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TABLE OF SYMBOLS 

Unless the context indicates otherwise, the following mea­

ning is to be assigned to the symbols listed below. 

(All arrays will be underlined; veetors are 
T column vectors. Notatiens such as (~~)ij denote 

the i-th row and j-th column of the matrix ~T~.) 

a absorbance 

a see a -o 

understood to be 

the element in 

~ (synonymous with ~0 ) an observable vector of k elements, 

the i-th clement of which, ai or aoi' represents the ob­

scrved absorbance of the unknown at the i-th wavelength, 

and hence is a stochastic quantity 

A an observable matrix of k rows and n columns, the i,j-th 

element of which, aij' represents the observed absorban­

ce of the j-th reference at the i-th wavelength, and hen­

ce is a stochastic quantity 

b see b -o 
b a vector of k elements; the non-observable ~ represents 

the "true" value of ~; it is synonymous with ~0 
B a matrix of k rows and n columns; the non-observable B 

represents the "true" value of A 

c concentratien 

d optical path length 

E( ••• ) the expected value of ••• 

i an index running from 1 to k 

I a unit matrix 

j an index running from 0 or 1 to n 

k the number of rows of ~, i.e. the number of wavelengtbs 

of observation of absorbances 

1 litre 

n the number of columns of ~, i.e. the number of unknown 

concentrations to be est~mated 
• n 

nm 

equals n for Model I, equals n + 1 for Model II, see 

Sectien 3.5 

nanometre, 10- 9 metre 9 



1 0 

P( ••• ) thc probability that ••• obtains 

s 

T 

v' 

a 

the residual vector a - Ax 

optical slit width 

the root-mean-square value of an element of E 
transmittancc 

. "[ "[ -1 "[ 
the left-1nverse of ~, ~ = (~ ~) ~ 

the vector of relative concentrations of the unknown 

probability 

band half-width 

the error in an observation of ~ and/or ~; 

also, the molar absorptivity 

À wavelength, 

also, an eigenvalue 

Às the smallest ~igenvalue of (~,~)'(~,~) 
~ micrometre; 

also, the smallest eigenvalue of A'A 

v frequency 

the vector ( ~ ) -1 

o( ••• ) the standard deviation of ••• 

a covariance matrix 

(as a superscript) denotes transposition of arrays 

(caret) placed over a symbol denotes an estimate 

(tilde) placed over a symbol denotes that the 

a~ray has been referred to its column means 

is approximately equal to 

is by definition equal to 



CHAPTER I 

INTRODUCTION 

1,0 A synopsis 

The investigation reported in the present thesis is directed 

toward improving the precision of spectrophotometry, especially 

as applied to multicomponent analyses in the región accessible to 

quartz prism instruments. The simple linear model usually assumed 

for the relation between absorbance and concentratien quite natu­

rally leads to the use of overdetermined systems of linear equa­

tions, which offers increased precision and even some possibility 

of verifying the accuracy of the analytica! results. 

Some refinements of the usual observational technique are 

imposed by the desire to maintain the linearity of the model; 

that no elaborate recording equipment was available for the in­

vestigation proved beneficia! to the accuracy and the precision, 

though no doubt it sametimes severely tried the observers' pa­

tience. 

It must be regarded as fortunate that access to an electro­

nic computer became avai lable to the author' s L.aboratory some ti­

me befare the present work was started. To say that the use of a 

com~uter facilitated the project would be a gross understatement; 

the lack of such a facility would effectively have prevented pro­

gress beyond an application to a very few components, whereas 

systems of up to at least eight components can in effect be hand­

led with chemically meaningful results. 

Though the use of a computer thus solved the routine nume­

rical problems and proved valuable for gaining an insight into 

departures from linearity, the difficulty of establishing the va­

lidity of the simple, classica! least-squares procedure adopted 

still had to be faced. As it happened, the legitimacy of this 

simple methad could be proved for the point estimation problem; 

the correctness of the use of some interval estimators could be 

made plausible for the rather special case aimed at in the spec­

trophotometric application. In this validatien study, the help 

of a simulation on a computer proved indispensable. 

I. I Summary 

Chapter I states the objective of the study, sketches its 

development, provides a summary of its contents and reviews some 

relevant literature. In addition, an apinion on the possibility 

of full automatization is given. 11 



Chapter II gives a detailed description of the experimental 

procedure and deals with the drift in time of observed absorban­

cesl it is concluded that it is necessary to obtain reference ab­

sorbances as nearly simultaneously as possible with the absorban­

ces of tne unknown mixture(s). The theoretica! desirability of 

using unusually high values 

the feasibility of the use of 

of the absorbance is discussed and 

a< 1.6 (without material lossof 

the precision of an observation) is shown. The rationale of over­

determined systems is given; among the advantages of this ap­

proach, the increased precision, a limited assurance of accuracy, 

the eliminatien of clerical or observation errors, the detection 

of slit width bias and extraneous components and the relative in­

sensitivity to differences in cell properties are touched upon. 

The availability of a measure of the precision of an analysis, 

derived directly from the data of that analysis, is also mention­

ed as a major advantage. 

In Chapter III, a mathematica! model is defined; it is shown 

that, on the assumption of errors that are small relative to the 

values observed, the classica! least-squares point estimator x 
has some reasonable properties. A preferenee for the use of ~ is 

stated and the relation of the theoretically preferable estima­

tor, ~' to x is discussed. Upper bounds for some relevant func­

tions of x - z are obtained and used to demonstrate that x = z 

holds .to a sufficient degree of approximatie~ on the assumption 

of small errors; this also yields an efficient algorithm for i· 
A variant of the model is introduced and two calculation methods 

for this variant are shown to be equivalent. 

Chapter IV is concerned with the problem of interval esti­

mation. rhe ocvarianee matrix of x is derived and its use for 

some simple tests and/or confidence intervals is pointed out. The 

difficulties of more sophisticated interval estimation, which a­

rise from the errors affecting ~' the matrix of coefficients, are 

discussed. From the analogy to the classica! case, three hypothe­

ses on the distribution of certain statistics are formulated, as­

suming a ~ormal distribution of errors. A test, by a Monte Carlo 

method, of these hypotheses leads to the conclusion that the dis­

tributions concerned are sufficiently similar to x2- and F-dis­

tributions for the cases of interest. Hence, tests and confidence 

regions similar to these available for multivariate classica! re­

gression are deduced tobevalid for these.cases; their use is 

12 discussed. 



Chapter V is devoted to a closer analysis of the assumed li-

near relation between absorbance and concentration. Observation 

of absorbances at non-vanishing slit widths is known, in princi­

ple, to introduce a non-linear dependence. The effect is studied 

on a model consisting of a Lorentz absorbance and a triangular 

slit function, which confarms reasonably well to practice. By ex­

ploration of this model, maximum permissible ratios s/Av\ are 

found for single-component systems; the slit width influence on 

multicomponent systems is discussed: in such cases as show consi­

derable slit width error, diagnosis of this type of non-linearity 

is shown to be possible by the presence of a characteristic and 

persistent pattern in the residuals of the least-squares solu­

tion. 

Chapter VI explores the use of known mixtures of components 

as references. Some theory is presented; the device is applied to 

bring the notoriously non-linear near infra-red region within the 

scope of the method. Analyses are shown to be successful for some 

rather strongly non-linear two-component systems. A three-compo­

nent near infra-red system is exhibited in which the technique 

fails to give chemically satisfactory results. However, thi s is 

shown to be due to the poor distinguishability of the spectra, 

not to the use of mixtures as references, since this device does 

not, in principle, impair the precision. 

In the final chapter, VII, the method is applied to a few 

practical problems. In the first example (cortisone and prednï­

sone acetates), the pronounced speetral similarity provides the 

difficulty. As a secend example, it is shown that muiticomponent 

analysis of the c 9 aromatic fraction of a mineral turpentine is 

feasible for up to at least eight components; the results obtain-­

ed are consonant with those of gas-liquid chromatography and are 

estimated to be of better precision for major constituents. Some 

other practical applications are referred to. 

1,2 Somerelevant literature 

When the present study was begun in 1958, rather little had 

been published on the application of linear algebra or automatic 

computing equipment to problems of analytica! chemistry. 

Opler 1950 described the use of punched-card machinery for 

the multicomponent IR analysis of up to 10 components, which he, 

however, fails to identify; from his description, one can infer 

that the 10 x 10 matrix of molar absorptivities was pre-inverted 

by some methad and then applied, row by row, to the column vector 

of observed absorbances. 13 



A project of considerable magnitude was undertaken around 

1958: our sourees are an editorial (MUller 1958) in Analytica! 

Chemistry and two editcrials (Anonymous 1958, 1959) in Chemica! 

and Engineering News. An instrument was developed by t he Interna­

tional Telephone and Telegraph Corp. to scan IR spectra and to 

convert them to digital form on punched tape, up to 3000 sampling 

points being envisaged. The calculation of the constituents of a 

multicomponent mixture is then entrusted to an electronic compu­

ter equipped with a library of reference spectra. For qualitati­

vely known mixtures ~a set of biorthogonal functionsr is previ­

ously computed. (We suspect this set t o be identical to the rows 

of the left-inverse ~T' Sec. 5.6) The set is then applied to the 

mixture spectrum. The first model,developed by Taplin and Rogoff, 

was delivered to the Sloan-Kettering Institute in the autumn of 

1958; a commercial prototype was reported to be affered in the 

summer of 1959, but has not, to the author's knowledge, been 

heard of since. 

Andersen and Moser 1958 programmed a n IBM 650 computer for 

the routine conversion of emission spect·rographic film line 

transmittances to concentrations, using non-linear calibration 

curves. 

In the field of mass spectrometry, we find,in a hook by Bar­

nard (1953:214 sqq.) a pilotstudy, on the ACE computer, of the 

application of least-square methods to quantitative analysis. 

Pre-inversion of the relevant reference matrices is advocated; 

the chief difficulties are the fact that the matrices were ill­

conditioned and, more importantly, could not be assumed to be 

constant in time. 

Mihm 1958 decribes a system for the remote calculation of 

mixture composition from mass-spectrometric data. The data ob­

tained are punched into cards and then transmitted by Teletype to 

a computer centre, where they are matched with a paper tape con­

taining the relevant pre-computed inverse of the 'ca libration ' 

matrix, described as '' semipermanent'' and needing "infrequent 

changes'. The results, normalized to sum to 1 00% on an air- and 

water-free basis, are transmitted back to the factory. 

McAdams 1958 gives a great deal of information about a set 

of computer programs designed to set up calibration matrices and 

to invert them; the sophisticated routines allow for a great many 

corrections to be applied; the matrix finally inverted is always 

square , with orders of up to 26 occurring for the mass-spectrome-

14 tric application. 



Hopp and Wertzler 1958 advocate a particular method of solv­

ing the linear equations resulting from mass-spectrometric multi­

.component analyses with square matrix. Their method, equivalent 

to Gaussian elimination, prevents the propagation of errors due 

to (physically meaningless) negative elements of the sol~tion 

vector, which are set to zero. 

Of considerably greater relevanee to the present thesis is 

an important paper by Sternberg, Stillo and Schwendeman 1960. In 

their study of a fiva-component system (see Fig. 1.1), which 

would be considered moderately difficult by our standards, the 

procedure is as follows. The system is simplified to one of four 

components by assuming the fifth to be the original ergosterol 

minus the four irradiation products found. The four components 

are determined by least squares from various sets of 8 and 12 ab­

sorbances in the ultra-violet, a set of 12 equidistantly chosen 

wavelengths giving the best results. Their work relies on publi­

shed values of the specific absorptivities obtained by others, in 

a different solvent from that used for the analysis of the mix­

ture; the mixture spectra were recorded on a Beekman DK-2 spec-

soo 
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trophotometer. The 4 x 4 matrices ATA were invertedon the MISTIC 

computer and (~T~J- 1~T calculated by hand. For their best matrix, 

results as low as -9.1% (for precalciferol2 ) occasionally were 

found for a known concentratien of zero. The observed standard 

deviations (from 11 analyses) range from 1.2% of total concen­

tratien for the best to 5. B % for the worst component. 

Barnett and Barteli 1960 present a method for determining, 

by least squares, the coefficients of what is essentially an in­
-1 verse square matrix, A , of order n, such that Concentratiens 

-1-
can be found from ~ ~0 , where ~0 is an observed vector of mix-

ture absorbances. They use m > n mixtures to establish the coeff­

icients and, from the residuals, determine correction terros for 

non-linearity. For the IR, a number of complex systems, n < 8 , 

yields very good standard deviations. 

Zscheile, Murray, Baker and Peddicord 1962, apparently unà­

ware of the existence of theoretica! results that accomplish the 

same purpose, obtain a crude measure of the varianee of the un­

knowns in least-square UV spectrophotometry by a laborieus pro­

cess of simulation. Their three- and four-component systems of 

RNA constituents are termed "unstable" because constituent spec­

tra exhibit some correlation. An attempt to find less "unstable" 

sets of wavelengths by restricting the number of points at which 

the spectrum is sampled quite naturally yielded no results. 

In 1961, Grinev, Rau and Svishchev in Russia worked out a 

program for the Ural computer to perferm least-squares calcula­

tions with spectrophotometric determination of concentrations as 

an objective. Their work has been applied by Romanovskii c.s. 

1964 toa three-component mixture (IR data); they state an accu­

racy of 3%, using 100 sampling points in the spectrum at a low 

rate of scan; a Strela computer was used to process the data. 

White, Shapiro and Pratt 1963 apply linear programming to 

the problem of estimating the composition from an overdetermined 

system of linear equations, the components being RNA nucleotides. 

This of course automatically disallows chemically meaningless ne­

gative elements of the salution vector. It would appear t~ be 

extremely difficult to assess the merit of their methocl and the 

statistica! behaviour of their solution. 

Lee, McMullen, Brown and Stokes 1965 derive the 'error co­

efficients' (proportional to our o(x.)) relating the error in 
J 

calculated concentratien to the errors in absorbances for the 

16 spectrophotometric least-squares application. They propose a use 



of the methad for mixtures of up to nine oligonucleotides,the aim 

being automatic nucleotide sequence analysis. 

In an introductory textbook of fairly recent crigin (Bauman 

1961), the use of least squares for infra-red analysis is touch­

ed upon. The examples given are restricted to weakly overdeterm­

ined systems, e.g. four equations in three unknowns. 

In all the above refere~ces, the coefficient matrix is as­

sumed to be known exactly, i.e. without error. This, though faci­

litating the treatment, hardly seems in accordance with reality. 

In the related subject of rank analysis of speetral data, 

where the question of interest is the number of species present 

in areaction mixture, the papers by Ainsworth 1961, 1963, Walla­

ce 1960, Wallace and Katz 1964 and Katakis 1965 deserve mention. 

Finally, we should note here a few articles in which partial 

results of the present study have been published: Herschberg and 

Sixma 1962, Cerfontain, Duin and Vollbracht 1963, Herschberg 1964 

and Arends c.s. 1964; we also wish to cite the theses of Voll­

bracht 1962, Kaandorp 1963 and Wanders 1964, in which the method 

presented has been applied extensively, chiefly to mixtures of 

various arylsulfonic acids. 

1.4 Prospects and retrospects 

During the work described in this thesis, the point-hy-point 

observation of absorbances was of course felt to be somewhat bur-

densome. The desirability of some methad of automatic data g-

thering was felt keenly, the more so si nee rlata reduction had 

already been relegated to a computer. Wh en the opportunity of ob-

taining punched paper tape output from a spectrophotometer pre-

sented itself, we were therefore eager to experiment with the de­

vice, since it promised to reduce the effort of observation to 

negligible proportions.It was somewhat disappointing to find that 

the precision obtained from this instrument was decidedly infe­

rior to that afforded by the laborious manual method. The chief 

cause of this was the non-reproducibility of the wavelengths at 

which the absorbances were punched. 

ted on the theoretically preferable 

Though the instrument opera­

double beam principle - the 

point-hy-point readings were taken on single-beam equipment - it 

proved less reliable in practice: the double-beam construction in 

fact obliged us to record a complete spectrum (reference or mix­

ture) befare another spectrum could be observed. When contrasting 

this with the manual method, in which all absorbances at a given 

wavelength could be observed nearly simultaneously, and which, 17 
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moreover, permitted using higher absorbance values, one finds the 

superiority of the non-automatic method quite explicable. 

In spite of this we believe that, eventually, automatic data 

gathering will prove capable of giving a precision at least as 

good as that now available from manual observation. In fact, gi­

ven a computer which assumes an active rather than a passive at­

titude to its input, the method as presented could be automatized 

in much like its present form: reading an absorbance, changing 

the cell seen by the beam and setting a new wavelength are all 

simple commands with proper instrumentation. Even the problem of 

variable precision of an automatically recorded value of the ab­

sorbance, which manually is compensated for by a slower read-out, 

could be evereome by programming. When obtaining a value known to 

be more affected by noise than is desirable, an active computer 

could rather simply be made to read out that value as often as is 

necessary to reduce it, by averaging, to one having the proper 

weight. Thus all values could be brought to a common and high le­

vel of precision. Moreover, such a program, requiring the compu­

ter to be active once every few seconds only, would occupy a ne­

gligible fraction of the attention of any computer and would not 

interfere measurably with ether computer programs in the course 

of simultaneous execution. 

We therefore hold our method to be eminently capable of full 

automatization; in fact, the practice of observing at equidistant 

points ·in the spectrum seems more suitable to an automatic proce­

dure than any scheme of attempting to choose some "best" set of 

wavelengths. 

Looking back, the author wishes to reeall with profound 

gratitude the encouragement and guidance given him by the late 

Professor of Organic Chemistry at Amsterdam, Dr. F.L.J. Sixma, in 

whose laboratory most of the experimental part was performed; the 

assistance of Drs. D. de Jager in the experiments described in 

Chapter VI is also gladly acknowledged.Among the many ethers from 

whose help he had profited, the author wishes to mention espe­

cially Drs. P.J. van der Haak for stimulating discussions and 

Dr. A.C.M. Wanders for his enthusiastic help in programming. 

It is a pleasant duty to record the material assistance given 

this work by the Mathematica! Centre, Amsterdam, which provided 

generous access to facilities on its computers and by the 'Stich­

ting Scheikundig Onderzoek Nederland' which granted a contribution 

toward the requisite instrumentation. 



CHAPTER II. 

THE EXPERIMENTAL PROCEDURE AND lTS RATIONALE 

2.0 lntrodu c tory 

Aftcr a description of the procedure adopted· (Section 2.1), 

the present chapter discusses successively : 

- the need to obtain absorbances of the reference compounds as 

nearly s i multaneously as possible with the absorbances of the 

mixture( s ) insteadof relying on previously determined absorp­

tivities of the components (Section 2.2); 

- the theoretical desirability of observing high values of the 

absorbances (Section 2.3); 

the feasibility of observing absorbances in the range 

0 <a~ 1.6 (Section 2.4): 

- the rationale of gathering obse rvations at k wavelengths, where 

k considerably exceeds n, the number of components to be deter­

mined (Section 2.5) ; 

some additional advantages accruing from the use of overdeter­

mined systems, i.e. those for which k > > n (Section 2.6) , 

these being the features in which our practice departs from con­

ventional procedure. 

2.1 The experimental procedure 

2.1. I Preparatien and observation 

Preparatiens for an analysis consist of obtaining n s olu­

tions of known composition to serve as references. All sub stan­

ces are weighed in accurately, using such amounts that evapora­

tien los ses can be e xclude d; the amounts of solvent used are de­

termined by weighing too. Normally, these reference solutions 

will be solutions of pure compounds; occasionally, known mixtures 

of such solutions may be employed as references (Ch. VI). The 

concentrations of bo t h r e ference and mixture solutions are pre­

ferably adjusted to h ave max imum absorbances in the range 1.4 to 

1.6. Care i s taken to u s e a sing l e batc h of solvent for a com­

plete e xpe riment; t he solve nts usually e mployed are e thanol (af­

ter a spectrophotometric check on the abs ence of benzene) and 

iso-octane ("special for spectroscopy"). \'lhen using test mixtures 

for the unknown(s), these are made up by careful weigh i ng in of 

the reference solutions; the composition of such test mixtures is 19 



believed to be known to within part in 10,000 of the corres-

ponding reference solutions. 

After filling all cells with the solvent employed, the ab­

sorbances of the cells are determined at various points in the À­

region of interest, arbitrarily putting the absorbance of cell 

no. 1 equal to zero; all cells with the exception of no. 1 (which 

is left undisturbed) are then emptied; each is then filled (after 

careful rinsing) with a reference solution or a mixture solution. 

In all, to permit the simultaneous determination of m unknown 

samples, each to be analysed for n components, m + n + 1 cells 

are required. The wavelength setting is then adjusted to the 

first wavelength chosen, cell no. 1 is set toT= 100 %, a= 0 

and the absorbances of the remaining n + m cells are then read 

off successively at that wavelength setting, the time-constant 

(damping factor) of the instrument being so adjusted that the ab­

sorbances can comfortably be estimated to within 0.001 of absorb­

ance. In the range 0.96 ~ a~ 1 .6, use is made of additional e­

lectronic amplification by a factor 10 of the signa!; with a 

suitably chosen damping factor, the additional noise introduced 

by the use of this feature does not prevent a comfortable estima­

te of a to within 0.001, though, of course, the time takenfora 

reliable read-out to be obtained is appreciably longerat a~ 1.5 

than at a~ 0.5, say. 

Af.ter all observations at a given wavelength have been made, 

it is customary to read out a for cell no. 1 again; ideally, this 

should be 0.000; in fact, lal is very rarely in excess of 0.003 

(the instrument permitting a~ - 0.040 to be read out) and usual­

ly well below that. Occasionally (say every half-hour or sol the 

position of the zero-transmittance point (T = 0, a = ~) is check­

ed and, if necessary, adjusted. 

Only after completing the full series of observations at any 

wavelength - which may take from about 1 minute for m + n = 3 up 

to about 10 minutes for m + n = 23 - the wavelength setting is 

adjusted to a subsequent value of À; the cycle is then repeated, 

starting at the adjustment of the slit width and/or amplification 

toa= 0 for cell no. 1. 

Usually, observations are made at some 20 to 40 wavelengths, 

which are nearly always equidistant in À. 

2.1 .2 Some observational details 

All observations reported in the present work, unless other-

20 wise noted, have been made manually with a Zeiss PMQ II single 



bcam spectrophotometer under the eperating conditions as rccom­

mended by the manufacturcr. The instrument normally has a sliding 

cell holder accommodating four cells;in the course of the present 

work, extension of thc number of cells in the holder bccamc ad­

visable. Accordingly, Mr. J. · Groot successively designed and con­

structed an cight-cell sliding holder (shown in llerschLerg and 

Sixma 1962, Fig. 1) and a twenty-four-cell holder on the carous­

sel principle, described and shown in Cerfontain and Groot 1964. 

The cells employed at the Amsterdam Univcrsity Laberatory for Or­

ganic Chemistry are commercially available 'Ultrasil' fuscd sili­

ca steppered cells of d 1.000 cm nominal path length; thc cor­

rcctness of the stated d was verified by Bemetel - T .li.O. ( Am­

sterdam) to within 0.0005 cm. 

Optically, differences in the absorbances of these c ells 

themselves (when filled with the solvent to be employcd) are u-

sually less than 0.01. llowever, the practice invariably is to de­

termine these cell absorbances immediately prior to an experi­

ment; when they show significant variatien with wavelength, they 

are explicitly allowed for in the subsequent treatment of the ab­

sorbances of the mixture(s) and references; when they are con­

stant in the speetral region of interest, no explicit correction 

need to be made: by data reduction with inclucion of a 'resultant 

cell constant' the effect of any constant amdu~ts added to or 

subtracted from the elements of ~ or any column of ~ is nullified 

(Section 2.6.3). 

On account of the increased risk of an undue proportion of 

scattered light, observations below a certain wavelength should 

not be included; this lower limit in has been set at about 240 

nm on the basis of some quite rough experiments. Fortunately, the 

condition À > 240 nm proves not to be hampering to the perfor­

mance of the analysis, since most of the interesting speetral de­

tail in the applications is present at wavelengths well above 

this cut-off limit. 

2.2 Nearly simultaneous o~servations . 

2. 2. I Wavelength reproduci'.bility in multicomponent systems 

If a single unknown substance is to be determined it is 

usual to adopt the following procedure: a number of solutions of 

known, different concentrations ei is made up and their abser­

bances ai observed at a given wavelength setting À1 . If the (a,c) 

relationship is linear and passes through the origin, the slope c 

of the calibration line a = c.c is taken to be the absorptivity 21 



of that substance at À1 • The concentratien x of an unknown sample 

of that substance, observed to have, at some later time, an ab­

sorbancc ax, is then estimated from x= ax/t. 

It may be remarked in passing t hat , as far as thc author has 

been ablc to asccrtain, neither the linearity nor thc non-signi­

ficanee of the intercept , i. e . the hypothesis that the calibra-

tion line passes 

tistica l tests. 

th rough the origin, has been s ubjectcd to sta­

This is somewhat surprising for a procedure that 

purports to test the validity of Beer 's law for a g iven compound 

at a certain wavelength, the more so s ince sucil tests are readily 

available; it mus t also be considered regrettable that pub lished 

values of c very often lack an i ndicat i o n of the precision a ­

chieved. 

Estimating x from ax and a previously uctermined c evidently 

implies constancy in time of c and, as is dependent on À, 

clearly also is based on the assumption o f reproducibility of the 

wavelength setting À1 . Since, however, it i s known that the wave­

length setting is liable to some drift in all instruments, it i s 

usual to choose À1 at some stationary value (nearly invar iably a 

maximum) o f c(À), 
01 

since a variatien óÀ in the wavelength se tting wil l t hen have mi­

nima! effect on the observed absorbances. 

\vhile there is no doubt that t h is constitutes good practice , 

it is unfortunately inapplicable if o ne wishes to determine two 

or more substances simultaneously. Even if the shapes of the n 

spectra cj(À) allow extrema to be found for all n compound s inde­

pendently, 
0 1 , ... , n, 

as they often do, the slopes of the other spectra, ( de.) 
crr~ À = À • 

J 
will notgenerally vanish for i Ij; a maximum in any one curve 

c .( À) will correspond to points of non-zeroslopeon the other 
J 

n- 1 curves ci(À); quite generally, t here will be n(n - 1) such 

points of non-zero s lope. 

It then becomes necessary to give some attention to the var­

iatien of the absorptivities with time s uch as will be caused by 

instrumental d rift in the wavelength setting. The same necessity 

also arises, independently of the number of components, in the 

proposed scheme of observing absorbances qt a large number of 

22 points in the spectrum of the sample to be analyzed. 



It will be sufficient to discuss short-time drift of the 

wavelength scalc, say such as may be expected to occur within thc 

course of a single day, since it is comparatively easy to keep 

the instrument free from gross errors of wavelength calibration. 

A regular check on the calibration, in conjunction with adjust­

ment whenever neccssary, which may be performed daily, will serve 

to define the wavelength scale sufficiently well to exclude any 

such gross errors; a convenient methad has been indicated, which 

consists in taking readings of two absorbance values of a solu­

tion of known concentratien on the steep slopes on either side of 

the maximum of a narrow absarptien band (p-xylene,>.max= 274.5 rum) 

and readjusting the wavelength scale so as to make these absar­

bances coincide with the values obtained at the time that the 'ij 

were determined (Tunnicliff, Brattain and Zumwalt 1949). 

2.2.2 Short-time drift of the wavelength setting 

In order to obtain an approximate value of the rate of drift 
d>. of the wavelength scale, dt , the apparent wavelength, as read on 

the scale, of the streng hydragen emission line >.= 406.133 rum 

(solar F) was obscrvcd as a function of time. The slit width was 

chosen as 0.13 mm, corresponding to 2.1 rum at this wavelength; at 

this width the emission line appears as an almast triangular ma­

ximum (6>.~ = 4 nm), superimposed on a smooth continuous back­

ground (Fig. 2.1). If the natura! line width is neglected and if 

100 

T 
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HO 
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484 488 
À I nr! 

Fig. 2. I The shape of the hydragen line F = 486.133 nm when 

view e d at a n op t i ca 1 s 1 i t w i d t h of 2 • I n,m • 23 



the background intensity and the detector sensitivity are assurned 

constant over the small region ("- 4 run) observed, · the apparent 

energy T receivcd at the detector will be determined cntirely 

by the triangular slit transmission function. If the maximum of 

the slit function, which occurs at the position of the wavelength 

set, coincides with the position Àmax of the emission line, the 

energy observed will evidently be a maximum, Tmax· At some other 

setting, À1 , the energy arriving at the detector from the emis­

sion line will be proportional to IÀmax- Àil, provided that 

IÀmax- À1 1 is at most equal to the slit width. 

Readings wcre taken at three wavelength settings À1 , À2 and 

À3 such that one of these lies on thc ether side of the maximurn 

than do the ether two. Then, for the right hand branch of the 

triangular transmission function T(À) in Fig. 2.2, 

and, by symmetry, for the left hand branch 

T2 - T1 
T ~ T3 = - À2 - À1 

Hence Àmax' the abscissa of the point of intersection, fellows 

from 

À + ma x 

Tmax 

r 
-.~~. 

Fig. 2.2 To illustrate the determination of the abscissa of the 

24 maximum of an observed tran s mission function. 



In thc course of the experiment, the slit setting was left undis­

turbcd; the radiation from the hydrogen light souree was thus al­

lowed to fall on the prism continuously, just as would be the 

case during an actual · measuring period. At regular intervalsT 

was read off at the three wavelength settings of 484, 486 and 488 

nm; Amax as dctermined by the above formula was plotted as a 

function of time, the latter being reckoned from the moment of 

switching the instrument on. The rcsults are shown in Fig. 2.3 

and summarized in the following table. 

486 . 
E 
i:-

0. .. 
-< 
t 

486.0 

485.5 

• •• • 

485.0'--------------------~-----
0 2 3 4 5 6 

- tim~fhours 

Fig " 2.3 The apparent wavelength ).app of F ~ 486. 133 nm as a 

function of the time elapsed s ince t he instrument was switched on. 

Period af ter switching on 
ex tending 

from to - /!>À (nm hr-1 ) 
(hours) llt 

1 . 0 2.0 0.45 

2. 0 3.0 0.17 

3.0 4.0 0.14 

4.0 5.0 0.09 

5.0 6.0 0.09 
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From the fit of a smooth curve thc standard dcviation of a 

single dctcrmination of ~ may bc roughly estimatcd as 0.02 run, ma x 
which, bcing one hundredth of the distancc of the divisions on 

the l-scalc, seems satisfactory. The shapc of thc curve indicates 
dl that cvcntually a steady state will be rcached for which Ot = 0; 

howevcr, this will not occur within an ordinary working day. The 

cause of the drift of the l-scale must be sought in the unavoid­

able heating of the prism by thc incident radiation, which causes 

its rcfractive index to change. The expansion of the prism mate­

rial is another possible contributing factor, which may be ne­

glected in our case, since the coefficient of expansion happens 

to be particularly small for vitreous silica. 

From the manufacturer's data for the scale drift as a func­

tion of temperature, the observed rate of drift is seen to cor­

rcspond to about 2.5 to 0.5 degrees p e r hour. For 1.0 degree/hour 

the corresponding rate of drift of the wavclcngth scale is given 

in the table below: 

llavelength dl 
(run/ degree) (run ) -do 

200 0.014 

250 0.023 

300 0.042 

400 0.097 

500 0.18 

GOO 0.30 

700 0. 4 5 

800 0.58 

1000 0.73 

1200 0.74 

Considered as a functi o n of l, the curve o f 1~1 vs .l runs 

approximately paralle l to the c urve of the reelprocal dispe rsion, 
dl ds vs. l; this fully agrees with Hartens's data (Martens 1904), 

dn 
which also indicate that the temperature coefficient Oë of the 

refractive index in air for vitreous s ilica does not depend very 

strongly on À, t h e total range of variatien of~ between À = 257 
dn nm and À = 508 rum being less than 40% of the average value of oe· 

2.2,3 The effect of the wavelength drift 

Assuming that 1 . 0 degree/hour is a reasonable value of the 

rate of heating of the prism, we may proceed to calculate some 

26 representative values of the change in observed absorbanc e such 



as may be expected from the corresponding rate of scalc drift of 

the instrument, for which we may put 

da 
dt 

da 
dÀ 

As a fir s t example, we ,may take a point on the flanY.s of the 

2-methylnaphthalenc absorption peak c~ 319 nm), for which thema­

ximum mol a r absorptivity c = a/cd is about 510 mole- 1 .l.cm-1 in 

e thanol. At points 1 nm on cithcr sidc of this maximum, 1*1 is 

graphically determined tobcabout 170 mole- 1 .1.cm- 1 .nm- 1 • Thcn 
-3 -1 fora solution of 3.0 • 10 mole 1 , a cell lengthof 1 cm and, 

I d>. I -1 by interpo lation, dt 319 = 0.050 nm. hour , one calculates a 

ldal I de d>.l drift dt o f c.d.dt"at 0.026 units of absorbance per hour. 

Since a f o r these points under thc stated conditions is about 

1 .0, i t i s seen that allowing one hour to elapse betwee n a reca­

libra t ion a nd an observation of a may cause an error of about 

2 . 5% i n a, if this error is understood to be a departure from 

t he v a lue ob tained at the recalibration. 

A le s s extreme example of apparent drift in absorbance might 

b e take n from the case of an alcoholic solution of benzene, 

c = 5 x 10- 3 mole.l- 1 in a 1 cm cell; on the flanksof the band 

at 254.5 nm the slopeis at most equal to 100 mole- 1 .l.cm- 1 .nm- 1 ; 

for the s ame assumed rate of temperature drift of the prism one 

finds 1~1 = 0.012 units of absorbance per hour, which, at an ab­

sorbance of somewhat less than one, causes an error of > 1%. 

The magnitude of the error thus introduced is revealed more 

clearly if the expected drift rate is compared to tne (indirect­

ly determined) standard deviation of a single determination of 

absorbance, which is about 0.001 2 . For the cases quoted the drift 

rate must therefore be considered highly significant. The same 

high significanee of the drift will be found for practically all 

bands e xhibiting 'fine structure' in the quartz region, say for 

all bands of up to 5 nm half-width in the ultraviolet or up to 

several times that half-width in the near infrared (À > 1000 nm). 

The drift rate may also be comfortably observed directly by fol­

lowing the apparent absorbance on the flanks of any fine struc­

ture band and even on the more moderate slopes of the absorption 

curve of the chromate ion (at, say, >. = 250 or 290 nm) for a few 

hours with an undisturbed wavelength setting. 

Fortunately, it is possible to take most absorbance readings 

at considerably smaller slit widths than were employed for the 

determination of ~~ at 486 nm; unless the hydrogen light souree 

shows serieus signs of ageing,the mechanical slit width through- 27 



out the spectrum may be chosen to be no larger than auout 0.02 

nun, which presumably causes only about one sixth of the rate of 

scale drift found above for s = 0.13 mm. Since, with large valucs 

of ~~~~, the ~se of a larges is distinctly inadvisable because 

of the resulting non-linearity (Ch. V), one will definitcly pre­

fer werking at small slit widths whenever considerable slopes of 

absorption bands are likely to be encountered. 

If one requires that the error due to scale drift be kept 

down to say about one half the standard deviation of an absorban­

ce measurement (o(a) = 0.001 2), one calculates that for s = 0.02 

mm, an assumed rate of heating of the prism of 1 degree per hour 

at s = 0.13 mm and the values of ~~~~ and concentratien quoted a­

bove, the observation of the absorbances of the known and unknown 

samples should succeed each other within about 0.2 hours. This 

requirement may be somewhat relaxed for lower slopes and/ or con­

centrations; on the other hand, the time which may be allowed to 

elapse between the observations must be further reduced for the 

slopes and absorbances quoted if one measures during the first 

two or three hours after switching on the instrument. 

2.2.4 Some conclusions 

1. For our instrument at least, a systematic error is introduced 

by the gradual heating of the prism and the consequent drift 

of the wavelength scale. 

2. Even after several hours' operatien of the instrument, abser­

bances may drift off to the e x tent of several per cent. per 

hour on steep slopes of (a,À) curves. 

3. Not measuring during the first few hours of operatien and 

thereafter completing all observations at any given wavelength 

within say 0.2 hours will keep the resultant drift in abser­

banee down to an acceptabl e level. 

2.3 The desirability of high absorbsnee values 

We shall show in this sectien that the use of high absorban­

ce values is desirable under the following assumptions: 

1. the absorbances of the reference solutions are known exactly. 

2. there is a werking range of absorbances, say 0 < a ~ a such - ma x 
that, within this werking range, the precision of an observa-

tion of a, say o (a), is essentially constant; for a > amax' 
o (a) is assumed to be much higher. 

(For simplicity's sake we s hall also assume all observations 

28 to be made at unit optica! path length). 



3. the spectra of the reference compounds are distinguishable (do 

not form a linearly dependent set) • 

We shall illustrate the case for n 2 components; the proof 

can be generalized easily to arbitrary n. In some region of l the 

molar absorptivities &1 (À) and &2 (À) of the species (compounds) 

concerned will be functions such as are shown in Fig. 2.4. We may 

use this figure equally well to represent the absorbances a 1 (À) 

and a 2 (À) as observed at unit cell length in suitable concentra­

tions c 1 and c 2 • Now if we choose two wavelengths, À1 and À2 , at 
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Fig. 2.4 A hypothetical pair of spectra aj(À) to show the quan­

tities needed for the construction of the absorbance vector dia­

gram (Fig. 2.5). The ordinate may alternatively betaken to re­

present absorptivities &, in which case the choice of wavelengths 

has been made sa as to maximize ldet !1· 

which to abserve the absorbances of the pure species and their 

mixtures, we may represent these values in a two-dimensional ab­

sorbance space RA, identifying each of the coordinate axes of RA 

with the absorbance found at the corresponding wavelength. Thus 

(Fig. 2.5) C will represent the absorbance of the first compound, 

its coordinates being a 11 (first wavelength, first compound) and 

a 21 (second wavelength, first compound); likewise, A has coordi­

nates a 12 , a 22 . By the assumed linearity and additivity the ab­

sorbances a 10 and a 20 of any mixture of these species of camposi­

tien 0 < x1 < c 1 , 0 < x2 < c 2 are represented by a point in RA 

with coordinates a 10 , a 20 :{ a 10 x 1a 11 + x 2a 12 X1& 11 + x2& 12 
a20 x1a21 + x2a22 x1&21 + x2&22 29 
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with the unprimed x 1 and x 2 introduced to represent relative con­

centrations, x). x~/c . , and unit cell length being understood 
J J 

throughout. 

Fig. 2.5 The absorbance vector diagram constructed in RA from the 

quantities shown in Fig. 2.4. OP represents the absorbance vector 

of a mixture, OP' and OP'' are its resolved components which al­

lew the composition x
1

, x 2 to be found by construction. The point 

Q gives the optimum concentratien choice for a mixture which has 

the same ratio x
1
/x

2 
as P. The concave quadrilateral ABCD is tbe 

region of forbidden absorbances in which at least one of the ma-

ximum instrumentally admissible absorbances is exceeded, 

By the inequalities imposed on x 1 and x 2 , all such points 

are confined to the interior and boundary of the parallelograrn 

OABC. Now we mayalso represent the point x1, x2 in a concentra­

tien space, or the point x 1 , x 2 in an equivalent relative concen­

tratien space Re (Fig. 2.6). By the restrictions imposed, the ad­

missible points are contained within the interior and boundaries 

of the rectangle O'A'B'C' in concentratien space. Clearly, points 

in RA correspond uniquely to points in Re, and conversely. In 

fact, the transforn1ation from one space to the other is homogen­

eaus and linear, as follows from the equations above and may be 

made even more manifest by rewriting them: 

A x Ex' 



in which· 
(a10) (a11) c12) c11 a12) a = a20 ; ~1 = a21 ; ~2 A 

-0 a22 a21 a22 

(::) ;~· ( :D ;~, c,,) c12) ;f c11 ( 12) • x 'T ; ( 

c 21 -2 (22 ( 21 (22 

~'::,. 

6 ,. 
_...,. .. .. 

é .. 

Fig. 2.6 The Re analogue of Fig. 2 . 5. There are i:wo distinct 

ways of labelling the orthogonal coordinate axes: as x 1 , x 2 , they 

stand for relative concentrations: the unit shown then represents 

unity on either axis; alternati vely , as xj, xi, the pa ir of a xes 

O'C' and O'A' indicate concentrations of the mixture directly. In 

that case, the unit distan ces O'C' and O'A' co rrespond to the 

(possibly different) concentrations of the first and second refe-

rence solutions resp ec tively. The a(À 

are an oblique pair parallel to A'D' and D'C' respectively. 

We may remark that A and E are related by A 

diagonal matrix of concentrations, 

c 

it is also easily seen that x' Cx. 

EC C being a 

31 



For given A and ~0 , ~ is of course given by 

-1 -1 A Ax : A a - - - -o 

since A- 1 exists by the assumed distinguishability of ~1 and ~2 . 
For the rather special case of a two-dimensional vector x treated 

here, a graphical salution is available (Fig. 2.5): the observed 

absorbances of the mixture P : (a10 , a 20 ) are considered as a 

vector OP; this is resolved by oblique projection, parallel to OA 

and .oe respecti vely, into i ts components OP 1 a long oe and OP 1 1 

along OA. Then x1 : OP 1 /0e and x 2 : OP 11 /0A; for given ~, an o­

blique net may be constructed in advance (Fig. 2.7). 

Now consider the observed point P: each of its coordinates 

is observable with limited precision; the instrumental error in 

a 10 may be characterized perhaps by its standard deviation a(a10 l 

or possibly by a 100 - a per cent. confidence interval, or even, 

ideally, by its probability distribution; analogous data will 

describe the error of observation in a 20 . elearly, the uncertain-

umt of absorbance 

Fig. 2.7 The construction and us e of an oblique net. The veetors 

OA and OC are constructed as in Fig. 2.5; they can then he subdi­

vided as shown and a net of parallels can he drawn. To use the 

net for the graphical determination of ~. plot P (with the coor­

dinates a
10

, a 20 as determined by observation) in the usual way, 

then read off x
1 

and x 2 on the axes so labelled with the aid of 

32 the net. 



ty in P will be, in ~ ~, a combination of the uncertain­

ties in its components. With the latter supposed given, we can, 

if the law of combination is known, construct the resulting un­

certainty in P. Rather generally, this will be some region in RA 

surrounding P; let the equation of the boundary of any such re­

gion be '(a1 ,a2) = 0. Now we shall assume that the area of the 

region surrounding P is a reasonable measure of its uncertainty, 

just as the uncertainty in say a 10 can be expressed in a measure 

of length, e.g. o(a10 ). Likewise, the resulting uncertainty in x 

will be taken to be represented by the area surrounding the point 
-1 !! = ~ ~0 ; the uncertainties will clearly be corresponding if the 

area, E(!!) say, in Re arises from the area E(~0 ) around P by a 

point to point transformation of its boundary according to ~0 
Ax; this will result in an equation of the boundary in Re, 

lj!(x1 ,x2 ) = 0. 

Now 
E (a ) -o 

the limits of integration being given by the functions ' and 1jJ in 

the usual manner. But, by the theory of transformation for multi­

p-le ·integrals: 

'(~) = ff da1da2 =! J ::: 
' iJJ ax1 

Nm1 for this transformation the Jacobian is not a function of the 

xj, therefore 

or 

and similaxly: 

I: (a ) -o 

I: (a ) 
-o 

(det !!l • E (~'). 

The last form.ula may be taken to mean that for a given un­

certainty in the coordinates of P, the resulting uncertainty in 

concentrations x1 and x2, considered jointly, is minimal for ma­

ximal det !!, that is for a choice of wavelengths À1 and À2 that 33 



maximizes 

as was noted in passing by van Dranen 1958. 

Actually, this statement is not quite exact: if one inter­

changes the designation of the indices on À, det ~ changes its 

sign, whereas obviously no physical change is caused by merely 

redefining the former À1 as the new À2 and conversely. The diffi­

culty, which is caused by the fact that A defines a relation be­

tween oriented spaces, whereas we disregard orientation when cam­

paring areas, is most easily removed by substituting the moduli, 

ldet ~~ and ldet ~1, whenever the formulae above contain determi­

nants. 

Ideally then, the condition ldet ~~ = maximum should govern 

the selection of wavelengths for a sensftive analysis, i.e. when 

we wish to have the detectable amounts ás low as possible. 

Now likewise, for given E(~0), the condition 

ldet !'!I maximal 

is, by the above, equivalent to requiring that a given uncertain­

ty in ~0 have minimal influence on the uncertainty in ~· Hence we 

require the reference spectra a., which are the columns of _A, to 
-) 

consist of as high absorbances a~ are consistent with the werking 

range. 

To see that the same argument applies to the absorbances ~0 
of the mixture, we reason as follows. Given A and E(~0), E(~) is 

determined completely; this given error region in x will be leàst 

important relative to the values of~ if ~ is .maximal in each 

element. But the elements of x cannot be chosen to be arbitrarily 

high, because there is the requirement that Ax be at most equal 

to amax for each element. Hence, for ~ too, the maximal element 

should be chosen to be at the top of the werking range. 

It will öè seen that the derivation above, from .the point 

where we introduce the matrix relations onward, is independent of 

the number of components, provided we consider E(~0 ) and E(~) as 

n-dimensional (hyper)volumes rather than as areas. 

· Likewise, the reasoning also applies to overdetermined sys­

tems, since, as we shall show (Section 3.1) the vector of esti­

mated relative concentrations in that case is merely a weighted 

average of systems of the form Ax = ~0 • 

Similarly, assumption 1 of this sectien is redundant; the 

assumption of errors in the a. (j ~ 0) will be shown (Section 
-J 

3.1) to be very nearly equivalent to the assumption of increased 

34 errors in ~0 , so that the above theory still applies in essence. 
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Under the assumption that o(a) is independent of a in a cer­

tain werking range 0 < a < amax' the concentrations should- if 

possible - 'be adjusted so that 

max a . . 
i 1) 

j ·o 1 1, o o • 1 n, 

i.e. so that the maximum absorbance of the sample and of each re-

ference solution is at the top of the werking range. 

2.4 The feasibility of high absorbances. 

That the precision of an observation of absorbance should be 

constant within a large interval of absorbance, say 0 <a< 1.6, 

is undoubtedly a bold assumption. It will be argued in this sec­

tien that the assumption is nevertheless justified by and large, 

at least for the instrument and procedure adopted in the present 

work. 

The instrument is provided with a read-out facility in which 

a scale is optically projected onto a ground glass screen; the 

latter carries a hair line, 0.3 mm in width, which serves to read 

the scale. The scale itself, being essentially galvanometric, is 

linear in the transmittance (though it is graduated in both T and 

a) and has a lengthof 40 cm for the 0 ••• 100% range of T. Of 

this scale, the range T = 10.97 •••• 100% (a= 0.96 0) is 

used for reading absorbances directly; fora > 0.96, actuating a 

lever introduces an additional amplification factor of 10, thus 

expanding the T-scale. 

In the present work this expanded scale has been used in the 

range T = (10 x) 2.51 •••• 10.97% (a= 1.6 •••. 0.96). 

In all cases the observer was instructed to estimate on the · 

absorbance scale and to report his estimate to the nearest thou­

sandth in a. 

This is quite comfortably possible around T = 50%, a = 

0.301, where 6a = 0.001 corresponds to 6T = 0.12% or about 0.5 mm 

on the scale; it is definitely less than comfortable as we pre­

eeed up the a scale to a = 0.96, where 6a = 0.001 corresponds to 

6T = 0.025% or ~ of the distance between the ~ % graduations on 

the T-scale. This 6T is equivalent to 0.1 mm on the scale and ob­

viously is on the verge of what is observable by the unaided hu-

man eye. (The comparison with a standard burette, where 0.01 ml 

also corresponds to ~ 0.1 mm is not valid, because the galvenome-

ter scale is noisy, i.e. subject to random fluctuations). Voll­

bracht (1962:52), who applied the method, states that a can be 

read to within only 0.002 in the range 0.8 ••• 0.96. and to within 35 



0.001 elsewhere (a~ 1 .6); ether observers, including the present 

author, feel themselves capable of estimating a to the nearest 

0.001 even in this range. 

A moderate to high degree of damping, i.e. imposing a higher 

time constant on the galvanometer, becomes advisable when cbser­

ving at a > 0.96, because the increased amplification increases 

the noise in proportion. However, there is no doubt that it is 

possible to report a to 0.001 even in the presence of the greater 

noise level in the range 0.96 ~a~ 1.6. 

It is net remarkable that observations at a > 0.8, say, are 

apt to take appreciably longer than those in the 'easy' range of 

a (a < 0.5 say). This results either from the higher damping or 

from the cbserver's wish to average readings over a certain pe­

riod of time; both are complementary aspects of the same funda­

mental phenomenon, viz. that the spectrophotometer and its asso­

ciated amplifier constitute a noisy channel in the sense of in­

formation theory. The signal in our case can be identified with 

the transmittance T, which decreases with increasing a, the noise 

can assume two distinct levels according as the additional ampli­

fication factor of 10 has or has net been used. In the light of 

these facts it is inevitable that, for constant precision in a, 

the time to obtain a reading of a should depend on a. 

It is plausible that by instructing the observer to report a 

to the nearest thousandth some information is lost in the 'easy' 

range; this is almest certainly true in the sense that, had a 

comparable amount of time and care been expended on the observa­

tions of a < 0.5, the absorbances in that region might have had 

an even better read-out precision. It is net difficult to show 

that such precision would be redundant: it will not contribute 

appreciably to the final analytica! result x. 

The practice to limit a to 1.6 is tosome extent arbitrary. 

The criterion has been based on the observation that residuals ri 

definitely tend to largervalues when absorbance values a~ 1.7 •• 

•• 1.8 occur in the i-th equation. This is not to say that an cc­

casional value a= 1.65 or so is unacceptable; for safety, 

though, the condition a < 1.6 should be observed. 

It is easy to show that this read-out precision is quite 

realistic toe, in the sense that it is comparable to the calcu­

lated standard deviation of an observation, o(a). Vollbracht, for 

instance, lists in an appenàix (Vollbracht 1962:115) the root­

mean-square val~es of the residuals per equation, s, for 65 ana-

36 lyses of reaction mixtures in 82.4% sulfurie acid; the root-mean-



square value of 5 is 0.0016 per equation. Now 5 is related to the 

estimated standard deviation, Ö(a), of an observation of a by 

-2 -.- -2 s _i_i.o (a). 

It fellows that for his data, Ö(a) is slightly over one thou­

sandth (0.0013) in absorbance with absorbances up to a~ 1.5 

(Vollbracht 1962:52). 

Conclusions: 

1 •. on out instrument, a careful observer can obtain absorbance 

values meaningfully to within 0.001 (or, at worst, to within 

0.002 for the range 0.8 < a < 0.96). 

2. Such a read-out precision is obtained at the price of longer 

observation times for a > 0.8; it is essentially constant in 

the entire usable range, a~ 1.6. 

3. This read-out precision is justified by the comparable magni­

tude of the standard deviation of an observation of a. 

2.5 The desirability of overdetermined systems. 

Given n spectra, with k >> n sampling points available, one 

may legitimately require that an analysis be based on the optima! 

choice of. n sampling points; 

effort (n(n + 1) absorbances) 

that is, for a given observational 

and a given precision of each ob-

servation, one requires that the resultant uncertainty in the es­

timated composition ~ be minima!. 

The optimality criterion is simple (Section 2.3): one only 

has to consider the k x n matrix E of molar absorptivities cij 

and to construct all {~) possible-combinations ~· o~ n rows at a 

time; the submatrix E' that has maximum /det ~· / is optimal . In 

practice, this is a fairly intraetabie problem, since there seems 

to be no strict algorithm that avoids calculating all (k) deter-
n 

minants. 
k 

Now for k = 30 and n = 6, (n) = 593,775; even with an elec-

tronic computer, the evaluation of such a number of determinants 

is not trivial. 

Fortunately, such a choice is not necessary; if the k abser­

bances ~0 of the sample are determined along with these of the n 

reierences (~), the resultant overdetermined system of equations, 

Ax = ~ 

may be solved for x by least squares. The solution, which we 

shall call ~, has the important property that it represents a 

weighted average of all these solutions x' that can be formed by 

the choice of distinct, square submatrices A' (with det A' 'I 0); 37 



the solutions ~· are assigned weights proportional to the squares 

of the determinantsoftheir submatrices ~·, i.e. inversely . pro­

portional to their expected variances. (For a proof,see Sectien 

3. 2). 

As a corollary of the above we see that there need be no 

fear to include rows in ~ that, taken by themselves, would lead 

to small values of idet ~·I; the weight~ng alluded to guarantees 

that 'bad' wavelengths cannot spoil the preeiser results from 

'good' wavelengths. We may also rephrase this to read that a so­

lution by least squares utilizes all the information available 

from A. 

ÇQ!}91!:!2.!Q!}l 
At the cost of additional observations, the use of an over­

determined system of equations obviates the need to choose a best 

set of n wavelengths; the least squares salution completely uti­

lizes the information presented. 

2.6 Other advantages of overdetermined systems. 

Anticipating the theoretica! development given in Chapters 

rrr and IV, we mention here some practical advantages i nherent in 

the use of overdetermined systems and their salution by least 

squares. 

2.6.1 !!}SE~~2~~-EE~S~2~2~· 

For a given precis ion of observation of the absorbance -

e.g. expressedas its standard deviation o(a) - it can be proved 

~hat the precision- e.g. expressedas a (hyper)volume E(~) (sec­

tien 2.3) - is always better (E(~) is smaller) when using thema­

trix A of k > n rows than when merely using any n x n square sub­

matrix A' of A. 

When k is chosen between 20 ahd 40, as is usual in practice, 

the standard deviation for a single component x. of x is lowered 
) -

by some factor between 2 and 4 when passing from the optima! A' 

to the rectangular ~· This seems to hold for most spectra inveG­

tigated, independently of n. An example with two scatter diagrams 

is given in Herschberg and Sixma 1962. 

2.6.2 §2~~-~22~E~!}S~_Qf_~SS~E~SY• 

A leas t-squares solution, which merely represents a weighted 

a verage of the solutions of the constituent equations with square 

matrices, is just as susceptible, in principle, to systematic er­

ror as are its constituent equations. However, the following ar­

gument will show that freedom from gross systematic error, i.e. 

38 the accuracy of the results, remains to some degree verifiable. 



It has beeri established in the present work that a(a), the 

standard deviation of an observation of a, is constant under wi­

dely differing circumstances; in virtual independenee of such va­

riables as solvent, wavelength region and compounds analysed, 

a(a) = 0.001 2 • But each overdetermined system, on solution, 

yields from the residual vector r and x a quantity e, 

~2 
E 

T 
r r 

which represents an estimate o(a), with k-n degrees of freedom, 

of a(a), Now the hypothesis o(a) = a(a) can be tested by standard 

statistical techniques; if the hypothesis is accepted, the result 

2 can be accepted too as accurate in the sense that it confarms 

reasonably to the model, since it is easily shown that deviations 

from the model will all tend to increase e. 

If ~is significantly greater than a(a), it is natural to 

conclude that the assumptions of the model have been violated. Of 

the various deviations from the model, at least three manifest 

themselves in a sufficiently characteristic manner in the resi­

dual vector to be identifiable. 

a) ê~!!!S!~Di1Y_1~fg~-f~~9:Q~i __ Qf_f1~E!S~1-~ffQf§_!D_ih~_êe§Qf: 
e~Ds:~§· 

When manually recording values of a, an occasional error of 

these types is hardly avoidable. Such an error shows up in the 

residuals as a single, widely deviant element ri; also, on rema­

ving the effending row of~, the sum of squared residuals rTr 

falls sharply, often so much - e.g. by a factor of 3 or more -

that one concludes that the single element ri has contributed 

more than half of the varianee of ~· In such cases there need be 

no hestitation to strike out the i-th row; in practice, lril> 

0.005 is highly suspect, lril > 0.01 is 'impossible'. It is advi­

sable to include a facility to reject such rows in the computer 

program; the rejection of the i-th row may be governed by some 

condition such as 

'lril > ts and lril > 0.005' 

where t = 3 seems safe (though its choice should be left to the 
~ -2 

user) and s is the root-mean-square value of an element of ~' s = 
~T_!/(k-n). 

b) ê1~i-~~9ih_~ffQf~ 
If the ratio s/~v~ of the optical slit width' to the band 

half-width is not sufficiently small, absorbances cannot be ex- 39 



pected to be proportional to concentratien (Chapter V). The in­

sufficient speetral purity of the i ncident radiation will affect 

the rows of A and ~ to varying degrees, which leads to a charac­

teristic pattern in the residuals, which, in turn, allows this 

departure from the assumptions of the model to be identified with 

fair certainty. (iee Section 5.5 and Figs. 5,10 and 5.11). 

It may, of course, happen that an unanticipated component is 

present in the mixture to be analy zed; if that component contri­

butes significantly to ~' its first effect will be to increase 

ETE• since its contribution to the varianee of ~ will be largely 

unexplained (unless the spectrum of the unanticipated component 

is a linear combination of the columns of ~ or very nearly so) • 

Rather remarkably, we found t hat a plot of E against À shows 

at least some features of the spectrum of the unanticipated com­

ponent. Notably, characteristic maxima will often be preserved, 

though they may be subject to distortion. Nevertheless, this may 

yield useful information about the nature of the unanticipated 

component. 

For an illustration, we refer to Fig. 2.8. In the system 

naphthalene/1-methylnaphthalene/2-methylnaphthalene/2 ,3-dimethyl-
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Fig. 2.8 Top: Spectra in a four-component system. 

Bottom: Residual spectra of two analyses in this system, where 

40 naphthalene has incorrectly been assumed absent. 



naphthalene, several synthetic mixtures were analyzed; these con­

tained naphthalene in such concentratien that its maximum absar­

banee in the mixture was 0.022. However, naphthalene was assumed 

not present; plots of E then clearly show the naphthalene maximum 

at À ~ 311 nm as well as two lesser peaks (À ~ 307 and À ~ 320 
nm) which should be classified as 'false detail ' . 

2.6.3 !~~~~~!!!~!!Y_!9-~!!!~!~~~~~-!~-~~!!_èe~9!eè~~~~ 
Any differences in cell absorbances will affect the observed 

values of ~ and ~· Clearly, this applies to square matrices A 

(and n-component ~-vectors) as well as to overdetermined systems. 

Such differe nces, if uncorre cted, will distart the estimates of ~ 

in either case. However, it is possible to modify the computation 

of ~ by least squares in such a way that such differences do not 

influence x in so far as they are constant over the range of 

wavelengths considered. This advantage is offset by a moderate 

increase in the standard deviations of ' the elementsof x. It 

still is true, of course, that, if the cell absorbances vary with 

À, they will distart ~. 
The model usually assumed is that for any wavelength Beer's 

law and the additivity hold: 

(Model I) E a .. x . = a
1
. for all i; 

j l.J J 

the modification consists of assuming each absorbance aij to be 

affected by a cell absorbance cj ; the same applies to ai, affec­

t ed by c
0

, say: 

(Model II) 

or 

E (a . . + CJ.) X . 
j l.J J 

(l: c . x. - è
0

) + r a
1
.J. x. = a . for all i. 

j J J j J l. 

The term in parentheses, which is independent Of i, may be 

estimated by least squares as a resultant cell absorbance; it 

corresponds to the inclusion of a zeroth component in ~· 

In the earlier part of the work, Model I was assumed always; 

the observed cell absorbances were, of course, subtracted from 

the observed aij. It gradually became clear that Model II was 

slightly safer, since the observed own absorbances of the cells 

we r e only moderately reproducible. The own absorbances of the 

cells were still observed always; however, the adeption of Model 

II as the standard mode of computation of x allowed us' the free­

dom not to correct for them in so far as they did not vary signi­

ficantly with À. Since this, whe n applicable, reduced the cleri­

cal work and hence the chance of clerical errors, it was a strong 

supporting a rgume nt for choosing Model II (Cf. Sectien 3.5). 41 



One would expect, when correcting for the cell absorbances, 

x
0

, which is the estimate of Ec . . x . - c , to be quite s ma l l; this 
- J J 0 

expectation was verified: x
0 

in such cases was usually smaller 

than its estimated standard deviation for synthetic mixtures. It 

may, however, be very significant when either the absorbances of 

the cells are not corrected for or wh en, as in Vollbracht's work 

on sulfanation reaction mixtures, a large "grey' absorbance oc­

curs in the contents of any of the cells; finding relatively 

large ( I x
0 

I ..::_ 0. 0 8 in absorbance) 'backgrounds' 

unexpected when working in 82% sulfurie acid 

is not entirely 

or even in oleum 

containing 10% so3 • To summarize: 

squares according to Model II frees ~ 

(wavelength-independent) background, 

cell absorbances. 

the computation by least 

from all influence of grey 

including differences in 

2.6.4 ~y~~!~e~!~!Y-~!-~-~~~2~!~-~!-EE~~~§~~~~ 
Not least among thè additional a d vantages of overdetermined 

systems is the availability from t he data of each analysis, of an 

estimate of the precision of any of its results xj. This estimate 

~(xj), is given by 

((A*TA*)-1) .. 
- - JJ 

k- n * 

where ris the residual vector a - A*x; for ~1odel I, A*= A and -o --
* n n, the numbe r of components; for Model II, ~· is an (n + 1)x 

(n + 1) matrix which consistsof the observed ~, extended on the 

left by a zeroth column vector of k unit elements: 

and n* n + 1. (Fora derivation, see Chapter IV). 

The estimated standard deviation o(x . ) appears to be quite 
J 

realistic, especially when it is in excess of 0.2% i n relative 

concentration. We believe that ~(x.) < 0.2% - which only occurs 
J 

occasionally - is not to be relied on, since, despite all precau-

tions, some systematic errors persist and these, being of the 

same orde r of magnitude, effectively prevent the results of the 

method to be consistently correct within less than 0.2%. 
-2 -Commenting on the above formula for a (xj)' we remark that 

it contains rTr , the sum of squares of the ~esidual vector; this 

4 2 quantity is derived afresh for each analysis: hence, each analy-



sis carries its own set of o(x.). But, when there are no systema­
J 

tic disturbing causes (Section 3.6.2), the expected value of ETE 
is also known: 

E(EfEI = (k- n*l • iTi . E2 

where E
2 is the_roug·hly constant error varianee of an absorbance 

value and ~ = (~1 ). Then, since we know E
2 and can usually esti­

mate iti (a rather rough estimate is sufficient) for a given type 

of analysis, we have, by combining the formulae above: 

2 
E 

in which substituting a set of spectra ~ will enable us to calcu­

late the expected value of o(x.). Hence we can predict the preei-
J 

sion expected from a knowledge o~ the spectra involved, the ap-

proximate relative composition of the analyte and the instrumen­

tal constant E
2 • This predietien of precision is, in our opinion, 

one of the most useful features of the method and obviates a 

great deal of the preliminary experimentation usually devoted to 

establishing the feasibility of a proposed method of analysis. 

If one is willing to make some further assumptions about the 

errors in the elements of ~ and ~, an impressive array of statis­

tical means for testing hypotheses about the true composition y, 
given ~, is also at one's disposal (Chapter IV). 

To summarize this section in a few conclusions: 

1. Each analysis by least squares carries an estimate of preci­

sion derived from the data of each analysis. 

2. A knowledge of the instrumental precision and of the spectra 

of the components enables one in principle to predict the. pre­

cision to be expected from the analytica! results. 

43 
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CHAPTER III 

DATA REDUCTION POINT ESTIMATION 

3.0 Scope 

After an introduetion (Sec. 3.1), which states the assump­

tions and definitions that constitute the mathematica! model, the 

classica! least-squares point estimator ~ is proposed as the pre­

ferred estimator, even though ~' the coefficient matrix, is sub­

ject to error. In Sec. 3.2, some reasonable properties of ~ are 

discussed; these properties point to the use of ~ under the as­

sumption of 'small errors'. Sectien 3.3 exhibits some properties 

of~. the theoretically preferable estimator. Sectien 3.4 discus­

ses the relation between x and ~ in the light of the 'small er­

ror' characteristics of the spectrophotometric material, provides 

some numerical illustrations and presents an efficient algorithm 

for z. Sectien 3.5 finally deals with a slight variant of the mo­

del (f.iodel II), in which the columns of A are referred totheir 

means. 

It is regretted that it proved impossible to distinguish in 

typography between stochastic and non-stochastic variables. It is 

hoped this important distinction will be apparent from the con­

text. 

3.1 The model 

The following assumptions (A) are made and the following 

definitions (D) introduced: 

(A1) The mixture is taken to contain at most n known, absorbing 

species. 

Comment: The presence of unanticipated species is briefly 

discussed in Sectien 2.6.2(b). The species will also bere­

ferred to as components or compounds. 

(A2) Each of the n absorbing species is available in (assumed) 

pure form. 

Comment: It may suffice for some purposes that the species 

are available in a standard form, not necessarily pure. Ana­

lyses then will simply be reported relative to that standard. 



(A3) A ·solution of known content cj is available for e'ach species 

Comment: These solutions will be called the reference solu­

tions. 

(A4) A solution of known content c
0 

is available for the mixture. 

Comment: In (A4) , 'of known content,. does not apply when the 

concentrations sought need not be on an absolute scale -

e.g. when the percentage composition only is required; i n 

(A3) this phrase does not apply when only concentrations re­

lative to these of the (standard) references are desired. 

For some purposes, e.g. in exploratory work, neither quanti­

tative requirement need be met. 

(AS) For each species the absorbance at any wavelength is propor­

tional to the concentration of that species. 

Comment: (AS) expresses Beer's Law. Chapter V discusses a 

certain type of departure from (AS); Chapter VI indicates a 

device that allows valid results even when (AS) is violated. 

(A6) For a mixture, the absorbance at any wavelength is t he sum 

of the absorbances of its constituents. 

Comment: (A6), which states the additivity of partial absor­

bances in a mixture, is tantamount to the assumption of ab­

sence of physical and/or chemica! interaction among the com­

ponents. It also assumes no interaction of the solutes and 

the solvent. 

(A7) The absorbances of the mixture and of the n constituent 

species are observed at k wavelengths under identical condi­

tions at each wavelength. 

Comment: Identical conditions are taken to include identity 

of solvent, cell length, slit width and generally all in­

strumental settings. 

(D1) The observed absorbances of the constituent speciesforma 

matrix A of k rows and n columns, with elements aij; those 

of the mixture form a vector ~0 with k elements aio" 

(D2) The relative concentration yj of the j-th component 

mixture is defined as 

of the 

concentration of the j-th component in the mixture 
concentration of the j-th reference solution 

The yj form an n-component vector y. 

(AB) An observed absorbance aij (j = 0,1, ••. n) is considered a 

stochastic quantity, and represents the sum of a non­

stochastic true absorbance bij and a stochastic error Eij: 4 S 



a .. 
l.J 

or, in array form: 

i 
j 

1 I,,, 1 k 
0,1, ... ,n 

{ 
A=B+E 

~o = ~o + E.o 

We assume the following about the eij: 

(A9) They have zero expected value: 

or, in array notation, 

and E(~) 

(A1 0) They are statistically independent: 

E(eklemn) = 0 unless k = m and 

0. 

1 n. 

(A 11) They are homoscedastic; specifically, the varianee 

does not depend on i ör j: 

2 
& • 

(A12)They are smal! relative to the aij and the bij: 

or, more weakly, 

(3 .1: 1} 

( 3.1: 2) 

of Eij: 

(3 .1: 3) 

Comment: We shall be able to formulate (A12) more .precisely 

later, viz. as (A14), Sec. 3.3. 

From (AS), (AG), (D2) and (AS), we have 

(3 .1:4) 

as an ideal relation between unobservables. Given the observables 

~ and ~0 , the problem is to estimate y. We propose to use 

k :::_ n, ( 3.1: 5) 

the classica! least squares estimator, as 

The remainder of this chapter will be 

an estimator for X· 
concerned with a 

justification of this estimator. The justification of ~ depends 

4 6 on certain properties of our observational material, chiefly (A 12). 



3.2 Some properties of x 

The present section seeks to show that ~' under assumption 

(A12), has some intuitively reasonable properties. 

We know by (3.1:2) and (AB) that 

{ 
E (A) = B 

( ) ( 3. 2.:1) 
E ~o = ~o· 

Now consider the case k = n, that is, a system of n linear equa-

tions derived from observations at n wavelengths. 

Then, the estimator ~of (3.1:5) takes the form 

~ = (~T~)-1~T~O = ~-1~0' k = n (3. 2: 2) 

-1 -1 
(The existence of~ and ~ can be assumed safely, since the 

experimenter will have been at some pains to maximize jdet ~~, 

cf. Sec. 2. 3) • 

This estimator may be seen to be reasonable by the 

argument: to the extent that E is small relative to B 

may write: 

following 

(A12), we 

neglecting higherpowersof E. Then, since, by (3.1:4) ~X ~0 , 

we have 

-1 
A a - -o (B+E)-1 (b +e: ) -- -o-o 

y+B-1 ( e: 
- -0 

Ey. E .) , 
j J-) 

where ~j is the j-th column of ~, so, by (A9): 

E(~) =X , k = n. 

Hence we have established: 

(3 . 2:3) 

Property 1: For non-overdetermined systems and to t he extent that 

we may neglect terros in e:
2 , 

(a) ~ is unbiased; 

(b) errors Eij' j > 0 affect~ in the same ma nner as 

errors - EioYj· 

Remark that (b) may be interpreted to mean tha t e rrors in A in­

duce errors in ~0 in a similar way as in the Berkson model (Man­

del 1964:295, referring to Berkson 1950). 

For k > n, we next show that ~ is a reasonably weighted mean 

of estimators having Property 1. 47 



The vector~ in (3.1:5) is the solution of 

A'a • 
- -o 

(3.2:4) 

For the j-th element of ~· we may write, by Cramer's rule: 

x. 
J 

det( (A'A) . ) 
- - J 

det(~·~l 
(3. 2: 5) 

where (ATA). denotes the matrix obtained from ATA on re.placement 
-- J 

of its j-th column by ~·~o· 

Lemma: Let F be an n x k matrix and Q a k x n matrix, k > n; 

consider square submatrices Is that arise from F by 

a set of k - n columns and square submatrices Qs 

striking out the corresponding set of rows from G: 

striking out 

obtained by 

submatrices 

so obtained are said to be corresponding. Then we have: det(FG) 

equals the sum of the determinants of corresponding submatrices 

fsgs' the summatien to be taken over all (~) corresponding fsgs. 

(Heyting 1946:55). 

By this lemma, the denominator of (3.2:5) can be written 

det(~·~) l: (det A ) 2 • 
s -s 

Now, in the numerator, (AT A) . is equal to the product of AT and A . , 
J - -J 

the latter being obtained from ~ on replacement of its j-th column 

by a ; therefore det((A'A) . ) = l: det A . det(A.) • Also, neither 
-o - - J s -s -J s 

numerator nor denominator will be changed if we omit all these 

terms in either for which det ~s = 0. 

Hence 

l:' (det A ) • (det(A ) ) 
s -s -j s 

l:' (det A ) 2 
s -s 

det(A.) 
I:' (det A ) 2 -J s 
s -s det (~s) 

I: ' (det A ) 2 
s -s 

l:'w -J s I:' w , 
det (A.) y 

s s det A s s 
-s 

where w = (det A ) 2 and l:' denotes summatien over all submatri-
s -s s 

48 ces ~s except these with zero determinant. 



But 
det (A.) 

-J s 

det A -s 

is, by Cramer 1 s rule, the j-th element of the solution vector ~s 

of an estimator of type (3.2:2) obtained from a non-singlar sub­

matrix ~s of A and the corresponding subvector (2o)s of ~0 • (This 

estimator ~s has Property 1). 

Hence we may write 

x. r I w (x , . 1 r I w , 
J s s -s J s s 

but this holds for all > 0 and thus we have established: 

Property 2: For k > n, x represents a weighted mean of the solu­

tions of all (nk) linear-systems that can be obtained from Ax = a 
- -o 

by considering its combinations of n rows at a time. The we i ght 

assigned to each such solution is (proportional tol the square of 

the determinant of its coefficients. 

Now this weighting is eminently reasonable. We rewrite 

( 3. 2:3) • -1 
~-x.=~ (~0- l: j yj~j) 

as 

-1 
6~ = !l Ói:!_ • 

llence 

On taking expected values, we remember that E(6s6~T) has the 
2 2 2 

form vi (by (A11), v = E + l:Y . • E ), SO 
J J 

E(6~6~T) = v(~T~;- 1 (3.2:6) 

In the above, the left hand side is the covariance matrix of 

the errors. Taking determinants, we have 

the left h a nd s ide is the generalized error varianee of x resul­

ting from a given error varianee E
2 in the observations for 

fixed y. Assignment of weights ws to the (x ) . above· should have -s J ---
bee n made in inve rse proportion t o the i r (generalize d) variance, 

i.e. in proportion to (det ~s) 2 ; we findit has been made propor­

tionally to (det A ) 2 . We conclude that, to t he extent that -s 

the weighting of the solutions ~s of the square subsystems con- 49 



tained in Ax = ~0 , k > n, is optim~l, and therefore 

near-optimal for small errors. 

presumably 

As an important corollary of Property 2, we have: the inclu-

sion of rows in~ that, taken by themselves, would only lead to 

ill-conditioned submatrices ~s' is harmless. The resultant ~ is 

dominated almast completely by these submatrices ~s that have 

large squared determinants. We have already enunciated this "ro­

bustness" in sec. 2.5. 

3.3 The estimator z and some of its properties 

As is well known, the estimator ~ is derived by minimizing a 

residual sum of squares T 
r Er 

( 3. 3:1) 

the underlying assumption being that only ~0 , not ~. is subject 

to error . Therefore, ~ does not seem applicable to our case. 

For thosc cases in which ~ is known to be subject to experi­

mental error, there are 'three approaches: (We specialize at once 

to the particular case defined by assumptions (A10) and (A11), 

stating the independenee and common varianee of all Eij .) 

1. The plane of ciosest fit (Pearson 1901): 

The problem is stated in terms of finding a (hyper)plane i n 

Rn+
1 

such that the sum of the squared distances from the k 

points defined by the rows of (~,~0 ) is minimal. 

2. The principal component of minimal var i ance: 

h · Rn+1 · h h ' · t In this approac , a vector ~n+ 1 1n 1s soug t; t 1s 1s o 

have unit length and should be orthogonal to a sequence of n 

mutually o rthogonal veetors ~j' j = l, .• . ,n, each of which is 

required to have max imal varianee at unit length, thus minimi­

zing the resid ual varianee of ~n+ 1 • 

3. The data adjustment methad (Deming 1943): 

The problem here is cast in terms of the existence of k rela-

tions, assumed to be satisfied exactly by the unobservables 

(~•Èo). A minimization of the following sum o f square s 

under the condi t ·ion: 

n k • 2 
j~O i~1 (a ij - bij) ' 

Bz - b = 0 
-0 

then leads to estimates i, ~0 and i· 

Remarkably, these three conceptually different approaches 

50 yield the identical estimator ~ for x: 



Let ç be an eigenvector of the symmetrie (n+1)-matrix 

(3. 3: 2) 

such that the associated eigenvalue Às is minimal among the ei­

genvalues of (3.3:2). Then z consists of the first n elementsof 

i, provided i is normalized to make Çn+1 1. 

We note, for further reference: 

3~3.1 ~TA is positive definite, hence: 

3.3.2 Às> 0. 

3.3.3 À is the estimated varianee of the linear combination 
+ s + 
~~ = (~,~0)~ of the columns of~' where nis parallel to ~ but 

nTn = 1. (This standard result of principal 

dealing with the 

component ana­

subject, e.g. lysis may be found in any text 

Andersen 1958). Now ~Ti=1+iti· He nee the estimated varianee 
+- -T- T 

of ~i is (1 + ~ ~).Às = ~ ~·Às. 
3.3.4 As defined above, n is 

(Anderson 1 9 5 8) . 

a maximum likelihoed 

3.3.5 Writing- introducing ~ - ~0 for brevity 

( ATA 

a TA 

We have 
ATAz 

T -a Az 

whence ATA 

estimator 

(.) 

But we may rewrite Às a Ta - a TA i so that it gives some insight 

into the relation of i and ~: 

Consi.der the residual vector ~, 

a - A z (3 .3: 3) 

defined by analogy with ~ (3.3:1). Then uTu = (~-A i>T(~- A~) ,. - ,. ,. = ~ (~- Az) - ~ ~ (~- Az). The first term equals À
5

; ' by premul-

tiplication of (•) by z we find the secend term to be equal to 

- z T z · À • He nee -- s 
UTU 

À 
s 
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Hence we can find ~ from 

{ 3. 3:4) 

while ~is estimated from {3.1:5): 

The difference then consists in the correction, for ~· of the 

main diagonal elementsof ~T~ by the term -{~T~)/{lTll;this ought 

to be a small term relative to the diagonal ele~ents when the 

residuals have a small squared sum {~T~ or ~T~l and AtA is well­

conditioned. 

3.3.6. We also remark that, by {A10), 

E{{ATA) .l = {BTB). ·' i Ij, 
- - i] - - l.J 

so the off-diagonal elements of ATA are u nbiased estimates of 

these of ~T~' whereas, by {A11), 

E{{ATA) .. ) 
- - JJ 

so the elements on the main diagonal have an expected bias of k 

times the common error varianee of an obs ervatio n. 

Now, for given i , the expected value of ~T~ is 

E{_!:!T!!> = E«~- Az>T<2.- Ai>>= <1 + i.Ti>· kf:
2 

whence, by Às 

E{As) = kc 2 for any given z. { 3. 3:5) 

In other words: ~ is obtained by prior removal of Àsl from 

ATA . The expected value o f ~sis precise l y the expecte d bias i n a 

main diagonalelementof ATA. 

3.4 The advantages of ~ as an estimator 

3.4.0 Some ch a racteristics of the ob s ervati o n s 

Be fo r e j ustifying our preferenee for x above ~ as an e s ­

timator of y, we shall state some characteristics of our spectro­

photometric observations.This will a llow us t.o s ha rpe n assumption 

{A12), which stated the "smallness" o f E relative toB. 

a) Experimentally, we a rrange that 

{A13) 0 ~ y j 2 
Comment: This fellows naturally from the a rrangeme nt {Sec . 

52 2.3) that both ~0 and the n columns o f ~ have approximately equal 



maximum absorbances; when we use mixtures as 

VI) 1 there are other good reasens for not 

unity (Sec. 6.6. 1 ex. 3). In fact 1 E y . ,; 
j J 

references (Chapter 

allowing Yj to exceed 

usually holds. 

b) From the observations 1 we find that ~0 is resolvable as a 

linear combination of the columns of A with a very unusual qood­

ness of fit. In a typical analysis the estimate R of the multiple 

correlation coefficient1 
k-1 

- 1 -
k-n-1 

( 3. 4: 1) 

is found to be R- 1 - 10-5 orbetter and certainly R > 1-2x10-~ 
This means that at most 1 - R2 

< 4x10- 5 or 0.004% of the varianee 

of ~0 is not accounted for by the spectra of the reference solu­

tions. (A few cases where the linearity was known not to hold are 

exceptions; even so 1 for the first example of Sec. 6.5 1 R=0.9998 

was found) . 

c) As against this 1 no column of ~ can be written as a linear 

combination of the remaining columns with a comparable goodness 

of fi"t. 

In terros of regression analysis 1 the residual sum of squares 

is 100 times as large (at the very least) as that obtained from 

an analysis of ~0 in terros of A. In terros of principal component 

analysis 1 the variance 1 say, of the principal ~omponent of mi­

nimum varianee and unit length of ~T~ is at least 100 times as 

large as À 1 which is the varianee of the corresponding principal 
S +T+ 

component of ~ ~ . 

We now reeast this as assumption (A14): 
+T+ 

(A14). Let Às be the smallest eigenvalue of~~ and u be the 

smallest eigenvalue of ~T~; then 1 for the spectrophotometic ap­

plication1 

Çomment: 1. Since Às and ~are available quantities 1 t h e validi­

ty of (A14) is verifiable for any given ~ase, in contrast to that 

of such assumptions as (A10). 

2. (A14) represents a sharpening of the rather vague 

assumption (A12). 

3. Since ~ represents the (estimated) varianee of the 

minimum varianee linear combination of the columns of ~~ it fur­

nishes us with a measure of distinguishability of the reference 

spectra. But since Às has a known expected value 1 (3.3:5): 

EOs) = kc
2

1 53 
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Às (for given k) may be estimated a priori, provided we know the 

error varianee e 2 of an observation. Now the best estimate of e 2 , 

;
2 is about (1.2 x 10-3 ) 2 for the usual case. With 20 < k ~ 40, 

E(Às) is roughly equal to 4 x 10-5 

Sufficient distinguishability of the reference spectra A 

then simply means 
-3 

~ > 4 x 10 

or better; more generally 

~ > 100 ke
2

• 

3.4.1 The relation between ~ and z 

In this subsection, we shall derive some strict upper bounds 

for some simple functions involving the difference between the 

estimators ~ and i· 
By their defining equations, 

( 3.1: 5) 

(3. 3:4) 

Th en 
x - z (~ ·~) -1 

and, by a well-known series expansion (Bodewig 1959:164): 

or 

which, with ~ 

Ë Àns (_A'_A)-(n+1) 
n=o 

-
x- _z = { - Ë Àn (A'A)-(n+1 l 

n=1 s - -

(A'A)- 1A'a , reduces to 
- - - -o 

For brevity, we introduce the operator 1, 

1- Às(~'~)-1 - T'. 

Th en 

(~ - ~) T (~ ~) 

(3. 4: 3) 

(3.4:4) 

(3. 4: 5) 



Now for any integer p 

;:(TTP;:( 
À of Tp 

--- < ma x ( 3. 4: 6) 
~-r~ 

x x 

But À of Tp Àp (Àmax of (~ T~) -p) 
ma x s 

(Às · Àmax of (~ T~) -1) p 

(As. (Amin of ~T~)-1)p 

À of Tp (Às/ll)p (3. 4: 7) ma x 

T +t+ 
Now since ~ ~. like ~ ~' is positive definite,lJ > 0 . But 

J;.-rJ;. arises from ATA by bordering, therefore we can apply a 

theerem on hordered matrices, which states (Householder 1953:173) 

that )J>Às' therefore 0 < As/lJ < 1. 

Combining ( 3. 4: 5) , ( 3. 4: 6) and ( 3. 4: 7) , we have 

~ t~ 

< x x ! ! 
n=1 m=1 

and the double sum converges because 0 < As/lJ < 1 • The double sum 

is seen to be equal to 

g iving an upper bound for E(x . 
j J 

, therefore we have found: 

(3.4: a.) 

From (3.4:8), we can also derive an upper bound for l;:(j-~jl: 

I x). - z. I < 
J -

(3. 4: 9) 

Likewise, we can campare the residual sum of squares ETE 

with the analogously defined residual sum of squares ~T~ (3.3:3). 

It is immediate that ~t~ > ETE• because rTr has been minimi­

zed exactly by the application of (3.1:5). Also, Eis orthogonal 

to the columns of A: 

hence Atr 

Ax = a -o 
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Now we can write, using the above orthogonality: 

u- r = (~- Az)-(~0 - Ax) =~(~-iJ 

But ~T~ = ~T(~O- Az) = ~T~O = ~T(~ + Ax) = ~T~ 

hence (~-~)T(~-~) = UTU- ~T~ = (~-iJT~T~(E-iJ • 

Again using (3.4:3) for (~-i>, we find from (3.4:10) 

Then, werking out the double sum, we have 

2 
(1 - À

5
/IJ) 

( 3. 4: 1 0) 

( 3. 4: 11) 

We remark that the equality signs in (3.4:8) and (3.4:11) will 

hold if and only if ~ is parallel to the eigenvector ~ defined by 

A'Av = 11.:::::· 

We conclude: 

The estimator ~ yields a closer approximation to the theore­

tically correct z as Às/11 decreases, that is (given the approxi­

mately constant value of Às) as 11, which measures the distinguis­

hability of the reference spectra, increases. 

3.4.2 Some numerical experience with ~ and ~ 

In a few cases, both ~ and ~ were calculated. We cite some 

results: ~xample 1: Analysis no. 105, benzene and 5 alkyl-substi­

tuted benzenes, 30 sampling points in the range 250 to 275 nm. 

The relevant quantities of this analysis have been tapulated in 

Table 3.1. Similarly, Table 3.2 summarizes data and results for 

analysis no. 112, naphthalene and various substituted naph thale­

nes, which may serve as Example 2. 

A glance at the Tables shows at once that x-z is strictly 

negligible relative to y-~;even in these precise analyses (chemi­

cally speakingl, y.-x . , which is of the sameorder of magnitude 
J J - - 3 

as the estimated standard deviations o(x .), is about 10 times 
J_ -

as large as the difference vector elements x.-z .. 
J J :tt+ 

However, the spectra that served to construct A A for these 

56 examples were at least moderately well distinguishable. In order 



Table 3.1 

Data and results for analysis No. 105 (Model T1 

(" "' 
361 9. 029 099 10.822 923 9. 04 2 642 7.386 232 5.158 696 

' '" '"'l 9.029 099 17 .679 474 19 . 896 801 1 8 .444 493 1 6 .558 432 13.083 676 13.802 390 

~t~ 
10.822 923 19 . 896 801 23.051 567 21.04 5 6 37 18.758 745 14.484 186 15.689 808 

= 9.042 642 18 . 444 493 21. 045 637 21.662 658 20. 038 156 15.380 324 14.735 396 
.7. 386 232 16. 558 432 18 . 7 58 745 20. 038 156 19. 84 5 261 15.528 349 13.342 305 
5.158 696 13.083 676 14.484 186 15.380 324 15 .528 349 15.579 686 1 0 . 704 135 
7.601 683 13.802 390 15.689 808 14.735 396 13.342 305 10.704 135 10.972 159 

i component x. ei x . -z . y i ä (x i> 
J J J (Taken) 

1 be nzene 0.194 586 0 . 194 591 -0 .000 005 0 . 1948 0 . 00 06 

2 tolue ne 0.463 631 0.463 673 -0 .000 0 42 0.4588 o . 0015 

3 ethylbenzene 0.048 896 0.048 859 - 0 . 000 037 0 . 05 38 0 . 0014 

4 _Q-xylene 0.058 126 0 .058 123 +0. 000 0 03 0.0616 o . 0013 

5 m-xy l e ne 0.027 625 0.027 626 - 0 . 000 001 0 . 0224 O. C011 

6 .e-xy lene 0.102 900 0.102 898 +0.000 002 0. 1022 0 , 0006 

7 - - -1.000 000 - - -

À s = 4. 56 x 10-5 .!"C! = 5.79 x 1 o-5 

" = 2.46 x 1 o-1 

Table 3. 2 

Data aad results for analysis no. 112 (Model I) 

(" "" 088 12.092 431 13.926 265 16 . 481 358 13 .736 083 1 3.394 609 13.704 

""l 
12.092 4 31 12 . 689 275 14.899 145 17 . 401 531 14. 296 180 13 . 758 503 14 .234 747 

~Ti_ 
13 .926 26 5 14 . 899 14 5 23.446 885 2 4. 777 811 17. 378 83 1 19. 352 903 19. 283 11 0 

= 16.481 358 17.401 531 24.777 811 28.160 880 20 .359 008 22.873 713 22.184 098 
13.736 083 14.296 180 17.378 83 1 20.359 008 16.591 995 15 . 931 561 16.482 482 
13.394 609 13.758 503 19.352 903 22. 87 3 713 15. 931 561 20.654 000 18.471 305 
13 .704 468 14 .234 747 19 .283 110 22 . 1 8 4 09 8 16 . 482 482 18 . 4 7 1 305 17 .81 0 34 6 

i component x. êi x.-~. 
yi ä (x i> 

J J J (Taken) 

1 naphthalene 0.034 586 0.034 579 +0. 000 007 0 . 03 62 0,0013 

2 - 1-methyl- 0 . 083 203 0.083 186 +0 .000 017 0 . 08 20 0 .0024 

3 - 2-methyl- 0.165 309 0.165 322 -0.000 013 0 . 1609 0 . 0014 

4 -,2,3-dimethyl- 0 . 045 686 0.04 5 651 +0.000 035 0 . 048 7 ·0 . 0028 

5 - 1-c hloro- 0.297 724 0.297 758 -0.000 034 0 . 2960 0 . 0029 

6 - 2-chloro- 0 . 381 323 0. 381 339 - 0 . 000 016 0 . 3785 0 . 0014 

7 - - -1.000 00 0 - - -

Às = 2.62 x 1 o-5 .fT.f.. = 3 .17 x 1 o-5 
" = 9 .56 x 1 0- 2 

to verify the tentative hypothesis that x i~ indistinguishable 

from z for all practical purposes, we now consider, as Example 3, 

a case where ATA has intentionally been chosen to be ill-conditkr 

ned, that is, to have low v. The analysis in this example was in 

terros of mixtures. The pure components were (A), 1.01 mole/1 of 

ethylbenzene and (B), 1.03 mole/1 of ~-propylbenzene, cc14 being 

the solvent. Observations were made in the near infra-red. 

! = <~1 ,~2 ,~0 ) represents the following set of mixtures of 
these stock solutions (A) and (B) : 57 
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c = (
0. 6057 0. 8007 0. 7064) (A) 

0.3943 0.1993 0.2936 (B) 

All relevant data have been collected in Table 3.3, the observed 

spectra of the reference solutions ~1 and ~2 are shown in 

Fig. 3.1, which demonstrates to what remarkable degree the spec­

tra are parallel. 

Table 3.3 

Data and results for a near infra-red analysis. 

Wavelength ~/1 0- 3 
;I./ run 

~1 ~2 ~ 

2220 224 219 223 
2230 205 199 223 
2240 220 210 215 
2250 321 306 313 
2260 570 568 569 
2270 856 829 843 
2280 918 864 890 
2290 967 919 941 
2300 1315 1234 1275 
2310 1047 1002 1026 
2320 999 939 968 
2330 960 927 944 
2340 1101 1034 1068 
2350 1104 1036 1069 
2360 915 860 887 
2370 891 867 879 
2380 774 719 748 
2390 880 816 849 
2400 769 701 735 
2410 691 609 649 
2420 677 619 647 

("·"' 896 13.944 383 14.364 557) +-r+ 
(Model I) 13.944 383 13. 156 031 13.549 258 AA = 

14.364 557 13.549 258 13.955 911 

j - Yj ö (x.> x. ~j x.-z . 
J J J (Taken) J 

1 0.448 927 0.488 832 0.000 095 0.4836 0.0118 

2 0. 511 665 0. 511 766 -0.000 101 0.5164 0.0125 

3 - -1.000 000 - - -

Às = 1.22 x 10-5 T r r -- = 1.83 x 10-5 
)J = 3.26 x 10-3 



r 
1 • 0 

0,6 

2.22 2.40 À IJ 2 . 30 ---
Fig. 3.1 A pair of strong1y depend e nt r e fere nc e spectra. 

0.610 mo1e/1 ethylbenzene + 0.406 mole/1 ~-propy1ben~ene(~ 1 ) 

0.805 mole/1 ethylbenzene + 0.206 mo1e / 1 ~-propy lbenzene(~2 ) 

Solvent: carbon tetrachloride. 

In this deliberate attempt to construct an ill-conditioned 

matrix ATA - it has Àmax = 27.940 and Àmin = 3.26 x 10-3 
p 

we still find that x - i is negligible when compared with either 

~ - y or the vector of estimated standard deviations in x. 
This may be brought out even more clearly by expre ssing 

x - z in terros of the pure components (A) and (B) : 

We find for the estimated composition ~0 

c -o (
0.6057 0.8007) (0.4889) =(0. 7058) 
0.3943 0.1993 0.5117 0.2948 

ç z 
-o (

0. 7064) 
0.2936 

x 

similarly expressing x-~, we have (E1 ,E2 l (~-i>- (
-0. 00002) 
+0.00002 

which is, of course, negligible relative to Eo - Eo· 

and 

Finally,we show that even for this case of poorly distingui­

shable reierenee spectra, 

Às/ IJ = 1.22 x 10-5/ (3.26 x 1o-3 > - o.oo37, 59 
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the values of (~-ilT(~-il, uTu- rTr etc. are far below their up­

per bounds: 

Upper bound Found by direct 
calculation 

(~-i) T (~-i) 7.0 )( 10-6 1. 9 )( 10-8 

ma x lxj-zjl 2.7 )( 10-3 1.0 )( 1 o- 4 
j 

UTU - rTr 2.3 )( 10-8 8.0 )( 10-10 

(~T~ - .fT.f)/.fT.f 1. 001 3 1. 000 045 

It is particularly gratifying to note that, even if maxj 

lxj-zjl had reached its bound, 2.7x10- 3 , it would still be small 

relative to max Ö(x.), which turns out to be 1.25 >< 10-2 • 
J • 

We conclude that even for this case the hypothesis that ~ is vir-

tually indistinguishable from z is nat contradicted. 

We summarize the results of this subsectien as fellows: 

To all practical intents and purposes, the estimators ~ and ~are 

equivalent under assumptions (A13) and (A14). 

3.4.3 The preferenee for ~ 

We have demonstrated that x and z are equivalent for the 

purpose of spectrophotometry; our stated preferenee for x as an 

estimator is based on the following two points: 

1. The numerical calculation of x is considerably simpler than 

that of i by conventional methods. 

2. The fact that ~ is the classica! least squares estimator for 

linear regression allows us to derive a theory of (approxima­

te) interval estimation, based on the similarity of our case 

to that in which ~ is known exactly (Chapter IV) • 

The first point deserves some comment: we know that ~T!, of 

which l is an eigenvector, is nearly singular. In fact, this ma­

trix becomes more nearly singular as the fit of ~0 to the sub­

space spanned by the columns of~ improves. Thus, paradoxically, 

the numerical calculation rf i becomes more difficult in propar­

tion to the impravement of the precision of the analysis.There­

fore we propose the following practical alqorithm for z: 

a) Obtain x from x= (ATA)- 1Ata • 
-- - -o 

b) Calculate rTr - preferably directly by 

rTr = E (a . - E · ) 2 
-- ~ o~ jaijxj ' 



since the short-cut method (rtr = a Ta - XTATAx, which exploits 
-- -o-o ---

the orthogonality relation Et~= QTl is likely to lead to a con-

siderable lossof calculating precision when n >4 say. 

cl Subtract an approximation À; to As: 

" T 
~ ~ r r 

À ~ À s •t• •T· s 
.f.f 1+x x 

from the main diagonal elementsof ATA. Call the resulting matrix 

A • • .. 
dl Obtain the approximation z to ~ from 

.. 
z * -1 T = (A ) A a . - - -o 

e) If ~·-~·is of considerable magnitude, iterate from al, with 

A• substituted for ~T~; else accept i* as z. 
Note: In practice, the iteration has never been found neces­

sary; to give an example, for the matrix,of Table 3.3, Às was 

12.215 < 10- 6 , which agrees to all five significant figures with 

the true À • s 
The chief advantage of this algorithm is the fact that it 

avoids all operations on the ill-conditioned matrix ~T! but, 

instead, works on ~T~ which, under (A14), is of better condition. 

Also, for an automatic computer, no major subroutines are requi­

red except for the solution of the linear systems in steps a) and 

dl . 

. 3.5 An alternative model (Model II) 

Instead of assuming, with (AS), the absorbance to be strict­

ly proportional to (relative) concentration, we may prefer a 

slight modification of this assumption: 

(A5) states that, for any i (i 1, ... ,k), 

The alternative is 

(A5'): 

n 

bio j~1 bij Yj· 

n 
E 

j=1 

( 3. 5:1) 

(3.5:2) 

in which the cj (j=O, ... ,n) do notdepend on i. We may regard -cj 

as a correction to be applied to all bij of the j-th column; it 

is natural to think of the -cj a s cell absorbances which have to 

be allowed for before linearity can be assumed. We shall designa­

te (A5) = (3.5:1), the case treated so far, as Model I, the modi-

fied model (A5')= (3.5:2) as Model II. 61 
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If the cell absorbances are not known to be reproducible, 

Model II, which allows for their presence, is obviously the safer 

model to employ. Indeed, analysis by the more comprehensive Model 

II has become standard practice for all but the earliest experi­

ments (cf. Sec. 2.6.3). 

Rewriting (3.5:2) as 

n n 
b. ( ) c y c ) + r b y 

l.O j=1 j j - 0 j=1 ij j 

bl.. O = y + .21 b .. y., 
0 J= l.J J 

( 3. 5:3) 

we remark that, passing from the unobservables (~, ~0 ) to the ob­

servable arrays (~, ~), classica! least squares theory can still 
be applied to 

( 3. 5:4) 

to yield an estimate ~e'provided we assign a constant coefficient 

of unity to y
0

, i.e. define an (n+1)-column matrix ~e which is~ 

extended on the left by a vector consisting of k elements unity. 

In x, found from x (A tA )- 1Ata, the first element, (x) 
-e -e -e -e -e-o -e o 

say, then estimates 

(x). , j > 0, estimate the yl.. as before. -e J 

elements 

In this approach, ~eis obtained from an (n+1) square matrix 

and has n+1 elements. In a second approach, the extension of x 
to n+1 elements is avoided by the following device: the elements 

of~, ~0 are "referred to their (column) means", i.e. ~, ~0 are 

replaced by ~, ~0 , where 

"' k aij = aij- (i~ 1 aij)/k, j=0,1, ... ,n 

"' and x (of n elements) is found from 

~ = (AtA)-1}\t;); 
- - - -o 

The equivalence of the approaches is readily shown: consider 

the p,q-th element of ~T~ or, (q=O), the p-th element of ~T~: 

k "' "' r~ 1 arp arq; p=1, •.. ,n; q=0,1, .•• n (f\TA) 
- - pq 
k 

r~1 (arp -

k 
r~1 a a rp rq 

k k 
(i,l;1 aip)/k) (arq - 11,1;1 aiq)/k) 

1 k k 
k 1 1~1 aip) (i~1 aiq) · 



So we find: 
~T~ ATA ~T/k I "-T"- AT a a~/k 

(3.5:5) 
~~ - -o 

with ~· the vector of column sums of ~. defined by sj - faij 

a = Iaio· 

Hence 
"- ( "' T"- ) -1 :1-T"-a 
~= 1!1! ~-o (~T~ _ T/ k)-1( T /k) ss ~ ~- a~ • 

On the other hand, 

ST) 
~T~ 

and one verifies, by direct multiplication, that 

with R - (ATA)- 1 and 6 - (k- ~TRs)- 1 

Th en 

~e 
(AT A ) -1 ( a ) 
-~e ~ T.êo 

Now cernparing 

"- T T -1 T T T -1 x = (~ ~ - ss /k) ~ .êo - (~ ~ - ss /k) a~/k 

with the last n elements, say x I of x : -e n, -e 

- T T -1 T 
~eln = (~ ~ - ss /k) ~ ~ - óRsa , 

one finds, aftersome algebraic reduction, that 

T T -1 
(~ ~ - ~ /k) ~/k = 6Rs, 

and 

which proves that the last n elements of x are identical to the -e 
vector ~ and therefore that Model II analyses may be calculated 

"' "' at will either from (~e'~) or from (~,_ê0 ). 
In practice, we prefer the approach that starts from ~e'~' 

because it most easily yields (x ) , the estimator of y
0

, as well -e o 
as Ö((x) ), its estimated standard deviation. -e o 

When using Model II, the assertions of the previous sec-
... 'V '\. '\.. 

tions remain true, provided ~, _ê
0

, ~ etc. are replaced by ~' .êo•~ 

etc., as pne verifies easily. Likewise, n should then be replaced 

by n+1; we shall henceforth write n*, meaning n for Model I and 63 
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n+1 for Model II. For simplicity's sake, however, we shall conti­

nue to write ~· ~ etc. for both models: the context will remove 

any ambiguity by stating the model used. 

Finally, we remark that numerical experience indicates that 

the smallness of ~ - i, and hence the legitimacy of the use of ~· 

is notlost when using Model II; e.g., for Ex. 3, (Sec. 3.4.2) we 

find: 

as against 

though Àmax is 

quantity Àmin 

"'~"' ( 1. 97302858 1.85463502) 
A A 

1.85463502 1. 74948202 

(14.786896 13.944383) 
A~A ; 

13.944383 13.156031 

"- T"' 
only 3.72 for ~ ~ (27.94 for ~1~), t h e 

~ has virtually the i dentical value : 

-3 ~ 
3 . 26 x 10 for ~ ~· 

critica! 



CHAPTER IV 

DATA REDUCTION INTERVAL ESTIMATION 

4,0 Scope 

The present chapter deals with measures of uncertainty asso­

ciated with the estimator ~· The covariance matrix of ~ is found 

to contain the unknown parameters y1 its estimation is neverthe­

less possible for known y and with the substituion ~T~ + ~T~, 
which is shown to be reasonable. Some uses are indicated for the 

estimated covariance matrix and the estimated error variance.Aft­

er a brief account of some interval estimators in the classical 

regression case which aasurne normality of the error distribution, 

the analogy between the classical case and ours is used to draw 

up hypotheses on the distr1but1on of interval est1mators conneet­

ad w1th ~' likew1se assuming a normal d1stribut1on of errors. 

The factual behav1our of these estimators is investigated by a 

Monte Carlo method and found not to lead to a rejection of the 

hypotheses. Finally, the use of these estimators, leading to 

tests and confidence intervals based on x2 and F, is descr1bed1 

a short note on their relevanee to practica is appended. 

4.1 The covariance matrix of~ 

The assumptions prev1ously introduced: 

(A9) 

(A1 0) 

(A11) 

E (Eij) 

E(EijEhk) 

E(~i~) 

0 for all 1 and j 

0 if i I n or j I k 

E2 for all 1 and j 

suffice to calculate the covariance matrix of 

x= (ATA)-1ATa , 
- -- --o 

which is defined as E((E-yl (E-ylT). Starting from 

( 3.1 : 2) 

and the usual approx1mation 

one finds, after considerable, but straightforward algebraic re- 65 
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duction, that, neglecting terms in E3 and 4 
E : 

- - T T T -1 2 ! : E( (~-y) (~-y) ) = (1+y y) (~ ~) .E • ( 4. 1 : 1 ) 

It is instructive to cernpare (4.1:1) with the covariance 

matrix for the classica! regression (~:~), which reads: 

!class 

One remarks that the shapes are identical (the hyperellipsoid 

vTI:v = is similar and homothetical T 
c)' c to wi th Y. !classY. = 

but that for our case each element of ! has "expanded" in the 

ratio 1 + yTy. Closer analysis reveals that in ( 4.1 :1) the term 

YTY (~T~)-1.E2 
arises from E, the error matrix of ~' whereas the "classica!" 

term (BTB)- 1 .-E 2 is due to the error vector ~0 of ~0 • 

The expansion of the elements of I: in the ratio 1 + 

again strongly suggests a treatment of our problem as a variant 

of classica! regression in which the errors in B induce additio­

nal errors in ~0 ; the induced errors equal 

n 
-j,g1 yj Eij 

for the i-th row, or, more generally, -,Ey for ~0 • (Cf. Sec. 3.2, 

Property 1.). 

Again, consider the expected value of ~T~,the sum of squared 

residuals, for given y ; for the classica! case, we have: 

( 4.1: 3) 

whereas for our case we find: 

T T 2 
= E((~0-_Ey) (~0-_Ey)) = (1+y y). kE (4.1:4) 

Again, the comparison of (4.1:4) and (4.1:3) strongly 

suggests a treatment of our case as a variant of classica! re­

gression with induced error in ~0 • 

Summarizing these findings, we conclude: 

The elements of! and E(~T~) have expanded in the same ratio 

1+yTy, when cernparing our case (~ ~+~) to the classica! regres­

sion c~=~l. 

Note: The above is valid for both Model I and Model II, pro­

"' "' vided we take ~' ~0 etc. to mean ~' ~0 with the latter model. 



4.2 The estimation of c 2 and L 

We recall: if, in the classica! case, c 2 is not (assumed) 

known, it is estimated from the residual vector r. Now the result 

E(~'~l = kc 2 was derived on the assumption of an independently 

given y. When y must be estimated from ~, ~0 by the estimator ~' 

the estimator ~2, 

-2 
t 

k-n * 
(4. 2:1) 

should be used rather than (~'~l /k; the divisor k-n* arises from 

the loss of n* degrees of freedom, corresponding to ;he estima­

tion of n '* parameters X· (or x ) from t h e same set of data. - -e 

Combining (4.1:2) and (4.2:1), one estimates Eclass by 

i = (B'BJ-1 • (_r'_r) / (k-n*>. 
-class --

But, for our case, (~ 

-2 
t 

1 + y'y k-n * 

(4.2:2) 

(4.2:3) 

can be derived frorn (4.1:4) under the same assumptions as were 

used to derive (4.2:1). Combination of ( 4.2:3) and (4.1:1) yields 

(neglecting O(t 4 JJ 

- ' -1 ' • l = (~ ~) • (~ ~) I (k-n ) , ( 4. 2: 4) 

which is forrnally identical with (4.2:2) and no longer contains 

the unknown true quantities y. 
As against this, i unfortunately still contain·s the unobser­

vable B. In order to resolve this difficulty, we propose to use 

(4.2:5) 

as an estima tor of L for our case. The substitution of (A1 AJ-1 

for (~'~>- 1 is justified by the following argument. 

a) Consider the matrix norm 11!:!11 : max I.~'Mv/:::;:':::;:1, ~I- 0, Then 

~ 1~) - 1 
has norm 

But our estimator for B'B 

the minimal eigenvalue 11 - Às' 
rep! ace B'B by its estimator, 

fore 

is A'A - Às.!; 
hence, to the 

11 (~·~J- 1 11 = 

-1 
11 

this estimator has 

extent that we maï 

(11 - À ) -1 There-s • 

67 



but by assurnption (A14), >.s/11 !. 0.01, hence I lil I 6 1111 1 to 

within 1%. We conclude that the approximation (~t~)-1 6 (~t~)- 1 

• will not distort measures of uncertainty derived from t by more 
t" the 1% when these measures are quadratic forms ~ tv. 

b) The distortien by ~ 1% arrived at above seems particularly un­

important relative to the uncertainty associated with the term 

<EtE)/(k-n*> in (4.2:4). Assuming for the moment that the resi-

we find that for k-n• = 25, the 

given ~ 2 , extends from 0.54Ê 2 to 

dials are normally distributed, 

95% confidence interval for E2 , 
·2 1.67E • In view of this uncertainty, which affects each element 

caused by using ! fades of both ! and 1, the minor distortien 

into insignificance. 

In our opinion, the argurnents a) and b) sufficiently justify 

the use of (4.2:5) as an estimator of the covariance matrix of~· 

which we shall henceforth denote by l• 

4.3 Suggested uses of Ê2 and Ê 

The following use is suggested for the formulae derived so 

far: 

1. With E2 assurned known, we can, if provided with a set of 

spectra A and an approximate true composition ~· use (4.1:1) to 

calculate the covariance matrix and thus to predict the precision 

expected for a proposed analysis. Note that for this purpose a 

very rough (say ~ 10\) estimate of the yj is sufficient, since t 

depends only slightly on~ under the assurnptions (cf.(A13)) that 

max y. 6 1 and Ey. 6 1. 
. J 2 j J 2 
J Since E is an instrumental constant (for our instrument E = 

-3 2 (1.2 x 10 ) ), trial analyses can, strictly speaking,be replaced 

by such a calculation, provided the linearity (AS) and additivi­

ty (A6) can be assumed to hold. 
2 2. With E not assumed known, we can use (4.2:3) to estimate 

E2 from ETE·and a given composition ~ (e.g. for a trial analysis). 

This estimate gives a rough idea of instrumental precision for 

the analysis in question. 

A rougher, but still practical estimate of instrurnental pre­

cision is provided by s, defined by 

•2 T • T •2 
s = E E/(k-n) = (1+~ ~).E , (4.3:1) 

since (1+XTï)~ varies only between 1.1 and 1.4, and can even be 

assumed constant for a series of· analyses of roughly equal ex­

pected composition. 

3. The most important application of the formulae is the use 

68 of (4.2:5), which estimates l• to derive numerical estimates of 



the varianee of the elements of x and/or of linear functions of 

these elements. 

We reeall the standard result that, for given !• the estima­

ted varianee ~ 2 <~T~) of the linear combination 

~s given by 

(4. 3: 2) 

for arbitrary ~· As an important special case, choose v = ~j' the 

unit vector with 1 as its j-th element and zeros elsewhere; then, 

or 

•2 T• 
a (e .x) 

-)-

; <x.> 
J 

T• e . te . 
-) -) 

((ATA)-1) .. • 52 -- )) 

((ATA)- 1 )~ . • 5 
-- JJ 

( Ê) . . 
- )) 

(4.3:3) 

Thus we have'· in ( 4 . 3: 3) , a particularly simple formula for 

the estimated standard deviation of an element of ~· In our opi­

nion, any computer program for least-squares analysis should,as a 

matter of course, print the o(x.) automatically and obligatorily 
• J 

with the corresponding x .• 
J 

Incidentally, we note that (4.3:3) justifies our preferenee 

"' for Model II calculations by ~e' not ~ (Sec. 3.5): in the former 

approach, an estimate of the standard deviation of the constant 

term <ie>o is irnrnediately available. Chemically, this estimate is 

valuable because it allows us to judge the magnitude of the esti­

mated resultant cell correction. 

We remark that the use of the formulae in this section does 

nót imply any assurnptions beyond those already introduced. 

4.4 The assumption of normal errors and its consequences 

The usefulness of the knowledge of t and Ê2 i s enormously 

enhanced when a joint normal distribution of the tij can be as­

surned. We reeall the following results for the classical regres­

sion case, in which ~ : ~ and the errors tio are jointly normally 

and independently distributed with zero mean and varianee t 2 : 

C1: ETE/c2 is distributed a s x2 with k-n• degrees of fre edom 

C2: The quadratic form 

• T -1 • 2 
Q = (~ - yl <!o> (~ - y_)/t (4.4:1) 69 



C3: 

is distributed as x2 with m degrees of freedom, in which 

n and E (BTBJ- 1 

n and ~
0 

(~T~l- 1 or, equivalently,the 

(Model I) m 

(Model II) m 
-o T -1 

n x n matrix obtained from (~~el by striking out the 

row and column corresponding to the sum row and column 

in ~eT~e· 
Note that 

-
E0 ,by (4.1:2),equals E 1 /e 2 in either case . -c ass 

(For m < n, see Sec. 4.6.3). 

These distributions are independent, hence 

(~- ~)T(lo)-1 (~- ~) k-n* 

rTr m 

is distributed as F with mand k-n* degrees of freedom 

for numerator and denominator respectively. 

With e2 known, C2 leads to a confidence interval for y; for 

e 2 estimated from the residuals, C3 will serve to derive such a 

confidence interval. 

Let us introduce the assumption of normality, analogous to 

the classica! case: 

(A15) The errors eij' i=1, ••• ,k;j=0,1, ••• n, are jointly normally 

distributed. 

(E(eij)=O, the independenee and the common error varianee e 2 have 

been assumed before). 

Even with (A15), the statistica! difficulties still seem in­

superable: with E
2 assumed known, we cannot, it appears, derive 

the distribution of ETE• since even its expected value (4.1:4) 

depends on the true y, which will be unknown except in special 

cases such as trial analyses. The difficulty is aggravated in the 

case of Q, (4.4:1), since its analogue would contain the inverse 

covariance matrix, and hence the unknown factor (1+yTy)-1 ; in ad­

dition, ~T~ is not available. Finally, for the analogue of C3, we 

may expect the unknown factor 1 + y'y to cancel in t~e quotient 

(cf. (4.2:4)), but again B'B is not available and the statistica! 

independenee now certainly cannot be proved. 

Nevertheless, the close analogy of our case to the classica! 

regression and the fact that, under (A14), 

+ ~T~ ~ 1 + YTY 

and 

are likely to be true to a very good approximation, prompts us to 

70 state three hypotheses: 
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(H1) : p " 

rTr 
----------~2 is distributed as x

2 
with 

(1+~T~). E 

good approximation; 

(H2): Q' -

- T - -1 -
(~-y) (!o) (~-y) 

-·- 2 ( 1 + ~ ~) • E 

k-n* d.f. to a 

(4.4:2) 

is distributed as x2 with m degrees of freedom to a good 

approximation, where 

(Model I): m = n and !
0 

(Model II) : m = n and !
0 

(A'A)- 1 

(-~"'·-~"' )-1 or, equivalently: 

the n x n matrix obtained T -1 
from (~~e) by striking out 

the row and column corresponding to the sum row and column 

in ~~e· 
(H3): The distributions of (H1) and (H2) are independent to agood 

approximation, so that 

- T - -1 -(~-y) (!o) (~-y) k-n • 
(4.4:3) 

rTr m 

is distributed as F (m, k-n'*) to a good approximation. 

For the purpose of testing (H1), (H2) and (H3), "toa good 

approximation" can be taken to mean "identically". 

4.5 A test of the hypo~~eses 

~. 
A computer program was written to test the above hypotheses. 

As a souree of random normal deviates, we used the sum of 12 

pseudo-random numbers, each rectangularly distributed in (0,1), 

diminished by 6; the result was multiplied by the chosen value of 

the error standard deviation, E = 10-3 • The pseudo-random numb­

ers ~ were drawn according to the formula 

~n+1 = 100Hn + 1 (mod 10
10

); ~ 

(Allard, Dobell and Hull 1963). 

The test was run as fellows: 

1 0-1 0 ~ 
n+1 

A pair of spectra (n=2) was read in; for greater verisimi'litude, 

an observed set of moderately distinguishable spectra was chosen 

(~-propylbenzene and i-propylbenzene in iso~octane, amax ~ 1.25, 

250(1)272 nm, hence k = 23). These spectra constituted the B ma- · 

trix. From y=(~:;) and.~, Èo =~was calculated. Then, for-each 

sample: 

a) ~,~0 was constructed by adding a random normal deviate 

to each element of ~' Èo; of course, the original ~' ~ 

was not disturbed and fresh random normal deviates were 

used for each sample. 71 
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b) ~,~0 was solved, by Model II, for ~e' according to 

x (A
1

A )-1A 
1

a invertingA 1 Ae, and giving -e -s-e -e ""'<>' -e -

-x 

c) The residual vector _r was calculated from _r = a - A x -o -s-e 

made up; s was calculated by s (r1r/(k-n*))~ 
and the standard deviations Û(xj)' j 

a(x .> = ,,~T~>- 1 >~ .. 5 
J -- JJ 

1,2 obtained from 

d) ..i'.i -T- 1 -T- 2 = 1 + x x and the statistic p = E El(~ ~.E )were cal-

culated. 
"T"'-1 T -1 e) The (~ ~) portion of (~~e) was again inverted, yield-

,.. T"""' 1 
ing ~ ~. and the statistic Q calculated as 

(~ - ,Ï) T~T~ (~ - y) 

Q' = ------------~~----.iT.i • E2 
f) The statistic 'was calculated from'+ Q'. (k-n*)/(p.n) 

with n* = 3, n = 2. 

g) The following quantities were printed: 

x1-y1' o(x1), x2-y2, o(x2)' ETE• s, Q', p, •• 

In all, 1000 samples were ohtained. The distribution of the sta­

tistics of interest, Q', pand'' wasthen investigated in the 

following manner: 

(H1):The hypothesis for p 

with x2 (k-n*> = x2 (20 d.f.); 

were scanned and the number 

classes below was tallied: 

Class Class limits 

1 28.41 ~ p < 31.41 

2 31 • 41 ~ p < 34.17 

3 34.17 < p < 37.57 -
4 37.57 < p < "' -

P(/(20) ~ 28.42) = 0.10 ; 

P(x2 (20) > - 34 .17) = 0.025 ; 

*) Wh en (H1) is true 

is that its distribution coincides 

accordingly, the 1000 values of p 

of sample values falling in the 

Number found Number expected * 

46 50 

23 25 

12 15 

11 10 

P(/(20) > - 31.41) = 0,05 

P(x2 (20) > - 37.57) = 0. 01. 



Testing the numbers found for goodness of fit, we calculate 

2 16 4 9 1 
X 50 + 25 + 15 + TO = 1.16, whereas we find from the tables of 

2 2 2 
x (4 d.f.): P(x (4) ~ 1.04) = 0.9; P(x (4) ~ 1.92) = 0.75. 

Hence, the test does not contradiet (H1). 

(H2): The hypothesis for Q' is that its distribution coinci­

des with x2 (2 d.f.); accordingly, the 1000 values of Q' were 

scanned and the number of sample values falling in the classes 

below was tallied: 

Class Class limits Number found Number expected • 

1 4.605 ~ Q' < 5.991 50 50 

2 5.991 < - Q' < 7.824 32 30 

3 7.824 < Q' < 9.210 12 10 -
4 9.210 < Q' < ~ 10 10 -

P(x 2 (2) > 4.605) = 0.10 ; P(x 2 (2) > 5.991) = o. 05; - -
P(x 2 ( 2 ) > - 7.824) = 0.02 ; P(x

2
<2> > - 9. 21 0) = 0.01 

. ) Wh en (H2) is true 

Testing the numbers found for goodness of fit, we calculate 

2 0 + 4 4 + 0 ~ 0.53, whereas find from the t ables of x JO +TO we 

/(4 d.f.): P(/(4) > - 0.48) = 0.975 ; P(/(4) > - 0. 71) = 0.95. 

Hence, the test does not contradiet (H2). 

(H3): The hypothesis for 4> is that i ts distribut-ion coinci-

des with F(n, k-n*) = F(2,20) accordingly, the 1000 values of 4> 

were scanned and the number of sample values falling in the 

classes below was tallied: 

.. 
Class Clas s limits Number found Number expected 

1 3.49 ~ 4> < 5.85 40 40 

2 5.85 ~ 4> < ~ 14 10 

3 0.010 < 4> ~ 0.052 34 40 

4 0 < 4> < 0. 01 0 12 10 -

P(F(2,20) > 3.49) - = 0.05 ; P(F(2,20) > - 5.85) = 0.01; 

P(F(2,20) < 0.052) = 0.05 ; P(F(2,20) < 0. 01 0) = o. 01. - -

") When (H3) is true 
73 
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Testing the numbers found for goodness of fit, we calculate 

2 0 16 36 4 = 2.90, whereas we find from the tables of x + TO + 40 + TO 

/(4 d.f.): P(x
2 (4) > 1. 92) = 0.75 ; P(/(4) > 3.36) = o.so. - -

Hence, the test does not contradiet (H3). 

We conclude that the statistics p, Q' and ~ can be assumed 

to have the distributions (H1) to (H3) under (A13), (A14) and 

(A15) and that we can use these statistics in the same manner as 

their classica! counterparts (C1) to (C3) of Sec. 4.4. 

4.6 Suggested uses of p and ~ 

Before discussing the use of the statistics p and ~(Q' is of 

lesser importance), it is perhaps not superfluous to stress that 

p and ~ have distributions known to a good approximation only un­

der the explicit assumption of joint normality, independenee and 

common varianee of the errors, (A15). Also, the additivity and 

linearity assumptions (AS, A6) are implied to be strictly true. 

4.6.1 The lengthof the residual vector 

Let us assume that e
2 , the population value, is known from a 

long series of well-behaved, well-conducted analyses. For our 

case, , 2 has been found to be (1.2 x 10-3 ) 2 (Sec. 2.4). 
T 2 •T• 2 * Th en, E El ( e • .§_ .§_) , being distributed as x (k-n ) when the 

assumptions hold, can be stated to satisfy 
rTr 

x2 (k-n .. ;1-a/2) _<-=-=-- < x2 (k-n*·a/2) 2 ",.. "('""" - , 
E •11 

(4. 6:1) 

with probability 1-a, where 1T1 _ 1 + xTx and x 2 (k-n~;S) denotes 

the value of x2 wi th k-n * degrees of freedom such that 

2 * 2 * P(x (k-n) ~x (k-n ;S)) = tl. 

(4.6.1) clearly providesus with a confidence interval for 
T T •2 • r r. However, we wish to u se E E ( or e , or s) · to detect depart-

ures from "good behaviour" of the method or from the assumptions 

made, notably "blunders" in read-out, departure from linearity 

and the presence of extraneous components, (Sec. 2.6), all of 

which tend to increase ETE ; hence, a confidence interval giving 

a lower limit on rTr is not appropriate. \'lhen interested only in 

positive deviations of rTr from its expected value, the relatión 

satisfied by T 
r r 

2 
E 

2 * ~x (k-n ;a) ( 4. 6: 2) 

(when the assumptions hold) with probability 1-a 



is more pertinent. The hypothesis that the assumptions made are 

valid should be rejected when the observ~e of E~E does not 

satisfy (4.6:2); one runs a risk a that such a rejection is not, 

in fact, justified. 

Combining (4.6:2) and the estimator 
_2 

E:rE/ ((k-n'"l. _fT i> E 

we find 
_2 x2 <k-n

4
;a) E 

< ( 4. 6:3) 2 
E k - n* 

For practical example, take k - • 25 and = 0. 01; then: a n a 

-2 2 
1 • 771 E : E or Ê < - 1.33 x 1 • 2 )( 1 o- 3 

< 1 • 6 )( 1 o- 3 • 

In practice, this value of Ê, which, when the assumptions 

hold, has a probability of being exceeded of 0.01, is exceeded 

rather more often. This is not surprising, since (4.6:3) assumes, 

among other things, strict linearity and we know that for narrow 

absorption bands some non-linearity must be accepted (Sec. 5.31; 

also, for bands of any shape,strict linearity of detector respon­

se over wide ranges of transmittance may not be safely assumed. 

In view of this fact, we shall adopt a cautious attitude: 

if (4.6:3) holds, we shall accept that the observations are con­

sonant with the model; if it does not hold, we ought at least to 

examine the residual vector for certain types of pattern in the 

ri (Sec. 2.6) and accept the analysis only when no indication of 

abnormalities is found, though very gross violations of (4.6:3), 

say those for which Ê > 2e, can still be re~arded as prima facie 

evidence that sernething is amiss with the observations, the model 

or both. 

4.6.2 Confi~en c e intervals for z 
Since ~ is distributed as F (n,k-n.'"l, we can state that, when 

the assumptions hold, the relation 

F(n,k-n"'·:a) (4. 6 :4) 
n 

holds with probability - a, where 1
0 

is as defined in Sec. 4.4, 

(H2), and F(n,K-n'";B) is the value of F with n degrees of free­

dom for the numerator and k-n• degrees of freedom for the denomi­

nator such that 

P(F(n,k-n*) ~ F(n,k-n*:B)) = B 

Considered as an inequality on y, (4.6:4) provides us with 

a confidence interval for the true relative composition y, con- 75 



sisting of the interior and boundary of a hyperellipsoid in Rn; 

for n > 2, the usefulness of (4.6:4) is somewhat limited. 

A more generally applicable use of the distribution of ~ is 

for the test of the hypothesis H
0 

that the composition found, ~' 

is identical with an assumed composition ~0 and that ~0 - x is 

"attributable to chance". Fora test of H
0

, the statistic 

<_x - x , ' < î: J - 1 <x - x , -o -o - -o 
k - n • 

F' -
n 

is calculated and a confidence level a ·chosen. Then, if 

F' < F(n,k-n *;a), 

(4. 6:5) 

the hypothesis H
0 

is accepted; H
0 

is rejected otherwise; one runs 

a risk a that such a rejection is not, in fact, justified. 

4.6.3 Confidence intervals for sub veetors of z 

Sometimes confidence intervals and/or tests are required in 

which the quantities of interest are some, but not all elements 

of y orB, say m < n elements. Following Mood (1950:305), who 

treats the problem for the classical regression case, we state : 

If we construct subveetors of ~, y and ~0 by striking out 

the elements not of interest,giving ~m' Ym and ~om say, and like­

wise delete from Io the corresponding rows and columns, giving 

Îom , then 

F' m 

(x - l'<- ,-1<- ' -m ~om lom ~m - ~om 

r'r 

k - n* 
( 4. 6: 6) 

m 

• is distributed as F with m and k-n degrees of freedom for nume-

rator and denominator respectively. Therefore 

provides us, when considered as an inequality on Ym• w.ith a con­

fidence interval for Ym• whereas the hypothesis H
0

: ~m ~om is 

tested by calculating 

(~m T - -1 -
~om) k * - ~om) (lom) (~ - - n 

F' m -
r'r m 

Then, with chosen a, if 

F~ ~ F (m,k-n.*;a), 

76 H
0 

is accepted; H
0 

is rejected otherwise. 



4.6.4 Confidence intervals for an element of z 

When m = 1, the case of 4.6.3 simplifies considerably: let 

us consider the j-th element of ~ and y; {4.6:6) then reduces to 
- 2 T -1 -1 • T -1 {x.- y.) • {{A A) . . ) • {k-n ). {r r) for Model I and to a 

J J - - JJ ~T~ T --
similar expression{with ~ ~ for ~ ~)for Model II. But, by {4.3:3) 

-2 s , -2 T • 
{s = E E/{k-n )), 

so 

Using the fact that 

F{1,k-n*;a) = {t{k-n.;a/2)) 2 , 

a confidence interval for Yj is given by 

lij- Yjl < t<k-n.;a/2!. ~<xjl' 

where t{k-n*;s) is the value of Student's t for k- n• degrees of 

freedom such that 

P{t{k-n•) > t{k-n:*;s)) 6. 

Similarly, testing H x . {x ) . , amounts to calculating 
o J -o J 

li . - {x ) . 1/;{x.) and choosing a. If 
J -o J J 

H
0 

is accepted; H
0 

is rejected otherwise. 

4.6.5 Confidence intervals for a linear function of z 
_.2 T- T -

Since a {~ ~) = ~ l: v {4 .. 3:2) , calculating a confidence in-

terval for the linear function ~Ty and testing the hypothesis H
0

: 

VTX 
- -o 

T-
V X 

outlined in 

quantity 

can be performed in complete analogy to the technique 

4.6 . 4, provided that one first obtains the scalar 

-2 
5 VTl: V 

- -o--
-2 :r-
0 {~ ~). 

This procedure is particularly useful for the important spe­

cial case that the linear function takes the form of the sum and/ 

or difference of some components, i.e. when the vj are -1, 0 or 1. 77 



4.7 Concluding remarks 

1. The most generally useful procedures of the preceding 

section are based on the distribution of ~; we note that, formal­

lY1 these procedures are identical to the classical regression 

procedures using F;we shall refer to them as 'us e of the F-ratio' 

in the following chapters. Thei r formal identity with t he proce ­

dures in the classical case implies that any computer program for 

linear regression, if provided with facilities for testing hypo­

thes es by means of the F-ratio, is suitable for the treatment of 

our special case without adaptation. Unfortunately, this facility 

is usually lacking, though its availab ility seems a logical and 

necessary extension of a program estimating the unknown parame­

ters x. 

2. In view of the drastic assumptions made, it is legitimate 

to inquire to what extent tests of hypotheses and confidence in­

tervals are suitable in practice, i.e. whether trial analyses 

(with known yl give acceptable results when testing the hypothe­

sis x = y. 
To answer this question, we must first remark that minor de­

partures from linearity are known to occur in certain cases, (one 

part in 1000 has been .assumed acceptable in Sec. 5.3) ,and cannot 

be excluded for certain instrumental conditions (Cf. 4.6.1). The 

bias so introduced in the x. is estimated, however, to be in the 
J -

order of magnitude of say 0.002 in the xj or less. Next, we note 

that the asst~ption of the normality and independenee of the err-

ors has not been tested - indeed, it is difficult to devise such 

a test, seeing that the aij are not reproducible in time (Sec. 

2.2.3). Any positive correlation between the errors would lead to 

underes timating the o(xj), i.e. to overestimating the precision 

of the xj. 

Because of the possible bias of ~ 0.002 or so in the xj, 

values a(x.) of the order of magnitude 0 .002 or less, which occur 
J 

with compounds with very characteristic spectra, 

ical meaning: the random variability of the xj 

the effects of non-linearity. However, such bias 

have no pract­

is dominated by 

will be insigni-

ficant when considered relative to those x. for which a(x.) is of 
J J . 

the order 0.004 or more. 

Therefore, the following position seems reasonable: if the 

hypothesis ~ = ~0 is accepted by the procedures of Sec. 4.6, we 

shall accept it. If it is rejected, it is legitimate to scan the 

o(x.): if any o(x.) < 0.002, the hypothesis ~s = (~o)s is tested, 
J J -

78 where the subveetors ~s' (~0 )snow exclude the components with low 



o(xj). If this hypothesis is accepted, 

though with some misgiving; otherwise we 

The procedure, though objectionable 

we still accept x ~0 , 

reject ~ = ~0 • 

statistically by the se-

quential element it contains, still seems the best we can offer. 

For the difficult cases, it need not be invoked often, since with 

complicated mixtures spectrai similarities will usually cause the 

o(xj) to be well in excessof 0.002, even with k-n'* > 30. 

Finally, we point out that cases of clearly failing lineari­

ty can always be treated by the method of Chapter VI. 
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CHAPTER V 

LINEARITY 

5.0 Motivation of the study and the model 

Since much of the present werk is based on the ~ depen­

denee of absorbance (a) on concentratien (c), some inquiry into 

the conditions governing the validity of this linear dependenee 

is in order. It is well known that, strictly speaking,Beer's Law, 

which expresses the linear dependence, is a limiting law, being 

valid, if at all, for absorbances at a single, definite frequency 

v0 only. 

In practice, the limit of a single frequency cannot even be 

approached very closely: all measurements of a must,of necessity, 

be obtained with a band of frequencies, 

since in the limit àv + 0, zero radiant energy would be trans­

mitted, and a fair amount of radiant energy is necessary for a 

reliable measurement. 

Assuming a to be 

investigate the degree 

proportional 

to which 

to c as àv + 0, 

the apparent 

we should 

absorbance 

a' = a' (v
0

,6v), as measured in a band of frequencies àv een­

tering on v
0

, deviates from linearity with c. It is to this in­

vestigation that the present chapter is devoted. 

Instead of .determining the a;c relation experimentally, it 

was preferred to survey a model of the same by numeric methods. 

The model consists of an idealized monochromator being applied to 

an idealized absorber. 

The monochromator 

Following Dennissen 1928 and Williams 1948, we assume 

1) that the energy incident on the mori'ochromator is constant in 

the interval (v
0 

- àv, v
0 

+ àv) 

2) that the dispersion dn/dv is likewise constant in thisint~ 

val 

3) 

80 4) 

that entrance and exit slits are equal 

that diffraction effects are negligible 



Under these assumptions, the energy leaving a monochromator 

slit is given by 

E (v) ( 5. 1 : 1) 
s 

for v
0 

- s ~ v ~ v
0 

+ s, E(v) being zero outside this i nterval. 

E(v) represents an isoscel~s triangle with E(v
0

) = 1 and half­

width s. 

The absorber 

The idealized absorber consists of a single absorption b and, 

represerited by a Lorentz resonance function, 

(v-vol 2 + b2 ' 
a(v) = d 

(Lorentz 1906), shifted so that v
0 

beoomes the new origin, v iz. 

d 
a(v) 

\)2 + b2 
( 5. 1: 2) 

In this. two-parameter curve, 

parameters d and b are connected to 

absorption band by 

symmetrical about v = 0, the 

the physical parameters of an 

{ 

~ax = a (v=O) 

t.v~ 2b , 

where t.v~ is the band half-width: 

(cf. Fig. 5.1). 

The full model consists of the absorber as 'seen' by the 

monochromator. We assume in this, and in the following, that 

equation (5.1:2) holds for the chemically commonest definition of 

absorbance, viz. as the negative decimal logarithm of the trans­

mittance. The point is unimportant, since t.v~ is independent of 

the base of logarithms chosen. The energy transmitted, T(v), by 

the absorber (5.1:2) is, for unit incident energy, 

d 

T (v) = 10 

In order to obtain the apparent absorbance a' (v'),i.e. the ab­

sorbance as seen by the slit, positioned atv v', we first take 

the convolution of T(v) and E(v), normalized on division by 

+oo 

J E(v)dv 
v'+s 
J E(v)dv = s 

v'-s 81 
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a 
t 

to 

0.8 

0.2 

Fig. 5.1 The Lorentz curve of ama~ = 1,6v! 

Also shown is a slit function, 

scale. 

2 3 4 

-" 
-2,v 0 -0. 

d:cawn to an arbitrary 

in which v' is the f~equency of maximum energy of (5.1:1), i.e. 

the nominal frequency setting of the scanning slit. 

This normalized convolution iJE(v)T(v) is the energy trans­

mitted by absorber and slit, expressed as a fraction of the 

incident energy; a' (v) is its negative decimal logarithm. Since 

E(v) is zero outside the interval 

(v'- s, v'+ s), 

we obtain: 
v'+ s d 

a' (v') -10log J s - I v' - vj 10 v2 + b 2 dv } s s . 
v'-s 



Apparently, a' (v') should be written as a' (v;s,d,b), that is 

a' seerns to involve a four-pararneter farnily of integrals.However, 

by a slight recasting of the above formula we can express a' in 

terros of three parameters only. Consicter two absorbers, A1 and 

A2 , both ha ving the same amax. Let A1 have t.v_J.i = 2b and be obser­

ved at v' through a slit s; let A2 have t.vl.i = 2Àb (À~O) and be 

observed at Àv' through a slit Às. Then, clearly, the parameter 

d for A1 equals amax· b
2 

while d for A2 equals amax· À
2

b
2

, Then, 

by substitution in the above formula, 

This is to say that for constant amax' the function a' is 

unambiguously determined by v'/b and s/b; putting b = 1, we have 

a' =a' (amax' v'*, s*), where v' *is the frequency counting from 

the band centre, expres•ed in units of band s• is the èlit width 

similarly expressed. Writing v' and s for v'/b and s/b respecti­

vely, we finally have: 

v'+s 

a' (amax' v' ,s) 

v'-s 

-lv'- vl 
s 

a ma x 
--2--

10 V + 1 

By a standard interval-seeking Simpson integration program, 

numerical values of this function have been obtained for 

s = .1(.1)1.0 

v'= 0(.2)2.0 

amax .2(.2)2.0 

to within 10-6 ; after 

Table 5.1 (p. 106 sqq.). 

5.1 A test of tbe model 

-5 rounding to 10 they are given here as 

No literature data seem to be available on the correct~ess 

of the above model in the speetral region accessible to quartz 

prism instruments. Accordingly, as a test for the model assumed, 

the dependenee of peak absorption on slit width was investigated 

for a few representative fine structure peaks in the ultra-violet 

reg ion. 

Some care had to be exercised in order to select absorption 

bands that conformed at least reasonably well to a representation 

as isolated bands, since such has been assumed explicitly to be 83 
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·the case in the model. Overlap wi th ether bands, if present t.o any 

considerable extent (such as is often the case in the ultra-vio­

let), invalidates to some degree the conclusions that may be 

drawn from the model. The optical slit width was read off from 

the slit width drum and converted to the appropriate units; it 

will be referred to as s, the computed slit width. Because of 

imperfections of read-out,accuracy of s is not thought to be bet­

ter than a few per cent. Apparent half-width of the bands was 

estimated by directly reading on the wave number scale the spec­

tral positions at which the observed absorbance equalled one half 

that at band centre. Again, accuracy was moderate, being limited 

by the necessity to estimate v~ to a tenth of a division on the 

wavelength or wave number scale. 

As a first example, we may consider the band occurring at 

about 319 nm in the spectrum of 2-methylnaphthalene in alcohol; 

the spectrum of the compound between 325 and 300 nm is shown in 

Fig. 5.2. Apparent absorbances at band maximum were measured at a 

number of slit widths; the apparent half-width of the absorption 

band was determined as 3.4 nm, using minimal slit width. Similar 

measurements were obtained on the band at about 274.5 nm in the 

<IJ 
u 
c 0.8 
"' ..0 ... 
0 

"' ..0 

"' 
t D.6 

Q.4 

0.2 

300 - .>.tnm 325 

Fig. 5.2 Part of the absorption s pectrum of 2-methylnaphthalene 

in 96% ethanol. 

Concentration: I .47 millimole/litre, optical path length 

d = I. 0 cm. 



absorption spectrum of an alcoholic solution of p-xylene, a re­

cord of the spectrum of which is shown in Fig. 5.4. The experi­

mentally determined half-width was 3.3 nm. 

On comparing these experimental results with the theoretica! 

apparent absorbances that were derived from Table 5.1, it was 

found that the experiment yielded an (a',s) relationship exhibi­

ting a more rapid falling off of a' with increasing s t han pre­

dicted by theory. The discrepancy was much more marked for p-xyl­

ene than for 2-methylnaphthalene. However, a very satisfactory 

fit was obtained when a smaller value for llv~ was assumed than 

that obtained from the experiment (Figs. 5.3 and 5.5). It is 

reasonable to suppose that the necessity for the downward revi­

sion of llv~ is caused by the interference from shorter wavelength 

bands, the wings of which cause an appreciable underlying absorp­

tion troughout the observed bands. Apart from causing a marked 

lack of symmetry in the apparent band shape, which necessitates 

half-width estimates to be obtained from the distance (absorption 

peak to longer wavelength point of half peak absorbance) only, 

thus reducing precision of the estimate of (llv~lappr the under­

lying absorptlon, being relatively more important at "!..i than at 

"max' will tend to displace "!..i outward from "max' thus leading to 

I 
a 

t 
152 .. 

• •• 
tSO • 

• 
• 

1.48 

• 
1.46 .. 
t44 

0 0.10 0.20 030 
-s/llv! 

Fig. 5.3 The relation between the apparent absorbance and the 

slit width. Data are for the band at ~ 319 nm in the 

absorption spectrum of an alcoholic solution of 2-me­

thylnaphthalene. 

0 Observed 

x Calculated from the Lorentz curve model 

3.2 nm. 

for llv! 

B5 
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abserved band half-widths that are in excess of the correct valu~ 

The observed half-widths, being too large, will cause s/óv~ to be 

underestimated, which in turn results in an underestimate of 

la - a' 1. 

4)0,8 
<J 
c 
<11 
.0 ... 
0 .. 
.oD.6 

<11 

t 

0.2 

260 270 -~nm 

Fig. 5.4 Part of the absorption spectrum of p-xylene in 96% 

ethanol. 

t•app 

l211 

l24 .. 
0 

•. 
t22 0 

1.20 

1.18 

L-----~----~----~----~----~----~_.s/Avl 
0 0.10 0.20 030 

Fig. 5.5 The relation between th e apparent absorbance and the 

slit width. Data are for the band at ~ 274.5 nm in the 

absorption spectrum of an alco holic salution of p-xyl-

ene. 

0 Observed 

x Calculated frorn the Lorentz curve model for óvj=2.7nm. 



The magnitudes of the revisions of A v~ which were applied 

agree with this explanation: the relatively well isolated band of 

2-methylnaphthalene, (Av~)obs = 3,4 nm, required arevision to 

3,2 nm only for the observed apparent absorbances to fit; the 

more strongly interfered with band of E-xylene, (Av~)obs= 3.3 nm, 

necessitated a downward revision of the estimate of this parame­

ter to 2,7 nm. 

The view given here is supported to some extent by an at­

tempt to fit a Lorentz curve to the 2-methylnaphthalene band 

(Fig. 5,6). The curve was made to pass through the observed ab­

sorbances at 31200, 31300 and 31400 cm- 1 , giving a calculated 

half-width of 332 cm- 1 or about 3,35 nm. Comparison of the obser-

I.Br------------------------------------------------------------, 
a 

I • 6 

I • 4 

I. 2 

I .0 

0.8 

0.6 

0.4 

0 .2 

30.5 31.5 32.0 3 2. 5 
3 -1 v/10 cm 

Fig. 5.6 Fitting a Lorentz curve to absorption data. The spectrum 

is that of an alcoholic salution of 2-meth y lnaphthalene. 

0 Observed absorbances 

X Absorbances as calculated from the Lorentz curve pas­

sing through the absorbances observed at 31200, 31300 

and 31400 cm-I. 

The result tends to indicat e that this method, too,over-

estimates Av!. 07 



ved and calculated absorbances at other points in the band, how­

ever, seems to indicate a definitely too large width of the ' 

Lorentz curve, as well as giving clear indications of overlap. 

In the near infra-red, experimental difficulties preclude 

the observation of the (a',s) relationship.From the similarity of 

band shapes between the ultra-violet and infra-red regions, we 

may expect a similar (a',sl relation to hold in the near infra­

red as well. 

We conclude: 

1. Lorentz curves provide a tolerable representation of band 

shapes; 

2. Experimental determination of band half-width tends to over­

estimate óv~. 

5.2 Failure of linearity 

In order to set out clearly why we are concerned about poss­

i~le failures of linearity, we shall now prove that, in prin­

ciple, deviations from linearity always occur unless the trans­

mittance T is a linear function of frequency. 

Let the true transmittance of the sample near the speetral 

position chosen be represented by a power series in v, 

T(v) 

for convenience , we may shift the origin to v' , the speetral 

position chosen, putting IJ= \} -V I I and obtaining T(v) = T'(IJ) 

co + C11J + 2 
+ C21J ... We may note that a change of concentratien 

will cause the coefficients ei to change non-proportionally,since 

T' is nat a linear, but an exponential function of concentration. 

The true transmittance atv= v', u= 0, is evidently c
0

.In order 

to obtain the apparent transmittance, we determine, as befare 

I T(\I)E(IJ) diJ 
T' (IJ=O) app E(IJ) being the slit function 

f E(IJ) d)J 

previously defined, the integration extending over the entire 

slit, IJ = - s to IJ = s. On integration, T~pp is seen to be 

2c2 s2 
T' .(IJ=O) = c + app o "3.4 + + •••• , 

the coefficients of the odd powers of IJ yielding no contribution. 

Since, however, the absorbance, - log T, was assumed to be pro­

portional to concentration, and a change of concentratien will 

88 therefore cause the coefficients c 1 to change non-proportionally 



to the change in c
0

, we may conclude the apparent absorbances, 

- log T , to be non-proportional to concentrations for all s~O app 
unless c 2 ,c4 etc. vanish identically for all ~, which implies 

that b 2 ,b3 ,b4 etc. do so vanish for all v, that is to say, unless 

T(v) is linear in v or a constant over the e~tire slit width. 

i.3 The extent of the non-linearity 

Accepting the Lorentz curve as a working model for band 

shapes, and using Table 5.1, we can investigate quantitatively 

on our model to what degree the assumption of a linear (a,c) 

relation will be violated in various cases. In this section we 

shall confine ourselves to a single component; we shall take its 

relative concentratien xcalc to be estimated from the ratio 

a' /a'· sample reference· 

Assuming a'= 1.6 to be the highest absorbance one is pre­

pared to accept in the reference cell, one calculates for v'= O, 

that is, at absorption maximum, for x = 0.5: 

s/óv~ 0 0.10 0.20 0.30 0.40 

a' reference 1.60000 1.58932 1.55730 1.50479 1.43493 

a' sample 0.80000 0.79471 o. 77930 0.75522 0.72466 

.xcalc 0.5000 0.5000 0.5004 0.5019 0.5051 

Other relative concentrations show a similar trend: 

s/óv~ 0 0.10 0.20 0.30 0.40 

x calc 0.2500 0.2500 0.2503 0. 2513 0.2536 

xcalc 0.7500 0.7500 0.7504 0.7514 0.7539 

(The above values are at v'= 0 too, and with the true reference 

absorbance a= 1.6). 

From calculations such as the above, we conclude that the 

above behaviour is typical in several respects: 89 
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1. The departure from linearity (slit width bias), as measured by 

xcalc- x, is negligible at low s/óv~ and increases rapidly 

with s/óv~. (Hence, an overestimate of óv~ will cause the bias 

to be underestimated). 

2. The bias is ~uch that xcalc < 1 will always be too high. 

3. The bias goes through a maximum at x~ 0.5 (see Fig. 5.7). The 

relative bias, (xcalc -x)/x, may, of course, be more impor­

tant at low x. 

xcalc-x 
bias 

0.002 

t 
0.001 

--- relative concentratien 

Fig. 5.7 The dependenee of slit width bias on relative concentra­

tion. Data are for v' = 0.8 on a Lorentz curve with 

s/óv! 0.10 and a true reference absorbance at maximum 

of I . 6. 

All the above conclusions remain valid at off-peak posi­

tions in the ab~orption band, as may be verified from similar 

calculations on the apparent absorbances in Table 5.1 at v'~ 0. 

The amount of bias, however, which is entirely acceptable at 

s/óv~ ~ 0.20 and v' = 0, increases sharply as one moves outwards 

from the peak. This may be illustrated by the following table. 

s/óv~ = 0.10 aref = 1.6 

V I o.o 0.2 0.4 0.6 0.8 1.0 1. 2 

xcalc 0.2500 0.2502 0.2509 0.2513 0.2513 0.2511 0.2509 

0.5000 o.soo5 0.5012 0.5017 0.5017 0.5015 0.5012 

0.7500 0.7503 0.7509 0.7513 0.7513 0.7511 0.7509 



I • 2 

I .0 

0.8 

0.6 

0.4 

0.2 

Similar "tables for larger value of s/óv~ confirm that the maxi­

mum bias is reached for some value of v' between 0.6 and O.B. In­

creasing s/óv~ will cause the bias to increase sharply as before; 

at v' = 0.8, the following may be considered representative: 

(are.f)max = 1.6 x s/t.v~ = 0.10 x s/t.v".i = 0.20 calc' calc' 

x 
0.2500 0.2513 0.2550 
0.5000 0.5017 0.5067 
0.7500 0.7513 0.7550 

For v' = 0.8, amax = 2.0 and s/óv~ = 0.5, the non-linearity 

of the (a',x) relation is depicted in Fig. 5.8. 
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Fig. 5.8 An extreme case of departure from linearity of the ap~ 

parent absorbance vs. concentration relation,due to slit 

width error. The plotted data are for v' = 0.8 on a Lo­

rentz curve with s/óv! = 0.50. At relative concentration 

= 1.0, the true ~bsorbance atv' = 0 would be 2.0. The 

straight line repteseuts the relation predicted by Beer's 

law. 91 
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In connexion with the overall precision attainable, it seerns 

reasonable to wish to limit the slit width bias to (say) one part 

in thousand of the reference concentration. Frorn Table 5.1, we 

then calculate the following short table for a single component: 

Table 5.2 

Maximurn allowable relative slit width s/Av~ for the bias not to 

exceed 0.001 in x 

For rneasurernents For rneasurernents 
areference at band centre anywhere in the band 

V I = 0 V I 'I 0 

1. 0 s/Av~ ~ 0.3 s/llv~ < 0.1 -
1.6 s/llvl:i ~ 0.25 s/llv~ < o.os -

For single peaks in the ultra-violet, even s/llv~ ~ 0.08 can 

nearly always be attained on our instrument. This will therefore 

keep the slit width bias within acceptable lirnits. S·ince, as we 

shall show in the following section, the effect of the bias is 

aggravated in the rnulticornponent case, the allowable reference 

absorbances should then possibly be lowered. This recornrnenda­

tion has to be weighed against the better precision generally 

resulting frorn the use of higher reference absorbances. Sorne corn­

prornise will obviously have to be found; there are indications 

that, occasionally, slit width bias is responsible for sorne de­

viating results obtained in practice. 

When werking out a cernpromise between the rnaintenance of 

linearity and the wish to u~e high reference absorbances, it 

should be remembered that the slit width bias vanishes both for 

x= 0 and for x= 1, that is, in practice, for low or near unit 

relative concentrations. 

5.3.1 Systematic slit width error in multicomponent systems 

Extension of the results of the preceding sectien to multi-
-1 

component systems requires knowledge of the inverse ~ of the 

matrix of the reference absorbances. It will be convenient in 

this connexion to consider the bias to be caused by an axcess llai 

of the sample absorbances over their values ai, the latter being 

assurned equal to 4 x.(a f) .• The bias in the j-th component 
J J re J 

will then be given by 



-1 
kji being the i-th element of the j-th row of A , the summation 

extending over a number of freque ncies equal to the number of 

components. 

As a special case of this result we may consider a system 

not infrequently wit:l in pra ctice, viz. a two-componen t system in 

which the bias is (almost) entirely d ue to non-l i nearity caused 

by one component at one sampling frequency. In this connexion it 

is important to point out that it seems to have been established 

that one may expect additivity of absorbances to hold, e ven when 

linearity of absorbances with concentration is departed from. Let 

the matrix of reference absorbances, 

be such that a 11 ~ a 22 >> a 12 ~ a 21 > 0 and let s/óv~ for the 

first component at the first frequenc y be so large as to cause 

appreciable departure from linearity (cf. Fig. 5.9). For the mix­

ture to be analysed the absorbances may then be represented by 
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Fig. 5.9 Schematic of the absorption spectra of a two-component 

system, in which slit width error is apt to occur for a 

single component at a single frequency only. 93 



The results of the biased analysis are 

(x1)calc k11 (a1 + t.a1 ) + k12a2 x1 + k11lla1 

(x2)calc = k21 (a1 + t>a1 ) + k22a2 x2 + k21lla1 
so 

llx1 k11lla1 t.x 2 k21lla1. 

However, 

('11 '") ( ." -a12) ' A-1 (det ~) - 1 

k21 k22 -a21 a11 

hence 

t.x1 
: llx2 = k11 : k21 = a22 : - a21· 

If no second component were included in the analysis, the bias in 

the first component would be equal to llx = lla1/a11 • With the 

second component assurned present, this bias becomes 

therefore 

This result may be expressed as follows: 

If, in a systern of two components, bias is present in one 

component at one frequency, the resulting bias in the two-fre­

quency two- component analysis will be such that the originally 

biased component will show a greater bias than if no other com­

ponent were considered present; in the result for the originally 

unbiased component a bias of opposite sign will be found to be 

induced. 

Since one strives in practice to make A as nearly diagonal 

as the spectra permit, a 12 will usually be much smaller. than a 22 ; 

in that case the induced bias will equally be much smaller than 

in the originally biased component. As a practical instance,we 

may mention the systern (naphthalene/2-methylnaphthalene), where 

slit width bias is apt to be more easily introduced at the 2-me­

thylnaphthalene peak at approx. 319 nrn than at the naphthalene 

peak at about 310.5 nrn (Fig. 5.12). 

For systems of more than two components, somewhat similar 

results may be derived; since, however, the expressions obtained 

become rather cumbersome, the problern, if of interest for a par-

94 ticular case, may be more easily attacked by calculation of A- 1 . 



this procedure is to be recommended also for the two component 

case if the bias involves more than a single element of ~· 

5.4 Slit width error and least squares 

Since, as we have establish~d (Sec.5.2), the bias in a 

Lorentz curve is minimal for v 1 = O,that is,at band centre,and in­

creases considerably as one departs from the absorption maximum, 

it may be thought that inclusion of off-centre observations will 

produce an unfavourable effect on the accuracy, since bias is 

inevitably increased thereby. Such is indeed the case, as may be 

evinced by the following comparison: 

amax a 
s/llv~ 

Single point Single point Least squares ma x 21 points reference sample V I = 0 V I = 0.8 v'=-2(.2)+2 
x calc x 

calc l 

1. 6 0.8 0.05 0.5000 0.5004 0.5003 

1. 6 0.8 0.10 0.5000 0.5017 0.5008 

1.6 0.8 0.15 0.5002 0.5039 o.5023 

The results for the 21 equidistant points have been obtained 

by rounding off the pertinent apparent absorbances 

to the nearest thousandth in a and treating 

of Table 5.1 

these va lues 

straightforwardly by the least squares program; the rounding~off 

error in the data can have affected l only very slightly. 

The least squares estimates l are s~en to show a bias inter­

mediate between that exhibited by the best (v'=O) and worst 

(v 1 =0.8) ordinates, as was to be expected. The exact amount of 

bias will depend to some extent on the choice of ordinates made; 

a prependerance of points near v'=O will tend to lower l -x, in­

creasing the number of observations on the flanks of the absorp­

tion band will tend to raise it. 

In spite of the definitely greater tendency to bias shown by 

the least squares treatment of single band data when compared to 

the best point in the band, a number of arguments can be put for­

ward in favour of the least squares method: 

I) In practice, measurements, especially in multicomponent sys­

tems, will hardly ever be confined to points within a single ab­

sorption band, or, if they are, instrumental conditions will 

nearly invariably be such, that s/llv~ takes on values so low as 

to make the bias insignificant. In the former case, the tendency 

to bias caused by the inclusion of sampling frequencies on the 95 



flanks of a band will be held in check to a considerable degree 

by the presumably unbiased observations outside the band in 

question. 

II) Whenever significant bias is present, there will be an asso­

ciated tendency toward an increased varianee of the residuals, 

which in turn will cause the estimated varianee of the estimate x 

to increase beyond the estimate of its varianee in the unbiased 

case. Thus confidence limits or similar measures of reliability 

for x will be widened as the bias increases. Evidently the bias, 

though still present, will therefore be less likely to lead to an 

inappropriate interpretation of the estimated composition. 

III) It should be pointed out that a biased estimate of high 

precision may often be preferable to an estimate that, though 

free from bias, shows a much larger random variability. In many 

cases the varianee in x resulting from the least squares treat­

ment, even when corrected for a relatively larger bias, is con­

siderably smaller than the varianee computed (from the same as­

sumed distribution of the varianee of an estimate of aij) for the 

estimate obtained from n equations solved for the n unknown con­

centrations. In those cases the least squares methad cannot but 

be considered superior. 

5.5 Detection of slit width bias 

IV) In cases of serieus bias, notably at large s/6v~ and nat too 

small concentratien xj of the affected component, the distrihu­

tien of the residuals will give a definite indication of the pre­

senee of bias due to slit width error. In order to see how this 

extremely characteristic distribution arises, we may consider the 

rather extreme case of two Lorentz curves for s/6v~ = 0.30, of 

true peak absorbances of 2.0 and 1.0 respectively. If we consider 

the larger absorbance as a reference, we may calculate the excess 

in a of the lower absorbance over its theoretica! value, which is 

one half the reference absorbance. On platting these values 

against v', a characteristic curve is seen to emerge, having two 

maxima at about lv' I = 0.6, separated by a sharp minimum at v'=O 

(Fig. 5.10,A). 

Expressing the lower curve,sampled at 21 equidistant points, 

in terms of the raferenee curve by least squares, one obtains 

x= 0.5105 as against the theoretical 0.5000. The bias, 0.0105 of 

the reference concentration, is therefore very considerable, asp­

ecially when compared to the value from the single point v'=C, 

which is xcalc = 0.5024. However, on plotting the residuals (Fig. 

96 5.10,B), there is found to exist a remarkable correlation between 



the excesses lla(v') in absorbance and the residuals ri, the lat­

ter being very nearly equal to the fermer after subtracting a 

constant amount. 

Thus,the residualsexhibita pattern that is easily recogni­

sed as that due to slit bias; the pattern is remarkably persist­

ent: it will show in the residuals even when as few as four or 

five equally spaeed observations in the band are included, provi­

ded the band maximum is among them; a considerable number of un­

biased observations does not perceptibly obscure it; in the large 

majority of cases it may be observed in the presence of ether 

components. 

As a demonstration,we may analyse in some detail the results 

obtained on treating by least squares the observations obtained 

on three samples consisting of mixtures of solutions of naphtha­

lene and 2-methylnaphtha lene at wavelenghts 300(1)325 nm, em­

ploying various slit widths. 

The following table summarizes the experiment: 

Slit width at 300 nm (in mm) 0.022 

Taken Found 

No. 240.01 

Naphthalene 0.8543 0.8550 
2-Methylnaphthalene 0.1457 0. 14 56 

~ 1. 74 

No. 240.02 

Naphthalene 0.5022 0.5029 
2-Methylnaphthalene 0.4978 0.4992 

~ 1. 98 

No. 240.03 

Naphthalene 0.1492 0.1495 
2-Methylnaphthalene 0.8508 0 . 8513 

~ 1. 65 

Number of equations: k = 26 

Dimensionality of unknown vector x: n* 3 

Concentratiens of reference solutions: 

Naphthalene: 5.69 millimole/litre 

2-Methylnaphthalene : 2.84 millimole/litre 

Solvent: ethanol 96% 

0.050 

Found 

240.04 

0.8543 
0.1475 
1.72 

240.05 

0.5024 
0.5004 
2.13 

240.06 

0.1493 
0.8513 
1. 79 

0.150 

Found 

240.07 

0.8506 
0.1520 
4.77 

240.08 

0.4936 
0.5138 
8.94 

240.09 

0.1444 
0.8590 
4.69 

The absorbance valuds were obtained under the usual experi­

mental conditons; the cell corrections, being very smal!, were . 

not allowed for explicitly: their effect is thought to be suffi­

ciently taken into account by the added constant on the left side 97 
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Fig. 5.10 Correlation between (A), the excess ~a(v') of sample 

absorbances over their theoretical proportionality to 

concentration, due to slit error, and (B), the resi­

duals from the least squares procedure, ri. Data are 

for s/~vi = 0.30, derived from Lorentz curves for which 

true absorbance at maximum was I .0 for the sample and 

2.0 for the reference. 

of the equations; the constants so determined were smaller than 

0.0017 in absorbance for analyses numbers 240.01 to 240.06 inclu­

sive. The entry on the line marked § is defined by 

k-n* 
E being the residual vector. Thus defined, §

2 is the estimated 

varianee of estimate of an element of ~' the vector of the abser­

bances of the mixture, assuming the absorbances of the reference 

solutions to be exact; the tabulated values of § have been multi­

plied by 1000. 

Cernparing the columns of the table, we note that the agree­

ment between the concentratien taken and that found is extremely 

satisfactory for the smallest slit width. At the intermediate 

width, 0.050 mm, there is seen a tendency for the 2-methyl­

naphthalene concentratien to rise, whereas values for naphthalene 

are lowered; equally, § increases somewhat. Both tendencies, 

though, are of doubtful statistica! significance. 

Turning to the values for ! and § derived from the measure­

ments at the widest slit, the concentrations found, ~ 1 , ~2 are 

seen to be affected by gross errors; ~2 , the relative concentra-

98 tion of 2-methylnaphthalene, is considerably too high; ~ 1 has an 



opposite, though smaller, deviation. The values of g, which may 

be considered an overall measure of the fit of the system of 

equations, rise to a multiple of the corresponding entries in the 

preceding columns of the table. On plotting the residuals (Fig. 

5.11,B) for analysis no. 240.08, one immediately remarks (at H) a 

somewhat distorted, but still easily recognizable version of the 

pattern shown in Fig. 5.10. In conjunction with the intense and 

fairly narrow absorption peak eentering on roughly 319 nm of 

2-methylnaphthalene, (Fig. 5,12), the occurrence of this pattern 

may be regarded as prima facie evidence of slit bias. 

neteetion of slit bias is further facilitated by the fact 

that, even where the characteristic pattern is not present, there 

is a strong correlation between strongly positive values of the 

residuals on the one hand, and intense, rather narrow bands in 

the absorption spectra of the components concerned on the other. 

Exarnples are afforded by the regions at D and H in Fig. 5.11,B, 

which correspond to the bands at about 301 and 310 nm in the 

naphthalene spectrum. That these residuals owe their origin al­

most entirely to excesses óai of the absorbances of the mixture 

a 
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Fig. 5.11 The residuals ri of the analysis of a mixture of solut­

ions of naphthalene and 2-methylnaphthalene. 

Q9 With the smallest slit width obtainable(s a 0.022mm, 

no. 240.02). 

QD At a slit width showing considerable bias(s•O.JSOmm. 

no. 240.08), 

Both reference solutions and mixture were identical for 

A and B. 99 
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over the values calculated from the known composition x is con­

vincingly demonstrated by a comparison of the óai (Fig. 5.14,A) 

for no. 240.08 with the ri. From the experience gained in a fair 

number of comparable cases we may state: 

If slit bias is present, it will tend to increase the length 

(ETE)~ of the residual vector; if the sampling points in an af­

fected absorption band are sufficiently dense,the elements of the 

residual vector will show a minimum at absorption maximum, flan­

ked by two maxima; if, by reason of the lesser density of sam­

pling points in the band , the absorption maximum or a frequency 

very near to it was not included among the points sampled in the 

analysis, the region corresponding to the flanks will show a more 

or less extended relative maximum in r . • 
~ 

For purposes of 

240.07 and 240.09 as 

comparison plots of 

well (Fig. 5.12). 

a 
t 

t5 

1.0 

0.5 

o 2-METHYLNAPHTHALENE 

o NAPHTHALENE 

r . are included for nos. 
~ 

They indicate that even 

300 lOS 310 315 320 

Fig. 5.12 The sampling points and the absorbances of the referen­

c~ solutions in the part of the absorption spectra of 

naphthalene and 2-methylnaphthalene used for analyses 

nos. 240.01 to 240.03. 

a Naphthalene, 5.69 millimole/litre 

o 2-Methylnaphthalene, 2.84 millimole/litre. 
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Fig. 5.13 The residuals ri of the analyses of two further mix­

tures of solutions of naphthalene anrl 2-methylnaphtha­

lene, at slit width s = 0.150 mm, withstrong bias. 

~ Analysis number 240.07;~ Analysis number 2 40. 0 9. 

with a relative concentratien of either component of only 0.15, 

essentially identical distributions of 

hence permitting detection of the bias 

the ri will be obtai ned, 

present. 

It is instructive to compare ri with 6ai for the smallest 

slit as well (Fig. 5.11,A and Fig. 5.14,B, resp.). Again, the 

correlation of the two veetors is striking. The observation mar­

ked A in both graphs deviates fairly strongly. Since it corres­

ponds toa reference absorbance of 1.760 for naphthalene, which 

is well above the range usually considered reliable in t h e pre­

sent work, and since it also is an off-peak sampling point, there 

is good reason to view the observation with extreme suspicion. 

In the residuals, the regions indicated by B ánd C seem, though 

faintly, to point to some slit width bias persisting even in this 

case. This would appear to be confirmed by the positive 6ai's for 

the corresponding regions1 it would almost certainly be correct 

to ascribe at least the greater part of the error in ~ to the ob­

servation at 301 nm (A), which tends to increase ~1 , and the com­

bined effects of the slit biases in bands B and C, the latter 101 
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Fig. 5.14 The excesses öai of 

of solutions of 

the absorbances a. of the mixture 
1 

naphthalene and 2-meth y lnaphthalene 

over their theoretica! value s, as calculated from 

öa . = (ai)obs - rx.(a f) ... 
l j J re lJ 

0 For analysis no. 240.08, at the largest sli t width, 
s = 0. 150 mm. 

® For analysis no. 240.02, at the smallest slit width 0 
s = 0.022 mm. 

tbe composition x was equal for both samples,x 1•0.S022, 

x 2=D.4978. 

band having the strenger effect, and tending to increase ~2 at 

the expense of ~1 • 

5.6 Prediction of the extent of the bias 

The expression for the magnitude of the bias, which for the 

case of n observations was given by 

ÖX. 
J 

l: 
i 

-1 kji being the i-th element of t he j-th row of ~ , may be 

immediately extended to the least squares case,provided wedefine 

a left-inverse v' to matrix A by 

v' - (~'~>-1~· . 



We may then write at once 

liSt. Ev .. lla . 
J i J l. l. 

in which v .. is the i-th element of the j-th row of yT, or, in 
Jl. 

the more convenient matrix notation, 

liSt. v.Tlla, in which v.T is the j-th ro.w of VT. 
J - J - -J 

Knowledge of VT will therefore immediately enable one to read off 

the effects of any change llai on all elements of !' the least 

squares approximation vector of the composition of the mixture. 

As an application, we may now give a more rigorous discus­

sion of the influence of lla on !, which has been treated more 

loosely above. A representation of the elements v 1i and v 2i is 

given in Fig. 5.15; indices 1 and 2 refer to naphthalene and 

2-methylnaphthalene respectively. From the graph we see at first 

glance that lla301 and lla319 will cause relatively very large 

changes in St. An excess of 0.001 in absorbance at 301 nm will 

produce an increase of 0.00039 in ~1 jointly with a decrease of 
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Fig. 5.15 A graphical representation of the elements v .. of the 
J 1 

left-inverse ~T for the two - co mponent system (naphtha-

lene/2-methylnaphthalene) for reference solutions and 

sampling points as s hown in Fig. 5.12. 
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only one third of this amount in x
2

• At 319 rum the same increase 

in the absorbance of the mixture will, on the contrary, cause a 

decrease in ~, of magnitude A~1 = - 0.00046, compensated by an 

increase in ~2 of+ 0.00055. The graph also allows us to conclude 

that roughly equal excesses Aai in the absorption bands at 310 

and 319 rum respectively (cf. the graph of Aai, Fig. 5.14,B) will 

have far from equal effects on!: disturbance of the latter band 

will affect ~ rather more seriously than similar errors in the 

former region. Such positive Aai in both bands as are shown in 

Fig. 5.14,B will therefore tend to make Ax1 positive, as statP.d 

above. 

We may also remark that the results ~ are very insensitive 

to errors in absorbance of the mixture at about 308 and 313 nm. 

It is precisely at these points that the Aai are virtually zero 

even at the largest slit employed (Fig. 5.14,A). As against this 

we note that the regions that are most sensitive to error coin­

cide with those most easily affected by departure from linearity 

of the (a',c) relation. 

5.7 Reduction of slit bias 

The preceding sections have dealt at some length with the 

detection of slit bias; a single run on a known mixture will, by 

the techniques set forth, give unequivocal evidence of the pre­

senee of such bias. Even if the composition of the mixture is 

known only qualitatively, that is, if the presence of absorbing, 

but unknown components is excluded, comparison of the spectra of 

the constituent components with the pattern exhibited by the re­

siduals will usually give ample indication that such bias is 

present. 

If the presence of slit bias has been detected and if its 

magnitude is objectionable for the specific purpose considered, 

one may always have recourse to at least one of the following 

four procedures. 

(I) Reduction of slit width. If the available radiant energy is 

sufficient, the simplest means for reducing the slit bias will 

obviously consist in reducing the slit width. Since this entails 

a reduction of the power reaching the detector, the sensitivity 

of the detecting and amplifying parts of the apparatus must be 

increased, which in turn will lead to a greater random variabili­

ty of the absorbance values read. However, this may often be com­

pensated for by imposing a larger time constant on the read-out 

104 system. 



The available energy will usually be such that in the ultra­

violet region for A > 240 nm values of s/bv~ = 0.10 will not be 

exceeded at a mechanical slit width of 0.02 mm. This ensures that 

the amount of slit bias expected will nearly always be unobject­

ionable, whereas diffraction effects may safely be neglected. 

This estimate is based on the absorption spectra of organic com­

pounds showing fine structure, and may not necessarily hold for· 

certain ether absorption bands, e.g. of the ions of the lantha-

nides. As one moves through the visible 

the ratio of mechanical slit width to 

diatien diminishes from 80 at 250 nm to 

into the near infra-red, 

the wavelength of the ra­

a at 2.5\l for s = 0.02mm~ 

it is clear that the risk of unwanted diffraction is quite con­

siderable at the red end of the speetral region accessible. In 

conjunction with the lower dispersion, narrower absorption bands, 

lower detector sensitivity and high concentratien of solute ge­

nerally encountered in the near infra-red, the diffracti:on effect 

will effectively preclude a reduction of s in this region. How­

ever, the much more general technique indicated below, (IV), will 

still be applicable. 

{II) Increasing band width. It will be possible in some cases to 

lower s/Av% by causing bv~ to increase. The impravement may be 

effected by changing to a more strongly pol ar solvent, e.g. by 

using ethanol instead of a hydracarbon such as 1.!!.2-octane. The 

spectra become somewhat 

that in general some 

more diffuse by the change~ it fellows 

loss of specificity (i.e. a relativa in-

crease of the covariances when compared to the variances) must be 

accepted in exchange for the reduction in bias. 

(IIT) Reduction of concentration. Since lowering the absorbances 

of the raferenee solutions results in a decrease in bias, a re­

duction of all concentrations may be expected to have a benefi­

cial effect. It should be realised that this advantage is par­

tially offset by the lower preelsion resultïng from the dilution, 

since the variance-covariance matrix of the l., though unaffected 
J 

in shape, is multiplied by the aquared reciprocal of the dilution 

factor, at least when all raferenee concentrations are reduced by 

the same factor. 

(IV) Analysis in terms of known mixtures. Instead of using solu­

tions of the pure compounds as refe~ence absorbances, one may em­

ploy, in the raferenee cells, solutions tha·t contain known mixtures 

of the compounds required. For best results, these mixtures 

should be chosen so as to bracket the composition of the unknown 

mixture for all components. This technique, which requires some 105 



previous knowledge about the range of the x. expected, is quite 
J 

general and wil! successfully cape with all types of non-lineari-

ty. On account of its importance the methad is dealt with more 

fully in Chapter VI, where an application to the system naphtha­

lene/2-methylnaphthalene at the largest slit width (s = 0.150mm) 

is given. 

1 Table 5.1 

Apparent absorbances, obtained by scanning a family of Lorentz 

curves with a slit of triangular distribution of radiant energy. 

In this table, 

amax is the true absorbance at absorbance maximum, 

s/öv~ is the ratio of half-energy width of the slit 

to the true half-absorbance width of the 

Lorentz curve, while 

v'=~v/óv~ is the distance of the speetral position from 

the position of maximum absorbance, expressed 

as the ratio of this distance to one half the 

true half-absorbance width of the Lorentz 

curve. 

106 Absorbances are understood to be decimal logarithms. 
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0.6 

0.8 

1 .0 

0.00 0.05 0,10 0.15 0.20 0.25 o. 30 o. 35 0,40 0 . 45 0.50 

0.2 0 . 2.0000 0.19967 0.19868 0.19709 0,19494 0.19232 0.18930 0.18596 0,18239 0, 17866 0.17482 

0.4 0.40000 0.39934 0.39736 0.39415 0.39981 0.38447 0.37827 0 . 37140 0,36399 0.35621 0.34817 

0,6 0.60000 0,59900 0.59604 0 .59119 0,58460 0.57644 0.56692 0,55628 0,544 76 0 .53259 0.51998 

o.s 0,80000 0.79867 0.79471 0 .78820 0.71930 0.76822 0.75522 0,74060 0,72466 0.70775 0,69016 

1,0 1.00000 0,99834 0.99337 0 .98518 0,97393 0 . 95982 0.94315 0.92428 0 . 90367 0.88165 0,85867 

1.2 1.20000 1.19800 1.19203 1.18214 1.16847 1.15124 1.13075 1.10742 1.08173 1.05422 1.02542 

1.4 1.40000 1,39767 1. 39068 1.37907 1.36293 1 ,34246 1.31796 1.28990 1,25883 1.22543 1.19037 

1,6 1.60000 1.59733 1.58932 1.57597 1.55730 1 .53348 1.50479 1 .471 71 1 . 43493 1.39522 1,35)46 

1.8 1.80000 1.79700 1.78796 1.77284 1.75159 1 .72429 1.69121 1 . 65286 1.60999 1.56357 1.51466 

2.0 2.00000 1 . 99666 1.98660 1.96968 1,.94579 1 ,91490 1,87722 1.83330 1.78399 1 . 73044 1,67393 

0.2 0.19231 0,19204 0.19123 0.18992 0.18814 0,18593 0 .18337 0.18049 0.11738 0.17408 0 . 17066 

o. 4 o. 38462 o . 38405 o. 38238 o. 37966 o. 37595 o. 37136 a. 36600 a . J6ooo o. 35348 o. 34656 o.33936 

0.6 a .S7692 0.57605 0.57345 0.56920 0 . 56341 0.55624 0.54786 0.53845 0.52821 0.51 732 0.50598 

0.8 0.76923 0.76802 0,76443 0.75855 0.75053 0.74057 0,72891 0.71579 0.70150 0.68628. 0.67040 

. 1 . o 0 .9615.4 0,95998 0 . 95532 0.94770 0.93728 0.92432 0 .9091 1 0.89197 0.87327 0.85333 0,83251 

1,2 1.15385 1.1"5191 1 . 14613 1.13665 1.12367 1.10748 1.08843 1.06695 1.04345 1.01839 0.99221 

1.4 1,34615 1.34382 1.33685 1.32540 1.30967 1.29002 1.26684 1.24064 1 ,21 196 1.18136 1.14941 

1.6 1,53846 1.53571 1.52749 1,51393 1.49529 1.47191 1.44429 1.41301 1,37874 1,34218 1.30402 

1.8 1,73077 1,72757 1.71803 1.70226 1,68050 1. 65315 1 .62075 1 . 58401 1.54373 1.50078 1.45600 

2.0 1,92308 1.91942 1,90848 1.89037 1. 86530 1.83370 1.79619 1 .75359 1.70688 1 ,65710 1 ,60530 

0,2 0 . 17241 0.17228 0.17186 0.17117 0.17a19 a.16895 0.16743 0,16567 0,16367 0,16146 0.15908 

0.4 0 . 344,83 0.34450 0,34351 0.34188 0.33962 0.33677 0.33336 0 .32944 0.32506 0.32028 0.31516 

0.6 0.51724 0.51667 0.51495 0.51 213 0.50827 0.50345 0.49775 0 . 49126 0.48408 0. 47632 0.46807 

0.8 0.68966 0 . 68878 0,68618 0,68193 0,67614 0.66896 0.66054 0 . 65105 0,64065 0.62949 0.61770 

1.0 0.862a7 0.86084 0.85719 0.85125 0.84321 0.83328 0 .82173 0.80879 0,79470 0.77970 0.76396 

1.2 1.03448 1,03285 1.02800 1.02011 1.00947 0.99640 0.98126 0,96441 0.94619 0.92689 0.90680 

1.4 1.20690 1.20480 1.19858 1.18850 1.17492 1.15830 1.13914 1.11791 1.09507 1.0710o\ 1.04617 

1 .6 1.37931 1.37670 1.36896 1.35642 1.33956 1.31898 1.29533 1.26925 1.24135 1.21214 1.18208 

1.8 1,55172 1,54854 1.53912 1.52387 1,503J8 1 •. 47844 1.44985 1 . 418.45 1', 38501 1 .35020 1.31458 

2.0 1.72414 1.72033 1 . 70907 1.69084 1.66638 1.63666 1.60268 1.56551 1.52609 1.48527 1.44373 

0.2 0.14706 0 . 14704 0 . 14697 0.14683 0.14662 0.14630 0.14586 0,14526 0.14449 0.14355 0.14243 

0.-1 0.29412 0,29401 0,29368 0.29312 0.29230 0,29120 0.28981 0 . 28811 0,28607 0.18371 q.281102 

0.6 0.44118 '0.44092 0 .44014 0.43884 a . 4 3703 0,43471 0.43187 0.42854 0.42473 0.42045 0.41575 

0.8 0.58824 0.58776 0,58635 0.58402 0.58083 0,57681 a.5720 4 0.56657 0,56047 0.55380 0.54662 

1. 0 0 .73529 0.73454 0.73231 0 .72866 0,72369 0,71754 0.71034 0.70223 0,69334 0.68382 0.67373 

1.2 0.88235 0.88126 0,87801 0.87274 0.86563 0 .85689 0.84679 0.83554 0.82338 0.81 050 0.79704 

1.4 1.02941 1.02791 1.02347 1.01628 1.00664 0.99 4 89 0 . 981 42 0.96657 0.95067 0.93400 0.91679 

1,6 1.17647 1.17450 1..16867 1.15928 1.14674 1.13156 1.11427 1.09536 1.07529 1.0544) 1,03309 

1.8 1.32353 1.32102 1.31363 1.30174 1,28595 1 . 26692 1.24537 1.22198 1.19733 •1,17191 1,14610 

2.0 1.47059 1.46748 1.45834 1,44367 1.42426 1.40099 1.37479 1.34651 1.31690 1.28657 1 ,25600 

0.2 0,12195 0.12199 0.12212 0,12231 0.12255 0.12282 0,12308 0.12331 0.12347 0.12353 0 , 12347 

o. 4 o. 24390 o. 24393 o. 24402 o. 24~14 o. 24427 o. 24437 o. 24440 o . 24 4 32 o. 24409 o. 24366 a. 24300 

0.6 0.36585 0 . 36582 0.36570 0.3fi?49 0,3651 6 0.36467 0.36400 O. J63tl9 0 . 36193 0 . 36048 0.35872 

0.8 0.48780 0.48765 0,48717 0.48638 0.48524 0.48375 0,48190 0 .47968 0,47709 0,47412 0.47077 

1.0 0.60976 0,60942 0,60843 0.60679 0.60452 0.60163 0.59817 0.59417 0.58966 0.58470 0."57931 

1.2 0 .73171 0.73115 0.72948 0 .7267 5 0.72301 0,71834 0.71284 0.70662 0.69976 0.69238 0.68455 

1.4 0. 85366 0.85282 0 .85032 0.84624 0.84072 0.83390 0.82597 0.81711 0.80750 0.79730 0.78666 

1.6 0.~7561 0.97443 0.97096 0.96528 0.95766 0.94834 0.93759 0.92572 0 .91299 0.89963 0.88585 

1.8 1.09756 1.09:)99 1.09136 1.08388 1.07385 1.06168 1.04777 1 , 03254 1.01635 0.99952 0.98232 

2;0 1.21951 1,21750 1.21 157 1.20202 1.18931 1 . 17397 1.15656 1.13764 1.11769 1.09712 1.07626 

0.2 0.10000 0 . 10006 0.10025 0,10056 0.10098 0.10149 0.10208 0.10271 0.10337 0.10402 0.10463 

0.4 0,20000 0.2000~ 0.20035 0.20078 0.20135 0.20204 0 . 20281 0.20362 0.20443 0,20519 0.20585 

0.6 0.30000 0.30008 0,30030 0.30066 0,30112 0.)0166 0 . 30223 0.30278 0.30327 0.30364 0.30387 

0.8 0.40000 0 .40003 0,40010 0.4002a 0 . 4 0030 0.40037 0,40037 a .4002S 0.39999 0.39953 9 .39886 

1.0 0.50000 0 .49994 0.49974 0,49940 0 . 4 9889 0.49819 0.49727 0 .49611 0.49469 0 .49300 0.49102 

1.2 o.6oooo o.59981 o.5992J o.59827 o.59691 o.S9515 o.59299 o.59043 o.S8749 o.58418 o.58Q54 

1.4 0 .70000 0.69964 0.69858 0.69681 0.69436 0,69126 0.68754 0,68326 0,67847 0 .67323 0.66760 

1.6 0,80000 0.79944 0,79777 0.79502 0.79126 0,78654 0,78098 0.77467 0,76773 0 .76028 0.75239 

1.8 0.90000 0.89920 0.89681 0.89291 0.88760 0,88103 0.87334 0.86473 0 .85537 0.84543 0.83507 

2.0 1.00000 0.99892 0.99571 0,99048 0,98342 0.97473 0.96467 0.95350 0 ,9414 8 0,92884 0.91578 
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1.2 

'·' 

1.6 

1.8 

2 .0 
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o.o s 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

0.2 0 . 08197 0 .08203 0.08222 0.0825 3 0.08297 0.08351 0.08416 0.08490 0.08572 0.08658 0.08748 

0.4 0.16393 0 .16404 0.16434 0.16484 0,16553 0. 16639 0.16740 0.16854 0 . 16977 0.17106 0.17238 

0 . 6 0.24590 0 .24602 0.24636 0.24693 0,24769 0.24864 0.24973 0 .25095 0.25223 0.25355 0.25486 

o.8 0.32787 o.32797 o.32828 o.32879 0.32946 0.33027 0.33119 o.33218 o.33J19 o.33417 o.J3S08 

1.0 0.40984 0 .4 0990 0.41011 0.4 1 042 0.41083 0,4113 1 0.41 180 0.41228 0.41269 0,41301 0.41319 

1.2 0.49180 0.49181 0. 4918 3. 0.49184 0.49182 0,49175 0. 49158 0.49129 0.49083 0.49019 0.48934 

1.4 0.57377 0 . 57369 0.57345 0.57304 0 . 57244 0.57162 0.57056 0.56925 0.56766 0.56 580 0.56366 

1.6 0.65574 0.65555 0,65498 0.65402 0.65267 0,65092 0.64876 0.64620 0.64326 0.639 94 0.63629 

1 . 8 0 . 73770 0,73738 0 .73641 0.73479 0.73254 0.72967 0.72621 0 .72220 0.71767 0.71270 0.70733 

2.0 0.8 1967 0 . 8 19i9 0 . 8 1 774 0.81535 0.81205 0.80789 0.80294 0 . 7972 7 0.79098 0.78415 0.77690 

0.2 0.06757 0.06762 0.06779 0.06806 0.06844 0.06893 0,06952 0.07021 0.07099 0.07185 0.07278 

0.4 0.13514 0. 13523 0.13551 0.13598 0 . 13662 0 .13745 0.13844 0 .139 58 0,14086 0.14226 0.14375 

0 . 6 0.20270 0.20282 0.20317 0.20375 0 . 204 55 0. 20 556 0.20676 0.20814 0.20967 0.21 1 31 0.21304 

0.8 o. 27027 0. 27{)40 o. 21077 0. 27138 0. 27223 0 .27328 o. 27452 o. 27592 o. 27745 0. 27907 0 . 2807 5 

1.0 0.33784 0.33796 0 . 33830 0.33887 0.33965 0.34061 0.34172 0.34295 0.34426 0.34561 0.34697 

1.2 0.40541 0 .4 05 50 0.40578 0.40623 0.40683 0.40'2. 55 0.40837 0.40924 0 . 41013 0.41099 0 ,41179 

1.4 0 .4 7297 0.47303 0.47319 0,47344 0.4 7 376 0.47412 0.47449 0.47483 0 . 47510 0.47527 0 . 47531 

1. 6 0 . 54054 0,54054 0,540 53 0 , 54051 0.54045 0 . 54032 0.54009 O, J 3973 0,53921 0,53850 0.53760 

1.8 0 .60811 0.60804 0.60782 0.60745 0.60690 0.60615 0~60518 0 . 60397 0.60250 0.60075 0.59874 

2 . 0 0 . 67568 0.67552 0.67505 0.67425 0.61311 0.67163 0.66979 0.66758 0.66500 0.66207 0.65881 

0.2 0.05618 0.05622 0.05636 0 .0 5658 0.05689 0 . 05729 0.05779 0.05837 0.05903 0.05979 0.0606 2 

0.4 0.11236 0.1 1244 0.11266 0 .11 307 0 . 11362 0.11433 0.11519 0,11620 0 . 11735 0.11864 0.12006 

0.6 0.16854 0.16664 0.16895 0 .1 6947 0.170 19 0.17111 0.17222 0.17351. 0,17498 0.17660 0 . 17835 

0.8 0.22472 0 .22484 0.22519 0.22578 0.22660 0.2276 4 0.22886 0.23032 0.23193 0.23370 0.23559 

1.0 0,28090 0.28102 0 . 28139 0.28201 0.28285 0.28392 0.28519 0.28664 0. 28825 0 . 28998 0.29182 

1.2 0 . 33708 0 . 33720 0.33756 0.33814 0.33895 0,33995 0,34114 0,34248 0.34394 0.34548 0.34708 

1.4 0.39326 0,39336 0.39368 0.39419 0 , 39489 0,39575 0.39674 0.39785 0.39 902 0.40023 0.40145 

1 . 6 0.44944 0.44952 0. 4 4976 0.45015 0,45067 0.45130 0.45201 0.45276 0.45353 0 .4 5427 0.45495 

1. 8 0 . 50562 0.50567 0.50580 0.5060 2 0 .50630 0.50662 0.50694 0.50724 0.507 4 7 0.50762 0 . 50763 

2.0 0.56 180 0 , 56180 0.56181 0.5618 1 0 , 56178 0.56171 0.56155 0 .5612 8 0.56088 0.56031 0.55955 

0.2 0.04717 0 . 04720 0.04731 0 . 04749 0.04773 0 . 04805 0.04845 0 , 04891 0.04946 0.05008 0.05077 

0.4 0.09<i34 0.09440 0 . 09460 0.09492 0 . 09537 0.09594 0.09665 0.09749 0.09846 0.09955 0.1Ö'078 

0.6 0.14151 0 .14 160 0 .141 86 0.14229 0.14290 0.14367 0.14462 0. 14 574 0.14702 0.14845 0.15004 

0.8 0.18868 0 .18 878 0.18909 0.18961 0.19032 0.19124 0. 19235 0 . 19366 0,19514 0.19680 O.H860 

1. 0 0.23585 0.23596 0 . 23630 0.23687 0.23765 0.23865 0.23986 0.24126 0 . 24285 0.24460 0.24649 

1.2 0.28302 0.28314 0.28349 0 . 28407 0.28488 0.28591 0.28713 0.28855 0.290 14 0.29188 0.293'?4 

1.4 0.33019 0.33030 0.33065 0.33122 0.33201 0.33300 0.33419 0,33554 0.33704 0.33866 O.J4037 

1. 6 0.37736 0.37747 0.37779 0.37832 0.3790 4 0.37995 0.38102 0.38223 0.38355 0.38495 0 . 38641 

1.8 0.42453 0.42462 0.424 90 0.42536 0 .4 2598 0.42674 0.42764 0,42863 0.42969 0 .4 3078 0.43188 

2 .0 0.47170 0.47177 0.471 99 0 . 47234 0.47281 0.47339 0. 474 04 0.47474 0 . 47546 0,47616 0.-47681 

o.2 o.o4o.oo o.0400J o.o4ott o.o4o2s o.0404 4 o.o4069 o.04100 o;o4137 o.o4tao o.04229 o.042Bs 

0.4 0 . 08000 0.08005 0.08020 0.08046 0.08082 0,08128 0.08185 0.08252 0 . 08331 0.08421 0.08521 

0.6 0.12000 0 .12 007 0,12028 0. 1 2063 0. 1 211 3 0.12176 0.12254 0.1234 7 0.12453 0.12574 0.12710 

0.8 0.16000 0.16009 0.16034 0 . 16077 0 . 16137 0.16215 0.16309 0.16420 0.16548 0.16692 0.16852 

1.0 0.20000 0,20010 0.20039 0.20088 0.20156 0 .20243 0.20348 0.20473 0.20615 0.20774 0.20950 

1.2 0.24000 0.2<1.011 0.24042 0.24094 0.24167 0.2426 1 0.24373 0.24505 0 , 2 4655 0 . 24822 0.25004 

1 .4 0.28000 0.28011 0.2804.4 0.28098 0.28173 0 . 28268 0.28384 0.28518 0 . 28669 0.28836 0.290 17 

1.6 0.32000 0 . 32011 0 . 32043 0.32097 0.32172 0 . 32266 0 .32380 0.32511 0 . 32657 0,328 18 0.3299 0 

1.8 0 , 36000 0 . 36010 0,36042 0 . 36093 0.36 165 0.36255 0.36362 O.J6 4 84 0.36621 0,36768 0,36924 

2.0 0.40000 0.40010 0.40039 0 . 40086 0.40 15 1 0 , 40233 0,40130 0.40439 0.40559 0,40688 0.4082 1 



CHAPTER VI 

NON-LINEARITY ANALYSIS IN TERMSOF MIXTURES 

6.0 Some causes of non-linearity 

As has been pointed out at the end of chapter V,circumstances 

may arise in which proportionality of absorbance and concentra­

tien cannot be expected to hold. The example given there for the 

system naphthalene/2-methylnaphthalene was rather an artificial 

one in that s/Av~ could be drastically reduced for our instrument, 

which effectively restored linearity. However, as one enters the 

part of the infra-red accessible to quartz instruments (up to À ~ 

2.5~ for the Zeiss PMQ II), considerable departure from linearity 

becomes the rule rather than the exception. 

The reasons for this undesjrable effect are several: 

a) While absorption bands tend to be narrower in the infra-red 

than in the visible and ultra-violet regions,detector sensitivity 

with present instruments is lower at longer wavelengths (cf.Goddu 

in Reilley 1960:353-4); hence s/Av~ is adversely affected both in 

its numerator and denominator. 

bi Dispersion of most prism materials in common use is lower in 

the near infra-red than elsewhere in the usable part of the spec­

trU!ll: a given mechanica! sl,it width therefore corresponds to a 

larger optica! slit width s, again tending to increase the ratio 

s/Av~. Lowering s is, moreover, impracticable on account of harm­

ful diffraction effects, since these also effectively impair li­

nearity. 

c) For many compounds- there are some notable exceptions - molar 

absorptivities E are low in the near infra-red, often being of 

unit order of magnitude. This compares unfavourably with rather 
'3 

usual values for E as found in the ultra-violet, such as 10 to 

10 5 • As a consequence, concentrations c must be rather high, say 

of the order of magnitude of 1 mole/litre, for the absorbances to 

be comfortably observable at the usual çell lengths of one, or at 

most several, centimetres. (A matched set of eight .1 cm cells was 

used throughout the work in the near infra-red region.) At such 

concentrations, an additional complication sets in, because one 

of the conditions for the validity of Beer's law is being violat-

ed. Among others, equality of refractive index of. solution and 109 



11 0 

solvent is necessary for the law to hold. If the refractive index 

n varies with concentration, not r., but r. n 
(n2+2)2 

may be shown to be theoretically independent of c(Kortüm 1962:23). 

With the usual solvents for this region (cs 2 , c 2c14 and CC1 4 J, a 

simple calculation shows that linearity of a with c cannot be 

expected to hold up to the required, approximately molar concen­

trations, if, as often must happen, the refractive indices of the 

analyte and the solvent differ to any appreciable extent. 

These three causes combine to make the near infra-red a 

little-used region for quantitative spectrophotometry. A notable 

exception is afforded by the estimation of water and hydroxyl 

groups (e.g. Crisler and Burrill 1959), where, however, non-line­

ar calibration curves are obtained even when using dilute solu­

tions and 10 cm cells. 

6.1 The degree of non-linearity 

Some exploratory measurements under our experimental condi­

tions confirmed the reality of the expected deviations from 

linearity. As an example, we cite the absorbances observed in 

1 cm cells on a cc14 solution of 2-xylene and its dilutions. The 

slit width was the smallest practicable, viz. 0.022 mm;unit rela-
-1 -1 tive concentratien corresponded to 1.01 mole 1 ~ 107 g 1 • 

Relative 0.2541 o. 4725 0. 5877 0.7456 0.8879 1.0000 
concentratien 

~avelength/11 Absorbances 

2.28 0.274 0.512 0.638 0.808 0.960 1.072 

2.30 0.286 0.533 0.662 0.838 0.989 1 • 11 2 

2.32 0.386 0.711 0.881 1. 1 02 1.303 1.456 

If the highest relative concentratien were accepted as a 

reference, the relative concentrations of the dilutions would be 

estimated as fellows: 

~rue relative 0.2541 0.4725 0.5877 0.7456 0.8879 concentratien 

~onc. estimated 
from absorbance 
at: 

2.281J 0.2556 0.4776 0.5951 0.7537 0.8955 

2.301J 0. 2572 0.4793 0.5953 0.7536 0.8894 

2.321J 0.2651 0.4883 o. 6051 0.7569 0.8949 



The systematic positive deviation of estimated concentra­

tions is definitely not entirely due to the strong slopes of the 

absorption bands at the 

fect is found to be 

wavelengths selected, since the same ef­

present quite strongly at the maximum of 

~ 2.315~ and even in the ultra-violet at 0.285~, using a very 

similar slit width (0.020 mm)and the identical solutions(cf. Fig. 

6.0, where the relevant part of the near infra-red spectrum and 

some (a,c)-curves are shown): 

True relative 
concentratien 

a at 2.315~ 

c estimated 
from 2.3î5~ 

a at 0.285~ 

c estimated 
from 0.285JI 

Q) 1.8 
u 
<= 

~ 1.6 
" 0 

"' 
~ 1.4 

L.2 
1.0 

0.8 

0.2541 

0.442 

0.268.7 

-

-

2.28 2.30 2.32 2.34 
0.6 wavelength - ll 

0.4 

0.2 

0.1 0.2 0.3 0.4 

0.4725 

0.810 

0.4924 

0.795 

0.4809 

0.5 0.6 

0.5877 0.7456 

1. 001 1.254 

0.6085 0.7623 

0.986 1.244 

0.5965 0.7526 

0 2.28j.l 

a 2.30 j.l 

4 2.32 j.l 

0.7 0.8 0.9 

0.8879 1.000 

1. 4 77 1.645 

0.8979 -

1.466 1.653 

0.8869 -

.. 

1.0 
relative concentratien 

Fig. 6.0 To show the non-linearity in the near infra-red region; 

data are for a CC1 4 solution of ~-xylene. 

Inset: Part of the NIR-spectrum. 111 



We suspect that the non-linearity in the ultra-violet may be 

ascribed, at least in part, to the refractive index effect men­

tioned under c) above. Most of the results shown in the preceding 

tables are entirely unacceptable for precision analysis purposes. 

Since the deviations appear to be quite systematic, no improve­

ment can be gained by subjecting the data to least-squares analy­

sis; such a technique will merely produce some weighted average 

of systematically deviating estimates, which will itself be sys­

tematically deviating from the true result. 

6.2 A remedy 

It is fortunate, therefore, that a different approach is 

possible in the near infra-red and in other cases where non­

linear (a,c)-relationships engender complications. Physically, 

this approach may be described as a narrowing of the range in 

concentrations over which a is assumed to be proportional to c. 

In other words, the linear interpolation in absorbances is not 

made to cover the entire range from concentration zero up to the 

reference concentration, but is restricted to a relatively smal! 

part of this range. The methods of experiment and calculation are 

obvious: if a 1 and a 2 are the absorbances of solutions of con­

centrations c 1 and c 2 respectively~ then a concentration x, 

c 1 ~ x ~ c 2 , is estimated from its observed absorbance a 0 by 

Viewed alternatively, the concentration is estimated from the ab­

sorbances of two reference concentrations and the unknown, it 

being understood there is still only a single substance to be 

determined. The reference concentrations c 1 and c 2 ~orrespond 

formally to 0 and cref in the more usual case. Indeed, x may be 

written as a linear combination of c 1 and c 2 • 

in which À = (a0 - a 1 )/(a2 - a 1 ) varies linearly from 0 to 1 over 

the range c 1 ,c2 • (See Fig. 6.1). 

That this technique yields some measure of success in cases 

where the analysis in terms of a single reference will fail, may 

be read off from the following table, constructed from the same 

112 observational data as before. 



relativc 

~concentration 

0 

Fig. 6 . 1 To illustrate linear interpolation between two referen­

ces in the single-component case. 

Relative 
concentrat ion 0.7456 0.5877 
taken 

Wavelength/11 2.28 2.30 2.32 2.28 2.30 2.32 

Found in terrns 
of 0.7537 0.7536 0.7569 0.5951 0.5953 0.6051 

unit reference 

Found - Taken +0.0081 +0.0080 +0.0111 +0.0084 +0.0086 +0.0184 

~ound in terrns 
of 0.7462 0.7492 0.7447 

c1 = 0.5877 
c2 = 0.8879 

jFound in terms 
of 0.5888 0.5888 0.5918 

c1 = 0.4725 
c2 = 0.7456 

IFound - Taken, +0.0006 +0.0036 -0.0009 +0.0011 +0.0011 +0.0041 two references 
113 



The distinct impravement is only what might have been ex­

pected on physical grounds; narrowing the range of interpolation 

for x between c 1 and c 2 is equivalent, in the limit as c 1 ~ c 2 , 

to concluding to an identity of concentratien from an identity of 

absorbance. In the limiting case, no assumption about the (a,c)­

relationship is needed; it need not surprise that the correctness 

of specific assumptions about this relationship is less relevant 

to the correctness of the results as the concentrations of the 

solutions compared become more similar. 

In practice,the difference in concentratien 

solutions c 1 and c 2 definitely need not be very 
-1 example shown, a difference of about 0.3 mole 1 

of the reference 

small: for the 

could be allow-
-1 ed between reference concentrations; the range 0 to 1 mole 1 

would be sufficiently well covered if solutions of 0.25, 0.5,0.75 

and 1.0 mole 1-
1 were available for observation of their absor-

bances along with that of the unknown. 

The estimation in terms of more than one reference concen­

tratien does not constitute a novel development; it is, in fact, 

merely a hybrid form between spectrophotometry and colcrimetry in 

Kortüm's classification (Ko rtüm 1962). However, so far as the 

author has been able to ascertain, the variatien and extension of 

the technique about to be described has not been reported before. 

The variatien consists in the attempt, well known and widely 

applied before, to match concentrations of reference and unknown 

as closely as possible; if the match is close, a single reference 

will again suffice for a single substance to be estimated with 

acceptable precision. The extension consists, essentially, in the 

idea that, if total concentrations match, the interval of inter­

polation may be narrowed by using mixtures of known composition 

as references; n mixtures are required if there are . n components 

to be estimated. 

As in the case of a single substance determined from two 

neighbouring reference solutions, the composition of the referen­

ce mixtures should bracket that of the unknown. A practical way 

of accomplishing this bracketing is by making up the reference 

mixtures (keeping in mind they should have approximately the same 

total concentratien of analytes as the unknown) in such a way 

that one reference mixture, e.g. the first, contains a high­

er amount of one component, e.g. the first, than the unknown is 

expected to contain, while its content of the remaining compo­

nents should be equal to or somewhat lower than estimated for the 

114 unknown. The second, third, ••• , n-th reference mixtures should 



show a slight excess of the second, thi rd, ••• , n-th component 

and a corresponding deficit in at least some of the others. 

6 . 3 An e x ample 

To give an example: if the concentratien of the unknown is 

expected to be ~' 

in arbitrary units, a possible triplet of mixtures to serve as 

references is given by the columns of matrix ~ below 

~= ( 

o. 75 

0.25 

0 

0.50 

0.50 

0 

0.55) 
0.25 

0.20 

That is to say that the first reference mixture, c 1 , should have 

concentrations 0.75, 0.25 and 0 in the fir s t, second and third 

components respectively, measured i n the s ame units as have been 

employed to express the components of x. (These units ne ed not, 

in principle, be identical for the components). 

If the reference solutions are thus made to bracket the un­

known, one has the property that the unknown, when expressed as a 

linear combination of the columns of ~. represents such a com­

bination with all its coefficients positive and less tha n unity. 

This is tantamount to stating that the composition of the unknown 

may be found by interpolatinq among the composition of the refer­

ences. In fact, for the example given, we may write 

~ = ç:1y1 + ~2y2 + ç:3y3 

('"") 0.30 Ts) o.2o Tssl 0.50 

= 0.25 0.50 0. 25 

0 0 0.20 

('"'~ ~!: ~ 0.20 

0. 5 

('"'~ y c-1 !!. 0.20 

0.5 

Interpreting t he above, we may say that we consider the un­

known ~ to be a mixture consisting of 0.30 of the first reference 115 



mixture ~1 , 0.20 of the second reference mixture ~2 and 0.30 of 

the third reference mixture ~3 • In practice, solving the relevant 

system of equations gives y; the operation of premultip l y ing X by 

~ yields the estimate 

x ~y 

where x is expressed in terms of the solutions that served to 

make up the reference mixtures: the elements of x represent frac­

tions of the concentrations of thèse primary solutions. In order 

to convert R into the more generally useful form of absolute 

concentrations ê of the primary components, a further premulti-

p lication of x by _D is necessary; D is a di.agonal matrix (do 0 = 0 
- 1J 

if i~ j),the elements do 0 of which represent the concen trations 
J J -1 

(on some absolute scale, e.g. mole 1 ) of the primary solutions: 

c Dx QÇy 
say. 

If we compare this to the usual procedure of directly obtaining 

x from observations on the mixture and solutions of t he pure, 

primary components (where the operation performed is 

f = .QR 
in order to derive the absolute concentratien vector ê from the 

estimate of the relative concentratien vector R>, we remark that 

the difference between 

and 

lies merely in the fact that D is diagonal, whereas ~ is not. 

6.4 Geometrical illustration of interpolation and li n ear approxi­

mation. 

We can give a possible illuminating geometrical illustration 

for the cases where one and two compon~nts. are estimatèd and the 

(a,c) relationship is non-linear. 

One component, simple linear approximation 

We refer to Fig. 6.2. The reference concentrati e n C is ob­

soerved to have an absorbance ac; the curve ODA is unknown. The 

are OD is replaced by the chord OD, which is used for the purpose 

of estimation: the concentratien X, g iving an abso r b ance aX, will 

be estimated as x. This approximation will yield acceptable re-

116 sults only if X is not too far f r om C. 
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.c ... 
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A 

x x c 
- concentration 

Fig. 6.2 To illustrate linear interpolation with a single refer-

ence in the single-component case in the presence of 

non-linearity. 

One component, linear approximation with interpolation 

Referring to Fig. 6.3, we demonstrate the alternative proce· 

dure, which has been shown to have a beneficia! effect on the 

accuracy in the examples above. We cbserve the absorbances a 1 and 

a 2 of the reference concentrations c 1 and c 2 • The unknown curve 

ODA is nm1 approximated by the chord o 1o2 ; the chord will not, 

when produced, pass through the origin 0; as against this, the 

approximation which yields X instead of X for an observed absorb­

ance ax of the unknown, will often be acceptable for oc 1~ox~oc 2 
and even somewhat beyond these boundaries. The systematic devia­

tion within this interval will now be .largest at a point roughly 

halfway between c 1 and c 2 • 

In general, the second procedure would appear to give the 

better approximation; also, it does not require the previous 

knowledge about the concentratien to be analyzed to be quite so 

exact; a rough estimate of OX is sufficient for a reasonable 

choice of oc1 and oc2 , that is, of c 1 and c 2 • 117 
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u a x 
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c, x 
--. concentratior. 

Fig. 6.3 To illustrate linear interpolation with two references 

in the single-component case in the presence of non-li­

nearity. 

Two components, simple linear approximation 

For the two-component case, we refer to Fig. 6.4. The simple 

linear approximation now consists of replacing the arcs QA and OC 

by the corresponding chords and then applying the familiar graph­

ical procedure, viz. constructing MM'//OA and MM' '//OC. The mix­

ture M is then concluded to have t h e composition 

OM'/OC 

OM'' / OA 

In other words, the curvilinear net of Fig. 6,4 is being lineari­

zed in its entirety, that is, globally, or for 

{ 
0 ~ x 1 ~ 1 

0 ~ x 2 ~ 1 

This is evidently a poor substitute for what wou ld be the 

118 correct procedure: if the curvilinear net shown in t h e figure 



1.0 

-a, 
Fig. 6.4 To illustrate linear interpolation in a re str icted range, 

using the mixtures R 1 and R2 as references, when both 

components show non-linearity. 

could be constructed (for a given pair of analytica! wavelengths ), 

one should locate the point M by t h e absorbance a 10 and a 20 of 

the mixture in the rectangular c oor d i nates (axes oa1 , oa2 ) and 

then curvilinearly read off its composition x 1 , x 2 by following 

the curves MM1 and MM'1 to the points (M1 and M1') where these 

me et the curved coordinate axes (arcs OA and oe), assumi ng these 

to have been s uitably provided with a scale. 

Now the net spanned by the arcs OA and oe is not only curvi­

linear, but also suffers from the additional disadvantage that 

its mesh size along OA and oe is variab le. The error committed by 

regarding OA and oe as straight lines and by assuming t h e mesh 

size to be constant along each of t hese axes may t herefore be 

quite cons ide rable . 

Two components, linear interpolation in a restricted range 

In order to avoid the drastic measure of the above global 

linearization, we now introduce the reference mixtures R1 and R2 , 

bracketing Mand having approximately the same total relative 119 



concentratien (Fig. 6.4; a curve x1 + x 2 = 1 is shown as the are 

AR1MR2S}. We then cons.ider the straight lines OR1 and OR2 as de­

fining an oblique rectilinear net, with mesh size constant along 

each axis. The analytica! result is now obtained in the familiar 

way again, that is, by oblique projection, drawing MM'//OR1 and 

MM' 'I /OR2 • The composi ti on of M is expressed ( for M not too far 

from the line R1R2), by local linearization, in terros of the 

fractions OM' '/OR1 and OM'/OR2 of the compositions of the refe­

rence solutions R1 and R2 • These latter, in turn, are known cor­

rectly in terros of x1 and x 2 • 

The further requirements, viz. the approximately constant 

x1 + x 2 for R1 , R2 and M and the bracketing requiremen·t: 

{ 
x 1 (R1 ) .:=. x 1 (M) ~ x

1 
(R2 ) 

x 2 (R2 ) ~ x 2 (M) ~ x 2 (R2 ) 

are seen to define the extent of local linearization, viz. 

< x1 < R2 

thus further clarifying the analogy to the linear approximation 

for a single component with interpolation in a restricted range 

as treated above. 

Since this linearization is equivalent to considering the 

are R1MR 2 as a straight line, one concludes that the pro~edure 

will give maximal deviations from the true composition at points 

M about halfway between R1 and R2 , again as in the analogous ene­

component case. The same type of bias of the composition found is 

also observed experimentally in the case of bias due to too large 

a slit width. 

6.5 Least squares technique using mixtures as referen c es 

Using mixtures as reierences is a procedure which combines 

very well with a least squares treatment of the observations; the 

combination of methods is not necessarily confined to the NIR, 

but may be used to advantage whenever the re are significant de­

partures from linearity of the (a,c) relation. 

As an example, we cite analyses of two-component mixtures of 

naphthalene and 2~methylnaphthalene in the ultraviolet,À = 300(1) 

325 nm, using a slit width (s = 0.15 mm) that was shown befere to 

cause considerable departure from linearity (cf. the results of 

analyses nos. 240.07 to 240.09, Sec. 5.5). 

In all, five solutions of the components in 96% ethanol were 

employed: the naphthalene reference had a concentratien of 5.26 

12 0 millimole/1, the reference solution for 2-methylnaphthalene was 



2,82 millimole/1; the three mixtures of these reference solutions 

are shown as coltunns 2,3 and 4 in the matrix C below: 

naphthalene 

( : 0 0,4046 0.502 5 0,5992) 
c = 

0,5954 0,4975 0,4008 2-methylnaphthalene 

The complete observationa l data for this system are given in 

Table 6.1. 

Table 6.1 

Absorbances x 1000 as observed in the system of sectien 6.5 

(Naphthalene (~ 1 ), 2-methylnaphthalene <~2 J and some mixtures(~)' 

~4 and ~5 J). 

Wavelength Absorbances x 1000 

Vnm 
~1 ~2 ~3 ~4 ~5 

300 1446 975 11 64 121 0 1256 

301 1520 900 11 53 121 3 1273 

302 1315 871 1057 11 01 1142 

303 1153 966 1 042 1060 1078 

304 1133 1235 1 201 11 91 1180 

305 1 085 1382 1262 1233 1204 

306 1020 11 59 11 03 1 089 1 075 

307 836 919 882 876 865 

308 675 800 749 736 722 

309 695 770 745 738 728 

310 1 031 785 898 920 943 

~11 1161 849 986 1015 1044 

312 768 818 803 798 791 

313 478 696 608 584 563 

314 383 616 520 496 473 

315 343 511 442 4 24 407 

316 252 446 368 348 328 

317 147 595 433 390 346 

318 95 1 064 702 612 516 

319 93 1362 857 732 610 

320 97 920 613 532 452 

321 76 520 350 307 263 

322 48 275 184 1 62 137 

323 28 160 104 91 77 

324 19 11 6 74 64 53 

325 13 82 52 45 37 
1 21 
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An attempt to express the mixtures ~ 31 ~ 4 and ç 5 in terms of 

the pure references ç 1 and f 2 fails completely under the condi­

tions chosen 1 as shown by the following results. 

The concentrations found 1 with their deviations from the 

known true compositions 1 were (Model II): 

( ~(x.) in the following represents the vector of estimated stan­
- -J 

dard deviations of the estimate ~j). 

ç3 in terms of ~1 I c;:2: 

~3 
(0.3953) 

0.6104 with ~ <83> 
(0.0037) 
0.0054 and s 7.81 x 1 0-3 I 

differing from the true composition s:3 by ,.,~3 = ?S.3 - ~3 
{-0.0093) 

= +0.0150 

Similarly 1 for ~ 4 in terms of f 1 and f 2 : 

~4 = (g:~i~~) ~(_84) = (~:~~~~); ~ = 8.33 x 10-
3

; ,.,~4= (:~:~~~~) 
and for ~ 5 in terms cf ç 1 and ç 2 : 

(0.5889) 
~5 = \0.4182 

Th€ failure of the above analyses is quite apparent: 

a) the deviations ó~j are a decimal order of magnitude larger 

than what might have been expected from the excellent dis­

tinguishability of the spectra and the results obtained for 

the quite comparable analyses nos. 240.01 to 240.03 at the 

smaller slit width of 0.022 mm (Sec. 5.5). 

b) in each case the elements of <'>?S. are large when compared with 

the corresponding elements of the estimated standard devia­

tions1 the extreme ratios being 

c) 

Since 1 under 

buted as t 

may consult 

the 

minimally 0.0093/0.0037 ~ 2.3 

maximally 0.0174/0.0056 - 3.1 

usu al assumptions 1 these ratios are distri-

(there are 26 - 3 = 23 degrees of freedom) 1 we 

the tables for tl which give 

p (t > 2.069) 0.05 
p (t > 2. 500) 0.02 
p (t > 2.807) 0.01 

We should therefore conclude to a rejection of the hypothe­

ses (~j)i = (~j)i 1 j = 314 15 1 i 1 12 with most of the usual 

levels "· 

the standard deviations of the residuals are excessive in 

each case. From the average value of E 1 say 1.2 x 10- 3
1 we 

expect s to be (1 + ~T~)\E or about 1.5 x 10- 3 ; values five 



d) 

times as large have a probability of being exceeded of the 

order of magnitude of S x 10-7 • The residuals, when plotted, 

of course strongly show the slit width bias patterns de­

scribed in Sec. S.S. 

a multivariate test of the hypotheses x. 
-) 

c. likewise fails 
-) 

completely. The calculated F-ratios 

(x. - c.)! r-1 (~j - S,j) (k - n) 
-] -] 

Fj T 
rjrj n -

(k = 26, n = 3, ~- 1 derived from <~'~>- 1 by striking out the 

border cons isting of column sums etc. and inverting t h e re­

maining (n-1) x (n-1) matrix) were 4.47, 4.78 and S.33(j = 

3,4,S). These 

be rejected 

though the 

(P(F(2,23) ~ 

values would cause the hypotheses ~. = c. to 
-J -J 

at the S% level (P(F(2,23) ~ 3.42) = O.OS), 

hypotheses are acceptable at the 1% level. 

S.66) = 0.01). 

It should be noted that both the F and t tests give very 

wide confidence intervals for t he ~j and their elements respec­

tively, the size of these intervals being large by reason of the 

excessive values of rTr. In spite of being therefore much wider 

than usual, they fail to include the s:,j (or their elements),which 

again stresses t h e magnitude of the deviations 6~j· 

However, regarding ~4 as the mixture to be analyzed and s 3 
and fs a s the references , the results are much improved: 

One has the expected composition ~4 in terms of f 3 , ss: 

-1 
• ç_ s4 ( -1 =(0.4046 

S3 s s> s4 o.s9S4 

=(0.4969) 
O.S031 I 

O.S992) -
1 

0.4008 ( 0. S02S) 
0.497S 

whereas in fact we find ~4 (0.49 88) 
O.S009 ~(~4) (

0.0030) 
0.0027 

(
+0.0019) 
-0.0022 

The value found in termsof ~3 , ~Sis, in termsof ~ 1 , ~ 2 : 

~4 
(0.4046 
lo. S9S4 

O.S992) 
0.4008 

(
-0.0006) 
+0.0003 

(
0.498 8) 
O.S008 ( O.S019) 

0.4978 

The value of sis 1.07 x 10- 3 , whereas t he test of the hypothe­

sis 24 = x4 leads to the entirely satisfactory F-ratio of O.S2. 

The improvement over the analysis in terros of s1 , s2 is striking. 123 



Analyses of comparable 

ses 23 in terms of 5:4 

Analysing ~3 in terms 

C
-1 

\::3 

~3 
( 2.0030) 
-1.0026 2 

llx = -3 (!:4 ~5) 6~3 

accuracy are obtained even 

and 5:5 or !::5 in terms of !::.3 

of ~4' ~5 (extrapolating), 

(i3) 

c_
3 

= ( 2.0124) 
-1.0124 

(0.0121) 
0. 0116 

(+0.0014) 
-0.0006 

6~3 

when one 

and !::4· 

one finds: 

,-0.0094) 
+0.0102 

F-ratio for the hypothesis ~3 = ~3: 0.61 s = 2.15 x 1 o- 3 

Likewise analysing ç 5 in terms of ç3, 
-1 -1 

!5 = f !:5 (ç:324l ~5· (
-0.9877) 

= +1.9877 

l-0. 9944) 
!s = +1.9949 ( 0.0115) 

0.0110 

( 
+0. 0009) 
-0.0004 

s;4 , one finds: 

f-0.0067) 6!5 l+o.oon 

F-ratio for the hypothesis ! 5 = ! 5 : 0.42 ; s = 2.14 x 10-
3 

analy-

From these results, it would appear that some extrapolation from 

the references to the unknown is permissible, that is,that brack­

eting is not striétly necessary. In the light of the examples to 

follow, one does well, however, to remember that the situation 

here is exceptionally favourable, the total span 1~1=1~ 3 - 25 1 
being just ~(~:~); asthespan increases, the extrapolation be­

comes less advisable. 

It should be noted that the three estimates of s above are 

strictly dependent, all three being based on the same set of 
-2 'T' -2 three absorbance vectors; in fact, sinces ~ ~ .E , we expect, 

-2 
s (y3l 
---2--
s (Xsl 

1.07
2 

2.15 2 

+ 

+ 

4.04 

0.4988
2 

+ 0.5009
2 

2.0030
2 

+ 1.0026 2 
, whereas we find 

4. 01 

in excellent agreement with expectation. 

The estimate ~ for the standard deviation of a single absorbance 

for this experiment is 

E: = 

124 in absorbance. 



6.6 Some further examples 

In the near infra-red, several sets of two-component analy­

ses were successful: in the exarnples that follow, the region 

2.20 - 2.45~ was chosen as the basis for the analyses because it 

was desired to show the applicability of the method of using mix­

tures as references. The exarnples lack somewhat in realism be­

cause it would be possible tó obtain better results with less 

effort in the ultra-violet for the components cited. 

Exarnple 1. 

System: ortho-xylene/meta-xylene 

Solvent: CC1 4 
Stock solutions: ortho-xylene, 0.89 mole/1 (A) 

para -xylene, 0.89 mole/1 (B) 

Observations: 25 wavelenghts, 2.25 (0.005) 2.37~ 

Reference and analyte solutions: 

c ·= (0.2525 
- 0.7475 

0.3192 
0.6008 

0.7436 
0.2564 

0.8752) 
0.1248 

Of these, the mixtures ~2 and s3 were expressed in terms of 

s1 and s4 , the span being thus about (g:~~) ; the maximal abser­

bances observed just touched 1.5. The spectra of ~1 and s4 are 

shown in Fig. 6.5. 

t • 
t4 

t2 

1.0 

.8 

.6 

.4 

.2 

225 

~-xylene + p-xylene 

0.22 mole/1-l + 0.67 mole/1-l 

0.78 mo1e/1_, + o.tl mole/1-l 

230 235 -v~ 

Fig. 6.5 Mixture reference spectra for Examp1e I, Sec. 6.6 125 



The results were (after the rejection of an obviously outlying 

observation), by Model II: 

A) ~2 in terros of ~1 and ~ 4 

~2 (~1 ~4) 
-1 

ç:2 
(0.8928) 
0.1 071 

X2 
(0.8873) 
0.1109 2 (~2) (0.0027) 

0.0033 "I 2 
(-0.00561 
+0.0038 

"~2 ~2 ~2 = ç"K2 
(+0,0020) 
-0.0037 

~ 

F-ratio for the hypothesis x2 = I.2 : 3.92 

5 = 1.30 x 10-3 , corresponding to ~ = 0.97 x 10-3 

B) ç:
3 

in terros of s 1 and ç: 4 

Y ( c_
1 

c_
4

)-1 c = (0,2113) 
_3 -3 0,7887 

~3 (0.2135) 
0.7883 (0. 0022) 

0.0027 

(
+0.0002) 

"~3 = ~3- ~3 = ~"r3 = +o.oo16 

F-ratio for the hypothesis K3 = I.3 : 2.46 

s = 1.06 x 10-3 , corresponding to Ê = 0.82 x 10-3 

(+0.0022) 
-0.0004 

Although this example is satisfactory chemically, in case A 

the hypothesis ~2 = ~2 (equivalent to I.2 = ~2 ) would be rejected 

at the 5% level: for 2 and 21 degrees of freedom, the 5 and 1% 

levels of F are 3,47 and 5.48 respectively. 

Example 2. 

System: ethylbenzene/~-propylbenzene 

Solvent: cc14 
Stock solutions: ethylbenzene, 1.01 mole/1 (A) 

~-propylbenzene, 1.03 mole/ 1 (B) 

Observations: 21 wavelengths, 2.22(0.01)2.42~ 

Ref~rences and sample solutions: 

c (
0.1993 
0.8007 

0,2987 
0,7013 

0.3997 
0.6003 

0.6057 
0.3943 

0.7064 
0.2936 

0,8007) (A) 
0.1993 (B) 

Of these, ~2 to ~ 5 were analysed in terrus of their nearest 

126 neighbours (~2 in terros of s 1 ahd s 3 etc.), the maximal span thus 



being about (~:~) ; the maximal absorbances observed were just 

below 1.5. The spectra of ~1 and ~ 6 are shown in Fig. 6.6. 

a 
t 

1.6 ethylbenzene + .::_-próp y lb enze ne 

1.4 

1.2 

1.0 

.8 

.6 

.4 0,20 mole/1 + 0,82 mole/1 

0,80 mole/1 + 0,21 mole/1 
.2 

2.22 225 2.30 2.35 2.40 2.42 - À~ 

Fig. 6. 6 Mixture reference spectra for Example ·2, Sec. 6. 6 

The results of these analyses, expressed in terms of (A) and 

(B), are as fellows: 

0.2926 0.4014 0.6064 
0.7046 0.5999 0.3924 

o. 70591 
0.2568 

The standard deviation of the residual vector was 

(1.63 1.75 1.60 1.01) x 10-3 

for the respective analyses, while the ~est of the hypotheses 

y. = y., j = 2,3,4,5, 
-J -J 

yielded the F-ratios 

-1 
y. = (c. 1c ' +1) -J -J- -J 

(1.17 1.63 1.16 1.09) 

for 2 and 18 degrees of freedom respectively. 127 



This example is therefore completely satisfactory , both 

from the point of view of the practical chemist and from that of 

the statistician. 

Example 3. 

System: E-propylbenzene/!-propylbenzene 

Solvent: cc14 
Stock solutions: E-propylbenzene, 1.03 mole/1 (A) 

!-propylbenzene, 1.03 mole/ 1 (B) 

Observations: 21 wavelengths, 2.22(0.01)2.42~ 

References and sample solutions: 

~ = (~:~~~~ ~:;~~: ~:~~~: ~:~~~~ ~:~~~~ ~:~~;~ ~:~~~~) 
<~1 S2 ~3 ~4 ~s ~6 ç7> 

The spectra of s1 and ~7 are shown in Fig. 6.7. 

(A) 
(B) 

A fairly complete table of results obtained is exhibited below, 

a 
f ~-propy1 b enzen e + i-prop y1 benzene 
u 

u 

0.20 ~o1e/1 + 0,82 mo1e/1 

·' 0. 8 2 mo1 e /1 + 0.21 mo1 e/ 1 

.2 

230 235 

Fig. 6.7 Mixture reference spec tra for Examp1e 3, Sec . 6.6 

in order to show the dangers of extrapolation. For each solution, 

two analyses will be given, the first one in terros of near neigh-

128 bours (that is, interpolating, except for s1 and s7' where slight 



extrapolation is unavoidable), the second one involving an extra­

polation. 

Sample References ll~/10- 4 F-ratio ~/10- 3 

~1 ~2's:3 
( .+1 5) 

-15 0.38 0.7 

s:1 ç:4,ç:7 ( -244 ) 
+166 16.1 1.3 

s:2 ç:l,ç:4 ( -14 ) 
+14 0.44 0.9 

~2 ç4,ç7 (-168) 
+129 38.3 0.7 

s:3 çl,ç:4 ( -18 ) 
+13 1.86 0.7 

~3 ç:4,ç:7 ( -98 ) 
+72 41.1 0.5 

s:5 s;:4,ç:7 ( +18 ) 
-20 

0.82 0.9 

~5 S:1 I S4 ( -59 ) 
+37 13.6 0.6 

EG ç4,ç7 ( +5) 
-10 1. 09 0.5 

S:G s;:l,ç4 (-145) 
+103 21.0 0.9 

s:7 s:5,ç6 ( +4 ) 
+3 o. 72 0.4 

s:7 s;l,ç:4 (-225) 
+171 19.7 1.2 

In this table, the entry under F-ratio stands for the 

quantity obtained when testing the hypothesis ~- = y . , where y . , 
-1 -)_ -) -) 

is the expected result (c f 1c f 2 ) c 1 and y . is the actual -re -re -samp e -J 
vector of regression coefficients. It should be compared with F 

for 2 and 18 degrees of freedom for numerator and denominator 

respectively. Since the elements of y are not proper fractions 

(as is the case when pure compounds, not mixtures are used as 

references), but may reach about two units in magnitude, ~ has 

been tabulated rather than s, since the former is independent of 

the magnitude of the elements of y. 

Again, it should be pointed out that the results above are 

not independent; however, they are most strongly indicative of a 

very clear trend: results obtained by any but slight extrapola­

tien in the near infra-red are very unsatisfactory, both chemi­

cally and statistically. Against this, interpolation in a mode­

rate span yields results that are unexceptionable from either 

point of view. 129 



Example 4. 

System~ ethylbenzene/1-propylbenzene/E-propylpenzene 

Solvent: cc14 
Stock solutions: ethylbenzene, 1.01 mole/ 1 (A) 

1-propylbenzene, 1.03 mole/ 1 (B) 

E-propylbenzene, 1.03 mole/1 (C) 

Observations: 21 wavelengths, 2.22(0.01)2.42~ 

References and sample solutions: 

(

0.6012 0.2013 0.2011 0.3 011 

ç 0.1990 0.5985 0.1991 0.3000 

0.1998 0.2002 0.5998 0.3989 

0.4515 0.2011 

0.2493 0.3991 

0.2992 0.3998 

0 . 7047 ) 
0.1473 

0.1480 

(A) 

(B) 

(C) 

The spectra of. the reference solutions ~ 1 , s2 and ~3 are 

shown in Fig. 6.8. The results, summarized in the table below, 

are typically those of a borderline case: statistically , they do 

not indicate any significant departure from the known composition 

yet some of the analyses, espec ially that of E6 , are less than 

gratifying from an analytica! chemist's point of view; also, 

there is no obvious correlation between the F-ratios and the vee­

tors óx. We conclude that the distinguishability of the spectra 

of the components in the wavelength region considered is too 

a 
t 

t6 ethy1benzene + l-propy1benzene + ~-propy1benzene 

t4 

1.2 

1.0 

.8 

.6 

.4 
0. 6 I mo 1 e /1 + 0. 2 0 mo 1 eI 1 + 0, 2 I mol eI 1 

0.20 r::olel1 + 0.62 mol el l + 0 . 21 r.10 l el l 

.2 
0,20 rnolel1 + 0.20 ~o1el1 + 0 . 62 QOlcll 

222 225 2.30 2.35 2.40 2.42 - Ajfi 

130 Fig. 6.8 Mixture reference spectra fo r Examp1e 4, Sec. 6.6 



small to afford sufficient resolving power at the given level of 

instrumental precision: in this sense, the limit of applicability 

of the method has been reached in this example. 

.. 

Sample Deviation s ; 1o- 3 

~ -4 
c. tlx.=(x.-c.)/10 
-J -J -J -J 

( +11 ) 
s4 +61 

-53 

( +94 ) 
s:5 -34 

-34 

( +1 04 
) s6 +65 

-145 

• ( 
+7 ) ~7 -37 
+8 

slight extrapolation: y ~ (-6:~~) 
-0.13 

1 • 3 

1 • 9 

2.7 

1.8 

• • F-ratio 

3.93 

0.60 

2.10 

2. 21 

I 

The F-ratio is the one obtained for the test of the hypothe­

sis y. = y.; because of an obviously necèssary rejection, 
- J - J 

the results are based on 20 observations only. F therefore 

has 3 and 16 d.f. for numerator and denominator respective­

ly: P(F > 3.24) = 0.05, P(F > 5.29) = 0.01. 

6.7 Influence on precision 

Example 4 of the preceding section clearly shows that even 

systems of as few as three components may have such badly dis­

tinguishable spectra as to prevent useful application of the 

method. At first glance, the technique of using mixtures as re­

ferences might be thought reponsible; however, it is not diffi­

cult to demonstrate that using mixtures, while constituting a 

remedy against non-linearity, does not, in principle, lead to a 

loss of precision. 

Consider an n-component mixture; let its true relative con­

centration vector be y and let x be found from an analysis by 

least squares. Let the matrix of reference absorbances (of the 

pure components) be ~· Then a confidence region for y is given by 

k - n 
n 

(~ _ 2:) T (~ T~) (~ _ f) 

T 
r r 

< F(n,k-n;o.) (6.7:1) 131 
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for Model I (cf. Sectien 4.6.2). 

Now let the same mixture X be expressed in terms of a matrix 

of reference mixtures f; then the true composition X in terms of 

f is ~· such that 
Cw 

where E is known without error and, of course, is not singular. 

Then the matrix of reference absorbances is AC and a confidence 

region for ~ is given by 

(~ - ~) T ((AC) TAC) (~ - ~) 
k - n 

~ F(n,k-n;a) ( 6. 7:2) 
n 

when v has been found by least squares. But finding .Q 
lent with finding Cv = r· say, in terms of the pure 

hence, using ~ 
-1 

= E X• we have 

(_Q - ~) T ((AC) 'AC)(~ - ~) 

<E-1 <i - x»'< <Ac> TAc>E-1 <i - x> 

(y - x> T <E-1) TET~ T~ cc-1 <X. - yl 

<x - x> T <~ '~> <2. - x>, 

is equiva­

components; 

so that the confidence region of (6.7~2) is equal to that of 

(6.7:1), provided ETE is equal in both cases. 

Now the expected value of r'r is the same in . both cases when 

we arrange, as we can always do, that 

.... T.... -T-
X X V V 

E(E'El being proportional to (1+~'~) and (1+~'~) respectively. 

(In practice, x'x will be nearly equal to v'v whenever we do not 

extrapolate), l·lodification of the proof for Model II fs obvious. 

We draw the conclusion: 

In principle, the use of exactly known mixtures as referen­

ces does not influence the precision of an analysis. 



CHAPTER VII 

SOME APPLICATIONS 

7.0 Scope 

This chapter will briefly survey some recent applications 

of the method to a few practical problems. It is gratifying to 

record that the results were satisfactory, especially since the 

systems (which were not of our own choosing) seemed, at first 

sight, tractable with difficulty only by other available methods. 

7, I Cortisone and prednisone acetates 

7. I ,I Two-wavelcngth analysis 

At the suggestion of van Dijck and van Gorp (•), an invest­

igation was undertaken of the applicability of the method to the 

determination of cortisone acetate in the presence of a large 

excess of prednisone acetate. The structural formulae of these 

very similar compounds and their ultraviolet absorption spectra 

are shown in Fig. 7.1. 

It is clear that the difficulty of analysis here resides in 

the rather pronounced similarity of the featureless spectra.Their 

maxima very nearly coincide at 238.5 nm; their molar absorptivi­

ties at maximum in methanol are both within 2% of 15000 mole-~ 1. 

cm- 1 ; the only diffe-rence consists in a slower falling off of E 

with À for prednisone acetate, which, given its additional double 

bond, is in accordance with expectation. 

·A preliminary attempt at two-wavelength analysis gave an es­

timated standard deviation of 0.6% in cortisone acetate relative 

concentratien (judging from 5 analyses): the wavelengths select­

ed were 239 and 260 nm; as a precaution, the values of the molar 

absorptivities of the pure compounds were estimated simultaneous­

ly with the absorbances of the mixture, making the analysis in­

herently a relative one. A representative set of observations 

was: 

Absorbance of Absorbance of Absorbance of 
prednisone cortisone mixture 
acetate acetate (2% of cl 

À = 239 1. 285 1 • 417 1.290 

À = 260 0.754 0.357 0. 751 

(•) N.V, Organen, Oss. 133 
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Fig. 7.1 To show the speetral similarity between cortisone and 

prednisone acetates. 

yielding 1.25% of cortisone-acetate and 99.0% of prednisone ace­

tate as against the known composition of 2.0%, 98.0% respectively. 

While not completely unacceptable, the result seems poor; othcr 

two-wavelength analyses in this system gave comparable results. 

In extenuation, it should be mentioned that these experiments 

were performed with a set of not very well-matched cells. 

7. I. 2 Error analysis for the two-wavelength case 

It may be instructive to analyse this system for the (order 

of magnitude of the) expected errors. With 

A c .285 
0.754 

1.417) 
0.357 

A-1 ~ (-0. 586 + 2.324) 
1. 237 2.1 08 

(~ T~) -1 ~-1 (~T)-1 ~ ( 5.745 -5.623) 
-5.623 5.972 



we calculate the expected value of the standard deviation of the 

estimated cortisone acetate relative concentratien x2 as 

T -1 ~ 
( (~ ~) ) 22} • E 

~ (2 x 5.972)~ x 1.2 x 10- 3
,!, 4 x 10-3 , 

where E = 1.2 x 10- 3 is the mean standard deviation of th~_in­
strumental reading of a single absorbance value. From the above 

calculation, we should expect a standard deviation of 0.4 of a 

per cent. in relative concentratien of cortisone acetate and, 
T -1 T -1 si nee ( (~ ~) ) 11 ,!, ( (~ ~) ) 22 , a closely similar standard de-

viation is predicted in the prednisone acetate relative concen­

tration. 

Now this error analysis is misleading for several reasons; 

that its results are not borne out in practice should not cause 

surprise. First and chief among these reasans is the fact that 

the absorbance of the absorption cells themselves in this parti­

cular case was so large (up to 0.04) as to make a correction 

necessary. This correction itself, being experimental, is also 

subject to measuring errors with E ~ 1.2 x 10- 3 , thus doubling 

the experimental varianee of the elements of ~ and ~; secondly, 

there is no guarantee that these corrections, having been deter­

mined prior to the observations of ~ and ~' were indeed valid at 

the time of the latter observations: experience seems to indicate 

that the absorbances of the cells themselves are less reproduci­

ble when they are (comparatively) large; small cell absorbances 

(say a<0.01) seem definitely more constant in time. Thirdly, one 

of the wavelengths (À=239 nm) is on the verge of the usable re­

gion, which is taken to be À ~ 240 nm troughout the present work; 

again, it is physically plausible that the large cell absorbances 

are less well reproducible in the region around 240 ·nm, where 

scattering tends to distart abseirbance values anyhow. 

For these reasans this error analysis, which just takes the 

stochasticity of the elements of (~,~) into account and ignores 

all other disturbing causes, is naive to a degree. 

7. 1.3 Least-squaresanalysis 

By setting up an overdetermined system of equations for the 

prednisone acetate/cortisone acetate analysis, we may eliminate 

the effects of non-reproducible differences among the absorbance 

cells, at least in so far as they are independent of À. Moreover, 

if the experimental varianee of an absorbance value is unduly 135 



high, this should at least be reflect ed in unusual ly h i g h values 

of the elements of the residual vector r and in correspondingly 

high values of the estimated stand ard dev iations o f the elements 

of x 
In order to verify the se expectations, absorbance r e adings 

we re taken on solutions of the pure compounds and o n a mix ture 

containing 1.99% by weight of t h e cortisone acetate solution, the 

remainder being prednisone acetate solution. The results are re­

produced in Tab le 7 . 1. 

The observations yield the following system of normal equa-

ti ons 

( 

37 
30.686 
23.247 

(Model II) 

30.686 
29.4 1 4 792 
25.193 127 

23.247) 
25.193 127 
23.902 833 

ATa 29.414 534 
[

30. 626 ) 

from which we find: 

x
0 

(cell correction) 

Ö(x
0

l 

25.238 182 

-0.00063 

0.0015 

x 1 (cortisone acetate, relative conc entratio n) 

0.0187 or 1. 8 7% 

0.0022 or 0.22% 

x
2 

(prednisone acetate, relative c o ncentration) 

0.9847 or 9 8.47% 

0.0034 or 0 .34% 

-4 
The surn of square s of the res i dual vector was 0 . 80 x 10 , y iel-

ding an estimated standard deviation per equation of 0 .15 x 10-2 

or 0.0015 in absorbance, corresponding to a standard deviation of 

0.0015/(1 +x~ + x~l~= 0.0011 per observation,and, i n c i dentally, 

giving the rather satisfactory estimated multiple correlation 
- -2 coefficient R = 0.999 990, which is to say that only abou t 1 - R 

or two thousandths of a per cent of the varianee of a is l e ft un­

accounted for. The absolute ly greatest element of E occurs at 

À = 255 nm and equals 0.003 2 in absorbance. 

The cortisone acetate relative concentration is almost 

exactly equal to the known value; f o r prednisone acetate, 98.47 % 

136 (à= 0.34%) is well within 1 . 5 estimated standard deviations. 



Table 7.1 Observed absorbances (x 1000) in the prednisone ace­

tate/cortisone acetate system. 

p: prednisone acetate solution 

c: cortisone acetate solution 

m: a mixture containing 1. 99 % by weigh t of the c 

solution, the remainder being p. 

The readings have been corrected for cell absorbances. 

~ p c m 

239 1282 1417 1290 
240 1283 1409 1290 
241. 1276 1394 1283 
242 1264 1371 1268 
243 124 7 1340 1254 
244. 1 230 1306 1234 
245 1210 1267 1212 
246 1185 1222 11BB 
24 7. 1160 1172 1162 
248 1130 1117 1131 
249 1100 1059 11 02 
250. 1 071 999 1072 
251 1037 932 1039 
252 1007 870 1010 
253. 972 802 974 
254 945 735 945 
255 911 667 912 
256. BB5 603 BB2 
257 BSO 536 847 
258 819 472 815 
259. 788 414 783 
260 754 357 751 
261 723 306 715 
262. 691 260 683 
263 655 219 649 
264 623 185 614 
265. 588 154 581 
266 553 128 544 
267 519 106 512 
268. 401 B.O 475 
269 449 75 443 
270 414 63 407 
271. 382 54 376 
272 347 46 342 
273 314 41 309 
274. 284 35 280 

275 254 34 251 

137 



A joint test of the hypothesis 

{ 
x2 

x3 

0 . 0199 

0 . 9801, 

however, yields F = 6.33 with 2 and 34 d.f., which is mos t sig­

nificantr P(F(2,34) > 6.2) = 0.005. 

Now observing a 37 wavelengths-analysis appears to be a 

rather formidable undertaking for a two-component system; results 

close to the above are intuitively felt to be achievable with 

fewer wavelengths . This is borne out by the results obtained by 

omitting from Tab le 7.1 every third observation (i . e all those 

marked·), giving { ~ 1 o.0174,o(x
1

J 0 .0030 

x2 0.9867,Ö (x2) 0.0046 

and F 4.24 with 2 and 22 d.f.; P(F(2 ,2 2) > 3.44) 0 . 05 

P(F(2 ,22) > 5.72) 0 .01 

We conclude that in this particular, speetrally featureless sys­

tem, acceptable standard deviations of ~ 0.3 % in relative concen­

tration may be reached with about 25 roughly equally spaeed ob­

servations. This estimated standard deviation is approximate ly 

equal to thaf calculated by the simple theory for 2 observations 

only. The inherently better precision of the least- squares methad 

here evidently on ly serves the better to allow for unpredictable 

corrections applicable to the measuring cells: in other words, 

merely making allowance for a third unknown (the resultant cell 

correctio n) so impairs the quality of the systems of 2 equations 

in the concentrations that we must have recourse to a rather 

heav ily overdetermined system in 3 unk nowns in order to obtain 

the precision suggested (but not, in practice, afforded ) by a 

good system of equat ions for the u nknown concentrations . 

The results exhibited above are confirmed by those achieved 

for the same system with observat i ons at 239(1.5)275 rum, in 

another experiment which yielded 

o.74% ~1x 1 1 

99.55 % ö1x21 

0.28 % 

0.32 % 

for a known conposition of x 1 = 0.98 %, x 2 = 99.02 %. 

7 . 2 The c 9 aromatic h ydro ca rbons 1n a mineral turpen tine 

7.2 .1 lntroductory 

At the suggestion of Professor A.I.M. Keulemans, an experi­

ment was devised which, if successful , might convincingly demon-

138 s trate the applicability of least-squares analysis to practical 



cases. Martin and Winters (1963) reported a fairly complete 

analysis of crude mineral oils in which relative errors (presum­

ably standard deviations) of 6% per component were achieved.While 

it was clear at the outset that spectrophotometry would be unable 

to allow comparably precise results for minor constituent aroma­

tics, because its error is inherently of an absolute nature, it 

was thought that for aromatic components present in major a­

mounts a much better precision would result. 

A sample of an aromatic mineral turpentine (Shell Nederland 

N.V., batchIP 2164/64), having a boiling point range of 140 to 

190° and an approximate aromatic content of 20 %, was analyzed. 

This approximate composition was confirmed by fluorescent indi­

cator analysis, which resulted in about 19% aromatics,the remain­

der being (essentially) saturated non-aromatic hydrocarbons. The 

aromatic and non-aromatic fractions were collected separately 

and subjected to gas chromatography, which revealed, by a count 

of peaks, the presence in this particular turpentine of at least 

40 alkanes and 45 aromatics; a considerable number of the latter 

could be identified by their retentien indices, A.P.I. samples 

serving as reference compounds. In order to reduce the number of 

aromatic compounds to be determined simultaneously,the turpentine 

was fractionated on a spinning band column of about 25 theoreti­

ca! plates at atmospheric pressure. In all, 12 fractions were 

collected, numbered SB-1 to SB-12 (Table 7.2). 

Table 7.2 Fractions collectedon distillation of the turpentine 

Fr action name Boiling point range/°C Amount/cc 

SB-1 125 - 138 1 0 

SB-2 138 - 148 7.5 

SB-3 148 - 154.5 8 

SB-4 1 54.5 - 158 6.5 

SB-5 158 - 159 5 

SB-6 159 - 164.3 7 

SB-7 16 4. 3 - 167.5 8 

SB-8 167.5 - 168.5 4.5 

SB-9 168.5 - 171.5 5 

SB-10 1 71 . 5 - 173.5 8.5 

SB-11 173.2 - 175.5 6.5 

SB-12 > 175.5*) 11 . 5 

*l residue 139 



7.2.2 Analysis by gas-liquid chromatography 

A sample of each SB fraction was analyzed by gas chromato­

graphy on a cupro-nickel capillary column, 50 m long and of 

0.25 millimetre internal diameter coated with polyethylene gly­

col (PEG 400), at 100°C and a 1 atm nitrogen pressure. The sta­

tionary phase was chosen because it gave a clean separation be­

tween alkanes and aromatics. The detector sensitivity was assum~d 

to be equal for all c9 aromatics; the surfaces under each of the 

aromatic peaks were determined by planimeter in the chromatograms 

and divided by the sum total of these surfaces; the figures so 

obtained will be referred to as gas-liquid chromatography per­

centages (%GLC) and are reproduced here as Table 7.3 for the 

fractions SB-4 to SB-8 (see Fig. 7.2). 

The alkanes would not be expected to impair the spectro­

photometric analysis to be described, since they do not absorb in 

the ultra-violet at À>240 nm. Matrix effects,too, can be presumed 

absent since the turpentine's alkanes ferm a negligible amount 

relative to the iso-octane used as a solvent. 

Table 7.3 

Percentage composition of the aromatics of some spinning band 

column fractions as estimated by planimetry of GLC peaks. 

Compound Short SB-4 SB-5 SB-6 SB-7 SB-8 B.p/°C 

_!-propylbenzene iPr 2.3 0.4 - - - 152.39 

_2-xylene oXy 0.2 0.02 - - - 144.41 

~-propylbenzene nPr 17.7 8.2 2.4 0.1 - 159.22 

1-methyl-3-ethylbenzene 1M3E *) 63.3 58.5 37.6 9.0 1. 6 161.31 

1,3,5-trimethylbenzene 135tM**l 3.9 8.4 13 . 8 13.4 6.3 164.72 

1-methyl-2-ethylbenzene 1M2E ***) 11 • 4 21.2 31.6 21.5 9.7 165.15 
1,2,4-trimethylbenzene 124tM 1.2 3.3 1 4. 3 54.0 73.0 169.35 
1,2,3-trimethylbenzene 123tM - - 0.3 2.0 7.2 176. OB 
sec-butylbenzene sBu - - - - 2.3 173.31 

*l Peak coincident with that of 1-methyl-4-ethylbenzene(1M4E) 

**l Peak coincident with those of _!-butylbenzene (iBu) and 

tert-bu tylbenzene (tBu) 

***l Peak coincident with that of 1-methyl-3-.!-propylbenzene 

140 (1M3iP) 



124 tM 

~1M2E 

t 135tM 

injec:tion 

1M3E 

AL KANES 

methane 

Fig. 7.2 A chromat o gram of fraction SB-4, to show the good se­

paration of the aromatics fr om one another and f r o m the 

alkanes. (For th e abbreviations, see Table 7.3). 

It will be seen from Table 7.3 that 1-methyl-3-ethylbenzene 

cannot, in this GLC analysis, be distinguished from its 1,4-iso­

mer. Also, three c10 aromatics could be hidden under the peaks of 

1,3,5-trimethylbenzene and 1-methyl-2-ethylbenzene. The coinci- 141 



dence of the 1M3E and 1M4E peaks is particularly unfortunate, the 

boiling points of these Cg compounds differing very little 

(161?305 and 161?939 respectively,according to the A.P.I.Tables). 

The interference from the c10 compounds would not be expected to 

be especially harmful in fractions collected by boiling point", 

We can therefore expect the results in the Table to be meaningful 

as they stand for all compounds shown with the exception of the 

1M3E percentages which should be interpreted as percentage con­

tents of 1M3E + 1M4E relative to total aromatics. 

7.2.3 Analysis by spectrophotometry 

7.2.3.1 A first attempt- detection of a contaminant 

Some attempts to prepare suitable samples for multicomponent 

spectrophotometric analysis by preparative gas-liquid chromato­

graphy failed because of persistent contamination of the frac­

tions obtained (as shown by their UV spectra); in addition, reco­

very was far from quantitative. It was therefore decided to sub­

ject the fractions described in 7.2.1 to the spectrophotometric 

methad without further purification. We confined our attention to 

the fractions richest in Cg hydrocarbons, i.e. SB-4 to SB-8, SB-6 

being omitted because it was not expected to present new problems 

or to yield new information. 

The procedure adopted was as follows: standard solutions in 

iso-octane were made up of each of the hydrocarbons mentioned in 

Table 7.3; Each of these solutions had a maximum absorbance in 

the range 1.2-1.6. The compounds referred to were A.P.I.samples. 

For completeness's sake, similar solutions of ethyl-benzene, ~­

and E-xylene were also prepared. In addition to these, three 

accurately known mixtures ('synthetic mixtures') of these solu­

tions were also prepared as a check, tagether with solutions 

having a maximal absorbance in the desired range of each of the 

fractions SB-4, SB-5, SB-6 and SB-7. Each of these 23 solutions 

then had its absorbances observed at the 37 wavelengths 245(1)280 

and 285 nm. The three synthetic mixtures (S1, S2 and S3) and 

the four fractions were then analyzed in terms of the standard 

solutions by the least-squares procedure. 

Against all expectation, the analysis seemed to fail comple­

tely. Standard deviations in the residual vector for the S and SB 

solutions were of the order of magnitude of 10 to 50x1o- 3 , 

•) 135tM (b.p. 164? 72) coincides with illu (172? 76) and tBu 

142 (1Gg? 12); 1M2E (b.p. 165~ 15) coincides with 1M3iPr (175? 05) 



whereas we have been led to expect a value -3 
o.:E 1 to 2x10 • 

Apparently, there was some souree of gross error. Fortunately, it 

turned out that this souree of error could be identified and 

eliminated. The procedure adopted was as fellows: the composi­

tions y 1 of S1 and y 2 of S2 were accurately known; so was (within 

the measuring precision) the matrix ~ of the absorbances of the 

standard solutions. We could therefore reconstruct the calculated 

spectra b. = Ay. (j = 1,2) and campare them with the mixture 
-J --J 

spectra ~j as actually observed. It was very striking that, for 

all wavelengths, the elements of the b . were in excessof those 
-J 

of the ~j· Moreover, these differences were roughly parallel for 

S-1 and S-2 (Cf. Fig.7.3). A contamination having a spectrum pro­

portional to that of Èj - ~j was therefore suspected. 

Even though the nature of this contaminant was not known at 

the time, its presence could be allowed for by 

The reconstructed contamination spectrum c = 
considered as an additional reference spectrum 

a simple device. 

; '.ej - .è j) was 
and the rernaining 

unknowns, S-3 and the SB's, were then analyzed in terros of the 

standard solutions plus spectrum ~· 

For the known mixture S-3, the results were quite satisfactory: 

Compound % Taken % Found St. deviation (%) 

nPr 0.25 0.34 0.26 

1M3E 12.00 1 2.1 3 0.51 

135tM 9.30 8.99 0.64 

sBu 1 . 35 1 . 25 0.27 

1M2E 13.76 13.44 0.38 

124tM 62.22 62.38 0.17 

123tM 1. 09 1 . 50 0.32 

contaminant ? 21.32 . ) 0.5 . ) 
*J In terros of the concentratien corresponding to spectrum~; 

all others in terros of the reference solution concentrations. 

A test of the hypothesis "S-3 Taken = S-3 Found" yielded an F­

ratio of 1.13 (with 7 and 28 degrees of freedom). 

The standard deviation of the residual vector was now in 

accordance with expectation too; by allowing for the contaminant, 

it had fallen from 8.3 x 10- 3 to 1.4 x 10- 3 . 143 
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Further inquiry afforded a clue as to the identity of the 

contaminant. Contrary to the previous practice, the glassware 

employed had been rinsed with acetone. That acetone was indeed 

the contaminant was easily confirmed by observation of its spec­

trum in iso-octane. A salution of 0.94 g/litre gave the spectrum 

recorded as curve (3) in Fig.7.3.It can easily beseen that there 

is a good general correspondence between the shapes of the three 

curves; also, the very slight dip in the spectrum at ~ 276 rum 

(amounting to perhaps 2% of the absorbance at neighbouring wave­

lengths) can be well distinguished in the reconstructed spectra 

b . - a .. 
-) -J 

Allowing for the presence of acetone (spectrum ~). provisio-

nal results were obtained for SB-4, SB-7 and SB-8. SB-5 on closer 

observation proved to have absorbances up to 2.05 and was rejec­

ted for that reason. While no final significanee is attached to 

them, they are reproduced here as Table 7.4 , chiefly because of 

the inferences to be drawn from them as to the qualitative compo­

sition of the SB fractions. For SB-4 and SB-7 we could conclude 

that the (1M3E + 1M4E) coincident chromatographic peak must in­

deed be attributed to a mixture of both compounds. \'le could not 
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Fig. 7.3 To show the difference spectra attributable to the ace­

tone contaminant. 

Curve (1): Difference spectrum ~I -~I 

Curve (2): Difference spectrum ~ 2 - Az 
Curve (3): Spectrum of aceton in iso-octane (0.94 g/1). 



Table 7.4 

Spectrophotometric results *l for mineral turpentine fractions 

Compound 

iPr 

oXy 

nPr 

1M3E 

1M4E 

1M3E + 1M4E 

135tM 

1M2E 

124tM 

, 23tM 

sBu 

SB-4 +) SB-7 .SB-8 

al bl cl d) el a) b) c) dl el al b) cl dl el f) 

1.2 0.4 0.0101 1.7 2.3 

0 0 2 

13.8 0.4 0.1115 18.4 17.7 

36.2 1.0 0.2607 42.9 3.6 0.9 0 .025 9 4.8 

- 0.8383 

- 0.6227 

0 . 1 - 0.8087 

- 0.7202 

33.7 0.3 0.1187 19.5 7.5 0.3 0 .0 264 4.9 3 . 2 0.3 0.0113 2.2 - 0.3522 

0.3794 62.4 63.3 0.0523 9.7 9.0 0.0113 2.2 1.6 

4.3 0.2 0.0296 4.9 3,9 11.6 1.4 0.0798 14.9 13.4 7.2 o.s 0.0496 9.8 6.3 0.6884 

9.7 0.6 0.0711 11.7 11.4 13.6 0.7 0.0997 18. 7 21.5 6.2 0.7 0.0455 9.0 9.7 0.7333 

1.5 0.3 0.0059 1.0 ,2'.2 69.9 0.3 0.2748 51.4 54.0 91.2 0 .3 0.358& 70.9 73.0 0.3932 

0,6076100.1 100 .0 

2.9 o.s 0.0279 5 . 2 2.0 3.0 0.6 0.0289 5.7 7.2 0.9630 

1.4 0.3 0.0118 2.3 2.3 0.8411 

0.5345 99,9100. 0 0.5057 99.9 100.1 

Standard deviation 
of residual vec t or 

2.7 IC 10-3 

•) From samples suffering from contamination by acetone . 

a) Analytica! result, expressed as a percentage of the concent ratien of the corresponding standard 

solution . 

b) Estimated standard deviation in a), in the Satlle unit as a) . 

c} Concentratien of aromatic in milUgrams per milUUtre of solvent ; c) • a) IC f) I 100. 

d) Percentage of compound relative to total aromatics estimated : \ UV . 

e) For comparison ._.ith d): the samepercentage as estimated by GLC, frora: table 7.3 . 

f) Concentratien of standard (reference) solutions in rnill1qrarns per mill1Utre of solvent. 

+l After rejection of a single observat1on . 

find detectable amounts of 1M3E in SB-8, though it is admitted 

that the detection limit is quite high. With a standard deviation 

of ~ 1% of the standard concentratien (~0.72 milligram/ml of 

solvent), 1M3E could be present in amounts of say ~ 0.02 milli­

gram/r:tl or more. He shall assume 1M3E to be absent from SB-8. 

Likewise, the c10 compounds having peaks coinciding with those of 

c9 (see Table 7.3) are presumed absent. The low values of the 

standard deviation of the residual vector indicate that the SB 

observed spectra are expressed quite well as linear combinations 

of the spectra of the compounds assumed to be present. 

The agreement between the percentages of the aromatics as 

found by least squares (% UV) and the comparable percentages as 

found by gas-liquid chromatography (% GLC) is reasonaly satisfac­

tory. 

7.2.3.2 The experiment repeated 

Since the results reported in the previous sectien could be 

described as encouraging, it was decided to repeat the experiment 

under exclusion of all contamination. Solutions of the reference 

compounds as well as the SB factions were freshly made up; 145 



the data are recorded in Table 7.5. As a check, three synthétic 

mixtures (S-4, S-5 and S-6) of the standard solutions were also 

prepared and were anaiysed with the SB samples. The observations 

are presented in Table 7.6; the absorbances recorded there have 

not been corrected for cell differences, since the cell absorban­

ces were uniformly small and reasonably constant in À • In all, 

36 wavelengths, 245(1)280 nm, were chosen for observation. As a 

preeautien against read-out errors, the transmittances as well as 

the absorbances of all observations were recorded, these being 

checked for consistency before being accepted. The readings took 

about six hours, during which time three observers cooperated. 

The uncorrected absorbances of Table 7.6 have been treated 

by the least-squares procedure; it is thought that applying .cell 

Table 7.5 

Reference and sample concentrations 

Concentration: 
À mg of substance a 

Substance *l ma x ma x 
per g of ~olvent (approx.) (approx.) 

ethylbenzene (E) 1. 0422 1 . 4 7 262 

!!)-Xylene (mXy) 0. 8199 1. 40 265 

.E-Xylene (pXy) 0.3690 1. 44 274 

iPr 1. 2192 1 • 4 7 261 

oXy 0.8737 1. 50 263 

nPr 1.1863 1 . 4 4 262 

1M3E 0.9521 1. 4 7 265 

1M4E 0.3708 1 .1 6 274 

iBu 1. 41 22 1. 48 259 

tB u 1 . 54 24 1 . 50 257 

13'JtM 1.2639 1 . 54 265 

sBu 1 . 3035 1 . 36 261 

1M2E 1.1016 1. 62 263 

1M3iP 1 .1553 1 . 58 264 

124tM 0.5478 1 . 52 276 

123tM 1. 3366 1. 43 261 

SB-4 5.4891 1. 42 265 

SB-5 3.2325 1. 39 265 

SB-7 2.6828 1 . 49 267 

SB-8 2.6418 1 . 41 267 

146 *) For the abbreviations, cf. Table 7.3 



Table 7.6 Absorbances (x 1000) observed for hydrocarbons and samples. 

(For the abbreviations used, cernpare the previous Tables and the text) 

l./nm SB-5 SB-7 124tM s-s E nPr 1M.4E pXy 123tM S-6 ""Y. S-4 SD-4 1M2E 1Pr s.Bu 1M31Pr SB-8 oXy 1M3E tB u iBI.,l 135tM 

245 364 301 218 414 543 540 178 198 503 291 333 432 390 ~09 574 561 444 255 462 405 678 556 348 

246 398 338 249 454 621 614 193 214 555 325 366 475 438 557 654 650 479 287 508 437 759 629 390 

247 443 376 277 502 724 720 221 238 600 360 406 531 481 610 789 764 523 319 554 480 840 731 432 

248 483 412 304 547 801 816 214 27 1 654 394 443 578 524 664 801 782 568 348 603 518 822 847 483 

249 522 455 340 593 799 807 258 285 721 438 482 617 559 729 771 752 626 385 671 564 774 836 523 

250 562 504 380 645 775 793 270 312 775 4 85 519 661 594 808 781 757 705 427 740 618 895 822 578 

251 621 549 414 718 833 845 304 314 819 528 600 737 661 875 965 920 774 465 802 702 1147 865 605 

252 694 600 450 772 1 012 1026 376 396 895 572 652 802 743 933 1103 1072 805 507 847 740 1215 1059 665 

253 736 655 505 820 1132 11 59 390 432 1002 624 683 858 792 993 1167 1132 845 560 901 777 1153 1202 710 

254 779 718 563 865 1112 11 52 41 7 440 1076 686 723 895 829 1073 1140 1086 919 617 990 816 1124 1203 785 

255 841 778 608 960 11 58 1161 421 501 10 92 747 785 976 884 1171 1079 1046 1041 661 1085 918 980 1171 880 

256 896 832 650 1028 1044 10 80 450 472 1131 800 875 1027 930 1250 97.3 942 1123 706 1135 1002 1045 1110 966 

257 958 897 721 1069 1045 1057 534 556 1206 856 957 1072 998 1258 1232 1164 1154 772 1158 1061 1495 1073 948 

258 1005 97 1 799 1118 1313 1 320 550 595 123 5 922 97 1 1142 1059 , 278 1386 1354 1178 848 1200 1084 1498 1362 1050 

259 1086 1035 850 1144 1370 1425 675 616 1200 974 995 11 67 1140 1346 1395 1354 1156 898 1255 1083 1347 1482 1106 

260 1107 1079 902 1148 1304 1351 712 868 12 33 1014 1004 1158 11 50 14 20 1316 1238 1176 944 1294 1079 1293 1433 1037 

261 1114 114 8 982 1224 1471 1437 618 730 1372 1090 990 1236 11 56 1464 1471 1355 1341 1013 1384 1156 1109 1358 1135 

262 1178 1212 1036 1333 1294 134 0 620 650 1428 1172 1151 1 318 1 212 1548 1004 986 1461 1066 1454 1308 790 1371 1227 

263 1181 1219 1037 1353 936 972 613 707 1 372 1172 1224 1302 1189 .1616 864 817 1472 1068 150 1 1366 1021 1017 1218 

264 1255 1237 1045 1373 1047 10S1 751 684 1223 1173 12 61 1339 1275 1567 1111 1077 1577 1080 1407 1398 11 09 1035 1258 

265 139 0 1346 1162 1415 1042 1066 1001 963 1 295 1253 1400 1379 1416 1397 2~9 932 1459 1183 1 288 1472 941 1132 1535 

266 1213 1449 1377 1215 773 839 073 1087 1178 1347 1222 1154 1200 1291 723 710 1145 1341 1250 1198 708 925 1394 

267 1136 1490 1467 1073 742 728 878 855 966 1372 977 1009 1103 1271 1053 941 1042 1405 1198 975 935 713 1258 

268 1228 1432 1386 114 2 1285 1262 982 1140 835 1312 945 1134 1250 1na 1014 995 1140 1332 1018 1076 644 1141 1287 

269 1036 1317 1320 1037 915 960 738 1055 982 1228 1031 1011 1043 1022 588 588 1 002 1252 927 1020 358 1001 1084 

270 834 1267 1308 864 480 513 535 717 1078 1195 762 790 793 10B2 294 304 900 1224 1128 790 184 543 862 

271 880 1262 1239 1032 233 252 420 504 867 1212 682 914 819 1338 158 164 1383 1177 1219 1007 11 7 264 101 9 

272 997 1170 1086 1237 140 152 446 414 603 1129 1302 1128 960 1136 113 124 1293 1055 993 1391 94 146 1393 

273 1041 1030 942 895 97 108 1006 568 400 918 1186 8 18 1017 708 81 93 785 925 637 1015 60 108 1132 

274 892 1059 1098 541 64 77 116 2 143 8 27~ 907 712 482 857 385 50 61 406 1015 355 557 36 70 8 10 

275 581 1230 1468 358 43 53 70 2 1164 197 1100 361 294 519 211 35 51 218 1283 197 287 23 44 658 

276 362 1204 1523 258 2a 36 363 619 162 1102 193 200 296 130 23 36 135 1301 120 162 14 26 498 

277 217 916 1187 178 19 26 174 306 134 848 111 136 166 82 18 34 87 1006 74 103 10 16 314 

278 133 594 774 115 15 22 96 157 99 555 74 90 101 52 15 30 55 658 48 67 8 10 203 

279 83 330 427 71 12 18 62 82 62 312 43 56 64 32 13 30 34 365 31 41 6 6 171 

280 54 177 225 42 10 16 48 60 39 169 25 36 45 22 12 29 21 195 21 26 6 5 116 



corrections would not materially affect the results. For the syn­

thetic mixtures, the . composition estimated has been set out in 

Table 7. 7 ·' The results exhibi ted there are uniformly satisfactory 

from a chemist's point of view, the maximum difference between 

percentages taken and found being 1.54 (S-6, 1M3E). In such a 

case the user would be forewarned by a correspondingly high value 

(1.08) of the estimated standard deviation for that compound. 

Table 7.7 

Results for the synthetic mixtures S-4, S-5 and S-6 

S-4 S-5 S-6 

Taken - Taken Found - Taken Found -Compound: Found 0 0 0 

iPr 3.32 3.13 0. 15 0.55 0.46 0. 21 - a) -
oxy 0.48 0.50 0.60 0.26 0.59 0.87 - a) -
nPr 15.08 15.01 0.14 6.59 6.65 0.20 0.34 0.37 0.30 

M3E 63.73 63.49 0.39 60.30 60.80 0.55 7.65 9.19 1.08 

1M2E 1 0. 63 1 0. 52 0.67 18.81 18.30 0.95 15.33 14.76 0.69 

123tM - a) - - a) - 1. 86 1 • 85 0.67 

24tM 3.15 3.78 0.11 6.40 6.71 0.15 67.21 68.06 0.32 

135tM 3.60 3. 72 0.33 7.08 6.95 0.47 7.53 6.21 1 . 01 

sl 1. 0 x 1 o- 3 1.4 x 1 o- 3 3.0 )( 1 o- 3 

All the above have been expressed as percentages of the reference 

concentrations, cf. Table 7.5 

a) Not analysed for 

s) Standard deviation of the residual vector. 

Statistically speaking, there is less reason to be satisfied 

with the estimated compositions. A test of the hypothesis 'Taken= 

Found' for S-4, for instance, yielded an F-ratio of no less than 

61.9 (7,28 d.f.); this improved slightly upon omitting the 

obviously effending result for 124tM, giving 29.8(6,28 d.f.) for 

148 the alternative hypothesis 'S-4 Taken= S-4 Found with the excep-



tion of 124tl!'. Other experiments gave less extreme F-ratios: 

Hypothesis F-ratio d.f. 

S-5 Taken = S-5 Found 7,25 7,28 

do., with the exception of 124tM 1, 24 6,28 

S-6 Taken = S-6 Found 3,26 6,29 

do., with the exception of 124tM 0,69 5,29 

It is obvious that at least the results for 124tM are badly 

in error and that S-4 as a whole is statistically unsatisfactory. 

These discrepancies stand unexplained, the more so 

other experiments on the same range of compounds 

here) yielded more nearly expected results. 

Turning to the composition estimated for 

distillation fractions SB, collected in Table 

because some 

(not reported 

the turpentine 

7. 8, we note 

that the 

obtained 

results of multicomponent 

by GLC (columns c) and d) 

spectrophotometry and those 

respectively) confirm each 

Table 7.8 

Spectrophotometric results for mineral turpentine fractions 

Fr action: 

Compound: SB-4 SB-5 SB-7 SB-8 

a) b) c) d) a) b) c) d) a) b) c) d) a) b) c) d) 

iPr 1.7 0.4 2. 3 2. 3 0.6 0. 3h) 0. 9 0.4 

oXy e) 0 .o f) 0.0 0.02 

nPr 13.0 0.4 17.5 17.7 6.1 0. 3 8. 5 8.2 0.8 0. 2 1 .2 0.1 

1M3E 41.0 1.0 44.2 - 33.6 0. 7 38.6 4. 5 0.9 5.8 g) 0.0 

1M4E 46.8 o. 3 19.7 - 45.9 0. 2 20.1 - 10.7 0.3 5. 3 4. 3 o. 3 2.7 

1M3E + 1M4E - 63.9 63.3 58.7 58.5 11.3 9 .o 2. 7 1.6 
13St.M 2.3 1.0 3. 3 3.9 5. 8 0. 7 8 .. 6 8. 4 7.8 0.9 13.1 13.4 3.2 o. 9 6.6 6. 3 

1M2E 9.5 1.7 11.9 11.4 15 .o 1.2 19.5 21.2 14 .s o. 5 21 .1 21.5 5.3 0. 5 9.5 9.1 

124t.M 1.8 0. 3 1.1 1. 2 6.0 0.2 3.9 3. 3 12.0 o. 3 52.2 54.0 82.1 0. 3 73.7 73.0 

123tM 0. 7 0. 5h) 1. 3 2.0 2.0 o. 5 4.3 7.2 

sBu i) 1 .5 0.2 3.2 2. 3 

&> 2. 4 1 o- 3 2 .J ,.. 1o-J 2.1 x 1 o-3 

a) Analytica! result, expressed as a percentage of the concentratien of the corresponding standard 

solution, for which see Table 7. 5. 

b) Estimated standard d'eviation in al, in the same units as a). 

c) Percentage of this compound relative to total aromatics estimated: \ UV (from a) and Table 7, 5). 

dl For comparison with cl: the samepercentage as estimated by GLC, from Table 7.3. 

e) Set equal to zero: a) "' -0.22, b) 0.16. 

f) Set equal to zero: a) = +0.07, b) "' 1.07. 

·g) Set equal to z.ero: a) ., +1.53, b) "' 0.82. 

h) Definltely known to be present, hence not set equal to zero, thouqh a) is very imprecise. 
1) Detectable in trace amounts by GLC. 

S l Estlmated standard deviatlon of residual vector. 
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other about as well as could be expected. The standard deviations 

in the spectrophotometric results seem realistic when c) and d) 

are compared. The results also s ugges t that the GLC estimates are 

somewhat more precise than those obtained by Martin and Winters 

1963. 

It is clear, we think, that mi nor constituents are indeed 

estimated more precisely by GLC t han by spectrophotometry. There 

is at least some indication t hat components present in major 

amounts should be preferably determined by spectrophotometry. 

7.2.4 Some conclusions 

We venture to submit that the work reported on the turpentine 

fractions allows the following conclusions to be drawn: 

1. Spectrophotometric estimation of aromatics leads to acceptable 

analytica! results with up to at least eight compounds present 

simultaneously. 

2. Standard deviations per component are in the range of 0.2-2.0% 

of the reference concentration. There are indications that the 

lower estimated standard deviations (say ; ~ 0.2% or less) may 

represent underestimates. 

3. The resolving power of multicomponent spectrophotometry is 

dependent on the shapes of the spectra in the set. It is pre­

dictabie from these spectra and, in favorable cases, superior 

to the GLC resolving power. 

4. For the determination of minor constituents, GLC is t he method 

to be preferred. 

In conclusion, we append a few miscellaneous remarks. 

Re conclusion 1: That the simultaneous determination of some 

eight components should prove feasible is quite gratifying 

when one considers the degre e to which the spectra are over­

lapping. Fora demonstration, we refer to Fig. 7.4, where, 

in the upper part of the figure, the recorded absorbances of 

solutions of seven of the c 9 compounds (nPr, 1M2E, 1M4E, 

123tM, 124tM, 135tM) are shown. The lower part of the figure 

shows the (likewise recorded) spectrum of a mixture consis­

ting of equal parts of the solutions above.The mixture spec­

trum has maxima too; however, these fail to coincide clearly 

with any of the constituent' s maxima. 

Re conclusion 2: The lower values of ä are invalidated by syste­

matic errors such as slight wavelength-dependent cell dif­

ferences, non-linearities, scattered light, diffraction ef-

150 fects and a host of other imperfections. 
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Top: The absarptien spectra of nine aromatics in 

iso-octane. 

Bottom: The spectrtim of a mixture consisting of equal 

parts of the absorbers shown above. 

Re conclusion 3: The better resolving power of spectrophotometry 

was convincingly demonstrated in the case of 1M3E and 1M4E, 

which have only moderately correlated spectra, but could not 

be separated by GLC under our experimental conditions. How- 151 
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ever, in fairness it should be added that such a separation 

is possible in principle on PEG columns and has indeed been 

achieved by Martin and Winters. 

7.3 Other applications 

So far, other applications of the method presented have been 

reported only from the laboratory for Organic Chemistry of the 

University of Amsterdam. From the publications (Cerfontain c.s. 

1963, Arends c.s. 1964, Vollbracht 1962, Wanders 1964) and from a 

personal communication from Dr. Cerfontain, we learn that the 

applications to mixtures of various mononuclear arylmono- and 

disulfonic acids have been completely successful.The routine use 

of multicomponent spectrophotometry by overdetermined systems has 

led,in the hands of the authors cited,to many hundredsof success­

ful analyses, chiefly with aqueous and fuming sulfurie acids as 

the solvents. It is expected that this routine use wil l be conti­

nued for some time to come, since their work is in full progress 

and the alternative analytica! method available, inverse isotope 

dilution, is at present far more laborious and time-consuming. 
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SAMENVATriNG 

Dit proefschrift behelst een onderzoek, gericht op het ver­

beteren van de nauwkeurigheid in de spectrafotometrie door het 

gebruik van overbepaalde stelsels lineaire vergelijkingen. Meer 

in het bijzonder wordt de toepassing op multicomponent-analyses 

in het gebied toegankelijk voor kwarts-prisma instrumenten be­

schreven. 

In Hoofds tuk I wordt de probleemstelling en ontwikkeling van 

het onderzoek i n grove trekken geschetst; een samenvatting van de 

inhoud wordt gegeven en de, overigens schaarse, literatuur wordt 

besproken, terwijl tenslotte de mogelijkheid van volledige auto­

matisering aangestipt wordt. 

Hoofds tuk II geeft een beschrijving van de gevolgde werkwij­

ze en behandelt het verloop in de tijd van waargenomen extincties; 

de non-reproduceerbaarheid van deze waarnemingen dwingt ertoe, zo 

concluderen wij,de e xtincties van standaarden (referenties) vrij­

wel gelijktijdig met die van het te analyseren mengsel te meten. 

De theoretische wenselijkheid van het waarnemen van tot dusver 

ongebruikelij k hoog geachte extincties wordt besproke n; de moge­

lijkheid van het ge b r uik van e xtincties tot 1,6 (zonder wezenlijk 

verlies aan meetnauwkeurigheid) wordt aangetoond. De zin van het 

gebruik van overbepaalde stelsels vergelijkingen komt aan de or­

de; tot de voordelen hiervan behoren vergrote nauwkeurigheid,een, 

zij het beperkte;mate van zekerheid ten aanzien van de juistheid, 

de mogelijkheid tot het uitsluite n van schrijffouten e n tot het 

vastste lle n v a n het gebruik van t e g rote splee tbreedten. Ook ·kan 

de aanwezigheid van een vreemde component worde n geconstateerd, 

terwijl voorts de gevoeligheid voor cuvet-verschillen kan worden 

verminderd. Ook het kunnen beschikken over een maat voor de nauw­

keurigheid, die uit de waarnemingen van een analyse zelf wordt 

verkregen, moet als een zeer aanmerkelijk voordeel beschouwd wor­

den. 

Hoofds tuk I II geeft een wiskundig mode l, waarin o.a. enige 

redelijke eigenschappen van de klassieke kleinste kwadratenschat-

ter i: ter sprake komen. Deze puntschatter verdient -mits de meet­

fouten klein zijn ten opzichte van de meetwaarde- de voorkeur 

boven een andere theoretisch juistere schatter,~. De betrekking 153 



tussen x en z wordt besproken. Bovengrenzen voor enige funkties 

van ~ - i worden afgeleid, waaruit de voldoende juistheid van de 

benadering van i door ~ volgt; dit levert tevens een efficiënt 

rekenvoorschrift voor z. Een variant (Model II) van het model 

wordt ingevoerd en de equivalentie van twee verschillende reken­

wijzen wordt aangetoond. 

Hoofdstuk IV behandelt de gebieds-schatting. De covariantie­

matrix van x wordt verkregen en gebruikt voor enige eenvoudige 

toetsen en betrouwbaarheidsgebieden. Verfijndere toepassingen 

stuiten op de moeilijkheid dat de coëfficiëntenmatrix zelf met 

fouten behept is. Onder de aanname dat de fouten normaal verdeeld 

zijn leidt een analogie met het "klassieke" geval tot het opstel­

len van drie hypothesen over de verdeling van b e paalde grootheden. 

Toetsen van deze hypothesen met een Monte Carlo methode voert tot 

de conclusie, dat deze verdelingen voor praktisch gebruik vol­

doende overeenstemmen met x2- en F-verdelingen. Hieruit volgt dat 

toetsen en betrouwbaarheidsgebieden, analoog aan die geldend voor 

de klassieke multivariate regressie, ook voor ons geval beschik­

baar zijn; het gebruik hiervan wordt besproken. 

Hoofdstuk V is gewijd aan een nadere analyse van het als li­

neair aangenomenverband tussen extinctie en concentratie. Bij van 

nul verschillende spleetbreedte wordt de lineariteit, naar bekend 

is, verstoord. Dit effect wordt aan het model van een Lorentz­

kromme voor de extinctie en een driehoekige spleetfunktie nume-

riek nagegaan, waaruit maximaal toelaatbare 

voor het geval van ~~n component volgen. De 

verhoudingen s/óv~ 

invloed van s/óv~ op 

Wij tonen aan dat bij 

dit type non-lineari­

waardoor dit type af-

multicomponent systemen wordt uiteengezet. 

kleinste kwadratenanalyse de residuën bij 

teit een karakteristiek patroon vertonen, 

wijking als zodanig herkend kan worden. 

In Hoofdstuk VI wordt het gebruik van bekende mengsels van 

componenten als referenties besproken. Na een theoretische behan­

deling van dit onderwerp passen wij deze techniek o.a. toe op het 

nabije infra-rood, waar notoire afwijkingen van de lineariteit 

optreden. Wij tonen aan dat deze variant in een aantal vrij sterk 

non-lineaire twee-componenten systemen tot het gewenste doel 

voert. Bij een bepaald drie-componenten systeem faalt deze opzet 

echter; de analyse-uitkomsten zijn, chemisch gezien, onbevredi­

gend. Dit moet echter aan de geringe onderscheidbaarheid van de 

spectra en niet aan het gebruik van mengsels als referenties ge­

weten worden; van dit laatste wordt namelijk aangetoond dat het 

154 in principe geen invloed op de nauwkeurigheid heeft. 



Hoofdstuk VII behandelt tenslotte enige toepassingen, en wel 

eerst het systeem cortison acetaat/ prednison acetaat, met sterk 

op elkaar gelijkende spectra. Vervolgens worden de aromatische c 9 
koolwaterstoffen in een terpentina-fractie geanalyseerd, waarbij 

minstens acht componenten in één mengsel bevredigend naast elkaar 

bepaald blijken te kunnen worden. De verkregen resultaten zijn in 

overeenstemming met die van de gas-vloeistof chromatografie en, 

naar zich laat aanzien, voor de hoofdcomponenten van de fractie 

zelfs nauwkeuriger. Enige andere praktische toepassingen worden 

aangestipt. 
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LEVENSBERICHT 

Op aanraden v an de Senaat is hier een kort levensbericht van 

de schrijver opgenomen. 

Hij werd op 18 maart 1928 te Rotterdam geboren. Na de lagere 

school bezocht hij het Gymnasium Erasmianum aldaar zolang de ras­

s enwetten hem dat toestonden, en daarna achtereenvolgens de Jood­

se Lycea te Rotterdam en Amsterdam. Op l ast van de Duitse bezet­

ter werd hij in april 1944 gearresteerd en via Westerbork naar 

Bergen - Belsen overgebracht. Na zijn bevrijding en terugkeer in 

Nederland werd in 1946 aan het Gymnasium Erasmianum het einddi­

ploma verkregen. 

Daarna studeerde hij scheikunde aan de Universiteit van Am­

ste rdam, waar he t doctoraal examen (met als hoofdrichting theore­

tische organische chemie) afgelegd werd in 1958. Hij trad vervol­

gens in dienst bi j de Staatsmijnen in Limburg, doch bleef tot 

1961 gedetacheerd b ij het Laboratorium v oor Organische Scheikunde 

der Universiteit v an Amste rdam. Sinds januari 1966 is hij werk­

zaam bij de N.V. Electrologica te Rijswijk (Z.H.). 
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STELLINGEN 

1. 

Een gestandaardiseerde wijze van codering van organische 

structuurformules is voor de toegang tot gegevensverwerkende appa­

ratuur .ongewenst en overbodig. 

Lit.: Rules for IUPAC Notation for Organic Compounds, 

London 1961. 

2. 

Bij het beoordelen van door Röntgendiffractie verkregen struc­

turen dient men rekening te houden met de vaak hoge correlaties van 

de geschatte toleranties in de parameters. 

3. 

Indien voldoend grote lichtstromen beschikbaar zijn biedt het 

gebruik van Raman-spectroscopie voor analytische doeleinden es­

sentiêle voordelen boven het gebruik van spectroscopie in het in­

fra-rood. 

4. 

De methode van Zscheile c.s. ter schatting van de standaard­

deviaties in spectrofotometrische muJticomponent-analyses leidt 

niet tot het gestelde doel; hun werkwi jze kan dienen als voorbeeld 

van het onbezonnen gebruik van een computer. 

Lit.: Zscheile, Murray, Baker, Peddicord, 

Anal. Chem., 34 , 1776 (1961). 

5. 

Het is aantrekkelijk de rijen ~I van de links-inverse vT s 

(!T!l-1!T van een kleinste - kwadraten co~ffici~nten-matrix ! te 

berekenen uit ~l = .Eli<.El.Eil. Hierin is .Ei de residu-vector bij 

ontbinding in de zin van de kleinste kwadraten van de i-de kolom 
T -1 

van ! op de overige kolommen; de normeringsfactor (,Ei.Eil is gelijk 

aan het i,i-de element van (!T!)-1 • 

6. 

Het gebruik van vergrote rekenprecisie tijdens de herinversie 

bij lineaire programmering kan dikwijls vermeden worden door de 

spil-elementen op passende wijze t e kiezen; dit kan met een zeer 

geringe uitbreiding van het gebruikelijke iteratie-algoritme ver­

wezenlijkt worden. 



7. 

Het oplossen en opstellen van kruiswoordpuzzels - 'cryptogram­

men' inbegrepen - is programmeerbaar voor rekenautomaten. 

8. 

Het is een eis van eenvoudige eerlijkheid de mate van zeker­

heid van de vertaling van bijbelteksten in de vertaalde tekst te 

doen blijken. 

9. 

Een commissie van de Akademie van Wetenschappen belaste zich 

met de redactie van de omschrijvingen van natuurwetenschappelijke 

termen in de Nederlandse woordenboeken. 

10. 

Het is in humaan zowel als in economisch opzicht wenselijk dat 

het onderwijs aan sterk begaafden tenminste evenzeer gesteund wordt 

als dat aan zwak begaafden. 

Eindhoven, 5 juli 1966 I.S. Herschberg 
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