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1. Introduetion 

This dissertation is about the hypothesis that some location parameters 

are equal. The model is: 

The chapters number 2. 3, 4 and 5 consider the hypothesis H 0 : !J.t = ... = 

!J.J.: where the observations within the samples are numhered from 1 to 

n;. Chapter 6 is a bout a col1ection of hypotheses: IJ.; IJ. j • where i = 1 . 
... . k and j 1 ..... i-1. For the errors e;j various distributions will be 

considered with Eeij = 0 and special attention will he given to normal 

distributions with varianee heterogeneity and to the presence of some 

extreme outliers. 

As a consequence of several approximations the probability of rejecting a 

hypothesis when in fact it is true will not for every test he equal to the 

chosen size a. In those situations methods are considered f or which this 

probability differs as little as possible from a, whatever the value of the 

nuisance parameters may be. For example. in the Behrens-Fisher prob­

lem there are two samples from normal distributions with unknown 

and possibly different variances. The nuisance parameter bere is 6. the 

ratio of the population variances. Following the Neyman and Pearson 

conditions a validation of a test for which the distribution under the 

hypothesis is only approximately known. involves repeated sampling for 

fixed 0. For every value of 6 the fraction of rejected hypotheses under 

H 0 should he al most equal to a. When no analytica! approach seems to 

exist a simulation is performed with a limited set of values for 0 that 

should represent the coneetion one might meet in practical situations. 

Those who are in favour of fiducial statistics see the ratio e· of the sam­

ple variances as the nuisance parameter in the Behrens-Fisher problem. 
And they are lucky. because there exists an exact salution for this prob­

lem. This is usually called the Behrens-Fisher test [Behrens (1929). 
Fisher (1935)] and for every fixed value of 6* the probability of reject­

ing a true hypotheses is a. But that is not the case for every fixed value 

of 6. Only for 0 0 or 6 = 1 the Behrens-Fisher test controls the 

confidence error probahility. For all other values of 0 this metbod is 
conservative in the classica! sense [Wallace ( 1980 )]. In this study con­

servatism will be regarded as undesirable. because it usually results in a 
loss of power. Progressiveness (meaning tbat the actual level exceeds its 

nomina! value) is considered to he unacceptable. 



- 2-

The Behrens-Fisher solution uses the following distribution: 

J.Lt-f.Lz-(xl-xz) -BF( n•) 
V 1 .v 2 ,17 

.Js[/n 1+siln2 

Here x; denotes the sample mean and s/ the sample variance. The tables 

are entered with the numbers of degrees of freedom v; = n; -1 and the 

ratio e·. In the original publication the following parameter was used 

instead of 6': 

The desideratum of all tests in this dissertation is that the nomina! level 

a controls the error probability under the hypothesis. This probability 

is considered with the classica} confidence meaning. Therefore the 

fiducial solutions will be discarded and for the Behrens-Fisher problem 

approximate solutions like Welch's (1947) modified t-test will be 

recommended. 

1.1. Varianee heterogeneity 

Chapter 2 is about tests for the equality of several means when the 

population variances are unequal. The data are supposed to be normally 

and independently distributed. The situation can be described as t}le k­

sample Behrens-Fisher problem. and several approximate solutions are 

considered. In order to understand why such special tests are necessary 

it is of interest to know what will happen if the classical metbod is iused 

and the problem of varianee heterogeneity is simply ignored. Table 1 

gives the estimated size of the classical test for one-way analysis of 

variance. For the nomina I size the usual values of 107o, 5% and 1% were 

chosen. The statistic F is given by: 

k 

En; (x;-x)2/(k -1) 
"F=.:..i..,.=..;;.I _______ _ 

k 

1: (n; -l)sNCN -k) 
i=l 

" Here N = I: n; denotes the combined sample size. If the population 
i= 1 

variances are equal F follows under the hypothesis of equal means an 

F-distribution with k-1 degrees of freedom for the numerator and N-k 

for the denominator. If the sample sizes are equal and the population 

variances (or the standard deviations) are unequal the actual size will 
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Table 1: Actual size of classica) F-test 

sample size sigma 10~. 5% 1 o/t:. 

4.6.8.10,12 1.1.1.2.2 6.28 3.16 0.72 

1.1.2.3.3 5.88 3.12 0.72 

1.2.3,4,5 5.52 2.72 0.56 

1.2.3,5,7 5.92 2.88 0.76 

2.2.1.1.1 22.28 14.20 6.04 

3.3.2.1.1 26.00 17.64 8.08 

5.4.3.2.1 27.12 19.52 9.24 

7.5.3.2.1 31.28 24.44 13.28 
8,8,8,8,8 1.1.1.2.2 11.72 6.92 1.88 

1.1.2.3.3 12.00 7.08 2.32 

1.2.3.4.5 12.60 7.88 2.24 

1.2.3,5.7 13.88 8.60 3.24 

exceed its nominal value, as can be seen in the last four lines of table 1. 

This effect is even stronger if the sample sizes are unequal and the 

smaller samples coincide with the bigger variances. But if the smaller 

sample sizes correspond with the smaller variances the reverse of this 

can be seen: the test becomes conservative. meaning that the actual prob­

abîlity of rejecting the hypothesis is lower than the nomina I size a. This 

can be understood by looking at the denominator of the expression for 

F. 

This F-test is based on the ratio of variances and therefore it seems 

natural to call it analysis of variance. But in this dissertation other tests 

will be considered that are based on quite different principles. Therefore 
from now on such tests will be looked upon as special cases of analysis 

of means. and the term analysis of varianee will be avoided in this con­
text. 

The tests in chapter 2 originate from James (1951). Welch (1951) and 

Brown & Forsythe (1974). The test stalistic used by James is very sim­

pte. but for the critica! value a somewhat forbidding expression exists. 

Brown and Forsytbe compared these tests by a simulation study. Tbey 
used a first order Taylor expansion for the critica! value of the metbod 

of James. Their conclusion was tbat tbis test was inferior wben com­
pared to tbeir own and the metbod of Welcb. In this dissertation a 

second order Taylor expansion will be considered. lt will be 
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demonstrated that in this case the test of James is superior to the other 

two in the sense of size controL None of the methods under considera­

tion is uniformly more powerful than the other two. and therefore the 

metbod of James will be recommended with the second order Taylor 

approximation for the critical value. A practical disadvantage of this test 

is that its statistic does not result in the tail-probability with the help 

of a table or a standard statistica) routine. But that problem can be 

overcome by a minor modification. 

1.2. The Kruskal & Wallis test 

When the results of the study on tests for the equality of several mean 

values ( when the population variances are unequal) were presented at a 

conference. someone from the audience remarkeet Why do you use such 

a complicated method? If I feel that the conditions fora classica! test are 
not fulfilled I simply use the Kruskal & Wallis test. 

Chapter 3 is a study on the behaviour of the Kruskal & Wallis test for 

normal populations with varianee heterogeneity. The exact distri bution 

of the test statistic is considered. as well as the popular X2 approxima­

tion and the more conservative Beta approximation by Wallace (1959). 

The results are compared with those for a nonparametrie test that is 

specially designed for unequal variances. 

The Kruskal & Wallis test is developed for the hypothesis that all sam­

ples come from the same contineus distribution against the alternative 
that the location parameters are unequal. But unfortunately this test 

appears to be also sensitive for differences in the scale parameters. The 

test stalistic is: 

- 12 k - - 2 
K- N(N +1) i~ln;(R;-R) 

R;1 denotes the rank of observation xiJ in the combined sample. R; is 

the mean of the rank~ in sample number i and R = N; 
1 The formula 

for K suggests a transformation of the classica! test that is to be applied 
to the ranks. So it will not be amazing to see in chapter 3 that the sensi­

tivity of this test to unequal variances is similar to the sensitivity of the 

classica} test. Therefore the Kruskal & Wallis test cannot be recom­

mended in this situation if one uses it with the exact distribution of the 
test Statistic. or if one uses the x2 approximation. The Beta approxima­

tion is somewhat conservative. Therefore it can handle a limited amount 
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of varianee heterogeneity, but the maximum ratio of the standard devia­

tions should not exceed 3. For greater differences it is possible that the 

actual probability of declaring the means to be different when in fact 

they are equal will exceed the nomina! level a. Another disadvantage is 

that if one uses this approximation the loss of power relative to the 

metbod of James can be quite impressive, especially if extreme means 

coincide with small variances. 

1.3. An adaptive nonparametrie test 

During a conference on Robustness in Statistics, Tukey ( 1979) once 

remarked that a modern statistician who can use a computer should 

have a bouquet of tests for each of the most popular hypotheses. Some 

characteristics of the samples involved could then be used to determine 

which test would have optimal power in some particular situation. Such 

strategies usual1y involve adjustment of the level. but this is not neces­

sary if the selection scheme uses information that is independent of the 

information used for the computation of the test statistic. 

The Kruskal & Wallis test is a memher of a large family of non­

parametrie methods that are designed for the hypothesis that k samples 

come from the same distribution. These tests can be used for the 

hypothesis that some location parameters are equal if the distributions 

involved are at least similar in shape and scale. If one uses the Kruskal 

& Wallis metbod for this purpose it is well known that the power will 

be optimal if the underlying distribution is logistic. More power can be 

obtained for distributions with shorter tails by using the Van der Waer­

den test, and for heavier tails the Mood & Brown test is a better choice 

[Hajek and Sidak (1967)]. 

In chapter 4 two adaptive tests will be discussed that are based on the 

selection scheme that is given in table 2. 

Table 2: Selection scheme 

tail metbod 

light Van der W aerden 

medium Kruskal & Wallis 

heavy Mood & Brown 

One of these tests is a pure adaptive nonparametrie metbod that uses 

independent information for the selection and the computation of the 
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statistic. The other test involves some kind of moderate cheating con­

cerning this independency in order to get some more power. It will be 

demonstrated that both methods have more power than any of the 

separate tests mentioned in table 2 if the underlying distribution is a 

mixture with equal occurencies of the following distributions: ( 1) uni­

form. (2) normaL (3) logistic. (4) double exponential and (5) Cauchy. 

If this mixture would represent the situation that nothing about the dis­

tribution is known except the fact that it is symmetrie. then these adap­

tive tests would be highly recommendable. But unfortunately the 

superiority of the power vanishes for small samples if one drops distri­

butions (1) and (5). In that case the Kruskal & Wallis test is better for 

samples containing not more than 15 observations each. 

The adaptive tests are not recommended in their present form. The 

moderate gain in power (for the above mentioned mixture of 5 distribu­

tions) is not worth the extra programming effort for the selection 

scheme. But two possible improvements are mentioned in chapter 4 that 

are still under consideration while this was written. So there is some 

hope that a better adaptive test will be found. 

1.4. Some extreme outliers 

In chapter 5 an error distribution will be considered that is N (O,u 2 ) 

with probability 1-e and N(0.9u 2) with probability e. Since this dis­

tribution is intended to describe outhers the value of e will be small and 

that of 9 very large. This is a model for symmetrie contamination; one­

sided contamination will also be considered. 

The behaviour of the classical metbod for one-way analysis of means 

will be compared with the behaviour of some alternatives that seem 

more promising with respect to their robustness against varianee hetero­

geneity. The classical Ïnethod cannot be recommended; one single outlier 

can remove all power from this test. The alternatives are the following: 

(1) Trimming. (2) Winsorizing. (3) Van der Waerden and (4) A metbod 

proposed by Huber (1981). Number (2) can handle a limited fraction of 

outliers. but it does not matter much how big they are. The other three 

are more robust and concerning the control over the chosen size their 

differences are very small. So the recommendation bas to be basedon the 

power and it will be demonstrated that Huber's metbod is the best 

choice. 
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Some attention will be given to two approaches that entered the study 

but that were discarded befare the final simulation. One is based on a 

very robust metbod for regression problems that is called Least Median 

of Squares and that is proposed by Rousseeuw ( 1984 ). Th is metbod is 

suitable for testing in linear models as long as the predietors are con­

tinuous. But if the only predietor is nominal. so that the metbod reduees 

to regression with dummy-variables, the control over the ebasen size 

becomes very unsatisfactory. The other metbod that was discarded was 

one based on adaptive nonparametrie testing with optimal scores for the 

model-distribution. This involves simultaneons estimation of rr 2
• 6 and 

E (for symmetrie contamination) and it seems that the sample sizes 

needed for such an approach by far exceed the values that one usually 

meets in practice. 

Table 3: Preliminary data description 

sample minimum Ql Q2 Q3 maximum 

1 1.56 1.63 1.70 1.78 1.90 

2 1.45 1.62 1.75 1.83 1.89 

3 1.52 1.60 1.79 1.88 195 

The simulations of chapters 2 and 5 will be combined. and this results 

in a somewhat disappointing conclusion: The test that is most robust 

against varianee heterogeneity cannot even handle one single outlier, and 

Huber's metbod cannot be recommended if the variances are unequal. So 

the user bas to perform some explorative data analysis before he can 

choose bis test. But that is not very difficult bere: look for instanee at 

table 3 where Q; denotes the quartiles so that Q 2 is the median. It is not 

difficult to recognise the outlier bere; the analist probably just forgot to 

enter the decimal point once. Such tables can be considered as a prelim­

inary data description for every analysis of means. 

1.5. Simultaneons statistica! inference 

In chapter 6 a collection of hypotheses is considered: J.L; J.L j f or i 1 . 

... • k and j = 1 ..... i-1. The objective is to find tests for which the level 

a means the accepted probability of declaring any pair of means 

different when in fact they are equal. lf the variances are equal. and in 

the absense of outliers. there are several approaches one ean eonsider: 
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Fisher's (1935) Least Significant Difference test (modified by 

Hayter in 1986). 

Pairwise comparisons based on the t-distribution with some level (3 

that is a function of a and the number of pairs. 

The Newman (1939), Duncan (1951) and Keuls (1952) Mu}tiple 

Range tests with levelaP fora range containing p means. Suitable 

chokes for aP are proposed by Duncan (1955), Ryan (1960) and 

Welsch (1977). 

Tukey's (1953) Wholly Significant Difference test that uses the 

studentized range distribution for pairwise comparisons. 

The MultipleF-test that was proposed by Duncan (1951). Here the 

same values for ar can be considered that were already mentioned 

for the Multiple Range test. 

For all these methods alternatives will be considered that can handle 

varianee heterogeneity or outliers. Tests with desirabie properties are 

found for every approach that is basedon pairwise comparisons, includ­

ing the Least Significant Difference test. For unequal sample sizes the 

methods that are based on the Multiple Range test or the Multiple F-test 

have some very unpleasant properties, that do not disappear for equal 

sample sizes but unequal variances. Ho wever, these strategies can be 

succesfully adapted to error distributions with outliers as long as the 

design remains balanced. 
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2. Testing the equality of several means when the population vari­

ances are unequal 

2.1. Introduetion 

We are interested in the situation where there are k independent sample 

means x 1 ••.. , Xt from normally distributed populations. Denote the 

population means by JJ, 1 , •.• , IJ-~: and the variances of their estimates by 

a 1 , ••• , O!t. So we have a;=u}ln; where ul is the varianee within the 

i-th population and n1 is the i-th sample size. The null hypothesis to be 

tested is H 0 : /J-1 = ... IJ-k. For the moment we will suppose that the 
u? are known. Unlike the situation in which the classical analysis of 

means test can be applied we will not supposethat u l u J for i . j ~ 1 
" k 

..... k. Ifwewritew 1 = l/a 1 ,w = L,w 1 ,x = L,w 1xJw andr k 1 
" i= 1 i= 1 

it is well known that under H 0: 

" L. w; (x; -x)2::::: Xl 
i= 1 

So it is no problem to test this null hypothesis. Now we will suppose 

that the population variances are unknown. lf all the samples contain 

many observations it still is not a difficult problem. If we write a1 = 
k k 

s/lni, v 1 = n1 -1, W; = 1/a;. w = L,w1 and x= L,w1x1/w then 
i= 1 i= 1 

k 

L, w 1 (x; -x)2 will be approximately distributed as Xr2• 
i=l 

The topic of this chapter is the situation in which the population vari­

ances are unknown. and the samples are small. 

2.2. The method of James 

We will go back to the situation where the population variances are 

known. In that case we have: 

" Pr[ L,w 1 (x; -x)2~ 1/1 ]=Gr (1/1) 
1=1 

Here Gr (I/I) denotes the distribution function of a X2-distribution with r 

degrees of freedom. If the population variances are unknown. every 0!; 

can be estimated by an a1• Using these estimates James ( 1951) tried to 
find a function h (a 1 ••••• a~.c .1/1) for which the following holds: 
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k 

Pr[L,w1 (x 1 -xY~h(a1 , ••• ,a,. .t/I)]=G,.(t/1) 
i== 1 

The function h wilt be implicitly defined if we write: 

k 
fPr [ r, w 1 (x, -x)2~ h (ä .t/1 )i ä ]*Pr [dä ]= G,. (t/J) 

i== 1 

Here the integration is from 0 to oo for every a;. The first Pr-expression 

denotes the probability of the relation indicated f or fixed a; and Pr [dä] 

denotes the product of the probability differentials given by: 

1 ( v 1a; )!v1-1 ( v 1a; ) ( v 1a; ) 
1 -- 2 exp --- d --

r (2 "i) 2a i 2a i 2a i 

Using a Taylor expansion James found an approximation of order -2 in 

the v;. To give thîs expression wedefine the following two quantities: 

R = t--1-(~)1 
SI i=l JJl W 

X2s=[x2(a)YI(k-l)(k+l) ... (k+2s-3) 

Here X2(a) denotes the percentage point of a x2-distributed variate with 

r degrees of freedom. havîng a tail probability of a. For the following it 

is important to realize that X2s depends on the chosen size a. whereas 

Rs1 is independent of a. Af ter a good deal of algebra James found: 

+} (3X4+Xz)[(8R23-10Rzz+4R21-6R fz +SR 12R u-4R f1) 

+(2R 23-4Rn+2R 21-2R fz +4R 12R u-2R f1 )(X2-1) 

+} (-R fz +4R 12R n-2R 12R 10-4R f1 +4R nR 10- R fo )(3X4-2X2-1)] 

+CRz3-3Rn+3R 21-R zo)(5x6+2X4+X2) 

+3(R fz -4R23+6R zz-4R 21+ R2o)(35xs+15X6+9x4+5X2)/16 

+(-2R22+4R zt-Rzo+2R 12R J0-4R uR 10+R fo )(9xs-3X6-5X4-Xz)/16 
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+~ (-Rzz+Rlt )(27Xs+3X6+X4+X2) 

+:} CR23-R 12R uX45Xs+9X6+7x4+3X2)) 

k 

The decision rule is to reject H 0 if r, w; (x;-x)2 > h 2(a). For k = 2 
i=l 

this test is identical to Wekh's approximate solution of the Hebrens­

Fisher (1929) problem. This problem concerns the topic of tbis chapter. 

but it is limited to tbe case of two samples. Welcb uses tbe test statistic: 

V= Xt-xz 
.Js flnt+si /n2 

Tbis test statistic is to be compared witb a Student t-variable witb f 
degrees of freedom, wbere f is computed as: 

Csllnt+sl /n2)2 

lt may seem amazing that tbis simple test is equivalent to tbe very com­

plicated second order Jamestest in tbe case of two samples. But eertaio 

non-linear relations between tbe quantities Rs1 exist in tbe special case k 

= 2. so tbat tbe expression for h 2(a) reduces to the square of Wekh's 

critical value. 

For k > 2 James proposes to use tbe X2 test for large samples given in 

tbe introduction. and a very simpte ftrst order metbod forsmaller sam­

ples. Tbis metbod uses tbe critical value: 

In bis opinion it would involve too much numerical calculation to 

include tbe second correction term. But then it sbould be noted tbat in 

1951 tbe computers were not tbe same as they are now. 

2.3. The metbod of Welch 

Welcb (1951) started by using tbe sametest statistic as James. For k = 2 
tbis is tbe square of the statistic that Welcb used for the Behrens-Fisber 
problem: 

Since Welcb used a t-distribution fortbetwo-sample test it was natural 
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for him to try an F-distribution for the more general case of k samples. 
k 

He started with the moment-generating function of V2 r. wi(x;-xY 
i= I 

k 

where x= 1:, w; x; Iw. The moments of this statistic become infinite after 
i= 1 

a certain order. but Welch proceeded formally. as if the moment-

generating function existed: 

k 

M(u )=Eexp[u 1:, w 1(xi-x)2] 
i=l 

Here E denotes averaging over the joint distributions of x 1 and s1
2• Using 

a Taylor expansion. just like larnes did .. Welch found: 

M(u )= (1-2u )-i<" -I)[1+(2u (1-2u )- 1+ 

3u2(1-2u )-2)( t _!_(1-~)2)] 
i=l V; 1:,w; 

i= 1 

Therefore the cumulant-generating function of V 2 can be approximated 
by taking the naturallogarithm of this expression: 

K(u )= -ï (k -1)log" (1-2u )+ 

k 1 W· 
[2u ( 1-2u )-1+ 3u 2( 1-2u )-2][ 1:, -( 1--"-' -)2] 

ï=l V; l:w; 
i=l 

Welch did not compare this result with the cumulant-generating func­

tion of an F -distributed variate. but he used a transformation: 

G = [(k -1)+Alv2 ]F 

Here F bas an F-distribution with f 1 and f 2 degrees of freedom. For f 1 

Welch choose the natural value k- 1 and for G he found to order -1 in 

f 2 the cumulant-generating function: 

(k -l)log, (1-2u )+ 

This is the same cumulant-generating function as that of the test statis­
tic if the following two conditions hold: 
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t.-1 (1-~)2 
1;:1Vi " 

~W; 

~= 2(k-2) t.-1 (1-~)2 
fz k+l i=t'~~i ±.w; 

i= 1 

k 

Therefore the test statistic V 2= .E w; (x; -xY is approximately distri-
i=t 

buted as [ (k -1)+ A I f 2lF w bere the parameters f 1 and f 2 of the F­

distribution are given as follows: f 1 = k- 1 and f 2 is with A implicitly 

defined in the above given two equations. In order to get a statistic that 

is approximately distributed as an F-distribution Welch modified the 

simple form of V2 into: 

k .E w;(x;-x)2 /(k -1) 
W= i=I 

1+ 2(k -2) t. _!_(1-~ )2 
k 2-1 V· k 

i=l ' ,Ew; 
i= 1 

This statistic can be approximated by an F -distribution with f 1 = k 1 

and f 2 degrees of freedom. where f 2 is given by: 

3 /,; 1 w 
f 2=[-2-.E-(1--k-i-)2]-I 

k -1 i=.l V; .E W; 

i= 1 

Since f 2 will usually not be an integer it should be rounded to tbe 

nearest one before a table for the F-distribution can be used for this test. 

It can be shown that this metbod is equivalent to the metbod of James 
to order -1 in the v;. 

2.4. The method of Brown and Forsythe 

If we may assume that the population variances are equal. H 0 can be 

tested by classica! one-way analysis of means, using tbe statistic: 
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k 

En1(x1-x)2/(k -1) 
F= -'-i..,..=.:;.l ______ _ 

1!. 

ECn;-1)s/I(N-k) 
i= 1 

k !.: 
Here N = E n 1 and x = En; x; IN. Brown and Forsytbe replaced tbe 

;:::: 1 i= 1 

denominator of tbis formula by an expression tbat bas tbe same expec­

tation as tbe numerator wben H 0 bolds. Tbeir test statistic becomes: 

k 

En1(x1-.X")2 
p* = --:-i =_1 ----­

k 

1:(1-nJN)s? 
i=l 

Tbis statistic is approximated by an F-distribution witb f 1 and f 2 

degrees of freedom. wbere f 1 = k - 1. For finding f 2 Brown and For­
sytbe used tbe Sattertbwaite (1941) tecbnique. Tbeir result is: 

k 

f 2=[EcNvd-1 wbere 
1=1 

k 

c; = (1-n; IN )s1
21[ .E (1-n; IN )s1

2 ] 
i= 1 

If k == 2 tbe W and p* test give (just like tbe James metbod) results 

tbat are equivalent to Welcb's approximate solution of tbe Bebrens­

Fisher problem. Altbougb Scbeffe' ( 1944) bas already proven tbat exact 

solutions of tbis type cannot be found. a simulation study of Wang 
(1971) bas sbown tbat tbe approximate solution for k = 2 gives excel­

lent control over the size of tbe test, wbatever tbe value of tbe nuisance 

parameter 6 = (T ?J(T l may be. 

2.5. Results of previous simulation studies 

Brown and Forsytbe compared tbeir test witb tbe classica! analysis of 

means test, tbe first order metbod of James and tbe test of Welcb. 
Tbeir conclusions were as follows: 

If tbe population variances are unequal then tbe difference between 

the nominal size and tbe actual probability of an error of tbe first 

kind can be considerable for tbe classica! analysis of means and tbe 
first order metbod of James, even wben tbe differences between tbe 
population variances are relatively small. 



15-

The power of the tests of Welch and Brown & Forsythe is only 

slightly smaller than the power of the classica! analysis of means 

test when the population variances are equal. 

lf extreme means correspond to sma11 variances then the method of 

Welch is more powerfut than the test of Brown & Forsythe. And if 

extreme means correspond to the bigger variances then the metbod 

of Brown & Forsythe bas more power, as can be seen by camparing 

the numerators of the test statistics: 
k k 

Welch: L,w;(x;-x)2/(k-1), where w;=n;ls/. x= L,w;x;/w 
i= 1 i=l 

k 

and w= L, w;. 
i= 1 

k k 

Brown & Forsythe: L,n;(x;-x)2 • where x= L,n;x;/N and 
i 1 i= 1 

i= 1 

Ekbobm (1976) publisbed a similar simulation study. He also left out 

thesecondorder metbod of James. but included a test of Scbeffe'(1959). 

His conclusions agree witb the results of Brown and Forsytbe. Ekbobm 

found, however. something extra. He recognized the possibility that an 

important difference between two means might not be found because of 

a big varianee in a tbird population. Dealing adequately with this prob­

lem is a topic of simultaneous statistica! inferenèe. Serious attention to 

tbis problem will be given in tbe last cbapter. 

2.6. An example 

Data from three groups. where tbe assumption of varianee homogeneity 

seemed unreasonable. were submitted to the methods given in the previ­

ous sections. After a suitabe sealing the data were: 

Sample 1: 1.72 -1.56 0.98 0.31 0.92 

Sample 2: 2.51 2.56 2.17 1.69 1.83 1.04 1.34 3.38 2.98 1. 79 1.88 

2.05 

Sample 3: 2.50 7.33 -5.34 -18.64 0.04 4.27 4.78 -5.52 -3.11 -8.84 

-0.13 -0.19 15.55 13.36 2.97 

These data can be summarized as follows: 

X1 = 0.469 St= 1.242 n1 = 5 

x2 = 2.102 s2 = 0.665 n 2 = 12 
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x 3 = 0.601 s 3 8.532 n 3 = 15 

The hypothesis of interest concers the equality of the population means. 

Normalîty seems a reasonable assumption, but varianee homogeneity can 

not be assumed. Wekh's test resulted in W 3.757 with 2 and 10 

degrees of freedom. The critica} value of the F-statistie with these 

parameters and a 0.05 is given as 4.1 0. So the hypothesis can not be 

rejeeted at this level. but the dUferenee between the test stalistic and the 

critica! value is smalt. For the James second order test one bas to com­

pute not only the statistic. but also the critica! value. In order to get a 

more interpretable result, the tail-probability of the test was computed. 

This yielded a value of 0.066 wich just exceeds the size of the test. So 

the results of the tests by Welch and James are similar. Since these tests 

originate from the same statistie, this is just what one might expect. 

The test by Brown and Forsythe gives p• = 0.439 with 2 and 15 degrees 

of freedom. Here the critica! value of the F-statistic = 3.68 so the 

hypothesis can not be rejected. The acceptance of the hypothesis is far 

more convincing than with the other two methods. This is in accordance 

with the faet that the extreme mean of the second sample coincides with 

the smallest standard deviation. 

Since the varianee in the third group is much bigger than the other two 

variances it is interesting to examine what will happen if the third group 

is removed and the hypothesis of equal population means is restricted to 

the first two samples. Here Welch"s metbod yields W = 7.663 with 1 

and 5 degrees of freedom. The critica} value of the F-statistic is 6.61 so 

the hypothesis is rejected. The metbod of James gives a tail probability 

of 0.038, resulting in the same conclusion. The test of Brown and For­

sythe gives exactly the same results as the metbod of W elch. which is 

just what one might expect since they are identical for two samples. 

Because we have only two samples this is an example of the Hebrens­

Fisher problem and the hypothesis of equal population means can also 

be tested with Wekh's approximate t-solution. Here the statistic V = 

-2.768 wîth 5 degrees of freedom. This is essentially the same result as 

that of the Brown & Forsythe test or Wekh's solution forthek-sample 

problem. We have V2 = F' W and the parameter of the t-distributed 

statistic is equal to the number of degrees of freedom for the denomina­

tor in the F-distributed statistics. 

ln thîs example the significant difference between the first two popula­

tion means is bidden because of the big standard deviation in the third 
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group. Such problems are well known in the classical case of equal 

population variances but unequal sample sizes. Allowing the variances to 

he unequal can make things worse in this respect. The researcher should 

consider carefully before deciding to perform an overall test in this 

situation. In many cases a couple of pairwise comparisons might he a 

better choice. 

2.7. The difference between the nomina! size and the actual proba­
bility of rejecting a true null hypothesis 

Table 1: Actual size with nomina} size .. 10% 

sample size sigma Br-Fo Jamest James2 Welch 

4.4.4.4 1.1.1.1 7.72 12.96 10.28 9.96 

1.2.2.3 9.84 13.88 11.08 11.36 
4.6.8.10 1.1.1.1 8.08 11.44 9.96 10.28 

1.2.2.3 9.56 10.00 9.12 9.16 

3.2.2.1 10.24 12.64 10.24 10.92 

10.10.10.10 1.1.1.1 9.60 10.68 10.44 10.48 

1.2.2.3 10.80 10.40 9.72 9.92 

10.15.15.20 1.1.1.1 9.04 9.64 9.52 9.52 

1.2.2.3 10.68 10.40 10.16 10.24 

3.2.2.1 10.12 10.24 9.72 9.84 
20.20,20.20 1.1.1.1 9.20 9.32 9.28 9.28 

1.2.2.3 10.80 10.04 9.96 9.96 

4.4.4.4.4.4 1.1.1.1.1.1 8.04 15.04 9.84 11.52 

1.1.2.2.3,3 9.44 16.56 11.12 13.08 

4.6.8.10.12.14 1.1.1.1.1.1 8.56 11.52 9.56 10.20 

1.1.2.2.3.3 10.16 10.76 8.88 9.48 

3.3.2.2.1.1 10.32 12.20 9.84 11.12 

. 10.10.10.10.10.10 1.1.1.1.1.1 10.48 11.60 11.00 11.20 
i 1.1.2.2.3,3 12.48 12.12 11.00 11.76 

110.10,15.15 .20.20 3.3.2.2.1.1 11.44 10.16 9.40 9.92 

For this study pseudo-random numbers were generated from k normal 

distributions. Since we are interested in the behaviour of the tests under 
the null hypothesis all population means were equal and without any 

loss of generality their value was set to zero. The samples were gen­
erated using the Box and Muller (1958) technique [see appendix 1]. For 
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Table 2: Actual size with nominal size = 5% 
! Br-Fo Jamest james2 w ! . sample size sigma elch • 

4,4,4,4 1.1.1.1 3.48 7.40 4.64 4.52 

1.2.2.3 4.80 8.56 5.48 5.84 

4.6.8.10 1.1.1.1 4.16 6.44 4.56 4.96 

1.2.2.3 5.16 5.56 4.72 4.72 

3.2.2.1 5.64 7.48 5.64 6.32 

10.10.10.10 1.1.1.1 4.64 5.60 5.36 5.36 

1.2,2.3 6.12 5.92 5.52 5.56 

10.15.15.20 1.1.1.1 4.68 5.04 4.88 4.88 

1.2.2.3 5.96 5.12 5.00 5.00 

3.2.2.1 4.84 5.00 4.72 4.84 

20.20.20.20 1.1.1.1 4.80 4.88 4.80 4.84 

1.2.2.3 5.96 4.60 4.48 4.48 

4.4.4.4.4.4 1.1.1.1.1.1 3.32 8.92 5.28 6.12 

1.1.2.2.3.3 4.64 10.40 6.12 6.88 
4.6.8,10.12,14 1.1.1.1.1.1 4.32 6.80 5.04 6.04 

1.1.2,2.3,3 5.88 5.36 3.92 4.72 
3,3,2.2.1,1 5.72 7.80 5.40 6.72 

10,10.10.10,10,10 1.1.1.1.1.1 5.12 6.60 5.84 6.00 

1.1.2.2.3.3 6.84 6.72 5.76 6.24 

10.10.15.15 .20.20 1.1.2.2.3.3 7.24 5.20 4.76 5.00 

I 3.3.2.2.1.1 i 6.60 5.60 4.88 5.24 

the tests of Brown & Forsythe and Welch the probability function of 
the F-distribution was computed following suggestions of Johnson & 

Kotz (1970) [see appendix 2]. For computing h 1(a) and h2(oi) in respec­

tively the first and second order test of James one needs the inverse x2-

distribution. The metbod for computing this function can be found in 

Stegun & Abramowitz (1964) [see appendix 3]. For kthevalues 4 and 6 

were chosen. The nominal size p is given three values: 0.10. 0.05 and 

0.01. The results of this simulation study are given in tables 1. 2 and 3. 

The actual relative frequency of rejecting a true null hypothesis bas of 
course not necessarily the same value. but one might expect it not to 

differ too greatly from p. An acceptable difference seems to be 2u. where 
u is the standard devîation of a binomial distribution. In this case we 

have u= ../pq In . where q = 1 p. Tbe number of simulations n for 
each case was 2500. So we have u 10 = 0.6009'o, u 5 = 0.436% and u 1 = 
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Table 3: Actual size with nominal size == 1% 

sample size sigma Br-Fo Jamest James2 Welch 

4.4.4.4 1.1.1.1 0.44 2.32 0.84 0.76 

1.2.2,3 0.96 3.12 1.32 1.12 

4,6.8.10 1.1.1.1 0.64 1.80 1.20 1.28 

1.2.2,3 1.00 1.60 1.00 1.00 

3.2.2.1 1.24 3.08 1.52 1.68 

10.10.10.10 1.1.1.1 1.24 1.24 0.88 0.92 
1.2.2.3 1.72 1.28 0.84 0.92 

10,15,15.20 1.1.1.1 0.92 1.28 1.12 1.16 

1.2.2.3 1.48 1.36 1.28 1.32 

3.2.2,1 1.44 1.16 0.96 1.00 
20,20,20,20 1.1.1.1 1.12 1.00 0.92 0.92 

1.2.2.3 1.48 0.84 0.76 0.76 

4.4.4.4.4.4 1.1.1.1.1.1 0.44 3.44 1.12 1.44 

1.1.2.2.3.3 1.04 4.36 1.96 2.36 
4.6.8,10,12.14 1.1.1.1.1.1 0.60 2.00 1.28 1.44 

1.1.2.2.3.3 1.48 1.28 0.68 0.88 
3.3.2.2.1.1 1.48 2.76 1.44 2.16 

10.10.10.10,10.10 1.1.1.1.1.1 0.84 1.72 1.24 1.36 

1.1.2.2.3.3 2.12 1.56 1.16 1.32 

10.10.15,15 .20.20 1.1.2.2.3.3 1.92 0.88 0.76 0.84 
3.3.2,2.1.1 1.68 1.24 1.08 1.20 

0.199%. Let d be the estimated size of the test minus the nomina! size 
and this difference divided by the appropriate value of u. Then we may 
call the behaviour of the test conservative if d < -2, accurate if -2 ~ d 

< 2 and progressive if 2 ~ d. Table 4 gives the occurances of various 
categories for d. The regions for conservative. accurate and progressive 
behaviour are separated by double lines. From table 4 we learn that the 
first order metbod of larnes bas an extremely progressive beha viour and 
should therefore not be used. Wekh's test bas about the same tendency 

to progressiveness as the metbod of Brown & Forsythe. but of these 
tests only Brown & Forsythe can also demonstrate a conservative 

behaviour if the pattern of sample sizes and variances makes this possi­
ble. The second order metbod of larnes is clearly the best in this respect. 
The only entry in this table that suggests a really progressive behaviour 
originates from table 3. where we can see that the actual size is 
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Table 4: Summary of tables 1. 2 and 3 I 

Br-Fo Jamest James2 Welch 

d <-3 5 

-3:s.;;d<-2 3 1 

-2:s.;;d <-1 6 1 8 6 

-l:s.;;d<l 23 19 36 31 

l:s.;;d <2 7 11 14 10 

z:s.;;d <3 10 6 3 9 

3:s.;;d <4 3 6 3 

4:s.;;d <5 

I 
4 5 1 1 

s:s.;;d 2 15 3 

estimated as 1.96% while the nomina} size = 1%. This occured wi~h six 

very small samples. containing only 4 observations each. Besides this a 

very slight suggestion of progressiveness occured three times for the 

second order metbod of James and these occurences have in common 

that a relatively big standard deviation was combined with a very small 

sample size of 4 observations. So the condusion of this section can be 

that as far as the control over the chosen size is concerned. the second 

order metbod of James is the best. 

2.8. The power of the tests 

Table 5 is similar to the tables in the previous section. though of course 

bere the equality of the population means is dropped. The number of 

replications for each entry is 2500. Table 5 suggests the following con­

cusions: 

None of the methods is uniformly more powerful than the other 

two. 

If extreme means coincide with big variances the power of the test 

of Brown & Forsythe is superior. as was already found by the ori­

ginators of this method. lt can also be seen that the tests of James 

and Welch are more powerful if extreme means coincide with 

small variances. 

In Dijkstra and Werter (1981) more tables like this can be found. where 

the first order metbod of James is left out. These tables suggest the same 

conclusions concerning the power and the control over the chosen size. 
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Table 5: Estimated power with nomina] size = 5% 

ss mean sig Br-Fo Jamest ~ Welch 
I 

A 3.0.0.0 1.1.1.1 93.80 91.92 86.84 86.48 

5,0,0,! 100 99.96 99.94 99.68 
3,0.0.0 1.2.2.3 31.16 72.04 60.28 59.88 

0.0.0.3 30.64 28.72 22.72 22.68 

5,0,0.-} 75.24 98.60 97.08 97.08 

t .0.0.5 63.52 52.44 43.72 43.44 

B 3,0,0,0 1.1.1.1 98.80 95.40 92.88 93.52 

3.0.0,0 1.2.2.3 54.28 89.12 86.96 87.28 
0,0,0.3 73.76 55.24 50.40 51.32 

5,0,0.-} 97.88 99.96 99.88 99.88 

î ,0,0.5 98.92 92.92 91.48 91.56 

3.0.0,0 3.2.2.1 34.80 30.00 24.12 25.76 
0,0,0,3 67.04 97.04 94.64 95.40 

5,0,0.-} 71.20 60.60 51.64 54.28 

î .0.0.5 95.88 100 100 100 

c 3.0,0.0,0,0 1.1.1.1.1.1 99.16 94.72 91.60 93.76 

1.1.2.2.3.3 48.96 93.72 90.76 92.44 

3.3.2.2.1.1 33.56 29.92 23.96 27.12 

ss sample size 

A 4,4,4.4 

B 4,6,8,10 

c 4.6.8.10,12.14 

Table 6: Summary of table 5 

category Br-Fo Jamest James2 Welch 

EMSV 67.21 92.93 89.94 90.24 
EMBV 58.06 49.98 43.97 45.17 
EQV 97.94 95.50 92.74 93.36 

Table 6 is a summary of table 5. For each test the mean percentage of 

rejections was computed in three categories: EMSV (Extreme Means with 
Small Variances). EMBV (Extreme Means with Big Variances) and EQV 
(EQual Variances). From table 6 we can get the impression that Welch's 
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test is slightly more powerful than the second order metbod of James. 

and that the first order metbod of James has considerably more power 

that the second order method. But these results are misleading. because 

Wekh's test has a slight tendency to progressiveness and the first order 

metbod of James has an extremely progressive behaviour (see table 4). 

The test of Brown & Forsythe seems a bit more powerful that tbe Qther 

three if the variances are equal. This is not amazing. because tbe 

numerator in the test statistic of Brown & Forsytbe is tbe same as tbat 

of tbe classica) one-way analysis of means test. And the latter is the 

best choice in tbe case of normal populations and varianee bomogeneity. 

2.9. A modiftcation of thesecondorder test of James 

Since the second order metbod of James gives the best control over the 

actual size. and none of tbe tests is uniformly the most powerful. this 

metbod is recommended for implementation is statistica! software pack­

ages. However tbere seem to be two disadvantages. namely the very 

complicated algorithm and tbe fact tbat the result of applying this test 

can only be "H 0 accepted" or "H 0 rejected". Using tbe metbodsof Welcb 

or Brown & Forsythe the value of the test statistic gives. in combination 

wftb a table or a numerical procedure. tbe tail probability for tbe test. 

This is of course useful information and it would be nice if tbe metbod 

of James could be modified so tbat tbe result would be tbe appropriate 

tail probability. Tbis can easily be acbieved by solving tbe eqUation 

f (a) = 0. where: 

k 
f(a)= l:w;(x,-xY-h2(a) 

•=1 

t k 

witb W; =n;ls/. x= E W; x;lw and w = E W;. Because h2 is monoto-
i= 1 i 1 

nous in a. an acceptable precision of 1 o-3 can be expected in less tban 

ten function evaluations. Please note tbat many parts of tbe formula 

for h 2(a) are independent of a. and sbould tberefore be evaluated only 

once. In tbe iterative process it is only necessary te recompute x2s every 

time. 

This modified second order test of James was tried on a Burrougbs 

87700 computer. The average amount of processing time needed for 

common cases was about 0.026 sec. We may conclude tberefore that 

modern computers are fast enougb to accept this rather complicated 

metbod. even in its iterative version. Since tbis test of James is superior 
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to its competitors. it should be implemented in statistica} packages such 

as BMDP. SAS and SPSS. 
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3. Using the Kruskal & Wallis test with normal distributions and 

unequal variances 

3.1. Introduetion 

Consider k samples with sample size n; for i ""' 1 ..... k. The observa­

tions are x1j for j = 1 , .... n 1 and let the rank of every observation be 

denoted as Ru . In the case of equal observations the mean of theif rank 

is used. The test statistic of Kruskal & Wallis (1952) is given as: 

- 12 t - -z 
K- N(N +1) ~~~n;(R;-R) 

k - N+l -
HereN= L, n 1 and R = -

2
-. R; denotes the mean of the ranks within 

i= 1 

the i-th group. With K we can test the hypothesis H 0 that all samples 

come from the same population. This test is frequently used fora non­

parametrie analysis of means. because it is sensitive to shifts in the loca­

tion parameters. If the distribitions are symmetrie the test statistic does 

not seem to be very much infiuenced by inequality of the shape parame­

ters. Therefore one might be tempted to use the Kruskal & Wallis test 

for the hypothesis H~ that the population means are equal in the case of 

normal distributions with possibly unequal variances. The suggestion 

that this might work lies mainly in the fact that for symmetrical distri­

butions the median and the mean of a sample have the same expectation. 

And the primary goal of the Kruskal & Wallis test is the detection of a 
shift in the medians. 

3.2. The distribution of K under H 0 

Under H 0 the test statistic K is asymptotically distributed as X2 with k 

-1 degrees of freedom. For moderate samples the approximation seems to 

be reasonable (Hajek and Sidak. 1967) and this test is commonly used if 

all the samples contain at least 5 observations. For very small samples 

the exact distribution of K is tabulated Oman, Quade and Alexander. 

1975). An alternative for X2 orthese tables is given by Wallace (1959). 

He has shown that K is approximately distributed under H 0 as 

Beta(p.q), where the parameterspand q are given as p = ~ (k- 1)d and 

q = ~ (N k)d. The constant d is given by: 
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d=l-~N+l 1 
5 N-1 ~+~ 

5 1-T 

T= N(N+1) cf.-t_e) 
2(k-1)(N-k) i= 1 n; N 

The behaviour of the Kruskal & Wallis test with the X2 and Beta 

approximation under the hypothesis H~ that all the population means 

are equal for normal populations with unequal variances will be exam­

ined further in this chapter. Some attention will be given to small sam­

ples in combination with tables for the exact distribution of the test 

statistic under H 0• while we are using it for H~. 

3.3. Other tests for the hypothesis H~ 

For testing the equality of several means from normal populations one 

usually performs a classica! one-way analysis of means. For this metbod 

the population variances have to be equal. Simuiatien studies of Brown 

& Forsythe (1974) and Ekbohm (1976) have already demonstrated that 

this test is not robust against varianee heterogeneity. An exact test with 

a reasonable power. that is based on the F-distribution. does not exist 

for the hypothesis of equal means from normal populations under vari­

anee heterogeneity. Scheffe' did already prove that for k = 2 no symmetr­

ical t-test can be found. In this context symmetry means that the test is 

insensitive to permutations within the samples. And since the order in 

which the observations in a sample are submitted to the analysis bas no 

meaning for the researcher. an asymmetrical test seems undesirable. 

Another disadvantage of asymmetrical tests is that they usually have 

little power if the sample sizes are very different. In the two-sample case 
with unequal population variances we have the Behrens-Fisher problem 

and for this Bartlett suggested the following asymmetrical test that he 

did not publish. but that was mentioned by Welch (1938). Let the sam­

ple sizes ben 1 and n 2 and suppose n 1 ~ n 2· Let: 

n2 

d; =x 1;- L, cii x 2i 
j=l 

Then the variables d; have a multivariate normal distribution. Scheffe' 

showed that necessary and suftkient conditions that they have the same 
n 2 n 2 

mean 8 and eq ual variances u 2 are L, cu = 1 and L, eik c ik = c 28 i i f or 
j=l k=l 
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some constant c 2 , w bere ti u = 1 and ti iJ 0 if i ;é j. If these condi-

tions are met we can construct the f ollowing t-test: 

n 1 111 

Here L = f. d; In 1 and Q = f. (d;- L )2. In this situation .Jiï;(L -8 )la-
i 1 i 1 

is standard normally distributed. and Q /a- 2 is distributed as X2 with n 1 

- 1 degrees of freedom. and they are independent of each other. 

Bartlett's salution consists of taking cu = li;j. so that we have essen­

tially a paired t-test for a random permulation within the samples. 

where n 2 n 1 observations are completely ignored from the biggest 

sample. Scheffe' improved this test a little by minimizing the expected 

length l of the confidence interval for o: 
2tn -l(a)a-EJQia- 2 

E(l)= --' t==r==~­
.Jn1(n.-1) 

Here t )a) denotes the critica! value for a t-distributed variate with v 
degrees of freedom having a tail probability a for a two-sided test. 

Scheffe' found that the minimum was reached if: 

1 1 c;j=8;j.Jn 11n 2- + if j~n 1 .Jn 1n 2 n2 

1 c · = if j >n 1 IJ n2 

Later (1970) Scheffe' stated that Wekh's approximate t-solution for the 

Behrens-Fisher problem resulted in even shorter confidence intervals for 

ti than this optimal memher of the above mentioned asymmetrical fam­

ily produces. He mentioned bis own result under the header: An imprac­

tical solution. In referring to bis test he gave as bis opinion: 

These articles were written befare I had much consulting experi­

ence. and since then I have never recommended the salution in 

practice. The reason is that the estimate sd requires putting in ran­

dom order the elements of the larger sample, and the value .of sd 

and hence the length of the interval depends very much on the 

result of this randomization of the data. The effect of this in prac­

tice would be deplorable. 
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So we can nothave a symmetrical F-test for H,; and it seems reasonable 

not to accept an asymmetrical test. Therefore the only alternative for a 

nonparametrie test can be an approximation. In the previous chapter we 

saw that the second order metbod of James gave the user better control 

over the chosen size than some other tests. and none of these tests was 

uniformly most powerful. Therefore it seems interesting to compare the 

Kruskal & Wallis test with the test by James for normal populations 

with possibly unequal variances. 

3.4. The nominal and estimated size 

Table 1: Actual size with nominal size = 10% 

sample size sigma KW t3 KWx 2 James2 

4.4.4.4 1.1.1.1 5.88 9.24 10.28 

1.2.2.3 7.68 10.44 11.08 

4.6.8,10 1.1.1.1 3.08 9.08 9.96 

1.2.2.3 2.60 6.52 9.12 

3,2,2.1 8.00 18.84 10.24 
10,10.10.10 1.1.1.1 6.76 8.32 9.84 

1.2.2.3 5.00 11.04 9.72 

4.4.4.4.4.4 1.1.1.1.1.1 6.76 8.32 9.84 

1.1.2.2.3.3 8.68 10.36 11.12 

4.6.8.10.12.14 1.1.1.1.1.1 3.68 8.40 9.56 

1.1.2.2,3.3 2.04 5.12 8.88 

3.3.2,2.1.1 10.08 16.92 9.84 

10,10.10.10.10.10 1.1.1.1.1.1 4.80 9.72 

I 

11.00 

1.1.2.2.3,3 6.64 11.88 11.00 

The second order metbod of James is already extensively described in 

the previous section. Tables 1. 2 and 3 give the estimated size for vari­

ous patterns sample sizes and standard deviations. The Kruskal & 
Wallis test is considered with the Beta (that will be denoted as t3 in the 

tables) and the X2 approximation. and these results are compared with 

the results of the James test. For the nominal size the values 0.10. 0.05 

and 0.01 were chosen. Since every entry of these tables is based on 2500 

replications. the estimated sizes have the following standard deviations: 

<T 10 = 0.600%, <T 5 = 0.436% and <T 1 = 0.199%. For the Beta approxima­
tion weneed the Beta distribution function that is defined as follows: 
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Table 2: Actual size with nomina) size 5% 

sample size . sigma KW {1 KW,X2 James2 i 

4,4.4.4 1.1.1.1 3.08 3.40 
i 

4.64 ' 
1.2.2,3 4.40 4.76 5.84 

4,6,8.10 1.1.1.1 1.52 3.80 4.56 

1.2.2.3 1.20 2.60 4.72 

3.2.2.1 4.68 7.96 5.64 

10.10.10.10 1.1.1.1 1.64 4.28 5.36 

1.2.2.3 2.64 5.68 5.52 

4.4.4.4.4.4 1.1.1.1.1.1 3.44 3.08 5.28 

1.1.2.2.3.3 4.92 4.60 6.12 

4.6.8.10,12.14 1.1.1.1.1.1 1.64 3.28 5.04 

1.1.2.2.3.3 0.92 1.92 3.92 
3.3.2,2,1.1 5.96 9.36 5.40 

10.10.10.10.10.10 1.1.1.1.1.1 2.08 4.80 5.84 

1.1.2.2.3.3 3.04 6.60 5.76 

Table 3: Actual size with nomina I size = 1 o/o 

sample size sigma KW {1 KWX 2 James2: 
' 

4.4.4.4 1.1.1.1 0.76 0.16 0.84 

1.2.2.3 1.08 0.24 1.32 
4.6.8.10 1.1.1.1 0.28 0.28 1.20 

1.2.2.3 0.20 0.28 1.00 

3.2.2.1 0.88 1.04 1.52 
' 10.10.10.10 1.1.1.1 0.36 0.76 0.88 

1.2.2.3 0.52 0.96 0.84 
4.4.4.4.4.4 1.1.1.1.1.1 0.60 0.16 1.12 

1.1.2.2.3.3 1.24 0.36 1.96 
4.6.8.10.12.14 1.1.1.1.1.1 0.36 0.48 1.28 

1.1.2.2.3.3 0.32 0.36 0.68 
3.3.2.2.1.1 1.56 2.28 1.44 

10.10.10,10.10.10 1.1.1.1.1.1 0.40 0.68 1.24 
1.1.2.2.3.3 0.72 1.16 1.16 
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Table 4: Summary of tables 1. 2 and 3 I 

KW /3 KW X2 James2 

d~-3 27 14 
I 

-3~d <-2 3 4 1 I 

-2~d <-1 4 5 4 i 

-1~d <1 5 10 20 
I 
i 

l~d <2 1 2 13 

2~ j <3 2 3 

3~d <4 2 

4~d <5 1 

S~d 5 

( )- f(p+q+2) fix P( - )q 
Beta p ,q .x - f (p + 1 )f (q + 1) 

0 
t 1 t dt 

This function is definied for 0 ~ x ~ 1. p > -1 and q > -1. For the 

computation algorithm 179 from the Communications of the ACM was 

used. that was written by Ludwig (1962). The speed of this algorithm 

was improved following suggestions by Pike and Hili (1963). 

Table 4 is a summary of the tables 1. 2 and 3 where the value of d is 

defined as the estimated size minus the nomina! value and thîs result 

devided by the appropriate standard deviation. lf d < -2 we may call 

the behaviour of the test conservative, if -2 ~ d < 2 the test seems 

accurate. and if 2 ~ d the test shows a progressive behaviour. These 

categories are separated in table 4 by double lines. At first sight the fol­

lowing conclusions may be drawn from this table: 

The Kruskal & Wallis test with the Beta approximation bas a 

strong tendency towards conservatism. There are patterns for the 

sample sizes and variances where the behaviour seems accurate. but 

this occured only 12 times against 30 accurences of a value of d 

going below -2. 

If we use the x2 approximation with the Kruskal & Wallis test the 

conservatism seems to lessen. There are more cases where the 

behaviour seems accurate. but a new problem arises: Patterns of 

sample sizes and variances exist for which the test seems progres­

sive. 
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The second order metbod of James behaves reasonably except once. 

where the variances are unequal and all six of the samples contain 

only 4 observations. Th is situation was. already discussed in the 

previous chapter. 

Since the results for the Kruskal & Wallis test with both approxima­

tions are not satisfactory in this study with unequal variances. it is sen­

sibie to have a closer look at the tables 1. 2 and 3. In table 5 a small sec­

tion of these tables is given in order to demonstrate a remarkable effect. 

This section consists of all the results for sample sizes 4. 6. 8. 10. 12 

and 14. 

Table 5: Kruskal & Wallis. n 1 = 4.6.8.10.12.14 

~ xz 
sigma 10% 5% 1% 10o/o 5% 1% 

1.1.1.1.1.1 3.68 1.64 0.36 8.40 3.28 0.48 

1.1.2 .2 .3 ,3 2.04 0.92 0.32 5.12 1.92 0.36 

3.3.2.2.1.1 10.08 5.96 1.56 16.92 9.36 2.28 

What do we learn from table 5? If the variances are equal then both 

approximations yield a conservative test. We have bere the situation 

where the Kruskal & Wallis test should behave properly (all samples 

come from the same population) so the only souree of this deviation can 

be that the approximations are not very good for these sample sizes. 

Asymptotically the approximations are good, and if all the samples con­

tain 10 observations at least the x2 approximation shows far better 

results in the tables 1. 2 and 3. But these samples. or at least some of 

them. are simply too smal!. 

If we take this conservatism into account it is interesting to note that in 

the second line. where the bigger sample sizes coincide with the bigger 

variances. every entry is lower than the corresponding one in the first 

line. And in the third line we have the reverse of this: the bigger sample 

sizes coincide with the smaller variances. and all the entries are higher 

than the corresponding ones in the first line. More than that: The nomi­

na! size is exceeded everywhere in the last line. For the Beta approxima­

tion only a little. but for the x2 approximation considerably. 

In the next section more attention to this effect will be given. but now 

we can reach a preliminary conclusion: The Kruskal & Wallis test is not 

recommended for normal populations with possibly unequal variances. 
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If this test is used with a X2 approximation deviations from the nominal 

size can occur in both directions. If a (3 approximation is used. the test 

will be conservative if the variances are equal. and very conservative if 

the bigger sample sizes coincide with the bigger variances. If one is wil­

ling to accept conservatism one is usually confronted with unsatisfac­

tory power. This is also the case bere. as wiJl be seen later in this 

chapter. 

l.S. The effect of unequal sample sizes and variances 

The effect of the sample size and varianee on the control over the chosen 

size seems to be independent of the chosen approximation. If a correction 

for the conservatism with small samples due to the approximation is 

made. we saw in the previous section that the behaviour of the test is 

consistently conservative if the bigger sample sizes coincide with the 

bigger variances and progressive if it is the other way around. For very 

small samples the critica} levels for the test statistic K are tabulated by 

Iman. Quade and Alexander (1975). These results are exact: no approxi­

mation is involved. In table 6 the effect of unequal sample sizes and 
variances is demonstrateel for the exact Kruskal & Wallis test. 

Table 6: Kruskal & Wallis (exact) 

sample size sigma 10% 5% 1% 

2,4.6 1.1.1 9.71 5.07 1.01 

1.2.3 5.59 3.33 0.86 

3.2.1 21.57 10.07 2.39 

In order to explain this effect the test stalistic K will be rewritten as a 

varianee ratio VR. The Kruskal & Wallis test is equivalenttoa one-way 

analysis of means on the ranks. We have: 

k - -
Ln;(R;-R )2/(k -1) 

VR = __;;_=...:1'----------
k n; 

I: L(Rii-R;)2/(N-k) 
i= lj =l 

The relationship between K and VR is: 

VR= K(n-k) 
(k -l)(N -1-K) 

k 
Tbe denominator of VR can be rewritten as r.cn;-l)s;2/(N-k ). where 

î= 1 
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s;2 is the sample varianee of the ranks within the i-tb sample. And bere 

we have the explanation for the effect we saw in table 6. lf the bigger 

variances happen to coincide with the bigger samples, the denominator 

will grow while the numerator will not be affected by this situation. 

Therefore the varianee ratio VR will decrease. If we reverse the relation 

between K and VR we have: 

K = (N -1)(k -1)VR 
(N-k)+(k-l)VR 

In this expression a decrease in VR will result in a decrease in K. befause 

the denominator contains the term (N -k) that is positive and 

unaffected by VR. Therefore the probability of rejecting a hypothesis 

will decrease. leaving the test conservative. 

3.6. Adaptation to unequal variances 

Since the Kruskal & Wallis test is not robust against varianee hetero­

geneity it seems attractive to replace the observations x;i by 

(x;i -med(x ))IS;. where med(x) is the pooled sample median and S; is 

a consistent estimate of the i-th scale parameter. Unfortunately Sen 

(1962) bas already shown that such a test is not asymptotically 

distribution-free unless all the scale parameters are equal. However it is 

possible to construct a studentized quantile test that is based on the 

metbod of Mood & Brown (1950). Sen proposed the following test 

statistic: 

Here m; is the number of observations in the i-th sample not greater 

" n· 
than med(x) and A = i~l S l . Under mild conditions this stalistic bas 

asymptotically a X2 distribution with k- 1 degrees of freedom. For the 

estimates of the scale parameters Sen suggested: 

Here en; denotes the en tier of -} n; and Z;i = X; <n; _i +l} - x; (i )• where 

x; <i> is the j-th ordered value in the i-th sample. The efficiency of this 

estimate is 0.88 for the normal distribution with respect to the classica! 

standard deviation. Since the asymptotic distribution of the test stalistic 
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does not depend on tbe choice of the scale parameter, and we want to 

use it bere for normal distributions, Sen's test will also be considered in 

this study with the classica! standard deviation. 

Table 7: Sen's test with 8 ~ 

sample size sigma 10% 5% 1% 

4,4,4,4 1.1.1.1 5.72 4.88 0 
1,2,2.3 7.08 4.60 0.08 

4.6.8.10 1.1.1.1 7.44 2.64 0.40 

1.2.2.3 5.92 3.00 0.36 

3.2.2.1 10.92 4.88 0.48 
10,10,10,10 1.1.1.1 9.32 4.67 0.88 

1.2.2.3 9.24 5.20 0.44 

4.4.4.4.4.4 1.1.1.1.1.1 8.64 3.36 0.04 

1,1.2.2,3,3 9.76 3.32 0.16 
4,6,8,10.12.14 1.1.1.1.1.1 7.52 2.88 0.28 

1.1.2.2.3.3 5.72 3.20 0.32 

3,3.2.2.1.1 9.12 4.40 0.48 

10,10.10.10.10.10 1.1.1.1.1.1 9.64 4.60 0.76 i 

1.1.2.2.3.3 9.16 4.52 0.36 

From tables 7 and S we can see that this studentized modification of the 

Mood & Brown test gives better control over the chosen size than the 

Kruskal & Wallis test if tbe varianèes are unequal. It does not seem to 

matter very much whether the scale parameter for eacb group is 

estimated by S; or by the standard deviation s;. Table 9 gives a sum­

marized comparison between the infiuence of these estimates on the 

actual size of the test. In table 9 sigma denotes the estimated standard 
error of the mean. Every mean is based on 14 entries in table 7 or 8. 

and each of these entries is based on 2500 replications. It seems that the 

results for the standard deviation are slightly better than those for the 

scale parameter 8;. If the nomina! size is 5% or 10% the difference 

between the effects of the scale parameters is not very convincing. Only 

if the nomina] size is 1% the choice of the standard deviation results in 

an impravement that exceeds the sum of the two estimated standard 
errors. 



34-

Table 8: Sen's test with s 

sample size sigma 10% 5% 1% 

4.4.4,4 1.1.1.1 5.96 4.6& 0.04 

1.2.2.3 6.28 4.36 0.08 

4,6.8,10 1.1.1.1 8.80 4.00 0.60 

1.2.2.3 8.84 3.72 0.48 

3.2.2.1 10.60 4.40 0.72 

10.10,10.10 1.1.1.1 9.40 4.84 0.48 

1.2.2.3 10.52 4.80 0.76 

4.4.4.4.4.4 1.1.1.1.1.1 8.08 3.96 0.72 

1.1.2.2,3,3 9.08 3.00 0.16 

4.6.8.10.12,14 1.1.1.1.1.1 8.68 3.96 0.72 

1.1.2.2.3,3 7.64 3.92 0.56 

3,3.2,2.1.1 9.80 4.36 0.80 

10.10.10.10.10.10 1.1.1.1.1.1 9.24 4.48 0.80 

1.1.2.2.3.3 9.76 4.56 0.72 

Table 9: Mean estimated size 

scale nomina! mean sigma 

sj 10% 8.23 0.44 

S; 10% 8.76 0.37 

sj 5% 4.01 0.27 

S; 5% 4.22 0.13 

S; 

I 
1% 0.36 0.07 

Sj 1% 0.55 0.07 

3. 7. A comparison of powers 

In table 10 the Kruskal & Wallis test with X2 is left out because the 
actual size exceeded the nomina! size too much forsome pattersof sam­

ple sizes and variances. For a closer examination table 11 is produced. 

Here EMSV denotes that extreme means coincide with small variances. 

EMBV that extreme means coincide with big variances and EQV that all 

variances are equal. This distinction is made in order to compare the 

Kruskal & Wallis test with the second order James test. James uses the 
test statistic: 
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Table 10: Estimated power with nominal size = 5% 

ss mean sigma KW~ James2 
1 

Sen ö Sens 

A 3,0,0,0 1.1.1.1 86.92 86.84 33.72 28.68 

5.0,0.j 99.64 99.64 27.96 36.24 

3,0,0,0 1,2,2,3 34.20 60.28 n.64 24.92 

0.0.0.3 25.36 22.72 13.56 12.64 

5,0,0.-} 76.76 97.08 30.84 30.56 

i ,0,0,5 56.00 43.72 18.72 18.92 

B 3,0,0.0 1.1.1.1 88.32 92.88 12.68 16.12 

0,0,0.3 100 100 99.76 99.56 
3,0,0,0 1.2.2.3 25.08 86.96 8.48 13.48 

0,0,0.3 43.64 50.40 35.76 38.28 

5.0.0.-} 72.04 99.88 12.60 18.68 

î .0.0.5 90.08 91.48 77.16 80.32 
3,0,0,0 3.2.2.1 26.84 24.12 10.32 9.24 

0,0,0,3 89.64 94.64 90.84 90.44 

5.0,0.-} 62.56 51.64 16.16 16.44 

c 3,0,0,0.0.0 1.1.1.1.1.1 66.08 91.60 9.20 13.96 

1,1.2.2.3,3 14.36 90.76 10.04 12.04 

3.3.2.2.1.1 24.12 23.96 9.20 8.08 

ss .sample size 

A 4,4.4.4 

B 4,6,8.10 

c 4.6.8.10,12.14 

k 

J= r. wJx;-x)2 

i= 1 

k k r,w1 and x= r,w,x1/w. Tbis formula suggests 
1=1 i= 1 

tbat tbe power of tbe Jamestest will be small if extreme means coincide 

witb big variances. Tbe Kruskal & Wallis test will not suffer from tbis 

problem because bere the weigbts are simply n1 • If we compare forSen's 

test bis own scale parameter witb tbe classical standard deviation we see 

tbat tbe latter gives slightly superior power. This is in accordance with 

tbe fact that tbe standard deviation is a more efficient estimate for the 
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Table 11: Summary of table 10 

category KW {3 James2 SenB Sens 

EMSV 52.01 88.27 29.24 31.69 

EMBV 46.94 44.00 25.90 26.27 

EQV 88.19 94.19 i 36.66 i 38.91 i 

scale if the distribution is normaL However if we compare all the results 

for this studentized Mood & Brown test with the other two tests we see 

that the power is highly unsatisfactory. This can be partly explained by 

looking at the Asympotic Relative Efficiency of the Mood & Brown test 

relative to the Kruskal & Wallis test. Andrews (1954) found: 

AREMB .KW= ! [F' (M )/ J F' (x )dF(x )]2 

-oo 

Here M is the median of the distribution function F. If all the popula­

tion variances are equal we have for the normal distribution ARE MB .KW 

= 2/3. And for this reason it is a pity that we cannot have a non­

parametrie studentized Kruskal & Wallis test. 

If we compare the first two columns of table 11 we see that only in the 

EMSV case the second order test of James bas considerably more power 
than the Kruskal & Wallis test. In the EMBV case the Kruskal & Wallis 

test has even slightly more power than the James test. and in the EQV 

case the superiority of the James test is only moderate. Can we conclude 

from this study that the Kruskal & Wallis test with the Beta approxi­
mation is a reasonable alternàtive for a test that is specially developed 

for normal populations with unequal variances? The answer can be yes. 
but with two serious restrictions: 

1. If the sample sizes and the variances are unequal. and if the bigger 

variances coincide with the smaller samples, then the test will 
become progressive if the pattem is more extreme than those 

presented in the tables 1, 2 and 3. Roughly one might say that the 

maximum ratio of the standard deviations should not exceed 3. 

2. A computer program for the Kruskal & Wallis test with Beta is 

much simpler than a program for the second order test of James. 
Therefore one might be tempted to use the former if the variances 

are not too different. It should be noted that by doing this one can 

lose a considerable amount of power. especially if extreme means 
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coincide with small variances. 
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4. Nonparametrie comparison of several mean values with adapta­

tion to the tail-weights 

4.1. Introduetion 

Several nonparametrie tests exist for the hypothesis H 0 that k samples 

come from the samecontinuons distribution. Three of them will be con­

sidered in this study as a basis for an adaptive test with attractive pro­

perties for symmetrie distributions with arbitrary tail-weights. The first 

one of these tests is the Van der Waerden test that uses the statistic: 

Let x 1 , •••• xN be a combination of the samples coming from k groups. 

SJ denotes the collection of indices in the j-th sample and nJ is the 
corresponding sample size. 4J is the standard normal distribution func­

tion. Nonparametrie tests do not use all the information contained in the 

observations x; but only their ranks R; in the combined sample. The 

Kruskal & Wallis test was already mentioned in the third chapter. It 
uses the statistic: 

This formula is essentially the same as the one mentioned in the previ­

ous chapter. The third test originates from Mood & Brown (1950). It 
uses the statistic: 

A i = I: ~ [sign (R; 
iE si 

(N + 1))+1] 

Although the hypothesis under consideration is that all samples come 

from the same distribution. these tests are mostly used for the detection 

of a shift in the location parameters for distributions that are at least 
similar in shape and scale, The asymptotic distribution of the stalistics 

under H 0 is X2 with k - 1 degrees of freedom. The behaviour of these 
tests if H 0 does not hold can differ considerably. For each test a distri­

bution exists for which the power is asymptotically optimal (seetable 

1). It is possible to have a look at the data and then to decide which of 
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Table 1: Asymptotic optimality 

test distri bution 

Kruskal & Wallis logistic 

Mood & Brown double exponential 

Van der Waerden normal 

these tests is the appropriate choice. The primary difference between the 

logistic. the double exponential and the normal distribution lies in their 
tails. If we eaU the tails of the logistic distribution moderate. it is 

natura! to say that the normal distribution bas light tails and that the 

tails of the double exponential distribution are heavy. So the principle of 
the adaptive test under eonsideration will be as follows: (1) get an 

impression of the tails from the samples. (2) determine whether they 
are light. moderate or heavy and (3) apply the appropriate test. Hajek 

and Sidak (1967) show that the information in the combined sample is 
independent of the ranks. Therefore the tails ean be estimated. but it 

must be done from the observations without using information eoneern­
ing the group to whieh they belong. If the loeation parameters are equal 

this is not a serious restriction. But if H 0 does not hold it is possible 
that the combined sample will suggest a tail-weight that differs consid­

erably from the true value. One can put forward that this does not 
matter very much. beeause if the loeation parameters are so different 

that the combined sample does not represent the distribution of the 
separate samples. it is reasonable to suppose that any test will rejeet the 

hypothesis. so that it is not important whether the right one bas been 
ehosen. And if the loeation parameters differ only a little. then the tails 

will be estimated aecurately. resulting in optimal power just where it is 
needed. 

An adaptive nonparametrie test where the above mentioned selection is 

basedon the combined sample is nota rank test. but a permutation test. 
It would even be a test for which the probability of rejecting H 0 is equal 

to the chosen size a were it not that one usually is confronted with 
moderate sample sizes where the distributiol:l of the test statistic can 

only be approximated by a X2-distribution. So if it is eommon practice 
to accept an approximation it is not unnatural to tolerate another devia­

tion as long as it is small in comparison with the differenee between the 
X2-distribution and the actual distribution of the test statistic for 
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moderate samples. A kind of cheating that would introduce an error is 

the following: compute Qxw. QMB and QVdw and then compare the max­
imum of these values with the critical value based on the x2 approxima­
tion. Such a strategy will certainly result in a powerful test, but it is 

something no serious statistician would consider because the probability 
of rejecting H 0 when true will exceed the chosen size a. 

There is however a kind of "moderate cheating" that will be considered 

in this study. In the selection scheme the tails will be estimated from 
the combined sample. but also from an artiftcial sample that is basedon 

the original observations after a shift to give every group the same loca­
tion parameter. It is reasonable to suppose that this shift will result in 

better estimates for the tails. In a simulation study we will examine 
this. and an attempt will be presented to quantify the error that is 

introduced by this incorrect use of information .. 

4.2. Asymptotic relative efficiency 

Application of an adaptive test that is based on the methods of Van der 
Waerden. K.ruskal & Wallis and Mood & Brown is only worthwhile if 

the powersof these separate tests are very different for the distributions 
under consideration. An attractive criterion for comparing the powersis 
the Asymptotic Relative Efficiency (ARE) that is also known as the Pit­
man efficiency. Let A and B be tests and let a and b be the corresponding 

number of observations involved. Por some chosen size a both tests are 
used for the same hypothesis H 0 against a class of alternatives He. Then 

AREA .B is deftned as the asymptotic value of !!.. when a varies such that 
a 

the powers are (and remain) equal while b -+ oo and He -+ H 0 • 

Andrews (1954) gives a formula for the ARE of the Mood & Brown 
test relative to the Kruskal & Wallis test: 

00 

ARE MB ,xw = j [F'(M )/ f F '(x )dF (x )]2 

-(X) 

HereMis the median of F. A more general formula has been given by 

Puri (1964) that can be used to compare any pair of nonparametrie k­
sample tests for some chosen distribution. This could be used to com­

pute the other asymptotic relative efficiencies. but in this study they are 
found in a different way. Terry and Hoeffding proposed a test that is 
very similar to the Van der Waerden test and that bas the same asymp­
totic relative efficiencies [Bradley (1968)]. Hodges and Lebman (1961) 
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examined the two-sampfe situation for ARETH ·"· (W stands for Wil­

coxon which is the Kruskal & Wallis test for two samples). With these 

results it is possible to construct table 2. 

Table 2: Asymptotic Relative Efficiency 

distri bution ARE\'dW .KW AREwv..',MB ARExv..'.MB 

normal 
7T 7T 3 -
3 2 2 

logistic 
3 4 4 

- - -
7T 7T 3 

double exponential 
8 2 3 -- -

37T 7T 4 

Some of the entries in table 2 differ seriously from 1. This suggests that 

an adaptive test that is based on the methods by Van der Waerden, 

Kruskal & Wallis and Mood & Brown will have good power fora large 

class of symmetrie distributions with arbitrary tail-weights. For this it 

will be necessary to have an accurate metbod to estimate the distribu­

tion from the samples. Suppose the estimation is done with the com­

bined sample while the location parameters are unequal. If the data 

come from a normal distribution the combined sample will look flatter 

so that it can be classified as a double exponential distribution. This 

will result in a considerable loss of power relative to the correct selec­

tion. Centralisation on the location parameters can prevent this situation 

from happening. 

4.3. Criteria for selecting the test 

In a simulation study samples were generaled from normaL logistic and 

double exponential distributions [see appendix 4]. This study was res­

tricted to the case of 4 samples. each coming from the same (but 

shifted) distribution. Several criteria for selecting the test were con­

sidered. The first was the sample kurtosis of the combined sample: 

N 
r_(x;-x)4/N 

K= i;l 3 

[ E (x; -x)2/N]2 
i= 1 

The kurtoses for the distributions under consideration are well known 

(see table 3). To use the kurtosis as a criterion for selecting the test it 

was necessary to choose boundary values for K somewhere between the 
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Table 3: Kurtosis 

distribut ion K criterion . 

normal 0 

0.6 

logistic 1.2 

2.1 

double exponential 3 

Table 4: Selection on K 

kurtosis test 

K<0.6 Van der W aerden 

0.6~K <2.1 Kruskal & Wallis 

2.1~K Mood & Brown 

kurtoses for the distributions under consideration. In the absence of a 

better idea the midpoints were chosen. Table 4 shows how K is tried in 

the adaptive test. This use of K as a metbod to recognise the normat 
logistic and double exponential distribution proved to be very disap­

pointing. The second idea was to shift the samples to make the means 

equal and to compute K for the combination of these shifted samples. 

This resulted in an impravement but the fraction of correct 
classifications was still not satisfactory. Another improvement was 

achieved by a centralisation on the medians instead of the means. This 
was tried because the experiment involved the double exponential distri­

bution with very heavy tails. Unfortunately also this approach did not 
prove to be a succes. The last attempt with the kurtosis was based on 

the weighted mean of the values K; for the separate samples. This 
proved to be similar to centralisation on the means. 

So the kurtosis as a criterion for selecting the test had to be rejected. 

How is it possible that this statistic that is often referred to as a meas­

ure of flatness can not be used as an indicator for three distributions 

that are so different in their tail-weights? Mood, Graybill and Boes 

(1963) mention that the kurtosis can be used to measure the peakedness 

or flatness of a density, but mostly around the center. It seems that they 
are right: it is certainly impossible to get much information about the 

tails from the kurtosis. 
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This disappointment made it necessary to look for others measures of 

tail-weight and two were found. Uthoff (1970 and 1973) suggested: 

Zy-Z I {1=--=-----=-----=---
2 

Here Z 1 , ...• ZN is the ordered sample. Uthoff bas shown that the best 

location and scale invariant test of an underlying uniform distribution 

against the double exponential is based on a ratio to which U is an 

approximation. Since the uniform distribution has lighter tails (if one 

may even speak of them) than the normal distribution, this stalistic 

seems a promising candidate. Hogg. Fisher and Randles (1975) suggested 

using: 

Q= lO(Uos-L.os) 
u 5 

They tried this stalistic in a similar study as the present one, where 

they also included a measure of skewness. but their objective was res­

tricted to the construction of a two-sample adaptive distribution-free 

test. U 05 denotes the sum of the upper 5% of the observations. If N is 

not a multiple of 20 then one observation is only fractîonally included. 

The other partsof this formula have a simHar meaning. where L stands 

for lower. It turns out that U and Q are very similar and lOU and Q are 

even identical if N does not exceed 20. The use of Q as a criterion for 

selecting the test is given in tables 5 and 6. The derivation of the popu­

lation values of Q for the normal. logistic and double exponential distri­

bution is given in appendix 5. For the criterion the midpoints between 

these population values were chosen. Two adaptive tests were considered 

for this selection scheme. In the coming sections A-P will denote the test 

where the selection is not preceded by centralisation so that Q is com­

puted for the combined sample. resulting in a pure adaptive non­

parametrie test where the only soureefora difference between the nomi­

na} size and the actual probability of a rejection under the hypothesis of 

equal population means comes from using the x2 approximation. As an 

alternative A-C will also be considered where the computation of Q is 

preceded by centralisation on the medians. So we have: 
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Table 5: Criterion Q 

distri bution Q criterion 

normal 2.58 

2.72 

, logistic 2.86 

3.08 

I double exponential 3.30 

Table 6: Selection on Q 

Q <2.72 Van der W aerden 

2.72~Q <3.08 Kruskal & Wallis 

3.08~Q Mood & Brown 

A-P: A Pure Adaptive test 

A-C: An Adaptive test with Centralisation (or Cheating) 

4.4. The adaptive tests under the null hypothesis 

In a simulation study the probability of a rejection under H 0 is exam­

ined. For 4 groups and 5, 15 and 60 observations for each group the 

actual percentage of rejections is estimated. In table 7, 9 and 11 1every 

entry is based on 2500 replications. The actual size was chosen as 5%. so 

that the standard error for the estimated sizes was 0.436%. Not only the 
normal. logistic and double exponential distributions were used in this 

simulation. but also the uniform distribution with lighter tails than the 

normaL and the Cauchy distribution with heavier tails than the qouble 
exponentlal [see appendix 4]. 

Table 7: Estimated size. n; = 5 

distribut ion K&W M&B VdW A-P A-C 

uniform 3.92 4.92 3.72 3.72 3.72 
normal 3.72 5.04 3.40 3.48 3.52 
logistic 3.80 4.84 3.48 3.92 4.28 

double exponentlal 4.16 4.92 3.88 4.24 4.44 
Cauchy 3.88 4.52 3.52 4.40 4.36 

As the sample size tends to infinity the values of Q for the uniform and 

the Cauchy distribution are respectively 1.9 and 10 [see appendix 5]. 
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Table 8: Selected tests. ni = 5 

A-P A-C 

distri bution VdW K&W M&B VdW K&W M&R 

uniform 2494 6 2358 126 16 

normal 1927 407 166 1777 474 249 

logistic 1470 594 436 1351 621 528 

double exponential 893 649 958 829 620 1051 

Cauchy 90 163 2247 84 150 2266 

Table 9: Estimated size, ni = 15 

distri bution K&W M&B VdW A-P A-C 

uniform 4.48 3.44 4.56 4.56 4.56 

normal 4.92 4.00 5.32 5.24 5.40 

logistic 4.76 4.20 4.92 4.92 4.96 

double exponential 4.92 4.24 4.72 4.44 4.56 

Cauchy 5.00 4.44 4.72 4.44 4.44 

Table 10: Selected tests. n; = 15 

A-P A-C 

distri bution VdW K&W M&B VdW K&W M&B 

uniform 2500 2483 17 

normal 1997 469 34 1902 552 46 
logistic 1062 1049 389 997 1062 441 

double exponential 200 803 1497 182 782 1536 

Cauchy 1 2499 2500 

The probability that the appropriate test is selected is not everywhere 
satisfactory. For the uniform. normaL double exponential and Cauchy 

distribution the test with the highest power was selected in most cases 

. for every sample size and both adaptive tests. But for the logistic distri­
bution with N, = 5 both A-Pand A-C selected the Van der Waerden 

test more often than the Kruskal & Wallis test. This strange effect is 

still visible in the results for n; = 15 and it vanishes almost completely 
for n; = 60. 
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Table 11: Estimated size. n 1 = 60 

distri bution K&W M&B VdW A-P A-C 

uniform 4.48 4.24 4.72 4.72 4.72 

normal 5.44 5.52 5.20 5.32 5.32 

logistic 5.32 5.28 5.36 5.28 5.40 

double exponential 5.12 4.64 5.04 4.76 4.72 

Cauchy i 5.68 5.32 5.52 5.32 5.32 

Table 12: Selected tests, n 1 60 

A-P A-C 

distribut ion VdW K&W M&B VdW K&W M&B 

uniform 2500 2500 

normal 2224 276 2188 312 

logistic 468 1904 128 447 1911 142 

double exponential 1 319 2180 1 313 2186 

Cauchy 
i 

2500 2500 

In order to find the origin of this effect the following experiment was 

carried out. Since there were 4 groups with 5, 15 or 60 observations A-P 

selected the test on the value of Q fora sample of 20, 60 or 240 random 

numbers from the chosen distribution. For the logistic distribution 1000 

values of Q were computed with each of these sample sizes. Histograms 

were plotted and these demonstraled that the distribution Q 20 is 

strongly skewed. the distribution of Q60 is somewhat skewed a111d the 

distri bution of Q 240 is nearly symmetrie. 

Table 13: Skewness of Q Oogistic distribution) 

sample size minimum modus maximum 

20 1.59 2.55 4.79 

60 2.05 2.76 4.06 
240 2.48 2.84 3.39 

The results can be summarized by the minimum, modus and maximum 

of .these estimated distributions of Q (see table 13). where the extremes 

are added to give an indication of the tails. Table 13 explains the unsa­

tisfactory selection for small samples if the distribution is logistic. For 
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combined samples of 20 observations the modus of Q is even slightly 

smaller than the expectation for the normal distribution. So it is clear 

that the selection scheme can be improved by taking the combined sam­

ple size into account. The gain in power can only be very moderate. 

because the ARE of the Van der Waerden test relative to the Kruskal & 

Wallis test is _! for the logistic distribution. If one takes N into account 
7r 

A-P will still be a pure nonparametrie adaptive test. because the infor-

mation contained in the sample size is already present before the experi­

ment is carried out. A study on such an adaptive scheme is started while 

this is written. so it can not be presented bere. It may result in a very 

small gain concerning the power, but it is unreasonable to expect much 

of it. 

Since the location parameters were equal in this simulation the combined 

sample should represent the undetlying distribution better than the 

result of a centralization on the medians. In tablè 14 the performance of 
the selection methods in A-P and A-C is compared. In addition to the 

criteria given in table 5 and 6 it is clear that the uniform distribution 

should select the Van der Waerden test and that for the Cauchy distri­

bution the Mood & Brown test would be the best choice. For both adap­

tive tests and the three sample sizes under consideration the number of 

correct selections is presented. In the case of a misclassification a distinc­

tion is made between a neighbouring test and the selection of the oppo­

site extreme (Van der Waerden when it should be Mood & Brown and 
vice versa). 

Table 14: Comparison of selection schemes under H 0 

test sample size correct neighbour opposite 

A-P 5 8220 3131 1149 

15 9542 2724 234 
60 11308 1191 1 

A-C 5 8073 3249 1178 
15 9483 2789 228 

60 11285 1214 1 

For both tests the probability of a correct selection increases rapidly 

with the sample size. As was to be expected the selection scheme of A-P 
is better under H 0 than that of A-C. The difference is noticable if n 1 = 5 
and it nearly vanishes if n1 = 60. 



-48 

The test A-C with centralisation on the medians is not a pure non­

parametrie adaptive test. because it uses information that is not con­

tained in the ranks. The worst that could happen as a result of this is 

that the probability of a rejection under IJ 0 exceeds the chosen size o:. 

To examine this table 15 is produced. where the resuhs for all the sam­

ple sizes are combined. The standard error of the estimated sizes is 

0.436%. Let d be the actual percentage of rejections under H 0 minus the 

nominal size and this divided by the standard deviation. The tdt will 

seem accurate concerning the size if -2~ d <2. conservative if d <-2 

and progressive if 2~ d . These categories are separated by double lines. 

Table 15: Summary of tables 7. 9 and 11 

K&W M&B VdW A-P A-C 

d <-3 1 3 1 1 

-3~d <-2 4 1 2 2 1 

-2tS;,d<-1 3 5 1 5 6 
-1~d <1 6 7 8 7 7 

1~d <2 2 1 1 

2~d <3 

3~d 

Because the Kruskal & Wallis, Van der Waerden and Mood & Brown 

tests are somewhat conservative for small samples if the X 2 approxima­

tion is used. it is not amazing that both adaptive tests show the same 

inclination. In table 15 both A-P and A-C never showed a size that 

exceeded the nominal value by more than one standard deviation. In this 

respect they seem even better than the original tests, where this value 

was exceeded by all three of them. So in this stage of the study there 

seems to be no reason to distrust A-C. and if its power should prove to 

be much better than that of A-P, then the use of a centralization in the 

selection scheme could be recommended. 

4.5. A comparison of powers 

The powers of the tests under consideration are estimated by the 

number of rejections from 300 replications. The results are given as per­

centages. Samples are considered with 15. 40 and 65 observations. In 

practical analysis of means situations one is not often confronted with 

samples containing more than 40 observations. A sample size of 65 is 
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Tab]e 16: Estimated power. n; = 15 
Location: 0. 0.15. 0.3. 1.05 

distri bution K&W M&B VdW A-P A-C 

uniform 62.3 25.0 73.0 73.0 73.0 

normal 70.7 43.3 70.7 70.3 71.0 

logistic 26.3 15.0 25.3 24.0 25.3 

double exponential 51.1 45.7 47.7 48.0 50.3 

Cauchy 20.0 23.3 16.7 23.3 23.3 

Table 17: Selected tests. n; = 15 
Location: 0, 0.15. 0.3. 1.05 

A-P A-C 

distri bution VdW K&W M&B VdW K&W M&B 

uniform 300 300 

normal 228 64 8 216 77 7 

logistic 126 139 35 109 152 39 

double exponential 51 127 122 28 97 175 

Cauchy 1 299 1 299 

Table 18: Estimated power. n; 40 

Location: 0. 0.15, 0.3. 1.05 

distri bution K&W M&B VdW A-P A-C 

uniform 98.0 69.7 99.3 99.3 99.3 

normal 100 95.3 100 100 100 
logistic 68.7 55.3 69.0 65.7 66.7 

double exponential 94.3 92.7 90;3 93.0 93.3 

Cauchy 56.0 67.7 44.3 67.7 67.7 

only included in the analysis because with the other two values it will 
be possible to see the performance of the selection schemes of A-P and 

A-C as a function of the sample size. Eight different sets of location 
parameters were tried. but since the results of them proved to be very 

similar. only two sets are presented in the tables. The logistic. normal, 
double exponential and Cauchy distribution have a scale parameter. For 

all these parameters the value 1 was chosen. In order to get a uniform 
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distribution with unit varianee the range of this distri bution was chosen 

as .../fi. 

a e :. e ec e ess.n; = T bl 19 S l t d t t 40 

Location: 0, 0.15. 0.3, 1.05 

A-P A-C 

distri bution VdW K&W M&B VdW K&W M&B
1 

uniform 300 300 

normal 259 41 252 47 1 

logistic 106 177 17 80 198 22 

double exponential 1 125 174 3 66 231 

Cauchy 300 300 

Table 20: Estimated power. n, ,., 65 

Location: O; 0.15, 0.3, 1.05 

distri bution K&W M&B VdW A-P A 

uniform 100 89.0 100 100 100 

normal 100 99.7 100 100 100 

logistic 92.0 77.3 89.7 90.7 91,7 

double exponential 99.7 99.0 99.7 99.3 99.3 

Cauchy 80.7 89.7 70.3 89.7 89.7 

I 

Table 21: Selected tests. n; = 65 

Location: 0. 0.15. 0.3. 1.05 

A-P A-C 

distri bution VdW K&W M&B VdW K&W M&B 

uniform 300 300 

normal 282 18 274 26 
logistic 67 220 13 46 238 16 

double exponential 92 208 40 260 

Cauchy 300 300 

If the location parameters are unequal the combined sample will suggest 

a flatter density than the actual distribution. Centralization can result in 

an improvement bere. especially if the location parameters are very 

different. In this simulation the shifts were chosen such that for sample 
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size 65 at least one entry in the table for the estimated power was 100%. 

This value was not permitted to occur for everyentry in a row. because 

this would not yield any information concerning the relative powers. 
These restrictions resulted in moderate shifts and a simulalion was 

needed to decide whether centralization improves the probability of a 

correct selection if the location parameters differ only as little as 

presented in the tables. 

Table 22: Estimated power. n; = 15 

Location: 0, 0.1. 0.5. 0.9 

distribution K&W M&B VdW A-P A-C 

uniform 51.0 18.7 62.3 62.3 62.3 

normal 53.7 32.0 55.7 55.0 55.3 

logistic 23.3 15.3 24.0 22.3 22.0 

double exponentlal 44.3 39.0 41.0 41.3 43.3 

Cauchy 15.7 15.7 13.0 15.7 15.7 

Table 23: Selected tests. n; = 15 
Location: 0, 0.1. 0.5. 0.9 

A-P A-C 

distri bution VdW K&W M&B VdW K&W M&B 

uniform 300 297 3 

normal 242 51 7 227 62 11 

logistic 122 140 38 113 135 52 

double exponentlal 49 110 141 31 91 178 
Cauchy 1 299 300 

In table 28 the performance of the selection rules of A-P and A-C are 

presented. Just like in table 14 a distinction is made between the selec­

tion of a neighbouring test and the selection of an opposite one (Van der 

W aerden when it should be Mood & Brown and vice versa). For both 

rules the probability of a correct selection increases with the sample size. 
We saw already that under H 0 it is better not to centralize on the medi­

ans. But bere. where the location parameters are different. it can be seen 

that for every sample size the selection rule of A-C performs better than 

that of A-P. This is not only true for the combination of all the results 

in this section as presented in table 28. but also for each of theseparate 
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I Table 24: Estimated power, ni = 40 

Location: 0, 0.1. 0.5, 0.9 

distribution K&W M&B VdW A-P A-C 

uniform 94.3 51.7 99.0 99.0 99.0 

normal 97.0 88.3 97.3 97.3 97.3 

logistic 56.3 41.3 52.0 53.0 54.3 

double exponentlal 88.3 85.7 81.3 88.0 88.0 

Cauchy 47.3 57.0 33.3 57.0 57.0. 

alternat.ives concerning the location parameters. 

I Table 25: Selected tests. n; = 40 

Location: 0. 0.1, 0.5, 0.9 
! A-P A-C 

distri bution VdW K&W M&B VdW K&W M&B 

uniform 300 300 

normal 264 36 254 46 

logistic 78 195 27 76 201 23 

double exponentlal 3 117 180 78 222 

Cauchy 300 300 

Table 26: Estimated power, n; = 65 i 

Location: 0, 0.1, 0.5, 0.9 

distri bution K&W M&B VdW A-P A-C 

uniform 99.0 78.7 100 100 100 

normal 100 97.7 100 100 100 

logistic 79.7 67.7 80.8 79.3 80.0 

I double exponentlal 98.7 99.0 97.3 99.0 99;3 

Cauchy 75.0 85.0 59.3 85.0 85.0 

In table 29 the powers of all tests considered are estimated as the per­

centage of rejections for all situations in this section together. This 

means that a mixture with equal occurences from the uniform, normaL 

logistic, double exponentlal and Cauchy distribution is submitted to the 

analysis. 1t can be seen that for every sample size the adaptive tests 

have more power ihan theseparate tests. A-C is always better than A-P. 
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Table 27: Selected tests, n 1 = 65 
Location: 0. 0.1. 0.5. 0.9 

A-P A-C 

distri bution VdW K&W M&B VdW K&W M&B 

uniform 300 300 

normal 272 28 260 40 

logistic 62 229 9 43 245 12 
double exponential 101 199 51 249 

Cauchy 300 300 

but the difference is only marginal. 

Table 28: Comparison of selection schemes 
Location parameters are unequal 

test sample size correct neighbour opposite 

A-P 15 2210 675 115 

40 2449 547 4 
65 2610 390 

A-C 15 2279 644 77 

40 2558 438 4 

65 2726 274 

Table 29: Comparison of powers 

Mixture of 5 distributions 

sample size K&W M&B VdW A-P A-C 

15 41.90 27.63 42.93 43.53 44.17 

40 80.03 70.47 76.60 82.00 82.27 
65 92.47 88.27 89.63 94.30 94.50 

The final conclusions of this study are a bit disappointing. lf one is 
interested in the comparison of several mean values. and the only thing 
that is known about the underlying distribution is that it is symmetrie, 

one can consider to use an adaptive test like A-P or A-C. But in the 
simulation presented bere the gain in power relative to the Kruskal & 

Wallis test (which is optimal for the middle range of Q and therefore 
never the worst choice) is only moderate. Asymptotically botb adaptive 
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tests are superior fora mixture of symmetrie distributions as described 

in this study. And the element of cheating in A-C will disappear as the 

sample size increases. But for finite samples the results are disappoint­

ing. This can be partly explained by the observation that for sample 

sizes 15 and 40 the Kruskal & Wallis test demonstrales more power for 

the double exponential distribution than the Mood & Brown test that is 

asymptotically optimal for this distribution. Only for samples with 65 

observations the asymptotical superiority of the Mood & Brown test 

becomes visible in table 26, but in table 20 for the same sample size the 

Kruskal & Wallis test is still slightly superior for the double exr)onen­

tial distribution. In this study only two shifts of the location parame­

ters were presented out of the total of eight that were generated. There 

were situations in the other six where the Mood & Brown test showed 

more power for the double exponential distribution than the Kruskal & 

Wallis test for samples with 40 observations. But for smaller samples 

the Mood & Brown test was always inferior. 

So for small samples the correct recognition of a double exponential dis­

tribution leads to a loss of power in the adaptive tests relative to the 

Kruskal & Wallis test. This. as wellas the skewed distribution of Q for 

the logistic distribution (see table 13). leads to the condusion that a 

better adaptive test can be constructed by taking the sample· size into 

account in the selection scheme. These improvements are the topic of a 

study that has just started and therefore the results will not be 

presented bere. The expected outcome of this study is not a considerable 

gain in power, as .can be concluded from the tables in this section. But 

for the tool-forger every small impravement can be tempting, even if it 

bas not much practical value. 

For symmetrie distributions the Kruskal & Wallis test is never a very 

bad choice. It is possible to get a bit more power by using an adaptive 

test. but the gain is little in comparison with the extra programming 

effort. The selection scheme in 'this study can be improved by taking the 

sample size into account. but also this can only result in a very 

moderate gain in power. 
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S. Comparison of several mean values in the presence of outliers 

5.1. Introduetion 

The model in classîcal one-way analysis of means is Yu = fJ.; + eij 

where the errors eij are supposed to be independently distributed as 

N ( O,u 2) with unknown population varianee u 2• The index i denotes the 

group-number (i = 1 , ... , k) and j identifies the elements within the 

groups (j 1 ..... n; ). The hypothesis of interest is H 0 : f.i.J .•• = Ji.k. 

According to the above conditions. this hypothesis can be tested with: 

k 

L n; (j; -y)2/(k -1) 
F = _;_= __ t _______ _ 

k 11 i 

L L (yii -j; )2 /(N -k) 
i==lj==l 

k 

Here N = i: n;. y; is the sample mean within the Hh group and y is the 
i= l 

overall sample mean. This statistic has under H 0 an F-distribution with 

k- 1 and N- k degrees of freedom. 

For contaminated normal data we consider the following modification: 

with (small) probability E the distribution becomes e;j::::. N (0.6u 2). 

where () > > 1. and with probability 1-E the distribution remains 

N(O.u 2). This contamination is symmetrie; in the asymmetrie case, 

multiplication by 9 is performed on the positive errors only. with pro­

bability 2E. In both cases. the expected fraction of outHers is E. 

Classica! one-way analysis of means is not designed for contaminated 

normal data. Using this test bere might result in a probability of reject­

ing H 0 when true that differs from the chosen size 01, or in a serious loss 

of power. Suppose for. example that the data represent the heights of 

people. coming from different groups. Suppose the analist works at a 

computer-terminal and he enters the data in meters with two decimals. 

But sometimes. though not often, he can forget to enter the decimal 

point. Here we have a small value of E, the multiplication factor 9 is 

considerably bigger than 1. and the contamination is one-sided. What 

will happen to the statistic F? The overall sample mean j will increase 

as well as one or more of tbe group means. As a consequence the 

numerator of the statistic will increase. but also the denominator. So at 

first sight it seems difficult to predict what will happen to F. More 

attention to this will be given further in this chapter. Some alternatives 
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will be presented that seem more robust in these respects. A comparative 

study concerning the size and power of all the tests under consideration 

wil! be given. where the effect of symmetrie and one-sided contamina­

tion is demonstraLed by simulation. 

5.2. Nonparametrie analysis of means 

In a nonparametrie test the hypothesis is not tbe same as in the previous 

section. but it can be expressed as "all samples come from the same con­

tinuous distribution". Nonparametrie analysis of means has very little 

power in tbe comparison of shapes, so it can only be used to test the 

equality of location parameters. The density in case of symmetrie con­

tamination is given by: 

1 x 2 . 1 x 2 
f (x )=e ..J92'1Texp[---

2 
]+(1-e) ~exp[---2 ] 

CT 21T 29CT CT 21T 2CT 

and tbis represents a continuous distribution. Therefore the application 

of nonparametrie analysis of means is permitted. It is easily seen that 

this also bolds for one-sided contamination. 

Several nonparametrie tests are available. but bere we will only use the 

Van der Waerden (1952) test. Tbis test is basedon tbe following statis­

tic: 

Q= 

Here y 1 , ...• YN represents the combined sample. where tbe groups are 

represented by sets of indices S; f or i = 1 . ... . k. Rg is tbe rank of y g 

and cl> denotes the standard normal distribution function. Q is asymp­

totically distributed as X2 witb k - 1 degrees of freedom. Tbe reason for 

choosing tbe Van der W aerden test f rom the existing collection of 

metbods for nonparametrie analysis of means. lies in the fact that this is 

the only test tbat bas for E = 0 asymptotically tbe same efficiency as tbe 

classicaltest [Hajek (1969)]. By using tbis nonparametrie metbod one is 

insured against tbe possible presence of outliers, and the premium one 

has to pay is tbe lossof power for small samples. For k = 2 this loss has 

already been sbown to be moderate [Van der Laan and Oosterhoff 

(1967)] and further intbis cbapter wewill see tbat tbis is also true for 

more tban two samples. If tbere are many outhers the tests by Mood & 
Brown or Kruskal & Wallis are better cboices [Hampel. Roncbetti, 
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Rousseeuw and Stahel (1986)]. But this situation will not be considered 

in this chapter. 

5.3. Winsorizing and trimming 

Applications of these methods to the t-test for two samples have been 

publisbed already [Fung and Rahman (1980). Yuen and Dixon (1973)]. 

The t-test uses the statistic: 

YCY2 
t = -.Jr;(;:;:SS:::::

1
=+=S:::::;S;::

2
=<=) /::;:;(=n-=

1 
+=n=

2
-===2 ;;:-) .J't=/:;:::n=l:::;;;+=l::;:/ n=z 

"i 

with SS;= L (y;j -y; )2 

j=l 

Under the hypothesis of equal population means this test statistic fol­

lows a t-distribution with N-2 degrees of freedom if E= 0. This metbod 

is equivalent to classica! one-way analysis of means for k 2 (t 2= F 
and f or the critica I values the same re lation holds: t J -:::::: F 1 ). 
Fung and Rahman (1980) Winsorized the t-test in an attempt to make it 

robust against the presence of outliers. This is done as follows: let a 1 •... 

• a" be an ordered sample. Then the mean and sum of squares of this 

sample. after two-sided Winsorizing with parameter g. are defined as: 

iïK·g=_!_[(g+l)ag+t+ag+2+ ... +an-g-t+(g+1)a"_8 ] 
n 

SS,..8 = (g + 1 )(a8 + 1-iï,..8 ) 2+ (a8 +2-iïwg F+ 

+(a" -g -1-iïwg )2+(g + l)(an-g -iï,..g ) 2 

The number of relevant observations hereby reduces to h = n-2g. The 

value of g should be chosen such that it is reasonable to suppose that all 

the outHers will be contained in the tails of the samples. so that their 

values become irrelevant. Application of this technique to the t-test 
gives the following formula: 

- -
_ Y1wg-Y2"·g 

t..,g- .J(SS twg +SS 2 wg )J(h 1+h z-2).Jllh 1+ l/h2 

This statistic approximately follows a t-distribution with h 1 + h 2 - 2 

degrees of f reedom. Fung and Rahman used n; instead of h; under the 
second square-root sign. but that appears to have been a typing error as 
can be concluded from a study by Yuen and Dixon (1973) on which 
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they based their approach. 

Winsorizing means replacing the tail-elements by the most extreme ele­

ments that are nol considered to belang to the tails. Trimming is a 

different technique in which the tail-elements are simply deleted. Yuen 

and Dixon examined the behaviour of the trimmed t-test. where the 

numerator is based on trimmed means. but the denominator still con­

tains Winsorized sums of squares. In a simulation study with samples 

containing at least 10 observations each, both methods show the same 

qualities: The probability of rejectîng H 0 when true is almast equal to 

the chosen size. and the power for normal distributions is only slightly 

below that of the classica} t-test for moderate values of g. For distribu­

tions with heavier tails the Winsorized and trimmed t-tests are even 

more powerful than the classica! t-test for moderate values of g [Fung 

and Rahman (1980)]. 

Therefore it could be attractive to apply these techniques to classica! 

one-way anova, which is the natura! genera1isation of the t-test for 

more than two samples. The Winsorized F-statistic is given by: 

k 

L h;(Y;..,g -ywg )2 /(k -1) 
i= 1 

F..,g = --=---=~.-. --------
i:SS;,..g /(H -k) 
i=l 

" k Here y,..g= i:h;)ï;,.,giH and H= i:h;. For the trimmed F-statistic Ftg 
i:o 1 i= 1 

only tbe numerator is modified; the Winsorized means are replaced by 

trimmed means Yitg and tbe trimmed overall sample mean is given by 
t 

Y,g = L h; Yilg I H. It is assumed that both F wg and Fcg are approxi-
i= 1 

mately distributed as an F-distribution with k-1 and N-k degrees of 

freedom. In a previous simuiatien [Dijkstra (1986)] it was found that 

the probability of rejecting H 0 when true differs too much from the 

chosen size for Winsorized analysis of means. But after correction of the 

ahove mentioned typing error in the paper by Fung and Rahman the 

behaviour of these tests improved remarkably as will be shown later in 

this chapter. 



- 59 

5.4. Outlier resistant regression 

The model for analysis of means can be rewritten as a regression model: 

The observations are represented by y and for every observation the 

group to which it belongs is identified by the dummy-variables x 1 , .••• 

xk. This can be done as follows: X; = 1 if y belongs to group i and oth­

erwise x; 0. If the errors were independently distributed as N (O.cr 2
) 

then testing: H 0 : {3 1= ... f3t would be equivalent to testing H 0: p., 1= 
... = /Lk in the model for classica} one-way analysis of means. The 

values of F and the corresponding numbers of degrees of freedom would 

be the same. 

Several methods for dealing with outliers in regression have already 

been published. Huber (1973) suggested a metbod with attractive pro­

perties that can be applied to the analysis of means problem in this 

study. 
N 

The objective of classica! regression is to minimize !. (y;- X; {3 )2 as a 
i 1 

function of {3 = ({3 1 , •••• {3 k ). Here X; = (xil , ... , x 1k )T. It can easily be 

understood that outHers in y will have considerable influence on the 

estimation of {3. because classical regression will square their residuals. 

A more robust metbod miniruizes another objective: 

N 

M({3)= L 
i"' 1 

In the classical case p(r )= r 2• but in robust regression one chooses a 

function that limits the influence of extreme residuals. Holland and 

Welsch (1977) mention eight different functions p with this desirabie 

property. The objective M ({3) will be at its minimum if: 

N y -x·f3 .EX ij '11( I I Ü 
i"'l CT 

for j 1 ..... k and 'lt(r )= d ~~). Several iterative methods for solv­

ing these equations can be considered. Initia I estimates f or {3 1 ..... {3 k 

can be obtained by ordinairy least squares. whereafter er can be 

estimated as: 
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Here med1 denotes the median over the index i. The factor 1.4826 makes 

this an approximately unhiased estimate of the standard deviatiof! in the 

case of normal errors. Without restrictions on the weight function. con­

vergence cannot in general he guaranteed if the estimation of u is part of 

the iteration. Huher (1973) found a p that allows iteratively re­

estimating of u: 

r2 
p(r )= 2 for Ir I ~H 

2 

p(r)=Hirl-
2 

forlri>H 

The sensitivity to outliers depends on the value of H. For H = 1.345 the 

efficiency is 95% for normal distributions. lf the absolute value of a 

standardised residual exceeds H, its influence hecomes linear instead of 

quadratic. Although Huber's p does not yield an e:xtremely robust esti­

mate (some authors prefer a p that becomes a constant for large values 

of I rl ). this metbod is a considerable impravement on ordinary least 

squares in the presence of outliers. In this case Newton's metbod yields 

a very efficient algorithm. hecause 'I' is a broken linear function. 

For the construction of an · outlier-resistant analysis of means procedure 

we consider the ahove mentioned robust regression with Huber's p and 

H = 1.345. This approach results in fitted values y; and an estimate û 
for u. Huher (1981) suggested a test for the hypothesis of equal popula­

tion means that uses these estimates. His suggestion is tbe topic of the 

next section . 

.5.5. Hubers metbod 

In the classical situation (without outliers) the test statist ie for H 0 : p. 1 

= ... = P.1.: is: 

F= _ï_=_I _______ _ 

k n, 
L L (yu -y; )2/(N -k) 
i= lj = 1 

Huher gave an F' that is similar to F. but on which the outHers have 

less infiuence. In the numerator the :first step is to replace Y; by y;. In a 

more general model Huher suggests to replace y by an ordinary least 
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squares fit using Y; instead of )';. In this case (without covariables) such 

a fit will yield the weighted mean: 

" .[n,y, 
i= l :Yn= ---N--

After sealing this modified numerator follows under mild condilions 

asymptotically a x2 distribution with the same number of degrees of 

freedom as the classica! test. 

Dealing with the denominator is a bit more difficult: one single outlier 

can be the cause of an extremely high value. so that H 0 can be áccepted 

although the location parameters are very different. Huber proposes to 

replace the denominator by the folowing expression ( where the influence 

of the outliers is reduced considerably ): 

where 

c= l+ kVar('ll') 
N[E('I1')]2 . 

Here E('ll ...!_ f. '11 '( r; and 
N i=t u 

1 N r 
Var ('I!')= -.[['I!'( -f-)-E('l! ')]2. 

Ni=t u 

These formulae are valid for every reasonable. choice of '11. Since we use 

Huber's '11 bere they can be simplified considerably, because for V' only 

the values 0 and 1 are possible. In this case we have: 

N-n 
c=1+k::_:__c_ 

Np 

r· 
Herepis the number of observations for which "IJl"'(-+)= 1. Just like in 

(j 

classical analysis of means Ho: p. 1 = ... = fl.< is to be rejected if F' 

exceeds the critica) value of an F-distributed variate with k-1 and N-k 

degrees of freedom for some chosen size a. Huber claims that the 

approximation of F' by an F-distribution is reasanabie if all the 
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samples contain at least five observations. This is the same condition 

that is usually put forward for using nonparametrie tests with a i?­
distribution. 

lt is fortunate that in analysis of means models the predietors are 

dummy-variables that do not contain any errors. because Huber's 

approach is very sensitive to situations where the predietors have outly­

ing values. C..ovariables can be included in the model. provided that 

they do not contain outliers. The test can be generalized to more com­

plex designs. including interactions. ln this respect Huber's metbod 

seems more promising than its nonparametrie alternatives. where the 

concept of rank-interaction is a complex matter, even in a simple two­

way layout [De Kroon and Van der Laan (1981 )]. 

5.6. The actual size of the tests 

The probability of rejecting H 0 when true was estimated by using a 

simulation with 2000 replications. This was done for 3 and 6 groups. 

symmetrie and one-sided contamination and sample sizes of 10. 25 and 

40. The samples were generated from normal populations with J.L; ""' 0 

and u 2 = 1. Symmetrie contamination was simulated by using u 2 ""'50 

with probabilities 0. 0.03 and 0.1. For trimming and winsarizing the 

constant g was chosen proportional to the sample sizes. The results of 

these simulations are presented in tables 1 and 2. where the estimated 

size for each simulation is given as the percentage of rejections fora test 

with nomina! size a 0.05. Coded values for n; and g are explained in 

table 3. In these tables the classica! test is denoted as Anova. 

In the case of one-sided contamination the use of u 2 = 50 was restricted 

to positive observations. At the same time. the probability of a multipli­

cation by 50 was doubled to 2E. in order to get the same expected 

number of outHers as with symmetrie contamination. The results of this 

simulation are presented in tables 4 and 5. 

The tables are not very clear if one wants to compare these tests. The 

standard deviation of the estimated size is .../0.05* 0.9512000 0.00487 

or 0.487%. Let d be the percentage of rejected hypotheses minus 5 and 

divided by this standard deviation. Tables 6 and 7 show the values of d 

for each test. Three categories have been separated by double lines: 

d <-2 (conservative). -2~ d <2 (accurate) and 2~ d (progressive). 

Tables 6 and 7 suggest the f oHowing conclusions: 
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Table 1: Symmetrie contamination, k = 3 

n; E. g Anova VdW Trim Wim; Huber 

10 0 2 4.95 4.15 5.25 5.25 5.45 

10 0.03 2 3.95 4.10 5.00 5.20 5.15 

10 0.1 2 2.85 4.90 5. 70 5.45 5.25 

25 0 3 4.80 5.05 5.40 5.05 5.35 

25 0.03 3 3.25 4.20 4.80. 4.75 5.20 

25 0.1 3 4.00 5.05 4.95 6.40 5.40 

40 0 5 5.15 4.95 5.15 4.65 5.00 

40 0.03 5 5.15 5.20 5.30 4.80 5.25 

40 0.1 5 4.35 4.65 4.70 5.45 4.60 

A 0 B 4.45 3.80 3.90 3.85 4.40 

A 0.03 B 4.85 5.00 4.10 4.40 5.70 

A 0.1 B 5.30 4.75 4.25 4.95 5.25 

Table 2: Symmetrie eontamînation, k = 6 

n; E. g Anova VdW Trim Wins Huber 

10 . 0 2 5.25 4.50 5.65 4.95 6.05 

10 0.03 2 3.10 3.50 5.35 4.70 5.45 

10 0.1 2 3.20 3.85 5.20 5.25 5.20 

25 0 3 4.40 4.20 4.50 3.95 5.05 

25 0.03 3 4.25 4.95 4.95 4.70 5.30 

25 0.1 3 3.95 5.00 4.35 7.20 5.15 

40 0 5 5.90 5.65 5.90 5.30 6.05 

40 0.03 5 4.20 4.70 5.30 5.05 5.30 

40 0.1 5 4,30 4.35 4.20 6.10 4.15 

c 0 D 4.75 4.65 3.95 3.40 5.25 

c 0.03 D 4.45 4.55 4.75 4.20 5.15 

c 0.1 D 6.20 5.15 4.00 5.85 5.55 

Classica! analysis of means tends to be eonservative in the presenee 

of outliers. 

The metbod of Van der Waerden is unaffeeted eoncerning the size 

by this kind of non-normality. whieh is just what mîght be 

expected from a nonparametrie test. 
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Table 3: The codes used 

Code I Meaning 

A 10.25.40 

B 2.3.5 
c 10.10.25.25 .40.40 

D 2.2.3.3.5.5 

Table 4: One-sided contamination. k 3 

n, E g A nova VdW Trim Wins ·Hubér 

10 0 2 4.75 4.15 5.60 5.45 6.35 

10 0.03. 2 4.00 4.75 5.15 5.70 5.65 

10 0.1 2 3.75 5.00 5.20 5.35 5.65 

25 0 3 5.65 5.20 5.30 5.20 6.00 

25 0.03 3 3.80 4.40 4.75 4.65 5.20 

25 0.1 3 3.50 4.90 3.90 7.50 5.15 

40 0 5 4.85 4.70 4.60 4.10 4.60 
40 0.03 5 4.75 5.25 5.45 5.15 5.80 

40 0.1 5 4.95 5.60 4.75 9.40 5.55 

A 0 B 5.10 5.35 4.60 4.50 5.65 

A 0.03 B 4.35 4.80 4.40 4.50 5.30 

A 0.1 B 4.90 4.55 3.60 6.05 5.35 

The trimmed test seems slightly conservative in this situation. but 
less than classica] analysis of means. 

Symmetrie contamination does not seem to affect the Winsorized 

test very much. but this metbod is clearly not robust against one­
sided contamination. Tables 4 and 5 show that the cases where 

5~ d have a very high proportion of outliers: E = 0.1. Such values 
of E make it possible that outHers are found in the body of a sam­

ple and not only in its tails (as defined by g). It would hé unrea­

sonable to expect robustness against this situation in a Winsorized 

test, because a tail consisting of outHers can enter the computation. 

This problem can not occur in a trimmed test. 

Hubér's metbod seems the best for symmetrie contamination. 
although the differences with the other tests are not convincing 
(only classical anova is too conservative). Against one-sided 
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Table 5: One-sided contamination. k = 6 

n; € g Anova VdW Trim Wim; Huber 

]() 0 2 5.80 4.65 4.85 5.10 6.10 

10 0.03 2 3.95 4.60 5.90 5.15 6.15 

10 0.1 2 3.15 5.05 4.85 5.20 6.35 

25 0 3 4.55 4.15 5.00 4.55 5.20 

25 0.03 3 5.55 5.20 5.35 6.00 5.90 

25 0.1 3 4.15 4.90 4.25 11.80 5.65 

40 0 5 4.15 4.35 4.30 3.55 4.30 

40 0.03 5 4.40 4.90 4.55 4.90 4.95 

40 0.1 5 4.35 4.10 3.55 12.70 4.10 

c 0 D 5.55 4.95 4.60 4.55 6.20 

c 0.03 D 5.20 4.80 3.95 4.30 5.55 

c 0.1 D 5.90 5.15 4.05 9.15 6.15 

Table 6: Symmetrie contamination 

Anova VdW Trim Wins Huber 

d <-3 4 1 1 

-3~d <-2 3 2 3 2 

-2~d <-1 7 6 5 2 2 

-1~d <1 8 14 13 15 17 

l~d <2 1 1 3 1 3 

2~d <3 1 2 2 

3~d <4 

4~d <5 1 

5~d 

contamination the suggestion of a slight progressiveness exists. 

Values of d between 2 and 3 occurred in 7 cases. It is interesting to 

note that 4ofthese cases contained no outliers (e = 0). so that the 

results f or these rows in the tables f or symmetrie and one-sided 

contamination should be similar. An examinatien of all the results 

for Huber's metbod shows that indeed a very slight progressiveness 

exists. but that the contamination bas almost no influence (see 

table 8). The estimated sizes in table 8 are based on 16*2000 repli­

cations. so that their standard deviation is 0.487/4 0.122. Two of 
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Table 7: One-sided contamination 

A nova VdW Trim Wins Huber 

d <-3 2 

-3~d <-2 4 4 1 

-2~d <-1 5 5 4 4 2 

-l~d <1 8 18 13 10 7 

1~d <2 5 1 3 2 8 

2~d <3 2 7 

3~d <4 

4~d<5 

5~d 5 

Table 8: Huber's metbod 

Contamination Estimated size in % 

none (E = 0) 5.437 

symmetrie 5.228 

one-sided 5.528 

the three sizes differ significantly from 5% and it is clear the the 

approximation of Huber's test statistic by an F-distribution can be 
improved. But for practical purposes these results are acceptable. 

5. 7. A compa.rison of powers 

Here a simulation study is presented that differs from the one in the 

previous section in only one respect: the samples were generated with 

unequal location parameters. Table 9 is based on symmmetric contami­

nation with three samples. Tables were generated also from symmetrie 

contamination with k = 6 and one-sided contamination with k = 3 and k 
= 6. but the results were very similar and therefore they will not be 
presented bere. A summary of these results is given in table 10. where 

the powers for uncontaminated data (E - 0) are the means of 16 
separate simulations with 2000 replications each. The other results are 

based on 8 simulations with the same number of replications. Table 10 
suggests the following conclusions: 
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I Table 9: Symmetrie contamination, k = 3 

~ g lli Anova VdW Trim Wim; Huber 

10 0 2 p 88.05 85.50 77.85 78.05 84.50 

10 0.03 2 p 64.55 75.95 74.05 73.95 80.75 

10 0.1 2 p 36.75 59.20 64.70 65.05 69.25 

25 () 3 Q 88.20 87.25 84.45 84.50 85.45 

25 0.03 3 Q 59.50 80.90 80.95 81.25 82.45 

25 0.1 3 Q 29.00 63.25 69.05 69.15 71.00 

40 0 5 R 89.55 89.30 87.15 87.30 87.05 

40 0.03 5 R 57.30 82.15 82.95 82.90 83.65 

40 0.1 5 R 27.45 66.15 13.65 74.10 15.50 

A 0 B s 92.65 92.10 86.95 86.85 91.00 

A 0.03 B s 64.75 86.20 83.10 83.10 87.35 I 
A 0.1 B s 31.25 72.00 74.80 15.55 80.45 

I-Li 10f.L; 

p 0.8.16 

Q 0,5,10 

R 0,4,8 

s 0,8,13 

Table 10: Comparison of powers 

Contamination E Anova VdW Trim Wins Huber 

none 0 90.50 89.44 85.25 85.41 88.19 

symmetrie 0.03 59.63 82.06 81.70 81.70 84.68 

0.1 28.55 65.54 71.43 72.54 75.12 

one-sided 0.03 59.59 82.99 81.71 81.78 85.19 
0.1 29.20 68.71 65.48 68.88 75.08 

Classica} analysis of means is the most powerfut test for normal 

data. but contamination reduces the power of this metbod consid­

erably. It does not matter whether the contamination is symmetrie 

or one-sided; only the number of outliers (for some chosen vari­

ance) appears to have any influence. 
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Table 9. as well as the tables that were not included in this 

chapter. show that the difference in power for normal data (e = 0) 

between classica! anova and the test of Van der Waerden almost 

disappears as the sample size increases from 10 to 40. Even for 

smal1 samples (n1 = 10) the difference is only marginal. The 

influence of outliers on Van der Waerden's test is considerably 

smaller than on classica! analysis of means. especialy a,s their 

number increases. 

Trimming and Winsorizing give similar results. except for one­

sided contamination with e. = 0.1. where Winsorizing seems .to pro­

vide a more powerfut test. But that is just the situation where 

winsarizing should not be trusted because outHers can occur 

between the tails of a sample (as de:fined by g) resulting in a pro­

bability of rejecting H 0 when true that considerably exceeds the 

chosen size a. Table 7 shows that trimming is insensitive to this 

problem, at least with our values of g. Forsmaller values of E, the 

values of g could be lowered, which might result in a somewhat 

higher power. 

Huber's metbod yields the most powerfut test. except when the 

data come from uncontaminated normal distributions in which case 

classica! analysis of means bas slightly more power. 

The aim of the study presented in this chapter was to select a test for 

outlier-resistant one-way analysis of means that could be added to the 

local collection of statistica! software at Eindhoven University of Tech­

nology. Consirlering the accuracy of the actual size, and the superior 

power of Huber·s method, the condusion was reached that this test was 

the appropriate choice. However, the ditierences with Van der 

Waerden's test and trimming are moderate. and Huber's greater power 

may be partly attributed to its slightly greater size. So Van der 

Waerden's test and trimming can be considered as reasonable alterna­

tives. 

S.8. An example with one outlier 

Consider the heights of people, coming from three groups. Every. sample 

contains ten ob..">ervations and the data are given in meters with two 

decimals. The results are presented in table 11. All tests reject the 
hypothesis H 0 of equal means. The results are: 
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Table 11: Heights of people 

Group 1 Group 2 Group 3 

1.88 1.86 1.56 

1.81 1.75 1.67 

1.99 1.78 1.57 

1.84 1.77 1.72 

1.89 1.80 1.90 

1.90 1.71 1.80 

1.97 1.87 1.76 

1.85 1.92 1.77 

1.88 1.60 1.73 

1.91 1.68 1.95 

Classica! analysis of means: F = 6.64 with 2 and 27 degrees of free­

dom. The critical value for these parameters is 3.39 (a = 0.05). 

Therefore H 0 can be rejected. 

Van der Waerden: The test statistic is 9.49 with 2 degrees of free­

dom. The critica! value for a X2-distributed variate bere is 5.99 

resulting is the same conclusion. 

Trimmed analysis of means: F = 5.44 with 2 and 21 degrees of 

freedom. The loss of 6 degrees of freedom for the denominator 
comes from deleting one observation from both tails in each sam­

ple. The critica! level bere is 3.47 so that the difference of the 
means remains significant. 

Winsorized analysis of means: F = 5.75 with 2 and 21 degrees of 

freedom. The condusion remains the same. 

Huber's method: F = 6.65 with 2 and 27 degrees of freedom. This 

result is almost equal to that of the classica! method. 

Now suppose that for the first observation in the first group the decimal 
point is forgotten. So the value 1.88 is replaced by 188. And bere we 
have a very serious outlier. What will happen to the results? 

Classica!: F = 1.10 with 2 and 27 degrees of freedom. The 

dUferenee of the means bas been masked by the presence of the 

outlier. 

Van der Waerden: The test statistic is 10.63 with 2 degrees of free-­
dom so that H 0 will still be rejected. 
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Trimmed test: F = 6.21 with 2 and 21 degrees of freedom. The con­

dusion is oot affected by the presence of an outlier. 

Winsorized test: F = 6.46 with 2 and 21 degrees of freedom. The 

condusion is the same. 

Huber's method: F = 9.30 with 2 and 27 degrees of freedom. 

In the last line. just like with the other robust methods. the difference 

of the means bas become more significant. In this respect there is quite a 

difference with classica! analysis of means where the power has been 

absorbed completely by the presence of one single outlier. 

5.9. Least median of squares 

In this section and the following methods for outlier-resistant one-way 

analysis of means will be described that entered this stud y. but were 

discarded before the final simulation. The first metbod is Least Median 

of Squares (LMS) that originates from Rousseeuw (1984) and is 

designed f or regression models. lnstead of minimizing the sum of 

squares. LMS minimizes the median of the squared residuals. This 

results in very robust estimates for the parameters 13 i: up to 50% 

outHers have no infiuence on the estimated values. No simple formula 

for this metbod seems to exist. but Leroy and Rousseeuw (1985) [or 

Rousseeuw and Leroy (1987)] present an beuristic algorithm that is easy 

to implement. LMS results in fitted values Yi + that cao be used to esti­

mate the scale parameter: 

Here N is the number of observations for a regression model with k 

parameters. The next step is to delete observations Yi if: 

If the residuals are normally distributed. roughly 2% of the observa­

tions will be deleted. The remaining observations are thereafter used in 

an ordinary regression. where tests of significanee can be performed as if 

these observations were the only ones in the analysis. In regression 

situations the results of this approach are very satisfactory. and there­

fore it seemed attractive to try LMS for anova models. The LMS esti­

mate of location is the midpoint of the shortest half of the ordered 

observations. This was used to estimate the parameters in the one-way 
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analysis of means model in this study. Thereafter the outliers were 

deleted and a classica] test was performed on the remaining observa­

tions. Since LMS was only validated for continuous predietors it was 

necessary to verify the control over the chösen size again. because here it 

was used with dummy variables. The results of a simulation were 

rather disappointing: with a nominal size of 5% the estimated size varied 

between 9% and 26% in simHar tables as where the size was estimated 

for the other tests. The results were especially bad when there were no 

outliers (€ = 0), or if the samples were smal!. This can be explained as 

follows. The LMS estimate of location is very robust. but not very 

efficient. If a sample happens to be seriously skewed one can expect that 

u will be under-estimated. This results in deleting more observations 

than the probability of I u I > 2.5 indicates ( where u denotes a standard 

normal distributed variate). Since the deleted observations are the ones 

that differ most from the estimate of location. this will lead to under­

estimating the within-variance, while teaving the between-varianee rela­

tively unaffected. This explains the fact that the values of F exceed their 

expectations under H 0• In the presence of outliers the deleted observa­

tions will be the ones that ought to be deleted. And for bigger samples 

the probability of being seriously skewed decreases. 

So LMS is in its present stage not a good candidate for outliers-resistant 

analysis of means. Weneed more insight in the distribution of the test­

statistic under H 0 , since the way the F-statistic is used here is certainly 

not appropriate. There is however a situation with a nominal predietor 

where LMS could be eonsidered. Suppose there are some continuous 

covariables. Then LMS ean be used for every value of the nomina] pred­

ictor. The outHers ean be deleted and ordinary regression ean be applied 

to the remaining observations. Of course this ean only be done if the 

nomina! predietor has only a few different values. and many observa­

tions for eaeh value. An attractive property of LMS. that might prove 

useful bere. is its insensitivity to leverage points (points with outlying 

values for the predietor variables). In that respect LMS is far better than 

Huber's metbod that ean also handle covariables but only in the absence 

of leverage points. 

5.10. An adaptive nonparametrie test 

For a short while it seemed possible to construct an adaptive non­
parametrie test with reasonable power for the eontamination models 
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used in this study. The approach was strongly related to the distribu­

tions under consideration. The density for symmetrie contamination is: 

1 x 2 

f (x )=€ .Je27rexp[- n 
(T 2rr 2vCT 

1 x 2 
1-e) exp[-

a..fïii 

Suppose we are sure that this model represents the data, and that we 
know the parameters e, CT and 6. For this distri bution it is possible to 

construct a nonparametrie test with asymptotically optima] power. The 

test-stalistic is given by: 

_ N-1 t- [S1 -E(S1 )]2 
Q - -N:::-, ..:....____::.__ L. 

l:(a;-ä)2J 1 nJ 

i l 

This denotes a large family of whieh the Mood & Brown, Kruskal & 

Wallis and Van der Waerden tests are members. The scores a; can be 

chosen in order to get optima] power for some selected distributïon. sj 
is the sum of the scores within the j-th sample. The statistic Q is 

asymptotically distributed as x2 with k 1 degrees of freedom [Hajek 

( 1 969)] if the score-generating function <P is reasonably smooth. The 

scores are generated as: 

i 
a;=</J( N+1 ) 

In order to get asymptotically optimal power for some distribution F 

with density f the function <P bas tobechosen as follows: 

cf>(u I )=- I •[p-l(u )] 
, I [p-l(u )] 

Using these principles it is possible to construct an optimal test for the 

distribution that represents symmetrie contamination. And if the 

parameters are not known they can be estimated. The estimated values 

can then be used in the density function and this would result in a non­

parametrie test with satisfactory power for the contamination model if 

the parameters were efficiently estimated. The first parametet to be 

estimated is a. This can be done by using a robust regression procedure 

like Huber's or LMS. Fitting the model will result in û and fitted values 

Y; for the observations y1• The residuals are given as e1 = y 1 - y1• And 

with these it is possible to estimate the other parameters E and 9. Sup­

pose x is a normally distributed stochastic variabie with zero mean and 

varianee CT 2• Then we have El x I a.J2!1r and Ex 2 = a 2• These 
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1 N 1 N 
momentscan be estimated as N ;~/ed and N i~1e? respectively. Com-

bining this with the known density of the errors results in tbe following 

two equations: 

1 N 
N ;~1le; I= (1-e)cr.J2/1'1'+Ecr.J29hr 

1 N 
- I,e;2= (1-E)cr 2+e9cr 2 

N ï=l 

After substituting the robust estimate û for CT the parameters E and 9 
can be estimated from these equations. 

Some e:x:periments have led to the conclusion that the sample size needed 

for a reasonable estimate of the parameters er, E and 9 by far e:x:ceeds 
the sample sizes that are common for analysis of means situations. And 

this is not the only reason for rejecting this approach. A test like this 

will be strongly adapted to the chosen model for the outliers. And even 
if this test would show good power in a simulation where the distribu­

tion of the errors matches the model on which the computation of the 
scores is based, almost nothing could be said about its behaviour for 

other models descrihing the outliers. 

5.11. Robustness of Huber's method against varianee heterogeneity 

Since Huber's metbod wasselectedas the best choice for normal popula­
tions with some extreme outHers it is interesting to e:x:amine what will 

happen if this test is used in situations where the second order metbod 

of James [see chapter 2] is reeommended. If we· e:x:amine the different 
scale parameters relative to the smallest one, it is possible to deseribe the 
situation of varianee heterogeneity in the language of this ehapter. The 

parameter 9 is not the same for every group, but the values for 9; are 
moderate. For every group the parameter E; ..; 1 e:x:cept for the group 

with the smallest varianee where E; "' 0. So varianee heterogeneity is 

quite different from the model with outliers. 

Every entry in table 12 is based on 2500 replications. so that the actual 
size is estimated with a standard deviation of 0.436% for a nominal size 
of 5%. The eonclusion is very elear: Huber's metbod is not robust 

against varianee heterogeneity. The behaviour of this test is simHar to 

that of classica! anova [see ehapter 1]. If the sample sizes are equal and 
the population variances are unequal then the actual probability of 
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Table 12: Huber's metbod 

sample size sigma percentage 

10,10.10 1.1.1 6.16 

1.2.3 10.08 
25,25.25 1.1.1 5.16 

1.2.3 12.16 

40.40.40 1.1.1 5.96 

1.2.3 12.36 

10.25.40 1.1.1 5.28 

1.2.3 2.16 

3.2.1 24.60 

10,10.10.10.10.10 1.1.1.1.1.1 5.12 
1.1.2.2.3,3 12.28 

25.25.25,25 ,25 .25 1.1.1.1.1.1 5.40 

1.1.2.2.3.3 16.36 

40.40.40.40 .40.40 1.1.1.1.1.1 4.80 

1.1.2.2.3.3 15.32 

10,10.25.25 .40.40 1.1.1.1.1.1 5.84 

1.1.2.2.3.3 3.48 

3.3.2.2.1.1 25.16 

rejecting a hypothesis when true will exceed the nomina! value. If the 

sample sizes are unequal then the test will become even more progressive 
if the bigger variances coincide with the smaller samples. Conservatism 
can be expected if the bigger variances coincide with the bigger samples. 

What is the practical value of a test that is outlier-resistant but not 
robust against varianee heterogeneity? It can handle some typing errors 

if the data are entered at a computer-terminal. It can also handle some 
really extreme observations as long as they are evenly distributed over 

the samples. But Huber's metbod can certainly not be recommended if 

there are reasons to suppose that the scale parameters of the populations 
involved are different. 

5.12. Robustness of the seoond order method of James against 
outliers 

In chapter 2 we saw that the second order metbod of James gives the 
user excellent control over the chosen size and bas reasonable power in 
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Table 13: James metbod (size) 

sample size € perc~ntage 

1(},10.10 0 4.80 
~ 

0.03 3.15 

0.1 1.85 

25.25.25 0 4.75 

0.03 4.00 

0.1 2.30 

40.40.40 0 5.10 

0.03 3.25 

0.1 3.80 

10.25.40 0 5.10 
0.03 3.70 

0.1 2.90 

10.10,10.10,10.10 0 5.50 

0.03 3.85 

0.1 2.00 

25.25.25 .25 .25 .25 0 5.10 

0.03 3.65 

0.1 2.50 

40.40.40.40.40.40 0 5.25 

0.03 2.70 

0.1 2.95 

10.10,25 .25.40.40 0 5.00 

0.03 3.95 

0.1 2.40 

most situations. The only condition is that the samples come from nor­

mal populations. Varianee homogeneity is not assumed. In this section 

the behaviour of the metbod of James will be examined in the presence 

of outliers. Table 13 presents a simulation study under the hypothesis 

H 0 that the loeation parameters are equal. From table 13 we ean con­

clude that an error distribution with outHers can make the metbod of 

James eonservative. This simulation was based on 2000 replications for 

eaeh eell. The samples were generated from normal populations with p.; 

= 0 and u 2 1. With probability € the varianee was increased to u 2 = 

50. 
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Table 14: James metbod (power) 

sample size E 10JJ-; A nova Jam es Huber 

10,10,10 () 0,8.16 88.05 84.70 84.50 

0.03 64.55 69.85 80.75 

0.1 36.75 43.20 69.25 

25.25,25 0 0.5.10 88.20 87.30 85.45 

0.03 59.50 66.20 82.45 

0.1 29.00 33.90 71.00 

40.40.40 0 0,4.8 89.55 88.60 87.05 

0.03 57.30 62.55 83.65 

0.1 27.45 30.90 75.50 

10,25.40 0 0.8.13 92.65 89.75 91.00 

0.03 64.75 71.30 87.35 

0.1 31.25 44.30 80.45 

Conservatism in a test usually results in a loss of power. To get a first 

impression the metbod of James was applied to the data representing the 

heights of people from three groups that was mentioned earlier in this 

chapter. This resulted in a tail probability of 0.002. so that the 
hypothesis of equal means could be rejected without any doubt. Then 

the decimal point of the first observation in the first group was removed. 

Inslead of 1.88 we got 188 and this resulted in a tail probability of 

0.525. So one outlier can remove all power from this test, just like we 

already saw for classical one-way analysis of means. 

Table 14 presents a comparison of the powers of James test with classi­

ca} analysis of means and Huber's method. lf there are no outHers (e = 

0) the difference in power is very small. The classica! metbod is the best, 

and James test seems slightly better than Huber's method. but more 
simulations should be done before the difference would be convincing. If 
the fraction of outHers increases to 0.03 and 0.1, then the power of 

James test decreases, but not so fast as the power of the classica} 

method. Compared with these two, Huber's metbod is very outlier­
resistant. 

The condusion can be that the metbod of James is not to be recom­

mended if there are reasons to suppose that outliers may be present. In 
practice it will not always be easy to determine whether a more robust 
metbod than classica} anova is needed. And it is very unfortunate that 
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the methods of James and Huber. that have excellent characteristics in 

the situations for which they are designed. are not robust against vari­

anee heterogeneity as wel! as outliers. So the user of these methods bas 

the difficult task to choose carefully. 

In the intr()duction we saw already some kind of preliminary data 

analysis that involves the extreme values of every sample. as wellas the 

quartiles. Q2 is the median and that is a more robust estimate of loca­

tion than the sample mean. The difference between Q 1 and Q 3 is an indi­

cation of the scale and the values for these differences should be similar 

of one is consirlering a test that assumes varianee homogeneity. The das­

sical variances or standard deviations are not suitable for this purpose if 

one is taking the possible presence of some extreme outliers into account. 

A more robust alternative is based on the MAD estimate of scale: 

Here MAD stands for Median of the Absolute Deviations from the 

median. A more attractive kind of preliminary data analysis than the 

one given in section 1.4 is given in table 15: 

Table 15: Preliminary data description 

sample minimum median SMAD maximum 

1 1.56 1.73 0.124 1.87 

2 1.58 1.75 0.151 1.90 

3 1.61 1.79 0.148 1.88 

4 1.57 1.80 0.160 185 

The data represent the heights of people. coming from 4 groups. lt is 

easily seen that varianee homogeneity can be assumed bere (if the sam­

ple sizes are moderate). but that the analyst has made a typing error. In 

this case it is more appropriate to replace the Óbservation 185 by 1.85 

and try a similar data description again in order to find out if there are 

more typing errors of this kind. But in other situations one might prefer 

an outlier-resistant method. 
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6. Robustness of multiple comparisons against varianee hetero­
geneity and outliers 

6.1. Introduetion 

In the preceding chapters we saw that the second order James test is 

very robust against varianee heterogeneity and that Huber's metbod can 

handle some extreme outliers. Both tests are designed for the hypothesis 

of equal population parameters. and acceptance of this hypothesis is 

usually the end of the analysis. But if the location parameters seem to 

be unequal a new question arises and that concerns some kind of group­

ing of the samples. For the moment we will consider samples from nor­

mal populations with equal variances and no outliers. Fisher ( 1935) 

suggested the Le<~.st Significant Difference test tbat consistsof two stages. 

At first an ordinary one-way analysis of means is performed and if the 

hypothesis is accepted then no further action is taken. But if the 

hypothesis is rejected than all the pairs are compared with a Students 

t-test with the same size a. The standard error is based on the pooled 

varianee from all the samples with the appropriate number of degrees of 

freedom. The t-tests are preceded by the F-test as some kind of protee­

tion against loss of control over the chosen size. Suppose the analysis 

consisted of only the paired t-tests with the same size a = 0.0~. Then 

the probability of declairing any pair different when in fact their loca­

tion parameters are equal can easily exeeed this chosen size. Duncan 

( 1951) showed that tbe actual size in this context will be about 0.1223 

for 3 samples. 0.2034 for 4 samples and even 0.9183 for 20 samples. So 

some kind of proteetion is needed and Fisher's idea works if one only 

wants to proteet the overall size if all the location parameters are equal. 

But suppose there are some groups of samples having different means, 

but that within these groups the samples come from populations with 

the same means. For instance. we can have 10 samples, 5 of them with 

ex peetalion JL 1 and 5 with expectation JL 2• Then the F-test will not give 

the necessary protection. because after rejection of the overall hypothesis 

the t-tests will be applied to every pair with the same a. Hayter (1986) 

has examined this situation and he proved the following theorem: 

For any balanced one-way model and for an unbalanced model 

with k 3 the Maximum Familywise Error Rate MFWER of the c:t 

level Least Significant Di.fference test of k populations with 11 

degrees of freedom for the error is: 
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Here qk -I,v is a studentized range random variable with parameters 

k-1 and 7/, and t 1,(()(/2) is the upper ()(/2 point of the t-distribution 

with 11 degrees of freedom. 

The M in MFWER denotes that the maximum is taken over all possible 

va lues of the population means p.;. Hayter also showed that a' (k .11.a) 

provides an upper bound on the MFWER for any unbalanced one-way 

model with more than three samples. Therefore the Least Significant 

Difference test can be improved by using qt _ 1,"(()( )I ...ti instead of 

t "(()( /2) for the pairwise comparisons in the second stage of this test. 

Adaptations of this idea to varianee heterogeneity and to outliers will be 

discussed further in this chapter. First attention will be given to simple 

pairwise comparisons that are not protected by an overall test. but by 

modifications of the pairwise size ()(. 

6.2. Pairwise compa.risons based on the t-distribution 

In this section we will drop the equality of the population variances. 

The pairwise comparisons need a procedure for the Behrens-Fisher prob­

lem and a good candidate is Welch's approximate t-solution. This test 

has been evaluated by Wang (1971) and he condurled that it gives the 

user excellent control over the chosen size. whatever the value of the 

nuisance parameter 6= er ?/er J may be. The test statistic is: 

X;-X1· 
t = -r=:<====='==;?=== 

~sNn; +s/!ni 

Here x; denotes the i-th sample mean. s;2 the corresponding sample vari­

anee and n; the sample size. Pooling of the k variances as in the second 

stage of Fishers Least Significant Difference test is avoided bere. The test 

statistic t follows under the hypothesis of equal population means 

approximately a t-distribution with 11 ij degrees of freedom: 

2 2 
(~+!..L)2 

n; ni 11 ij = ______ ..:......._ __ _ 
s4 s·4 

I + J 

n/(n;-1) n/(ni -1) 

Ury and Wiggings (1971) proposed this test for pairwise comparisons 

with the Bonferroni (:J that controls the familywise error rate if these 

comparisons are not preceeded by an overall test. For k samples there 
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are k(k-1 )12 pairs. Therefore the probability of declaring any pair 

different when in fact they are equal is limited by a if for {3 the follow­

ing value is chosen: 

2a 
{3= k (k -1) 

The result will be conservative if one considers the familywise error 

rate. Another problem seems to lie in the fact that vij is generally not 

an integer. But Wang bas shown that replacing it by the nearest integer 

is a reasonable solution provided that 11 ij is not too small. An alterna­

tive is to use Peiser"s (1943) approximation for which the parameter 

does not need to be an integer: 

Here u 01 stands for the upper a point of the standard normal distribu­

tion. The simultaneous confidence intervals for the Ury and Wiggins test 

are given by: 

There are some alternatives mentioned in the literature. Hochberg 

( 1976) suggested using: 

JL;-JL jE [x; -xj 'F "f 01 .Js?ln; +s/!nj] 

Here "f 01 is the solution of: 

k k 

L L P [I t 11 ; .I > y ]= a 
i= lj =i +1 J 

Here the same 11 ij is used as in the previous test. Tamhane ( 1979) bas 

shown that these tests are very similar in all respects (if all the sample 

sizes are equal. the tests are even exàctly the same). And since the Ury 

and Wiggins approach is easier to apply no further attention will be 

given to Hochberg"s proposal. Tamhane (1977) suggested using 

Banerjee"s (1961) approximate solution of the Behrens-Fisher problem 

with Sidak"s y for the pairwise comparisons. This y also results in a 

conservative overall test. but it exceeds the Bonferroni {3 and therefore 

reduces the conservatism: 
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2 

y= 1-(1-a)nt -1} 

This approach results in the following confidence intervals: 

Jl.;-/J.;· dx;-xj 'F 'd (y/2)s/ln;+t] (y/2)s/lni] vj , J ~ 

Later Tamhane ( 1979) showed that this will result in a very conserva­

Live test and he suggested to use the Welch test with y instead of (3 for 

the pairwise comparisons. Ury and Wiggins (1971) found that the choice 

of v,i can be improved by taking n; +n1 -2 if one of the following con­

ditions is met: 

9/10~ n;lni ~ 10/9 

9/10~ (sNn; )!(s/lni )~ 10/9 

4/5~ nJni ~ 5/4 and 1/2~ (s/ln; )/(s/lni )~ 2 

2/3~ n;lni ~ 3/2 and 3/4~ Cs? In; )/(s/lni )~ 4/3 

Tamhane (1979) showed that among some competitors this is the best 

test for pairwise comparisons based on the t-distribution. Further in this 

chapter some alternatives will be discussed that use other distributions. 

For equal variances the natura! choice is: 

Here the standard deviation s is based on the pooled varianee with v = 

N -k degrees of freedom. An adaptation of this metbod to the situation 

of equal variances with a small probability of some extreme outHers 

will also be discussed (see section 7 of this chapter ). 

6.3. Multiple range tests 

In this section a strategy will be pointed out that was originated by 
Newman (1939), Duncan (1951) and Keuls (1952). At first we will 

assume the sample sizes to be equal. Also varianee heterogeneity will not 

be allowed. Later on these restrictions will be dropped. 

Let xw . .... X(k) be the sample means. sorted in non-decreasing order. 

The first hypothesis ·of interest is H 0 : !J.t = ... = Jl.t.:. where the popula­

tion means are renumbered so that their ordering becomes the same as 

the sample means which are their estimates. Then H 0 can be tested with: 
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Here qk ,1,(a) is the upper a point of the studentized range distribution 

with parameters k and 11. The standard deviation s is based on the 

pooled varianee with 11 = N -k degrees of freedom: 

Duncan ( 1951) remarks that this test bas a serious disadvantage relative 

to the F-test for one-way analysis of means: 

When an F-test is used the null hypothesis bas a smaller likelibood 

in every case in which it is rejected than in every case in which it is 

accepted. This is not true for a range test. For that test. the null 

hypothesis is sametimes rejected in cases when it has a larger likel­

ibood than in other cases when it is accepted. Tbis is a decided 

intuitive weakness of any test of a null hypothesis which does not 

conform to the likelibood ratio criterion. 

lf H 0 is rejected. the next stage is to test IJ. I = ... = p. k -I and p. 2 

JJ.t. Proceeding like this until every hypothesis is accepted will result in 

some kind of grouping of the samples such that p.; and p. j will be 

called significantly different if they do not belong to the same gtoup. It 
is possible that the resulting groups partially overlap. so that the fol­

lowing situation can be met: 

/J-1 = JJ-2: accepted 

JJ-2 = p.3: accepted 

IJ. I p.3: rejected 

This is only natural; pairwise comparisons often will yield similar 

results. lf a candidate for the splitting process contains p means then 

qp.iar) is to be used insteadof q~:,ia). Newm.an and Keuls suggested 

aP a and Duncao preferred: 

The Newman and Keuls aP will only guarantee the overall size a for 

the hypothesis that all the means are equal. Duncao's metbod does not 

control the familywise error rate. but it controts each pairwise com­

parison at the a level. Both choices will be discarded since in this 

chapter we are more interested in cantrolling the MFWER. This can be 
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done by following a suggestion of Ryan (1960) for which Einot and 

Gabriel (1975) demonstrated that the actual probability of declaring 

any mean different when in fact they are equal will never exceed a: 

Now the equality of the sample sizes will be dropped. but for the 

moment the variances still have to be equal. Milier (1966) suggested 

using the median of n 1 •...• nk. Winer (1962) suggested the harmonie 

mean H: 

H= 1 
1 k 1 -E-
k i=1 n; 

Kramer (1956) modilied the formula of the test to this situation: 

k 

Here 11 = N -k and N = En;. Only in Kramer's case (and then only 
i= 1 

for two samples) does the studentized range distribution hold. For 

Miller and Winer the approximation will be reasonable if the sample 

sizes are not too different. Kramer's test contains a trap that can be 

explained by considering four samples with unequal sample sizes. Let 

x (1) ..... x (4 ) be the ordered sample means and n 1 ..... n 4 the 

corresponding sample sizes. Suppose that n 1 and n 4 are much smaller 

than n 2 and n 3• Then the hypothesis IJ. 1 = ... = JL 4 can be accepted while 

p., 2 and p., 3 are significantly different. But the strategy will make sure 

that this difference will never be found. This problem was pointed out 

by a referee of Kramer's contribution and it was mentioned in the 
revised publication. 

From bere on the variances will be allowed to be unequal. For equal 

sample sizes Ramseyer and Tcheng ( 1973) found that the studentized 

range statistic is remarkably robust against varianee heterogeneity. So 

for almost equal sample sizes it seems reasonable to use the Winer or 

Milier approach and ignore the differences in the variances. But suppose 

that in the above mentioned example the variances si and s r are much 

smaller than s l and si (this is a situation that was not considered by 
Ramseyer and Tcheng). Then it is possible that a pairwise comparison of 

/J-2 and IJ- 3 would lead to a significant result. while the hypothesis for 

some group of samples to which these means belong is accepted. So the 
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pairwise comparison will never be perf ormed and here we have a conflict 

between the stepwise strategy and the individual tests. 

Unfortunately. the robustness of Kramer's test is rather poor [Games 

and Howell (1976)]. so if the sample sizes differ greatly one might be 

tempted to consider: 

p.;-p.j E[x;-Xj '+ qp_1,)aP ).J(s;2/n; +s/!nj )12] 

Here pooling of the variances is avoided and vij comes from Welch's 

test and is restricted to tbe extreme samples in the range under con­

sideration. Tbe studentized range distribution does not hold for these 

separately estimated variances. but in another context the approximation 

seems reasonable though a bit conservative as we will see in the next 

section. However tbe conflict witb tbe strategy of tbe multiple range test 

is even stronger bere, because if tbe extreme samples have big variances 

or small sample sizes it is possible tbat important differences within the 

range are obscured. 

The condusion from tbis section can be that generalisations of the mul­

tiple range test to unequal sample sizes or varianee heterogeneity are not 

to be recommended. An important difference between two means can be 

masked by the presence of some small samples or some samples witb 

bigger variances. Within the strategy of pairwise comparisons bowever. 

the studentized range distribution is a very attractive tooi for unbal­

anced designs with varianee heterogeneity as will be shown in the next 

section. 

6.4. Pairwise comparisons based on the q-distribution 

If the sample sizes and the variances are equal one can use Tukey's 

(1953) metbod for pairwise comparisons: 

Here s is based on the pooled varianee witb v = N -k degrees of free­

dom. This test is known as the Tukey Wholly Significant Difference test 

and Miller ( 1966) has stated that it is tbe most powerful test f or pair­

wise comparisons tbat controls the familywise error rate. An important 

difference of this test with Hayter's modification of Fisher's Least 

Significant Difference test that was mentioned in the introduetion lies in 

the fact that Tukey uses qk .11(a) while Hayter suggested qk _ 1.11(a ). This 
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difference comes from the fact that Tukey considers unprotected pair­

wise comparisons while in Hayter's case the pairwise comparisons are 

only performed if the hypothesis that all the means are equal is rejected 

by an o: level F-test. 

If the sample sizes are unequal one can consider Kramer's modification: 

Games and Howell (1976) mention that this puts the familywise error 

rate slightly below o:. while using the median or the harmonie mean 

often results in exceeding o:. They based the conservatism of the 

Tukey-Kramer metbod on a simulation study. Later (1984) Hayter gave 

an analytica] proof for this conjecture. Games and Howell recommended 

Kramer's idea and suggested the following modification for unequal 

variances: 

Here "ii comes from Wekh's modified t-test. Therefore this metbod 
differs from pairwise comparisons based on Welch's test with Sidak's y 

only inthefactor that scales the combined standard deviation. Tamhane 
(1979) bas shown that: 

2 

qk v .(a)~ tv (y/2) with y= 1-(1-o:)ITk=ïT 
' IJ l} 

Here the equality only holds if k ... 2. Therefore the test by Games and 

Howell will be more powerful. But they use the studentized range 

statistic in combination with separate1y estimated variances so there is 

some reason to fear that the actual familywise error rate will exceed its 

nominal value. In 1983 Games and Howell mentioned that for their test 

this error ratevaried between 0.0286 and 0.0622 fora nomina! value of 

0.05 in a study with a wide variety of conditions. 

In chapter 2 we saw that the second order metbod of James is a good 

choice for the hypothesis that all the means are equal. This test can han­

dle varianee heterogeneity very well. but it is not designed for multiple 

comparisons and therefore the Games and Howell test seems more 

attractive for cases where more information about the separate means is 

needed. In a simulation study both tests are compared under H 0 : p., 1 = ... 

"'11-1.: as wellas under some alternatives. For the Games and Howell test 
the hypothesis H 0 is considered to be rejected if at least one pairwise 

comparison leads to a significant result. Each entry in tables 1 and 2 is 
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based on 2500 replications. 

Table 1: Actual size with nominal size 5% 

sample size U; G&H Jam es 

4.4.4.4 1.1.1.1 4.52 4.64 

1.2,2.3 6.08 5.84 

4.6.8,10 1,1,1,1 3.20 4.56 

1.2.2.3 2.60 4.72 

3.2.2.1 4.88 5.64 

10.10.10.10 1.1.1.1 2.44 5.36 

1.2.2.3 3.20 5.52 

4.6.8.10.12 1.2.3.4.5 3.84 4.68 

1.2.3.5.7 3.84 4.92 

5.4.3.2.1 6.72 5.12 

7.5.3.2.1 6.64 5.92 

8.8.8.8.8 1,2.3.4.5 4.60 

I 
4.56 

1,2,3.5.7 4.20 4.68 

From table 1 it is clear that the test by James controls the chosen size 

much better than the Games and Howell method. which can be conser­

vative but also slightly progressive. The pattern is simHar as in classica} 

one-way analysis of means: If the bigger samples coincide with the 

bigger variances then the Games and Howell test will be conservative. 

For more balanced situations the conservatism will decrease but not 

vanish. And if the bigger samples coincide with the smaller variances 

then the test will become slightly progressive if the differences .are not 

too small. 

A comparison of powers is given in table 2. It is remarkable that 

although tbe metbod of James bas more power. the difference with the 

Games and Howell test is only moderate. even in cases where the actual 

size of this test was reduced to 2.60% wbile a nomina] value of 5% was 

chosen. 

The condusion of these simulations can be that for the hypothesis that 

all the means are equal the metbod of James is a better choice than the 

Games and Howell test. If one is interested in an adaptation of Fisher's 

Least Significant Difference test to the situation of varianee hetero­

geneity. a good start will be to replace the :first-stage F-test by the 

metbod of James. Consictering the results of this chapter and Hayter's 
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Table 2: Estimated power with nominal size = 5% 

sample size J.L; a; G&H Ja mes 

4.4.4.4 3.0,0.0 1.1.1 ,l 86.00 86.84 

1.2.2.3 52.76 60.28 

3.2.2.1 21.56 22.72 

5.0.0.~ 1.1.1.1 99.68 99.64 

1.2.2.3 91.60 97.08 

3.2.2.1 43.16 43.72 

4.6.8.10 3,0,0.0 1.1.1.1 88.24 92.88 

1.2.2.3 75.60 86.92 

3.2,2.1 20.12 24.12 

0.0.0.3 1.2.2.3 47.80 50.40 

3.2.2.1 87.12 94.64 

suggestion a good candidate for the second stage of this test is: 

. /1-; -11- j dx; -x j 'f qk -1.vii (o: ).J(s;2 In;+ s}ln j )/2] 

The difference with the unprotected Games and Howell approach lies in 

the fact that bere qk -tv (o:) is used instead of qk v (o: ). Whichever 
' IJ . ' lJ 

approach the user may prefer, in both cases the q-statistic is a very good 

tooi for this kind of simultaneous statistica! inference. Similar methods 

for a model with outHers will be given further in this chapter (see sec­

tons 7. 8 and 9). 

6.5. Multiple F-tests 

This test was proposed by Duncao (1951). In the original version the 

population variances must be equal. The procedure is the same as for the 

multiple range test. only the q-statistic is replaced by an F, so that the 

first stage becomes classical one-way analysis of means. In every stage 

the pooled varianee is used with the appropriate number of degrees of 

freedom. based on all the samples and not only on the ones within the 

range under consideration. At first Duncao proposed using 

o:f= 1-(1-a)P-1 in order to set the error rate for pairwise comparisons 

to o:. The operating characteristics of this approach are similar to 

repeated t-tests at level o: if the sample sizes are not too different [Petri­

novich and Hardyck (1969)]. Later (1955) Duncan suggested what he 

called proteetion levels for which the familywise error rate will never 
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exceed a if the sample sizes are equal: 

a D' = 1-( 1-a )<r - 1 )/ (/.: - 1) 
p 

This aP' will always be lower than Ryan's af= 1-(1-aY'n except in 

the first stage when the value for both will be the chosen size a. And 

since af already controls the familywise error rate. Duncan's suggestion 

will not be considered further. Welsch (1977) found that even af can 

be improved a little and he suggested: 

arw= l-(1-a)P 1" for p <k -1 

apw=a for p?:-k-1 

In the context of the strategy with ordered sample means af/*. a: and 

ap'"' are only safe to control the familywise error rate if the design is 

balanced. The strategy can be adapted to the situation of unbalanced 

designs as we will see further in this section. For the moment we will 

simply ignore this and examine what can happen. The nature of the F­

test allows unequal sample sizes. This seems to make this approach more 

attractive than the multiple range test. but there is a problem. Consider 

four samples with only a few observations for the smallest and largest 

sample mean and considerable sample sizes for the second and third 

ordered mean. If H 0 : IJ. I = ... JJ. 4 is rejected, the next two hypoheses to 

be tested are !J- 1 ". ... = JJ. 3 and !J.z = ... p. 4. So !J.l and p. 4 will always be 

called different. But in this unbalanced design it is possible that a pair­

wise comparison of p. 1 and p. 4 would not yield any significance. One can 

of course apply an a level t-test to every pair that seems significant as a 

result of the multiple F-test. But it will not be easy to predict the efffect 

of this approach on the familywise error rate. 

Now the equality of the variances will be dropped. It is well known 

that the F-test is not robust against varianee heterogeneity [Brown and 

Forsythe (1974). Ekbohm (1976)]. So it seems reasonable to use the 

non-iterative version of the second order metbod of James [see chapter 

2]. thus makinga Multiple James test. This new test contains the same 

problem as the multiple F-test. but that is not all. In a design with four 

samples p. 1 and !J- 4 will always be called different if H 0: p. 1 = ... = p. 4 is 

rejected. Now suppose that S:j and sl are much smaler than sl and 

si. Then the difference between IJ. I and !J- 4 may not be significant in a 
pairwise comparison. Here the structural difference between this test and 

generalisations of the multiple range test to unequal sample sizes and 
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varianee heterogeneity comes into the picture: lf extreme means coincide . 

with big variances or small samples. then these generalisations of the 

multiple range test can ignore important differences. while the Multiple . 

Jamestest can wrongly deelare means to be different. 

One can of course apply Wekh's test for the Behrens-Fisher problem to 

the pairs that seem significant as a consequence of the Multiple James 

test. But if many pairwise comparisons are needed. and if for every pair 

the same level a is used. it is clear that we can loose con trol. over the 

familyw.ise error rate. So another strategy is needed and the answer is 

given by Einot and Gabriel (1975). If a multiple F-test is to be per­

formed and the design is unbalanced one can simply start with the 

overall F-test with level a. If the hypothesis is rejected one does not 

look at the ordered sample means and try only the hypotheses p. 1 "" ••• = 
!J.k-l and p. 2 = ... = !J.k. but every subset bas to be considered where one 

IJ.i is left out.The same values af!*. al or aPw can be used with p = k-1 

and the acceptance of a hypothesis means that the splitting process for 

this subset stops. This strategy is not limited to the second stage, but it 

is applied to every subset that becomes a candidate. For every step the 

level is some aP where p is the number of samples in the subset under 

consideration. This approach will avoid the classical trap in the multi­

ple F-test. but if it is applied to the multiple James test it can also han­

dle the specific problem that comes from varianee heterogeneity. 

This strategy can be very expensive in computer-time. In the worst case 

situation. where all the means are isolated. the number of tests will be 

2k -(k + 1) instead of only } k (k -1) for the ordinary multiple James 

test or any strategy based on pairwise comparisons. For 15 samples this 

means 32752 tests insteadof only 105. In order to find out whether this 

improved metbod is worth the additional computations. the ordinary 

multiple James test and this metbod were applied to 7 case studies with 

unbalanced designs and varianee heterogeneity (from a chemica} experi­

ment and from a study on perception). There were 277 pairs and only 

for two of these the conclusions were different, meaning that the 

improved metbod did notconfirma pairwise significanee that was found 

by the multiple James test. 

The condusion of this section can be that if one favours the multiple F­

test one can deal with varianee heterogeneity by modifying it into a 

multiple James test. The best choice for the level in every range under 

consideration is aPw by Welsch. lf the improved strategy is too expensive 
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in computer time. a terminal-oriented program should not only produce 

the final result. but also the separate sample sizes and standard devia­

tions. If an interesting pairwise significanee is based on samples where 

the sample sizes or standard deviations are very different. the user 

should confirm the outcome by using Welch's test for the Behrens­

Fisher problem. The program should incorporate this possibility in a 

user-friendly conversation. 

The results of a multiple James test can be represented by a vertical 

ordering of identified sample means with bars representing the possibly 

overlapping groups. This is visually more attractive than the matrix one 

needs for pairwise comparisons. especialy if there are many samples. 

6.6. An example with unequal variances 

Some of the methods mentioned in the previous sections will be applied 

to an example with four samples. The sample sizes are equal. but the 

variances are very different. The data are artificial; they are chosen in 

order to demonstrate the differences between some strategies. Table 3 

gives the original data and table 4 is a summary of the relevant statis­

tics. 

Table 3: Four samples, n; = 15 

1 2 3 4 

-0.79 0.80 1.16 0.87 

0.78 1.45 1.24 -1.02 

-1.09 0.56 1.59 2.22 

1.67 0.95 1.12 -0.03 

2.26 0.88 1.51 2.11 

1.57 0.52 1.21 3.93 
0.55 0.82 1.44 2.95 

-2.45 0.10 1.51 2.61 

2.01 0.63 1.29 -0.63 

0.58 0.86 0.90 0.96 

2.27 0.56 1.88 3.39 
0.58 1.05 1.78 2.31 
1.36 0.82 0.98 4.99 

4.63 0.24 1.40 1.65 
. -3.06 1.14 1.35 3.66 
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Table 4: Summary of table 3 

sample /.!i U; si ze 

1 0.725 1.958 15 

2 0.759 0.343 15 

3 1.358 0.273 15 

4 1.999 1.722 15 

The variances of samples number 1 and 4 by far exceed those of number 

2 and 3. The fi.rst stage of the multiple range test involves only the 

extreme samples and since they are already ordered this means that only 

the bigger variances are involved. Not assuming varianee homogeneity 

the statistic will be based on the separately estimated variances with 

Welch's number of degrees of freedom. This results in 1.892 as the test 

statistic. The critical value bere is q 4.28/../2 = 2. 730 with level a = 0.05 

so that the first hypothesis is accepted and the splitting process stops. 

Samples number 2 and 3 will therefore not be compared. And that is 

very unfortunate because the test statistic would be 7.478 with 27 

degrees of freedom. resulting in an extremely significant difference. 

The multiple James test (based on the ordered means) with level a 

0.05 results in two disjunct groups: samples 1 and 2 in one group and 

samples 3 an 4 in the other. Therefore the difference between p 2 and p, 3 

is recognized, but also some other pairwise differences that are not so 

convincing. In table 5 the results of the multiple James test are com­

pared with the tail probability of Welch's test for every pair. 

Table 5: Results of multiple James test 

pair multiple James Welch 

1.2 accepted 0.948 
1,3 rejected 0.234 

1.4 rejected 0.069 

2.3 rejected 0.000 

2.4 rejected 0.015 

3.4 accepted 0.175 

The multiple Jamestest rejects the equality of p, 1 and p, 4 with level a = 
0.05 while a pairwise comparison leads to a tail probability of 0.069. 

This pseudo-paradox is a consequence of the strategy with ordered 
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means. This strategy is only really appropriate if the sample sizes and 

variances are almost equal. An even more striking conflict can beseen by 

camparing the results for samples number 1 and 3. 

The third approach that we will consider is based on pairwise comparis­

ons. Ury & Wiggins. Tamhane and Games & Howell all use essentially 

the same test statistic; only the critica} value is different (if there are 

more than two groups). In every case the number of degrees of freedom 

v;i comes from Welch's approximate salution for the Behrens-Fisher 

problem. The results are given in table 6. 

Table 6: Pairwise comparisons 

pair stalistic v ij I 
1.2 -0.066 15 

1.3 -1.239 15 

1.4 -1.892 28 

2.3 -5.288 27 

2.4 -2.736 15 

3.4 -1.424 15 

The critical values for the tests under consideration are: 

Ury & Wiggins: t 111 j(f3/2) with /3= k(~~ 1 ) 
2 

Tamhane: t 11 )y12) with y= 1-(1-a)T{I""=ll 

Games & Howell: Qk 11 . (a )/../2 
• IJ 

For four groups and the values of V;i that come from table 6 this 

results in critical values that are given in table 7. 

Table 7: Critica! values (k = 4) 

vu Ury Tamhane Games 

15 3.036 3.026 2.882 

27 2.847 2.838 2.737 

28 2.839 2.830 2.730 

From tables 6 and 7 it is clear that the procedures by Ury & Wiggins. 

Tamhane and Games & Howell result in the same conclusions: Only the 

equality of J.L 2 and J.L 3 bas to be rejected and the difference between J.L 2 

and J.L 4 is almost significant. 
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This example demonstrates the dangers of using strategies based on 

ordered sample means in situations with varianee heterogeneity. The 

data were artificial; they were chosen specially in order to give as much 

discredit to these strategies as possible. It is clear that in this situation 

the methods based on pairwise comparisons result in the most acceptable 

conclusions. 

6.7. Dealing with outliers 

Just like in the previous chapter we will consider bere contaminated 

normal data. With (small) probability E the varianee will be a u 2 for 

some a>> 1 and with probability 1-E the varianee will remain u 2. We 

saw that Huber's metbod performs very well in this situation with 

respect to power and control over the chosen size if one is interested in 

testing the overall hypothesis p. 1 = ... = J.Lk • The metbod can be used to 

estimate the separate location parameters and it is also suitable for the 

within-groups variance. Therefore one can consider a modifi.cation of the 

multiple range test if the sample sizes are (almost) equal. A Multiple 

Huber test is also possible in this situation by using the F-statistic 

instead of the q-statistic. But if one permits the sample sizes to be 

unequal it is better to consider pairwise comparisons. Two tests will be 

examined. If the model does not permit Outliers they are based on the 

following critica} ditierences for the sample means: 
2 

Sidak: t 11 ( y /2)s .Jllni + 1/n i with y = 1-(1-a) nr=IT 

Kramer: qk ,11(a )s .J( 1/ n; + 1/n i )/2 

If outliers are allowed v can remain the same N -k. but the separate 

location parameters and s need modified estimators. We choose the esti:.. 

rnators that are given in the previous chapter (see Huber·s method) 

where the influence of the outliers is reduced considerably. The resulting 

tests will be denoted as Huber-Sidak and Huber-Kramer respectîvely. If 

there are no outHers we know already that the original Sidak and Kra­

mer approaches are both conservative consirlering the familywise error 

rate. And we also know that Huber's test is slightly progressive. almost 

independently of the presence of outliers. In a simulation study we will 

try to find out whether this combination of conservatism and progres­

siveness will result in an acceptable control over the chosen size in the 

Huber-Sidak or Huber-Kramer test. The entries in table 8 are based on 

2000 replications each. The actual size is estimated by the percentage of 
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Table 8: Pairwise comparisons (Huber) 

n; E Kramer Si dak Kramer Sidak 

k=3 k=3 k=6 k=6 

10 0 6.00 4.95 6.55 4.90 

10 0.03 5.55 4.85 5.85 4.55 

10 0.1 5.90 5.05 5.95 4.55 

25 0 5.60 5.00 5.50 4.55 

25 0.03 5.55 4.15 5.10 4.30 

25 0.1 5.30 4.70 5.65 4.65 

40 0 5.15 4.80 6.05 4.35 

40 0.03 5.65 5.15 4.45 3.70 

40 . 0.1 5.35 4.35 4.45 3.35 

A 0 5.20 4.50 5.00 3.85 

A 0.03 4.50 3.95 4.85 4.00 

A 0.1 5.40 4.95 3.65 3.05 

rejected hypotheses. The nominal size is 5%. so that the standard error 

for these entries is given by .J0.05* 0.95/2000 = 0.0048 7 or 0.487%. A 

fraction e of the data were generated from a normal distribution with Jl. 

= 0 and u 2 = 50. and the remaining 1-e came from the standard normal 

distribution. The sample size A denotes [10,25.40] for three samples 

and [10.10,25,25.40.40] for six samples. From table 8 we can conclude 

that both tests give the user a reasonable amount of control over the 

chosen size. We knew already that the Kramer modification results in a 

uniformly more powerful test than pairwise t-tests with Sidak's 'Y· 
Since Huber's original test is a bit progressive it is not amazing that for 

three samples Huber-Sidak controls the chosen size better than Huber­

Kramer. But all simultaneons tests based on pairwise comparisons tend 

to conservatism if the number of samples increases and the design is 

unbalanced. The simulation confirms this. Therefore Huber-Kramer is a 

better choice if there are many samples with unequal sample sizes. 

6.8. An example with one outlier 

Consider six samples from normal populations with ten observations 

each. The data are given in table 9. A summary of these data is given in 

table 10. Assuming varianee homogeneity we may test H 0 : Jl.t = ... = 

JJ- 6 by classica} one-way analysis of means. The overall mean is 1. 7335 
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Table 9: Six samples, n; = 10 

1 2 3 4 5 6 

1.68 1.71 1.91 1.91 1.85 2.03 

1.66 1.68 1.74 1.89 1.84 2.00 

1.66 1.67 1.72 1.85 1.84 1.95 

1.59 1.64 1.68 1.84 1.82 1.92 

1.57 1.62 1.68 1.83 1.79 1.92 

1.56 1.61 1.68 1.79 1.79 1.91 

1.56 1.61 1.65 1.77 1.78 1.90 

1.55 1.59 1.61 1.76 1.77 1.89 

1.52 1.56 1.58 1.74 1.74 1.89 

1.46 1.53 1.53 1.70 1.72 1.77 

Table 10: Summary of table 9 

sample mean varianee sigma 

1 1.581 0.00474 0.0689 

2 1.622 0.00304 0.0551 

3 1.678 0.01071 0.1035 

4 1.808 0.00453 0.0673 

5 1.794 0.00192 0.0438 

6 1.918 0.00491 0.0700 

and the pooled varianee is 0.004974. The test statistic F is 32.98 with 5 

degrees of freedom for the numerator and 54 for the denominator. The 

critical value bere is 2.37 with level a = 0.05. Therefore the hypothesis 

can be rejected. If we proceed with Hayter's modified Least Significant 

Difference test the critical value for the difference between two sample 

means is 0.0890. And if we ignore the information that the overall 

hypothesis has already been rejected we can use Tukey·s metbod for 

pairwise comparisons yielding a critical value of 0.0932 for the same 

difference. In both cases 12 pairs are significantly different out of the 

total of 15. The differences of the sample means are given in table 11. 

We can use this strategy bere because the sample sizes are equal. If we 

use Huber's metbod we get the following estimates for the location 

parameters: 1.584, 1.622. 1.670, 1.808, 1. 794 and 1.922. The jointly 

estimated location parameter is 1.7333 and the residual varianee is 
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Table 11: Differences of means 

sample 1 2 3 4 5 

2 0.041 

3 0.097 0.056 
4 0.227 0.186 0.130 

5 0.213 0.172 0.116 0.014 

6 0.337 0.296 0.240 0.110 0.124 

0.004765. The test statistic is 35.16 with the same parameters as with 

classical anova and therefore also this metbod results in rejecting the 

hypothesis that all the populations have equal means. The differences of 

the robust estimates of the means are given in table 12. 

Table 12: Differences of robust means 

sample 1 2 3 4 5 

2 0.039 

3 0.085 0.047 

4 0.224 0.186 0.139 

5 0.210 0.171 0.125 0.014 
6 0.339 0.300 0.253 0.114 0.128 

If we modify Hayter's Least Significant Difference test with Huber's 

estimates we get a critica! value of 0.0871 for the differences between 

the estimated location parameters. Ignoring the fact that tbe overall 
hypothesis was rejected we can use Huber-Kramer or Huber-Sidak witb 

critica! values 0.0912 and 0.0946 respectively. Whatever we do, in all 

these cases 11 out of the 15 pairs differ signiftcantly. The classical 

metbod found 12 differences and that is not very strange because for 
normal populations with equal variances the classica} metbod yields the 

most powerfut test. 

Now suppose that the data represent heights of people from six groups. 
The data are given in meters, but the analyst ( working at a terminal) 

bas once forgotten toenter the decimal point. The last observation in the 

first group is the one where the mistake occured and so we have 146 

instead of 1.46. Tbe mean in the first group becomes 16.035. the sample 
varianee 2085.29938 and the standard deviation 45.6651. Tbis bas con­

siderable effect on the overall mean and the pooled variance; they 
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become 4.1425 and 347.55408 respectively. Classica] one-way anova 

results in F = 0.97 and that is far from being significant. Therefore we 

can not consicter to proceed with the second stage of the Least Significant 

Diff erenee test. 

Jf we do not start with an overall test we can use Tukey's metbod for 

pairwise comparisons. But this test uses the pooled varianee and there­

f ore the infiuence of the outlier will also in this situation be conside'r­

able. The critica} value for the sample means is 24.6309. The pairwise 

ditTerences are given in table 13. 

Table 13: DitTerences of means 
I 

One extreme outlier 

sample 1 2 3 4 5 

2 14.413 

3 14.357 0.056 

4 14.227 0.186 0.130 

5 14.241 0.172 0.116 0.014 

6 14.117 0.296 0.240 0.110 0.124 I 

Table 14: Differences of robust means 

One extreme outlier 

sample 1 2 3 4 5 

2 0.019 

3 0.065 0.047 
4 0.204 Oc186 0.139 

5 0.190 0.171 0.125 0.014 

6 0.319 0.300 0.253 0.114 0.128 

From table 13 we can see that according to Tukey's classicaltest none of 

the pairwise comparisons results in a significant difference. Applying 

Huber"s metbod bere results in a considerable improvement. The test 

statistic for H 0 : J.L 1 = ... p., 6 is 32.36 so tbat this hypothesis can be 

rejected. The robust mean for the first group becomes 1.604: the other 

robust means are unaffected by the outlier. The jointly estimated loca­

tion parameter is 1. 7366 and the residual varianee is 0.004828. Please 

note that these values differ only slightly from the ones obtained by 

Huber's metbod for the original data without the outlier. Using Huber's 
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estimates in the next stage of Hayter's Least Significant Difference test 

results in critica] value of 0.0877. lf we ignore the result of the overall 

test we can use Huber-Kramer or Huber-Sidak with critica] values 

0.0918 and 0.0952 respectively. All these approaches result in the same 

conclusion: 11 pairs are significantly different (see table 14) and they are 

the same pairs that were found by these methods when there was no 

outlier. 

6.9. Multiple range and multiple F tests with Huber's estimates 

Ramsey ( 1978) demonstraled that the multiple range test and the mul­

tiple F test have more power (if the design is balanced) than any test 

based on pairwise comparisons. In the example with one outlier every 

group contained the same number of observations. Therefore we can use 

these tests bere after modifying them to deal with outliers. The 
modification consists of using Huber's estimates fo:r the location parame­

ters and the residual variance. The resulting methods will be called mul­
tiple qH test and multiple pH test. First we will examine the multiple F 

test. Table 15 gives the critica] F values as a function of the number of 

means in the range under consideration. The overall size a = 0.05 and 

for every range with p means aPw by Welsch is used. 

Table 15: Critica} F values 

means F value 

2 6.072 

3 3.938 

4 3.115 

5 2.543 

6 2.386 

For the samples without the outlier the results for the multiple F test 

are consistent with those for Hayter's modified Least Significant 
Difference test. They are presented in table 16. If the outlier enters the 

data the multiple F test will not recognize any difference because the 
splitting process stops after the first stage. The multiple pH test yields 

the same results for the data with and without the outlier. They are 
presented in table 17. If there is no outlier the multiple F test recog­

nizes the difference between the first and the third sample while the 
multiple pH test fails to do so. But it is clear that the multiple pH test 
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Table 16: Differences of mel;\ns 

sample 1 2 3 4 5 

2 accept 
3 reject accept 

4 reject reject reject 

5 reject reject reject accept 
6 reject reject reject reject reject 

Table 17: Differences of robust means 

sample 1 2 3 4 5 

2 accept 
3 accept accept 
4 reject reject reject 
5 reject reject reject accept 
6 reject reject reject reject reject 

is to be pref erred if there is reason to suspect the presence of some 

extreme outliers. 

The critica! range in the multiple range test and the multiple qH test 

depends on the estimated residual variance. Table 18 gives the critical 
values if the nominal size a = 0.05 and if for the ranges under con­
sideration a Pw is chosen. 

Table 18: Critica! ranges 

means S=0.0705 8=18.643 S=0.0690 S=0.0695 

2 0.0777 20.544 0.0155 0.0766 

3 0.0848 22.424 0.0830 0.0836 
4 0.0887 23.444 0.0868 0.0874 
5 0.0890 23.528 0.0871 0.0877 

6 0.0932 24.632 0.0912 0.0918 

In table 18 the values of S (the square root of the residual variance) 

correspond from left to right with: (1) multiple range test. no outlier 
(2) multiple range test. one extreme outlier (3) multiple qH test. no 
outlier and (4) multiple qH test. one extreme outlier. The multiple range 

test recognizes all 12 differences if there is no outlier. but if the outlier 
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Table 19: Summary of F and q tests 

statist ie metbod outlier diff erences 

F classica I no 12 

F classica! yes 0 

F robust no 11 
F robust yes 11 

q classica! no 12 

q classica! yes 0 

q robust no 12 
q robust yes 12 

is present the strategy stops after tbe first stage and no difference is 
found. The multiple qH test also finds these 12 düferences. but tbe out­
come remains the same if tbe outlier is present. A summary of all tbe 

results mentioned in tbis section is given in table 19. Tbis example sug­
gests tbat tbe multiple qH test bas more power tban tbe multiple pH 

test. But tbat is bigbly unlikely because Ramsey (1978) bas sbown tbat 
in almost every situation tbe multiple F test is more powerfut tban tbe 

multiple range test (if tbe same a.P is used) but that tbe difference in 
power is very small. And tbere seems to be no reason wby the order 

sbould be reversed if the classica! estimates are replaced by Huber's 
alternatives. 

Tbe condusion of this and the previous section can be the following: 
Classica! metbods for multiple comparisons are not robust against the 
presence of outliers. Even one single outlier can remove all power. And 

not only in an overall test. but also in pairwise comparisons if one uses 
tbe pooled variance. A modification of tbe classical metbods using 

Huber's estimates for lhe location parameters and tbe residual varianee 
results in a considerable improvement. Tbe loss of power if tbere are no 
outHers is only marginal. 
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7. Appendices 

7.1. The generation of random normal deviates 

In this study pseudo-random normal deviates were generated using the 

metbod of Box and Muller ( 19 58). Let U 1 and U 2 be independent ran­

dom variables from the same reetangolar density function on the inter­

val [0. 1). Using these one can generate a pair of random deviates from 

the samenormal distribution as follows: 

X 1= .j-2log"U 1cos27rU 2 

X 2 = .j-2log,U 1sin27rU 2 

X 1 and X 2 will be independent normal variables with zero mean and 

unit varianee as can be demonstrated by inverting the relationships: 

-(X[+Xi) 
U 1=exp 

2 

1 x2 
U 2=- --arctan-

27r Xt 

Th is results in the joint density of X 1 and X 2: 

1 -(X[+Xi) 
I (X 1·X z)= 27r exp 2 

1 -X[ 1 -Xf 
..ffTiexp-

2
- . ..ffTiexp-

2
-= I (X 1)l (X2) 

The pseudo-random real numbers U 1 and U 2 from the uniform distribu­

tion on the interval [0, 1) were generated by the mixed congruential 

method. Let N be an integer starting-value. A new value for this vari­
abie is computed as: 

N := (A*N +116177073375)MOD239 

Where A= 152587890725 and := denotes the replacement operator. 

With this formula sequences of pseudo-random integers are generated. 

To get the desired real numbers the integers are divided by 239• 

7.2. Computation of the F-distribution 

The real function FISPRO(x .n .d) computes the probability that an F­
distributed variate does not exceed x. The number of degrees of freedom 

are n for the numerator and d for the denominator. This function is 



given by: 

- 102-

x 

FISPRO(x .n ,d )= C fd<n- 2>(d +tn )--}Cn +d >at 
0 

Here x is a non-negative real and n and d are positive integers. The con­

stantCis given as: 

C - r((n+d)/2) lna!d 
- r(!n)r(!d)n 2 2 

2 2 

A distinction is made between the following cases: 

a. n + d ~ 500. neven. 

Q = uid [1 +~d (1-u )+ d (~.1 2) (1-u )2+ ... 

+ d (d +2) ... (d +n -4) (1-u )t<n -2)] 

2.4 ... (n -2) 

Here u = d (d + nx )- 1• The desired probability is tb en computed as 

FISPRO 1 - Q. lf Q happens to be negative then FISPRO = 1. Tbis 

is also true for the following cases. 

b. n + d ~ 500, d even. 

_ ( )!n [ n n (n +2) 2 Q-1- 1-u 2 l+2u+ 
2

.4 u+ ... 

+ n (n +2) ... (n +d -4) ut<d-2)] 
2.4 ... (d -2) 

c. n + d ~ 500. n and d both odd. Let 9= arctanv'nx /d . Then Q = 1 

- A + 13, where A and 13 are given as follows: If d = 1 tben A "' 

2fJ/7r. If d ~ 2. then: 

A - 2 [fJ+· • fJ+2 3LI/3+ + 2.4 ... (d -3) ..á-2L1J --:;: sm cos u ... 35 ... (d _ 2) cos u 

lf n 1 then 13 = 0. If n ~ 2 then: 

- 2 ((d-1)/2)! . f) d9[ d+l . 2L1 
13- ..,fi; ((d- 2)/2)! sm cos 1+-3-sm u+ ... 

+ (d +l)(d +3) ... (d +n -4) sinn _36 ] 
3.5 ... (n -2) 

d. n + d > 500, tOd ~ n. Q is computed as if the variate were x2-

distributed. Tbe procedure CHIPRO is called with d degrees of 

freedom, and the argument is given as: 
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1+ d-1 
2n v=----

_1_+_1_ 
xd 2n 

e. n + d > 500. 10 n ~ d. Q is computed by CHIPRO with n degrees 

of freedom and argument: 

In all otber cases: 

1+ n-1 
2d v=----

_1_+_1_ 
xn 2d 

Q =!ERF( -...12(1- / 2)/ 3/2+ / 1-1 )+! 
2 .JJdr+It 2 

2 2 1 
Here / 1= -. / 2= -

9 
and / 3= x i. ERF denotes the error func-

9n d 
tion that is defined as follows: 

2 x 
ERF(x )= r::: Jexp(-t 2 )dt 

V71' 0 

For this function a very stabie algoritbm is used tbat yields an 

accuracy of at least 10 digits. In this study only tbe cases a. band 

care encountered. Tbe precision bere is 10-6. 

Lackritz (1984) gave a more attractive metbod for finding the p-value of 

an F-test. Unfortunately. this metbod came to tbe attention of the 
present autbor when the simulation study was finished already. 

7.3. Computation of the inverse x2 distribution 

A real function CHISTA(a.v.E) is defined as follows: Tbe tail probabil­

ity of a x2-distributed variate witb V degrees of freedom is a. Tbe value 

for wbicb tbis probability is r.eacbed is computed witb precision E and 

the result is stored in CHIST A. Tbe algoritbm consists of two parts: 

a. Tbe estimation of a reasonable initia! estimate x 0 of tbe solution x. 

Here we use tbe abbreviation p= 1-n. If v= 1. then .JX; is com­

puted by tbe inverse standard normal probability function NOS­

TAT witb parameter 1-(p+1)/2 and precision E. If v=2. then 

x 0 =-2log..(1-p). If v>2. then: 
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Where t is computed by the inverse standard normal probability 

function with tail probability a:. lf v=l or v=2 then x=l.-: 0 and 

the desired value bas been found. lf: · 

" 

or if in the last case the initial estimate is negative, then we use x J 
instead of x 0 • where: 

b. The second part of the algorithm is an iteration with Newton's 

metbod until the precision E has been reached. The starting value is 

x 0 or xJ: 

CRIPRO (x;)- p 
xi+l=x;- f 

Here the procedure CHIPRO computes the x2-distribution with v 
degrees of freedom. The derivative f (x;) is given as follows: 

During this process negative values of x;+t can occur. In this case a 

Regula Falsi is used instead of Newtm1's method. In this study the 

precision E has been given the value 10-4. 

Now a description of the function CHIPRO for the x2-distribution wil 

be given. The result will be the tail probability a tbat is defined by: 

Here m = v/2. The computation of this probability is based on tbe fol­

lowing recurrent relation: 
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exp(- ~) 
a(v )= a(v-2)+( ~ )m-l ___ _ 

2 l(m) 

A distinction is made between two cases: 

1. v is even; n 2m. 

X m X · 1 
a(v )= exp(- r. ( -)' 1 r(;) +a(2) 

2 i=2 2 • 

Here a(2) is computed as exp(- ~ ). 

2. v is odd; n 2m 1 + 1. 

ml 

a(v )= exp(- x r. (~)i 
2 i 2 2 

1 
f(i +!) +a(1) 

2 

2 ""r 
a(l)= = Jexp(--}t 2 )dt 

v27T •. 

Here w=.../X. 

Now we only have to explain the computation of the inverse standard 

normal distribution function. The algorithm consistsof two parts: 

a. The computation of a reasonable initial estimate x 0 of x : 

( 
c 0+c 1t +c 2t 2 

) 
x= t- sgn 0 

1 +d tl +d 2t 2+d Jt 3 

Here t = .J1og., (p- 2 ) and sgn = 1 if 0 < p ~ 0.5. lf 0.5 < p < 1 

then sgn = -1 and t = .Jiog, ([1- p ]-2). NOSTAT will be given the 

value 6 if p = 1 and -6 if p -1. The constantsin the function for 

the initia} estimate are: 

c 0 = 2.515517 

c 1 = 0.802853 

c 2 = 0.010328 

d 1 = 1.432788 

d 2 = 0.189269 

d 3 = 0.001308 

b. lteration with Newton's metbod until a precision E has been 

reached. The starting value is x 0 : 
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NOPROB(x; )-p 
Xi+l= X;- f (x;) 

f (x.)= -1 -exp(-~ x 2 ) 
. I .J'Fii 2 I 

Here NOPROB gives the standard normal distribution function: 

l x 
NOPROB(x )= = j exp(-_!_t 2 )dt 

v27T -co 2 

For this function a very stabie algorithm is used that is accurate to 

at least 10 digits. 

7.4. The generation of double exponential, logistic and Cauchy 

variates 

Tbe density of tbe double exponential distribution (also known as tbe 

laplace distribution) is: 

F(x )= _l_exp(-lx-;.tl) 
2<T (T 

Here x is a real number, J.t and <T are tbe parameters to be cbosen by tbe 

user witb tbe restrietion tbat <T bas to be positive. Random numbers 

from tbis distribution are generated as follows. At first a random 

number u is drawn from tbe open interval (O.l). Tben y is a random 

variate from the double exponential distribution if: 

y = J.t+<Tlog, (2u) for u~ i 
y=J.t-<Tlog,(2(1-u)) fori <u 

This transformation was mentioned by Van Putten and Van der Tweel 
( 1 979). 

The logistic distribution has the following cumulative distribution func­

tion: 

F(x )= ---1---
x-a 

l+exp(- ~ 

Here x is a real number. a and ~ are the parameters than can be chosen 

by the user. The scale parameter~ bas to be positive. Let u be a uniform 
random number from the open interval (0,1). Then a random number y 

from the logistic distribution can be got from the transformation: 
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1-u 
y =a-{3log,(-u-) 

This tranformation has been given by Newman and Odell ( 1971 ). 

The density of the Cauchy distribution is given by: 

f (x)=-1 ____ 1 __ 
O"TT l+(x-,u )2 

u 

Again x is a real number. ,u and u can be cbosen by the user and u has 

to be positive. Let u be a uniform random number from the open inter­
val (0.1). The following transformation will result in a random number 

y from the cauchy distribution: 

y = JL +utan((u -~)TT) 

This transformation was mentioned by Van Putten and Van der Tweel 
(1979). 

7.5. The limiting values of Q forsome distributions 

In this section the values of the statistic Q for the uniform, normat 
logistic, double exponential and Cauchy distribution as the sample size 

tends to infinity will be derived. This statistic is defined as follows: 

Q = 10(U .os-L .os) 
U.5-L.5 

Here U.05 denotes the sum of the upper 5% of the observations. lf the 

sample size is nota multiple of 20 then one observation is only fraction­

ally included. The other parts of this formula have a similar meaning 

where L stands for lower. For symmetrical distributions Q can be given 
as follows (for in:finite sample sizes): 

"" 
10jxf (x )dx 

Q = _ _;., ___ _ 
00 

Jxf (x )dx 
0 

Here c is the upper 5% point of the distribution F with density f. For the 

uniform distribution we take the range from -i to ~ with density f(x) 
= 1. So we have: 
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5 

10 jxdx 
Q~, = -.,.--·4_5 __ 

.5 

jxdx 
0 

1.9 

For the standard normal distribution the value of c is 1.645. So Q can be 

computed bere as follows: 

l ·o 1 J -lx2d -- xe 2 x 
..f2ii 1.645 

QN=---------------
1 ()Of -lx2d = xe 2 x 

v27T 0 

For the logistic distribution we take the simplest form where F(x) = 

(1+e-x )-1 and therefore c =log., 19. This results in: 

co _, tof xe . dx 
c (1+e-x)2 

10 Jx f. ( -l)J -l je-Jx dx 
c j = 1 QL = __ ;:.__ ____ _ 

oo -x 

J xe d 
o (l+e-x)2 x 

r. ( -1)J -1 j<-1) 

)=1 

10 f. ( -1)J -l(c +~ )e-Jc 
j=1 J 

-c 
10[ ce +loge (1 +e-c )] 

1+e-c 

log, 2 

log., 19 20 

10 
20 +log., ( 19) 

log.-2 
2.86 

In the step where the integration sign is removed from the numerator 

the following equation is used: 

Jxje-Jx dx = (c +~ )e-Jc 
c J 

For the double exponential distribution we take the standard form and 

look at the density of the absolute values. so that the left tail is mir­

rored in the axis of symmetry. We have: 

co 

Jxe-x = 1 
0 

In the numerator we use c=log., 10 because then 1-e-c=0.90. This 

results in the following value for Q: 
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00 

QD = 10 J .xe-x dx = lO(log, 10+ l)e -log" 
10= 3.30 

log. Hl 

For the Cauchy distribution the value of Q is given by: 

d 

tof~dx 
c1+x 

Qc = lim ---,d-'----­
d-+= 

J_x_dx 
o l+x2 

lOOog. d -log. c) 
lim - 10 

d -+oo log. d 

And this result is independent of the value of c. For the adaptive tests it 

would be more attractive to have a formula for the expectation of the 

modus or the median for finite samples of given size. This problem 

seems very difficult and it bas not yet been solved. 
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Samenvatting 

Dit proefschrift gaat over de hypothese dat enkele lokatie-parameters 

gelijk zijn. De steekproefgroottes kunnen verschillen en met betrekking 

tot de foutverdeling worden verscheidene modellen beschouwli. Voor 

sommige methoden is de verdeling van de toetsingsgrootheid onder de 

nulhypothese slechts bij benadering bekend. In dit soort gevallen wordt 

de methode gevalideerd door simulaties voor een representatieve collectie 

van waarden voor de populatie-parameters. 

Voor normaal verdeelde fouten is ongelijkheid van de varianties toeges­

taan. Èr wordt aangetoond dat in deze situatie de methode van James 

( 1951) een betere controle geeft over de gekozen onbetrouwbaarheid dan 

enkele meer recente methoden. indien men een tweede orde Taylor 

benadering gebruikt voor de kritieke waarde. Het onderscheidingsvermo­

gen van deze toets wordt niet uniform gedomineerd door enig bestaand 

alternatief. en daarom wordt de methode van James aanbevole~ als de 

geschiktste keuze. 

Sommige statistici gebruiken de toets van Kruskal & Wallis voor de 

gelijkheid van een aantal lokatieparameters in alle gevallen waarin niet 

voldaan wordt aan de eisen die de klassieke toets voor het vergelijken 

van gemiddelden stelt. Dit is een onverstandige keuze als de schaal­

parameters ongelijk zijn. Bij gebruik van de exacte verdeling~ van de 

toetsingsgrootheid of de bekende x2 benadering zijn kleine verschillen al 

funest. In dit opzicht is de Beta benadering van Wallace toleranter, maar 

het gebruik hiervan impliceert een (soms aanzienlijk) verlies aan onder­

scheidingsvermogen. 

Als men van de foutverdeling niets anders weet dan dat deze sym­

metrisch is, dan kan het gebruik van een adaptieve verdelingsvrije 

methode worden overwogen die optimale scores gebruikt voor de 

geschatte staartdikte. Er wordt aangetoond dat dit kan resulteren in een 

test met meer onderscheidingsvermogen dan enig bestaand verdelingsvrij 

alternatief. als de foutverdeling een mengsel is waarin de volgende 

dichtheden met gelijke fracties voorkomen: uniform. normaal. logistisch, 
dubbelexponentieel en Cauchy. 
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Het onderscheidingsvermogen van de klassieke toets voor het vergelijken 

van gemiddelden kan volledig worden teniet gedaan door één enkele 

uitschieter. Enkele in dit opzicht meer robuuste methoden worden 

beschouwd: trimmen. Winsorizen, de toets van Van der Waerden, een 

suggestie van Huber. een methode van Rousseeuw die de mediaan van de 

kwadraten van de residuen minimaliseert en een adaptieve verdel­

ingsvrije methode. In een simulatie wordt het effect van symmetrische 

en eenzijdige vervuiling onderzocht. Het blijkt dat de suggestie van 

Huber resulteert in de toets met het grootste onderscheidingsvermogen. 

nadat de alternatieven met onbevredigende controle over de gekozen 

onbetrouwbaarheid zijn geëlimineerd. 

Voor het probleem van meervoudige vergelijkingen in de klassieke situa­

tie met normale verdelingen en gelijke varianties worden de volgende 

methoden veelvuldig toegepast: door een F-toets beschermde 

paarsgewijze t-toetsen, paarsgewijze t-toet.c;en met aangepaste 

onbetrouwbaarheid. meervoudige range- en F-toetsen en Tukey's 

methode voor paarsgewijze vergelijkgingen met de q.,.verdeling. Aanpas­

singen van deze methoden voor ongelijke varianties en voor de mogelijke 

aanwezigheid van enkele extreme uitschieters worden nader onderzocht. 
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Stellingen behorende bij het proefschrift Analysis of 
means in some non-standard situations 

Jan B. Dijkstra 

SteJJJ.ng 1 

De piek-toets voor uniformiteit. waarvan de aantrekkelijke eigenschap­

pen voor kleine steekproeven reeds gepubliceerd zijn. is ook voor (zeer) 

grote steekproeven een bruikbaar alternatief voor methoden als de x2 

toets voor aanpassing en de toetsen van Cramér & Von Mises. Kolmo­
gorov & Sm.irnov en Anderson & Darling. 

Dijkstra. J.B .. T.J.M. Rietjens and F.W. Steutel (1984) A simpletest for 

uniformity. 
Statistica Neerlandica (38) 33-44. 

Stelling 2 

De in een studieboek van Dobson gedane bewering. dat het aantal 

vrijheidsgraden bij een tweedimensionale kruistabel gelijk is aan het aan­
tal niet lege cellen minus het aantal aangepaste parameters. is onjuist. Er 

moet onderscheid gemaakt worden tussen cellen die toevallig leeg zijn en 
cellen waarvan al voor het experiment kan worden vastgesteld dat ze 

leeg zullen blijven. Alleen die laatste categorie vermindert het aantal 
vrijheidsgraden. 

Dobson. A.J. (1983) An introduetion to statistica} modelling. 
Cambridge University Press (blz. 100). 

Stelling 3 

De D-toets voor de gelijkheid van een aantal variatiecoëfficiënten uit nor­
male populaties bevat de volgende schatter V voor de gemeenschap­

pelijke variatiecoëfficiënt onder de nulhypothese: 



-2-

t n;(n;-1) 

2 i= 1 n;-3 V=-------t !2__ t n;-1 
i=lv? i=ln;-3 

Hierbij stelt v; de steekproef variatiecoëfficiënt voor. De toets kan wor­

den verbeterd door V als volgt te schatten: 

k 

V 2= En;v;2/N 
i=l 

De algoritme wordt eenvoudiger. de controle over de gekozen 
onbett:ouwbaarheid verbetert en het onderscheidend vermogen neemt 

toe. De laatste twee opmerkingen gelden in het bijzonder voor kleine 

steekproeven, 

Toèh is de' D-toets ook dan nog niet optimaal. Als · alle 

steekproefvariatiecoëfficiënten in absolute waarde kleiner zijn dan 1/3, 
dan is de toets van Bennet (1976) beter. Omdat hieraan in de praktijk 

vaak voldaan zal zijn. is de praktische waarde van de D-toets nogal 

gering. 

Doornbos, R. and J.B. Dijkstra (1983) A multi sample test for the equal­

ity of coefficients of variation in normal populations. 

Communications in Statistics. Simulation and Computation (12) 
147-158. 

Bennet. B.M. (1976) On an approximate test for homogeneity of 

coefficients of variation. 
Contributions to Applied Statistics. Birkhäuser (Basel). 

Stelling 4 

Voor het berekenen van kwadratensommen zijn de volgende methoden 

gebruikelijk in statistische programmatuur: 

n 
S 2= E<x;-x)2 

i= l 

Omdat bij S 1 de data slechts één keer geïnspecteerd hoeven te worden, 

wordt deze methode veelvuldig toegepast. Een worst-case analyse van S 1 
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bij kleine variatiecoë.fficiënten was al zeer ontmoedigend [Chan and.Lewis 

(1979)]. maar ook de verwachte fout is ~odanig dat al bij heel wat 

minder extreme gevallen dan de standaarddeviatie van de lengtes van 
gelijksoortige spoorstaven deze methode aanleiding geeft tot onaanvaard­
bare resultaten. Reeds in elementair statistiek-onderwijs zou gewezen 

moeten worden op de numerieke superioriteit van S 2 en op het bestaan 
van algoritmen die voor een lopend gemiddelde corrigeren [West (1979)]. 

Chan. T.F. and J.G. Lewis (1979) Computing standard deviations: accu-
racy. 
Communications of the ACM (22). 

West. D.H.D. (1979) Updating mean and varianee estimates: an 

improved method. 
Communications of the ACM (22). 

Stelling S 

Het gebruik van programmatuur en echte data in een vroeg stadium van 
het statistiek-onderwijs werkt zeer motiverend. Het pakket GLIM (Gen­

eralised Linear Interactive Modelling), dat de gebruiker tot nauwgezette 
specificaties dwingt. is hiervoor zeer geschikt. 

Doornbos, R. and J.B. Dijkstra (1985) Teaching statistics using a com­

puter. 
European Joumal of Engineering Education (10) 339-343. 

Baker, R.J. and J.A. Nelder (1978) The GLIM system. release 3. 
NAG Central Office, Oxford. 

Stelling 6 

Omdat statistische programmatuur steeds vaker wordt toegepast op 

. gegevens die nog nooit door een menselijk oog beschouwd zijn. verdient 
het aanbeveling om in die programmatuur de aanroep van een methode 
met modelvooronderstellingen te laten vooraf gaan door een verificatie 
of aan die vooronderstellingen redelijk voldaan is. 

Stelling? 

Als de editor van een tijdschrift twee referee rapporten ontvangt die 
beide de conclusie bevatten dat het artikel na wijziging geplaatst kan 
worden, dan verdient het aanbeveling dat hij de voorgestelde wijzigingen 

eerst op onderlinge consistentie beoordeelt alvorens ze naar de auteur ter 



verwerking door te sturen. 

LindJey. D.V. (1984) Refereeing. 
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The Mathematica! Intelligencer (6) 56-60. 

Stelling8 

Gegeven zijn een eindig aantal reële getallen a 1 , •••• an en een reëel getal 

g zodat: 

( 1) a; > 0 voor i = 1 •...• n 
n 

(2) 0 < g ~ .Ea; 
i= 1 

Hiermee wordt een aantal reële getallen b 1 •••. , bm gevormd zodat: 

( 3) b J ~ g :voor j = 1 ..... m 

(4) elke bi is een a; of de som van enkele a; 's 

(5) elke a; wordt hierbij precies één keer gebruikt 
m 

Bewering: 1: b/ minimaal-+ m maximaal 
j 1 

Ste1ling: Geen enkele lezer van dit proefschrift is in staat om vóór de 
datum van de verdediging vast te stellen of deze bewering waar is. 

Dijkstra. J.B. (1977) Problem 49. 

Statistica Neerlandica (2) 92. 

Bussemaker. F.C. (1984) Over verdelingen van getalllen in groepjes. 
Papers dedicated to J.J. Seidel (EUT Report 84-WSK-03) 102-110. 

Stelling9 

Een installatie die een auto doet exploderen bij een poging tot inbraak 
kan op termijn resulteren in een verlaging van de premie voor casco ver­
zekeringen. 




