EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Analysis of means in some non-standard situations

Citation for published version (APA):

Dijkstra, J. B. (1987). Analysis of means in some non-standard situations. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR272914

DOI:
10.6100/IR272914

Document status and date:
Published: 01/01/1987

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023


https://doi.org/10.6100/IR272914
https://doi.org/10.6100/IR272914
https://research.tue.nl/en/publications/70acece5-165f-4af5-81e9-dc06d7380d71

Analysis of means

In some

non-standard situations

J.B. Dikstra



Analysis of means
in some

non-standard situations

Proefschrift

ter verkriiging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag
van de rector magnificus, Prof. dr. F.N. Hooge,
voor een commissie aangewezen door het college
van dekanen in het openbaar te verdedigen op
dinsdag 17 november 1987 te 16.00 uur

door

Jan Boudewijn Dijkstra

geboren te Groningen

Druk: Di iedrukkerij Wibro, Helmond




Dit proefschrift is goedgekeurd
door de promotoren

Prof. dr. R. Doornbos
en

Prof. dr. P.J. Rousseeuw



voor Marjan



INlustratie omslag: Jouke Dijkstra



1.

1.1.
1.2,
1.3.
1.4
1.5.

2.1
2.2,
2.3.
2.4,
2.5.
2.6.
2.7.

2.8.
2.9.

3.1
3.2.
3.3.
3.4.
3.5,
3.6.
3.7.

Table of Contents

Introduction 1
Variance heterogeneity 2
The Kruskal & Wallis test 4
An adaptive nonparametric test 5
Some extreme outliers 6
Simultaneous statistical inference 7
Testing the equality of several means when the population
variances are unegual 9
Introduction 9
The method of James 9
The method of Welch 11
The method of Brown & Forsythe 13
Results of previous simulation studies 14
An example 15
The difference between the nominal size and the actual
probability of rejecting a true null hypothesis 17
The power of the tests 20
A modification of the second order method of James 22
Using the Kruskal & Wallis test with normal distributions
and unequal variances 24
Introduction 24
The distribution of K under H, 24
Other tests for the hypothesis H ' 25
The nominal and estimated size 27
The effect of unequal sample sizes and variances ‘ ' 31
An adaptation to unequal variances 32

A comparison of powers 34



4.1.
4.2.
4.3.
4.4.
4.5.

5.1.
5.2.
5.3.
5.4.
5.5,
5.6.
5.7.
5.8.
5.9.
5.10.
5.11.

5.12.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

Nonparametric comparison of several mean values with
adaptation to the tail-weights

Introduction

Asymptotic relative efficiency

Criteria for selecting the test

The adaptive tests under the null hypothesis

A comparison of powers

Comparison of several mean values in the presence of
outliers

Introduction

Nonparametric analysis of means

Winsorizing and trimming

Outlier resistant regression

Huber’s method

The actual size of the tests

A comparison of powers

An example with one outlier

Least median of squares

An adaptive nonparametric test

Robustness of Huber's method against variance
heterogeneity

Robustness of the second order method of James against
outliers

Robustness of multiple comparisons against variance
heterogeneity and outliers

Introduction

Pairwise comparisons based on the t-distribution
Multiple range tests

Pairwise comparisons based on the g-distribution
Multiple F tests

An example with unequal variances

Dealing with outliers

An example with one outlier

Multiple range and multiple F tests with Huber’s estimates

38
38
40
41
44
48

55

55
56
57
59
60
62
66
68
70
71

73

74

78
78
79
81
84
87
90
93
94
98



7.

7.1.
7.2.
7.3.
7.4.

7.5.

Appendices

The generation of random normal deviates

Computation of the F-distribution

Computation of the inverse x? distribution

The generation of double exponential, logistic and Cauchy
variates

The limiting values of Q for some distributions

Literature
Samenvatting
Dankwoord

Curriculum vitae

101
101
101
103

106
107

110

116

118

119



1. Introduction

This dissertation is about the hypothesis that some location parameters
are equal. The model is:

X = p;tey;

The chapters number 2, 3, 4 and 5 consider the hypothesis H gy g = ... =
M, where the observations within the samples are numbered from 1 to
n;. Chapter 6 is aboul a collection of hypotheses: p; = ;. wherei=1,
...kand j=1, .., i-1. For the errors ¢;; various distributions will be
considered with Ee;; = 0 and special attention will be given to normal
distributions with variance heterogeneity and to the presence of some
extreme outliers.

As a consequence of several approximations the probability of rejecting a
hypothesis when in fact it is true will not for every test be equal to the
chosen size «. In those situations methods are considered for which this
probability differs as little as possible from o, whatever the value of the
nuisance parameters may be. For example, in the Behrens-Fisher prob-
lem there are two samples from normal distributions with unknown
and possibly different variances. The nuisance parameter here is 8, the
ratio of the population variances. Following the Neyman and Pearson
conditions a validation of a test for which the distribution under the
hypothesis is only approximately known, involves repeated sampiling for
fixed 6. For every value of 0 the fraction of rejected hypotheses under
H 4 should be almost equal to «. When no analytical approach seems to
exist a simulation is performed with a limited set of values for 8 that
should represent the collection one might meet in practical situations.

Those who are in favour of fiducial statistics see the ratio 8" of the sam-
ple variances as the nuisance parameter in the Behrens-Fisher problem.
And they are lucky, because there exists an exact solution for this prob-
lem. This is usually called the Behrens-Fisher test [Behrens (1929).
Fisher (1935)] and for every fixed value of 8" the probability of reject-
ing a true hypotheses is «. But that is not the case for every fixed value
of 6. Only for 8 = 0 or 6 = 1 the Behrens-Fisher test controls the
confidence error probability. For all other values of @ this method is
conservative in the classical sense [Wallace (1980)]. In this study con-
servatism will be regarded as undesirable, because it usually results in a
loss of power. Progressiveness (meaning that the actual level exceeds its
nominal value) is considered to be unacceptable.
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The Behrens-Fisher solution uses the following distribution:

py—po—(x—x3)

siingtsdin,

Here x; denotes the sample mean and s;° the sampie variance. The tables
are entered with the numbers of degrees of {reedom v, = n;—1 and the

ZBF.(VI.Vz.eé )

ratio 0. In the original publication the following parameter was used
instead of " :

08 =sin~ (s 2 /n ) (s E/n+si/no)

The desideratum of all tests in this dissertation is that the nominal level
o controls the error probability under the hypothesis. This probability
is considered with the classical confidence meaning. Therefore the
fiducial solutions will be discarded and for the Behrens-Fisher problem
approximate solutions like Welch’s (1947) modified t-test will be
recommended.

1.1. Variance heterogeneity

Chapter 2 is about tests for the equality of several means when the
population variances are unequal. The data are supposed to be normally
and independently distributed. The situation can be described as the k-
sample Behrens-Fisher problem, and several approximate solutions are
considered. In order to understand why such special tests are necessary
it is of interest to know what will happen if the classical method is used
and the problem of variance heterogeneity is simply ignored. Table 1
gives the estimated size of the classical test for one-way analysis of
variance. For the nominal size the usual values of 10%, 5% and 1% were
chosen. The statistic F is given by:

3 na Cxi— 2 Pk 1)
 F= i:l
Z(n,-—l)s,-Z/(N—k)

i=1

3
Here N = } n; denotes the combined sample size. If the population
i=1

variances are equal F follows under the hypothesis of equal means an
F-distribution with k-1 degrees of freedom for the numerator and N-k

for the denominator. If the sample sizes are equal and the population
~ variances (or the standard deviations) are unequal the actual size will



Table 1: Actual size of classical F-test

sample size sigma 10% 5% 1%

4681012 | 1.1.122 | 628 316 072
11233 | 588 312 072
12345 552 272 056
12357 | 592 288 076
22,111 | 2228 1420 6.04
332,11 | 2600 17.64  8.08
54321 | 2712 1952 9.4
75321 | 3128 24.44 1328
88888 |1.1,122 |11.72 692 188
1.12.3.3 | 1200 708 232
12345 | 1260 788 224
123,57 | 13.88 860 324

exceed its nominal value, as can be seen in the last four lines of table 1.
This effect is even stronger if the sample sizes are unequal and the
smaller samples coincide with the bigger variances. But if the smaller
sample sizes correspond with the smaller variances the reverse of this
can be seen: the test becomes conservative, meaning that the actual prob-
ability of rejecting the hypothesis is lower than the nominal size a. This
can be understood by looking at the denominator of the expression for
F( .

This F-test is based on the ratio of variances and therefore it seems
natural to call it analysis of variance. But in this dissertation other tests
will be considered that are based on quite different principles. Therefore
from now on such tests will be looked upon as special cases of analysis
of means, and the term analysis of variance will be avoided in this con-
text.

The tests in chapter 2 originate from James (1951), Welch (1951) and
Brown & Forsythe (1974). The test statistic used by James is very sim-
ple, but for the critical value a somewhat forbidding expression exists.
Brown and Forsythe compared these tests by a simulation study. They
used a first order Taylor expansion for the critical value of the method
of James. Their conclusion was that this test was inferior when com-
pared to their own and the method of Welch. In this dissertation a
second order Taylor expansion will be considered. It will be



demonstrated that in this case the test of James is superior 10 the other
two in the sense of size control. None of the methods under considera-
tion is uniformly more powerful than the other two, and therefore the
method of James will be recommended with the second order Taylor
approximation for the critical value. A practical disadvantage of this test
is that its statistic does not result in the tail-probability with the help
of a table or a standard statistical routine. But that problem can be
overcome by a minor modification.

1.2. The Kruskal & Wallis test

When the results of the study on tests for the equality of several mean
values (when the population variances are unequal) were presented at a
conference, someone from the audience remarked: Why do you use such
a complicated method? If I feel that the conditions for a classical test are
not fulfilled I simply use the Kruskal & Wallis test.

Chapter 3 is a study on the behaviour of the Kruskal & Wallis test for
normal populations with variance heterogeneity. The exact distribution
of the test statistic is considered, as well as the popular x? approxima-
tion and the more conservative Beta approximation by Wallace (1959).
The results are compared with those for a nonparametric test that is
specially designed for unequal variances.

The Kruskal & Wallis test is developed for the hypothesis that all sam-
ples come from the same continous distribution against the alternative
that the location parameters are unequal. But unfortunately this test
appears to be also sensitive for differences in the scale parameters. The
test statistic is:

K= mZn,(R R)2

R;; denotes the rank of observation x;; in the combined sample. ﬁ

the mean of the ranks in sample number i and R= w The formula

for K suggests a transformation of the classical test that is to be applied
1o the ranks. So it will not be amazing to see in chapter 3 that the sensi-
tivity of this test to unequal variances is similar to the sensitivity of the
classical test. Therefore the Kruskal & Wallis test cannot be recom-
mended in this situation if one uses it with the exact distribution of the
test statistic, or if one uses the x? approximation. The Beta approxima-
tion is somewhat conservative. Therefore it can handle a limited amount
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of variance heterogeneity, but the maximum ratio of the standard devia-
tions should not exceed 3. For greater differences it is possible that the
actual probability of declaring the means to be different when in fact
they are equal will exceed the nominal level «. Another disadvantage is
that i one uses this approximation the loss of power relative 10 the
method of James can be quite impressive, especially if extreme means
coincide with small variances.

1.3. An adaptive nonparametric test

During a conference on Robustness in Statistics, Tukey (1979) once
remarked that a modern statistician who can use a computer should
have a bouquet of tests for each of the most popular hypotheses. Some
characteristics of the samples involved could then be used to determine
which test would have optimal power in some particular situation. Such
strategies usually involve adjustment of the level, but this is not neces-
sary if the selection scheme uses information that is independent of the
information used for the computation of the test statistic.

The Kruskal & Wallis test is a2 member of a large family of non-
parametric methods that are designed for the hypothesis that k samples
come from the same distribution. These tests can be used for the
hypothesis that some location parameters are equal if the distributions
involved are at least similar in shape and scale. If one uses the Kruskal
& Wallis method for this purpose it is well known that the power will
be optimal if the underlying distribution is logistic. More power can be
obtained for distributions with shorter tails by using the Van der Waer-
den test, and for heavier tails the Mood & Brown test is a better choice
[Hajek and Sidak (1967)].

In chapter 4 two adaptive tests will be discussed that are based on the
selection scheme that is given in table 2.

Table 2: Selection scheme

tail method

light | Van der Waerden
medium | Kruskal & Wallis
heavy Mood & Brown

One of these tests is a pure adaptive nonparametric method that uses
independent information for the selection and the compuiation of the
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statistic. The other test involves some kind of moderate cheating con-
cerning this independency in order to get some more power. It will be
demonstrated that both methods have more power than any of the
separale tests mentioned in table 2 if the underlying distribution is a
mixture with equal occurencies of the following distributions: (1) uni-
form, (2) normal, (3) logistic, (4) double exponential and (5) Cauchy.

If this mixture would represent the situation that nothing about the dis-
tribution is known except the fact that it is symmetric, then these adap-
tive tests would be highly recommendable. But unfortunately the
superiority of the power vanishes for small samples if one drops distri-
butions (1) and (5). In that case the Kruskal & Wallis test is better for
samples containing not more than 15 observations each.

The adaptive tests are not recommended in their present form. The
moderate gain in power (for the above mentioned mixture of 5 distribu-
tions) is not worth the extra programming effort for the selection
scheme. But two possible improvements are mentioned in chapter 4 that
are still under consideration while this was written. So there is some
hope that a better adaptive test will be found.

1.4. Some extreme outliers

In chapter 5 an error distribution will be considered that is N(0,02)
with probability 1—€ and N (0,002) with probability €. Since this dis-
tribution is intended to describe outliers the value of € will be small and
that of 0 very large. This is a model for symmetric contamination; one-
sided contamination will also be considered.

The behaviour of the classical method for one-way analysis of means
will be compared with the behaviour of some alternatives that seem
more promising with respect to their robustness against variance hetero-
geneity. The classical method cannot be recommended; one single outlier
can remove all power from this test. The alternatives are the following:
(1) Trimming, (2) Winsorizing, (3) Van der Waerden and (4) A method
proposed by Huber (1981). Number (2) can handle a limited fraction of
outliers, but it does not matter much how big they are. The other three
are more robust and concerning the control over the chosen size their
differences are very small. So the recommendation has to be based on the
power and it will be demonstrated that Huber's method is the best
choice.



Some attention will be given to two approaches that entered the study
but that were discarded before the final simulation. One is based on a
very robust method for regression problems that is called Least Median
of Squares and that is proposed by Rousseeuw {1984). This method is
suitable for testing in linear models as long as the predictors are con-
tinuous. But if the only predictor is nominal. so that the method reduces
to regression with dummy-variables, the control over the chosen size
becomes very unsatisfactory. The other method that was discarded was
one based on adaptive nonparametric testing with optimal scores for the
model-distribution. This involves simultaneous estimation of a2, § and
€ (for symmetric contamination) and it seems that the sample sizes
needed for such an approach by far exceed the values that one usually
meels in practice.

Table 3: Preliminary data description
sample | minimum 0, Q- Qi maximum
1 1.56 163 | 1.70 | 1.78 1.90
2 1.45 1.62 | 1.75 | 1.83 1.89
3 1.52 1.60 | 1.79 | 1.88 195

The simulations of chapters 2 and 5 will be combined, and this results
in a somewhat disappointing conclusion: The test that is most robust
against variance heterogeneity cannot even handle one single outlier, and
Huber’s method cannot be recommended if the variances are unegual. So
the user has to perform some explorative data analysis before he can
choose his test. But that is not very difficult here; look for instance at
table 3 where (; denotes the quartiles so that Q5 is the median. It is not
difficuit to recognise the outlier here; the analist probably just forgot to
enter the decimal point once. Such tables can be considered as a prelim-
inary data description for every analysis of means.

1.5. Simultaneous statistical inference

In chapter 6 a collection of hypotheses is considered: u; = u; fori=1,
... kand j=1,..,i-1. The objective is 10 find tests for which the level
o means the accepted probability of declaring any pair of means
different when in fact they are equal. If the variances are equal, and in
the absense of outliers, there are several approaches one can consider:
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Fisher's (1935) Least Significant Difference test (modified by
Hayter in 1986).

Pairwise comparisons based on the t-distribution with some level 8
that is a Tunction of o and the number of pairs.

The Newman (1939), Duncan (1951) and Keuls (1952) Multiple
Range tests with level «, for a range containing p means. Suitable
choices for a, are proposed by Duncan (1955), Ryan (1960} and
Welsch (1977).

Tukey's (1953) Wholly Significant Difference test that uses the
studentized range distribution for pairwise comparisons.

The Multiple F-test that was proposed by Duncan (1951). Here the
same values for o, can be considered that were already mentioned
for the Multiple Range test.

For all these melhods aliernatives will be considered that can handle
variance heterogeneity or outliers. Tests with desirable properties are
found for every approach that is based on pairwise comparisons, includ-
ing the Least Significant Difference test. For unequal sample sizes the
methods that are based on the Multiple Range test or the Multiple F-test
have some very unpleasant properties, that do not disappear for equal
sample sizes but unequal variances. However, these strategies can be
succesfully adapted to error distributions with outliers as long as the
design remains balanced.



2. Testing the equality of several means when the population vari-
ances are unequal

2.1. Introduction

‘We are interestled in the situation where there are k independent sample
means x; , .. , X from normally distributed populations. Denote the
population means by u&; . ... , 4, and the variances of their estimates by
ay . ...a;.So we have a; =0 ?/n; where o7 is the variance within the
i-th population and n; is the i-th sample size. The null hypothesis to be
tested is Ho : g1 = ... = u, . For the moment we will suppose that the

p

o ¢ are known. Unlike the situation in which the classical analysis of

' means tesl can be apphed we will not suppose that of= o; 2fori,j=1
k. If we writew; = 1/a;, @ = Zm X = Zw x;/wandr=k-1
i=1 i=1
it is well known that under H .

3

Z:QH(XV”£)2==X2

i=1
So it is no problem to test this null hypothesis. Now we will suppose
that the population variances are unknown. If all the samples contain
many observations it still is not a dlﬁicult problem. If we write a;

s, v, =n; -1, w = 1a,, w= Zw, and ¥ = Zw,x,/w then
i=1 iwml

&
2 w;(x;—x)? will be approximately distributed as x,2.
i=1

The topic of this chapter is the situation in which the population vari-
ances are unknown, and the samples are small.

2.2. The method of James

We will go back to the situation where the population variances are
known. In that case we have:

k
Pri}Y o(x—-xY<yl=G. W)
i=1
Here G, (¢) denotes the distribution function of a x?-distribution with r
degrees of freedom. If the population variances are unknown, every a;
can be estimated by an ;. Using these estimates James (1951) tried to
find a function k (a; . ... . a; .¢) for which the following holds:
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Pr[iw, (x,«—i")2$h (a,» [P % ,&)}36,, (\IJ)

i=1

The function A will be implicitly defined if we write:

%
JPr Ew(x,—%)?<h(@ W)@ rrridd]=G, (y)
i=1
Here the integration is from O to oo for every a;. The first Pr -expression
denotes the probability of the relation indicated for fixed a; and Pr[dad ]
denotes the product of the probability differentials given by:
1 v;a;

———(-——)%v"—lex (~
I‘(%v;) 20, P

v;q; V;a;
2&,’ )d( 2(!; )

Using a Taylor expansion James found an approximation of order -2 in
the ¥;. To give this expression we define the following two quantities:

& 1wy,
Ry=3—L(Ziy
s i§1 vi o w

X2s =X )F /e — 1)k +1) ... (k+25-3)

Here x%(o) denotes the percentage point of a x2-distributed variate with
r degrees of freedom, having a tail probability of «. For the following it
is important to realize that X, depends on the chosen size a, whereas
R, is independent of a. After a good deal of algebra James found:

1

V;

I
h 2(0 )= X2+% (3X4+X2)+ 2

W’
(1——)?
i=] w

-3 & ;
H e Gy "Xf ) (-2

=1 "¢
+1 BX X N(BR 5~ 10R 1+ 4R 3y~ 6R f, +8R ;2R 1y—4R )
+(2R 23— 4R +2R 3 —2R 5 +4R 2R 11— 2R { Nxo—1)
+1(-R f> +4R 3R 11—2R pR 1o~ 4R {} +4R | R 1p— R} )Bx 4—2x,—1)]
+(R 23— 3R 2+ 3R 51— R 55X +2Xa+X2)
+3(R B — 4R 5346k 55— 4R 214 R 0 )0(35X g+ 15X 6+ 9X 4+ 5X2)/ 16

+(=2R3+4R 31— R0+ 2R 12R 15— AR 1R 1o+ R % X 9x5—3X6—5X4—X2)/ 16
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+1 (=R +R{ 27X g+ 3X6+ Xa+X2)
+% (R23"‘R 12R 11)(45x8’!‘ 9X6+7X4+ 3X2))

X
The decision rule is to reject Ho if 3 w;(x;—x ) > hy(a). For k =2

i=1
this test is identical 10 Welch's approximate solution of the Behrens-
Fisher (1929) problem. This problem concerns the topic of this chapter,
but it is limited to the case of two samples. Welch uses the test statistic:

X1—X2

‘\}512_3[?!1'*'522/712

This test statistic is to be compared with a Student t-variable with f
degrees of freedom, where f is computed as:

_ (Sazfn1+522/n2)2
(52 /n P /v+ (52 /ny)% v,

/

It may seem amazing that this simple test is equivalent to the very com-
plicated second order James test in the case of two samples. But certain
non-linear relations between the guantities R,, exist in the special case k
= 2, so that the expression for h,(a) reduces to the square of Welch's
critical value.

For k > 2 James proposes to use the x? test for large samples given in
the introduction, and a very simple first order method for smaller sam-
ples. This method uses the critical value: '

I3 +k+1 & 1 w;
s SLELIE. S, S € P
2(k3-1) ,‘§1 ;’i( w )

h 1(0[ )= X2[1+

In his opinion it would involve too much numerical calculation to
include the second correction term. But then it should be noted that in
1951 the computers were not the same as they are now.

2.3. The method of Welch

Welch (1951) started by using the same test statistic as James. For k = 2
this is the square of the statistic that Welch used for the Behrens-Fisher
problem:

(x1=x,)? _wywo(x;—x 2)?

ve=
sting+si/n, witw,

= F w(xi—% 2
i=1

Since Welch used a t-distribution for the two-sample test it was natural



-12 -

for him to try an F-distribution for the more general case of k samples.

He started with the moment-generating function of V? = E w;(x;—x )?
i=1

k
where X = Z w; x; /w. The moments of this statistic become infinite after
i=1
a certain order, but Welch proceeded formally, as if the moment-
generating function existed:

M (u)=Eexplu i w; (x; =% )?]
i=]

Here E denotes averaging over the joint distributions of x; and s;%. Using
a Taylor expansion, just like James did, . Welch found:

M ()= (1—2u ) 7% " D[14Qu (1~ 2u )1+

3u?(1- 2u)‘2)(2 (1—- z
=1Y Yo

i=1

)

Therefore the cumulant-generating function of V2 can be approximated
by taking the natural logarithm of this expression:

K (u)=—1(k—1)log (1—-2u)+

20 (1—2u ) +3u?(1—2u )2 z 1 -2y

i=1Vi }E

Welch did not compare this result with the cumulant-generating func-
tion of an F -distributed variate, but he used a transformation:

=[(k —1D+A /v, ]F

Here F has an F-distribution with f; and f , degrees of freedom. For f ;
Welch choose the natural value k - 1 and for G he found to order -1 in
f 2 the cumulant-generaling function:

K u)=—1(k —l)loge(l-—-2u )+

—-—(A+2(k—-1))u(1 ) 1 =1 f w2(1~2u )2
2

This is the same cumulant-generating function as that of the test statis-
tic if the following two conditions hold:
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1 3 I3 w;

1 -—(1 2y

f2 k "‘l ZQ)I
i=1

A _ 2Uke—=2) & w,

A =Dl 2y

f k41 iglvf “Zw
i=1

£ )
Therefore the test statistic V2= ) w;(x;—% )? is approximately distri-

i=1

buted as [(k—1)+A /f ,]F where the parameters f ; and f , of the F-
distribution are given as follows: f y = k - 1 and f, is with A implicitly
defined in the above given two equations. In order o get a statistic that
is approximately distributed as an F-distribution Welch modified the
simple form of V2 into:

fwi(x,--—f)zf(k—l)
i=1

- 4 w;
e
i=1Vi 3w
i=1 v
This statistic can be approximated by an F -distribution with f, =k - 1
and f , degrees of freedom. where f , is given by:

3 & 1w
fo= [kz—l Z:lv (- zwf)]

i=1

Since f, will usually not be an integer it should be rounded to the
nearest one before a table for the F-distribution can be used for this test.
It can be shown that this method is equ:valem to the method of James
to order -1 in the »;

2.4. The method of Brown and Forsythe

If we may assume that the population variances are equal, H, can be
tested by classical one-way analysis of means, using the statistic:
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$ n, (x, — 2/ —1)
=1

F=-

£

3 (ny = Ds 2N —k)

i=1

& i
Here N = Zn,- and X = } n;x;/N. Brown and Forsythe replaced th

i=1 i=1 ,
denominator of this formula by an expression that has the same expec-
tation as the numerator when H ; holds. Their test statistic becomes:

A .
Zni(xi-—f)z
»_ i=l

F= i
3 (1—n;/N)s?
i=1

This statistic is 'approximated by an F-distribution with f; and [,
degrees of freedom, where f | = k - 1. For finding f , Brown and For-
sythe used the Satterthwaite (1941) technique. Their result is:

k
f2=[ Y ¢?/v; ! where
i=1

X
¢;=(1~n;/N)s*/[ Y, (1=n; /N )s?]
i=1

If k =2 the W and F~ test give (just like the James method) results
that are equivalent to Welch's approximate solution of the Behrens-
Fisher problem. Although Scheffe' (1944) has already proven that exact
solutions of this type cannot be found, a simulation study of Wang
(1971) has shown that the approximate solution for k = 2 gives excel-
lent control over the size of the test, whatever the value of the nuisance
parameter 8= 2/0"Z may be. .

2.5. Results of previous simulation studies

Brown and Forsythe compared their test with the classical analysis of
means test, the first order method of James and the test of Welch.
Their conclusions were as follows:

- If the population variances are unequal then the difference between
the nominal size and the actual probability of an error of the first
kind can be considerable for the classical analysis of means and the
first order method of James, even when the differences between the
population variances are relatively small.
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- The power of the tests of Welch and Brown & Forsythe is only
slightly smaller than the power of the classical analysis of means
test when the population variances are equal.

- If extreme means correspond to small variances then the method of
Welch is more powerful than the test of Brown & Forsythe. And if
exireme means correspond to the bigger variances then the method
of Brown & Forsythe has more power, as can be seen by comparing
the numerators of the test statistics:

£ 3
Welch: ) w;(x;—x)?/(k—1), where w;=n;/s? . X= ) wix,/w
i=1 (=1
i p ¢
andw= 3 w;.
i=1
3 &
Brown & Forsythe: } n;(x;—x)? , where ¥= } n;x;/N and
f=1 i=1
P ]
N= ¥ n,
i=1

Ekbohm (1976) published a similar simulation study. He also left out

the second order method of James, but included a test of Scheffe’ (1959).

His conclusions agree with the results of Brown and Forsythe. Ekbohm

found, however, something extra. He recognized the possibility that an

important difference between two means might not be found because of

a big variance in a third population. Dealing adequately with this prob-

lem is a topic of simultaneous statistical inference. Serious attention to

this problem will be given in the last chapter.

2.6. An example

Data from three groups, where the assumption of variance homogeneity
seemed unreasonable, were submitted to the methods given in the previ-
ous sections. After a suitabe scaling the data were:

Sample 1: 1.72 -1.56 0.98 0.31 0.92

Sample 2: 2.51 2.56 2.17 1.69 1.83 1.04 1.34 3.38 2.98 1.79 1.88
2.05

Sample 3. 2.50 7.33 -5.34 -18.64 0.04 4.27 4.78 -5.52 -3.11 -8.84
-0.13 -0.19 15.55 13.36 2.97

These data can be summarized as follows:

x;=0.469 .S'1=1.242 n1-5
x,=2102 5,=0665 nz=12
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x3=0601 5;=8532 n;=15

The hypothesis of interest concers the equality of the population means.
Normality seems a reasonable assumption, but variance homogeneity can
not be assumed. Welch's test resulted in W = 3.757 with 2 and 10
degrees of freedom. The critical value of the F-statistic with 'these
parameters and o = (.05 is given as 4.10. So the hypothesis can not be
rejected at this level, but the difference between the test statistic and the
critical value is small. For the James second order test one has to com-
pute not only the statistic, but also the critical value. In order 1o gel a
more interpretable result, the tail-probability of the test was computed.
This yielded a value of 0.066 wich just exceeds the size of the test. So
the resulis of the tests by Welch and James are similar. Since these tests
originate from the same statistic, this is just what one might expect.

The test by Brown and Forsythe gives F " = 0.439 with 2 and 15 degrees
of freedom. Here the critical value of the F-statistic = 3.68 so the
hypothesis can not be rejected. The acceptance of the hypothesis is far
more convincing than with the other two methods. This is in accordance
with the fact that the extreme mean of the second sample coincides with
the smallest standard deviation.

Since the variance in the third group is much bigger than the other two
variances it is interesting to examine what will happen if the third group
is removed and the bypothesis of equal population means is restricted to
the first two samples. Here Welch's method yields W = 7.663 with 1
and 5 degrees of freedom. The critical value of the F-statistic is 661 so
the hypothesis is rejected. The method of James gives a tail probability
of 0.038, resulting in the same conclusion. The test of Brown and For-
sythe gives exactly the same results as the method of Welch, which is
just what one might expect since they are identical for two samples.
Because we have only two samples this is an example of the Behrens-
Fisher problem and the hypothesis of equal population means can also
be tested with Welch's approximate t-solution. Here the statistic V =
-2.768 with 5 degrees of freedom. This is essentially the same result as
that of the Brown & Forsythe test or Welch's solution for the k-sample
problem. We have V? = F’ = W and the parameter of the t-distributed
statistic is equal to the number of degrees of freedom for the denomina-
tor in the F-disiributed statistics.

In this example the significant difference between the first two popula-
tion means is hidden because of the big standard deviation in the third
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group. Such problems are well known in the classical case of equal
population variances but unequal sample sizes. Allowing the variances to
be unequal can make things worse in this respect. The researcher should
consider carefully before deciding to perform an overall test in this
situation. In many cases a couple of pairwise comparisons might be a
better choice.

2.7. The difference between the nominal size and the actual proba-
bility of rejecting a true null hypothesis

Table 1: Actual size with nominal size = 10%

. sample size sigma Br-Fo | Jamesl | James2 | Welch
4444 1,1,1.1 7.72 12.96 10.28 9.96
1,223 9.84 13.88 11.08 11.36

468,10 1.1,1,1 | 8.08 11.44 9.96 10.28
1223 9.56 10.00 9.12 9.16

, 3221 10.24 | 12.64 10.24 10.92
10,10.10,10 1.1.1.1 960 | 1068 10.44 10.48
1.22.3 10.80 | 10.40 9.72 9.92

10.15,15.20 1.1.1.1 9.04 9.64 9.52 9.52
1 1223 10.68 10.40 10.16 10.24
3.221 | 1012 10.24 9.72 9.84

20.,20,20,20 1.1,1.1 | 920 9.32 |- 9.28 9.28
1,223 10.80 10.04 9.96 9.96
444,444 1,1,1,1.1.1 8.04 15.04 9.84 11.52

1.1.22,3.3 9.44 16.56 11.12 13.08
4,6.8,10.12,14 1.1.1,1,1.1 8.56 11.52 9.56 10.20
1.1.2.2.33 | 10.16 10.76 8.88 9.48
3.3.22,1.1 | 1032 12.20 9.84 11.12
10,10,10,10,10,10 | 1,1.1,1,1,1 | 10.48 11.60 11.00 11.20
1,1.223,3 | 12.48 12.12 11.00 11.76
10.10,15,15,20,20 | 3.3.2,2.1,1 | 11.44 10.16 9.40 9.92

For this study pseudo-random numbers were generated from k normal
distributions. Since we are interested in the behaviour of the tests under
the null hypothesis all population means were equal and without any
loss of generality their value was set to zero. The samples were gen-
erated using the Box and Muller (1958) technique [see appendix 1]. For
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Table 2: Actual size with nominal size = 5%

sample size sigma Br-Fo | Jamesl | james2 | Weich
4,444 1.1.1.1 3.48 7.40 4.64 4.52
1223 4.80 8.56 548 | 5.84

4.6.8.10 1.1.1.1 4.16 6.44 4.56 496

1,223 5.16 5.56 4.72 4.72
3221 5.64 7.48 5.64 6.32

10,10,10,10 1.1.1.1 4.64 560 | 5.36 5.36
1.2,2.3 6.12 5.92 5.52 5.56
10,15.15.20 1.1.1.1 4.68 5.04 4.88 4.88

1,2,2.3 5.96 5.12 5.00 5.00
‘ - 3221 4.84 5.00 4.72 4.84
20,20,20,20 1.1.1.1 4.80 4.88 4.80 4.84

1223 5.96 4.60 4.48 4.48
444444 11,1111 3.32 892 | 528 6.12

11,2233 | 4.64 10.40 6.12 6.88
4.6,8,10.12,14 1.1,1,1.1,1 | 4.32 6.80 5.04 6.04
11,2233 | 35.88 5.36 3.92 4.72
332211 | 572 7.80 5.40 6.72
10,10,10,10,10,10 | 1,1,1,1,1,1 | 5.12 6.60 5.84 6.00
112233 | 684 6.72 5.76 6.24
10,10,15,15.,20,20 | 1,1,2,2,33 | 7.24 5.20 4.76 5.00
332211 | 6.60 3.60 4.88 5.24

the tests of Brown & Forsythe and Welch the probability function of
the F-distribution was computed following suggestions of Johnson &
Kotz (1970) [see appendix 2]. For computing ~(a) and k,{a) in respec-
tively the first and second order test of James one needs the inverse x2-
distribution. The method for computing this function can be found in
Stegun & Abramowitz (1964) [see appendix 3]. For k the values 4 and 6
were chosen. The nominal size p is given three values: 0.10, 0.05 and
0.01. The results of this simulation study are given in tables 1, 2 and 3.
The actual relative frequency of rejecting a true null hypothesis has of
course not necessarily the same value, but one might expect it not to
differ too greatly from p. An acceptable difference seems to be 20, where
o is the standard deviation of a binomial distribution. In this case we
have o=vpg/n , where q = 1 - p. The number of simulations n for
each case was 2500. So we have 0y = 0.600%, 05 = 0.436% and o, =
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Table 3: Actual size with nominal size = 1%

sample size sigma Br-Fo | lamesl | James2 | Welch
4,444 1,1,1.1 0.44 2.32 0.84 0.76
1,223 0.96 312 1.32 1.12
4,6.8.10 1.1,1,1 0.64 1.80 1.20 1.28

1,223 1.00 1.60 1.00 1.00
3.2.21 1.24 3.08 1.52 1.68

10,10.10.,10 1,111 1.24 1.24 0.88 0.92
1,223 1.72 1.28 0.84 0.92
10,15,15.,20 1.1.11 0.92 1.28 1.12 1.16

12,23 1.48 1.36 1.28 1.32
3221 1.44 1.16 0.96 1.00

20,20,20,20 1.1.11 1.12 1.00 0.92 0.92
1223 1.48 0.84 0.76 0.76
4,4.4.4.4.4 1.1,1,1,1,1 | 0.44 3.44 1.12 1.44

1,1.22,33 | 1.04 4.36 1.96 2.36
4,6.8,10.12,14 1.1.1,1,1.1 | 0.60 2.00 1.28 1.44
1,12233 | 148 1.28 0.68 0.88
332211 1.48 2.76 1.44 2.16
10,10,10,10,10,10 | 1,1,1,1,1,1 | 0.84 1.72 1.24 1.36
1,1,2233 | 212 1.56 1.16 1.32
10,10,15,15,2020 | 1.1,2,2.33 | 1.92 0.88 0.76 0.84
332211 168 1.24 1.08 1.20

0.199%. Let d be the estimated size of the test minus the nominal size
and this difference divided by the appropriate value of 0. Then we may
call the behaviour of the test conservative if d < -2, accurate if -2 € d
< 2 and progressive if 2 € d. Table 4 gives the occurances of various
categories for d. The regions for conservative, accurate and progressive
behaviour are separated by double lines. From table 4 we learn that the
first order method of James has an extremely progressive behaviour and
should therefore not be used. Welch's test has about the same tendency
to progressiveness as the method of Brown & Forsythe, but of these
tests only Brown & Forsythe can also demonstrate a conservative
behaviour if the pattern of sample sizes and variances makes this possi-
ble. The second order method of James is clearly the best in this respect.
The only entry in this table that suggests a really progressive behaviour
originates from table 3, where we can see that the actual size is
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Table 4: Summary of tables 1.2 and 3
k Br-Fo Jamesl James2 Welch
d <—3 5
—-3<d <—2 3 1
—28d <—1 6 1 8 6
—-1€4d <1 23 19 36 31
1€d <2 7 11 14 10
2€d <3 10 6 3 9
38 d <4 3 6 3
4€d <5 4 5 1 1
5<d 2 15 3

estimated as 1.96% while the nominal size = 1%. This occured with six
very small samples, containing only 4 observations each. Besides this a
very slight suggestion of progressiveness occured three times for the
second order method of James and these occurences have in common
that a relatively big standard deviation was combined with a very small
sample size of 4 observations. So the conclusion of this section can be
that as far as the control over the chosen size is concerned, the second
order method of James is the best.

2.8. The power of the tests

Table 5 is similar to the tables in the previous section, though of course
here the equality of the population means is dropped. The number of
replications for each entry is 2500. Table 5 suggests the following con-
cusions:

- None of the methods is uniformly more powerful than the other
two.

- I extreme means coincide with big variances the power of the test
of Brown & Forsythe is superior, as was already found by the ori-
ginators of this method. It can also be seen that the tests of James
and Welch are more powerful if extreme means coincide with
small variances.

In Dijkstra and Werter (1981) more tables like this can be found. where
the first order method of James is left out. These tables suggest the same
conclusions concerning the power and the control over the chosen size.
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Table 5: Estimated power with nominal size = 5%

SS mean sigma Br-Fo | Jamesl | James2 | Welch
A 3,000 1.1.11 93.80 91.92 86.84 86.48
5,0.0.-;: 100 99.96 99.94 99.68
3.0.0.0 1223 31.16 72.04 60.28 59.88
0.0.0.3 30.64 28.72 22.72 22.68
5,0,0,% , 75.24 98.60 97.08 97.08
% 0.0.5 63.52 52.44 43.72 43.44
B 3,000 1,1,1.1 98.80 95.40 92.88 93.52
3.0.0,0 1,223 5428 89.12 86.96 87.28
00,03 73.76 5524 50.40 51.32
5,0,0,% 97.88 99.96 99.88 99.88
% 0.0.5 98.92 92.92 91.48 91.56
3.0.0.0 3221 34.80 30.00 24.12 25.76
0,0.0.3 67.04 97.04 94.64 95.40
5 ,0,0,% 71.20 60.60 51.64 5428

1.005 95.88 | 100 100 100
C | 300000 111111 99.16 94.72 91.60 93.76
1.12.233 | 4896 | 9372 | 90.76 | 92.44
332211 33.56 29.92 23.96 27.12

SS | .sample size
Al 4444

B 4.6.8,10

C | 468.10,12,14

Table 6: Summary of table 5

category | Br-Fo | Jamesl | James2 | Welch

EMSV | 6721 | 9293 89.94 90.24
EMBV | 58.06 | 49.98 43.97 45.17
EQV 97.94 [ 95.50 92.74 93.36

Table 6 is a summary of table 5. For each test the mean percentage of
rejections was computed in three categories: EMSV (Extreme Means with
Small Variances), EMBV (Extreme Means with Big Variances) and EQV
(EQual Variances). From table 6 we can get the impression that Welch's
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test is slightly more powerful than the second order method of James,
and that the first order method of James has considerably more power
that the second order method. But these results are misleading. because’
Welch's test has a slight tendency to progressiveness and the first order
method of James has an extremely progressive behaviour (see table 4).
The test of Brown & Forsythe seems a bit more powerful that the other
three if the variances are equal. This is not amazing. because the
numerator in the test statistic of Brown & Forsythe is the same as that
of the classical one-way analysis of means test. And the latter is the
best choice in the case of normal populations and variance homogeneity.

2.9. A modification of the second order test of James

Since the second order method of James gives the best control over the
actual size, and none of the tests is uniformly the most powerful, this
method is recommended for implementation is statistical software pack-
ages. However there seem to be two disadvantages, namely the very
complicated algorithm and the fact that the result of applying this test
can only be "H ¢ accepted” or "H , rejected”. Using the methods of Welch
or Brown & Forsythe the value of the test statistic gives, in combination
with a table or a numerical procedure, the tail probability for the test.
This is of course useful information and it would be nice if the method
of James could be modified so that the result would be the appropriate
tail probability. This can easily be achieved by solving the eqﬁation
f (&) = 0. where:

f (a)= t w; (x; —% )?—h(a)

i=1

X k
with w;=n;/s;?, ¥= Y} wix;/w and w= ) w;. Because h;, is monoto-
i=1 i=1

nous in «, an acceplable precision of 1073 can be expected in less than
ten function evaluations. Please note that many parts of the formula
for hy(a) are independent of «. and should therefore be evaluated only
once. In the iterative process it is only necessary te recompute ¥, every
time.

This modified second order test of James was tried on a Burroughs
B7700 computer. The average amount of processing time needed for
common cases was about 0.026 sec. We may conclude therefore that
modern computers are fast enough to accept this rather complicated
method, even in its iterative version. Since this test of James is superior
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1o its competitors, il should be implemented in statistical packages such
as BMDP, SAS and SPSS. '
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3. VUsing the Kruskal & Wallis test with normal distributions and
unequal variances

3.1. Introduction

Consider k samples with sample size n; for i = 1 , ... , k. The observa-
tions are x;; for j=1 ..., n; and let the rank of every observation be
denoted as R;; . In the case of equal observations the mean of their rank
is used. The test statistic of Kruskal & Wallis (1952) is given as:

&
2
K= N(N+I) Z“*(R Rk
3 s_N+1 & -
Here N= } n; and R= 7 R; denotes the mean of the ranks within

i=1
the i-th group. With K we can test the hypothesis H; that all samples
come from the same population. This test is frequently used for a non-
parametric analysis of means, because it is sensitive to shifts in the loca-
tion parameters. If the distribitions are symmetric the test statistic does
not seem to be very much influenced by inequality of the shape parame-
ters. Therefore one might be tempted to use the Kruskal & Wallis test
for the hypothesis A, that the population means are equal in the case of
normal distributions with possibly unequal variances. The suggestion
that this might work lies mainly in the fact that for symmetrical distri-
butions the median and the mean of a sample have the same expectation.
And the primary goal of the Kruskal & Wallis test is the detection of a
shift in the medians.

3.2. The distribution of K under & ;

Under H , the test statistic K is asymptotically distributed as x? with k
-1 degrees of freedom. For moderate samples the approximation seems to
be reasonable (Hajek and Sidak, 1967) and this test is commonly used if
all the samples contain at least 5 observations. For very small samples
the exact distribution of K is tabulated (Iman, Quade and Alexander,
1975). An alternative for x? or these tables is given by Wallace (1959).
He has shown that K is approximately distributed under Hy as
Beta(p.q). where the parameters p and q are given as p = 1 (k - 1)d and
q =1 (N-k)d. The constant d is given by:
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The behaviour of the Kruskal & Wallis test with the x? and Beta
approximation under the hypothesis H that all the population means
are equal for normal populations with unequal variances will be exam-
ined further in this chapter. Some attention will be given to small sam-
ples in combination with tables for the exact distribution of the test
statistic under H o, while we are using it for H .

3.3. Other tests for the hypothesis H

For testing the equality of several means from normal populations one
usually performs a classical one-way analysis of means. For this method
the population variances have 1o be equal. Simulation studies of Brown
& Forsythe (1974) and Ekbohm (1976) have already demonstrated that
this test is not robust against variance heterogeneity. An exact test with
a reasonable power, that is based on the F-distribution, does not exist
for the hypothesis of equal means from normal populations under vari-
ance heterogeneity. Scheffe’did already prove that for k = 2 no symmetr-
ical t-test can be found. In this context symmetry means that the test is
insensitive to permutations within the samples. And since the order in
which the observations in a sample are submitted to the analysis has no
meaning for the researcher, an asymmetrical test seems undesirable.
Another disadvantage of asymmetrical tests is that they usually have
little power if the sample sizes are very different. In the two-sample case
with unequal population variances we have the Behrens-Fisher problem
and for this Bartlett suggested the following asymmetrical test that he
did not publish, but that was mentioned by Welch (1938). Let the sam-
ple sizes be n; and n; and supposen; € n,. Let:

"xlz ZcuxZ;
i=1

Then the variables d; have a multivariate normal distribution. Scheffe’
showed that necessary and sufficient conditions that they have the same

n2 ng
mean § and equal variances 0% are )} ¢; =1and } ¢ycy =28 for
j=1 k=1
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some constant ¢, where §; = 1 and §;; = 0 if i #= j If these condi-
tions are met we can construct the following t-test:
\/n 3(L ""8) .y
;—'Z——'—;Q / Py 1.'1 ny—1

E4] n 1

1
Here L = } d;/n;and Q = } (d;—L )" In this situation +/n (L —8)/co

i=1 i=1 :

is standard normally distributed, and Q/o? is distributed as x? with n,
- 1 degrees of freedom, and they are independent of each other.

Bartlett's solution consists of taking ¢;; = &;;, so that we have essen-
tially a paired t-test for a random permutation within the samples,
where n, - n; observations are completely ignored from the biggest’
sample. Scheffe’improved this test a little by minimizing the expected
length I of the confidence interval for 8:

2, ()T EVQ /07
Jn Jn 1“‘] j

Here ¢ () denotes the critical value for a t-distributed variate with ¥
degrees of freedom having a tail probability o for a two-sided test.

EW)=

Scheffe found that the minimum was reached if:

ey =8y Vi —m—t L if j<n,

nn; Nz

= -;1; if j>n,
Later (1970) Scheffe'stated that Welch's approximate t-solution for the
Behrens-Fisher problem resulted in even shorter confidence intervals for
& than this optimal member of the above mentioned asymmetrical fam-
ily produces. He mentioned his own result under the header: An imprac-
tical solution. In referring to his test he gave as his opinion:

These articles were written before I had much consulting experi-
ence, and since then 1 have never recommended the solution in
practice. The reason is that the estimate 5, reguires putting in ran-
dom order the elements of the larger sample, and the value of s,
and hence the length of the interval depends very much on the
result of this randomization of the data. The effect of this in'prac-
tice would be deplorable.
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So we can not have a symmetrical F-test for A, and it seems reasonable
not 1o accept an asymmetrical test. Therefore the only alternative for a
nonparametric test can be an approximation. In the previous chapter we
saw that the second order method of James gave the user better control
over the chosen size than some other tfests, and none of these tests was
uniformly most powerful. Therefore it seems interesting 10 compare the
Kruskal & Wallis test with the test by James for normal populations
with possibly unequal variances.

3.4. The nominal and estimated size

Table 1: Actual size with nominyal size = 10%

sample size sigma KW B | KW x? | James2
4,444 1,1,1,1 5.88 9.24 10.28
1223 7.68 10.44 11.08
4,6.8,10 1.1.11 3.08 9.08 9.96
1223 2.60 6.52 9.12
32,21 8.00 18.84 10.24
10,10,10,10 1,1,1.1 6.76 8.32 9.84
1223 500 | 11.04 | 9.72
444444 1.1,1,1,1,1 6.76 8.32 9.84

11,2233 8.68 10.36 11.12
4.6,.8.10,12,14 1.1.1.1.11 3.68 8.40 9.56
1,1,22.33 2.04 5.12 8.88
332211 | 1008 16.92 9.84
10,10,10,10,10,10 | 1,1,1,1,1.1 4.80 9.72 11.00
1,1,2,2,3.3 6.64 11.88 11.00

The second order method of James is already extensively described in
the previous section. Tables 1, 2 and 3 give the estimated size for vari-
ous patterns sample sizes and standard deviations. The Kruskal &
Wallis test is considered with the Beta {that will be denoted as 8 in the
tables) and the x? approximation, and these results are compared with
the results of the James test. For the nominal size the values 0.10, 0.05
and 0.01 were chosen. Since every entry of these tables is based on 2500
replications, the estimated sizes have the following standard deviations:
019 = 0.600%, 05 = 0.436% and 0 = 0.199%. For the Beta approxima-
tion we need the Beta distribution function that is defined as follows:



-28 -

Table 2: Actual size with nominal size = 5%

sample size sigma KW B8 | KW x? | James2
4,4.4.4 1,1.1.1 308 | 3.40 464
1.2.2,3 4.40 4.76 5.84

4,6.8.10 1.1.1.1 1.52 3.80 4.56

1,223 1.20 2.60 4.72
3221 4.68 7.96 5.64

10,10,10.10 1,1.1.1 1.64 4.28 5.36
12,23 2.64 5.68 5.52
44,4444 1.1,1.1,11 3.44 3.08 5.28

112233 | 492 4.60 6.12
4,6,8.10,12,14 1.1,1,1.1.1 1.64 3.28 5.04
1,12,2.33 | 092 1.92 3.92
332211 | 596 9.36 5.40
10,10,10,10,10.10 ' 1,1,1.1,1.1 | 2.08 4.80 5.84
112,233 | 3.04 6.60 5.76

Table 3: Actual size with nominal size = 1%

sample size sigma KW g8 | KW x? James2.
4,444 - L111 0.76 0.16 0.84
1223 1.08 0.24 1.32
4.6,8.10 1,1,1,1 0.28 0.28 120
1223 0.20 0.28 1.00

3221 0.88 1.04 1.52

10,10,10,10 1.1,1,1 0.36 0.76 0.88
1223 0.52 0.96 0.84
444444 1,1,1,1,1,1 | 0.60 0.16 1.12
1.1.22,33 | 1.24 0.36 1.96
4,6,8,10,12,14 1.1,1,1,1,1 | 0.36 0.48 1.28
1,12233 | 0.32 0.36 0.68
332211 1.56 2.28 1.44
10.10,10,10,10.10 | 1,1,1,1.1.1 | 040 0.68 1.24
1,1,22.33 | 0.72 1.16 1.16
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Table 4: Summary of tables 1.2 and 3
KWB KWx? James2
d€—3 27 14
—3€d <2 3 4 - 1
—2€d <—1 4 5 4
—~1€d <1 5 10 20
1€d <2 1 2 13
2€ j <3 2 3
3<d <4 2
4<d <5 1
5€d 5
_ T(p+g+2) ¥ P (1
Beta(p g .x) I‘(p+1)1‘(q+l)~([} (1—z )9 dt

This function is definied for 0 € x € 1, p > -1 and q > -1. For the
computation algorithm 179 from the Communications of the ACM was
used, that was written by Ludwig (1962). The speed of this algorithm
was improved following suggestions by Pike and Hill (1963).

Table 4 is a summary of the tables 1, 2 and 3 where the value of d is
defined as the estimated size minus the nominal value and this result
devided by the appropriate standard deviation. If d < -2 we may call
the behaviour of the test conservative, if -2 € d < 2 the test seems
accurate, and if 2 € d the test shows a progressive behaviour. These
categories are separated in table 4 by double lines. At first sight the fol-
lowing conclusions may be drawn from this table:

- The Kruskal & Wallis test with the Beta approximation has a
strong tendency towards conservatism. There are patterns for the
sample sizes and variances where the behaviour seems accurate, but
this occured only 12 times against 30 occurences of a value of d
going below -2.

- If we use the x? approximation with the Kruskal & Wallis test the
conservatism seems to lessen. There are more cases where the
behaviour seems accurate, but a new problem arises: Patterns of
sample sizes and variances exist for which the test seems progres-
sive.
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- The second order method of James behaves reasonably except once,
where the variances are unequal and all six of the samples contain
only 4 observations. This situation was already discussed in the
previous chapter.

Since the results for the Kruskal & Wallis test with both approxima-
tions are not satisfactory in this study with unequal variances, it is sen-
sible 1o have a closer look at the tables 1, 2 and 3. In table 5 a small sec-
tion of these tables is given in order to demonstrate a remarkable effect.
This section consists of all the results for sample sizes 4. 6, 8, 10, 12
and 14.

Table 5: Kruskal & Wallis, n; = 4,6.8,10,12,14
B X2
sigma 10% 5% 1% 10% 5% 1%

1,1,1,.1.11 368 164 036 8.40 328 0.48
1,12233 204 092 032 512 192 036
332211 | 1008 596 156 | 1692 936 228

What do we learn from table 5?7 If the variances are equal then both
approximations yield a conservative test. We have here the situation
where the Kruskal & Wallis test should behave properly (all samples
come from the same population) so the only source of this deviation can
be that the approximations are not very good for these sample sizes.
Asymptotically the approximations are good, and if all the samples con-
tain 10 observations at least the x? approximation shows far better
results in the tables 1, 2 and 3. But these samples, or at least some of
them, are simply too small.

If we take this conservatism into account it is interesting to note that in
the second line, where the bigger sample sizes coincide with the bigger
variances, every entry is lower than the corresponding one in the first
line. And in the third line we have the reverse of this: the bigger sample
sizes coincide with the smaller variances, and all the entries are higher
than the corresponding ones in the first line. More than that: The nomi-
nal size is exceeded everywhere in the last line. For the Beta approxima-
tion only a little, but for the x? approximation considerably. ‘

In the next section more attention to this effect will be given, but now
we can reach a preliminary conclusion: The Kruskal & Wallis test is not
recommended for normal populations with possibly unequal variances.
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If this test is used with a x° akpproximation deviations from the nominal
size can occur in both directions. If a 8 approximation is used. the test
will be conservative if the variances are equal, and very conservative if
the bigger sample sizes coincide with the bigger variances. If one is wil-
ling to accept conservatism one is usually confronted with unsatisfac-
tory power. This is also the case here, as will be seen later in this
chapter.

3.5. The effect of unequal sample sizes and variances

The effect of the sample size and variance on the control over the chosen
size seems to be independent of the chosen approximation. If a correction
for the conservatism with small samples due to the approximation is
made, we saw in the previous section that the behaviour of the test is
consistently conservative if the bigger sample sizes coincide with the
bigger variances and progressive if it is the other way around. For very
small samples the critical levels for the test statistic K are tabulated by
Iman, Quade and Alexander (1975). These results are exact; no approxi-
mation is involved. In table 6 the effect of unequal sample sizes and
variances is demonstrated for the exact Kruskal & Wallis test.

Table 6: Kruskal & Wallis (exact)

sample size | sigma | 10% 5% 1%

246 111 | 971 507 101
123 | 559 333 086
321 | 21.57 1007 239

In order to explain this effect the test statistic K will be rewritten as a
variance ratio VR. The Kruskal & Wallis test is equivalent to a one-way
analysis of means on the ranks. We have:

3 (B~ B Y/ =1)

i=

VR=—=
Y Y (R;—R,P/NN—k)
i=1j=1

The relationship between K and VR is:

_ K(n—k)
VR= - DIN=1-K)

&
The denominator of VR can be rewritten as ), (n;—1)5;/(N —k ), where

i=1
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? is the sample variance of the ranks within the i-th sample. And here
we have the explanation for the effect we saw in table 6. If the bigger
variances happen to coincide with the bigger samples, the denominator
will grow while the numerator will not be affected by this situation.
Therefore the variance ratic VR will decrease. If we reverse the relation
between K and VR we have:

(N =1)(k —1)VR

K= NI+ ~1VR

In this expression a decrease in VR will result in a decrease in K, be;cause
the denominator contains the term (N-—k) that is positive: and
unaffected by VR. Therefore the probability of rejecting a hypothesis
will decrease. leaving the test conservative,

3.6. Adaptation to unequal variances

Since the Kruskal & Wallis test is not robust against variance hétero-
geneity il seems attractive to replace the observations x;; by
(x;; —med(x ))/8;, where med(x) is the pooled sample median and §; is
a consistent estimate of the i-th scale parameter. Unfortunately Sen
(1962) has already shown that such a test is not asymptotically
distribution-free unless all the scale parameters are equal. However it is
possible to construct a studentized quantile test that is based on the
method of Mood & Brown (1950). Sen proposed the following test
statistic: '

s= 4[):—-(m, ‘n)z——(z =L, )]

i=1 7 . n=] 2
Here m; is the number Qf observations in the i-th sample not greater

than med(x) and A = Z —8—2— Under mild conditions this statistic has
i=1

asymptotically a x? distribution with k - 1 degrees of freedom. For the
estimates of the scale parameters Sen suggested:

-)ﬁz(—-,)?’ y

Here en; denotes the entier of %n,- and z;; = Xi(n,—j+1) ~ Xi(j)» Where
X;(;) is the j-th ordered value in the i-th sample. The efliciency of this
estimate is 0.88 for the normal distribution with respect to the classical
standard deviation. Since the asymptotic distribution of the test statistic
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does not depend on the choice of the scale parameter, and we want to
use it here for normal distributions, Sen’s test will also be considered in
this study with the classical standard deviation.

Table 7: Sen's test with § -

sample size sigma 10% 5% 1%
4.4.4.4 1.1,11 572 | 488 | O

12,23 7.08 | 4.60 | 0.08

4,6.8,10 1.1.1.1 7.44 | 2.64 | 0.40

1.2.2.3 592 | 3.00 | 0.36

3221 10.92 | 488 | 0.48

10,10,10,10 1.1,1.1 9.32 | 467 | 0.88

1223 924 | 520 | 0.44

44,4444 1.1,1,1.11 8.64 | 3.36 | 0.04

1.12,233 9.76 | 3.32 | 0.16
4,6,8,10,12.14 1.1.1,1.1.1 7.52 | 2.88 | 0.28
1,12.23.3 572 | 3.20 | 0.32
332211 9.12 | 440 | 0.48
10,10,10,10,10,10 | 1,1,1.1.1.1 9.64 | 460 | 0.76
1.1.2233 9.16 | 4.52 | 0.36

From tables 7 and 8 we can see that this studentized modification of the
Mood & Brown test gives better control over the chosen size than the
Kruskal & Wallis test if the variances are unequal. It does not seem to
matter very much whether the scale parameter for each group is
estimated by 8; or by the standard deviation s5;. Table 9 gives a sum-
marized comparison between the influence of these estimates on the
actual size of the test. In table 9 sigma denotes the estimated standard
error of the mean. Every mean is based on 14 entries in table 7 or §,
and each of these entries is based on 2500 replications. It seems that the
results for the standard deviation are slightly better than those for the
scale parameter 8§;. If the nominal size is 5% or 10% the difference
between the effects of the scale parameters is not very convincing. Only
if the nominal size is 1% the choice of the standard deviation results in
an improvement that exceeds the sum of the two estimated standard
errors.
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Table 8: Sen's test with s

3.7. A comparison of powers

In table 10 the Kruskal & Wallis test with x? is left out because the
actual size exceeded the nominal size too much for some patters of sam-
ple sizes and variances. For a closer examination table 11 is produced.
Here EMSV denotes that extreme means coincide with small variances,
EMBV that extreme means coincide with big variances and EQV that all
variances are equal. This distinction is made in order to compare the
Kruskal & Wallis test with the second order James test. James uses the

test statistic:

sample size sigma 10% 5% 1%
4.44.4 1,111 596 | 4.68 | 0.04
1223 6.28 | 4.36 | 0.08
4,6.8.10 1,111 8.80 | 4.00 | 0.60
1223 8.84 | 3.72 | 048
3221 1060 | 4.40 | 0.72
10,10,10,10 1.1,1.1 9.40 | 484 | 0.48
1,223 10.52 | 4.80 | 0.76
444444 1,1.1,1.1.1 8.08 | 3.96 | 0.72
112233 ] 9.08 | 3.00 | 0.16
4,6.8,10.12,14 1.1.1,1,1.1 8.68 | 396 | 0.72
112233 7.64 | 392 | 0.56
332211 9.80 | 4.36 | 0.80
10,10.10,10,10,10 | 1,1,1,1,1.1 9.24 | 448 | 0.80
1,1.2.2.33 9.76 | 4.56 | 0.72
Table 9: Mean estimated size

scale | nominal | mean | sigma

5, 10% 8.23 0.44

5; 10% 8.76 0.37

8; 5% 4.01 0.27

5; 5% 422 | 0.13

8, 1% 0.36 0.07

s 1% 0.55 0.07
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Table 10: Estimated power with nominal size = 5%
SS mean sigma KW B | James2 | Send | Sens
A 3.000 1,111 86.92 86.84 | 33.72 | 28.68
5.0.0.1 99.64 | 99.64 | 27.96 | 36.24
3,0.0,0 1223 3420 | 6028 | 22.64 | 24.92
0,003 25.36 22.72 | 13.56 | 12.64
5,0,0,% ' 76.76 97.08 | 30.84 | 30.56
.;_ 0,05 56.00 43.72 | 18.72 | 18.92
B 3,000 1,111 88.32 92.88 | 12.68 | 16.12
0.0,0.3 100 100 99.76 | 99.56
3.0.0,0 1.22.3 25.08 86.96 8.48 | 13.48
0.0,0.3 43.64 50.40 | 35.76 | 38.28
5,0.0,% 72.04 99.88 | 12.60 | 18.68
% 005 | 90.08 91.48 | 77.16 | 80.32
3,000 3221 26.84 | 2412 | 1032 9.24
0.0,0.3 89.64 94.64 | 90.84 | 90.44
5.0.0,.% 1 62.56 51.64 | 16.16 | 16.44
C 300000 | 11.1,1,1,1 | 6608 91.60 9.20 | 13.96
1,1.2.23.3 14.36 90.76 | 10.04. | 12.04
332211 24.12 23.96 9.20 8.08
SS sample size
A 4444
B 4,6.8,10
C | 46.8.10,12,14
£
J= Y wi(5—x)?
i=1
n X N
Here w; = R w o= iz:lw, and x=i§1w§x,~ /w. This formula suggests

that the power of the James test will be small if extreme means coincide
with big variances. The Kruskal & Wallis test will not suffer from this
problem because here the weights are simply n;. If we compare for Sen's
test his own scale parameter with the classical standard deviation we see
that the latter gives slightly superior power. This is in accordance with
the fact that the standard deviation is a more efficient estimate for the
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Table 11: Summary of table 10

category | KW B | James2 | Sen8 | Sens

‘EMSV 52.01 88.27 | 29.24 | 31.69
EMBV 46.94 | 44.00 | 2590 | 26.27
EQV 88.19 | '94.19 | 36.66  38.91

scale if the distribution is normal. However if we compare all the results
for this studentized Mood & Brown test with the other two tests we see
that the power is highly unsatisfactory. This can be partly explained by
looking at the Asympotic Relative Efficiency of the Mood & Brown test
relative 1o the Kruskal & Wallis test. Andrews (1954) found:

AREyp = SIF' (M) [ F AP GoOP

Here M is the median of the distribution function F. If all the popula-
tion variances are equal we have for the normal distribution AREp; pw
= 2/3. And for this reason it is a pity that we cannot bave a non-
parametric studentized Kruskal & Wallis test.

If we compare the first two columns of table 11 we see that only in the
EMSYV case the second order test of James has considerably more power
than the Kruskal & Wallis test. In the EMBV case the Kruskal & Wallis
test has even slightly more power than the James test, and in the EQV
case the superiority of the James test is only moderate. Can we conclude
from this study that the Kruskal & Wallis test with the Beta approxi~
mation is a reasonable alternative for a test that is specially developed
for normal populations with unequal variances? The answer can be yes.
but with two serious restrictions:

1. If the sample sizes and the variances are unequal, and if the bigger
variances coincide with the smaller samples, then the test will
become progressive if the pattern is more extreme than those
presented in the tables 1, 2 and 3. Roughly one might say that the
maximum ratio of the standard deviations should not exceed 3.

2. A computer program for the Kruskal & Wallis test with Beta is
much simpler than a program for the second order test of James.
Therefore one might be tempted to use the former if the variances
are not too different. It should be noted that by doing this one can
lose a considerable amount of power, especially if extreme means
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coincide with small variances.
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4. Nonparametric comparison of several mean values with adapta-
tion to the tail-weights

4.1. Introduction

Several nonparametric tests exist for the hypothesis H, that k sanmples
come from the same continuous distribution. Three of them will be con-
sidered in this study as a basis for an adaptive test with attractive pro-
perties for symmetric distributions with arbitrary tail—weights. The first
one of these tests is the Van der Waerden test that uses the statistic:

N— 1 -
Quaw = —*—[ o~ H{——)
i[q) l( ]2/"'1n/ t€ZS N+1
; N + 1
Let x; . .... xy be a combination of the samples coming from k groups.

S; denotes the collection of indices in the j-th sample and n; is the
corresponding sample size. ¢ is the standard normal distribution func-
tion. Nonparametric tests do not use all the information contained in the
observations x; but only their ranks R; in the combined sample. The
Kruskal & Wallis test was already mentioned in the third chapter. It
uses the statistic:

& +1
Qiew = N(N«l-l)Z_[ZR 2 = F

=1 nl i€y,
This formula is essentially the same as the one mentioned in the érevi~
ous chapter. The third test originates from Mood & Brown (1950). It
uses the statistic:

Qup= 421_'[‘4 3n n; P
i= J
A= ‘2_‘5% [sign (R, —1 (N +1))+1]

Although the hypothesis under consideration is that all samples come
from the same distribution, these tests are mostly used for the detection
of a shift in the location parameters for distributions that are at least
similar in shape and scale. The asymptotic distribution of the statistics
under H, is x* with k - 1 degrees of freedom. The behaviour of these
tests if H, does not hold can differ considerably. For each test a distri-
bution exists for which the power is asymptotically optimal (see table
1). It is possible 10 have a look at the data and then to decide which of
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Table 1: Asymptotic optimality
test distribution
Kruskal & Wallis logistic
Mood & Brown double exponential
Van der Waerden normal

these tests is the appropriate choice. The primary difference between the
logistic, the double exponential and the normal distribution lies in their
tails. If we call the tails of the logistic distribution moderate, it is
natural to say that the normal distribution has light tails and that the
tails of the double exponential distribution are heavy. So the principle of
the adaptive test under consideration will be as follows: (1) get an
impression of the tails from the samples, (2) determine whether they
are light, moderate or heavy and (3) apply the appropriate test. Hajek
and Sidak (1967) show that the information in the combined sample is
independent of the ranks. Therefore the tails can be estimated, but it
must be done from the observations without using information concern~
ing the group to which they belong. If the location parameters are equal
this is not a serious restriction. But if H, does not hold it is possible
that the combined sample will suggest a tail-weight that differs consid-
erably from the true value. One can put forward that this does not
matter very much, because if the location parameters are so different
that the combined sample does not represent the distribution of the
separate samples, it is reasonable to suppose that any test will reject the
hypothesis, so that it is not important whether the right one has been
chosen. And if the location parameters differ only a little, then the tails
will be estimated accurately, resulting in optimal power just where it is
needed.

An adaptive nonparametric test where the above mentioned selection is
based on the combined sample is not a rank test, but a permutation test.
It would even be a test for which the probability of rejecting H 4 is equal
to the chosen size o were it not that one usually is confronted with
moderate sample sizes where the distribution of the test statistic can
only be approximated by a x?-distribution. So if it is common practice
to accept an approximation it is not unnatural to tolerate another devia-
tion as long as it is small in comparison with the difference between the
x2-distribution and the actual distribution of the test statistic for
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moderate samples. A kind of cheating that would introduce an error is
the following: compute Qxw . Qua and Qyyw and then compare the max-
imum of these values with the critical value based on the x> approxima-
tion. Such a strategy will certainly result in a powerful test, but it is
something no serious statistician would consider because the probability
of rejecting H ; when true will exceed the chosen size .

There is however a kind of "moderate cheating” that will be considered
in this study. In the selection scheme the tails will be estimated from
the combined sample, but also from an artificial sample that is based on
the original observations after a shift to give every group the same loca-
tion parameter. It is reasonable to suppose that this shift will result in
better estimates for the tails. In a simulation study we will examine
this, and an attempt will be presented to quantify the error that is
introduced by this incorrect use of information. .

4.2. Asymptotic relative efficiency

Application of an adaptive test that is based on the methods of Van der
Waerden, Kruskal & Wallis and Mood & Brown is only worthwhile if
the powers of these separate tests are very different for the distributions
under consideration. An attractive criterion for comparing the powers is
the Asymptotic Relative Efficiency (ARE) that is also known as the Pit-
man efficiency. Let A and B be tests and let a and b be the corresponding
number of observations involved. For some chosen size a both tests are
used for the same hypothesis I , against a class of alternatives H,. Then

ARE, p is defined as the asymptotic value of % when a varies such that
the powers are (and remain) equal while b = oo and H, — H .

Andrews (1954) gives a formula for the ARE of the Mood & Brown
test relative to the Kruskal & Wallis test:

AREy5 xw=SLF'(M)/ [ F'Gx)dF P

Here M is the median of F. A more general formula has been given by
Puri (1964) that can be used to compare any pair of nonparametric k-
sample tests for some chosen distribution. This could be used to com-
pute the other asymptotic relative efficiencies, but in this study they are
found in a different way. Terry and Hoeffding proposed a test that is
very similar to the Van der Waerden test and that has the same asymp-
totic relative efficiencies [Bradley (1968)]. Hodges and Lehman (1961)
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examined the two-sample situation for AREp,; y (W stands for Wil-
coxon which is the Kruskal & Wallis test for two samples). With these
results it is possible 1o construct table 2.

Table 2: Asymptotic Relative Efficiency

distribution ARE‘LHW”,KW ARE{*‘;W‘A[B AREKW AlB

normal r z 3

3 2 2

Togistic 3 4 4

5 T T 3

8 2 3

ial 8 2 3

double exponentia 3 - 4

Some of the entries in table 2 differ seriously from 1. This suggests that
an adaptive test that is based on the methods by Van der Waerden,
Kruskal & Wallis and Mood & Brown will have good power for a large
class of symmetric distributions with arbitrary tail-weights. For this it
will be necessary to have an accurate method to estimate the distribu-
tion from the samples. Suppose the estimation is done with the com-
bined sample while the location parameters are unequal. If the data
come from a normal distribution the combined sample will look flatter
so that it can be classified as a double exponential distribution. This
will result in a considerable loss of power relative 1o the correct selec-

tion. Centralisation on the location parameters can prevent this situation
from happening.

4.3. Criteria for selecting the test

In a simulation study samples were generated from normal, logistic and
double exponential distributions [see appendix 4). This study was res-
tricted to the case of 4 samples, each coming from the same (but
shifted) distribution. Several criteria for selecting the test were con-
sidered. The first was the sample kurtosis of the combined sample:

f‘, (x;—x)YN
K=-22 3
[X (x;—x)/NF

i=1

The kurtoses for the distributions under consideration are well known
(see 1able 3). To use the kurtosis as a criterion for selecting the test it
was necessary to choose boundary values for K somewhere between the
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Table 3: Kurtosis
distribution K | criterion
normal 0
0.6
logistic 12
; 21
double exponential 3

Table 4: Selection on K

kurtosis test

K <0.6 Van der Waerden
0.6€ K <2.1 | Kruskal & Wallis
21€ K Mood & Brown

kurtoses for the distributions under consideration. In the absence of a
better idea the midpoints were chosen. Table 4 shows how K is tried in
the adaptive test. This use of K as a method to recognise the normal,
logistic and double exponential distribution proved to be very disap-
pointing. The second idea was to shift the samples to make the means
equal and to compute K for the combination of these shifted samples.
This resulted in an improvement but the fraction of correct
classifications was still not satisfactory. Another improvement was
achieved by a centralisation on the medians instead of the means. This
was tried because the experiment involved the double exponential distri-
bution with very heavy tails. Unfortunately also this approach did not
prove to be a succes. The last attempt with the kurtosis was based on
the weighted mean of the values K; for the separate samples. This
proved to be similar to centralisation on the means. :

So the kurtosis as a criterion for selecting the test had to be rejected.
How is it possible that this statistic that is often referred to as a meas-
ure of flatness can not be used as an indicator for three distributions
that are so different in their tail-weights? Mood, Graybill and Boes
(1963) mention that the kurtosis can be used to measure the peakedness
or flatness of a density, but mostly around the center. It seems that they
are right; it is certainly impossible to get much information about the
tails from the kurtosis.
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This disappointment made it necessary to look for others measures of
tail-weight and two were found. Uthoff (1970 and 1973) suggested:

Zy—Z
U= — roZl
2 z l Z,‘ —medi (Zf )l }"N
i=1
Here Z; . ..., Zy is the ordered sample. Uthoff has shown that the best

location and scale invariant test of an underlying uniform distribution
against the double exponential is based on a ratio to which U is an
approximation. Since the uniform distribution has lighter tails (if one
may even speak of them) than the normal distribution, this statistic
seems a promising candidate. Hogg, Fisher and Randles (1975) suggested
using: '

_ 10U ¢5—L o5)
Us—Ls

They tried this statistic in a similar study. as the present one. where
they also included a measure of skewness, but their objective was res-
tricted to the construction of a two-sample adaptive distribution-free
test. U 45 denotes the sum of the upper 5% of the observations. If N is
not a multiple of 20 then one observation is only fractionally included.
The other parts of this formula have a similar meaning, where L stands
for lower. It turns out . that U and Q are very similar and 10U and Q are
even identical if N does not exceed 20. The use of Q as a criterion for
selecting the test is given in tables 5 and 6. The derivation of the popu-
lation values of Q for the normal, logistic and double exponential distri-
bution is given in appendix 5. For the criterion the midpoints between
these population values were chosen. Two adaptive tests were considered
for this selection scheme. In the coming sections A-P will denote the test
where the selection is not preceded by centralisation so that  is com-
puted for the combined sample, resulting in a pure adaptive non-
parametric test where the only source for a difference between the nomi-
nal size and the actual probability of a rejection under the hypothesis of
equal population means comes from using the x? approximation. As an
alternative A-C will also be considered where the computation of Q is
preceded by centralisation on the medians. So we have:



- 44 -

Table 5: Criterion Q

distribution Q criterion
normal 2.58
2.72
logistic 2.86
3.08
double exponential | 3.30

Table 6: Selection on Q

0 <2.72 Van der Waerden
2.72€ 0 <3.08 | Kruskal & Wallis
3.085Q Mood & Brown

A-P: A Pure Adaptive test

A-C: An Adaptive test with Centralisation (or Cheating)
4.4. The adaptive tests under the null hypothesis

In a simulation study the probability of a rejection under H, is exam-
ined. For 4 groups and 5, 15 and 60 observations for each group the
actual percentage of rejections is estimated. In table 7, 9 and 11 !every
entry is based on 2500 replications. The actual size was chosen as 5%. so
that the standard error for the estimated sizes was 0.436%. Not only the
normal, logistic and double exponential distributions were used in this
simulation, but also the uniform distribution with lighter tails than the
normal, and the Cauchy distribution with heavier tails than the double
exponential [see appendix 4]. ‘

Table 7: Estimated size. n; = §
distribution K&W M&B VAW AP A-C
uniform - 3.92 492 372 372 372
normal 3.72 5.04 340 348 3.52
logistic 3.80 4.84 348 392 4.28
double exponential | 4.16 4.92 388 424 4.44
Cauchy 3.88 4.52 352 440 436

As the sample size tends to infinity the values of Q for the uniform and
the Cauchy distribution are respectively 1.9 and 10 [see appendix 5]
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Table 8: Selected tests. n; =5

A-P A-C
distribution VdwW K&W M&B | VdW  K&W M&B
uniform 2494 6 2358 126 16
normal 1927 407 166 | 1777 474 249
logistic 1470 594 436 | 1351 621 528
double exponential 893 649 958 829 620 1051
Cauchy 90 163 2247 84 150 2266
Table 9: Estimated size, n; = 15
distribution K&W M&B VdW A-P A-C
uniform 448 344 456 456 4.56
normal 4.92 4.00 532 524 5.40
logistic 4.76 420 492 492 496
double exponential 4.92 4.24 472 444 456
Cauchy 5.00 4.44 472 444 4.44
Table 10: Selected tests, n; = 15
A-P A-C
distribution VAW K&W M&B | VvdW  K&W M&B
uniform 2500 2483 17
normal 1997 469 34 | 1902 552 46
logistic 1062 1049 389 997 1062 441
double exponential 200 803 1497 182 782 1536
Cauchy 1 2499 2500

The probability that the appropriate test is selected is not everywhere
satisfactory. For the uniform. normal, double exponential and Cauchy
distribution the test with the highest power was selected in most cases
for every sample size and both adaptive tests. But for the logistic distri-
bution with N; = 5 both A-P and A-C selected the Van der Waerden
test more often than the Kruskal & Wallis test. This strange effect is
still visible in the results for n; = 15 and it vanishes almost completely

for n; = 60.
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Table 11: Estimated size. n; = 60
distribution K&W M&B VdW A-P  A-C |
uniform 4.48 4.24 4.72 4.72 4.72
normal 5.44 5.52 5.20 5.32 . 5.32
logistic 5.32 528 536 528 5.40
double exponential | 5.12 4.64 504 476 4792
Cauchy 5.68 5.32 5.52 5.32 5.32
Table 12: Selected tests, n; = 60
A-P A-C
distribution VdW K&W M&B | VAW K&W M&B
uniform 2500 2500
normal 2224 276 2188 312 ‘
logistic 468 1904 128 447 1911 142
double exponential 1 319 2180 1 313 2186
Cauchy 2500 2500

In order to find the origin of this effect the following experiment was
carried out. Since there were 4 groups with 5, 15 or 60 observations A-P
selected the test on the value of Q for a sample of 20, 60 or 240 random
numbers from the chosen distribution. For the logistic distribution 1000
values of Q were computed with each of these sample sizes. Histograms
were plotted and these demonstrated that the distribution Q@ is
strongly skewed, the distribution of Qo is somewhat skewed and the
distribution of Q40 is nearly symmetric.

Table 13: Skewness of Q (logistic distribution)
sample size | minimum | modus | maximum
20 1.59 2.55 4.79
60 2.05 2.76 4.06
240 2.48 2.84 3.39

The results can be summarized by the minimum, modus and maximum
of these estimated distributions of Q (see table 13), where the extremes
are added to give an indication of the tails. Table 13 explains the unsa-
tisfactory selection for small samples if the distribution is logistic. For
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combined samples of 20 observations the modus of Q is even slightly
smaller than the expectation for the normal distribution. So it is clear
that the selection scheme can be improved by taking the combined sam-
ple size into account. The gain in power can only be very moderate,
because the ARE of the Van der Waerden test relative 1o the Kruskal &

Wallis test is ji— for the logistic distribution. If one takes N into account

A-P will still be a pure nonparametric adaptive test. because the infor-
mation contained in the sample size is already present before the experi-
ment is carried out. A study on such an adaptive scheme is started while
this is written, so it can not be presented here. It may result in a very
small gain concerning the power, but it is unreasonable 1o expect much
of it.

Since the location parameters were equal in this simulation the combined
sample should represent the underlying distribution better than the
result of a centralization on the medians. In table 14 the performance of
the selection methods in A-P and A-C is compared. In addition to the
criteria given in table 5 and 6 it is clear that the uniform distribution
should select the Van der Waerden test and that for the Cauchy distri-
bution the Mood & Brown test would be the best choice. For both adap-
tive tests and the three sample sizes under consideration the number of
correct selections is presented. In the case of a misclassification a distinc-
tion is made between a neighbouring test and the selection of the oppo-
site extreme (Van der Waerden when it should be Mood & Brown and
vice versa).

Table 14: Comparison of selection schemes under H 4
test | sample size | correct neighbour opposite
A-P 5 8220 3131 1149
15 9542 2724 234
60 11308 1191 1
A-C 5 8073 3249 1178
15 9483 2789 228
60 11285 1214 1

For both tests the probability of a correct selection increases rapidly
with the sample size. As was to be expected the selection scheme of A-P
is better under H ; than that of A-C. The difference is noticable if n; = 5
and it nearly vanishes if n; = 60.
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The test A-C with centralisation on the medians is not a pure non-
parametric adaptive test, because it uses information that is not con-
tained in the ranks. The worst that could happen as a result of this is
that the probability of a rejection under #/, exceeds the chosen size o.
To examine this table 15 is produced. where the results for all the sam-
ple sizes are combined. The standard error of the estimated sizes is
0.436%. Let d be the actual percentage of rejections under Ay minus the
nominal size and this divided by the standard deviation. The test will
seem accurate concerning the size if —2<d <2, conservative if d <—2
and progressive if 25 d . These categories are separated by double lines.

Table 15: Summary of tables 7. 9 and 11
K&W M&B VAW A-P A-C

d<—3 1 3 11
—3Kd <2 4 1 2 2 1
—2€d<~1 3 5 1 5 6
-1€d <1 6 7 8 7 7

1€d <2 2 1 1

2€d <3

3sd

Because the Kruskal & Wallis, Van der Waerden and Mood & Brown
tests are somewhat conservative for small samples if the x? approxima-
tion is used, it is not amazing that both adaptive tests show the same
inclination. In table 15 both A-P and A-C never showed a size that
exceeded the nominal value by more than one standard deviation. In this
respect they seem even better than the original tests, where this value
was exceeded by all three of them. So in this stage of the study there
seems 1o be no reason to distrust A-C, and if its power should prove to
be much better than that of A-P, then the use of a centralization in the
selection scheme could be recommended. ‘

4.5. A comparison of powers

The powers of the tests under consideration are estimated by the
number of rejections from 300 replications. The results are given as per-
centages. Samples are considered with 15, 40 and 65 observations. In
practical analysis of means situations one is not often confronted with
samples containing more than 40 observations. A sample size of 65 is
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Table 16: Estimated power, n; = 15
Location: 0. 0.15, 0.3, 1.05
distribution K&W M&B VdwW A-P A-C
uniform 62.3 250 73.0 73.0 730
normal 70.7 43.3 70.7 703 710
logistic 26.3 15.0 253 240 233
double exponential [ 51.7 45.7 477 480 503
Cauchy 20.0 23.3 16.7 233 233
Table 17: Selected tests, n; = 15
Location: 0, 0.15. 0.3, 1.05
A-P. A-C
distribution Vaw  K&W M&B | VAW K&W  M&B
uniform 300 300
normal 228 64 8 216 77 7
logistic 126 139 35 109 152 39
double exponential 51 127 122 28 97 175
Cauchy 299 1 299
Table 18: Estimated power, n; = 40
Location: 0, 0.15, 0.3, 1.05
distribution K&W M&B VdW A-P A-C
uniform 98.0 69.7 99.3 99.3 99.3
normal 100 953 100 100 100
logistic 68.7 553 69.0 65.7 . 66.7
double exponential 943 927 90:3 93.0 93.3
Cauchy 560 677 44.3 67.7 67.7

only included in the analysis because with the other two values it will
" be possible to see the performance of the selection schemes of A-P and
A-C as a function of the sample size. Eight different sets of location
parameters were tried, but since the results of them proved to be very
similar, only two sets are presented in the tables. The logistic, normal,
double exponential and Cauchy distribution have a scale parameter. For
all these parameters the value 1 was chosen. In order to get a uniform
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distribution with unit variance the range of this distribution was chosen

as V12

Table 19: Selected tests, n; = 40
" Location: 0, 0.15. 0.3, 1.05
. A-P A-C
distribution VdW K&W M&B | VdW K&W M&B
uniform 300 300 i
normal 259 1 252 a7 1
logistic 106 177 17 80 198 22
double exponential 1 125 174 3 66 231
Cauchy 300 300
Table 20: Estimated power, n; = 65
Location: 0, 0.15, 0.3, 1.05
distribution K&W M&B VdW  A-P A-C
uniform 100 89.0 100 100 100
normal 100 99.7 100 100 100
logistic 920 773 89.7 90.7 91,7
double exponential 99.7 990 99.7 99.3 99.3
Cauchy 80.7 89.7 70.3 89.7 89.7
i
Table 21: Selected tests, n; = 65
Location: 0, 0.15, 0.3, 1.05
A-P A-C
distribution Vdw K&W M&B | VdW K&W M&B
uniform 300 300
normal 282 18 274 26
logistic 67 220 13 46 238 16
double exponential 92 208 40 260
Cauchy 300 V 300

If the location parameters are unequal the combined sample will suggest
a flatter density than the actual distribution. Centralization can result in
an improvement here, especially if the location parameters are 've‘ry
different. In this simulation the shifts were chosen such that for sample
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size 65 at least one entry in the table for the estimated power was 100%.
This value was not permitted to occur for every entry in a row, because
this would not yield any information concerning the relative powers.
These restrictions resulted in moderate shifts and a simulation was
needed to decide whether centralization improves the probability of a
correct selection if the location parameters differ only as litile as
presented in the tables.

Table 22: Estimated power, n; = 15
Location: 0, 0.1. 0.5, 0.9
distribution K&W M&B Vdw  A-P A-C
uniform 51.0 18.7 623 623 623
normal 53.7 320 557 550 553
logistic 233 153 240 223 220
double exponential | 44.3 390 410 413 433
Cauchy 15.7 15.7 13.0 157 157
Table 23: Selected tests. n; = 15
Location: 0, 0.1, 0.5, 0.9
A-P A-C
distribution Vdw  K&W M&B | VAW K&W  M&B
uniform 300 297 3
normal 242 51 7 2217 62 11
logistic 122 140 38 113 135 52
double exponential 49 110 141 3 91 178
Cauchy 1 299 300

In table 28 the performance of the selection rules of A-P and A-C are
presented. Just like in table 14 a distinction is made between the selec-
tion of a neighbouring test and the selection of an opposite one (Van der
Waerden when it should be Mood & Brown and vice versa). For both
rules the probability of a correct selection increases with the sample size.
We saw already that under H; it is better not to centralize on the medi-
ans. But here, where the location parameters are different, it can be seen
that for every sample size the selection rule of A-C performs better than
that of A-P. This is not only true for the combination of all the results
in this section as presented in table 28, but also for each of the separate
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Table 24: Estimated power, n; = 40
Location: 0, 0.1, 0.5, 0.9
distribution K&W M&B Vdw AP AC
uniform 943 517 99.0 99.0 99.0
normal 97.0 883 973 973 973
logistic 56.3 413  52.0 530 543
double exponential | 88.3 85.7 813 88.0 88.0
Cauchy 47.3 57.0 333 570 370
alternatives concerning the location parameters.
Table 25: Selected tests, n; = 40
Location: 0, 0.1, 0.5, 0.9
A-P A-C
distribution Vdw  K&W M&B | VdW  K&W M&B
- uniform 300 300 :
normal 264 36 254 46
logistic 78 195 27 76 201 23
double exponential 3 117 180 78 222
Cauchy 300 300
Table 26: Estimated power, n; = 65
Location: 0, 0.1, 0.5, 0.9
distribution K&W M&B VdW  A-P A-C
uniform 99.0 78.7 100 100 100
normal 100 97.7 100 100 100
logistic 79.7  67.7 80.8 79.3 80.0
double exponential 98.7 99.0 97.3 99.0 99.3
Cauchy 750 85.0 593  85.0 - 850

In table 29 the powers of all tests considered are estimated as the per-
cemagé of rejections for all situations in this section together. This
means that a mixture with equal occurences from the uniform. normal,
logistic, double exponential and Cauchy distribution is submitted to the
analysis. It can be seen that for every sample size the adaptive tests
have more power than the separate tests. A-C is always better than A-P,
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Table 27: Selected tests, n; = 65
Location: 0, 0.1, 0.5, 0.9
A-pP A-C
distribution Vaw  K&W M&B | Vdw  K&W M&B
uniform 300 300
normal 272 28 260 40
logistic 62 229 9 43 245 12
double exponential 101 199 51 249
Cauchy 300 300

but the difference is only marginal.

Table 28: Comparison of selection schemes
Location parameters are unequal
test | sample size | correct neighbour opposite
A-P 15 2210 675 115
40 2449 547 4
65 2610 390
A-C 15 2279 644 77
40 2558 438 4
65 2726 274
Table 29: Comparison of powers '
Mixture of 5 distributions
sample size | K&W M&B VAW  A-P A-C
15 4190 2763 4293 4353 4417
40 80.03 7047 7660 ' 82.00 8227
65 92.47 8827 89.63 9430 9450

The final conclusions of this study are a bit disappointing. If one is
interested in the comparison of several mean values, and the only thing
that is known about the underlying distribution is that it is symmetric,
one can consider to use an adaptive test like A-P or A-C. But in the
simulation presented here the gain in power relative to the Kruskal &
Wallis test (which is optimal for the middle range of Q and therefore
never the worst choice) is only moderate. Asymptotically both adaptive
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tesis are superior for a mixture of symmetric distributions as described
in this study. And the element of cheating in A-C will disappear as the
sample size increases. But for finite samples the results are disappoint-
ing. This can be partly explained by the observation that for sample
sizes 15 and 40 the Kruskal & Wallis test demonstrates more power for
the double exponential distribution than the Mood & Brown test that is
asymptotically optimal for this distribution. Only for samples with 65
observations the asymptotical superiority of the Mood & Brown test
becomes visible in table 26, but in table 20 for the same sample size the
Kruskal & Wallis test is still slightly superior for the double exponen-
tial distribution. In this study only two shifts of the location parame-
ters were presented out of ihe total of eight that were generated. There
were situations in the other six where the Mood & Brown test showed
more power for the double exponential distribution than the Kruskal &
Wallis test for saniples with 40 observations. But for smaller samples
the Mood & Brown test was always inferior. |

So for small samples the correct recognition of a double exponential dis-
tribution leads to a loss of power in the adaptive tests relative to the
Kruskal & Wallis test. This, as well as the skewed distribution of Q for
the logistic distribution (see table 13), leads to the conclusion that a
better adaptive test can be constructed by taking the sample size into
account in the selection scheme. These improvements are the topic of a
study that has just started and therefore the results will not be
presented here. The expected outcome of this study is not a considerable
gain in power, as can be concluded from the tables in this section. But
for the tool-forger every small improvement can be tempting. even if it
has not much practical value.

For symmetric distributions the Kruskal & Wallis test is never a very
bad choice. It is possible to get a bit more power by using an adaptive
test, but the gain is little in comparison with the extra programming
effort. The selection scheme in this study can be improved by taking the
sample size into account, but also this can only result in a very
moderate gain in power.



5. Comparison of several mean values in the presence of outliers

5.1. Introduction

The model in classical one-way analysis of means s y;; = u; + ¢
where the errors e; are supposed to be independently distributed as
N (0,0 with unknown population variance o 2. The index i denotes the
group-number (i = 1, ..., k) and j identifies the elements within the
groups (j = 1, ..., n;). The hypothesis of interest is Ho: gy = ... = g .
According to the above conditions, this hypothesis can be tested with:

&
n(Fi—y P /e-1)
F= i=1

H‘;

k
Z Z (y;,~ ~¥; )Zf(N“k)
i=1j=1

i
Here N = } n;.y; is the sample mean within the i-th group and y is the

i=1
overall sample mean. This statistic has under H, an F-distribution with
k - 1 and N - k degrees of freedom.

For contaminated normal data we consider the following modification:
with (small) probability € the distribution becomes e;; =N (0.602),
where 8> >1, and with probability 1-€ the distribution remains
N(0,0%). This contamination is symmetric; in the asymmetric case,
multiplication by @ is performed on the positive errors only, with pro-
bability 2€. In both cases, the expected fraction of outliers is €.

Classical one-way analysis of means is not designed for contaminated
normal data. Using this test here might result in a probability of reject-
ing H o when true that differs from the chosen size «, or in a serious loss
of power. Suppose for. example that the data represent the heights of
people. coming from different groups. Suppose the analist works at a
computer-terminal and he enters the data in meters with two decimals.
But sometimes, though not often, he can forget to enter the decimal
point. Here we have a small value of €, the multiplication factor € is
considerably bigger than 1, and the contamination is one-sided. What
will happen to the statistic F? The overall sample mean ¥ will increase
as well as one or more of the group means. As a consequence the
numerator of the statistic will increase, but also the denominator. So at
first sight it seems difficult to predict what will happen to F. More
attention to this will be given further in this chapter. Some alternatives
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will be presented that seem more robust in these respects. A comparative
study concerning the size and power of all the tests under consideration
will be given, where the effect of symmetric and one-sided contamina-
tion is demonstrated by simulation.

5.2. Nonparametric analysis of means

In a nonparametric test the hypothesis is not the same as in the previous
section, but it can be expressed as "all samples come from the same con-
tinuous distribution”. Nonparametric analysis of means has very little
power in the comparison of shapes, so it can only be used to test ihe
equality of location parameters. The density in case of symmetric con-
tamination is given by:

L expl— 2]
VZWCXp_mrz

and this represents a continuous distribution. Therefore the application
of nonparametric analysis of means is permitted. It is easily seen that
this also holds for one-sided contamination.

flx)=¢€ expl— ]+(1-e)

1
oVe2r 29 2

Several nonparametric tests are available, but here we will only use the
Van der Waerden (1952) test. This test is based on the following statis-
tic:

N-—1 -
Q= lise 1( )]2
Z[q) 1 _& )]2:-1"‘ g¢s,
= N+1
Here y, . ... . yy rtepresents the combined sample, where the groups are
represented by sets of indices §; fori= 1. .., k. R, is the rank of y,

and ® denotes the standard normal distribution function. Q is asymp-
totically distributed as x? with k - 1 degrees of freedom. The reason for
choosing the Van der Waerden test from the existing collection of
methods for nonparametric analysis of means, lies in the fact that this is
the only test that has for € = 0 asymptotically the same efficiency as the
classical test [Hajek (1969)]. By using this nonparametric method one is
insured against the possible presence of outliers, and the premium one
has to pay is the loss of power for small samples. For k = 2 this loss has
already been shown to be moderate [Van der Laan and Oosterhoff
(1967)] and further in this chapter we will see that this is also true for
more than two samples. If there are many outliers the tests by Mood &
Brown or Kruskal & Wallis are better choices [Hampel. Ronchetti,
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Rousseeuw and Stahel (1986)]. But this situation will not be considered
in this chapter.

5.3. Winsorizing and trimming
Applications of these methods to the t-test for two samples have been
published already [Fung and Rahman (1980), Yuen and Dixon (1973)).
The t-test uses the statistic:
- 51=52
-\/(SS 1+SS;_>);[(7L 1Hn 2"‘2)\/1;?1 1+ Ifng

with SS, = 2 (}’,‘j -y, )2
j=1
Under the hypothesis of equal population means this test statistic fol-
lows a t-distribution with N-2 degrees of freedom if €=0. This method
is equivalent to classical one-way analysis of means for k = 2 (t’=F
and for the critical values the same relation holds: t 2 = F ).

Fung and Rahman (1980) Winsorized the t-test in an atiempt 1o make it
robust against the presence of outliers. This is done as follows: let a; . ...
. @, be an ordered sample. Then the mean and sum of squares of this
sample, after two-sided Winsorizing with parameter g, are defined as:

E“.g = ;‘t"[(g +l)ag+l+ag+2+ +an—~g-—1+(g +1)an "8]

58, = (g + 1@ 41— Y+ (ag 12— a0y P4+ ...
Ha, —g—1— Ty PH(g +1)a, _—a,, )

The number of relevant observations hereby reduces to h = n-2g. The
value of g should be chosen such that it is reasonable to suppose that all
the outliers will be contained in the tails of the samples, so that their
values become irrelevant. Appl‘icatio‘n of this technique to the t-test
gives the following formula: '

t = ilwg —§2wg
Y8 (8S1wg +5824 V¥R =201/ 1 +17R,

This statistic approximately follows a t-distribution with A + hy - 2
degrees of freedom. Fung and Rahman used n; instead of h; under the
second square-root sign, but that appears to have been a typing error as
can be concluded from a study by Yuen and Dixon (1973) on which
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they based their approach.

Winsorizing means replacing the tail-elements by the most extreme ele-
ments that are nol considered to belong to the tails. Trimming is a
different technique in which the tail-elements are simply deleted. Yuen
and Dixon examined the behaviour of the trimmed t-test, where the
numerator is based on trimmed means, but the denominator still con-
tains Winsorized sums of squares. In a simulation study with samples
conlaining at least 10 observations each, both methods show the same
qualities: The probability of rejecting H, when irue is almost equal to
the chosen size, and the power for normal distributions is only slightly
below that of the classical t-test for moderate values of g. For distribu-
tions with heavier tails the Winsorized and trimmed t-tests are even
more powerful than the classical t-test for moderate values of g [Fung
and Rahman (1980)].

Therefore it could be atiractive to apply these technigues to -classical
one-way anova, which is the natural generalisation of the t-test for
more than two samples. The Winsorized F-statistic is given by:

k
L i (Fig —Fug P/ —1)
Fo ="

S
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i=1

x &
Here 3., = } h; 3y, /H and H= } h;. For the trimmed F-statistic Fy,
i=1 i=1

only the numerator is modified; the Winsorized means are replaced by
trimmed means ¥, and the trimmed overall sample mean is given by
Ve = :‘_:h,- Yug/H . It is assumed that both F,, and F,, are approxi-
i=} .
maltely distributed as an F-distribution with k-1 and N-k degrees of
freedom. In a previous simulation [Dijkstra (1986)] it was found that
the probability of rejecting H, when true differs too much from the
chosen size for Winsorized analysis of means. But after correction of the
above mentioned typing error in the paper by Fung and Rahman the
behaviour of these tesis improved remarkably as will be shown later in
this chapter.
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5.4. Outlier resistant regression

The model for analysis of means can be rewritien as a regression model:
y= 81X1+ ‘*’B;\ Xt +e

The observations are représemed by y and for every observation the
group to which it belongs is identified by Lhe dummy-variables x; ,
x; . This can be done as follows: x; =1 if y belongs to group i and oth-
erwise x; = O. If the errors were independently distributed as N (0,0°2)
then testing: H . B;= .. =B, would be equivalent to testing H o =
. =pu; in the model for classical one-way analysis of means. The
values of F and the corresponding numbers of degrees of freedom woulid
be the same. ‘

Several methods for dealing with outliers in regression have already
been published. Huber (1973) suggested a method with attractive pro-
perties that can be applied to the analysis of means problem in this
study.

. ; N

The objective of classical regression is to minimize Z(y,-x,-ﬂ)z as 2
' i=1

function of B = (B, .... B ). Here x; = (x;; . ..., xz ) . It can easily be

understood- that outliers in y will have considerable influence on the

estimation of B8, because classical regression will square their residuals.

A more robust method minimizes another objective:

M(g)= ¥ p2=HE
i=1 o
In the classical case p(r )=r2, but in robust regression one chooses a
function that limits the influence of extreme residuals. Holland and
Welsch (1977) mention eight different functions p with this desirable
property. The objective M (8) will be at its minimum if:

N e
injq,(y, ;,ﬁ =0

i=1

for j=1. ...,k and ¥(r)= . Several iterative methods for solv-

d plr)
dr
ing these equations can be considered. Initial estimates for 8, . ..., B;
can be obtained by ordinairy least squares, whereafter o can be

estimated as:
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G =1.4826[med ;| (y; —x; B )—med, (y,—x; B)|]

Here med, denotes the median over the index i. The factor 1.4826 makes
this an approximately unbiased estimate of the standard deviation in the
case of normal errors. Without restrictions on the weight function, con-
vergence cannot in general be guaranteed if the estimation of ¢ is part of
the iteration. Huber (1973) found a p that allows iteratively re-
estimating of o

2
p(r)=%for|r|sﬁ

HZ
p(r)=H|r|-—§— for |r| >H

The sensitivity to outliers depends on the value of H. For H = 1.345 the
efficiency is 95% for normal distributions. If the absolute value of a
standardised residual exceeds H, its influence becomes linear instead of
quadratic. Although Huber's p does not yield an extremely robust esti-
mate (some authors prefer a p that becomes a constant for large values
of |r|). this method is a considerable improvement on ordinary least
squares in the presence of outliers. In this case Newton's method yields
a very efficient algorithm, because ¥ is a broken linear function.

For the construction of an outlier-resistant analysis of means procedure
we consider the above mentioned robust regression with Huber’s p and
H = 1.345. This approach results in fitted values y; and an estimate &
for 0. Huber (1981) suggested a test for the hypothesis of equal popula-
tion means that uses these estimates. His suggestion is the topic of the
next section.

5.5. Huber’s method

In the classical situation (without outliers) the test statistic for H o puy

= .= is:

in,(y, -y ¥P/(k—1)

=1
AZ =5 PHN—k)

liM»

‘Huber gave an F’ that is similar to F, but on which the outliers have
less influence. In the numerator the first step is to replace y; by yi.Ina
more general model Huber suggests to replace y by an ordinary least
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squares fit using y; instead of y; . In this case (without covariables) such
a fit will yield the weighted mean:

& -~
ny

— =1

Yn=- N

After scaling this modified numerator follows under mild conditions
asymptotically a x? distribution with the same number of degrees of
freedom as the classical test. '

Dealing with the denominator is a bit more difficult: one single outlier
can be the cause of an extremely high value. so that H, can be accepted
although the location parameters aré very different. Huber proposes to
replace the denominator by the folowing expression (where the influence
of the outliers is reduced considerably):

& Tioa
2 Y W(—)a?
. i=1 @
N—k 1 &__r 2
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These formulae are valid for every reasonable choice of ¥. Since we use
Huber's ¥ here they can be simplified considerably, because for ¥’ only
the values 0 and 1 are possible. In this case we have:

=141 NP
c 1+kNp

. r
Here p is the number of observations for which ¥*(—) = 1. Just like in
&

classical analysis of means Ho ) = ... = y; is to be rejected if F~
exceeds the critical value of an F-distributed variate with k-1 and N-k
degrees of freedom for some chosen size a. Huber claims that the
approximation of F' by an F-distribution is reasonable if all the
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samples contain at least five observations. This is the same condition
that is usually put forward for using nonparametric tests with a x*-
distribution.

It is fortunate that in analysis of means models the predictors are
dummy-variables that do not contain any errors, because Huber's
approach is very sensitive to situations where the predictors have outly-
ing values. Covariables can be included in the model, provided that
they do nol contain outliers. The test can be generalized 10 more com-
plex designs, including interactions. In this respect Huber's method
seems more promising than ils nonparametric alternatives, where the
concept of rank-interaction is a complex matter, even in a simple two-
way layout [De Kroon and Van der Laan (1981)].

5.6. The actual size of the tests

The probability of rejecting H( when true was estimated by using a
simulation with 2000 replications. This was done for 3 and 6 groups.
symmetric and one-sided contamination and sample sizes of 10, 25 and
40. The samples were generated from normal populations with g; = 0
and 02 = 1. Symmetric contamination was simulated by using 02 = 50
with probabilities 0, 0.03 and 0.1. For trimming and winsorizing the
constant g was chosen proportional to the sample sizes. The results of
these simulations are presented in tables 1 and 2, where the estimated
size for each simulation is given as the percentage of rejections for a test
with nominal size o = 0.05. Coded values for n; and g are explained in
table 3. In these tables the classical test is denoted as Anova.

In the case of one-sided contamination the use of 02 = 50 was restricted
10 positive observations. At the same time, the probabiliiy of a multipli-
cation by 50 was doubled to 2€¢, in order to get the same expected
number of outliers as with symmetric contamination. The results of this
simulation are presented in tables 4 and 5. '

The tables are not very clear if one wants to compare these tests. The
standard deviation of the estimated size is V0.05*% 0.95/2000 = 0.00487
or 0.487%. Let d be the percentage of rejected hypotheses minus 5 and
divided by this standard deviation. Tables 6 and 7 show the values of d
for each test. Three categories have been separated by double lines:
d <—2 (conservative), —28d <2 (accurate) and 2<d (progressive).
Tables 6 and 7 suggest the following conclusions:
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Table 1: Symmetric contamination, k = 3
n; € g | Anova VAW Trim Wins Huber
10| 0 | 2| 495 415 525 525 545
10 | 003 |2 | 395 410 500 520 515
10 01 | 2| 285 490 570 545 525
251 0 |3 | 48 505 540 505 535
25 1003 | 3| 325 420 480 475 520
1251 01 | 3| 400 505 495 640 540
40| 0 | 5| 515 495 . 515 465  5.00
40 | 003 | 5| 515 520 530 480 525
40 | 0.1 |5 | 435 465 470 545 460
A| 0 |B| 445 380 390 385 440
A [ 003 |B| 485 500 410 440 5.70
A | 01 |[B| 530 475 425 495 525

Table 2: Symmetric contamination, k = 6

445 455 475 420 5.75
620 515 400 585 5.5

0.03
0.1

n; € g | Anova VdW Trim Wins Huber
10| 0 | 2| 525 450 565 495 6.05
10 | 003 | 2 | 310 350 535 470 545
10 01 | 2] 320 38 520 525 520
25| 0 | 3| 440 420 450 395 505
25003 | 3| 425 495 495 470 530
25| 01 | 3| 395 500 435 1720 515
40| 0 | 5| 590 565 590 530 605
40 | 003 | 5| 420 470 530 505 530
40| 0.1 | 5| 430 435 420 610 415
c| o |D| 475 465 395 340 525
C D

C D

Classical analysis of means tends to be conservative in the presence
of outliers. ’

The method of Van der Waerden is unaffected concerning the size
by this kind of non-normality, which is just what might be
expected from a nonparametric test.
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Table 3: The codes used
Code Meaning
A 10.25.40
B 235
C 10,10.25,25.40.40
D 22,3355
Table 4: One-sided contamination, k = 3 ’
n; € g | Anova VAW Trim Wins Huber
10 0 2 4.75 4.15 560 5.45 6.35
10 | 0.03 | 2 4.00 4.75 5.75 5.70 5.65
110 | 0.1 2 3.75 500 520 535 5.65
25 )] 3 5.65 5.20 530 5.20 6.00
251003 |3 3.80 4.40 4.75 465 5.20
25 | 0.1 3 3.50 4.90 3.90 7.50 5.15
40 0 5 4.85 4.70 4.60 410 4.60
40 1 0.03 | 5 4.75 525 - 5.45 5.15 5.80
40 | 01 5 4.95 5.60 4.75 9.40 5.55
A 0 B 5.10 5.35 4,60 4.50 5.65
A |]003 B 4.35 4.80 4,40 4.50 5.30 |
A 0.1 B 4.90 4.55 360 6.05 5.35

: é
The trimmed test seems slightly conservative in this situation, but
less than classical analysis of means.

Symmetric contamination does not seem to affect the Winsorized
test very much, but this method is clearly not robust against one-
sided contamination. Tables 4 and 5 show that the cases where
5<d have a very high proportion of outliers: € = 0.1. Such values
of € make it possible that outliers are found in the body of a sam-
ple and not only in its tails (as defined by g). It would be unrea-
sonable 10 expect robustness aga‘mst this situation in a Winsorized
test, because a 1ail consisting of outliers can enter the computation.
This problem can not occur in a trimmed test.

Huber's method seems the best for symmetric contamination,
although the differences with the other tests are not convincing
(only classical anova is 100 conservative). Against one-sided
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Table 5: One-sided contamination, k = 6

n; € g | Anova VdW Trim Wins Huber
10 0 2 5.80 465 485 510 6.10
10 | 003 | 2 3.95 4.60 5.90 5.75 6.15
10 | 0.1 2 3.15 5.05 4.85 5.20 6.35
25| 0 | 3| 455 415 500 455 520
25 1 003 | 3 5.55 5.20 5.35 6.00  5.90
25 | 041 3 4.15 4.90 425 11.80 5.65
40 0 5 4.15 4.35 4.30 3.55 4.30
40 | 003 | 5 4.40 4.90 4.55 4.90 4.95
40 | 041 5 4.35 4.10 355 12,70 4.10
C 0 D 5.55 4.95 4.60 4.55  6.20
C 003 D! 520 480 395 430 555
C 0.1 D 590 - 5.15 4.05 9.15 6.15
Table 6: Symmetric contamination
Anova VAW Trim Wins Huber
d <3 4 1 1
—-38d <2 3 2 3 2
—-28d <—1 7 6 5 2 2
—-1€d <1 8 14 13 15 17
1€d <2 1 1 3 1 3
2€d <3 1 2 2
3€d <4 ,
4€d <5 ; 1
5€4d ‘

contamination the suggestion of a slight progressiveness exists.
Values of d between 2 and 3 occurred in 7 cases. It is interesting to
note that 4 of these cases contained no outliers (€ = 0). so that the
results for these rows in the tables for symmetric and one-sided
contamination should be similar. An examination of all the results
for Huber's method shows that indeed a very slight progressiveness
exists, but that the contamination has almost no influence (see
table 8). The estimated sizes in table 8 are based on 16*2000 repli-
cations, so that their standard deviation is 0.487/4 = 0.122. Two of
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Table 7: One-sided contamination
Anova VdW Trim Wins Huber
d <-3 2
~38d <—2 4 4 1
~2€d<~1| 5 5 4 1 2
,-—lﬁd <1 8 18 13 10 7
1€d4 <2 5 1 3 2 8
2€d <3 2 7
3€d <4
4<d <5
5<d 5

V'I‘able 8: Huber's method

Contamination | Estimated size in %

none (€ = 0) 5.437
symmetric 5.228

one-sided 5.528

the three sizes differ significantly from 5% and it is clear the the
approximation of Huber's test statistic by an F-distribution can be
improved. But for practical purposes these results are acceptable.

57. A comparisén of powers

Here a simulation study is presented that differs from the one in the
previous section in only one respect: the samples were generated with
unequal location parameters. Table 9 is based on symmmetric contami-
nation with three samples. Tables were generated also from symmetric
contamination with k = 6 and one-sided contamination with k =3 and k
= 6, but the results were very similar and therefore they will not be
presented here. A summary of these results is given in table 10, where
the powers for uncontaminated data (€ = 0) are the means of 16
separate simulations with 2000 replications each. The other results are
based on 8 simulations with the same number of replications. Table 10
suggests the following conclusions:
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Table 9: Symme‘éric cémamination, k=3 |
n; € g | #; | Anova NVdW  Trim  Wins  Huber
10 0 2 p. §8.05 8550 7785 78.05 84.50
10 | 003 | 2 P 64.55 7595 7405 7395 80.75
10 01 |2 P 36.75 5920 6470 65.05 6925
25 0 31.Q 88.20 87.25 84.45 8450 8545
25 1003 |3 Q 59.50 8090 BO.YS 8125 8245
25 0.1 3.Q 2900 6325 69.05 6915 71.00
40 0 5 R 89.55 8930 87.15 8730 87.05
40 | 003 | 5 R 5730 82.15 8295 8290 83.65
40 | 01 5 R 2745 66.15 7365 7410 7550
A 0 B, S 9265 92.10 86.95 8685 91.00
A | 003 B/ S 64.75 8620 8310 83.10 87.35
Al 01 B} S 3125 7200 7480 7555 8045
Hi 104
P | 08.16
Q | 05.10
R 04,8
S | 08.13
Table 10: Comparison of powers
Contamination € Anova VdW  Trim Wins Huber
none 0 90.50 89.44 8525 85.41 88.19
symmetric 0.03 | 5963 8206 8170 81.70 B84.68
0.1 28.55 6554 7143 7254 75.12
one-sided 003 | 5959 8299 81.71 81.78 85.19
0.1 2920 68.71 6548 6888 7508

Classical analysis of means is the most powerful test for normal
data, but contamination reduces the power of this method consid-
erably. It does not matter whether the contamination is syrﬂmetric
or one-sided; only the number of outliers (for some chosen vari-

ance) appears to have any influence.
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- Table 9, as well as the tables that were not included in this
chapter, show that the difference in power for normal data (€ = 0)
between classical anova and the test of Van der Waerden almost
disappears as the sample size increases from 10 1o 40. Even for
small samples (n; = 10) the difference is only marginal. The
influence of outliers on Van der Waerden's test is considerably
smaller than on classical analysis of means, especialy as their
‘number increases. ,

- Trimming and Winsorizing give similar results, except for one-
sided contamination with € = 0.1, where Winsorizing seems 1o pro-
vide a more powerful test. But that is just the situation where
winsorizing should not be trusted because outliers can occur
between the tails of a sample (as defined by g) resulting in a pro-
bability of rejecting H o when true that considerably exceeds the
chosen size «. Table 7 shows that trimming is insensitive to this

- problem, at least with our values of g. For smaller values of €, the
values of g could be lowered, which might result in a somewhat
higher power.

- Huber’s method yields the most powerful test, except when the
data come from uncontaminated normal distributions in which case
classical analysis of means has slightly more power.

The aim of the study presented in this chapter was to select a test for
outlier-resistant one-way analysis of means that could be added to the
local collection of statistical software at Eindhoven University of Tech-
nology. Considering the accuracy of the actual size, and the superior
power of Huber’s method, the conclusion was reached that this test was
the appropriate choice. However, the differences with Van der
Waerden's test and trimming are moderate, and Huber's greater power
may be partly attributed to its slightly greater size. So Van der
Waerden's test and trimming can be considered as reasonable alterna-
tives.

5.8. An example with one outlier

Consider the heights of people, coming from three groups. Every sample
contains ten observations and the data are given in meters with two
decimals. The results are presented in table 11. All tests reject the
hypothesis H  of equal means. The results are: '
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Table 11: Heights of people
Group1 Group2 Group3
1.88 1.86 1.56
1.81 1.75 1.67
1.99 1.78 1.57
1.84 1.77 1.72
1.89 1.80 1.90
1.90 1.1 1.80
1.97 1.87 1.76
1.85 1.92 1.77
1.88 1.60 1.73
1.91 1.68 1.95

Classical analysis of means: F = 6.64 with 2 and 27 degrees of free-
dom. The critical value for these parameters is 3.39 (a = 0.05).
Therefore H o can be rejected.

Van der Waerden: The test statistic is 9.49 with 2 degrees of free-
dom. The critical value for a x?-distributed variate here is 5.99
resulting is the same conclusion.

Trimmed analysis of means: F = 5.44 with 2 and 21 degrees of
freedom. The loss of 6 degrees of freedom for the denominator
comes from deleting one observation from both 1ails in each sam-
ple. The critical level here is 3.47 so that the difference of the
means remains significant.

Winsorized analysis of means: F = 5.75 with 2 and 21 degrees of
freedom. The conclusion remains the same.

Huber’s method: F = 6.65 with 2 and 27 degrees of freedom. This
result is almost equal to that of the classical method.

Now suppose that for the first observation in the first group the decimal
point is forgotten. So the value 1.88 is replaced by 188. And here we
have a very serious outlier. What will happen to the results?

Classical: F = 1.10 with 2 and 27 degrees of freedom. The
difference of the means has been masked by the presence of the
outlier.

Van der Waerden: The test statistic is 10.63 with 2 degrees of free-
dom so that H ; will still be rejected.
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Trimmed test: F = 6.21 with 2 and 21 degrees of freedom. The con-
clusion is not affected by the presence of an outlier.

Winsorized test: F = 6.46 with 2 and 21 degrees of freedom. The
conclusion is the same. » '

Huber's method: F = 9.30 with 2 and 27 degrees of freedom.

In the last line, just like with the other robust methods, the difference
of the means has become more significant. In this respect there is quite a
difference with classical analysis of means where the power has been
absorbed completely by the presence of one single outlier.

5.9. Least median of squares

In this section and the following methods for outlier-resistant one-way
analysis of means will be described that entered this study, but were
discarded before the final simulation. The first method is Least Median
of Squares (L.LMS) that originates from Rousseeuw (1984) and is
designed for regression models. Instead of minimizing the sum of
squares, LMS minimizes the median of the squared residuals. This
results in very robust estimates for the parameters B8;: up to 50%
outliers have no influence on the estimated values. No simple formula
for this method seems to exist, but Leroy and Rousseeuw (1985) [or
Rousseeuw and Leroy (1987)] present an heuristic algorithm that is easy
to implement. LMS results in fitted values y;,* that can be used to esti-
mate the scale parameter:

6= 1.4826/med; (y;,—3,* Y(1+5/(N =k ))

Here N is the number of observations for a regression model with k

parameters. The next step is to delete observations y; if:
l}’s - As"l

&t

>2.5

If the residuals are normally distributed, roughly 2% of the observa-
tions will be deleted. The remaining observations are thereafter used in
an ordinary regression, where tests of significance can be performed as if
these observations were the only ones in the analysis. In regression
situations the results of this approach are very satisfactory, and there-
fore it seemed attractive to try LMS for anova models. The LMS esti-
mate of location is the midpoint of the shortest half of the ordered
observations. This was used to estimate the parameters in the one-way
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analysis of means model in this study. Thereafter the outliers were
deleted and a classical test was performed on the remaining observa-
vions. Since LMS was only validated for continuous predictors it was
necessary to verify the control over the chosen size again. because here it
was used with dummy variables. The results of a simulation were
rather disappointing: with a nominal size of 5% the estimated size varied
between 9% and 26% in similar tables as where the size was estimated
for the other tests. The results were especially bad when there were no
outliers {€ = 0), or if the samples were small. This can be explained as
follows. The L.MS estimate of location is very robust, but not very
efficient. If a sample happens to be seriously skewed one can expect that
o will be under-estimated. This results in deleting more observations
than the probability of |u|>2.5 indicates (where v denotes a standard
normal distributed variate). Since the deleted observations are the ones
that differ most from the estimate of location. this will lead to under-
estimating the within-variance, while leaving the between-variance rela-
tively unaffected. This explains the fact that the values of F exceed their
expectations under H . In the presence of outliers the deleted observa-
tions will be the ones that ought to be deleted. And for bigger samples
the probability of being seriously skewed decreases.

So LMS is in its present stage not a good candidate for outliers-resistant
analysis of means. We need more insight in the distribution of the test-
statistic under H g, since the way the F-statistic is used here is certainly
not appropriate. There is however a situation with a nominal predictor
where LMS could be considered. Suppose there are some continuous
covariables. Then LMS can be used for every value of the nominal pred-
ictor. The outliers can be deleted and ordinary regression can be applied
to the remaining observations. Of course this can only be done if the
nominal predictor has only a few different values, and many observa-
tions for each value. An attractive property of LMS, that might prove
useful here, is its insensitivity to leverage points (points with outlying
values for the predictor variables). In that respect LMS is far better than
Huber’s method that can also handle covariables but only in the absence
of leverage points.

5.10. An adaptive nonparametric test

For a short while it seemed possible to construct an adaptive non-
parametric test with reasonable power for the contamination models
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used in this study. The approach was strongly related to the distribu-

tions under consideration. The density for symmetric contamination is:
2

1 x2 1
expl— +(1— expl—
P e T L Y=

Suppose we are sure that this model represents the data, and that we

flx)=¢

know the parameters €, ¢ and €. For this distribution it is possible to
construct a nonparametric test with asymptotically optimal power. The
test-statistic is given by:

N—1 & [S,—E(S5)F

N .
3 (a—a)2i=! n;
i=1

Q:

This denoles a large family of which the Mood & Brown, Kruskal &
Wallis and Van der Waerden tests are members. The scores a; can be
chosen in order to get optimal power for some selected distribution. §;
is the sum of the scores within the j-th sample. The statistic Q is
asymptotically distributed as x° with k - 1 degrees of freedom [Hajek
(1969)] if the score-generating function ¢ is reasonably smooth. The
scores are generated as:

i

N+1°

a;=¢( )

In order to get asymptotically optimal power for some distribution F
with density { the function ¢ has to be chosen as follows:

A Vi U)
Sl )= = i)

Using these principles it is possible to construct an optimal test for the
distribution that represents symmetric contamination. And if the
parameters are not known they can be estimated. The estimated values
can then be used in the density function and this would result in a non-
parametric test with satisfactory power for the contamination model if
the parameters were efficiently estimated. The first parameter to be
estimated is ¢. This can be done by using a robust regression procedure
like Huber's or LMS. Fitting the model will result in & and fitted values
y; for the observations y;. The residuals are given as ¢; = y; - 3;. And
with these it is possible to estimate the other parameters € and 6. Sup-
pose x is a normally distributed stochastic variable with zero mean and
variance 2. Then we have E|x| = oVv2/m and Ex? = o2 These
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N N
moments can be estimated as % Y |ei| and 71’—— 7. e;° respectively. Com-
i=1 im]

bining this with the known density of the errofs results in the following
1wo equations:

N
-;—,z|e,.|-—(1-e)m/—z/w+em/—o““z I
i=1 .

’ 1 N .
W2612=(1—6)02+€90'2

i=1

After substituting the robust estimate & for o the parameters € and 0
can be estimated from these equations.

Some experiments have led to the conclusion that the sample size needed
for a reasonable estimate of the parameters 0, € and 8 by far exceeds
the sample sizes that are common for analysis of means situations. And
this is not the only reason for rejecting this approach. A test like this
will be strongly adapted to the chosen model for the outliers. And even
if this test would show good power in a simulation where the distribu-
tion of the errors matches the model on which the computation of the
scores is based, almost nothing could be said about its behaviour for
other models describing the outliers.

5.11. Robustness of Huber’s method against variance heterogeneity

Since Huber’s method was selected as the best choice for normal popula-
tions with some extreme outliers it is interesting to examine what will
happen if this test is used in situations where the second order method
of James [see chapter 2] is recommended. If we examine the different
scale parameters relative to the smallest one, it is possible to describe the
situation of variance heterogeneity in the language of this chapter. The
parameter 0 is not the same for every group, but the values for 8; are
moderate. For every group the parameter €; = 1 except for the group
with the smallest variance where €; = 0. So variance heterogeneity is
quite different from the model with outliers.

Every entry in table 12 is based on 2500 replications, so that the actual
size is estimated with a standard deviation of 0.436% for a nominal size
of 5%. The conclusion is very clear: Huber's method is not robust
against variance heterogeneity. The behaviour of this test is similar to
that of classical anova [see chapter 1]. If the sample sizes are equal and
the population variances are unequal then the actual probability of
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Table 12: Huber's method

sample size sigma percentage
10,10.10 1,11 6.16
1.2.3 10.08

252525 1,11 5.16
12,3 12.16

40.40.40 1,11 5.96
1.2.3 12.36

10.25.40 11,1 5.28
1.2.3 2.16

321 24.60

10,10,10.10.10,10 | 1,1,1.1.1.1 5.12
1,122.33 12.28

25,25,2525,25.25 | 1,1,1.1,1.1 5.40
112233 16.36
40,40,40.40,40.40 | 1,1.1,1.1.1 4.80
112233 15.32

10,10,25.25.40,40 | 1,1,1,1.1.1 5.84
1.1,22.3.3 3.48

332211 25.16

rejecting a hypothesis when true will exceed the nominal value; If the
sample sizes are unequal then the test will become even more progressive
if the bigger variances coincide with the smaller samples. Conservatism
can be expected if the bigger variances coincide with the bigger samples.

What is the practical value of a test that is outlier-resistant but not
robust against variance heterogeneity? It can handle some typing errors
if the data are entered at a computer-terminal. It can also handle some
really extreme observations as long as they are evenly distributed over
the samples. But Huber's method can certainly not be recommended if
there are reasons to suppose that the scale parameters of the populations
involved are different.

5.12. Robustness of the second order method of James against
outliers

In chapter 2 we saw that the second order method of James gives the
user excellent control over the chosen size and has reasonable power in
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Table 13: James method ,(siée) ‘

sample size . € | percentage

10,1010 .0 4.80

0.03 3.15
, : 0.1 1.85
25,2525 0 4.75
0.03 4.00
: 0.1 2.30
40.40.40 0 5.10
0.03 3.25
0.1 3.80
10.25.40 0 5.10
0.03 3.70
, 0.1 2.90
10.10,10.10,10.10 0 5.50
0.03 3.85
0.1 2.00
252525252525 0 5.10
0.03 3.65
0.1 2.50
40,40.40,40,40,40 0 523
0.03 2.70
0.1 2.95
10.10,25.25,40.40 0 5.00
0.03 395
0.1 2.40

most situations. The only condition is that the samples come from nor-
mal populations. Variance homogeneity is not assumed. In this section
the behaviour of the method of James will be examined in the presence
of outliers. Table 13 presents a simulation study under the hypothesis
H ; that the location parameters are equal. From table 13 we can con-
clude that an error distribution with outliers can make the method of
James conservative. This simulation was based on 2000 replications for
each cell. The samples were generated from normal populations with g;
= 0 and o? = 1. With probability € the variance was increased to o2 =

50.
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Table 14: James method (power)

sample size € 10u; | Anova James Huber
10,10,10 0 | 0816 | 88.05 8470 84.50
0.03 64.55 69.85 80.75

0.1 36.75 4320 69.25

25,2525 0 05,10 | 8820 8730 8545
0.03 59.50 6620 82.45

0.1 29.00 3390 71.00

40,40 .40 0 048 89.55 88.60 87.05
0.03 57.30 62.55 83.65

0.1 27.45 3090 7550

10.25.40 0 08,13 | 92,65 8975 91.00
0.03 64.75 7130 87.35

0.1 31.25 4430 80.45

Conservatism in a test usually results in a loss of power. To get a first
impression the method of James was applied to the data representing the
heights of people from three groups that was mentioned earlier in this
chapter. This resulted in a tail probability of 0.002, so that the
hypothesis of equal means could be rejected without any doubt. Then
the decimal point of the first observation in the first group was removed.
Instead of 1.88 we got 188 and this resulted in a tail probability of
0.525. So one outlier can remove all power from this test, just like we
already saw for classical one-way analysis of means.

Table 14 presents a comparison of the powers of James test with classi-
cal analysis of means and Huber's method. If there are no outliers (€ =
0) the difference in power is very small. The classical method is the best,
and James test seemskslightly better than Huber's method, but more
simulations should be done before the difference would be convincing. If
the fraction of outliers increases to 0.03 and 0.1, then the power of
James test decreases, but not so fast as the power of the classical
method. Compared with these two, Huber's method is very outlier-
resistant. ’

The conclusion can be that the method of James is not to be recom-
mended if there are reasons to suppose that outliers may be present. In
practice it will not always be easy to determine whether a more robust
method than classical anova is needed. And it is very unfortunate that
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the methods of James and Huber, that have excellent characteristics in
the situations for which they are designed. are not robust agaiﬁst vari-
ance helerogeneity as well as outliers. 80 the user of these methods has
the difficult task to choose carefully.

In the introduction we saw already some kind of preliminary data
analysis that involves the extreme values of every sample. as well as the
quartiles. 0, is the median and that is a more robust estimate of loca-
tion than the sample mean. The difference between ¢, and Q3 is an indi-
cation of the scale and the values for these differences should be similar
of one is considering a test that assumes variance homogeheiiy. The clas-
sical variances or standard deviations are not suitable for this purpose if
one is taking the possible presence of some exireme outliers into account.
A more robust alternative is based on the MAD estimate of scale:

Sumap = 1.4826med ;| x; —med; (x; )|

Here MAD stands for Median of the Absolute Deviations from the
median. A more attractive Kind of preliminary data analysis than the
one given in section 1.4 is given in table 15:

Table 15: Preliminary' data description

sample | minimum | median | Spap | maximum
1 1.56 1.73 0.124 1.87
2 1.58 | 175 | 0.151 1.90
3 1.61 1.79 0.148 | 1.88
4 1.57 1.80 0.160 185

The data represent the heights of people, coming from 4 groups. It is
easily seen that variance homogeneity can be assumed here (if the sam-
ple sizes are moderate), but that the analyst has made a typing error. In
this case it is more appropriate to replace the observation 185 by 1.85
and try a similar data description again in order to find out if there are
more typing errors of this kind. But in other situations one might prefer
an outlier~-resistant method.
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6. Robustness of multiple comparisons against variance hetero-
geneity and outliers

6.1. Introduction

In the preceding chapters we saw that the second order James test is
very robust against variance heterogeneity and that Huber’s method can
handle some extreme outliers. Both tests are designed for the hypothesis
of equal population parameters, and acceptance of this hypothesis is
usually the end of the analysis. But if the location parameters seem to
be unequal a new question arises and thal concerns some kind of group-
ing of the samples. For the moment we will consider samples from nor-
mal populations with equal variances and no outliers. Fisher (1935)
suggested the Least Significant Difference test that consists of two stages.
At first an ordinary one-way analysis of means is performed and if the
hypothesis is accepted then no further action is taken. But. if the
hypothesis is rejected than all the pairs are compared with a Students
t-test with the same size «. The standard error is based on the pooled
variance from all the samples with the appropriate number of degrees of
freedom. The t-tests are preceded by the F-test as some kind of protec-
tion against loss of control over the chosen size. Suppose the analysis
consisted of only the paired t-tests with the same size a = 0.05. Then
the probability of declairing any pair different when in fact their loca-
tion parameters are equal can easily exceed this chosen size. Duncan
(1951) showed that the actual size in this context will be about 0.1223
for 3 samples, 0.2034 for 4 samples and even 0.9183 for 20 samples. So
some kind of protection is needed and Fisher's idea works if one only
wants to protect the overall size if all the location parameters are equal.
But suppose there are some groups of samples having different means,
but that within these groups the samples come from populations with
the same means. For instance, we can have 10 samples, 5 of them with
expectation x; and 5 with expectation x&,. Then the F-test will not give
the necessary. protection, because after rejection of the overall hypothesis
the t-tests will be applied to every pair with the same o. Hayter {1986)
has examined this siluation and he proved the following theorem:

For any balanced one-way model and for an unbalanced model
with k = 3 the Maximum Familywise Error Rate MFWER of the «
level Least Significant Difference test of k populations with »
degrees of freedom for the error is:
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o' (k v.a)=Plg _,> V2t ,(a/2)]

Here ¢, .1, is a studentized range random variable with parameters
k-1 and v, and t,(a/2) is the upper /2 point of the t-distribution
with v degrees of freedom.

The M in MFWER denotes that the maximum is taken over all possible
values of the population means u;. Hayter also showed that o (k v.a)
provides an upper bound on the MFWER for any unbalanced one-way
model with more than three samples. Therefore the Least Significant
Difference test can be improved by using g, .,,{(a)/Vv2 instead of
t {a/2) for the pairwise comparisons in the second stage of this test.
Adaptations of this idea to variance heterogeneity and to outliers will be
discussed further in this chapter. First attention will be given to simple
pairwise comparisons that are not protected by an overall test, but by
modifications of the pairwise size .

6.2. Pairwise comparisons based on the t-distribution

In this section we will drop the equality of the population variances.
The pairwise comparisons need a procedure for the Behrens-Fisher prob-
lem and a good candidate is Welch's approximate t-solution. This test
has been evaluated by Wang (1971) and he concluded that it gives the
user excellent control over the chosen size, whatever the value of the
nuisance parameter =0 ?/0 ? may be. The test statistic is:

Cx—x,
si?/n; +s,~2/n,-

Here x; denotes the i-th sample mean. Siz the corresponding sample vari-
ance and n; the sample size. Pooling of the k variances as in the second
stage of Fishers Least Significant Difference test is avoided here. The test
statistic t follows under the hypothesis of equal population means
approximately a t-distribution with v;; degrees of freedom:

2 2
5; 5
L4y
n; n;

(
i

554 Sj“

n(n;,—1) ni(n;—1)

v =

Ury and Wiggings (1971) proposed this test for pairwise comparisons
with the Bonferroni B that controls the familywise error rate if these
comparisons are not preceeded by an overall test. For k samples there
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are k(k-1)/2 pairs. Therefore the probability of declaring any pair
different when in fact they are equal is limited by « if for B the follow-
ing value is chosen: '

2a

A= T&-D

The result will be conservative if one considers the familywise error
rate. Another problem seems to lie in the fact that »;; is generally not
an integer. But Wang has shown that replacing it by the nearest integer
is a reasonable solution provided that »;; is not too small. An alterna-
tive is to use Peiser’s (1943) approximation for which the parameter
does not need to be an integer:

— 1
t,,(a)~uo,+E[u3 +u,]

Here u, stands for the upper « point of the standard normal distribu-
tion. The simultaneous confidence intervals for the Ury and Wiggins test
are given by: '

mi—pjelx—x; F t,,ij(B/Z)\/siz/ni +s57/n;]

There are some alternatives mentioned in the literature. Hochberg
(1976) suggested using: '

wi—pjelx;—x; F yoIsP/n;+siin;]

Here vy, is the solution of:

k&
i§1j§+lp[ltyijl >yl=a
Here the same v;; is used as in the previous test. Tamhane (1979) has
shown that these tests are very similar in all respects (if all the sample
sizes are equal, the tests are even exactly the same). And since the Ury
and Wiggins approach is easier to apply no further attention will be
given to Hochberg's proposal. Tamhane (1977) suggested using
Banerjee’s (1961) approximate solution of the Behrens-Fisher problem
with Sidak’s y for the pairwise comparisons. This y also results in a
conservative overall test, but it exceeds the Bonferroni 8 and therefore
reduces the conservatism:
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2
y=1-(1—a)* D

This approach resulis in the following confidence intervals:

pi—pyelxi—x; ® ft] (y/z)s,-z/n,-ﬁ—z,?l (y/2)s/n; ]

Later Tamhane (1979) showed that this will result in a very conserva-
tive test and he suggested to use the Welch test with y instead of 8 for
the pairwise comparisons. Ury and Wiggins (1971) found that the choice
of ¥,; can be improved by taking n; +n,—2 if one of the following con-
ditions is met: '

9/10€ r; /n; < 10/9
9/10< (5;%/n; )/(s,-z/nj‘)fi 10/9
4/5€n;/n; < 5/4 and 1/2€ (s*/n; )/ (s ?/n; )L 2
2/3< n;/n; € 3/2 and 3/4< (s%/n; Y/ (s ?/n; )< 4/3

Tamhane (1979) showed that among some competitors this is the best
test for pairwise comparisons based on the t-distribution. Further in this
chapter some alternatives will be discussed that use other distributions.
For equal variances the natural choice is:

Ri™H; €[xi_xj Ft,(y/2)s \/1;?2;“}'1;&}]

Here the standard deviation s is based on the pooled variance with v =
N —k degrees of freedom. An adaptétion of this method to the situation
of equal variances with a small probability of some extreme outliers
will also be discussed (see section 7 of this chapter).

6.3. Multiple range tests

In this section a strategy will be pointed out that was originated by
Newman (1939), Duncan (1951) and Keuls (1952). At first we will
assume the sample sizes to be equal. Also variance heterogeneity will not
be allowed. Later on these restrictions will be dropped.

Let x¢y) . ... . X () be the sample means, sorted in non-decreasing order.
The first hypothesis of interest is Hyl gy = ... = u; ., where the popula-
tion means are renumbered so that their ordering becomes the same as
the sample means which are their estimates. Then H  can be tested with:
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=iy €lxg—x, # g, :(U‘)J-*

Here g, ,(a) is the upper a point of the studentized range distribution
with parameters k and v. The standard deviation s is based on the
pooled variance with v = N —k& degrees of freedom:

1

1y
v

W M»

Duncan (1951) remarks that this test has a serious disadvantage relative
10 the F-test for one-way analysis of means:

When an F-test is used the null hypothesis has a smaller likelihood
in every case in which it is rejected than in every case in which it is
accepted. This is not true for a range test. For that test, the null
hypothesis is sometimes rejected in cases when it has a larger likel-
ihood than in other cases when it is accepted. This is a decided
intuitive weakness of any test of a null hypothesis which does not
conform to the likelihood ratio criterion.

If H, is rejected. the next stage is 10 test py = ... = gy and pp = ... =
# - Proceeding like this until every hypothesis is accepted will result in
some kind of grouping of the samples such that g; and u; will be
called significantly different if they do not belong to the same group. It
is possible that the resulting groups partially overlap, so that the fol-
lowing situation can be met:

1 = Mol accepied

Mo = M3 accepted

1= 3t rejected
This is only natural; pairwise comparisons often will yield similar
results. If a candidate for the splitting process contains p means then

gp ., a, ) is to be used instead of ¢, ,(«). Newman and Keuls suggested
o, = a and Duncan preferred:

a)=1-(1=-a)y?

The Newman and Keuls a, will only guarantee the overall size o for
the hypothesis that all the means are equal. Duncan’s method does not
control the familywise error rate, but it controls each pairwise com-
parison at the « level. Both choices will be discarded since in this
chapler we are more interested in controlling the MFWER. This can be
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done by following a suggestion of Ryan (1960) for which Einot and
Gabriel (1975) demonstrated that the actual probability of declaring
any mean different when in fact they are equal will never exceed o

a}f‘7= 1—(1—a )/

Now the equality of the sample sizes will be dropped. but for the
moment the variances still have to be equal. Miller (1966) suggested
using the median of n; . ... . n, . Winer (1962) suggested the harmonic
mean H:

H=

™M= -

le 1
k; n;

it

1

Kramer (1956) modified the formula of the test to this situation:
pwi—p;el—x; % g, (o, )s J(I/n; +1/n;)/2]

k
Here v = N—k and N = } n;. Only in Kramer's case (and then only

i=1

for two samples) does the studentized range distribution hold. For
Miller and Winer the approximation will be reasonable if the sample
sizes are not too different. Kramer's test contains a trap that can be
explained by considering four samples with unequal sample sizes. Let
X(4) » - » X(q) be the ordered sample means and n; , ... . n4 the
corresponding sample sizes. Suppose that n; and n4 are much smaller
than n; and n3. Then the hypothesié My = .. = 4 can be accepted while
HM» and w3 are significantly different. But the strategy will make sure
that this difference will never be found. This problem was pointed out
by a referee of Kramer's contribution and it was mentioned in the
revised publication.

From here on the variances will be allowed to be unequal. For equal
sample sizes Ramseyer and Tcheng (1973) found that the studentized
range statistic is remarkably robust against variance heterogeneity. So
for almost equal sample sizes it seems reasonable to use the Winer or
Milier approach and ignore the differences in the variances. But suppose
that in the above mentioned example the variances s? and s$ are much
smaller than sZ and s? (this is a situation that was not considered by
Ramseyer and Tcheng). Then it is possible that a pairwise comparison of
2 and p; would lead to a significant result, while the hypothesis for
some group of samples to which these means belong is accepted. So the
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pairwise comparison will never be performed and here we have a conflict
between the stepwise strategy and the individual tests.

Unfortunately. the robustness of Kramer's test is rather poor [Games
and Howell (1976)], so if the sample sizes differ greatly one might be
tempted to consider:

i M G[x,m*xj + qp',,(j(ap )\/(sz/n,"i’sz/nj )/2]

Here pooling of the variances is avoided and v;; comes from Welch's
test and is restricted to the extreme samples in the range under con-
sideration. The studentized range distribution does not hold for these
separaiely estimated variances, but in another context the approximation
seems reasonable though a bit conservative as we will see in the next
section. However the conflict with the strategy of the multiple range test
is even stronger here, because if the extreme samples have big variances
or small sample sizes it is possible that important differences within the
range are obscured.

The conclusion from this section can be that generalisations of the mul-
tiple range test to unequal sample sizes or variance heterogeneity are not
to be recommended. An important difference between two means can be
masked by the presence of some small samples or some samples with
bigger variances. Within the strategy of pairwise comparisons however,
ithe studentized range distribution is a very attractive tool for unbal-
anced designs with variance heterogeneity as will be shown in the next
section.

6.4. Pairwise comparisons based on the g-distribution

If the sample sizes and the variances are equal one can use Tukey's
(1953) method for pairwise comparisons:

Mi— M e[xi—xj ¥ G ,,(Ot)#]

Here s is based on the pooled variance with ¥ = N —k degrees of free-
dom. This test is known as the Tukey Wholly Significant Difference test
and Miller (1966) has stated that it is the most powerful test for pair-
wise comparisons that controls the familywise error rate. An important
difference of this test with Hayter's modification of Fisher's Least
Significant Difference test that was mentioned in the introduction lies in
the fact that Tukey uses ¢ ,{a) while Hayter suggested g; ..; (o). This
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difference comes from the fact that Tukey considers unprotected pair-
wise comparisons while in Hayter’'s case the pairwise comparisons are
only performed if the hypothesis that all the means are equal is rejected
by an « level F-test.

If the sample sizes are unequal one can consider Kramer’s modification:

pi—w; el —x; # g a)s J(T7n; +17n;)/2)

Games and Howell (1976) mention that this puts the familywise error
rate slightly below «. while using the median or the harmonic mean
often results in exceeding o. They based the conservatism of the
Tukey-Kramer method on a simulation study. Later (1984) Hayter gave
an analytical proof for this conjecture. Games and Howell recommended
Kramer's idea and suggested the folléwing modification for unequal
variances:

i E[xi—xj + qk",,”(a)\/(.f,-z/n,<+sjz/nj )/2]

Here v;; comes from Welch's modified t-test. Therefore this method
differs from pairwise comparisons based on Welch's test with Sidak’s ¥
only in the factor that scales the combined standard deviation. Tamhane
(1979) bas shown that: '

' 2
Qi v, (@IS, (y/2) with y=1—(1~a)¥&=D

Here the equality only holds if k = 2. Therefore the test by Games and
Howell will be more powerful. But they use the studentized range
statistic in combination with separately estimated variances so there is
some reason 1o fear that the actual familywise error rate will exceed its
nominal value. In 1983 Games and Howell mentioned that for their test
this error rate varied between 0.0286 and 0.0622 for a nominal value of
0.05 in a study with a wide variety of conditions.

In chapter 2 we saw that the second order method of James is a good
choice for the hypothesis that all the means are equal. This test can han-
dle variance helerogeneity very well, but it is not designed for multiple
comparisons and therefore the Games and Howell test seems more
attractive for cases where more information about the separate means is
needed. In a simulation study both tests are compared under Hg uy = ...
= u; as well as under some alternatives. For the Games and Howell test
the hypothesis H is considered to be rejected if at least one pairwise
comparison leads to a significant result. Each entry in tables 1 and 2 is
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based on 2500 replications.

Table 1: Actual size with nominal size = 5%

sample size a; G&H James
44,44 1.1.1.1 4.52 4.64
1223 6.08 5.84

4,6,8,10 1,1.1.1 3.20 4.56

1223 2.60 4.72
3221 4.88 5.64
10,10,10,10 1.1.1.1 2.44 5.36
1223 3.20 5.52
4,6,8.10,12 12,345 3.84 4.68
1.2.3,5.7 3.84 4.92
54321 6.72 5.72
75321 6.64 5.92
8.8.8.8.8 12,345 4.60 4.56
1.2,3,5,7 4.20 4.68

From table 1 it is clear that the test by James controls the chosen size
much better than the Games and Howell method, which can be conser-
vative but also slightly progressive. The pattern is similar as in classical
one-way analysis of means: If the bigger samples coincide with the
bigger variances then the Games and Howell test will be conservative.
For more balanced situations the conservatism will decrease but not
vanish. And if the bigger samples coincide with the smaller variances
then the test will become slightly progressive if the differences are not
too small.

A comparison of powers is given in table 2. It is remarkable that
although the method of James has more power, the difference with the
Games and Howell test is only moderate, even in cases where the actual
size of this test was reduced to 2.60% while a nominal value of 5% was
chosen.

The conclusion of these simulations can be that for the hypothesis that
all the means are equal the method of James is a better choice than the
Games and Howell test. If one is interested in an adaptation of Fisher's
Least Significant Difference test to the situation of variance hetero-
geneity, a good start will be to replace the first-stage F-test by the
method of James. Considering the results of this chapter and Hayter's
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Table 2: Estimated power with nominal size = 5%

sample size B g, G&H | lames

4444 | 3000 | 1.1,1.1 | 86.00 | 86.84
1223 | 52.76 | 60.28
322.1 | 2156 | 22.712
5001 | 1111 | 99.68 | 99.64
1223 | 91.60 | 97.08
3221 | 43.16 | 43.72
46810 | 3.000 | 1.1,1.1 | 8824 | 92.88
1223 | 75.60 | 86.92
3221 | 2012 | 24.12
0.00.3 | 1223 | 47.80 | 50.40
32,21 | 87.12 | 94.64

suggestion a good candidate for the second stage of this test is:

MR E[x,»-xj + qk_lv,,‘,j(a)'\/(s,-zfn,v+sj2/n); )/2]

The difference with the unprotected Games and Howell approach lies in
the fact that here qk_,‘véj(a) is used instead of g; ,,,U(a ). Whichever

approach the user may prefer, in both cases the g-statistic is a very good
tool for this kind of simultaneous statistical inference. Similar methods
for a model with outliers will be given further in this chapter (see sec-
tons 7, 8 and 9). -

6.5. Multiple F-tests

This test was proposed by Duncan (1951). In the original version the
population variances must be equal. The procedure is the same as for the
multiple range test, only the g-statistic is replaced by an F, so that the
first stage becomes classical one-way analysis of means. In every stage
the pooled variance is used with the appropriate number of degrees of
freedom, based on all the samples and not only on the ones within the
range under consideration. At first Duncan proposed using
aP=1—(1—a) "1 in order to set the error rate for pairwise comparisons
to «. The operating characteristics of this approach are similar to
repeated t-tests at level « if the sample sizes are not too different [Petri-
novich and Hardyck (1969)]. Later (1955) Duncan suggested what he
called protection levels for which the familywise error rate will never
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exceed a if the sample sizes are equal:

O‘PD‘= 1_{],,_(!)(['—1)/(&'-1)

This o will always be lower than Ryan's af= 1—(1—a ¥ except in
the first stage when the value for both will be the chosen size . And
since o f already controls the familywise error rate, Duncan’s suggestion
will not be considered further. Welsch (1977) found that even af can
be improved a little and he suggested:

- 1k
a,)=1-(1—aY'* for p <k —1
a)=a for p2k—1

In the context of the strategy with ordered sample means &,”, o and
ap“’ are only safe to control the familywise error rate if the design is
balanced. The strategy can be adapted to the situation of unbalanced
designs as we will see further in this section. For the moment we will
simply ignore this and examine what can happen. The nature of the F-
test allows unequal sample sizes. This seems to make this approach more
attractive than the multiple range test, but there is a problem. Consider
four samples with only a few observations for the smallest and largest
sample mean and considerable sample sizes for the second and third
ordered mean. If Hg py = ... = g4 is rejected, the next two hypoheses to
be tested are gty = ... = gyand = ... = gy So uy and p4 will always be
called different. But in this unbalanced design it is possible that a pair-
wise comparison of u; and u4 would not yield any significance. One can
of course apply an « level t-test to every pair that seems significant as a
result of the multiple F-test. But it will not be easy to predict the efffect
of this approach on the familywise error rate. :

Now the equality of the variances will be dropped. It is well known
that the F-test is not robust against variance heterogeneity [Brown and
Forsythe (1974), Ekbohm (1976)]. So it seems reasonable to use the
non-iterative version of the second order method of James [see chapter
2], thus making a Multiple James test. This new test contains the same
problem as the multiple F-test, but that is not all. In a design with four
samples py and u4 will always be called different if Ho: iy = ... = p4 is
rejected. Now suppose that S7 and s# are much smaler than s{ and
sZ. Then the difference between g, and #4 may not be significant in a
pairwise comparison. Here the structural difference between this test and
generalisations of the multiple range test to unequal sample sizes and
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variance heterogeneity comes into the picture: If extreme means coincide
with big variances or small samples, then these generalisations of the
multiple range test can ignore important differences, while the Multiple |
James test can wrongly declare means 1o be different.

One can of course apply Welch's test for the Behrens-Fisher problem to
the pairs that seem significant as a consequence of the Multiple James
test. But if many pairwise comparisons are needed. and if for every pair
the same level « is used, il is clear that we can loose control over the
familywise error rate. So another strategy is needed and the answer is
given by Einot and Gabriel (1975). If a multiple F-test is 1o be per-
formed and the design is unbalanced one can simply start with the
overall F-test with level «. If the hypothesis is rejected one does not
look at the ordered sample means and try only the hypotheses pu, = ... =
Hp-1and po = ... =, but every subset has 1o be considered where one
p#; is left out. The same values aPD*. o f or ozp"" can be used with p = k-1
and the acceptance of a hypothesis means that the splitting process for
this subset stops. This strategy is not limited to the second stage, but it
is applied to every subset that becomes a candidate. For every step the
level is some o, where p is the number of samples in the subset under
consideration. This approach will avoid the classical trap in the multi-
ple F-test, but if it is applied to the multiple James test it can also han-
dle the specific problem that comes from variance heterogeneity.

This strategy can be very expensive in computer-time. In the worst case
situation, where all the means are isolated. the number of tests will be
2¥ —(k +1) instead of only %k(k —1) for the ordinary multiple James
test or any strategy based on pairwise comparisons. For 15 samples this
means 32752 tests instead of only 105. In order to find out whether this
improved method is worth the additional computations, the ordinary
multiple James test and this method were applied to 7 case studies with
unbalanced designs and variance heterogeneity (from a chemical experi-
ment and from a study on perception). There were 277 pairs and only
for two of these the conclusions were different, meaning that the
improved method did not confirm a pairwise significance that was found
by the multiple James test.

The conclusion of this section can be that if one favours the multiple F-
test one can deal with variance heterogeneity by modifying it into a
multiple James test. The best choice for the level in every range under
consideration is « pw by Welsch. If the improved strategy is t00 expensive
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in computer time, a terminal-oriented program should not only produce
the final result, but also the separate sample sizes and standard devia-
tions. If an inleresting pairwise significance is based on samples where
the sample sizes or standard deviations are very different, the user
should confirm the outcome by using Welch's test for the Behrens-
Fisher problem. The program should incorporate this possibility in a
user-{riendly conversation.

The results of a multiple James test can be represented by a vertical
ordering of identified sample means with bars representing the possibly
overlapping groups. This is visually more attractive than the matrix one
needs for pairwise comparisons, especialy if there are many samples.

6.6. An example with unequal variances

Some of the methods mentioned in the previous sections will be applied
to an example with four samples. The sample sizes are equal, but the
variances are very different. The data are artificial; they are chosen in
order to demonstrate the differences between some strategies. Table 3
gives the original data and table 4 is 2 summary of the relevant statis-
tics.

Table 3: Four samples, n; = 15
1 2 3 4

079 080 116 0387
0.78 145 124 -1.02
-1.09 056 159 222
167 095 112 -0.03
226 088 151 211
157 052 121  3.93
055 082 144 295
245 010 151 261
201 063 129 -063
058 086 090 096
227 056 188  3.39
058 105 178 231
136 082 098  4.99
463 024 140 165
-306 114 135  3.66
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Table 4: Summary of table 3
sample I’y o, size
1 0.725 | 1.958 | 15

2 0.759 | 0.343 | 15

3 1.358 | 0.273 | 15

4 1.999 | 1.722 | 15

The variances of samples number 1 and 4 by far exceed those of number
2 and 3. The first stage of the multiple range test involves only the
extreme samples and since they are already ordered this means that only
the bigger variances are involved. Not assuming variance homogeneity
the statistic will be based on the separately estimated variances with
Welch's number of degrees of freedom. This results in 1.892 as the test
statistic. The critical value here is ¢ 4.5/ V2 = 2.730 with level a = 0.05
so that the first hypothesis is accepted and the splitting process stops.
Samples number 2 and 3 will therefore not be compared. And that is
very unfortunate because the test statistic would be 7.478 with 27
degrees of freedom, resulting in an extremely significant difference.

The multiple James test (based on the ordered means) with level a =
0.05 results in two disjunct groups: samples 1 and 2 in one group and
samples 3 an 4 in the other. Therefore the difference between g, and u3
is recognized. but also some other pairwise differences that are not so
convincing. In table 5 the results of the multiple James test are com-
pared with the tail probability of Welch's test for every pair.

Table 5: Results of multiple James test
pair multiple James Welch
1,2 accepted 0.948
1.3 rejected 0.234
1.4 rejected 0.069
2.3 rejected 0.000
2.4 rejected 0.015
34 accepted 0.175

The multiple James test rejects the equality of u; and u4 with level o =
0.05 while a pairwise comparison leads to a tail probability of 0.069.
This pseudo-paradox is a consequence of the strategy with ordered
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means. This strategy is only really appropriate if the sample sizes and
variances are almost equal. An even more striking conflict can be seen by
comparing the results for samples number 1 and 3.

The third approach that we will consider is based on pairwise coinparis—
ons. Ury & Wiggins, Tamhane and Games & Howell all use essentially
the same test statistic; only the critical value is different (if there are
more than 1wo groups). In every case the number of degrees of freedom
v;; comes from Welch's approximate solution for the Behrens-Fisher
problem. The results are given in table 6.

Table 6: Pairwise comparisons
pair statistic vy
1.2 -0.066 15
1.3 -1.239 15
1.4 -1.892 28
23 -5.288 27
2.4 -2.736 15
34 -1.424 15

The critical values for the tests under consideration are:

20

Ul’y & Wiggins: t,,ij(ﬂ /2) with 8= m

2
Tamhane: z,, (y/2) with y= 1-(1—a)*®=D
Games & Howell: (; , U(a W2

For four groups and the values of v;; that come from table 6 this
results in critical values that are given in table 7.

Table 7: Critical values (k = 4)

vi; | Ury Tamhane Games

15 | 3.036 3.026 2.882
27 | 2.847 2.838 2.737
28 | 2.839 2.830 2.730

From tables 6 and 7 it is clear that the procedures by Ury & Wiggins,
Tamhane and Games & Howell result in the same conclusions: Only the
equality of @, and u3 has to be rejected and the difference between u,
and pu4 is almost significant.
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This example demonstrates the dangers of using strategies based on
ordered sample means in situations with variance heterogeneity. The
data were artificial; they were chosen specially in order to give as much
discredit to these strategies as possible. It is clear that in this situation
the methods based on pairwise comparisons result in the most acceptable
conclusions.

6.7. Dealing with outliers

Just like in the previous chapter we will consider here contaminated
normal data. With (small) probability € the variance will be ao? for
some a >> 1 and with probability 1—€ the variance will remain 0%. We
saw that Huber's method performs very well in this situation with
respect to power and control over the chosen size if one is interested in
testing the overall hypothesis m = ... = iy . The method can be used to
estimate the separate location parameters and it is also suitable for the
within-groups variance. Therefore one can consider a modification of the
multiple range test if the sample sizes are (almost) equal. A Multiple
Huber test is also possible in this situation by using the F-statistic
instead of the g-statistic. But if one permits the sample sizes to be
unequal it is better to consider pairwise comparisons. Two tests will be
examined. If the model does not permit outliers they are based on the
following critical differences for the sample means:

2
Sidak: ¢,(y/2)s J/1/n; +1/n; with y=1—(1—a)*&~D
Kramer: g, ,(a)s {1/n;+1/n;)/2

If outliers are allowed » can remain the same N —k ., but the separate
location parameters and s need modified estimators. We choose the esti-
mators that are given in the previous chapter (see Huber's method)
where the influence of the outliers is reduced considerably. The resulting
tests will be denoted as Huber-Sidak and Huber-Kramer respectively. If
there are no outliers we know already that the original Sidak and Kra-
mer approaches are both conservative considering the familywise error
rate. And we also know that Huber's test is slightly progressive, almost
independently of the presence of outliers. In a simulation study we will
try to find out whether this combination of conservatism and progres-
siveness will result in an acceptable control over the chosen size in the
Huber-Sidak or Huber-Kramer test. The entries in table 8 are based on
2000 replications each. The actual size is estimated by the percentage of
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Table 8: Pairwise comparisons (Huber)

n; € Kramer Sidak Kramer Sidak
k=3 k=3 k=6 k=6

10| o 6.00 495 6.55 4.90
10 | 003 | 555 485 5.85 4.55
10 | 01 590  5.05 5.95 4.55
25| 0 560 500  5.50 4.55
25 | 003 | 555 475 5.70 4.30
0.1 530 470  5.65 4.65
0 515 480  6.05 4.35
003 | 565  5.15 4.45 3.70
0.1 535 435 4.45 3.35
0 520 450  5.00 3.85
003 | 450  3.95 4.85 4.00
0.1 5.40  4.95 3.65 3.05

>>>»88380

rejected hypotheses. The nominal size is 5%. so that the standard error
for these entries is given by v0.05%0.95/2000 = 0.00487 or 0.487%. A
fraction € of the data were generated from a normal distribution with u

= 0 and 02 = 50, and the remaining 1—€ came from the standard normal
distribution. The sample size A denotes [10,25,40] for three samples
and [10,10,25,25,40,40] for six samples. From table 8 we can conclude
that both tests give the user a reasonable amount of control over the
chosen size. We knew already that the Kramer modification results in a
uniformly more powerful test than pairwise t-tests with Sidak's 7.
Since Huber’s original test is a bit progressive it is not amazing that for
three samples Huber-Sidak controls the chosen size better than Huber-
Kramer. But all simultaneous tests based on pairwise comparisons tend
to conservatism if the number of samples increases and the design is
unbalanced. The simulation confirms this. Therefore Huber-Kramer is a
better choice if there are many samples with unequal sample sizes.

6.8. An example with one outlier

Consider six samples from normal populations with ten observations
each. The data are given in table 9. A summary of these data is given in
table 10. Assuming variance homogeneity we may test Hy: ) = ... =
Me by classical one-way analysis of means. The overall mean is 1.7335
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Table 9: Six samples, n; = 10

1 2 3 4 5 6

168 171 191 191 185 203
166 168 174 189 184 200
166 167 172 185 184 195
159 164 168 184 182 192
1.57 162 168 183 179 192
1.56 161 168 179 179 191
1.56 161 165 177 178 1.90
155 159 161 176 1.77 1.89
152 156 158 1.74 174 1.89
146 153 153 170. 172 1.77

Table 10: Summary of table 9

sample | mean | variance | sigma

1 1.581 | 0.00474 | 0.0689
1.622 | 0.00304 | 0.0551
1.678 | 0.01071 | 0.1035
1.808 | 0.00453 | 0.0673
1.794 | 0.00192 | 0.0438
1.918 | 0.00491 | 0.0700

[« NNV T N VS I

and the pooled variance is 0.004974. The test statistic F is 32.98 with 5
degrees of freedom for the numerator and 54 for the denominator. The
critical value here is 2.37 with level a = 0.05. Therefore the hypothesis
can be rejected. If we proceed with Hayter's modified Least Significant
Difference test the critical value for the difference between two sample
means is 0.0890. And if we ignore the information that the overall
hypothesis has already been rejected we can use Tukey's method for
pairwise comparisons yielding a critical value of 0.0932 for the same
difference. In both cases 12 pairs are significantly different out of the
total of 15. The differences of the sample means are given in table 11.
We can use this strategy here because the sample sizes are equal. If we
use Huber's method we get the following estimates for the location
parameters: 1.584, 1.622, 1.670, 1.808, 1.794 and 1.922. The joinﬂy
estimated location parameter is 1.7333 and the residual variance is
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Table 11: Differences of means
sample 1 2 3 4 5
2 0.041
3 0.097 0.056
4 0.227 0.186 0.130
5 0213 0172 0.116 0014
6 0337 029 0240 0.110 0.124

0.004765. The test statistic is 35.16 with the same parameters as with
classical anova and therefore also this method results in rejecting the
hypothesis that all the populations have equal means. The differences of
the robust estimates of the means are given in table 12.

Table 12: Differences of robust means

sample 1 2 3 4 5

2 0.039

3 0.085 0.047

4 0.224 0.186 0.139
5

6

0210 0171 0125 0.014
0.339 0300 0253 0114 0128

If we modify Hayter's Least Significant Difference test with Huber's
estimates we get a critical value of 0.0871 for the differences between
the estimated location parameters. lgnoring the fact that the overall
hypothesis was rejected we can use Huber-Kramer or Huber-Sidak with
critical values 0.0912 and 0.0946 respectively. Whatever we do, in all
these cases 11 out of the 15 pairs differ significantly. The classical
method found 12 differences and that is not very strange because for
normal populations with equal variances the classical method yields the
most powerful test.

Now suppose that the data represent heights of people from six groups.
The data are given in meters, bul the analyst (working at a terminal)
has once forgotten to enter the decimal point. The last observation in the
first group is the one where the mistake occured and so we have 146
instead of 1.46. The mean in the first group becomes 16.035, the sample
variance 2085.29938 and the standard deviation 45.6651. This has con-
siderable effect on the overall mean and the pooled variance; they
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become 4.1425 and 347.55408 respectively. Classical one-way anova
results in F = 0.97 and that is far from being significant. Therefore we
can not consider to proceed with the second stage of the Least Significant
Difference test.

If we do not start with an overall test we can use Tukey's method for
pairwise comparisons. But this test uses the pooled variance and there-
fore the influence of the outlier will also in this situation be consider-
able. The critical value for the sample means is 24.6309. The pairwise
differences are given in table 13.° o

Table 13: Differences of means
One extreme outlier
sample 1 2 3 4 -5
2 | 14.413
3 14.357 0.056
4 14.227 0.186 0.130
5 14.241 0172 0.116 0.014
6 14.117 0296 0.240 0110 0.124
Table 14: Differences of robust means
One extreme outlier
sample 1 23 4 5
2 0.019
K} 0.065 0.047
4 0.204 0:186 0.139
5 0.190 0.171 G125 0.014
6 0.319 0300 0.253 0.114 0.128

From table 13 we can see that according to Tukey's ‘classical test none of
the pairwise comparisons results in a significant difference. Applying
Huber's method here results in a considerable improvement. The test
statistic for Hy py = ... = fg is 32.36 so that this hypothesis can be
rejected. The robust mean for the first group becomes 1.604; the other
robust means are unaffected by the outlier. The jointly estimated loca-
tion parameter is 1.7366 and the residual variance is 0.004828. Please
note that these values differ only slightly from the ones obtained by
Huber's method for the original data without the outlier. Using Huber's
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estimates in the next stage of Hayter's Least Significant Difference test
results in critical value of 0.0877. If we ignore the result of the overall
test we can use Huber-Kramer or Huber-Sidak with critical values
0.0918 and 0.0952 respectively. All these approaches result in the same
conclusion: 11 pairs are significantly different (see table 14) and they are
the same pairs that were found by these methods when there was no
outlier.

6.9. Multiple range and multiple F tests with Huber’s estimates

Ramsey (1978) demonstrated that the multiple range test and the mul-
tiple F test have more power (if the design is balanced) than any test
based on pairwise comparisons. In the example with one outlier every
group contained the same number of observations. Therefore we can use
these tests here after modifying them to deal with outliers. The
modification consists of using Huber's estimates for the location parame-
ters and the residual variance. The resulting methods will be called mul-
tiple ¢/ test and multiple F¥ test. First we will examine the multiple F
test. Table 15 gives the critical F values as a function of the number of
means in the range under consideration. The overall size o = 0.05 and
for every range with p means o pW by Welsch is used.

Table 15: Critical F values
méans F value

2 6.072

3 3.938

4 3.115

5 2.543

6 2.386

For the samples without the outlier the results for the multiple F test
are consistent with those for Hayter's modified least Significant
Difference test. They are presented in table 16. If the outlier enters the
data the multiple F test will not recognize any difference because the
splitting process stops after the first stage. The multiple F¥ test yields
the same results for the data with and without the outlier. They are
presented in table 17. If there is no outlier the multiple F test recog-
nizes the difference between the first and the third sample while the
multiple F¥ test fails to do so. But it is clear that the multiple F¥ test
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Table 16: Differences of means

sample 1 2 3 4 5
2 accept

3 reject  accept

4 reject  reject  reject

5 reject  reject reject accept

6 reject  reject  reject  reject  reject

Table 17: Differences of robust means

sample 1 2 3 4 5
2 accept

3 accept  accept

4 reject  reject  reject

5 reject i'eject reject  accept

6 'reject reject  reject  reject  reject

is to be preferred if there is reason to suspect the presence of some
extreme outliers.

The critical range in the multiple range test and the multiple ¢ test
depends on the estimated residual variance. Table 18 gives the critical
values if the nominal size & = 0.05 and if for the ranges under con-
sideration a7 is chosen. |

Table 18: Critical ranges
means | S=0.0705 S=18.643 8=0.0690 5=0.0695

2 0.0777 20.544 0.0755 0.0766
0.0848 22.424 0.0830 - 0.0836
0.0887 23.444 0.0868 0.0874
0.0890 23.528 0.0871 0.0877
0.0932 24.632 0.0912 0.0918

[= WV B VL]

In table 18 the values of S (the square root of the residual variance)
correspond from left to right with: (1)} multiple range test, no outlier
(2) multiple range test. one extreme outlier (3) multiple g¥ test, no
outlier and (4) multiple g test, one extreme outlier. The multiple range
test recognizes all 12 differences if there is no outlier, but if the outlier
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Table 19: Summary of F and q tests
statistic | method | outlier | differences
F classical no 12
F classical yes 0
F robust no 11
F robust yes 11
q classical no 12
q classical yes 0
q robust | no 12
q robust yes 12

is present the strategy stops after the first stage and no difference is
found. The multiple g” test also finds these 12 differences, but the out-
come remains the same if the outlier is present. A summary of all the
results mentioned in this section is given in table 19. This example sug-
gests that the multiple ¢” test has more power than the multiple F¥
test. But that is highly unlikely because Ramsey (1978) has shown that
in almost every situation the multiple F test is more powerful than the
multiple range test (if the same «, is used) but that the difference in
power is very small. And there seems to be no reason why the order
should be reversed if the classical estimates are replaced by Huber's
alternatives.

The conclusion of this and the previous section can be the following:
Classical methods for multiple comparisons are not robust against the
presence of outliers. Even one single outlier can remove all power. And
not only in an overall test, but also in pairwise comparisons if one uses
the pooled variance. A modification of the classical methods using
Huber’s estimates for the location parameters and the residual variance
results in a considerable improvement. The loss of power if there are no
outliers is only marginal.
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7. Appendices

7.1. The generation of random normal deviates

In this study pseudo-random normal deviates were generated using the
method of Box and Muller {(1958). Let U/ and U, be independent ran-
dom variables from the same rectangular density function on the inter-
val [0, 1). Using these one can generate a pair of random deviates from
the same normal distribution as follows:

X = —2log U scos2ml,
Xo=+/—2log U sin27U ,

X and X, will be independent normal variables with zero mean and
unit variance as can be demonstrated by inverting the relationships:

—~(X2+X3)

2
_ 1 X>
U,= oy grctan X,

This results in the joint density of X and X .

~(X2+X%) _
5 =

_ 1
f (Xl,Xz)— T €xXp

1 -X? 1 -X3
o e = f (X
AP Py - (X (X2
The pseudo-random real numbers U, and U ; from the uniform distribu-
tion on the interval [0, 1) were generated by the mixed congruential

method. Let N be an integer starting-value. A new value for this vari-
able is computed as:

N :=(A*N +116177073375)MOD 2%°

Where A =152587890725 and := denotes the replacement operator.
With this formula sequences of pseudo-random integers are generated.
To get the desired real numbers the integers are divided by 2%°.

7.2. Computation of the F-distribution

The real function FISPRO(x .n .d ) computes the probability that an F-
distributed variate does not exceed x. The number of degrees of freedom
are n for the numerator and d for the denominator. This function is
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given by:
FISPRO(x . d )=C [t3"~2(d +tn )" *ar
[

Here x is a non-negative real and n and d are positive integers. The con-
stant C is given as:

c= Tn+d)2)
rdardd)

1 i
13" d 3¢

A distinction is made between the following cases:

a. n+d< 500, neven.

dd+2) .. »
Y (1—u )+ ..

d(d+2) .. (d+n—4) .\l 2
24..(n—2) (1=u) ]

Q=ui[1+1d (1—u)+

£

Here u=d (d +nx )~'. The desired probability is then computed as
FISPRO = 1 - Q. If Q happens to be negative then FISPRO = 1. This
is also true for the following cases.

b. n+d<¥ 500, d even.
(1 nfia . o n(n+2)
g=1-(1—u): {l+2u+_——_2.4 u?t ...

n(n+2) .. (n+d—4) wh@=2)]

Y INCES))

¢. n+d< 500, nandd both odd. Let #=arctanvnx/d . Then Q = 1
- A+ B8, where A and B are given as follows: If d = 1 then A =
20/w.1f d 2 2, then:

2 pe o aan 24 ..(d=3) 4,
A= - [0+sinf8+2c0s%0/34+ ... + 35 (=2 cos? ~20]

Hn=1thenB =0.I{f n 2 2 then:

2 ((d—1)/20
v ((d—2)/2)

(d+1)d+3) .. (d+n—4) . ,_
3.5 ..(n=2) sin” 0]

d+1 sin6+ ...

A= sinfcos® B[1+

+

d. n+d > 500, 10d € n. Q is computed as if the variate were x°-
distributed. The procedure CHIPRO is called with d degrees of
freedom, and the argument is given as:



d—1

1+——2n
v_

N

xd 2n

e. n+d> 500 10n < d. Qiscomputed by CHIPRO with n degrees
of freedom and argument:

n—1
1+ 2d
1 1
xn+2.d

yo=

In éll other cases:
—V2(1=f ,)f 3/24f =1
Nfaf 2410

Q=1ERF( >+l

Here f ;= —92; fa= —9%— and f 3=x§' . ERF denotes the error func-

tion that is defined as follows:
2 X
' Y —2
ERF (x )= 7= ~0fexp( t?)dt

For this function a very stable algorithm is used that yieids an
accuracy of at least 10 digits. In this study only the cases a, b and
¢ are encountered. The precision here is 107

Lackritz (1984) gave a more attractive method for finding the p-value of
an F-test. Unfortunately, this method came to the attention of the
present author when the simulation study was finished already.

7.3. Computation of the inverse x? distribution

A real function CHISTA («.v.€) is defined as follows: The tail probabil-
ity of a x?-distributed variate with v degrees of freedom is o. The value
for which this probability is reached is computed with precision € and
the result is stored in CHISTA. The algorithm consists of two parts:

a.  The estimation of a reasonable initial estimate x¢ of the solution x.
Here we use the abbreviation p=1—a. If ¥=1, then /x, is com-
- puted by the inverse standard normal probability function NOS-
TAT with parameter 1—(p+1)/2 and precision €. If ¥=2, then

x o= =2log, (1=p ). If ¥ >2, then:
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x0=v(T—E%;+tJ2*(9n]"lP

Where U is computed by the inverse standard normal probability
function with tail probability «. If »=1 or ¥=2 then x=x, and
the desired value has been found. If:

n

0.352

n

p<
b3 n
n24r(=)
2
or if in the last case the initial estimate is negative, then we use x §
instead of x,. where:
n 2
n

xd= (2fr(g-+ Dp)

b. The second part of the algorithm is an iteration with Newton’s
method until the precision € has been reached. The starting value is
XoOr X¢:

CHIPRO (x; )~p
f(x)

Xie1= X

Here the procedure CHIPRO computes the x>-distribution :With v
degrees of freedom. The derivative f (x;) is given as follows:

1 —l\
=n -1 i
i2 e 2

=22~

n

T
2 r(z)

During this process negative values of x;4 can occur. In this case a
Regula Falsi is used instead of Newton's method. In this study the
precision € has been given the value 1074,

Now a description of the function CHIPRO for the x°-distribution wil
be given. The result will be the tail probability « that is defined by:

1 “ _1
a= ———— [t""le"3"dt
2“F0n)!‘ ¢

Here m = v/2. The computation of this probability is based on the fol-
lowing recurrent relation:
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exp(— ;;'- )

- — }; e —1
alv)=aly 2)+(2) T

A distinction is made between two cases:

1. viseven n=2m.

aly)= er(""‘ _) Z (‘i‘)’ lm+a(2)

Here a(2) is computed as exp(—-;;).

2. visodd;n=2m,+ 1.

my 1 1
(X(V): exp(*%)igz(;—;-) ; I‘—(i:-_{)-ﬂx(l)

all)=

2 2
m!exp(—%t )dt

Here w = Vx .

Now we ohly have to explain the computation of the inverse standard
normal distribution function. The algorithm consists of two parts:

a. The computation of a reasonable initial estimate x4 of x:

C()+C i +Cztg
1+d ,z +d,t%4d 43

xo=(t~ )sgn
Heret=\}loge(p‘2)andsgn=l1f0<p 05.1f05 <p< 1
then sgn = -1 and t = /log, ([1~p ). NOSTAT will be given the

value 6 if p= 1 and -6 if p = -1. The constants in the function for
the initial estimate are:

co = 2.515517
¢, = 0.802853
¢, = 0.010328
dy=1.432788
d,=0.189269 -
d3 = 0.001308

b. Iteration with Newton’s method until a precision € has been
reached. The starting value is x:
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NOPROB{x;}—p
f (X,')

Xi41™= X

filx;)= —l—exp(-% x,2)

V2m

Here NOPROB gives the standard normal distribution function:
B 1 x 1.2
NOPROB (x )= 72—17_[0 exp(—1¢2)dt

For this function a very stable algorithm is used that is accurate to
at least 10 digits.

7.4. The generation of double exponential, logistic and Cauchy
variates

The density of the double exponential distribution (also known as the
laplace distribution) is:

Fa)= b exp(- 12222l

Here x is a real number, 4 and o are the parameters to be chosen by the
user with the restriction that o has to be positive. Random numbers
from this distribution are generated as follows. At first a random
number u is drawn from the open interval (0,1). Then y is a random
variate from the double exponential distribution if:

y = p+olog, (2u) for u S%
y=u—0olog, (2(1~u)) for 1 <u

This transformation was mentioned by Van Putten and Van der Tweel
(1979).

The logistic distribution has the following cumulative distribution func-
tion:

Fx)= 1

X =
)
B
Here x is a real number, o and B are the parameters than can be chosen
by the user. The scale parameter 8 has 1o be positive. Let u be a uniform
random number from the open interval {0,1). Then a random number y
from the logistic distribution can be got from the transformation:

1+exp(—
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y =a—Blog,( 17w
u
This tranformation has been given by Newman and Odell (1971).
The density of the Cauchy distribution is given by:
1 1

f )= —
O | (XTEy
o

Again x is a real number, & and O can be chosen by the user and o has
to be positive. Let u be a uniform random number from the open inter-
val (0,1). The following transformation will result in a random number
y from the cauchy distribution:

y=u+otan({u —% )

This transformation was mentioned by Van Putten and Van der Tweel
(1979).

7.5. The limiting values of Q for some distributions

In this section the values of the statistic Q for the uniform, normal,
logistic, double exponential and Cauchy distribution as the sample size
tends to infinity will be derived. This statistic is defined as follows:

_ 10U o5—L o5)
Us—Ls

Here U o5 denotes the sum of the upper 5% of the observations. If the
sample size is not a multiple of 20 then one observation is only fraction-
ally included. The other parts of this formula have a similar meaning
where L stands for lower. For symmetrical distributions Q can be given
as follows (for infinite sample sizes):

107xf (x)dx
Q: ——o%—————
fxf (x )dx

i

Here ¢ is the upper 5% point of the distribution F with density f. For the
uniform distribution we take the range from —1 to 1 with density f(x)
= 1. So we have:



For the standard normal distribution the value of ¢ is 1.645. So Q can be
computed here as follows:

S T S
10— fxe 2% dx
N2w ' :
On= 1645 =10e"7 1045'= 258
1 1,2
xe 7Y dx
V2w 1[

For the logistic distribution we take the simplest form where F(x) =
(14+e7* )™ and therefore ¢ = log, 19. This results in:

o R==)

102" 4 10[x S (—1) Ve id
'[(1+e_“' 7 X !szzll( Y 1je X
QL: pos = poy - ) =
- j—1 (-1
f xe_ —dx Z(_l).l ¢
0 (l+e x) ji=1
105 (17 He+ e 10[-€7" 4100, (14¢7)]
i=1 J - 1+e~° ] =
10&,2 10&»2
log, 19
——oi"o +10g(%%
10 =286
log. 2

In the step where the integration sign is removed from the numerator
the following equation is used:

ije'j'* dx=(c +%)e‘j°
<

For the double expoﬁential distribution we take the standard form and
look at the density of the absolute values, so that the left tail is mir-
rored in the axis of symmetry. We have:

o

In the numerator we use ¢ = log, 10 because then 1—e™"=0.90. This
results in the following value for Q:
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0p=10 [ xe™*dx=10(log, 10+ 1)e” " '"=3.30
log, 10
For the Cauchy distribution the value of Q is given by:

“ x

10 dx

) *[1+x2 . 10(log.d —log.c)
Q= lim = lim = 10
d=o 4 d = oo log.d
f 7dx

1+x '

4]

And this result is independent of the value of c. For the adaptive tests it
would be more attractive to bave a formula for the expectation of the -
modus or the median for finite samples of given size. This problem
seems very difficult and it has not yet been solved.
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Samenvatting

Dit proefschrift gaat over de hypothese dat enkele lokatie-parameters
gelijk zijn. De steekproefgroottes kunnen verschillen en met betrekking
tot de foutverdeling worden verscheidene modellen beschouwd. Voor
sommige methoden is de verdeling van de toétsingsgrootheid onder de
nulhypothese slechts bij benadering bekend. In dit soort gevallen wordt
de methode gevalideerd door simulaties voor een representatieve collectie
van waarden voor de populatie-parameters.

Voor normaal verdeelde fouten is ongelijkheid van de varianties toeges-
taan. Er wordt aangetoond dat in deze situatie de methode van James
(1951) een betere controle geeft over de gekozen onbetrouwbaarheid dan
enkele meer recente methoden, indien men een tweede orde Taylor
benadering gebruikt voor de kritieke waarde. Het onderscheidingsvermo-
gen van deze toets wordt niet uniform gedomineerd door enig bestaand
alternatief, en daarom wordt de methode van James aanbevolen als de
geschiktste keuze.

Sommige statistici gebruiken de toets van Kruskal & Wallis voor de
gelijkheid van een aantal lokatieparameters in alle gevallen waarin niet
voldaan wordt aan de eisen die de klassieke toets voor het vergelijken
van gemiddelden stelt. Dit is een onverstandige keuze als de;schaal-
parameters ongelijk zijn. Bij gebruik van de exacte verdelingivan de
toetsingsgrootheid of de bekende x? benadering zijn kleine verschillen al
funest. In dit opzicht is de Beta benadering van Wallace toleranter, maar
het gebruik hiervan impliceert een (soms aanzienlijk) verlies aan onder-
scheidingsvermogen.

Als men van de foutverdeling niets anders weet dan dat deze sym-
metrisch is, dan kan het gebruik van een adaptieve verdelingsvrije
methode worden overwogen die optimale scores gebruikt voor de
geschatie staartdikte. Er wordt aangetoond dat dit kan resulteren in een
test met meer onderscheidingsvermogen dan enig bestaand verdelingsvrij
alternatief, als de foutverdeling een mengsel is waarin de volgende
dichtheden met gelijke fracties voorkomen: uniform. normaal. logistisch,
dubbelexponentieel en Cauchy.
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Het onderscheidingsvermogen van de klassieke toets voor het vergelijken
van gemiddelden kan volledig worden teniet gedaan door één enkele
uitschieter. Enkele in dit opzicht meer robuuste methoden worden
beschouwd: trimmen, Winsorizen, de toets van Van der Waerden, een
suggestie van Huber, een methode van Rousseeuw die de mediaan van de
kwadraten van de residuen minimaliseert en een adaptieve verdel-
ingsvrije methode. In een simulatie wordt het effect van symmetrische
en eenzijdige vervuiling onderzocht. Het blijkt ‘dat de suggestie van
Huber resuiteert in de toets met het grootste onderscheidingsvermogen,
nadat de alternatieven met onbevredigende controle over de gekozen
onbetrouwbaarheid zijn geélimineerd.

Voor het probleem van meervoudige vergelijkingen in de klassieke situa-
tie met normale verdelingen en gelijke varianties worden de volgende
methoden veelvuldig toegepast: door een F-toets Dbeschermde
paarsgewijze t-toeisen, paarsgewijze 1-loetsen met aangepaste
onbetrouwbaarheid. meervoudige range- en F-toetsen en Tukey's
methode voor paarsgewijze vergelijkgingen met de g-verdeling. Aanpas-
singen van deze methoden voor ongelijke varianties en voor de mogelijke
aanwezigheid van enkele extreme uitschieters worden nader onderzocht.
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Stellingen behorende bij het proefschrift Analysis of
means in some non-standard situations

Jan B. Dijkstra

Stelling 1

De piek-toets voor uniformiteit, waarvan de aantrekkelijke eigenschap~
pen voor kleine steekproeven reeds gepubliceerd zijn, is ook voor (zeer)
grote steekproeven een bruikbaar alternatief voor methoden als de x°
toels voor aanpassing en de toetsen van Cramer & Von Mises, Kolmo-
gorov & Smirnov en Anderson & Darling.

Dijkstra, J.B., T.J.M. Rietjens and F.W. Steutel (1984) A simple test for
uniformity.
Statistica Neerlandica (38) 33-44.

Stelling 2

De in een studieboek van Dobson gedane bewering, dat het aantal
vrijheidsgraden bij een tweedimensionale kruistabel gelijk is aan het aan-
tal niet lege cellen minus het aantal aangepaste parameters, is onjuist. Er
moet onderscheid gemaakt worden tussen cellen die toevallig leeg zijn en
cellen waarvan al voor het experiment kan worden vastgesteld dat ze
leeg zuilen blijven. Alleen die laatste categorie vermindert het aantal
vrijheidsgraden.

Dobson, A.J. (1983) An introduction to statistical modelling.
Cambridge University Press (blz. 100).

Stelling 3

De D-toets voor de gelijkheid van een aantal variatiecoéfficiénten uit nor-
male populaties bevat de volgende schatter V voor de gemeenschap-
pelijke variatiecoéfficiént onder de nulhypothese:
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Hierbij stelt v; de steekproef variatiecoéfficiént voor. De toets kan wor-
den verbeterd door V als volgt te schatten: ‘

Vi= in,- v;2IN
i=1
De algoritme wordt eenvoudiger, de controle over de gekozen®
onbetrouwbaarheid verbetert en het onderscheidend vermogen neemt
toe. De laatste twee opmerkingen gelden in het bijzonder voor kleine -
steekproeven. -

Toch "is de' D-toets ook dan nog niet optimaal. Als - alle

steekproefvariatiecoéfficiénten in absolute waarde kleiner zijn dan 1/3,°

dan is de toets van Bennet (1976) beter. Omdat hieraan in de praktijk

vaak voldaan zal zijn, is de praktische waarde van de D-toets nogal

gering.

Doornbos, R. and J.B. Dijkstra (1983) A multi sample test for the equal~
ity of coefficients of variation in normal populations.

Communications in Statistics, Simulation and Computation (12)
147-158. |

Bennet, B.M. (1976) On an approximate test for homogeneny of
coefficients of variation.
Contributions to Applied Statistics, Birkhduser (Basel).

Stelling 4
Voor het berekenen van kwadratensommen zijn de volgende methoden
gebruikelijk in statistische programmatuur:

(Zx )?

n

S;— Zx,

ng it(X,' -3 )2

i=1

Omdat bij S, de data slechts één keer geinspecteerd hoeven te worden,
wordt deze methode veelvuldig toegepast. Een worst-case analyse van S,
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bij kleine variatiecoéfficiénten was al zeer ontmoedigend [Chan and. Lewis
(1979)], maar ook de verwachte fout is zodanig dat al bij heel wat
minder extreme gevallen dan de standaarddeviatie van de lengtes van
gelijksoortige spoorstaven deze methode aanleiding geeft tot onaanvaard-
bare resultaten. Reeds in elementair statistiek-onderwijs zou gewezen
moeten worden op de numerieke superioriteit van S, en op het bestaan
van algoritmen die voor een lopend gemiddelde corrigeren [West (1979)]

Chan, T.F. and J.G. Lewis (1979) Computing standard deviations: accu-
racy. '
Communications of the ACM (22).

West, D.H.D. (1979) Updating mean and variance estimates: an
improved method.
Communications of the ACM (22).

Stelling §

Het gebruik van programmatuur en echte data in een vroeg stadium van
het statistiek-onderwijs werkt zeer motiverend. Het pakket GLIM (Gen-
eralised Linear Interactive Modelling), dat de gebruiker tot nauwgezette
specificaties dwingt, is hiervoor zeer geschikt.

Doornbos. R. and J.B. Dijkstra (1985) Teaching statistics using a com-
puter.
European Journal of Engineering Education (10) 339-343.

Baker, R.J. and J.A. Nelder (1978) The GLIM systeni, release 3.
NAG Central Office, Oxford.

Stelling 6

Omdat statistische programmamur steeds vaker wordt toegepast op
. gegevens die nog nooit door een menselijk oog beschouwd zijn, verdient
het aanbeveling om in die programmatuur de aanroep van een methode
met modelvooronderstellingen te laten vooraf gaan door een verificatie
of aan die voorondersteilingen redelijk voldaan is.

Stelling 7

Als de editor van een tijdschrift twee referee rapporten ontvangt die
beide de conclusie bevatten dat het artikel na wijziging geplaatst kan
worden, dan verdient het aanbeveling dat hij de voorgestelde wijzigingen
eerst op onderlinge consistentie beoordeelt alvorens ze naar de auteur ter



verwerking door te sturen.

Lindley. D.V. (1984) Refereeing.
The Mathematical Intelligencer (6) 56-60.

Stelling 8

Gegeven zijn een eindig aantal re€le getallen a, , ..., a, en een reéel getal
g zodat:

(1) g, >0voori=1....n
1

(2) 0<g< Ya
i=1

Hiermee wordt een aantal reéle getallen b, , ... , b,, gevormd zodat:
(3) b, 2 gvoorj=1,...m
(4) elke b; is een a; of de som van enkele a; s
(5) elke a; wordt hierbij precies éen keer gebruikt
mn

Bewering: ). b7 minimaal = m maximaal

i=1
Stelling: Geen enkele lezer van dit proefschrift is in staat om vobr de
datum van de verdediging vast te stellen of deze bewering waar is.

Dijkstra, J.B. (1977) Problem 49.
Statistica Neerlandica (2) 92.

Bussemaker, F.C. (1984) Over verdelingen van getalllen in groepjes. :‘
Papers dedicated to J.J. Seidel (EUT Report 84-WSK-03) 102-110.

Stelling 9

Een installatie die een auto doet exploderen bij een poging tot inbraak
kan op termijn resulteren in een verlaging van de premie voor casco ver-
zekeringen.





