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Back-order lead time behaviour in (s,Q)-inventory models with compound

renewal demand

Abstract

In the practice of inventory management customer-oriented perfonnance characteristics as opposed to

availability-oriented performance characteristics have received more and more attention. Instead of

measuring the probability of a stockout one measures the probability that a customer's demand is

satisfied within one week. In this paper we derive approximate expressions for the customer waiting

time distribution in care a single stockpoint is replenished according to an {s,Q)-policies. The demand

process is compound renewal, Le. customer has a demand distributed according to some arbitrary

distribution funtion. Extensive simulations show that the approximations yield excellent results. The

results can be applied to analyze distribution networks where each stockpoint is controlled according

to an (s,Q)-model.



1. Introduction

Over the last twenty years most successful companies have recognized the importance of customer

focus. This has had its influence on inventory management concepts. Through better inventory

management information systems like DRP and MRP it has become possible to react more adequately

to customer wishes. Yet proper inventory management is still based on setting appropriate safety stock

levels for components and finished goods, so that most customer wishes can be satisfied routinely. In

spite of the customer focus most companies still use performance measures which are not truly

customer-based, only in an indirect manner because they measure the availability of stock. Examples

of such performance measures include stockout probability, fraction of demand satisfied directly from

the shelf. In this paper we focus on customer-oriented performance measures, such as the probability

that a customer has to wait less than a prespecified maximum allowed waiting time and the average

customer waiting time. Furthermore we include as performance measure the fraction of demand

satisfied within a maximum allowed waiting time. This measure is especially useful in situations where

customers hold inventory themselves, so that customer orders are merely stock replenishments, which

need not be served immediately from stock.

In this paper we consider a one-product single echelon model. We assume that the inventory from

which customer demand is satisfied is controlled according to a continuous review (s.Q)-policy. I.e.

as soon as the inventory position (which equals physical stock plus stock on order minus backorders)

drops below s a quantity kQ (k E N) is ordered such that the inventory position is raised to a level

between s and s + Q. We assume s > O. The demand process is a compound renewal process, Le.

customers arrive at the stockpoint according to a renewal process and the demands of customers are

Li.d. random variables independent of the arrival process. We assume such a general demand process

since we observed in many practical situations, e~pecially for stockpoints of manufacturers that the

demand process is non-Poisson. This is mainly caused by the fact that in those situations the number

of customers is limited. Finally we assume that the lead times of orders are identically distributed. Yet

the lead times are not independent since we assume that consecutive orders do not overtake. Note that

this assumption is valid for almost any practical situation. We derive approximate expressions for the

above mentioned performance measures and validate the approximations through extensive compu~er

simulations.
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The literature on customer backorder behaviour is limited. The most explicit contribution is by Van

der Veen [1981]. who first mentions the lead time shift conjecture given in section 3 of this paper

without proof and without explicit definition of the demand process. Using the conjecture Van der

Veen derives for an (s,Q)-model an approximate expression for the fraction of demand delivered from

stock within a given time. This expression only holds for large values of Q. In a later paper Van der

Veen [1984] further elaborates on the backorder behaviour. In VanBeek [1981] the backorder

behaviour of an (s.Q)-model is used to analyze a two-echelon inventory model. Van Beek claims that

the backorder lead time is exponentially distributed. Our analysis reveals that this is not true. In the

context of multi-echelon systems various authors have either implicitly or explicitly derived

expressions for the backorder lead time (or equivalently customer waiting time). We mention Svoronos

and Zipkin [1988]. who analyze the backorder behaviour of an (s.Q)-model under the assumption of

compound Poisson demand with fixed demand sizes within the context of a two-echelon model with

pure Poisson demand at the downstream warehouses. In a later paper Svoronos and Zipkin [1991]

analyze the backorder behaviour for arbitrary multi-echelon systems, where each stockpoint is

controlled according to a one-for-one replenishment policy. In both papers Svoronos and Zipkin derive

the results for backorder behaviour from expressions for the first and second moment of the stationary

backlog and application of Little's formula. This approach is only valid for the specific (s,Q)-model

with fixed demand sizes and lot-for-lot replenishment models. as studied in their papers. In our model

Little's formula linking waiting time and backlog cannot be applied. This has also been argued in Van

der Heijden and De Kok[1992]. The major contribution of our paper is that for (s.Q)-models with

arbitrary demand processes and lead time distributions, simple and robust approximations are given

for performance characteristics related to the backorder behaviour. Because of the fact that the results

are derived for general demand processes it is possible to use these results as part of an analysis

framework that enables to analyze arbitrary multi-echelon systems where each node in the network is

controlled according to some (s.Q)-model.

The paper is organized as follows. In section 2 we give a detailed description of the model and we

define the performance measures studied. In section 3 we derive approximate expressions for these

performance measures. In section 4 we show the quality of the approximations by comparing the

analytically derived results with computer simulation. In section 5 we discuss the application of our

results and directions for further research.
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2. Description of the model and perfonnance characteristics.

In this section we give a detailed description of the mathematical model that serves as the basis of our

analysis of the inventory management problem described in the introduction.

We assume that the demand process is a compound renewal process. I.e. customers arrive according

to a renewal process {An} and the demand of the nth customer equals On' Hence

',- time between the arrival of the (n-l)th and nth customer,

We assume that the Oth customer arrives at time 0,

Both {An} and {On} are series of independent identically distributed random variables and {An} is

independent of {On}' We define the distribution function FA and FD as follows

=

=

PlAn S t} "if n.

P{Dn S x} "if n.

Let A and °denote a generic interarrival time and demand, respectively, We assume that

FA (0) =- 0 and FD (0) = 0, i.e. An and On are positive random variables.

The customers' demand is satisfied from stock. Stock is replenished according to an (s,Q)-policy with

s > 0, This policy can be described as follows. First define

yet) ',- sum of physical stock at time t and the stock on order at time t minus the

backorders at time t

As soon as yet) drops below the reorder level s at the arrival of a customer, a quantity kQ (k E N)

is ordered, where k is determined such that
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Here Y(to) denotes the inventory position immediately after the arrival of the customer that causes the

undershoot of s, but just before the replenishment decision is taken. In cases where Dn is small

compared with Q, k is usually equal to 1.

The lead time of an order is defined as the time that elapses between the initiation of an order upon

undershoot of the reorder level s and the arrival of the order at the stock point. Define

..-

..-

the mth order quantity after time O.

the lead time of Qm.

We assume that the lead times Lm are identically distributed with distribution function L. So we have

that

=

Furthermore, we assume that consecutive orders Qm and Qm+1 do not overtake, Le. Qm alwayjs arrives

earlier at the stock point than Qm+1. This implies that L m and L m+1 are dependent. The non-overtaking

assumption is the classical assumption in almost all publications on inventory management models (cf.

Hadley and Whitin [1963], Silver and Peterson [1985]).

Having defined the inventory management model, we now can define the relevant performance

characteristics of the model. In the notation below we explicitly take into account the fact that the

performance characteristics depend on the probability distribution of the lead times, FL. Instead of

using an argument FL, we use the argument L. We can consider L to be the generic lead time with

probability distribution FL.

f(t;L)

Pw(t;L)

..-

..-

fraction of demand delivered from stock within t time units for our model

with lead time L.

probability a customer's demand cannot be satisfied within t time units, for

our model with lead time L.
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E[W;L] '.- average backorder lead time of a customer for our model with lead time L.

second moment of the backorder lead time of a customerfor our model with

lead time L.

In the next section we derive approximations for these performance characteristics. We give only an

outline of the analysis. The technical details are given in appendix II.

3. Outline of the analysis.

With the definition of our performance characteristics we can start to find expressions for them. From

standard probability theory we find (cf. Tijms [1986])

00

E[W; L] =fpw (t; L)dt
o

00

E[W 2
; L] =ifrPw<t; L)dt

o

Hence an expression for Pw(t;L) will give us to derive expressions for E[W;L] and E[W2;L].

(3.1)

(3.2)

Before we derive expressions for Pw(t;L) and f(t;L) we give the following theorem, which yields a

major simplification of our analysis.

Lead time shift theorem.

For all t and any lead time L we have for the (b,Q)-model with b > O.

f(t;L)

with

'.-

'.-

.-

f(O;(L-tt)

Pw(O;(L-tt)

max (O,x).
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We conjectured this result based on simulation experiments. This conjecture has been mentioned before

by Van der Veen [1981], and has been elaborated on in Van der Veen [1984]. The theorem is recently

proven in Van der Wal [1993]. In Van der Wal [1993] it is also shown that the theorem holds for

continuous review (s,S)-models, but not for periodic review models like the (R,S)-model studied in

Van der Heijden and De Kok [1992] and Zheng and Chen [1992].

The assumption that s > 0 is essential, since it can be seen that if s < 0 then a customer may wait

longer than L, even if L is a constant. This happens when the inventory position drops below 0 but

remains greater than s, and the time until the next arrival is greater than L.

The consequence of the theorem is that it suffices to find expressions for f(O;L) and Pw(O;L). Note

that

f(O;L)

Pw(O;L)

=

=

fraction of demand satisfied directly from stock on hand, for our model with

lead time L.

probability a customer cannot be satisfied directly from stock on hand, for

ouw model with lead time L.

An expression for f(O;L) has been derived by several authors, e.g. Silver and Peterson [1985] and

De Kok [1991]. For ease of reference we outline the analysis.

Let us assume an amount Q is ordered at time 0 immediately after an undershoot Voof s. At time a

again an amount Q is ordered after an undershoot VI of s. The order at time 0 arrives at time Lo at

the stockpoint, the order at time a arrives at time L1 + a. The physical stock immediately after arrival

of the order at time Lo equals the inventory position at time 0, i.e. s + Q - Vo, minus the demand

during (0, Lo]. The physical stock immediately before arrival of the order at time a + L, equals s +

Q - Vominus the demand during (0, a + L1]. Define

D(s,t] demand during (s,t]
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The amount backordered during the replenishment cycle (Lo' 0' + L}L B, equals

B = {O(O, 0' + Ld - (s - Vo+ Q)}+ - {O(O, Lal - (s - Vo+ Q)}+ (3.5)

This expression is derived by distinguishing between the three possible situations

(i)

(ii)

(iii)

physical stock immediately before 0' + L} positive;

physical stock immediately before 0' + L I negative and physical stock immediately

after Lo positive;

physical stock immediately after La negative.

Now we r.Jte that

0(0, 0' + L1l =

=
=

0(0,0'1 + 0(0', 0' + Ld

s + Q - Uo - (s - v}) + 0(0', 0' + L}l

Q - Uo + U} + D(O', 0'+ L}l

Substitution into (3.5) yields

B =

Now we note that D(O', 0' + Ld and D(O, Lol are identically distributed. Furthermore we assume that

Uo and VI are distributed according to the stationary residual lifetime associated with the renewal

process constituted by {Onl. i.e.

x

p {U~}=_l_ ((l-FD(Y))dy
E[Dl i'

Then we find the following approximation for E[B].

E[B) E[ {O(O, L) + V - s}+l - E[ {D(O, L) + V - (s + Q)}+l
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Finally noting that f(O,L] equals one minus the fraction of demand backordered during a replenishment

cycle, Le. f(O,L] = 1 - ErB ]/Q, we find

f(O;L] - 1 E[(D(O,L]+U-st]-E[(D(O,L]+U-(s+Q)t]
Q

(3.6)

In our derivation we implicitly assumed that every order Qm equals Q. Yet discrete simulation

experiments have shown that expression (3.6) also applies to situations where Qm =kQ with k > 1

(cf. De Kok [1991]).

We observe that in general the distribution ofD(O,L] is intractable. Therefore we calculate f(O;L) from

(3.6) by fitting a mixture of Erlang distributions to approximations the first two moments of

D(O,L] + U. In Appendix I we give expressions for these first two moments (formulae (1.1) and (1.2))

and the procedure to fit the mixture of Erlang distributions.

It remains to. find an expression for Pw(O;L). The derivation is given in Appendix II. This derivation

is based on renewal-theoretic arguments and pseudo-memorylessness of renewal processes. Pseudo

memorylessness is defined through the assumption that at an arbitrary point in time t the residual life

is identically distributed as the stationary residual life. This assumption is only valid for exponentially

distributed times between renewals. The derivation in Appendix II yields

PwC0 ; L) _ E[(D(O,L]+D-s)+]-E[(D(O,L]+D-(s+Q))+]
Q

(3.7)

where (3.7) is exact for Poisson arrivals and exponential demand per customer. In this case we fit a

mixture of Erlang distributions to the first two moments of D(O,L] + D. It is important to note that the

dependence of f(O;L) and Pw(O;L) on the arrival process is only through D(O,L). Note also that (3.6)

and (3.7) show that the waiting probability is not equal to the fraction of demand backordered, as is

often implicitly presumed (e.g. Van Beek [1981]), especially when L is small. Yet (3.6) and (3.7) are

identical for exponentially distributed demand per customer.
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Note that (3.7) yields a positive value even if the lead time is zero! This is caused by the fact that

customers, whose demand causes a stockout, are counted as waiting customers, even if their waiting

time is zero in the case of zero lead time.

Based on our theorem we derive from (3.3), (3.4), (3.6) and (3.7)

At;L)-} E[ (D(O,(L-t)+l+u-s)+]-E[ (D(O,(L-t)+]+u-(s+Q»+]

Q

Pw(t'L) _ E[(D(O,(L-t)+]+D-s»~-E[(D(O,(L-t)+]+D-(s+Q»~
, Q

(3.8)

(3.9)

A complicating factor for calculations is the truncated lead time (L-tt. However, if we fit a mixture

of Erlang distributions to L, it is straightforward to calculate E[(L-tt] and E[«L-tt)21. Then we

substitute these expressions in (Ll) and (1.2) to arrive at the first two moments of D(O,(L-tt]. Note

that if L is a constant then

E[(L-ttl = L-t , t S L.

It remains to find expressions for E[W;L] and E[W2;L] for a given (s,Q)-policy. Towards this end we
r

use equations (3.1), (3.2) and (3.9). Let us first derive an expression along these lines for E[W;L].

Assume the system is stationary. Let L(j) denote the lead time of the order from which an arbitrary

customer j is satisfied. Let WU) denote the waiting time of customer j. Then we obtain

E[W;L] =

co

fP{W(j) > t} dt
o

co co

= ffP (W(j) > t I L(J) = y} dFL(J)(y)
o 0

-9-



It follows from the lead time theorem that

P{W(j) > t 1L(j) < t} = 0

Applying this result we find

E[W;L] =

ooy

ffP {W> tl L=y} dtdFL(j)(y)
o 0

Suppose now that customer j has to wait. Next we observe that the waiting time W(j) of customer j,

whose associated lead time L(j) equals y is exactly equal to the waiting time of this same customer

in an (s,Q)-model, where the lead time is a constant equal to y. This follows from the fact that the lead

time distribution does not affect the ordering process, which is based on the inventory position, and

from the fact that orders do not overtake. Hence it follows from (3.9) that for t S Y

P{W(j) > t 1L(j) =y} = ~{E[(D(O,y - t] + D - s)+] - E[(D(O, y - t] +D - (s + Q»+]
Q

and thus

E[W;L] =

00 v

~J jcE[(D(O, y-t]+D-s)+]-E[(D(O, y-t]+D-(s+Q)tDdt dFLCY)
Q 0 0

00 y

= ~f J(E[(D(O, t]+D-s)+]-E[(D(O, t]+D-(s+Q»+DdtdFLCY)
Q 0 0

00 00

= ~J fcE[(D(O, t]+D-s)+]-E[(D(O, t]+D-(s+Q»+)]dFLCY) dt
Q o I
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Changing the order of integration we find

E[W;L] =

00

..!..f(E[(D(O, t]+D-s)+]-E[(D(O, t]+D-(s+Q))~l(l-FL(t))dt
QO

(3.10)

To compute E[W;L] from (3.10) is quite complicated, through the intractability of the distribution of

D(O,t]. Even fitting mixtures of Erlang distributions would imply integration of a complicated function

of t. In principle numerical integration could be applied, yet that could also be applied directly to

relations (3.1) and (3.2). Expression (3.10) gives us the possibility to arrive at a tractable

approximation for E[W;Ll. Towards this end we define L as the generic random variable with the

probability distribution function FL' with

I

FL(t)=_l_ fO-FL(t))dt
E[Ll O.

Substitution of (3.11) into (3.10) yields

(3.11)

E[W;L] =

00

E[L] f(E[(D(O,t]+D-stl - E[(D(O,t]+I)-(s+Q))+])dFL(t)
Q 0

which is by definiton equal to

E[W;L] = E[L] (E[ (D(O.Ll+D-s)+] - E(D(O,L]+D-(s+Q)tD
Q

(3.12)

Combining (3.7) and (3.12) we find

E[W; L] = E[L]pw<O; L)

-11-
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Oearly, approximation (3.13) is tractable, since we already indicated a feasible approach to compute

Pw(o;L) for an arbitrary lead time distribution FL' Analogously one may derive from (3.2) and (3.9)

that

where

t 00

P{~t}=f f(W-Y)dFL(w)dy
o y

(3.14)

(3.15)

We derive only approximations for Pw(O;L) through fitting mixtures of Erlangian distribution to the

first two moments of D(O,L] + D. Since these two moments only involve the first two moments of L,

it suffices to.give the first two moments of i and L. These follow from

- k E[L k+2]
E[L ]- ...,--,.-..,..,.-=--_

k(k+l)E[L]

(3.16)

(3.17)

Having derived approximations for the performance characteristics, we must check our results by

simulation.

4. Numerical evaluation

In this section we report on the extensive numerical evaluation of our approximations. We focus on

the performance of our approximations for the backorder lead time characteristics. We studied the

following models as described by its parameters,
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E[A] = 1

CA
2 = 1/4, 3/4, 2

E[D] = 100

CD
2 = 1/2,2

E[L] = 2, 8, 32

cL
2 = 0, 1/5, 1/3

Q = 200,1000

Here cA, cD and cL denote the squared coefficient of variation of the interarrival time, customer

demand and lead time respectively. Note that we did not simulate compound Poisson demand. The

main reason for this is that the approximations are most accurate for compound Poisson demand,

because in that case the assumption of memorylessness of the arrival process holds.

We calculated the reorder level based on the following service level restriction,

f(O;L) = ~,

with

~ = 0.5, 0.75, 0.95

For 18 combinations of parameters we found s<O. These cases were removed, since our

approximations only hold for s~O. For each model we executed two independent simulation runs of

50,000 customers. The results of these 612 simulation runs are summarized in figures 5.1,5.2 and 5.3,

associated with Pw(O;L), the conditional waiting time E[w+;L] and the coefficient of variation

c(w+;L) of the conditional waiting time, respectively.

The results from test runs indicated that our estimates of E[W;L] and E[W2;L] for L detenninistic

deteriorate as L increases. A possible explanation is that Land L have only probability mass on (O,L)

in the detenninistic lead time case. For long lead times L this appears to impact the assumption thatD(O,L]

and 0(0,£] have approximately a gamma distribution, as is often assumed (cf. Burgin [1975], De Kok

[1991 D. We could not find a straightforward solution to this problem other than to use numerical

integration. The results for constant lead times are therefore calculated directly from (3.1) and (3.2).

-13-



We used the trapezoid integration method (Abramowitz and Stegun [1984]) and split (O,L] in 20

intervals. This turned out to be satisfactory as was shown by our simulation results.

We conclude that the quality of the approximations for Pw(O;L] and E[W;L] are excellent. The results

for ClW;L] are somewhat worse, yet quite acceptable for practical purposes. Furthermore, the less

accurate approximations occurred mostly for small values ofPw(O;L], when E[W;L] and E[W2;L] are

small.
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In figure 5.4 and 5.5 we show the performance of the approximations of f(t;L) and Pw(t;L). We have

chosen t equal to 1/2E[L]. We find that the quality of these approximations is again quite good.
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Figure 5.5 Quality of approximation of I-Pw(lhE[L],E[L]

Concluding, the approximations derived in the previous sections are robust and accurate. The

computation of the approximations is straightforward as is shown in Appendix I.

5. Conclusions and further research.

The model described in this paper is the standard (s,Q)-model. The major contribution of the paper

is the derivation of expressions for model characteristics associated with backorder behaviour, like

customer waiting times and fraction of demand satisfied within a given backorder lead time. The

expressions yield approximations that are easy to compute and in fact take similar forms as well

known performance characteristics like the fraction of demand satisfied from stock on hand. The

results derived can be used for what-if simulations to study the effect oflead time reduction, batch size

reduction, but also the effect of market concentration. The latter usually results in a more regular

demand process, provided big customers use sound replenishment rules. This can be modelled by a

change of the demand process described by the parameters (E[A], cA
2, E[D], CD2).

The model discussed in quite general through the use of a compound renewal demand process. By

being able to cope with compound renewal demand processes the model can be used as a building

block for analyzing multi-echelon inventory models, where each stockpoint is controlled by an (s,Q)

model. We will report on this application in a subsequent paper.
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The analysis given here can be easily extended to (s,S)-models, although some of the expressions

change. This extension is possible through the application of the lead time shift theorem.

By studying the backorder behaviour of (s,Q)-models we provide a means of studying the differences

and similarities of make-to-stock and make-to-order policies. In fact, by deliberately creating

backorders we fmd a mixed scenario. Since we must distinguish between types of customers, e.g. big

customers, whose demand is produced on order and small customers, whose demand is delivered from

stock, a really practical model is more complicated. This will be subject of further research.
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Appendix I Moments of lead time demand and undershoot and fitting distributions to these

moments.

The expressions for the performance characteristics all involve D(O.L] or D(O.L] + U. The undershoot

can be approximated by the stationary residual life time associated with the renewal process {On}.

This yields

x

P{U~}__l_ ((l-FD(y))dy
E[D] {

This approxi~ation for U yields good results for all values of Q.

The approximation for the first two moments of D(O.L] is more complicated. A major assumption to

be made is that at time L the renewal process {An} is stationary and L can be considered an arbitrary

point in time. This assumption is reasonable provided.

3 2
P{L<_cAE[A]}-O

2

We refer to De Kok [1987] for further motivation of this statement. Yet even if we take E[L] =E[A]

we find that our assumption required to derive the first two moments of D(O.L] yields good results.

unless cA2 gets large.

The derivation of E[D(O.L]] and E(02(o.Lll is based on asymptotic results from renewal theory.

Assume at time 0 a customer arrives.

Define

N(t): =number of arrivals in (O.t]

-20-



Then

N(L)

D(O,L]=E D n
n=1

and thus

E[DCO,L]] = E[N(L)]E[D]

E[D 2(O,L] ]=E[N(L) Ja2(D)+E[N 2(L)]E 2(D]

It follows from application of the key renewal theorem that

lim E(N(t)] (_t_+ (cA
2
-1)I ~

t~ l;E[A] 2 r

with

From the above equations we fmd

E[DCOLll ..(E[L]+ (el-I)] E[D]
, E[A] 2

-21-
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In the expression for <i(D(O,L]) we assumed that FA is a gamma distribution function. The above

expression is exact in the case of compound Poisson demand.

From the above results we can compute the first two moments of D(O,L] + U, since D(O,L] and U are

independent To compute the expressions for the performance characteristics we need the probability

distribution function of D(O,L] and D(O,L] + U. We assume that these distribution functions are

mixtures of Erlang distributions, Le.

[ kl-l (j} [~-l oJ
F(x)=p 1-E e -Jll

X J,1~x) I-p) 1-E e IJ2X (~x) J

j=(J J! j=(J J!

Such distribution functions can be used to explicitly evaluate the various integrals associated with the

performance characteristics.

The choice of the parameters p, kl , k2, J,1l and J.1z is based on the first two moments of F. Let X

denote the random variable associated with F and let E[x] and Cx denote its expectation and coefficient

of variation, respectively. Then the parameters are computed as follows (cf. Tijms [1986])

(i) cl<l:

(ii) cl~l
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Appendix ll: Derivation of expression for Pw(O;Ll

Consider the reorder cycle (0. cr1]. i.e. at time 0 the reorder level s is undershot and at time cr1 the

reorder level s is undershot the next time. Define

UO: =undershoot of s at time 0

U1: = undershoot of s at time cr1.

Lo: = lead time of order initiated at time 0

L1: = lead time of order initiated at time cr1.

To derive an expression for Pw(O,L] we will study the inventory process during the replenishment

cycle <Lo, cr1 + Ltl. Before doing so we first study the behaviour of the inventory process under

special conditions.

Let us assume that at time 0 the arrival process is stationary and the time origin 0 is an arbitrary point

in time. Assume that the inventory at time 0 equals x ~ O. Furthermore, assume that no replenishments

arrive after time O. Define

N+(x;t): =

N+(x;oo): =

the number of customers that do not wait in (O,t]

the number of customers that do not wait in (0,00)

It is easy to see that

E[N\x;oo)]=MD(x)-l

where MD is the renewal function associated with the renewal process {On}' Conditioning on the

demand during (O,t] and using the assumption that the arrival process is stationary and the time of the

first arrival after time 0 is distributed according to the stationary residual life distribution associated

with {An} we find

x

E[N\x;oo)J=E[N\x;t)]+fE[N+(x-y;oo)]dFD(O.I](Y)
o

and hence
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x

E[N\x;t)]=MD(x)-l-f<MD(x-y)-l)dFD(O,lj(Y)

o

Now let us consider the replenislunent cycle (Lo. °1 + Ld. Let us define

~(b.Q): = number of customers that do not wait during (Lo' °1 + L1]

By conditioning on 01 + L1 - Lo and (D(O,Lot Uo) we find

oos+Q

E[N+(s.Q)]=f f E[N+(b+Q-y. t)]dFUo+D(O,LoI ICf1+L1-Lo=t(y)dFCfJ+LJ-(Jo(t)
o 0

Now note that D(O,t] + (Uo + D(O.LoD/ol + L1 - Lo = t equals

Uo + D(O. 01 + LIl/ol + L1 - La = t for all t. By taking the unconditioned expectations we find

b+Q

E[N\b.Q)]= f (MD(b+Q-y)-l)dFUo+D(OLol(Y)
o

b-+Q

-f (MD(b+Q-y)-l)dFuo+D(O, CfJ+L1l(y)
o

Now we use the following equation

UO+D(O. 01+Ld=Uo+D(O. od+D(O, °1+L l]

=Uo+(b+Q-Uo-(b-U1»+D(0,01+L1]
=Q+U1+D(0,01+Ld

Hence P{Uo + 0(0.°1 + Ld > Q} = 1
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Since VI + D (0, cri + Lil is identically distributed as Vo+ D(O, La} we find

I>+Q

E[N\b,Q)l= f (MD(b+Q-y)-I)dFUo+D(0LoJ(Y)
o

b

- f(MD(b-y)-l)dFUo+D(o,Lo](y)
o

(II. I)

Let us consider the integrals at the right-hand side of (11.1). They are both of the following form,

x

f<MD(x-y)-l )dFu+x<Y)
o

with X some random variable. We have that

x xx-y

f(MD(X-y)-I)dFu+x<Y)=f f (MD(x-y-z)-l)dFu<z)dFx(y)
o 0 0

Let us consider the following equation

x

f(MD(x-y)-l)dFu<Y)=MD'Fu<x)-Fu<x)
o

(II.2)

We can simplify this equation by taking Laplace-Stieltjes transforms. Define the Laplace-Stieltjes

transform as) by

co

G(s)=fe -sxdG(x).

o

Then it follows that from the definition of MD(x) and the assumption that Fu(x) is the stationary

residual life distribution associated with the renewal process {Du} (cf. Appendix I).

- IMD(s)= _
I-F(s)
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Fu<s)= (I-F(s))
E[D]

Then we find that

M (s)Fu<s}-Fu<s)= FD(S) = FD(S) .~
D sE[D] E[D] s

Since ~ is the Laplace transfonn of the identity function f(x) = x, we find by inversion of the Laplace
s

transfonn

x x

fMD(x-y)-l)dFcf.Y)=J(x-y)dFD(v)
o 0

Substitution of this result into (11.2) we find

x x

fcM D(x-y)-1 )dFu+x<Y)= f(X-y)dFD+x(Y)
o 0

for any random variable X. Substitution of this result into (11.1) we obtain

Hence we find

b+Q

E + J(b+Q-y)[N (b,Q)]= dFD(OL )+D(Y)
o E[D] 0

b

-f(b-Y)dF (y)
E(D) D(OLol+D

o

The waiting probability Pw (O;L] equals the average number of customers waiting during a

replenishment cycle divided by the average number of customers arriving during a replenishment

cycle, Le.
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Since

N(crJ)

01= L An
n=1

and

and the fact that N(01) is a stopping time for {Dn} and independent of {~} we find

E[01]=E[N(01)]E[A]

=~'E[A]
E[D]

and thus

PW<0;L)=l- E[N\b,Q)]

(E~IJ

This finally yields

p W<0;L)= I- ~{7(/;+Q-y)dFO(OL,I+O(Yr[(l>i-Q--Y)dF0(0,4f'O(Y)}

=~ { [(y-b)dFO(OL,I+O(Yrl(y-(I>+Q))dFD(OL,I+O(Y)}

which is identical to (3.7).
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