem one probably prefers another
representation of reality, a representation that supports computation.

Notice that although a mathematical problem model may imply some
preferences for certain forms of the candidates, it is primarily the search procedure
that requires a certain form. In principle there can be more 'procedure friendly’
representations given to the same mathematical problem model.

Example 3.2.1

Imagine we have a planning problem defined in the abstract terms of Chapter 2.
If we have a discrete programming procedure to apply then describing it in terms
of 0 - 1 marrices is algorithm friendly. However, if we want to solve the given



82 Chapter 3

problem by SLDNF-derivation, cf. Lloyd (1987), then a Hom-clause
representation form is algorithm friendly and 0 - 1 matrices are not.

0

From the above it is obvious that a translation step is needed to establish the
correspondence between the objects of a planning problem and the ones used in a
search problem. Such a translation should of course not only assign candidates to
plans (and vice versa) but should also guarantee that
- feasibility of candidates correctly reflects allowability of plans, and
- solutions of the search problem correspond to solutions of the planning problem.
Next we are going to work out the details how a search problem can be defined to
a planning problem. For the sake of convenience we restrict ourselves to dynamic
“planning problems; Proposition 2.1.3.6 ensures that we do not loose generality by
this restriction.

Definition 3.2.2
Let (F, A, T, &, é), (fo, ¥, X) be a dynamic planning problem and let C be an
arbitrary set intended to be the free search space. A translation function or
representation function is a partial function

R:KAxT) = C. V
According to the second name of R, the candidate R(P) is called the
representation of the plan P.

0

The name transilation function fits the intuitive view of switching from planning
context to search context. The name representation function is closer to the
conventional Al terminology, where the form of an abstract object is often called
its representation. ,

Definition 3.2.2 gives the formal interpretation of 'the candidate corresponding
to the plan P’: it is R(P). Also ’the plan corresponding to the candidate ¢’ is
defined hereby: it is a plan P satisfying R(P) = ¢. This latter, however, is only
uniquely determined if R is injective, i.c.

Rl o ={PeMAXDIRP)=c)
is a singleton.



Search Problems 83

To be able to talk about “the plan corresponding to the candidate ¢’ even if this
latter is not the case we have to define an interpretation function in the following
sense.

. Definition 3.2.3
Let (F, A, T, &, e), (fo, ¥, ¥) and C be as before and let R be a translation function.
An interpretation function corresponding to R is a function

I1:C +w PAXT
such that

¥ c € dom(l) : I(c) € R™\(c).
The plan I{(c) is the interpretation of the candidate ¢ (in terms of the planning
problem), '

[

The relationship between the translation and the interpretation is determined in
the definition of the interpretation function that implies that
Ycedom{): RU(c)) = ¢ ‘ -
always holds. Nevertheless, it is easy to see that
¥ P e dom(R) : IR(P)) = P
does not necessarily hold in general.

Definition 3.2.4 ;
Let (F,A, T, & é), (fo, ¥, ) be a planning problem, C be an arbitrary set intended
to be the free search space and let R and / be a representation and an
interpretation function between XA x T) and €. Furthermore, let (pf and @ bea
feasibility condition and a goal condition over C, respectively. We say that (p}F fits

(F, AT, Q,é), 0y 7.6, C,Rand[ifforanyce C
@ © = &(flc).
We say that (pgﬁfs (F, AT Q,sé), (fo, 7.%x),C,Randl ifforanyce C
9, (©) = [VE(pl(c)) and ¥ de C: Y& ld) = k() < kU@) 1.
If ? and (pg fit (F, A, T, & é), (fo, ¥, ), C, R and I then we say that the search
problem (C, qaf (pg) fits the planning problem (F, A, T, @, &), (fo, ¥, K).

0



84 Chapter 3

With the aid of the last definition we can formalize the basis of solving planning
problems by search: having defined a planning problem we have to specify a
search problem that fits it. Only then can we interpret a solution of the search
problem as a plan and obtain a solution of the planning problem by search, thus
only then can we solve planning problems by search.

Recall the figure and our remark about formal planning problems at the end of
section 2.2. From that point of view we can illustrate the role of search problems
by the next figure

a b

- I — M et M

~where M’ denotes a search problem. i

As we have mentioned, the correctness of the step a can only be intuitively
justified. The relationship between two formal models, however, can be formally
defined and this is exactly the purpose of Definition 3.2.4. Let us also remark that
the formal definition of a planning problem is sometimes is omitted in practice.
This means that M is skipped and one immediately makes M’ by defining plans as
candidates with the appropriate feasibility and goal conditions. Obviously, this
implies that in such a case it is M’ that has to be related to R and therefore it is
the correctness of M’ that is justified on an intuitive ground.

Definition 3.2.5 ;

let (F, A, T, G, &), (fo, ¥, ¥) be an arbitrary planning problem, C a set (the
intended search space), R a representation function and / an interpretation function
The feasibility condition derived from (F, A, T, 4, &), (fo, % x), C, R I is given by

d(fo,l(c)) if ¢ € dom(l)
‘pf (C) = .
false otherwise
The goal condition derived from (F, A, T, &, é), (fo, ¥, %), C, R, I is defined as
true if c¢edom() and ‘?(é‘(fo,l(c))) and
9, ) = Vde C: Y& (@) = xi(c) < x((d)

false otherwise



Search Problems 85

Definition 3.2.6
Let (F, AT, & &), (fy ¥, k) be a planning problem. The natral search problem

corresponding to (F, A, T, 4, &), (fo, ¥ K is (C, cpf ,(pg) where C=PAxT),
R= idc A= R_l, (pf and (pg are the feasibility condition and the goal condition

derived from this C, R and 1.

0

Observe that in the natural search problem corresponding to a planning problem
the derived feasibility and goal condition satisfy

‘Pf F & fi’(fg,f’)
and

e, (P) & YE(yP)) and VP e XAXT): Y(€'(f,P)) = (P) < k(P).
Let us remark that in Example 3.1.2 we meant natural search problems but we
expressed it informally since we did not have the formal vocabulary yet.

As we have mentioned in the introduction of this chapter a search space is
mostly defined with an eye on an intended solution method such that the form of
the candidates is suited to the given method. Since the method we have in mind
is handling lists or tables rather than sets of operations (see later in Chapter 5) we
present a standard way of defining a search space containing tables.

For the sake of convenience let us suppose that every action can be identified by
a name and a finite list of parameters. (Recall that in each example of section 2.2
the set of actions A was defined in such a way.) Formally this means that we

assume that in a planning problem we have a finite set AN = {act,, .. .,act,} of

1 K
action names each name having a fixed arity n. Furthermore, we assume that for
everyie [1,.. . K}andje {1,.. "”i} there is a finite set X;. given that forms the
domain of the j-th parameter of the i-th action name. The set of all actions in this
case is

K , .
— i i
= 1:1 { acti(xl, .. .,xni) l,\t1 eX.,..., xnie X"i }.



86 ) Chapter 3

Now, i_f we further assume that each X; is numbered, then to any plan - a set of
operations - we can define a list of operations uniquely through the following
steps. ’

1) Let-us denote the standard lexicographic ordering on Xi X...X% X:; by <

i
for every i € {1, .. .,K}. Then we can define a lexicographic ordering « on

the set of actions by
acti(xl, - .,xgi) « aczj(yl, .. .,ynj) & i<fy

i

G=jAGpy .. .x )< 0p. )
i 1

2) Based on « and the ordering < on T we define an ordering < on A xT as
follows:
@) <« @t © t<t Vvi=1rAac«al

Notice that any plan P uniquely determines its <-ordered version. Strictly
speaking, since « is a linear ordering the following can be easily seen: if P is a
plan with n operations then there is a list P= [ol, R on] such that
VoeAxT:[oeP & o=offorsomeie {1,...,n}]}
and
Yie {1,...nl1} 10,490, -
It can be often convenient to write plans in table form instead of a list form, see
for example the coming section or Chapter 5. To obtain such a form for a plan
with m operations we first have to make the list P in the form

q_ 1 1 m m
P =] {acrz.l(xl, .. .,xni ),tl), e (actim(xl, .. .,,xni ),:m) 1

1 m
Then the table
act, act.
i i
1 m

1 m
X 1 . X 1

Py = .
1 m
N *n

t t
1 m




Search Problems 87

is uniquely defined, where N = max{ Rppvoo } and if the action name in the

K
j-th column (j € {1, .. .,m}) has an arity n < N then the (n+1)-th, . . ., N-th

positions of that column are filled up with a special symbol, say *.

Definition 3.2.7

Let (F, A, T, &, &) be a planning situation where

K . .

i ]
A= :‘:’I( acti(xl, .. .,x”i) l,vci € Xl, R - ie X‘”i }
The defaulr search space corresponding to this planning situation is the set

C = U {ﬁ [{ac:x.}xXix.,.xXi.x{*}x...x{*}xT} "

mel i=] i

and the corresponding default representation function is obtained by the above
_construction, i.e. it is
R:PAXT)—C,
such that
R(P) = T(PY).
‘The default interpretation function is [ = R

I

Notice that the default feasibility and goal conditions determine a search
problem that fits the given planning problem. Nonetheless, it can happen that we
want to save the ‘roundabout’ through R and / and want to define (pf and tpg by a
*shortcut’, immediately in terms of candidates. In such a case we have to invent
conditions q)f and cpg such that the truth value of (pf (¢) and (pg(c) can be
determined by examining ¢ only, without computing /(c) and the rest to it. In this
case we also have to prove that these non default conditions fit the given planning
problem, R and /. In section 3.3 we present an illustration of this matter.

Recall the basic taxonomy of planning introduced at the end of Chapter 1. In the
light of this chapter it can be refined as the following figure indicates:



88 ~ Chapter 3

search procedure

} plans — | ——— search problem

| modelled world , |

3.3 Examples of Search Problems

In this section we present certain search problems that correspond to the
planning problems of Chapter 2.2.

3.3.1 Travelling Salesman Problem

Let us take the TSP form section 2.2.1 with the set of cities Z = {z], e zn}.
Since we only have one action name in this example we can omit the reference to
it and define a simplified version of the default search space as

C= v @ZxzZxD".

mell
The set C is thus the set of finite tables with first and second rows consisting of

cities and the third row containing time instances.

For a <ordered plan P = | {!o(ul,v]),tl), . (olu ,vk),tk) ] the default
representation function is



Search Problems 89

N
RP) = v, . . .y *)
t t

andI = R\,

Next we define a non-defaunlt feasibility condition. For a candidate ¢ € C of the
form (*)

(pf(c) = Vie{l,...,k—l}:t‘.#tm and
Viell,.. k1} TV E U, and
U =2z,
Proposition 3.3.1.1
If q)f (¢) = true then a’(sg, I(c)).
Proof o
It is obvious that a feasible candidate ¢ has the form
A
co= vV,
l‘1 2‘2 .. tk

Then we have to show that

o' ({arz)}, { Go(z v ), Gov vo)). . oty 1 v)r) }) = true,
which follows easily from the definitions of section 2.2.1.

0

We can also define an evaluation criterion for any candidate in the form (*) by

k
x(e) = X Du,v),
i=1
and specify a non-defauit goal condition by
ylo) & 3 {¢) and
k=n and
vn =23
and
o, ©) & wy{) and
Vde C: [y(d) = x(©) < x(d)].



90 Chapter 3

3.3.2 Precedence Constrained Scheduling Problem

Applying the default method with omitting the reference to the (unique) action
name we obtain the following search space, representation function and
interprétation function.
C=u UxMxTF.
kel
For a «-ordered plan P = | (begin(xl,yl),tl), - .,(begira(xk,yk),tl) ] let

X
RPPY = b R
h %

‘and I =R,

We define a non-default feasibility condition for an arbitrary candidate ¢ € C of
the above form as follows '

(Pf(c) =
a) VE,ie{l,...,k}:xi;exi and
b) Yie{l,... k) :ABLE(x‘.,y;) ' and

¢) Yie(l,.. k}VjelJ:
[PRE(J‘,y‘.):}Hle {1,...,5—1}:y‘,=j/\:l+D(xl,yi)<t‘.] and
d) Yie(l,... ,k)Y=3/le (i ... k}: [xl=xi] A[II< t‘.+D(xi,yi)],

Proposition 3.3.2.1

YeeC: (pf €)= d(fo, ()

Proof

We give the sketch of the proof remarking that the above (a), . . .,(d) imply the
conditions (1}, . . .,(4) of Definition 2.2.3.3, while (5) of Definition 2.2.3.3 follows
from {a). V

[

A non-default goal condition for an arbitrary ¢ € C can be given by
ylo) & (pf (c) and
k=1,
and



Search Problems 91

?, (¢) & wy() and
Vde C:[yd = x(c) £ x(d)],
where
x(¢) = max { l +D(x£,yi) fie {1,.. .k} }.

It is straightforward that for any candidate with (p,g (c) = true I{¢) is an optimal
solution of the planning problem given in Definition 2.2.3.5.

3.3.3 Time Table Problem

Here again we can omit the reference to the name of the actions obtaining the
following.
C=u (GXxZxDxKxD".
mel
For a <-ordered plan P = | (begin(xl,yl,ul,vl),ql), .. .,(begin(xm,ym,um,vm),qm) 1

X X
1 m
)?1 ym
RP) = |u w, *)
\!1 vm
ql qm

andf = R°.

We define a non-default feasibility condition for an arbitrary candidate ¢ € C in
the above form as follows:

(pf(c) &

a) Viel(l,.., m}:ABLE(u‘.,y‘.) and
b) Vie{l,...,m}:N(xi,y‘,)>0 : and
c) Vie{1,...,m}~EIje{1,...,m):x‘.=xj/\yi=yjAut.¢uj and
d) VgeGVzeZ:l{ie{1,...,m)|x‘.=g/\y‘.=z)lSN(g,z) and
e) Yie{l,...,m}-3je {1,...,m}:xi:xj/\q‘:qj/\yi#yj/\ui;Eu}.Avi#vj

and
H Yie{l,...,m})-dje{l,... m} :ug,:uj/\q:.=qux3¢xjAy£¢yjAvi¢vj

and



92 Chapter 3

g Vie{l,...m)-dje(l,...m} :v!.=vjs\q£=qu\x£¢xj!\y£¢yjAui%uj

and
h) Yie{l,... m] ‘g€ { ‘1"“"&1}‘
Proposition 3.3.2.1
Yece C: (pf (c) = d(fo, 1(©))
Proof
It is obvious, the above points (a), . . .,(h) imply the conditions (1), . . ..(8) of

Definition 2.2.4.3, respectively.

0

We give a non-default goal condition for a ¢ € C in the form (*) by
o) e Q)f {(¢) and

m= 3% X N(gz)

g€G €Z

and
wg(C) & y() and

Vde C: [y(d)= k() < x(d)],
where

K(c)zKl(c)+10~ Kz((,‘)
with
K () =
2 X | {nefl,. . L-1)13ijedfl,...m} x.=gAy.=zAg =1t A
266G 262 : : boon Y

ijgij=Zqu=tn+l

and
KZ(C) =

X {nell, . LL2Y13ile{l,... m}:x.=gAy.=zAq =1 A
2€G z€Z : : l "

X=ghy=aAg = A

x=ghy=zhq=1_,]

n+2



Search Problems 93

3.3.4 Ship Loading Problem

We present the default search space to illustrate a case where there are more
action names. In the Ship Loading Problem we have AN = | move, load, unload }
with arity(move) = 2, arity(load) = arity(unload) = 5. Here we have to use the
*_gotation, i.c. apply the extended version of move actions of the form

move(hi,k},*,*,*),
where ki’kj € H.
The default search space is thus

C = U{ {move} x Hx H [*} x {*] v

mel ,
{load) x UxH {1,...X)x{],.. Y} x{1,...Z} v

{unload) x Ux H (1, .. X} x (.. .Y} x (1,.. .2} ]m

with the default representation function:

[name, . . . name, ]
&1 ~fc
51 5’(
RP) = E’l Ek
81 ~k
él ék
A

Observe that a candidate can be divided into blocks such that within each block
there are only columns where the action name is either load or unload and
different blocks are separated by a column belonging to a move action.



CHAPTER 4

Search Procedures

In this chapter we consider search procedures. We are aiming at a general
model that captures a large class of search procedures with the same formalism.

4.1 Space Search, Graph Search, Local Search

The term search is often extended by certain adjectives, so that one often speaks
about space search, graph search, neighbourhood search or local search. In this
section we give a brief overview of these types of search and present our vision on
their relationship. In particular, we take space search as a basis and claim that all
the others can be seen as variants of this one. ‘

Roughly, we can associate space search with a view based on using so called
transition operators: a transition operator transforms a candidate (an element of the
search space) into another candidate, cf. Charniak and McDermott (1985). In
typical graph search methods such as breadth first search or depth first search,
Pearl (1984), it is presumed that a set of edges is given between the points of the
search space. Accordingly, the search takes place along the edges, that is a step
from a candidate to another candidate is possible if there is an edge between them.
In neighbourhood search or local search one assumes that the search space is
divided into overlapping regions, called neighbourhoods, see Aarts and Korst

%4



Search Procedures 95

(1989), and that steps from a candidate ¢ are only possible to candidates contained
in the neighbourhood of ¢.

Definition 4.1.1
Given a search space C, a transition operator or a manipulation is a partial
function

m:C-+C.

0

To avoid any possibility for confusion between operations (Definition 2.1.1.6) and
operators {Definition 4.1.1) we shall use the name manipulation in the sequel.

Example 4.1.2

let us take an arbitrary planning problem and the natural search problem
belonging to it by Definition 3.2.6. To any operation (a,f) we can define a
manipulation m, . such that applying LW to a candidate (plan) P the result is

Pullan} if @neP

(a.n

maoP) = Pal@n) =
P\{{an) if (apeP
Another example can be the shift manipulation m, defined for any ¢ € T that delays
the actions of a plan. Formally, applying m toa candidate P the result is a new
candidate
m‘(P) ={{@t)eAxTIT =14+t @t)eP].

i

Definition 4.1.3

If we have a set M of manipulations on the set C then the set
EM= {{em(c)e CXCl me M, ¢ € dom(m) }

is regarded as the set of edges induced by M on the vertices C and the graph
G, =(CE,)

is called the graph induced by M on C.

0

By the above definition we can naturally envision manipulations as edges
between candidates, or rather, we can see the names of manipulations as labels on



96 Chapter tf :

edges. The notion of the induced graph helps us to enlighten a source of
confusion that often occurs if one loosely speaks about.a search graph. Namely, if
the original problem is given in terms of a graph, for instance a shortest path
problem within a graph G = (N,E), then we actually have two graphs. The
originai graph G is used to define the search space C where a candidate is a path
within G. The induced graph GM = (C,EM), however, is used to structure the
search space according to a given set M of manipulations. Therefore, simply
talking about a search graph can be misleading; for full clarity one should specify
whether G or G M is meant.

We can also model neighbourhood search by-manipulations according to the next
definition. '

Definition 4.1.4
If we have a set M of manipulations on the set C, then the neighbourhood function
induced by M is

N M C — HCH,
such that foreveryce C

NM(c) ={mic)e Clme M, c e dom(m) ).
For any ¢ € C the neighbourhood of ¢ induced by M is the set N M(c), a candidate
¢’ € N(c) is a neighbour of c.

0

Example 4.1.5

A well-known type of local search algorithms for travelling salesman problems is
based on the usage of k-exchanges (k € N), cf. Lin (1965), Lin and Kernighan
(1973). A k-exchange in our terms is an operator that produces a new candidate
(tour) from an old one. An important issue of this type of algorithms is how to
deal with local optima, where the term local optimum in fact refers to a candidate
that is optimal in the neighbourhood induced by the set of all possible
k-exchanges.

[

There is a remarkable assumption often made in local search or neighbourhood
search algorithms. Namely, local search procedures (neighbourhood search



Search Procedures 97

procedures) are often assumed to terminate with a candidate that is optimal in its
neighbourhood. This means that we can characterize local search (neighbourhood
search) as space search by a set of manipulations M terminating with a candidate
¢ satisfying
foy=min{ fic)Ic € NM(c) }.

Notice that for defining min we need an objective function f: C' — R on the set of
candidates such that min can be defined by the f values of the candidates.
Therefore, we associate local search procedures (neighbourhood search
procedures) with optimization problems. Observe that the above property of local
search methods is crucial for distinguishing them. Namely, if we only keep the
stepping-to-a-neighbour property then local search becomes graph search (space
search) under another name.

Genetic algorithms, cf. Goldberg (1989), Grefenstette (1985, 1987), Schaffer
(1989), form an important class of search procedures and they can not be
described by the former notion of a manipulation that turns a candidate into
another candidate. Namely, a genetic manipulation typically needs two parents
(candidates) to produce a set of children (new candidates). Such a relation
between the candidates can be expressed by an extended form of manipulations.

Definition 4.1.6

Given a search space C, a hyper manipulation is a partial function
m: KC) - HC).

I

Obviously, ordinary manipulations can be seen as hyper manipulations defined on
singletons.

To define the hyper graph induced by a set M of hyper manipulations we can

either

- maintain the candidate-vertex correspondence and use hyper edges going from
set-of-vertices to set-of-vertices, or

- identifying a vertex by a set of candidates, thus use hyper vertices and usual
(hyper) vertex-to-(hyper)vertex edges.

We chose the second possibility which leads to the following definition.



98 ‘ Chapter 4

Definition 4.1.7
If we have a set M of hyper manipulations on the space C, then the hyper graph
induced by M is
Gy = (RCLE,)
where
EM = { (x,mx)) e KOYXPCY me M, x € dom(m) }.
[

Notice that using hyper graphs includes using ordinary graphs: an ordinary graph
can be considered as a special hyper graph having only edges between hyper
nodes that are singletons.

* By having defined a search space and manipulations we know what to search,
where and by which steps. Nevertheless, we still have to determine how to
search. This means that we have to specify a method that prescribes the
consecutive steps of the search process. This method is mostly called the search
strategy, search procedure, search method or search algorithm; we shall mostly
use the name search procedure. In the rest of this section we identify the most
essential components of search procedures and put them together into a General
Search Procedure.

472 'The General Search Procedure

Our General Search Procedure {(GSP) is an iterative generate-and-test procedure.
For the sake of generality we take a search procedure iterating a set of candidates,
called population, in each iteration cycle. Generating and testing in this case
means that the procedure is creating new populations (candidates) and testing
them whether they suffice as a solution.



Search Procedures 99

Scheme of the General Search Procedure

Initiglize a set of candidates
while not Goal do
begin
Select a subset from the set of candidates
Produce new candidates from the selected ones
Add the new candidates to the old ones
Reduce the extended set of candidates
end

Notice where the generate and test components are included in the above
scheme. Generation of new candidates is done by Select and Produce, while
testing happens at checking the Goal and at applying Reduce.

We consider this scheme as the skeleton of our problem solver within a DSS.
This skeleton specifies the main outlines of a search method using Initialize, Goal,
Select, Produce and Reduce as parameters. Giving values to these parameters we
obtain a complete search procedure. A very important question is: which of the
above parameters can be set problem independently and which of them needs to
carry problem dependent knowledge or heuristics. If, for instance we can define
such values for Goal, Select and Reduce that can be used over a broad domain of
search problems then we reduced the efforts of designing a problem specific
search procedure to making Inirialize and Produce.

Before the exact definition of the GSP we make a yet other generalization. In
the sequel we also wish to consider methods maintaining extra structure on the
actual set of candidates, i.e. on the populations. In particular we want to cover
cases of having lists of candidates, not only sets. Therefore we shall use lists of
candidates as populations with the standard operations ¢, ¢, U, n etc., meaning the
straightforward definition of these operations for lists. We introduce C™ to denote
the set of all finite lists over C, C" (n € N) stands for the set of lists with n
elements.

In the sequel we unfold the scheme of the GSP. Our main concern will be the
exact identification of the parameters of the search procedure by formalizing the
werms Goal Select, Produce, Reduce and at the end of this section we have a
closer look on Initialize. In section 44 we investigate which conditions on the
parameters imply desirable properties of the GSP, namely convergence.



100 Chapter 4

To model random search we introduce functions with so called random
parameters in our procedure. What do we mean by a randomly parameterized
function with domain X and range ¥? Strictly speaking we take a set of functions
Fc X — Y, a probability space (Q, 4 P) and a random variable f : Q@ — 7. Then
F(w): X = Y is a function with the desired signature for any ® € Q. Therefore
we call ® a random parameter and consider f as a randomly parameterized
function from X to Y. For notational simplicity we often write the signature of
f:Q — (X =Y)inan equivalent formof f : Qx X — Y.

To have random Selection, Production and Reduction we fix a basic manner to
obtain random parameters for them. Namely, we introduce three finite sets B, T,
A to provide parameters for Selection, Production and Reduction, respectively and
.attach a random variable that delivers the values of these parameters.

Definition 4.2.1
A basic sample process is a tuple (82, 4, P, B, T, A, {Zn e Q—-BxIT'xAlnel)),
where
- (§, A4 IP) forms a probability space;
- B, T, A are finite sets;
- Zn e Q—BxI'xA (nel)isa sequence of independent random variables
such that forevery ne N
-also Z .1, Z, 2 and Z 3 are independent and
-VYBeB Pl {we Q! Z Ww)=8}1>0,
Vyel:P{oeQl Z 2w)=v}]1>0,
- Vée A:P[{we QI Zn‘3(m)=8] 1>0.

0

Having a basic sample process the triple Z (@) € B x T x A is taken for the
parameters in the n-th iteration cycle of the GSP. Notice that if we take singletons
for B, I and A then we obtain a deterministic case. In the sequel we assume that
a basic sample process (Q, 4 P, B, T, A, (Zn eQBxIxAlne N}) is given.
The introduction of random parameters requires that we extend the signature of
hyper manipulations.



Search Procedures 101

Definition 4.2.2
A random hyper manipulation is a partial function with the signature
m:I'xC - C *.
For random hyper manipulations the set of all parent-lists is the set of all those
lists of candidates that are capable of producing offspring:
PM= [xe C*Iﬂme M3yeT:(yx)edom(m) }.

0

If it can not lead to confusion then we shall often omit the predicates ‘random’
and "hyper’ only mentioning manipulations.

From now on we assume that next to the search space C and a basic sample
process also a set of manipulations M is given.

Definition 4.2.3
A selection function is to select a set of parent-lists from the actual population. It
*
is a partial function Fs :BxC » KPM), where
*
VBeBYxe(C Vye Fs(ﬁ,x):ygx.

i

Definition 4.2.4
A production function is to produce the children of a parent-list by the previously
given manipulations. It is a function Fp :IT'xP P C* , such that

VyeI'Vxe PMEIme M:Fp(y,x) = m(y,x).

0

Notice that by this definition we allow that there are more random hyper
manipulations that are used alternating in the successive production steps.

Definition 4.2.5

A reduction function reduces the set of old and newborn candidates and
determines the ’survivors’ for the next iteration cycle. Formally it is a function

F :AxC xC' —C", such that

V8eAVxe C*Vye C*:Fr(ﬁ,x,y)gxuy.

0



102 Chapter 4

Definition 4.2.6
An evaluation function is to determine whether a population is good to terminate
with. Here we shall use it with the signature

Fe : C’k — {1rue, false).

(]

In practice the above functions Fs, Fp, Fr and Fe may depend on some extra
parameters too (eg. the number of iterations made) but here we do not denote this
dependence.

Let\(Q, AP BT, A, {Zn e Q—BxI'xA!lnell}) be a basic sample process.
Its incorporation in the GSP happens by drawing an ® € Q randomly and 1aking
‘the corresponding realizations of ZR, that is (Bn,yn,sn) = Zn(m), as the random
parameters in the n-th iteration cycle of the procedure.

Furthermore, let Xt € C* and let ¢ Fp, F » Fe be a selection, a production, a
reduction and an evaluation function, respectively. The unfolded version of the
schema of the GSP is as follows:

General Search Procedure

= X,
WHILImeI:IOT Fe(x) DO
BEGIN
getB,yand 8
y = F( 0

z =y Fp(y. q)
qey
X = Fr(& X, 2)

END
Qutput the actual population

From now on a search procedure is understood as an instance of the GSP. To
specify such an instance one needs to define C, M, FS, Fp, F,F, andx, ¢ C.
These items can therefore be seen as parameters, the values of these parameters
determine the procedure. This motivates the following definition.



Search Procedures 103

Definition 4.2.7 ‘

Given a basic sample process, a corresponding stochastic search procedure is a

7-tuple ‘
(C,M, x,

init’ Fs’ Fp’ Fr’ Fe)’

where C is an arbitrary set, M is a set of hyper manipulations on C, Xt € C*, F P
Fp, Fr and Fe are a selection, a productiop, a reduction, and an evaluation
function, respectively.

A deterministic search procedure is a search procedure that belongs to a basic

sample process where the sets B, I and A are singletons.

I

When considering deterministic search procedures we shall often omit the
reference to the random parameters B, v and 8. In such cases we use a defective
signature of the functions of the GSP leaving out B, I and A from their domain.

A search procedure is creating populations successively. This results in a
sequence of populations which will be called evolution. For an exact definition of
this notion we introduce the transition function.

Definition 4.2.8

The transition function belonging to a search procedure is a function
F:@xTxd)xC" —C"

to create the next population ’in one go’. Formally it is defined as

F(®xdx = Fex ) Faa.
gF (Bx)

i

Definition 4.2.9

The evolution belonging to a search procedure is a sequence
(X @eC Inel),

where

Xp@ =x,..

X, (@ =F@Z @X (@) fornz0.



104 Chapter 4

To provide an easier reading of the formulae we often leave out the symbol ®
from the notation, and abbreviate X n((n) by X w In such cases Plproperty(X n)]
means P[ {we Q1 property(Xn((n))} 1.

Notice that we obtain different evolutions for different initial populations.
Therefore we use a notation that indicates the dependence on the initial
population:

- {Xn Ire ﬂl}x denotes the evolution with x = X and
- IPx[ XL stands for Pf . .Xn..lX0=x].

The question whether we can apply a (stochastic) search procedure to solve a
search problem can be divided into two questions:
- whether the search procedure is suited to the given search problem, and
- whether we can hope that the search procedure finds a solution of the given
search problem.

The following definition is to formalize what we mean by “suited to” above.
Definition 4.2.10

A search procedure (C, M, x.
if

init’

F F F F ) fits a search problem (D, (pf, (p )

C = sz {deDiwf(d)}
and
b3
¥YxeC :[Gcex:tpg(c));\ Fe(x)].
i

There are more possibilities to formalize the kernel of the second question above
"whether we can hope that”. The weakest formal conditions could be for instance
P [3nelNIceD :ceX]1>0
x 2 n

init
or
Inel: [P [3ceD :ceXﬂ]>0,

lnll

whereD -—{dED’(P(d)}
The followmg proposmon shows that there is no difference between these two
formulations.



Search Procedures 105

Proposition 4.2.11
* .
For every x € C , evolution {X'nlne[N})£ andce C
AneN:PlceX1>0 & P[IneN:ceX]>0.
X n X B
Proof
*
Let us take an arbitrary x € C , ¢ € C and introduce A}i ={weQlce Xn(co)} as

an abbreviation and observe that u An ={weQIdkeN:ceX k(m)}.
nel
=

Ifo <|Px[Ak] for a certain £ ¢ N, then
0 <PIA,] € T PAI=P[yU ALl
>k N 5 P XN "
&=

IfP [ v A]1=0andthereisnoke N with 0 <I]’[Ak] then
TN x

Plu Al= 2 PIA]=0
“heN " neN "

which is a contradiction.

Definition 4.2.12
A search procedure (C, M, X o Fs, Fp, Fr, Fe) is likely to solve a search problem
D. ¢, 9) if _
(C, M, X F&, Fp, F,, Fe) fits (D, <Pf, (Pg)
and
P [3neldceD :ceX]>0
x g n

init

Observe that whether or not a search procedure is likely to solve a search
problem is formally dependent on the initial population Xoir This is fully
conform to our intuition and siresses the importance of having a good method 1o
create an initial population. This, however, is not easy in general; it can be quite
difficult 10 create an element of C, that is - in terms of the search problem - to
create a feasible candidate d e D

Notice that as a matter of fact there are two phases within a search procedure, an
initialization phase and an iteration phase. In the initialization phase an initial
population is created, that is a set of feasible candidates. In the iteration phase



106 Chaprer 4

new feasible candidates are produced repeatedly from the old ones in order to
reach a solution.

In general we can not say much about how to construct initial candidates. It is,
however, remarkable that the creation of a good initial candidate can often be
carried out iteratively. To see how recall the remark after Definition 3.1.3 where
we observed that it is common to define candidates as certain constructions based
on a set of elementary objects and some construction rules. Next we sketch an
iterative way of initialization for a search problem (D, (pf, (pg) where the elements
of the free search space D are constructed from a set of elementary objects by a
finite set of construction rules. Let us denote the empty construction by €. Then
the construction of a feasible candidate can be performed by the following search
procedure.

Scheme of the Iterative Construction (IC) procedure
X = [€]
WHILE NOT 3dex: a:pj(d) DO
BEGIN
F (Id]) = {[d1}
Produce d by modifying d according to a construction rule or its inverse
F (4], [d]) = [4]
END

Note that this is a single point search procedure maintaining a population with
cardinality 1. Observe that the Initialization step, Goal, Selection and Reduction
are defined problem independently here. This means that if we want to perform
the initialization phase of a complete search procedure by another search
procedure then we can easily apply the IC procedure only having to define its way
of Production. In other words it is Production where the problem dependent
heuristics belong.

For the special case when the search problem belongs to a planning problem we
can give a more detailed version - a subtype of the IC procedure. Let
(MAXT), ¢.,9) be the natural search problem comresponding to a planning
‘problem, see definition 3.2.6. To create a feasible initial plan we take another



Search Procedures 107

search problem (AA x T), (I)f, (])g), where

(bf(P) = true,
and

9,(P) = 9 P).

Definition 4.2.13
The Iterative Plan Construction for Initialization (IPCI) procedure is for the above
search problem; formally it is (C, M, Pinit’ F . Fp, F . F ) as defined below.

C=MAXT).
Let
1
me o) = P\l@n}
and
mi,,P) = Pul@n)

for every (a,f) € A x T and P € A x T) and let us define M as

- 1 2

M = [m(a,t)l(a,t)eAxT}u { m(a’t)l(a,t)eAxT}.

P iy = 121

F ([P = (IP1}.

1 P .
m(a't)(P) for an (a,f) € ¢ f if @

F p([P]) = X
m(a,t)(P) foran (@)e P if - D
where (p]fD ={(xy)e AxTI (pf(P U {(xy}) }, P stands for a problem dependent
condition and also the choice of taking an operation (a.t) € (p; for mia t)(P) and
an operation (a,t) € P for mfa z)(P) is problem dependent.

F (P 1QD = [0l

Fe([P]) = true & <pf(P).

0

Observe that the IPCI procedure is constructing a feasible plan from the empty
plan by adding and deleting operations. This means that we could partially
automate the construction phase of search procedures applied to planning. Of



108 Chapter 4

course, we do not claim that we hereby answered the question of 'how to
construct an initial plan when solving a planning problem by search’. Instead, we
presented a framework that permits to sharpen this question to 'by which
condition ® and which way of choosing (a.f) can we construct an initial plan
when sblving a planning problem by search’. This implies that if one applies the
IPCI procedure to a certain problem then defining these items is sufficient to have
an initial feasible plan constructed.

In the same spirit we can also apply the IC procedure to solve a whole search
problem. Let (FA xT), <pf, q)g) be the natural search problem corresponding to a

planning problem. Through defining another search problem (XA x T), q')f , q')g) by

q_)j(P) = true,
and

0,(P) & 9P) 1 9 (P).
we can obviously apply the IC procedure to construct a solution for
(PA xT), (pf, q)g), 1.e. to construct a plan P with (pj(P) A (pg(P).

Definition 4.2.14

The Iterative Plan Construction for Solution (IPCS) procedure is (C, M, Pinit’ F .

Fp, F p Fe) where each component is the same as in the IPCI procedure except
that

Fe([P]) = true & (pf(P) A (pg(P).
0

Notice again, that we hereby did not answer the question of "how to solve a
planning problem by construction’. We, however, presented a procedure that
reduces this question to 'by which condition @ and which way of choosing (a,7)
can we solve a planning problem by construction’. Several methods based on
using dispatch rules can be considered as special cases of the above IPCS
procedure.

In the sequel we focus our attention on the ’‘real’ search phase of search
procedures; in 4.4 we investigate properties of iterative procedures applied for
optimization problems.



Search Procedures 109

4.3 Examples of Search Procedures

Recall that by developing the GSP we were aiming at identifying the most
essential components of a wide class of search procedures. To justify that we
have achieved this aim we specify types within the framework of the GSP that
coincide with well-known types of algorithms. These algorithms appear under
different labels like heuristic search, graph search, local search, neighbourhood
search in the literature, and in this section we show that they all can be considered
as special cases of our GSP.

4.3.1 Genetic Algorithms

Genetic algorithms, cf. Goldberg (1989), are approximation algorithms applied to
a search problem where ¢ is defined by an objective function f: C —R. Ina
classical genetic algorithm (GA) a candidate ¢ € C is a finite binary sequence with
a fixed length ¥ > 1. The standard genetic production methods are crossover of
two parents and mutation of single candidates. Genetic crossover takes two
sequences (ul, C k)’ (vl, .. .,vk), a randomly chosen position n € (1, ...k} and
creates two children:

(ul, el Vs .,vk), (vl, eV Pl ,uk).
The standard mutation changes one value at a randomly chosen position in a -
candidate, producing (ul, .. .,1-un, e k) from (ul, .. .,uk).
The typical genetic selection and reduction are based on a survival-of-the-fittest
mechanism, preferring candidates with a low objective function value (in case of
minimization).
The appropriate, although partial, instantiation of the GSP resulting in such a GA
is the following.

c= {01}~

and let cross : I x €* — €% and mut : T x C' — ¢! stand for the usual crossover
and mutation.
M = { cross, mut };
cross(y,[c,d)) if x=[c,d]

F (v, x)=
P mut(y,{c]) if x=1{c]



110 ) Chapter 4

Mostly there is a random Selection and Reduction mechanism in GAs that is based
on the objective function value (fitness) of the candidates. It is typically made
such that fitter candidates (with a lower objective function value) have a larger
chance to become a parent and to survive.

4.3.2 Simulated Annealing

Just as GAs simulated annealing algorithms, cf. Aarts and Korst (1989), van
Laarhoven (1988), are for function optimization where the goal is determined by
an objective function f: C — R over the search space C. To obtain a simulated
annealing (SA) algorithm we need to take an arbitrary random manipulation
- m:Txcl !
and

Ac @1}

M={m},

Flch = ([},

FvleD) = [mbyo)l,

dl if exp{

© - (d)] 5
p >

F (5lclld) =

[c] otherwise

where 0 < 8 < 1 by the definition of A and p > 0 is the so called cooling
parameter decreasing along the evolution.

We remark that the usual simulated annealing (SA) terminology uses the notion
of neighbourhoods. At the first sight it seems that SA algorithms rely on
neighbourhoods independent from the manipulations of the search procedure.
Deeper analysis, however, displays that SA people do not presume the presence of
neighbourhoods given beforehand; they intuitively refer to the neighbourhoods
induced by M as defined in Definition 4.1.4.

Observe that a simulated annealing algorithm can be considered as special GA,
where children are produced exclusively by mutation.



Search Procedures 111

4.3.3 Threshold Accepting, Hill Climbing

Threshold accepting (TA), Dueck and Scheuer (1988), is very similar to Simulated
Annealing. The essential difference between TA and SA is in the different
acceptance mechanisms, i.e. reduction functions. Namely, TA accepts a newly
generated candidate if it is not much worse than the old one, while SA does it
only with a probability. To describe TA let C, M, Fs and Fp the same as in
section 4.3.2. Furthermore let

A= {8} with§20,

[ if f(d) -fic)> -8
F @lclld) = :

[¢]  otherwise

A well-known instance of Threshold Accepting is Hill Climbing where § = 0.
From the foregoing it is easy to see that Threshold Accepting and Hill Climbing
can be considered as special forms of simulated annealing.

4.3.4 Depth First Search

Depth first search (DES), cf. Pearl (1984), is generally considered as a tree
search algorithm assuming that during the search we are moving between the
nodes of a tree along the edges. This feature show that DFS belongs to graph
search procedures in the sense described in and after Definition 4.1.2. The name
"depth first’ can be understood by observing that a DFS procedure always
produces children of the first element of the population (a list) and places the new
children in front of the old elements. This indeed can be seen as searching in
depth - if only we take the depth of a candidate as the number of its ancestors. A
depth first search procedure can be applied to an arbitrary search problem
D, ?p (pg) with.

Csz

m:C -+ C* is arbitrary,
M={m},
/ F(c,...c )= lcl



112 Chapter 4

such that ¢ is the first one of €l with ¢ € dom(m).
F p([C]) = m(c),
Fr([cl, ceaCl, [dl’ A=, d, RTEE o€ 1
such thgt ¢ is the first one of €l with ¢ € dom(m).
F (e .. .,cn]) & Jie{l,...n}: cpg(cg.).
Observe that by this schema a depth first search procedure can be defined by only
defining a manipulation m : C + c" and giving an initial candidate.

4.3.5 Breadth First Search

Breadth first search (BFS), cf. Pearl (1984), is very similar to depth first search
“only differing in the way the list is reordered after generating the children. In
other words it is only the selection function that distinguishes BFS and DFS. To
obtain breadth first search as an instance of the GSP let all the components be as
in section 4.3.4 except that
Fr([cl, . .,cn], [dl, . .,da]) = [CM, ey d}’ - dn],
such that ¢ is the first one of Cproe by with c; € dom{m).
Notice that similarly to DFS we can fully define a breadth first search procedure

by the applied manipulation and initial candidate.

43.6 Best First Search

Best first search (BES), cf. Pearl (1984), requires some measure to define "best’,
ie. we need an objective function f:C — R to define ?, in (C, ?p <pg).
Furthermore let

m:C-+ C*be an arbitrary manipulation and

M={m}),

Fs(x) € {[elcxlcedom{myandVdex: flo)ysfid)},

Feh = mlc),
The characteristic behaviour of a BFS procedure is determined by the specific
selection function. The reduction function (reordering the list) does not play a
crucial role, therefore we omit its specification.



Search Procedures 113

4.4 Convergence of Stochastic Search Procedures

In this chapter we investigate a special type of search: approximation procedures
for combinatorial problems, Papadimitriou and Steigliz (1982). In combinatorial
optimization the search space C is always finite and the goal of the search is
determined by means of an objective function f : C — R requiring that the search
stops when an optimum (minimum) of f is reached. This objective function is
guiding the search, candidates and populations can be compared according to their
objective function value. By this feature we can distinguish special class of
iterative search procedures. If there is an objective function to be optimized then
the evolution is obviously “trying’ to reach better and better populations, therefore
the name improvement procedure is appropriate. In this section we derive general
conditions that imply that improvement procedures lead to an optimum, cf. Eiben,
Aarts and van Hee (1991).

Further on in this section we assume that a basic sample process
Q4P BT,A, {Zn :ne N}) and a search procedure (C, M, X,

L F,F F F)
ros T p T r e

are given.

To formulate our first two lemmas as generally as possible we temporarily
] *
introduce a new random variable YR Q- (C — C )forevery n e Nsuch that
Y (0)(x) = F (Z (&)%)
and thus ,
X (@)=Y ()X ()

The assumption about the independence of the Zn‘s naturally transfers to the Yn‘s,

* *
ie. it is assumed for every ne N and F:‘ cC —C (0<gisn):

n
A.AaYOeFO] = ] ﬂ’[Y‘.eFi].

PlY e F A Y
n n A~ .
i=0

e F
n-

1 1

The first lemma expresses a simple rewriting rule.

Lemma 4.4.1
*
[I’[X,l =y IXn_1 =z] = H’{anl(z) =yl ¥Yn21,VxyzeC .
Proof
It is trivial, we only remark that the independence of the Yn's is necessary.

I



114 Chapter 4

*
By definition each Xn(m) is an element of C for every @ € €. Therefore we
can consider Xn not only as an abbreviation of Xn(u)) but also as a random

variable Xﬂ,:Q—»C*. On this basis the question whether an evolution
{Xn Ine lN}x is-a Markov chain is formally correct.

Lemma 4.4.2

{X'l lne I}J}x is a Markov chain, and if the Zn's (Yn’s) have the same distribution
then the chain is homogeneous.

Proof

Letn >0, x; € C* (e {1,...nt1}]). Then by the independence and Lemma
44.1 we get

iP[XM =X an=an .. .AX0=x] =

1
W[Yﬂ(xﬂ) =X, i Yn_l(xn_l) =x A..A Yo(x) =X, 1 =
ﬂ)[Yn(xn) =xm-l] =

}P[Xn«kl = xn+1 IXn = x:a]’

which proves the Markov property.

If the Yn's have the same distribution then by Lemma 4.4.1

!P[Xm =y le =z] = IP[Xn =y IXn_ = 7]

1 1
%
is self-evident forany yze¢ C and mnel.

0

The fact that the Zn's have the same distribution can be seen as 'the way of
producing offsprings remains basically the same from generation to generation’.
This does not hold, for instance in SA algorithms, where the control parameter p
is decreasing, hence the distribution of F, and hereby the distribution of F‘ is
changing.

To establish convergence we have to express formally that the algorithm tends to
an optimum. Observe that we defined the search space in general as a set without
any norm or distance measure. Therefore we can not expect convergence saying
that Xn (n — =) is getting close to an optimum. What remains is to require that Xn
contains an optimum, or rather, that the chance of containing an optimum is
growing to 1.



Search Procedures , 115

Let C
op

;= { ce Clcisaminimum of f }.

Definition 4.4.3
The chain {Xn lne [N]x is monotone if
YneN:min{ flc)lce Xn+1] Smin{ fc)lce Xn].

Remark 44.4
Observe that

Ve e€eC VnelN:ic eX = ¢ eX

opt opt opt n opt n+l

is not necessarily true, but

YneN: X nC #8 =X nC #0

n opt n+l opt

always holds for monotone chains.

0

Lemma 4.4.5

It {X}2 lne {N}x is monotone then the following assertions are equivalent:
a) U’X[Bne lN:XnnCOPﬁQJ] =1,

b) ﬂ’x[lim X n Copt #01 =1,

nw

c) limP [ (XnnCop[) #0] =1

n-e0
Proof
Notice that if An ={we an(m) n Copl # @) and {Xn ine N} is monotone
then the sets Al’ .. .,Aﬁ, ... form a monotone sequence due to Remark 4.4.4.
The existence and the equality of lim IPX[AR] and [Px{!im An] for monotone

-0 n-iw
sequences is a well-known result of elementary measure theory. This implies the

equivalence of (b) and (c).
The equivalence of (a) and (b) is straightforward if we consider that in this case

limA = v A.
n-o0 el "

0

Definition 4.4.6
*
For any x € C the set of all populations that may occur in {Xﬂ Ine [N}x is

succ®) = {ye € 13neN:PX =yIX,=x>0).



116 Chapter 4

Furthermore, if Uc C' then
Csuce(U) = v suce(x).
xel
0

~

The next theorem is our basic convergence result. The main idea underlying the
proof is to have upper bounds on the probability of taking the wrong way, i.e.
making steps in the search space that do not reach any optimum.

Theorem 4.4.7

Let UcC" and let the following hold

a) {Xn Ine [N}x is monotone for every xe U,
b) n, € N (ke N) such that n e (k =) and

g € (0,11 (ke ) suchthat {] € = 0 and
k=0
YyesuccU):P[IX nC =01X =yl<g,  holdsforevery kel
M1 P M k
Then l’x [iir: (Xn n Copt) @) =1 forevery xe U.
Proof
%*
letusintroduce H={ye C lyn Cop‘ =@} and choose an initial population
xe HnU.
Furthermore let p = H’[Xnkn Cop

!

t=QHX0=x] (k>0

Then for any k > 0 we have

DY PIX, G, =81X, =31 P, =yIX,=x s

yE€H
2 £ - PUX, =y 1X)=x] =
yeH
€, - E X, =1X, =4 =
yeH
ek . pk

This implies that

k
<
P = }_11 €

Hence



Search Procedures ‘ ‘ 1177

lim PIX r‘\Cop‘=0!X0=x] = limpk < = 0.

et 00 nk n-o0

Il e
k=1 F
Notice that the monotonicity of {X-n | n e N}x implies that the sequence
B’x {Xn N Cop: =0] (n e N) is non increasing and then from n_- « (k — «) we

k
have that

’l:: P, x,n Cop; =0] < ’Icizl [Px[Xuk n Copt =0] =0,
consequently

tim ﬂ’x[X’l N Copt #0] = 1

n-00

holds. Then by lemma 4.4.5 we obtain almost sure convergence: .
PiUimX nC '):ﬂ] = 1
x n opi

n-io0

0

Theorem 4.4.8

Let xe C* and the following conditions be satisfied:

a) {Xﬂ lne N}x is monotone, and

b) {Xn ine IN}‘1c is homogeneous, and

c) I?x[ﬂnzkzxnhCaptatﬂle:y] >0 forevery ye succ(x)and ke K.

Then ﬂ’x {(Iianr\Copt):t@] = 1.

n-o

Proof

We apply Theorem 4.4.7 with U = [x} by constructing a sequence VR P
and a sequence €pEp-. - SO that they satisfy its condition (b).

Let y e succ(x} and
My=min {ne lNHP[X”nCop,#EIXO:y] >0}
be the minimum number of steps required to find an optimum with positive
chance when taking y as initial population.
YAccording to (b) and (c) My is finite for every y € succ(x). Then
M = max {My |y € succ(x) }

*
is finite because C 1is finite, thus succ(x) is finite. Hence
Yye succ(x):G’{XMnCopt¢®IXG=y} > 0
holds by the monotonicity, and thus
Vyesucc(x):ll’[XMnCom:@lXo:y] < 1 (i)
Introducing the abbreviation



118 Chapter 4

py=[P[XMnC0m=@ 1X0=y]
we can define
p = max {py Iy € suce(x) }.
Notice that by (i) and the finiteness of succ(x) we have that p < 1 and
¥y e succ(e) : PIX, 0 Cop=01Xy=Y] < p.
Let n, =M - k and g, =p (k € W). Observe that n e (k - =) hold, and so
does

ﬂ €, =0 sincep < 1.

k=0
What remains is to show that
Vyesuccx): PIX nC =01X =y] <¢ foreveryk20. (ii)
TS m Tk
By the homogeneity we have that for every y e succ(x) ’
VP[XM (‘m}nc - = IXM-k =y] = H’[XMA Cop:=§51X0 =y] £

holds. This proves (ii), and hereby also the proof of the theorem is complete.

0

Loosely applying Definition 4.2.12 we can consider this theorem as stating: if an
optimization procedure is likely to solve a problem and its evolution is
homogeneous and monotone then it surely solves the problem.

* Definition 4.4.9
The reduction function F tAx C X C — C is conservative if it always
preserves the best f value, that is at least one of the optima. Formally this means
- that

F @& xy)n MIny # @ for every x,yé C* and S¢€ A,
where

MIN ={cexvuylVdexuy:fc)Sfid)
contains the minima of xU y.

0

Lemma 4.4.10
If the reduction function is conservative then the evolution {Xn Il ne lN}x is
monotone,



Search Procedures l 119

Proof
5

Notice that for any arbitrary y,ze¢ C andde A

min{ fic)lcez)} 2 min[{fic)lcezuy} 2 min{ fic)lce Fr(s,z,y) }
if F, is conservative. By the definition of the transition function we have
X, =Fe.%x, |J Fo

geF (B,X,)

which implies

min{ fic)lce Xn+1} < min{flc)|ce Xn}.

0

Next we come to our original purpose to find restrictions on the functions of a
search procedure such that together they imply convergence.

Definition 4.4.11
The set of manipulations M connects the search space C if for every c,d € C the
candidate d is reachable from ¢ by manipulations, that is:
dne lNEIcleC...ElcneC:c=clAd=an
Vie{l,... n1}: ([Ci]’[ciﬂ]) € EM’
where E M is the set of edges induced by M.

Il

In the following three definitions we define the same predicate for the selection,
the production and the reduction function. We shall call them generous if they
give a positive chance to every candidate, to become a parent, to be born and to
survive, respectively.

Definition 4.4.12

If for every ¢ € C it holds that [c] € U dom(m) then the selection function is
meM '
generous if in every iteration cycle, that is for every ne N

VxeC Veex:Pllcle F(Z 1,0)]>0.

i

Definition 4.4.13
The production function generous if for every ne N



120 Chapter 4

VeeCVde C:([clidD) e EM = Pl ld] =FP(Zn.2, fehl1>0.
0

Definition 4.4.14
The reduction function is generous if for every n ¢ N
*
YxyeC Vcecexuy:P[ce Fr(Zn.3,x,y)] > 0.

0

Remark 4.4.15
We remark that the generousity of F e Fp and F imply that forevery ne N

) Vxe C*VcexElBeB : EP[Zn.1=|3]>O A [c]er(B,xi.

.b) VceCVdeC:([c],[d])eEM=>
Eiyel":lP[Zn.2=y]>0 A [d]=Fp(y,[c]).

¢) Vx,yeC*VcexuyﬂﬁeA : [P[Zn.3=8]>0 A c:eFr(s,x,y).

Theorem 4.4.16

Let us assume that the drawings Z”’s have the same distribution. Let the selection,

the production and the reduction function be generous. Furthermore let the

reduction function be conservative and let the given set of manipulations M

7 connect C. Then for any initial population ﬂ’x [l i}:(X” n Copr) 0] = 1.

Proof i

The proof goes via Theorem 4.4.8, we show that its conditions (a), (b) and (c)

hold forany x ¢ C*.

a) F, is now conservative and therefore {Xn ine [N}x is monotone by Lemma
4.4.10, .

b) Since Zn‘s have the same distribution {X'1 Il ne IN}x is homogeneous by
Lemma 4.4.2.

¢) We show more than necessary, namely we prove

*
VyeC Vcapte Copt:[l’y[l-]nem:coptexn]>0;

Let cop‘ € Cop and Co €Y arbitrary. By the connectivity condition on M we

t

have that there exists an n € N and a sequence c,, . . ., ¢, from C, such that Copt =

=
c, and
([co],[cl]) € EM A ([cl},[cz]) € EM AL A ([cn,l],[cn]) € EM'

Then we have



Search Procedures

[Py[com €eX ]2 f}’y[cl eX A...Ac eX Ac eX]

121

I}’y[c1 e F I(Zl,y) Acye F:(Zz,Ft(Zl,y)) A A ¢, € F ‘(Zn, L F t(Zl,y) o0

Y Pl cF@y) Ao A, e FZ, . . F@3)..) AZ =2 A...

Zy. a2
17°""n

A Zn = z”]

[I’y[Z1 =z A... AZn=zn]
(zl, . .,zn)eH

n
I LPy[Z!. =z}
(02, eH '™
where

- n
H—{(zl,“.,za)e(BxeA) IcleFf(zl,y) A... A

*)

¢, € F‘(zn, .. .F‘(zl,y) T N

If H#@ then (*) is positive by Remark 4.4.15 which proves I}‘y[cow € Xn] > 0.
Showing H # @ is thus sufficient to prove the theorem. Therefore we need to

construct a sequence z,, . .
any i€ {1,...n}. Observe that
the generousity of F s implies 3 B, € B: [co} € Fs(Bl,y) and
the generousity of Fp implies 3 v, € I': [cl] = Fp(yl,[col),
hence

s |J Foa

qeF (B,

Then by the generousity of F’_ we have that

3 81 e A: ¢ € Fr(sl,y, U Fp(yl,q) ).

9eF (B»)

Hereby we proved the existence of a z, = (51,71,81) for which it holds that

c € F'(z],y).
In the same way we can construct z, = ([32,72,82) such that

¢, € F‘(zz,y),

oz, such that c; € F :(zi ,...F t(zl,y) .. .) holds for



122 Chapter 4

and so on until we have (z,,....2 ) € (B x T x A)" satisfying
c € Fe(zl,y) AL A c, € F:(Zn Y. .Ft(zl,y) o
This verifies that H # © and completes the proof of the theorem.

0

Next we relax the requirements on M at the cost of a further restriction of the
reduction function.

Definition 4.4.17
The set of manipulations M quasi connects C if there exists a source element
o € C such that any 4 € C is reachable from ¢ by manipulations. Formally it
‘means that
SneNBcleC...BcneC:[c=clAd=an _
Vie{l,...nl1} :([ci],[cl.“]) ¢eE, 1
where E M is the set of edges induced by M.

0

Definition 4.4.18

If the given set of manipulations M quasi connects C and ¢ € C a source element

as given in Definition 4.4.17 then the reduction function is called G-preserving if
Yxye C*VSG A:0ex = oeFr(a,x,y).

0

Lemma 4.4.19
Letxe C*and o € C be a source element. If o€ x and the reduction function is
o-preserving, then
Vyesuce(x): cey.
Proof The proof is trivial.

0

Theorem 4.4.20

Let us assume that the drawings Zn's have the same distribution. Let the selection,
the production and the reduction function be generous and the reduction function
be conservative. Furthermore let the given set of manipulations M quasi connect
C, 6 € C be a source element and let the reduction function be o-preserving.



Search Procedures ‘ 123

Then for any initial population x with ¢ € x it holds that

ﬂ’x[lfm (Xn n Copt) 20 = 1.

Nt
Proof
*

Again, the proof is based on Theorem 4.4.8. Letustake x € C such thatce x.
The conditions {(a) and (b) of Theorem 4.4.8 hold by the same reasoning as in the
proof of Theorem 4.4.16.
¢) We show that

Vye succx) v COpt € Copt : [!'y[ JnelN: copt € Xn] > 0.
Let y e succ(x) and Copt € Copt be arbitrary. Due to o€ x and Lemma 4.4.19
we have thatG e y.
Then taking =0 the quasi connectivity condition on M implies

BneINBcle C...3¢c eC:o=c _ Ad=c_ A

n 1 n
Yie{l,...nl1}: ([Ci]’[ci+l]) € EM'

The rest of the proof is identical to that of Theorem 4.4.18.

I

Notice that for simulated annealing Theorem 4.4.8, Theorem 4.4.16 and Theorem
4.4.20 cannot be applied. As we remarked after Lemma 4.4.2, in a simulated
annealing algorithm the control parameter is decreasing, hence the distribution of
the transition function is changing. Therefore, it is only Theorem 4.4.7 that we
can apply to SA, since in its conditions only monotonicity of the evolution is
required, homogeneity is not. At first sight it seems that we can not apply this
theorem either, since the evolution of a standard SA algorithm is not monotone.
This problem, however, is easy to overcome by slightly modifying standard SA
such that it preserves its characteristic features but becomes monotone, In the
following definition we present extended SA where we maintain an extra element
in the population: a best candidate seen so far.

Definition 4.4.21

We define extended simulated annealing (ESA) as the following instance of GSP.
A, M and Fp are the same as in section 4.3.2.

Furthermore let
F®lec,)=[c] foreverypeB

and



124 Chapter 4

L (© - fd)
[d,cb] if exp P >&

F,(S,[C,Cb],[d]) =
[c,cb’] otherwi se
where )
c if fid) 2 fic,)
CI; = { b i 7 b an

dif fld) <fic,)

p € R is the usual control parameter for SA.

0

It is easy to see the the above reduction function is conservative, hence the
evolution belonging to an ESA algorithm is always monotone. Notice that for
.ESA the successive populations of the evolution are all from C%. From now on a
standard population’will be denoted by a list [c,cb] if we want to emphasize the
presence of "the best seem so far’ or by a list [¢, . ] if we concentrate on the ‘real’
element ¢ and <, does not play a role. For a perfect matching with the usual SA
terminology we take the viewpoint of neighbourhood search, that is instead of
using manipulations we shall express ourselves in terms of neighbourhoods. This
means that if N : C — C* denotes the neighbourhood function induced by M, then
we rewrite the production function in the form

F (v, [e]) € No).
* Furthermore, we adopt the following assumptions from Aarts and Korst (1989).

1) The inhomogenecous Markov chain of the evolution is a sequence of

homogeneous Markov chains of the same finite length L. This means that we

keep the control parameter constant for L cycli, i.e. in the i-th cycle we use the

control parameter p; (i € B) which is defined by a sequence p, k (ke [N ) as follows:
p,=p, if kL < i £ (k+1)-L;

2) [N(e)| =K foreveryceC;

3) IP[Fp( Zn.2, [eD =[dll =1/K foreveryce C,de N{c)and ne M.



Search Procedures 125

Theorem 4.4.22
Let C be the search space and f: C — R be the objective function. Let us consider
an ESA algorithm for which the above conditions (1), (2) and (3) hold.
Furthermore, we assume that for any evolution {Xn ine N}x
A YedeC3Inzl HCO,...,cne Csuchthatco=candd=cnand
[Px[Xk_!_l = [Ck+1’ ] iXk = [ck, 11>0, ke (0, 1,.. .01}
and
) p > LA oy

K log (kD)
hold, where

D > Q is an arbitrary constant,
A=max {flc)-fd) 1 ce C,de N(©) },
L (the length of the homogeneous subchains) is the maximum of the
minimum number of steps required to reach an optimum from y for all
Ve c?

are assumed to be finite.

Then IPx[iizz X” n Copr #9] = 1 forany initial x € ct

Proof

Let x € C* be the initial population.

a) It is easy to see that the evolution belonging to ESA is always monotone due
toc,.

b
b) We construct n, € N and g, € 0,11 & > 0) such that n, = e (k = =) and
T e =0 and
k=1 K
VyeC?: [Px[xnmn C,p =01 Xnk =y<e, holds for every k € M.

This construction will be done by the following steps.

bl) We determine ﬂ’x{Xm = [CM, 1) Xi = [Ci’ . 1] depending on the control
parameter.

b2) By (b1) and (5) we deduce an upper bound €, for
PIX e 0 Copy =01 X gy =

b3) We show that [| ¢

k=1

proof is complete.

. = 0, then applying Theorem 4.4.7 with n, = k-L the



126 Chapter 4
b1} ﬂ’x[ Xi+1 = [Ci+1’ ] lXi = [Ci’ .11

PLF(Z 1 le, . D=lc)] - PIF Z2 [e] =l )] -

i+1
"PIF(Z.3,[cp 0 D =1c;, ]

+
1/K x exp[ (ﬂci)'ﬂciﬂ)) }
P
b2) According to the definition of L, from any y € €?* we can reach an optimum
in not more than L steps. If monotonicity holds then we do not loose optimal
objective function values, thus from any y € C? we can reach an optimum in
‘exactly L steps as well. This implies that forany £ > 0, ye C? there exist
2 =
Yor--oYp from C* such that Yo=Y yLnCOPI:ﬁQ? and

PIX ety Loisr =Yirt X ery-£4i =120 forevery ie {0,... L-1}.

Hence
PIX, 0 C,, 201X, ) =)
2
PlX o =Y Xy =)
2
P IX =Y X =] % XXy =9 K gy =)
L +
T UKxexp| Rep-flepy)
i=0 7,
where c; € C is such y; = [Ci’ .Jforeveryie {0, ... .L-1).

Then by the definition of A we have
: +
exp[ S } < exp[ ~ (flep-fle ) }
P, ———'———pk
and by the lower bound on p, we obtain that

_ log (k+D) . A
exp{ »ET} < exp{ F—} holds, hence

k



Search Procedures 127

L + L

N /K - expl: ) (f(C‘-)'f(Ci_t_l)) } > ]i VK - exp[ N lo, ik'l‘}.)) } } .

B S
This leads to

L
_ [ log(k+D)
PX,. N C,, # 01X, =] 2 [UK exp[ —fﬂ—H .

which is equivalent to

L
_ _ _ . _ log (k+D)
U’[Xk.anop‘—@lX(k_l)'L—y] <1 [IIK exp[ —fj—+ H

that is
1

L+1
_ - 1 (kD)
E’{Xk.LﬂcoplnﬂlX(k_l)L-y] < 1-;1: TEFD

1

1 (D)Lt
b3) Choosing ny = k- L and € = 1 _F CSrED - we need to prove
le=20
k=1 ¥

which requires

n
lim 1] g, =0
n-% k=1

To prove this recall from mathematical analysis that for any sequence a, e R
(k € W) it holds that

n o
lim [ (1-a)=0 iff Elog(l-ak) = -0
k=1

n-oo k=1
Noticing that log(l -a k) < - a, is generally true we can conclude that

n
a, = « implies lim na -a) = 0.
noo k=1

1
L+1

Now choosing a = —II(E . % we have € = l-ak and

Tpas

k



128 Chapter 4

n
This latter implies lim [| €

e = 0 and completes the proof of the theorem.
noeo k=1
[

Notice that based on our general convergence results for stochastic search we
could prove almost sure convergence for extended simulated annealing in a
straightforward wéy, This is a stronger form of convergence than the stochastic
one proved under the same conditions in Aarts and Korst (1989). Besides the new
convergence results this approach opens the way to convergence proofs through a
general approach considering multicandidate populations.



CHAPTER 5

Searching by Generalized Genetic Algorithms

In Chapter 1 we emphasized the flexibility of the problem solving component of
a DSS development tool. Therefore, we would like to have a generic algorithm
that can be easily set to several different problem solving methods. We know that
using the same generic algorithm for many different problem types with only
some fine tuning on a given problem leads to a loss in efficiency. Nevertheless,
the use of such an algorithm could save much effort when designing the problem
solving component of a DSS; moreover it could provide an easy way of adapting
it if the former version is not applicable anymore.

The GPS presented in the previous chapter is such a generic procedure. Its
generality, however, is also somewhat disadvantageous. Having a procedure
where more details are fixed, there are fewer components that one has to make
oneself when applying the procedure in a specific case. This means that using a
more specific version of the GSP as default search procedure could provide more
support in DSS design then the General Search Procedure.

In this chapter we study genetic algorithms (GAs) as possible nominees for
embodying a good balance between being general and detailed. Our reasons to
choose GAs are threefold.

First, genetic algorithms are more and more recognized as robust problem
solvers. Goldberg (1989) illustrates their performance by the following figure

129



130 Chapter 5

efficiency

application specific
algorithm

genetic
algorithms

enmmeration

class of problems

Our second reason was the observation made in Chapter 4 that GAs offer a
framework incorporating simulated annealing, threshold accepting and hill
climbing. This implies that taking GAs as default search procedures we still have
a considerable freedom.

Third, several authors mention the importance of a so called adapter function in
decision making, cf. van Hee (1985). Verbeek (1990) describes this function as
one "to acquire knowledge from plans already constructed in the form of detecting
quality characteristics”. This feature can be understood in two ways:

1) trying to gain knowledge from examining several planning sessions and
making up new planning heuristics; or

2) regarding one planning session where we evaluate plans we make during
planning and try to detect correlations between their structure and quality.

If we take the latter interpretation then we find a striking resemblance with the

basic genetic principle, since a GA works by pursuing good quality gene patterns

that contribute to a high fitness value.

Genetic  algorithms are (stochastic) search methods based on biological
principles. Although they have numerous applications in classifier systems and
self-leaming systems, cf. Grefenstette (1985,1987), Schaffer (1989), primarily they



Searching by Generalized Genetic Algorithms 131

are approximation algorithms to find the maximum (minimum) of an objective

function over a finite search space. The biological analogies have helped a lot

with inventing and investigating genetic algorithms, Holland (1975), De Jong

(1980), Goldberg (1989). We feel, however, that these analogies form an obstacle

in the sense that there are certain GA conventions that could be dropped without

dropping the basic principles behind GAs. What are these basic principles? In
our opinion, they are the following.

a) GAs are applied to a search space the points of which are finite sequences
over an alphabet. The elements of a sequence are called genes, the sequences
are seen as individuals or genotypes.

b) The objective function on the search space (or rather, a transformed version of
it) is viewed as fitness of the individuals. The goal of a GA is to find
individuals with maximal fitness value.

¢) In an attempt to find an individual with a maximal fitness value, GAs try to
detect and exploit correlation between the positioning of genes in individuals.
As we described it in section 4.3.1, GAs perform this by taking two parents as
samples and creating offspring from the genes of the parents.

Ad (a). \

Determining the syntax of the individuals in a certain problem is often seen as a

coding step. Again in biological terminology, one often considers the entities of

the original problem, e.g. tours between cities or schedules of a job shop, as
fenotypes that are coded to genotypes. Using sequences for genotypes is,
however, not always the most natural choice. For instance if we have different
types of genes then sequences are not the most appropriate way to structure them.

For example, for job shop scheduling the sequence
[jl""’jn’ml ...,mn,ll...,tn]

and the table

i,
- mn
tl [ ln

can both represent a schedule where the job ji is performed by the machine m,
beginning at the time . The table, however, seems to be a more natural choice,
not mentioning the easiness of distinguishing different types of genes simply by
the row they are found in.



132 Chapter 5

Considering classical genotypes as one dimensional ones, tables as two
dimensional ones, one can casily figure cubic ones etc, for any dimension n € N
By such a generalization we remain within the borders of being 'genetic’ if only
our offspring production shows genetic features. As Suh and van Gucht (1987)
state: “the selection of good representations and recombination operators is highly
correlated”.

Ad (b)

Surprisingly enough classic GAs optimize according to one fitness function
although nature certainly judges its creatures by more criteria. This convention of
GAs can be dropped too taking different priorities into account by using multiple
fitness functions. This extension also allows us to apply different criteria at
‘selecting parents and at choosing the survivors of a population. Since in Eiben
and van Hee (1990) we discussed this matter in a broader context we do not go
into details here.

Ad (c).

On one hand, restricting the number of parents to two is literally a natural
restriction; biological offspring production never exceeds this number. On the
other hand, this restriction is odd since most of the GA people are familiar with
probability theory, one of the main principles of which is: more samples - more
certainty. For GAs it would mean that having more parents one could expectedly
increase the certainty of detecting the strong gene configurations. Preserving the
GA principles one could take n (n > 2) parents and define gene recombination
operators that produce children of them.

Although such production functions might not be crossover-like, they still should
be considered as genetic ones if they are for propagating strong gene patterns. De
Jong (1985,1987) addresses the problems of new representations and new gene
recombination methods stressing the importance "to invent new operators better
suited to the [new] representation”.



Searching by Generalized Genetic Algorithms 133

5.1 Multiparent Production

In this section we define a generalized form of gene recombination based on the
classic sequential genotypes where in general n (n > 0) parents can produce
children. We present a general offspring production procedure that incorporates
many known gene recombination operators. Hereby we are aiming at multiple
objectives:

1) We explicitly point out the fact that crossover is only one way of creating
children and so is our procedure. This may give impetus to inventing other
non standard methods.

2) Within the framework of our procedure we identify components that might be
problem specific. Hereby we locate where heuristics can be incorporated, with
other words where domain knowledge can be used.

3) Our general procedure can be used as a framework that facilitates designing
different recombination operators. Hereby it supports one of the crucial steps
of creating a GA.

Let V be a finite set, L 2 1 and let us take the search space C = V L In the
genetic terminology a candidate ¢ is called a genotype. When interested in the
inside of candidates we shall denote them as

c=(.l,...,cl),

where cieV (ie (1,...,L)) are the genes of c.
Definition 5.1.1
Let c € C be a genotype. A marker is a number k € {1, ..., L}, the gene marked

by kin c is c.k.

0

To make a child of n parents ¢, = (Cl‘l’ . cl.L), R (cn.l, ey cn.L) we
scan their genes. More precisely, we mark one gene of them each and make the
child gene by gene choosing from the marked genes. The hint and the first
examples of such production functions is due to Nuijten (1990).



134 Chapter 5

PROCEDURE scan
BEGIN
initialize markers kl, S kn
ji=1
WHILE j<L DO
BEGIN
pick one gene cl..k!. of the marked genes cl.fcl, e cﬂ.:»‘c?2 of the parents and
let ci‘ki be the j-th gene of the child
update the markers
j=j+1
END
END

Notice that scan can be seen as a highly parameterized procedure; the main
outlines are set but initialize, pick and update need to be given to obtain different
recombination methods. Many known genetic operators can be considered as a
special form of scanning with n = 2, distinguished by different initialize, pick and
update mechanisms.

Example 5.1.2 (1-point crossover)

The classical 1-point crossover operation (described in section 4.3.1) can be
obtained by the following. Let n = 2, initialize the markers as k, = 1, . ., kﬂ =1
and let us choose the j-th gene of the child by

c k, if 1<j<1

pick({cl.k], c2.k2 H=

¢k, if 1<j<N
where le {1,... N} is drawn randomly.
Furthermore let us apply a simple update shifting the markers to the right by one

position in each cycle.

i

Observe that in the l-point crossover initialize, pick and update are problem
independent. There are more sophisticated crossovers known that use domain
knowledge when picking the actual gene of the child and also their updating
mechanism is tailored.



Searching by Generalized Genetic Algorithms 135

Example 5.1.3 (Heuristic crossover)

This method, cf. Grefenstette et al. (1985), is elaborated for the Travelling
Salesman Problem. The set V is the set of cities and a tour is coded by adjacency
representation as a permutation of cities. The method makes use of a function
D :Vx V= R* that represents the distance between the cities.

We can describe heuristic crossover as scanning to produce a child ¢ by:

- =2

- taking a random city ¢.1 € V as the staring point of the child's tour;

- initializing the markers at those genes (cities) that follow ¢.1 in the parents;

- picking that city for ¢j (f > 1) that provides the shorter edge leaving ¢.{j-1) or if
the shorter edge would introduce a cycle in the child the picking randomly a
one that does not introduce a cycle;

- update the markers such that the marked cities follow the last picked city in the
given parent.

i

The name of the above method shows how the authors envisage it. Sensing that
the presence of a problem dependent factor (using the distances) is characteristic
they named their crossover heuristic. Liepins et al. (1987) also studied this
crossover calling it greedy. This name shows what is important for them: not the
fact that problem dependent domain knowledge is used but the way it is used.

In Miihlenbein (1989) children are produced by a so called p-sexual voting
recombination. It is a real multiparent method for p parents, although the name
p-sexual is not a very good one. Namely, the author does not distinguish different
sexes among the individuals requiring that one parent of each sex is needed for
mating. The other characteristic feature is voting. Interpreted in our terms it is a
yet another heuristic where pick chooses the gene with the highest occurrence
among the marked genes if only it occurs more times then a threshold.

In our tests (see later) we used a scanning procedure for PCSP, generating newly
ordered sequences of jobs by similar pick heuristics.

Example 5.14

We use the scan procedure to L long sequences of jobs (symbols of an alphabet
V). A child of n (n 2 2) parents is created by:

- initializing the markers as kl =1,... kn =1;



136 Chapter 5

- for the jth gcnet of the child we pick that marked gene of the parents that
belongs to the job with the longest processing time;

~ update after creating the j-th gene of the child ¢ happens by setting
ké = :pin{ lef{j, .. . N}I cl..l ¢ {c1,...,¢cj}} foreach parent ¢
(ie{l,...,n}

C

Notice also that the application domain of the above update is not restricted to
PCSP. It can be applied for any problem where the individuals are permutations
of the elements of the alphabet V, for instance TSP. In such a case the child of
permutations should be a permutation as well and this is exactly what this update
is taking care of. Hereby we can solve a problem of permutation representation
‘mentioned in Grefenstette et al. (1985), namely that of legal tour generation.

5.2 Multidimensional Genotypes

In this section we study extended genotypes. We observe that several authors,
e.g. Mihlenbein (1989), Gerrits and Hogeweg (1991}, Colomi, Dorigo and
Maniezzo (1991) apply tables as genotypes instead of the usual gene sequences.
Formalizing such extensions we introduce n-dimensional genotypes and in
particular we investigate the case of 2-dimensions. Hereby we are aiming at
making the possibility of using non sequential genotypes explicit.

Definition 5.2.1

Let V be a finite set, the alphabet. An n-dimensional genotype can be defined as
an n-dimensional matrix over A, where the elements of the matrix have n indices.
In particular, a 2-dimensional genotype of (size K-L) is a table

Y1 i
ki Ve

wherevl.je Vioreveryie (1,...,K},je (1,..., L}
1



Searching by Generalized Genetic Algorithms 137

A bit more sophisticated form of 2-dimensional genotypes is obtained if we
distinguish different types of genes and use the spatial relationships to structure
them.

Definition 5.2.2
LetV,... VK be finite sets and let each Vi be interpreted as a type of gene. A
structured 2-dimensional genotype (with size K-L) is a table

where vije Vi foreveryie {1,...,K},je {1,..,L}.

0

Example 5.2.3

The case of job shop mentioned before belongs to this latter sort of 2-dimensional
genotypes. It can be described by having V1 the set of jobs, V2 the set of
machines and V3 the set of time instances in consideration. In our tests we used
. this coding.

(]

There are obviously numerous ways to produce children from tables as parents.
- Miihlenbeim (1989) uses a pointwise construction method;
- Colorni, Dorigo and Maniezzo (1991) use a crossover-like method making
children from the rows of the parents;
- Gerrits and Hogeweg (1991) apply column exchanges in a problem specific
way.
The latter two can be seen as 'Cartesian recombination’ between parent tables or
as a generalization of 1-dimensional crossover if we consider rows (columns) as
meta genes. Next we elaborate a child production method combining Cartesian
and genetic features. For the sake of convenience we consider the case of K = 2
and row exchanges as a basis.
Let us assume that we have two sets of genes V1 and V2 and the individuals are
structured two dimensional genotypes of the form



138 Chapter 5

TIRRRRT

Vop -+ Vo
where [ v v ]eVLand[v v ]eVL
11°°° 1L 1 21° 2L 2 -

Furthermore, let us assume that we have two one dimensional multiparent

production functions F ,on VIL, F2 on V2L each creating a child of n parents. Let

1 1 n n
vll ...,VIL V“ "'vlL
1 1 s o« o« o | n
V21 ...V2L V21 ...V2L

be n individuals for the sake of convenience abbreviated as

NP =D

Below we display the possibilities of obtaining children by row exchanges, F ] and

F2.
1 i n 1 n
v, v, v, F2(v2 ey v2)
vl
1
vi vi
1 1
i j 1 n
v N 2 ) T F2(v2 s v2)
vn
1
F (! v F ! v
MO U &
1 n j 1 n
Fl(v1 s vl) Coe e v, Coe . F2(v2 R v2)




Searching by Generalized Genetic Algorithms 139

i
v
1 ’
The element | j denotes the child obtained by combining the first row of the
2
i-th parent with the second row of the j-th parent. Fl(v} R v';) and

F Z(v; s vg) denote the one dimensional child obtained by applying the one
production functions Fl and F 10 the first, respectively second rows of the above
tables.

Observe that the ° elements at the upper left side are purely ’Cartesian’, the
(n-&-l)2 - n2 elements of the last row and the last column are really genetic ones.

It is easy to see that in general (n-+-1)K children can be produced in this way,

where nK

are purely Cartesian and (n+I)K “ € are really genetic.

The above figure can help to make offspring production methods on ones own.
Any set of the children displayed above (for instance the ones in the last row) can
be taken as offspring of these parents. The possibilities are still manifold even for

K =2, e.g. column exchanges or exchanges of sub-rectangles.

5.3 Selection, Reduction and Evaluation

Besides the set of manipulations and a production function, in the default search
procedure we have to define selection, reduction and evaluation functions as well.
Below we discuss how these functions can be defined and we give a set of options
that are typical in genetic algorithms but can be used in general.

The standard way in a GA is to select (reduce) based on the objective function
value of the candidates. However, some natural principles with respect to
selection (reduction) presume properties of the objective function that do not
always hold. In such a case we have to make use of the objective function
indirectly.

1) Let g be is a non negative transformed version of the original objective
function f such that candidates with a larger g value are better, i.e. have a
smaller f value. This function g is mostly called the fitness function. A
frequently applied random selection (reduction) method is to select (reduce)
randomly giving higher chance to fit candidates, e.g. by a distribution



140 Chapter 5

assigning the probability

8(c)
P{cn) = e
2 g(d)
deX
to the candidate ¢ in the n-th population Xn. Notice that such a selection
(reduction) function is generous in the sense of Definitions 4.4.12 and 4.4.14
if g is positive.
2) Another possibility is a best first like selection (reduction), choosing only elite
candidates, that is choosing such that forevery B e B,5¢ A, x,y ¢ C*
Vee UF (Bx)Vde x\UF (Bx) : g(c) 2 g(d),
or
Vee FBxy)Vde xuy\F (8.xy) : g(c) 2 gd).
3) A third way can be to combine the first two ideas and if there must be n
{n > 1) candidates chosen (for being a parent or to survive) then choosing
k < n elite ones and 7 - & at random.
4) A special way of reduction is to let every newly produced child to survive, i.e.
having a reduction function satisfying
xC F (3xy)

forevery 5e A, x,ye C*.

5) In case we have a source element ¢ in the search space (see Definition 4.4.17),
then a o-preserving reduction function may be needed. In this case the source
element ¢ always 'survives’ together with some other candidates that can be
chosen according to thé above principles.

The evaluation function of a search procedure plays the role of the termination
condition. The natural choice of setting Fe equivalent to the goal condition of the
given search problem is not always applicable in practice. As we discussed it in
section 3.1, this can occur if an optimization is to be solved. In such a case one
often applies termination conditions such as for instance:

a) FX)=wue & min{fic)tceX ) <D

where D is a given bound;

b) Fe(Xn) =true & min [ flc)lce Xn_
where D > 0 is a border given in advance;

1]-ndn{f(c)lceXn}$D



Searching by Generalized Genetic Algorithms 141

<) Fe(Xn) =qrue =& nzN
with N ¢ N given in advance.

Notice that every option listed above for a selection, reduction and evaluation
function is problem independent; they can be applied to optimization problems in
general. Their use is not restricted to genetic algorithms, which makes it possible
to include these sets of options in a generic DSS development tool. Hereby we
can reduce the efforts of DSS development by allowing the DSS designer to chose
one of these options when creating a DSS.



CHAPTER 6

Towards a Software Tool for DSS Design

In the previous chapters we developed a model of planning problems and a
model of search as problem solving method. Here we sketch how a generic
software tool for DSS design can be based on these models. Strictly speaking, we
do not consider the design of a complete DSS, we restrict ourselves to the problem
definition and problem solving components.

6.1 Problem Definition Component

The module of a DSS tool that facilitates problem definition must be able to
receive and interpret information needed for the definition of a planning problem.
According to the model elaborated in Chapter 2 this module is receiving as input:
- background data;

- the definition of possible actions and time instances;
- the definition of pre-states;

- the correctness condition defining states;

- allowability conditions and a goal condition;

- the effect description;

- the evaluation criterion;

- the definition of an initial state.

142



Towards a Software Tool for DSS Design 143

Let us note that for the sake of convenience we use a static planning terminology
along this chapter, that is we always refer to a ’state’ instead of a ’state or
process’, etc.

On the above basis we can expect the following functions from this module.

- Accepting a problem description, i.e. the definition of a planning problem.

- Facilitating the modification of the problem description by allowing
modification of the data and the above given items (e.g. redefining allowability
or the evaluation criterion).

The DSS created in this way should then be able to perform the following tasks.

Representing and displaying plans.

Supporting hand made planning by allowing the user to manipulate plans.

i

Computing o' and ¢' automatically from the definitions of & and e.

i

Answering queries like
- 1is the pre-state s a state (i.e. does it satisfy the correciness condition)?
- is the operation ¢ (plan P) allowed at state s?7
- which state is obtained if we apply the operation o (plan P) to state s?
- does the state s satisfy the goal condition?
- is the plan P a solution of the planning problem?
- what is the value of plan P according to the given criterion?

As the language of the problem definition module we propose the following.

There must be a data language to define relevant objects, permanent functions
and permanent relations that will be used. For the TSP in section 2.2.1 the data
should describe the set Z and the function D. Data modelling is an important part
of software development but it would go beyond the purpose of this chapter to
discuss it in details. Nevertheless, let us remark that relational algebra is
advisable for data description since it provides a theoretically and practically
proved approach for data modelling and it can be smoothly linked to a logic
fashioned language introduced below.

Note that based on the given data and standard arithmetics, we have the
following at our disposal:



144 Chapter 6

- constants (objects from the data description and arithmetic constants e.g. the
real numbers);
- function symbols denoting permanent functions and standard arithmetic
functions; '
- relation symbols denoting permanent relations and standard arithmetic relations.
These items determine a first order language such that the truth value of its
formulae can be computed by the given data and an arithmetic computation unit.
Next, let us extend the this first order language by adding relation symbols
denoting temporary relations and let us denote the resulting first order language by
L. Hereby the pre-states are determined as sets of temporary atoms, that is atoms
contatning only relation symbols denoting temporary relations. Notice that the
truth value of a formula of L that contains a temporary atom can be computed
“with respect to pre-states only. The definition of the truth value of a temporary
atom r(x) with respect to a pre-state 5 can be based on the identification of
r(xye s and s p=r(x). Thereafter, the truth value of every atom (temporary and
permanent) can be determined and the truth of an arbitrary formula of L with
respect to a pre-state can be defined by standard formula induction.

A correctness condition that defines states as pre-states satisfying this condition
can be given as a well formed formula (wff) in L. Remember that for TSP this
formula was:

I xe Z: ax).
Note that the goal condition is also a statement about states, therefore L is also
appropriate to express it. In section 2.2.1 we used the formula

at(zl) A VzeZ:seen(z);

Naturally, we also have to define the names of actions. If the set of time
instances is also known - for instance R by default - then hereby the set of
operations becomes defined and so does the set of all plans. To define the
allowability of operations we need requirements about the state an operation is
applied to. Also these conditions of allowability can be expressed in L, possibly
by one condition for each different action. Since in a TSP we had only one action
- to(x,y) - we needed only one formula as a condition:

at(x) A - seen(y).



Towards a Software Tool for DSS Design 145

Observe that states are formally sets of atoms hence their changes are easy to
express in terms of U and \. This implies that we need to surpass the first order
language L and introduce an effect language EL in a functional fashion based on
set operations. Again, we can expect that 10 each action there belongs a correct
expression of EL, for instance for ro(x,y) we gave

s\ {arn))) v {ar)y), seen(y)}

in section 2.2.1.

Finally, evaluation criteria can be defined as arithmetic expressions possibly
relying on the given data. The criterion in case of the TSP was

: m
K({ (olx y 1)), .o (tolx Ly )t ) 1) =‘2i D(xy).
I

The definition of an initial state requires that we explicitly give a set of atoms of
L that satisfies the correctness condition. For the TSP the set
{ar(z))}

was given as initial state.

Notice that such a logic fashioned language for problem specification is human
friendly in the sense that non-experts without much experience are likely to read
and write sentences of such a language. This feature makes it possible that the
access to these items be left free after the DSS design phase, that is that even the
user of the DSS is allowed to modify these parameters. Observe that hereby the
flexibility of the DSS tool can be carried over to the DSS itself.

Next to the definition of a planning problem the DSS ool must also support the
definition of a search problem. The search problem (C, (pf, (pg) should be defined
such that it fits the given planning problem. I there is no hard argument against
it, then we suggest that the default free search space is used together with the
default representation and interpretation function (see section 3.2). Note that these
can be created automatically from description of the planning problem.

The functions of the submodule facilitating search preblem definition can then
be listed as follows.

- Taking the default search problem belonging to the given planning problem.



146 Chapter 6

- Adding extra conditions on plans restricting the default feasibility and goal
conditions.

- Defining non-default feasibility and goal conditions to a given planning
problem. ‘

- Suppbrting the definidon of feasibility and goal conditions on plans without
having defined the full planning problem (recall the remarks after definition
3.2.4).

Notice that the necessary data and the set of plans can be defined without
formally defining the world states, allowability and the effect function. If we have
- constants (objects from the data description and arithmetic constants e.g. the

real numbers); »

- function symbols denoting permanent functions and standard arithmetic
functions; )

- relation symbols denoting permanent relations and standard arithmetic relations
together with the set of actions and time instances, then the set of all plans is
determined and so is a first order language L' ¢ L wherein we can express
feasibility and goal conditions for a formal search problem. This permits that we
omit the analysis and the specification of states and effects immediately defining
plans as candidates and tpf and tpg by wifs in L. Let us remark that in the
examples of Chapter 3 the given q)f and (pg were expressed in such a manner, For
the TSP in section 3.3.1 we had the default form of candidates, that is

1 %
Y1 Vi
f t,

belonged to an opcration (to(uz.,v!.),t!.). The feasibility condition for a candidate in
the above form was given as .

Vie{l,.. k1} TEn A Vie{l,.. k1}: vz Auy =z,
The evaluation criterion X for a candidate in the above form was defined as

k
> Du.v),
=1 '

and the goal condition was given as



Towards a Software Tool for DSS Design 147

Vie {l,.. .k1} TLEL

w1 A \‘/ie[1,...,k-1}:vl.=ui+ Au =z ANk=n

1 1 1
Av =12z
n

-

Recall that an appropriate search problem is not only depending on the given
planning problem but also on the intended solution method. With respect to a
solution method we have basically two choices: either an construction or an
iteration method can be applied. Choosing between the two the following
arguments can be considered:

- for highly constrained problems it can be very difficult to produce feasible
offspring of candidates, thus a (stepwise) construction method can be easier than
iteration in the space of feasible candidates;

- if there are evaluation criteria involved then we have an optimization problem,
in which case iteration, in particular improvement, is the commonly made
choice;

- construction may be applied even for optimization; in section 4.2 we presented
a general construction method in an iterative fashion, based on the use of
heuristics (dispatch rules) to extend the empty plan step by step towards a good
plan.

Notice that if the planning problem is defined, then correct feasibility and goal
conditions for an appropriate search problem can be derived automatically.

6.2 Solution Method Definition Component

The module of a DSS tool that facilitates the definition of a problem solving
method must be able to receive and interpret information needed to define a
search procedure. The language to define a search procedure should be
appropriate to define manipulations on plans, initialization and the selection,
production, reduction and evaluation functions. Two kinds of choices for such a
language are:

- an executable specification language, e.g. ExSpect, cf. van Hee, Somers and

Voorhoeve (1989);

- an imperative programming language (Pascal, C).



148 Chapter 6

Notice that these options for the specification language of the solution method are
lacking the human friendliness of logic fashioned languages. This implies that the
user of the DSS would have only limited access to the inside of problem solving
mechanism.  Nevertheless, we can assemble a library of (parameterized)
compohents of search procedures (e.g. several kinds of selection functions) and
support the composition of a search procedure from this library. This library can
be used within the DSS tool - thus in the D8S development phase - as well as
within the DSS. By allowing the user to (re)compose procedures and by letting
him tune the parameters of the components it is possible to provide flexibility for
the problem solving section too. This seems 1o be a promising approach as far as
selection, reduction and evaluation are concerned. Other items, however, such as
the set of manipulations and offspring production seem to be too problem
“dependent to be defined in a generally usable manner. Nevertheless, if we restrict
ourselves to the generalized genetic framework discussed in Chapter 3, then we
can provide guidelines even for defining manipulations and offspring production.
We return to this question later, after discussing other aspects of defining a search
procedure.

If we already have a search problem that fits the original planning problem then
a search procedure has to be defined. Since the search space is already
determined, Conit M, Fs, Fp, Fr and Fe need to be defined, that is the initial
candidate(s), the set of manipulations, the selection function, the production
function, the reduction function and the evaluation function. By the following
figure we give a global illustration of how a search procedure can be defined. By
«~ X and X — we mean that the item X has to be given by the DSS designer.
The interpretation of [ « X ] is that the item X does not necessarily have to be
defined, it can be chosen from a set of provided options. The textual explanation
is given below.



Towards a Software Tool for DSS Design 149

search problem

Construction Iteration

Na,t) —
[ J—

[e—F Fs Fe ]
IPCS — M

procedure

IPCI Depth/Breadth improvement
procedure First Search procedure

The notation /Q\ above denotes an and-node in the graph,

indicating that both branches have to be taken,

If one wants to find a solution by construction then by the Iterative Plan
Construction for Solution procedure (Definition 4.2.14) we can offer a reasonable
support. Namely in the IPCS procedure M, Pim‘r’ Fs, Fr and Fe are already
defined. The system designers work is thus reduced to complete the definition of
the production function by
- determining the condition @ that tells whether to extend or shrink the actual

plan;

- finding good heuristics (dispaich rules) to choose the operation (ar) that is
added to / subtracted from the actual plan.

If one i3 willing to apply an iteration (improvement) procedure then an
initialization and an iteration part have 1o be made.

We can offer support for initialization by the Iterative Plan Construction for
Initialization procedure as given in Definition 4.2.13. Here again, most of the
components are already defined and only the definition of the production function
has to be completed by



150 Chapter 6

- determining the condition @ that tells whether to extend or shrink the actual
plan;

- finding good heuristics to choose the operation (a,f) that is added to / subtracted
from the actual plan.

If one chooses a non improvement iteration method then we can offer two
generic procedures in this spirit: depth first search and breadth first search, defined
in section 4.3.4. and 4.3.5. As we remarked it there, these procedures can be hard
coded in advance, only leaving two parameters free: the applied manipulation
m:D+D and an initial candidate.

For having an improvement procedure one has to define each of M, Fs, Fp, Fr,
-F o We pay special attention to this case and discuss it below.

Defining manipulations is a highly problem dependent step where we can offer
little support in general. Nonetheless, if one agrees to work within the generalized
genetic framework discussed in Chapter 5, then he can rely on the procedure scan.
Taking it as the general way to describe manipulations the design is better shaped:
init, pick and update have to be given. Since within this framework one can
define many different kinds of offspring production methods, we advise to use it,
unless the manipulations the designer has in mind do not fit this form.

Designing a selection function to choose the parents from the actual population
can be reasonably supported in general. In section 5.3 we listed some generally
applicable options, for example:

- select parents fully at random;

- select only elite parents, that is candidates that are better then other candidates
according to some criterion;

- select a number of elite parents and some other ones randomly.

Next to such problem independent possibilities one can apply heuristics, that is a

problem dependent manner of selecting, relying on the given domain knowledge.

The production function generates the children of the chosen parents. If for
every parent-list there is only one manipulation applicable then the production
mechanism is determined by M and F ¢ If, however, there are more possibilities,



Towards a Software Tool for DSS Design 151

¢.g. different mutations possible then the role of Fp is important. Standard ways
to handle such cases are choosing yet other manipulations in turn, or defining Fp
such that it chooses between the given possibilities randomly according to a given
distribution.

Similarly to the selection function we can reasonably support the definition of Fr
by options. The basic principles to choose the survivors are very similar to those
of selecting the parents as the items (1) - (5) in section 5.3 indicate.

Recall the remark after Definition 3.1.11 about the difficulties to verify
optimality. Therefore we present three practically applicable evaluation functions:
- giving a bound B > 0O and defining the value of Fe(x) true if flc) £ B holds

for a candidate c € x;

- stopping if the improvement by the last iteration step remains under a certain
level;
- stopping if the number of iteration cycli reaches a limit.

There is a conclusion we can draw from the foregoing: the crucial factors in
designing a search procedure are the manipulations and the production function.
These should be suited to the problem and at the moment we do not see many
possibilities to provide automatic support for their definition. Let us point out
another step that seems to be crucial: initialization. Although we could present a
general construction-initialization procedure, we foresee that it can be
advantageous to make the initialization step by a more problem suited algorithm.



CHAPTER 7

Final Remarks

The field of decision support systems is “lacking conceptual research-oriented
articles”, as reported by Elam, Huber and Hurt (1986). In practice, the
development of a DSS is mostly a case-bounded activity, repeated for every new
decision problem. In this thesis we describe a mainly theoretical investigation
directed at setting the outlines of a generic DSS development tool. Concentrating
on the automatic decision generation function within a DSS we distinguish two
main issues of interest: problem description and problem solving. We study them
both independently and elaborate a theoretical model of planning problems and
search procedures. The underlying idea of our approach is to have these models
implemented by software that facilitates the definition of instances of the models.
By building decision support systems with the aid of such a tool, DSS design
could be carried out more systematically and with less effort than by the case
specific practice of today.

Based on the notions of world states, actions and time we work out a planning
theory. Time is explicitly present in our model of planning problems, which
makes it possible to notice and handle difficulties of parallel actions. Discovering
the limits of modelling only static world situations we introduce dynamic planning
models and clarify their relationship to static ones. Finally, observing conflicts
between intuition and the formal model, we discover the importance of the so

152



Final Remarks 153

called Determinative Past Assumption in dynamic planning situations. By the
theory we obtain a clear terminology and a general framework facilitating the
definition of specific planning problems. Hereby we also lay the basis of the
problem definition component of a generic DSS tool.

As for the problem solving part, we model stochastic space search procedures.
The elaborated model incorporates features of graph search and local search
methods, enlightening their relationships. By the General Search Procedure we
distinguish the most essential components of a wide scale of search methods,
ranging from depth first search to genetic algorithms. Modelling successive
iteration cycli of the search by Markov chains, we prove general convergence
results for methods applied to optimization problems, in particular simulated
annealing. Special attention is paid to genetic algorithms. By generalizing
classical genetic features we obtain a class of search procedures that can serve as
a default problem solving method in DSSs.

To gain early feedback whether our problem solving approach is practicable we
made a shell prototype based on the General Search Procedure. This prototype
was implemented in C++ and it supported the definition of genetic-like search
procedures for different optimization problems, cf. Nuijten (1990). With the aid
of the shell we could define a search procedure and obtain an executable program
to run evolutions. Plans were represented in a table (list) form as discussed in
Chapter 3. By the absence of the problem definition component, feasibility and
goal conditions had to be defined in the spirit of section 3.3. A set of options for
each of the selection, reduction and the evaluation function was implemented in a
problem independent manner as discussed in the foregoing. Support at the
definition of a search procedure was thus partly realized by providing the
possibility of choosing among these options. Hence, using this shell it was
enough to concentrate on the design of the predicted problem dependent
components such as initialization, the manipulations and offspring production.
For the latter two we applied the generalized genetic framework using scanning
with the heuristics described in Example 5.1.3 and Example 5.1.4. We have
defined mutation and multiparent production as manipulations, the production
function applied them randomly with a certain given distribution.



154 Chapter 7

We experienced that it was simple to define search procedures by using our
shell. More precisely, we found that it was quite easy to compose a genetic-like
search procedure by the given options - if only we have coded manipulations and
initialization already. Although the shell is just a prototype we gained feedback
about the practicability of our approach to DSS design and confirmed that one can
develop the decision generating subsystem of a DSS based on our notions.

The usefulness of such a shell is of course also depending on the quality of the
search procedures created with the aid of it. To test it we applied the shell for
making improvement algorithms for handling TSP and PCSP. We made runs to
test the efficiency and the effectivity of the procedures. For the TSP we ran 500
tests with a 120 city problem from Grotschel (1977) and obtained an average tour
length of 7952.7 (14.6% above the optimum). For the PCSP we took the FIS2
“instance with 10 machines and 100 jobs from Fischer (1963). After 500 runs the
average length of the obtained schedules was 1037.6 (11.6% above the optimum).
The efficiency of our procedures was moderate: the computation times were
between 10-15 minutes on a Sun SPARC station for each problem.

From a practical point of view, we can say that the aim of a decision generation
procedure is not to find a theoretically optimal decision, but to find better
decisions than a man would do. To make a rough comparison with human
planners, the same problem instances were also given to ten colleagues. We
observed that for the TSP they slightly outperformed our procedure by achieving
an average tour length of 7738.3 (11.5% above optimum) within about 10-15
minutes, while the figures for the PCSP are 1080.8 (16.2% above the optimum)
obtained after 1-3 hours of thinking.

These results have an illustrative value demonstrating that taking search
procedures as the basis of problem solving in a DSS is a sound approach.
Whether or not this approach is really practicable will, however, only be certain if
more realistic (harder) problems can also be handled within acceptable
computation times.

Future work has to be directed at mainly practical issues. The implementation of
a problem definition component has to be carried out based on the langnage we
sketched in section 6.1. Here we will have to handle questions about data
management and interfacing. The prototype of the component supporting the
definition of a problem solving method has to be extended such that a good



Final Remarks 155

balance is reached between being free and having restrictions by built in features
when composing a search procedure. A library of components of search
procedures has to be made and made accessible to the DSS designer as well as the
user of the created DSS. Here the issue of man-machine interaction during
problem solving has to be treated. At last, the border between the DSS tool and
DSSs has to be defined. This means that for both the problem definition and the
solution method definition component it needs to be decided which parameters are
fixed by the DSS designer and which ones can be modified later by the user of the
created DSS.



References

Aarts, E.H.L. and Korst, J., Simulated Annealing and Boltzmann Machines, Wiley
and Sons, 1989.

Addis, T.R., Designing knowledge-based systems, Kogan Page, 1986.
Ahlswede, R. and Wegener, 1., Search Problems, Wiley and Sons, 1987.
Aigner, M., Combinatorial Search, Wiley and Sons, 1988.

Alter, S.L., Decision support systems: current practice and continuing challenges.
Addison-Wesley, 1980.

Anthonisse, J.M., Lenstra, J.K. and Savelsbergh, M.W.P., Behind the screen: DSS
from an OR point of view, Decision Support Systems 4, pp. 413419, 1988.

Bellmore, M., and Nemhauser, G.L., The Traveling Salesman Problem: A Survey,
Operations Research 17, pp. 538-558, 1968.

.Bonczck, R.H., Holsappe, C.W. and Whinston, A.B., Foundations of Decision
Support Systems, Academic Press, New York, 1981.

Bonczek, R.H., Holsappe, C.W. and Whinston, A.B., Specification of modelling
and knowledge in decision support systems, in Processes and Tools for Decision
Support, ed. Sol, H.G., North-Holland, 1983.

Brachman, R.J., Levesque, H.J. and Reiter, R. (eds.), Proceedings of the First
International Conference on Principles of Knowledge Representation and
Reasoning, Morgan Kaufmann, 1989.

Burch, J.C. and Strater, F.R., Information Systems: Theory and Practice,
Hamilton, 1974.

Charniak, E. and McDermott, D., Introduction to Artificial Intelligence,
Addison-Wesley, 1985.

Colorni, A., Dorigo, M. and Maniezzo, V., Applying Evolutionary Algorithms to
Solve the Time-table Problem, in Parallel Problem Solving from Nature, Lecture
Notes in Computer Science, vol. 486, eds. Schwefel, H.-P. and Maenner, R,
Springer-Verlag, 1991.

Davis, R. and Lenat, D.B., Knowledge-based Expert Systems in Artificial
Intelligence, McGraw Hill, 1982.

De Jong, K., Adaptive system design: a genetic approach, IEEE Transactions on
Systems, Man and Cybernetics 10, pp. 566-574, 1980.

156



References 157

De Jong, K., Genetic Algorithms: A 10 Year Perspective, in Proceedings of the
International Conference on Genetic Algorithms, ed. Grefenstette, J., Lawrence
Erlbaum Associates, 1985.

De Jong, K., On Using GAs to Search Problem Spaces, Proceedings of the Znd
International Conference on Genetic Algorithms, ed. Grefenstette, J., Lawrence
Erlbaum Associates, 1987.

Dueck, G. and Scheuer, T., Threshold Accepting: A general Purpose Optimization
Algorithm Superior to Simulated Annealing, manuscript 1988,

Eiben, A.E., Modeling Planning Problems, in Proceedings of MFDBS 89, Lecture
Notes in Computer Science, vol. 364, eds. Demetrovics, J and Thalheim, B,
Springer-Verlag, 1989,

Eiben, A.E., Aarts, EH.L. and van Hee, K.M., Global Convergence of Genetic
Algorithms: A Markov Chain Analysis, in Parallel Problem Solving from Nature,
Lecture Notes in Computer Science, vol. 486, eds. Schwefel, H.-P. and Maenner,
R., Springer-Verlag, 1991.

Eiben, AE. and van Hee, K.M., Knowledge Representation and Search Methods
for Decision Support Systems, in Data, Fxpert Knowledge and Decisions, eds.
Gaul, W. and Schader, M., Springer Verlag, 1990.

Eiben, A.E. and Schuwer, R.V., Knowledge-based Systems: a Formal Model,
Proceedings of the Third Dutch Conference on Artificial Inteiligence, 1990. (in
Dutch)

Elam, J.J., Huber, G.P. and Hurt, M.E., An examination of the DSS literature
(1975-1985), in Decision Support Systems: A Decade in Perspective, eds. McLean,
E.R. and Sol, H.G., North-Holland, 1986.

Even, S., Ttai, A. and Shamir, A, On the Complexity of Timetable and
Multicommodity Flow Problems, SIAM Journal on Computing 5, pp. 691-703,
1976.

Fisher, H. and Thompson, G.L., Probabilistic Learning Combinations of Local
Job-shop Scheduling Rules, in Industrial Scheduling, eds. Muth, JF. and
Thompson, G.L., Prentice Hall, 1963,

Forbus, K.D., Qualitative Process Theory, Artificial Intelligence 24, pp. 85-168,
1984.

Garey, R.M. and Johnson, D.S., Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman and Co., 1979,

Genesereth, M.R. and Nilsson, N.J., Logical Foundations of Artificial Intelligence,
Morgan Kaufmann, 1987,

Gerrits, M. and Hogeweg, P., A Genetic Algorithm application on the search for
minimal mutation phylectic trees, an NP-complete problem, in Parallel Problem
Solving from Nature, Lecture Notes in Computer Science, vol. 486, eds. Schwefel,
H.-P. and Maenner, R., Springer-Verlag, 1991.



158 ' References

Glover, F. and Greenberg, H.J., New approaches for heuristic search: A bilateral
linkage with artificial intelligence, European Journal of Operational Research 39,
pp. 119-130, 1989.

Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, Reading MA, 1989,

Gorry, G.A. and Scott Morton, M.S.,, A framework for management information
systems, Sloan Management Review 13, pp. 55-70, 1971,

Green, C., Application of Theorem Proving to Problem Solving, Proceedings of
the First International Joint Conference on Artificial Intelligence, North-Holland,
1969.

Grefenstette, 11, (ed.), Proceedings of the International Conference on Genetic
Algorithms, Lawrence Erlbaum Associates, 1985.

Grefenstette, J.J. (ed.), Proceedings of the 2nd International Conference on
‘Genetic Algorithms, Lawrence Erlbaum Associates, 1987,

Grefenstette, J., Gopal, R., Rosmaita, B. and Van Gucht, D., Genetic Algorithms
for the Travelling Salesman Problem, Proceedings of the 2nd International
Conference on Genetic Algorithms, ed. Grefenstette, J., Lawrence Erlbaum
Associates, 1985,

Grotschel, M., Polyedrische Characterisierungen Kombinatorischer Optimierungs-
probleme, PhD. Thesis, Hain, Meisenheim am Glan, 1977. (in German)

Hansen, P., A short discussion of the OR crisis, European Journal of Operational
Research 38, pp. 277-281, 1989.

van Hee, KM,, Information systems and decision support, Informatie 27, pp.
978-986, 1985. (in Dutch)

van Hee, K. M., Decision support systems for logistics, in Databases, ed. L.
Paredaens, Academic Press, London, 1987.

van Hee, K.M. and Lapinski, A., OR and Al Approaches to Decision Support
Systems, Decision Support Systems 4, pp. 447459, 1988.

van Hee, K.M., Somers, L.J. and Voorhoeve, M., Executable Specifications for
Distributed Systems, in fnformation System Concepts: An In-depth Analysis, eds.
Falkenberg, E.D. and Lindgreen, P., North-Holland, 1989.

Holland, J.H., Adaptation in Natural and Ariificial Systems, Univ. of Michigan
Press, Ann Arbor, 1975.

Kanal, L. and Kumar, V. (eds.), Search in Artificial Intelligence, Springer-Verlag,
1988.



References 159

Kanal, L. and Kumar, V., The CDP: A Unifying Formulation for Heuristic Search,
Dynamic Programming, and Branch-and-Bound, in Search in Artificial
Intelligence, eds. Kanal, L. and Kumar, V., Springer-Verlag, 1988.

Keen, P.G.W., Adaptive Design for Decision Support Systems, Database 12,
1980.

Keen, P.G.W., Decision Support Systems: The Next Decade, in Decision Support
Systems: A Decade in Perspective, eds. McLean, E.R. and Sol, HG.,
North-Holland, 1986.

Keen, P.G.W. and Scott Morton, M.S., Decision Support Systems: An
Organizational Perspective, Addison-Wesley, 1978.

Kolen, AW.J. and Lenstra, J.K., Combinatorics in operations research, Report
BS-R9024, Centre for Mathematics and Computer Science, Amsterdam, 1990.

Kowalski, R., Predicate Logic as Programming Language, Proceedings of the IFIP
Congress, North-Holland, 1974.

van Laarhoven, P.J.M., Theoretical and computational aspects of simulated
annealing, CWI Tracts, Centre for Mathematics and Computer Science,
Amsterdam, 1988.

van Laarhoven, P.J.M., Aarts, EH.L. and Lenstra, JK., Job shop scheduling by
simulated annealing, Report OS-R88(09, Centre for Mathematics and Computer
Science, Amsterdam, 1988.

van Langen, P. and Treur, J., Representing World Situations and Information
States by Many-sorted Partial Models, Report PE8904, University of Amsterdam,
1989.

Lawler, E.L., Lenstra, J. K., Rinnooy Kan, A.H.G. and Shmoys, D.B., Sequencing
and Scheduling: Algorithms and Complexity, Designing Decision Support Systems
Notes, Eindhoven University of Technology, 1989.

Liepins, G.E., Hilliard, M.R., Palmer, M. and Morrow, M., Greedy genetics,
Proceedings of the 2nd International Conference on Genetic Algorithms, ed.
Grefenstette, J., Lawrence Erlbaum, 1987.

Lin, S. Computer Solutions of the Traveling Saleman Problem, The Bell System
Technical Journal 44, pp. 2245-2269, 1965.

Lin, S. and Kemighan, B.W., An Effective Heuristic Algorithm for the
Travelling-Salesman Problem, Operations Research 21, pp. 498-518, 1973.

Lloyd.,, JW., Foundations of Logic Programming, Second Edition,
Springer-Verlag, 1987.

Minker, J., Foundations of Deductive Databases and Logic Programming, Morgan
Kaufman, 1988.



160 References

Minoux, M., Mathematical Programming Theory and Algorithms, Wiley and Sons,
1986.

Mitra, G. (ed.), Mathematical Models for Decision Support, NATO ASI Series,
Computer and Systems Sciences, vol. 48, Springer-Verlag, 1988.

Miihleribein, H., Parallel Genetic Algorithms, Population Genetics and
Combinatorial Optimization, Proceedings of the 3rd International Conference on
Genetic Algorithms, ed. Schaffer, J.D., Morgan Kaufmann, 1989.

Naylor, T.H., Decision Support Systems or what happened to MIS?, Interfaces 12,
pp. 9294, 1982.

Nemhauser, G.I.. and Wolsey, 1..A., Integer and Combinatorial Optimization,
Wiley and Sons, 1988.

Nilsson, N.J., Principles of Artificial Intelligence, Springer-Verlag, 1982.

‘Nuijten, W.P.M., Genetic Algorithms and Job Shop Scheduling, Masters Thesis,
Eindhoven University of Technology, 1990. (in Dutch)

Papadimitrion, C.H. and Steiglitz, K., Combinatorial Optimization: Algorithms
and Complexiry, Prentice-Hall, Englewood Cliffs, N.J., 1982.

Pearl, J., Heuristics: Intelligent Search Strategies for Computer Problem Solving,
Addison- Wesley, 1984.

Pearl, J. (ed.), Search and Heuristics, North-Holland, 1983.

Pednault, E.P.D., Formulating multiagent, dynamic-world problems in the classical
planning framework, in Proceedings of the 1986 Workshop on Reasoning about
Actions and Plans, eds. Georgeff, M.P. and Lansky, AL., Morgan Kaufmann,
1987.

Savelsbergh, M.-W.P., Computer Aided Routing, Ph.D. Thesis, Centre for
Mathematics and Computer Science, Amsterdam, 1988.

Savory, S.E. (ed.), Arificial Intelligence and Expert Systems, Chichester:
Horwood, 1988.

Schaffer, J.D. (ed.), Proceedings of the 3rd International Conference on Genetic
Algorithms, Morgan Kaufmann, 1989.

Shapiro, S.C. and Eckroth, D. (eds.), Encyclopedia of Artificial Intelligence,
Wiley, 1987. )

Simon, H.A., Search and Reasoning in Problem Solving, Artificial Intelligence 21,
pp- 7-29, 1983.

Sol, H.G., DSS: Buzzword or OR challenge?, European Journal of Operational
Research 22, pp. 1-8, 1985.



References 161

Sprague, R.H., A framework for research on decision support systems, in Decision
Support Systems. Issues and Challenges, ed. Fich, G. and Sprague, RH,
Pergamon Press, 1980.

Sprague, R.H., DSS in context, Decision Support Systems 3, pp. 197202, 1987.

Sprague, R.H. and Carlson, E.D, Building Effective Decision Support Systems,
Prentice-Hall, 1982.

Sterling, L and Shapiro, E., The Art of Prolog, MIT Press, 1986.

Suh, J.Y. and van Gucht, D., Incorporating heuristic information into genetic
search, Proceedings of the 2nd International Conference on Genetic Algorithms,
ed. Grefenstette, J., Lawrence Erlbaum Associate, 1987.

Treur, J., Reasoning about partial models, actions and plans, Report P8813,
University of Amsterdam, 1988.

Turban, E.R. and Watkins, P.R., Applied Expert Systems, North Holland, 1988.

Verbeek, P.1., Learning About DSS: Two Case Studies on Manpower Planning in
an Airline, PhD. Thesis, Rotterdam University, 1990.

Waterman, D.A., A Giude to Expert Systems, Addison-Wesley, 1986.
Winston, P.H., Artificial Intelligence, Second Edition, Addison-Wesley, 1984,



Samenvatting

In dit proefschrift wordt een onderzoek beschreven dat gericht is op het
verkrijgen van genericke softwaregereedschappen die het ontwikkelen van
decision support systems (DSS) voor operationele planningsproblemen uit de
praktijk makkelijker, sneller en dus goedkoper maken dan de hedendaagse
technieken. Wij beperken ons tot het (semi-) automatisch genereren van
beslissingen, zodat man-machine Interactie, wuser interfaces, data- en
modelmanagement buiten beschouwing worden gelaten.  Een theoretisch
onderzoek wordt uitgevoerd dat zich richt op het formeel modelleren van
planningsproblemen en oplosmethoden.

Eerst wordt in Hoofdstuk 2 cen theoretisch model van planningsproblemen
uitgewerkt en worden theoretische aspecten van zulke problemen besproken.
Daarna worden vijf planningsproblemen gespecificeerd met behulp van de
aangeboden theoric. Hierdoor ontstaan richtlijnen voor een wijze waarop een
formele beschrijving van een planningsprobleem gegeven kan worden.

Zoeckend naar een passende algemene oplosmethode bestuderen wij 'zoeken’,
"logische redenering’ en ‘mathematisch programmeren’, waarna het paradigma
"zocken’ gekozen wordt.  Wij geven een model van zoekproblemen en
onderzocken de relatie tussen planningsproblemen en zoekproblemen. In
Hoofdstuk 4 wordt op zoekmethoden ingegeaan. Hierbij introduceren wij een
Algemene ZoekMethode (AZM) en beschrijven enkele bekende typen van
algoritmen als specialisaties van de AZM. Vervolgens worden convergentie-
stellingen bewezen die aangeven aan welke e¢isen de componenten van een
zockmethode moeten voldoen om convergentie van het zoeken naar een oplossing
te garandéren. Ben veelbelovende klasse van zoekmethoden, genetische
algoritmen (GAs), wordt in meer detail bestudeerd. Interessante eigenschappen
van GAs zijn dat zij in een ruime probleemklasse redelijk presteren en
gemakkelijk aangepast kunnen worden als het probleem - binnen die klasse -
verandert.

Aan het einde van het proefschrift maken wij een stap in de richting van de
volgende onderzoeksfase: het realiseren van generieke software die op basis van
de voorafgaande theorie het ontwikkelen van een beslissingsondersteunend
systeem vergemakkelijkt. Door de bevindingen van Hoofdstuk 2 beschikken wij

162



Samenvatting 163

over een geparameteriseerd model dat een grote klasse van planningsproblemen
omvat. Doordat het model hoog nivean parameters heeft (d.w.z. parameters die
expressies van een taal met een grote expressieve kracht als waarde kunnen
hebben) is het specificeren van concrete instantiaties relatief eenvoudig. Voor het
model van oplosmethoden gaat deze laatste eigenschap in mindere mate op.
Hoewel bij het defini€ren van een zoekprocedure men gebruik kan maken van de
AZM, kan het geven van een volledige definitie nogal veel werk vereisen. Er zijn
echter componenten van de AZM waarvoor een op brede schaal bruikbare
invulling kan worden gegeven. Als bovendien de meer beperkte klasse van
genetische algoritmen wordt beschouwd, is het mogelijk om richtlijnen te geven
voor de ontwikkeling van de overige componenten van een zoekprocedure.

Het door dit proefschrift beschreven onderzoek is theoretisch van aard; het legt
de conceptuele basis voor cen methode en generieke software voor
DSS-ontwikkeling. De echte praktische bruikbaarheid van onze benadering kan
niettemin alleen door nadere tests met een volledig uitgebouwd tool vastgesteld
worden.



Curriculum Vitae

De schrijver van dit proefschrift werd op 14 juni 1961 geboren te Budapest,
Hongarije. Hier behaalde hij in 1979 zijn diploma aan het Arpdd Gymnasium. Na
de militaire dienst startte hij met de studie wiskunde aan de Eotvos Lordnd
Universiteit te Budapest in 1980; in 1985 studeerde hij af op een onderzoek over
logisch programmeren. Vanaf september 1985 was hij werkzaam bij de Expert
Systems Department van Computing Applications and Co. te Budapest als
knowledge engineer bij diagnostische systemen en deed als zodanig praktische en
theoretische kennis op het gebied van Kunstmatige Intelligentic op. In februari
1687 kwam hij naar Nederland waar hij sinds maart 1987 als onderzoeker in
opleiding bij de Sectie Informatiesystemen aan de Technische Universiteit
Eindhoven werkt. Het hier verrichte onderzoek word begeleid door prof.dr. K.M.
van Hee en maakt deel uit van een NFI project dat gefinancierd wordt door de
Nederlandse Organisatie voor Wetenschappelijk Onderzoek. Sinds het aflopen
van de door NWOQ gefinancierde periode is hij in dienst bij de Technische
Universiteit Eindhoven.



Stellingen behorend bij het proefschrift

A METHOD FOR DESIGNING DECISION SUPPORT SYSTEMS FOR
OPERATIONAL PLANNING

van A.E. Eiben

1. Theorem la in [1] stelt dat als een logisch programma P geen interne variabelen
heeft en dichotoom is, er een complementair programma voor P bestaat. In
deze stelling is echter de conditie van dichotomie overbodig.

[1] Sato, T, and Tamaki, H, Transformational logic program synthesis,
Proceedings of the International Conference on Fifth Generation Computer
Systems, ed. by ICOT, North-Holland, 1984,

2. Het onderscheid tussen statische en dynamische planningssituaties is
essentieel. Doordat de tijd in beide situaties een verschillende rol speelt, zijn
de cruciale eigenschappen van die twee situaties onverenigbaar. (zie
Hoofdstuk 2 van dit proefschrift)

3. De term graafalgoritme kan op twee verschillende manieren geinterpreteerd
worden. Omdat die twee interpretaties zelden onderscheiden worden, ontstaat
er verwarring in het woordgebruik. (zie Hoofdstuk 3 van dit proefschrift)

4. De biologische analogieén die meegeholpen hebben met het funderen van
genetische algoritmen, cf. {1,2], zijn belemmerend. Namelijk, door het niet
beperken van genotypen tot eindige 0-1 rijen, het toelaten van meer dan twee
ouders en het toepassen van niet crossover-achtige genetische recombinatie
wordt een ruimere klasse van genetische algoritmen verkregen dan nu wordt
gebruikt. (zie Hoofdstuk 5 van dit proefschrift)

[1] Holland, J.H., Adaptation in Nawral and Artificial Systems, Univ. of
Michigan Press, 1975.

{2] Goldberg, D.E., Generic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, 1989.

5. De relatieve inefficiéntie van een algemeen toepasbaar algoritme ten opzichte
van een toegesneden algoritme wordt onbelangrifk als de beweffende
executictijden onder een bepaalde grens vallen.  Daar veel praktische
problemen toch van een beperkte omvang zijn en de gebruikte hardware steeds
krachtiger wordt, geeft deze observatie bestaansrecht aan algemeen toepasbare
maar (nog) trage oplossingstechnieken.



6. Omdat probieemspecificaties de brug vormen tussen reéle problemen en de
‘wereld van formele oplosmethoden, valt het formeel niet te bewijzen dat een
specificatie correct is. Daarom is de intuitieve verificatie van de correctheid
van een specificatie van dermate groot belang dat specificatiemethoden
gebaseerd op een taal waarvan het nivean voldoende hoog is, zonder twijfel
zijn aan te bevelen.

7. In [1] definieert Mars kennissystemen als systernen waar “zo goed mogelijk
een scheiding is aangebracht tussen toepassingsgebied-onafhankelijke
afleidingsregels en toepassingsgebied-specifieke kennis”. De aanwezigheid
van zo'n scheiding heeft echter zulke grote voordelen, dat het niet beperkt zou
moeten blijven tot redeneersystemen binnen Al Met name zijn systemen aan
te bevelen waar zowel binnen de component voor probleembeschrijving als
binnen de component voor probleemoplossing een scheiding tussen
toepassingsgebied-onafhankelijke en  toepassingsgebied-specifiecke  kennis
verwezenlijkt is.

[1} Mars, N., Onderzoek van niveau: Kennistechnologie in wording,
Informatie, jrg. 30, nr. 2, pp. 8490, 1988.

8. Het praktisch bruikbaar maken van logisch programmeren heeft rampzalige
gevolgen voor de theorie daarvan. Met name het gebruik van dynamic clauses
?aakt dat de semantiek van een PROLOG-programma op losse schroeven

omt te staan.

9. Een Nederlands gezegde luidt: “kleren maken de man”. In het Hongaars
wordt echter gezegd: "kleren maken de man niet”. Dit laatste zal bij velen
(rjnmderli?n de smaak vallen; het roept namelijk de vraag op ”wat maakt de man

an wel?”. )

10. Het streven van Hongarije om zich bij Europa aan te sluiten kan pas serieus
genomen worden als het woord cosmopoliet daar niet langer als politiek
scheldwoord wordt gebruikt.

11. Het gerecht waarvan in [I] de bereidingswijze wordt gegeven, is ook heel
lekker als men truffels door gerookte achterham vervangt.

[1} Makowsky, JA., Abstract Embedding Relations, in Model-Theoretical
Logics, eds. Barwise, J. and Feferman, S., Springer-Verlag, 1985.



