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Abstract

The algebraic Riccati equation studied in this paper is related to the suboptimal state
feedback Hoo control problem. It is parameterized by the Hoo norm bound 'Y we want
to achieve. The objective of this paper is to study the behaviour of the solution to the
Riccati equation as a function of 'Y. It turns out that a stabilizing solution exists for all
but finitely many values of'Y larger than some a priori determined boundary 'Y-. On the
other hand for values smaller than 'Y- there does not exist a stabilizing solution. The
finite number of exception points turn out to be switching points where eigenvalues of
the stabilizing solution can switch from negative to positive with increasing 'Y. After the
final switching point the solution will be positive semi-definite. We obtain the following
interpretation: the Riccati equation has a stabilizing solution with k negative eigenvalues
if and only if there exist a static feedback such that the closed loop transfer matrix has
no more than k unstable poles and an Loo norm strictly less than 'Y.

Keywords: The H oo control problem, The Algebraic Riccati Equation, J-spectral factor
ization, Wiener-Hopf factorization.

1 Introduction

The algebraic Riccati equation has a long history. The algebraic Riccati equation with a
sign-definite quadratic term has played an important role in control theory. It was used in
linear quadratic control, Kalman filtering and the combination of the latter two: the Linear
Quadratic Gaussian or H 2 control problem (see e.g. [2, 1, 12, 20, 6]. The specific properties
of this Riccati equation have also been studied extensively (see e.g. [17]).
But also a more general form of the algebraic Riccati equation has appeared in the literature.
In this case, the quadratic term is not necessarily sign-definite. This more general Riccati
equation first appeared in the game theory literature (see e.g. [4, 13, 14]). More recently,
it turned out to play an important role in Hoocontrol theory (see e.g. [8, 16, 19]). In the

·The research of dr. A.A. Stoorvogel has been made possible by a fellowship of the Royal Netherlands
Academy of Sciences and Arts.
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latter case the Riccati equation is parameterized by a parameter,. It turns out that there
exists a state feedback which makes the Hoo norm strictly less than, if and only if there
exists a positive semi-definite, stabilizing solution to the algebraic Riccati equation. An
iterative search then determines the minimal achievable H oo norm, say,•. In the process of
determining ,. one also checks for existence of stabilizing solutions for values of, smaller
than , •. It turned out that either the solution does not exist or is indefinite. The objective
of this paper is to study the behaviour and existence of stabilizing solutions of the algebraic
Riccati equation also for values of, smaller than , •.
This is not a purely theoretical exercise. This study might help to find more efficient ways to
perform the before-mentioned ,-iteration. We also derive a bounded real lemma for transfer
matrices which are unstable. In general this Riccati equation plays such an important role in
current day controller design that it is important to study its properties.
On the other hand we also obtain a very nice interpretation which is valid for all but finitely
many,: the Riccati equation has a stabilizing solution with k negative eigenvalues if and
only if there exist a static feedback such that the closed loop transfer matrix has no more
than k unstable poles and an Loo norm strictly less than,.

2 Problem formulation

This paper studies the following Riccati equation:

0= ATP +PA + CTC - (PB +CTD)(DTD)-l (BTP + DTC) + ,-2PEETP (2.1)

In this paper we only study stabilizing solutions of this equation, Le. solutions for which the
following matrix is asymptotically stable:

(2.2)

(2.3)

One of the main reasons for studying this Riccati equation is related to the H 00 control
problem. Consider the following system:

{
X = Ax + Bu + Ew

z = Cx + Du

where x E ]Rn. The following theorem stems from e.g. [16,8,19]:

Theorem 2.1 : Consider the system (2.3) and let, > O. Assume that the system (A, B ,
C I D) has no invariant zeros on the imaginary axis and D is injective. Then the following
statements are equivalent:

(i) There exists a static feedback law u = Fx such that after applying this compensator to
the system (2.3) the resulting closed-loop system is internally stable and the closed-loop
transfer matrix GF has Hoo norm less than " i.e. IIGFlloo < ,.

(ii) There exists a positive semi-definite solution P of the Riccati equation (2.1) such that
the matrix in (2.2) is asymptotically stable.
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If P satisfies the conditions in part (ii), then a controller satisfying the conditions in part (i)
is given by:

(2.4)

o

For later use, we define the infimal achievable Hoo norm via a stabilizing state feedback by
"Y",.
It is our objective to extend the above result to show that for"Y < "Y'" you still have solutions
of the algebraic Riccati equation but the solution being sign-indefinite and the number of
negative eigenvalues determining the number of unstable poles we have to admit to guarantee
an Loo performance bound of "Y .More precisely stated, the main result of this paper is the
following theorem:

Theorem 2.2 : Consider the system (2.3) and let "Y > O. Assume that the system (A, B, C,
D) has no invariant zeros on the imaginary axis and D is injective. Then for all but finitely
many "Y the following statements are equivalent:

(i) There exists a static feedback law u = Fx such that after applying this compensator to
the system (2.3) the resulting closed-loop system has at most i unstable eigenvalues and
the closed-loop transfer matrix GF has Loo norm less than "Y, i.e. IIGFlloo < "Y.

(ii) There exists a solution P of the Riccati equation (2.1) such that the matrix in (2.2) is
asymptotically stable. Moreover P has no more than i negative eigenvalues.

If P satisfies the conditions in part (ii) , then a controller satisfying the conditions in part (i)
is given by (2.4). 0

Remark: Note that we do not suggest that people should start designing controllers which
do not stabilize the system. The importance of the above theorem lies in the fact that it
tells us a great deal about the algebraic Riccati equation and the behaviour of its stabilizing
solution as a function of "Y. For large "Y the equation has a positive semi-definite stabilizing
solution. Then after a certain switching point the Riccati equation may still have a solution
but it will have at least one negative eigenvalue. There are at most n switching points. These
switching points are the only values of"Y where the number of positive eigenvalues of the
stabilizing solution can change. The finitely many values of "Y for which the above theorem
might not hold are precisely these switching points. Hence we also know a priori that there
are no more than n values of "Y for which the theorem might not be true.
We will denote the minimal achievable L oo norm via a static state feedback (without any
stability requirements) by "Y-. Later we will give an explicit characterization of "Y-.
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3 The bounded real lemma

In our derivation of theorem 2.2, the bounded real lemma will play a role. But this is a
different version then the classical result (see e.g. [3,20]). Instead of a test to check whether a
stable transfer matrix has Hoo norm strictly less than I' we derive a test whether an arbitrary
(not necessarily stable) rational matrix has L oo norm strictly less than I'

Theorem 3.1 : Consider a transfer matrix G with stabilizable and detectable realization
[A, B, C, D] such that A has no eigenvalues on the imaginary axis Then the following state
ments are equivalent:

(i) We have IIGlioo < I'

(ii) We have DTD < I. Moreover, there exists a solution P of the algebraic Riccati equation:

such that the following matrix is asymptotically stable.

( iii) We have DDT < 1 . Moreover, there exists a solution Q of the algebraic Riccati equation:

such that the following matrix is asymptotically stable.

If P satisfies condition (ii) or Q satisfies condition (iii) then it has no more negative eigen
values than the number of unstable eigenvalues of A. 0

Proof: Conditions (ii) and (iii) are clearly dual to each other. Hence it suffices to prove
equality between conditions (i) and (iii).

Due to detectability there exists a solution Y of

such that A - YCTC is asymptotically stable. Define a transfer matrix H with realization:

[A - YCTC, B - YCT D, C, D]

It is then easy to check that G.....G = H .....H where G.....(s) = GT ( -s). Then it is immediate
that G and H have the same L oo norm. On the other hand since H is stable we know from
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the classical small gain theorem that H has H 00 norm less than "'{ if and only if DDT < "'{ and
if there exists a solution Z of

o = [A - YCTC]Z + Z[A - YCTC]T + [B - YCTD][B - YCT D]T +
(ZCT + [B - YCTD]DT) ("'{21 _ DDT) -1 (CZ +D[B _ YCTD]T)

such that the following matrix is stable:

[A - YCTC] + (ZCT + [B - YCTD]DT) ("'{21 _ DDT) -1 C

The proof is completed by noting via some algebraic manipulations that Z satisfies the above
equations if and only if P := Z - "'{2y satisfies the conditions of theorem 3.1. •

4 Relation of H oo control problems to J-spectral factorization

In this section we will show the relation between the existence of suitable H00 control problems
and J-spectral factorization. This section is strongly based on the paper [11]. We basically
study how the results change if we allow unstable closed loop poles. In this section we study
the classical one and two block problems and relate the existence of a controller with at most i
unstable poles to the existence of a J-spectral factorization with a specific additional feature.
In the next section we relate J spectral factorization to lliccati equations based on a theorem
of [5, 11]. Finally, in the section thereafter, we use our results for the two-block problem to
prove our theorem 2.2.

4.1 The Nehari problem

Let R E Loo be given with Hankel singular values 0'[1 ~ ... 0'[1 ~ ... ~ O't!. Denote by
H~ the set of transfer matrices with at most i unstable poles, Le. the McMillan degree of
the unstable part is less than or equal to i. Moreover gHoo denote those transfer matrices
in H oo that are invertible and whose inverse is again in Hoo • Then we have the following
theorem:

Theorem 4.1 For 'Y :f: O'y(j = 1, ... , n), the following statements are equivalent:

(i) "'{ > 0'[1.

(ii) There exists Q E H~ such that IIR +Qlloo < "'{.

(iii) There exists W E gHoo where Wn is invertible with Will E H~ satisfying:

G"'JG=W"'JW

where

o
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Proof: The equivalence of (i) and (ii) has been shown in [10].

(i) ==> (iii): We split R = R+ + R_ where R+ is stable while R_ is strictly proper and
anti-stable and R_ has realization [A_,B_,C_,O]. Let P and Q be the controllability and
observability gramians of R_. Since, =I ufU = 1, .. . ,n) we have that N:= (1 - PQ)-l is
well-defined. Define X by

Then it can be easily checked that G': J G_ = X""J X and X E 9H 00 where

Moreover the (1, I)-block of X, denoted by X11, is invertible and XliI E H:x,. The proof of
this implication is completed by noting that

satisfies all the requirements of the above theorem.

(iii) ==> (ii): Suppose a W exists satisfying the conditions of part (iii). Define V = W-l

and partition V and W conformably with G. Define Q = V12V22
l

. It is easy to check that
Q E H:x,. Moreover:

(R +Q)""(R +Q) - ,21 = _,2(V22V22 )-1 < 0

This implies part (ii).

4.2 The two-block problem

•

Theorem 4.2 : Let S, T E Hoo be given where T has full row rank on the imaginary axis.
For all but finitely many" the following statements are equivalent:

(i) There exists Q E H:x, such that

liT +SQlloo <,.

(ii) There exists WE gHoo where W11 is invertible with Will EH:x, satisfying:

G""JG=W""JW

where

(4.1)

(4.2)

o
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Proof: Factorize T = TiTo where To E gHoo and Ti is inner. Choose Tl. E Hoo such that
[Ti Tl.l is square and inner. Then we have (4.1) if and only if

(RI +ToQr'(RI +ToQ) < "1 21 - R'2R2

where R I = TtSand R2 = T'L S. Therefore there exists a Q E H;'" such that (4.1) is satisfied
if and only if there exist NEgH00 such that

(4.3)

and

(4.4)

(where Q = ToQN-I). If 1 i: CTf(RIN-l ) (j = 1, . .. ,n) we can apply theorem 4.1. We get
that (4.4) is satisfied if and only if there exist X such that

(1RIN-I) "" (1 0) (1 R1N-l) = X"" (1 0) X
o 1 0-1 0 1 0-1 (4.5)

with X E gHoo with Xu invertible and XliI E H;"'. Finally X satisfies the above properties
if and only if

W:= X (To 0 )o "I-IN

satisfies (4.2 with W E gH00 with Wu invertible and Will E H;'" .
The proof is complete if we show that the existence of W satisfying the conditions of part (ii)
implies the existence of N satisfying 4.3. The latter follows since

(4.6)

Because W has full rank on the imaginary axis, (4.2) implies that G"" JG evaluated on the
imaginary axis has the same inertia as J. According to (4.6) this requires that

R'2 R2 - "121 < 0

which in turn implies the existence of the required N. •
Remark: From the above proof we see that "I should not be such that RIN-I has a Hankel
singular value equal to 1. It is easy to check that the Hankel singular values of RIN-l are
decreasing functions of "I. Hence the number of exception points is no more than the McMillan
degree of RIN-l .
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5 J-spectral factorization

In this section we would like to show the relation between the existence of a J -spectral
factorization and the existence of a solution to the algebraic lliccati equation. Also, since
the factorization is not unique, we show that the number of unstable poles of the inverse of
the (1, 1)-block ofthe J -spectral factor is independent of the specific choice for the J -spectral
factor. This is needed because that number played an important role in the previous section.
We have:

Theorem 5.1 : Let Sand T have realizations [A, Bll C, D] and [A, B 2 , C, 0] respectively with
A stable. Then there exists W E gHoo such that (4.2) is satisfied if and only if there exists
a solution P of the following algebraic Riccati equation

0= ATP +PA +CTC - (PBI +c T D)(DTD)-l (Bl P +DTC) +"1- 2PB2BrP (5.1)

such that the following matrix is asymptotically stable:

A - BI (DTD)-l (BlP +DTC) +"1- 2B2 BrP

Proof: This is a direct result from [5, 11].

(5.2)

•
Next, we focus on the question whether the existence of one J spectral vector W of G'"JG
for which Wll is invertible with Will E Hfx, implies that every spectral factor of G'"JG has
this property. We first need a preliminary lemma:

Lemma 5.2 : Let H E Loo be a given rational matrix with IIHlloo < 1. Then (I + H)-l
exists and has the same number of unstable poles as H. 0

Proof: Let [A,B,C,D] be a minimal realization of H. Then (I +H)-l has a realization

[A - B(l +D)-IC, B(I +D)-I, -C(I +D)-I, (I +D)-I]

Since H has norm less than 1 we can apply theorem 3.1. In other words there exists a matrix
Q of the algebraic lliccati equation (3.1). Then, after some algebraic manipulations we get:

[A - B(l +D)-IC] Q+Q [A - B(I +D)-IC] +S = 0

where

(5.3)

We know that (A, B) is controllable and that A has no imaginary axis eigenvalues. Hence, if
we view (3.1) as a Lyapunov equation, we get that the number of unstable eigenvalues of A
is equal to the number of negative eigenvalues of X. Moreover X is not singular.

8



It is immediate that A - B(I+D)-IC has no eigenvalues on the imaginary axis. Hence, using
some classical results for the Lyapunov equation (see e.g. [10]), we find that the Lyapunov
equation (5.3) implies that A - B(I +D)-IC has as many unstable poles as A (whether or
not (A - B(I + D)-IC, S) is not controllable is immaterial).

•
The above is for SISO systems a direct consequence of the classical theorem by Rouche (see
[18]). The above allows us to derive the following theorem establishing that the number of
unstable zeros of the (1,1) block of a J-spectral factorization is independent of the specific
factorization chosen.

Theorem 5.3 : Let G be given as in theorem ..f.2. Let V, WE gHoo be two spectral factors
of G'" JG, i.e.

V'" JV = G'"JG = W'" JW.

Then Viii and Will both exist and they have the same number of unstable poles. 0

Proof: Note that (4.2) together with S full row rank implies that

WliGll - {'zW2i WZI = S'"S > 0

Hence Wll is invertible and IIWzlWill 1100 < {'-I. Also note that the number of unstable zeros
of Wu Will is equal to the number of unstable poles of Will, Le. no pole-zero cancellations
can occur.
It is easy to show (see [11]) that J-spectral factors are unique up to a constant J-unitary
matrix, Le. there exists a constant matrix A such that V = AW where

A"'JA=J

This condition for A implies

Ail All - {'ZA~I Au = I

and therefore All is invertible and IIAi"l AlzlI < {'.
We find II AllAlzWzlWill II < 1 and hence, according to lemma 5.2,

(I +AllA1ZWZl Will )-1

has at most as many poles as Will. Hence

VIII = (AllWll +A 12W Z1 )-1

= Wll((I +AllA1ZWZl Will )-1 )-1 All

has no more unstable poles then Will. The above argument is symmetric and hence the
theorem is proved. •

Using the above we can extend theorem 5.1 to include the number of unstable poles of the
inverse of the (1,1) block.
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Theorem 5.4 : Let T and S have realizations [A, B}, C, D] and [A, B 2 , C, 0] respectively with
A stable. Then there exists W E gHoo where W ll is invertible with Will E H~ such that
(4.2) is satisfied if and only if there exists a solution P of the algebraic Riccati equation (5.1)
such that the matrix in (5.2) is asymptotically stable and P has no more than i unstable
poles. 0

Proof: It is easily checked that if P satisfying the conditions of theorem 5.1 exists then one
particular J-spectral factor W E gHoo is given by:

where:

Cw .-

Dw :=

(
(DTD)-1/2(DTC +BiP) )

-,-2B'i P

( (DT~)1/2 ~)

Therefore we find the following realization for Will:

Will := [Aw, -BI(DTD)-1/2, (DTD)-I(DTC +BiP), (DTD)-1/2]

where Aw := A - BI(DTD)-I(DTC +BiP). The algebraic lliccati equation for P can be
rewritten as:

(5.4)

where CW,1 := C -D(DTD)-I(DTC+Bi P). Treating this equation as a Lyapunov equation,
[10] tells us that the number of negative eigenvalues of P is equal to the number of unstable
eigenvalues of Aw. In other words, the number of unstable poles of Wi"/ is equal to the
number of negative eigenvalues of P. Because of theorem 5.3 it is sufficient to prove the
result for one particular J-spectral factorization and hence the proof is complete. •

6 Youla parameterization

The Youla parameterization is an often used tool in modern control theory (see e.g. [9,21, 7]).
However, since we allow for a fixed number of unstable poles, we need to extend this theory.
First of all, we need to define the unstable closed loop poles of the closed loop system. Suppose
we have the following interconnection:

VI Zl
----<)0,-+-1 G t--.....-

(6.1)
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(6.2)

The closed loop transfer matrix from v to z is equal to

(
-G(I - KG)-l G(I - KG)-l K )

T G K '-
( , ).- -K(I - GK)-lG (I - KG)-l K

Our standing assumption in this paper is that G is stabilizable and detectable. Then we
define the unstable closed loop poles as the unstable poles of T(G, K) and the number of
unstable poles as the McMillan degree of the unstable part of T(G, K).
We obtain left and right coprime factorizations over H 00 of K and G:

K = v-Iii = UV-1

G = M-IN = NM-1

Then it is easy to show that a right coprime factorization of T(G, K) is given by:

T(G K) = (-N 0) (M U )-1
, 0 U N V

Therefore the number of unstable poles of the closed loop system is equal to the number of
unstable zeros of

We can now derive the following theorem:

Theorem 6.1 : The set of all proper controllers K of G such that the closed loop system has
no more than i unstable poles is parameterized by

K = (Y - MQ)(X - NQ)-l = (X - QN)-lCY - QM), Q E Hix,

where N, M, M, N, X, Y, X, M form a doubly coprime factorization of G, i.e. (6.2) is satisfied
and

( X_ -y) (M Y) = I
-N M N X

7 Proof of Theorem 2.2

o

Using the classical technique from [9] we transform the state feedback H oo control problem
into a model-matching problem.
The following result is a direct consequence of our extended Youla parameterization as given
in theorem 6.1 and an explicit expression for the doubly coprime factorization which can be
found in e.g. [9, 15]:
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Theorem 7.1 : There exists a (possibly dynamic) feedback u = Kx which, when applied to
(2.3), yields a closed loop system with at most i unstable poles if and only if there exists a
Q E H!x, such that

K = (Y - MQ)(X - NQ)-l

where M,N,Y,X are defined by:

M .- [A +BF,B,F,I]

N .- [A+ BF,B,I,O]

Y .- [A +BF, -H, F,O]

X .- [A +BF, -H,I,I]

and F and H are such that A + BF and A + H are asymptotically stable. Moreover, the
resulting closed loop tmnsfer matrix is equal to:

where

T1 = [(A + B F - BF ) (E) (C D F° A+H' E' +

T2 = [A +BF,B,C +DF,D],

T3 [A + H,E,I,O].

-DF) ,0] ,

o

It turns out that the parameterization as obtained from [9] can be simplified by replacing Q
by Q +F. Clearly Q +FE H!x, if and only if Q E H!x,. In this way we obtain the following
corollary:

Corollary 7.2 : There exists a (possibly dynamic) feedback u = Kx which, when applied to
(2.3), yields a closed loop system with at most i unstable poles if and only if there exists a
Q E H!x, such that

where M, N, Y, X are defined by:

M .- [A +B F, B, F, I]

N .- [A +BF,B,I,O]

Y .- [A +BF, - H +BF, F, F]

X .- [A +BF, -H +BF,I,I]

Moreover, the resulting closed loop tmnsfer matrix is equal to:

Gel := Ii - T2QT3

12



where

TI = [A +BF, E,G +DF,O),

T2 = [A+BF,B,G+DF,D),

T3 = [A+H,E,I,O). o

The implication (i) => (ii) in theorem 2.2 is now a direct consequence of the above corollary,
theorem 5.4 and theorem 4.2. After all, the existence of a suitable feedback implies according
to the above corollary the existern:e of a matrix Q E H~ such that IITI - T2QT3 11oo < "'I.
Hence Q := QT3 satisfies IITI - T2Qlloo < "'I and according to theorem 4.2 this implies the
existence of a certain J-spectral factorization for all but finitely many "'I. By theorem 5.4,
this J-spectral factorization exists if and only if there exists a solution to an algebraic Riccati
equation. Finally it is easily checked that the solution of this Riccati equation satisfies all the
requirements of part (ii) of theorem 2.2.

The implication (ii) => (i) in theorem 2.2 is almost immediate. The feedback given by (2.4)
results in a closed loop system [Aw,E,Gw,O) where:

Aw .- A - B(DTD)-I(DTC +BTP),

Cw .- C - D(DTD)-I(DTC +BTP).

It is easy to check that the algebraic Riccati equation for P can be rewritten as:

Moreover

is asymptotically stable. It is then a direct consequence of theorem 3.1 that this feedback
satisfies the conditions of part (i) of theorem 2.2.

8 Existence of a stabilizing solution to the Riccati equation

In this section we will determine "'1- which is uniquely defined by the fact that for all but
finitely many "'I larger than "'1- there exists a stabilizing solution to the algebraic Riccati
equation. Moreover, the stabilizing solution does not exists for "'I smaller than "'1-. According
to theorem 2.2, "'1- is the minimal achievable L oo norm of the closed loop system without any
stability requirements. According to corollary 7.2, we have

"'1- = . inf IITI - T2QT3 11oo
QeLoo

Since T3 is minimum-phase and TI is strictly proper, it is easy to see that:

13



We still have the freedom to pick F. We choose F such that T2 becomes co-inner. In other
words, F = _(DTD)-l(BTR + DTG) where R is a stabilizing solution of:

0= ATR +RA +GTC - (RB +CT D) (DTD)-l (BTP +DTC)

Then we directly obtain the following result:

1- = IIT2'tl ll oo

We obtain the following realization for T:;t1 :

[-(A +BFf,- RE, BT
, 0] (8.1)

In conclusion, the minimal achievable Loo norm is equal to the Loo norm of T:;tl whose
realization is given by (8.1).

9 Conclusion

In this paper we established a very general result regarding the existence of stabilizing so
lutions to the algebraic Riccati equation. The stabilizing solution exists for all but finitely
many 1 larger than 1-' Moreover, the stabilizing solution does not exists for 1 smaller than
1-' Moreover, we related the number of negative eigenvalues ofthe stabilizing solution to the
number of unstable poles needed to achieve the required L oo performance.
Using the techniques ofthis paper one can also derive conditions for the measurement feedback
L oo control problem where we look for dynamic controllers which yield no more than i unstable
closed loop poles and achieve an a priori given bound on the Loo norm of the closed loop.
However, this seems to be mainly of theoretical interest.
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