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Abstract 

In the test cover problem a set of m items is given together with a 
collection of subsets, called tests. A smallest sub collection of tests is to 
be selected such that for each pair of items there is a test in the selection 
that contains exactly one of the two items. It is known that the problem is 
NP-hard and that the greedy algorithm has a performance ratio O(logm). 
We show that, unless P :;;: NP, no polynomial-time algorithm can do 
essentially better. For the case that each test contains at most k items, 
we give an O(log k )-approximation algorithm. 

We pay special attention to the case that each test contains at most 
two items. A strong relation ",ith a problem of packing paths in a graph is 
established, which implies that even this special case is NP-hard. We prove 
APX-hardness of both problems, and derive performance guarantees for 
greedy algorithms and for a series of local improvement heuristics. 
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1 Introduction 

The input of the test cover problem (TCP) consists of a set of items, {I, ... , m}, 
and a collection of tests, T1 , ••• , Tn C {I, ... , m}. A test Tj covers or differen
tiates the item pair {h,i} if either h E Tj or i E Til i.e., if ITj n {h,i}1 = 1. A 
subcollection T C {Tl, .. . , Tn} oftests is a test covedf each ofthe m( m - 1) /2 
item pairs is covered by at least one test in T. The objective is to find a test 
cover of minimum cardinality. 

The test cover problem arises naturally in identification problems. Given a 
set of individuals and a set of binary attributes that mayor may not occur in 
each individual, the goal is to find a minimum-cardinality subset of attributes 
- an optimal test cover that identifies each individual uniquely. That is, the 
incidence vector of each individual with the test cover is a unique binary signa
ture, distinguishing him or her from any other individual. The problem is also 
known in the literature as the minimum test collection problem [11] [4] and min
imum test set problem [16] [4]. It arises commonly in fault testing and diagnosis, 
pattern recognition, and biological identification [16]. 

This paper is the work of two independent groups of researchers. The first 
group was motivated, over twenty years ago, by a request from the Agricul
tural University in Wageningen, the Netherlands, concerning the identification 
of potato diseases [14]. Each potato variety is vulnerable to a number of diseases. 
In order to diagnose diseases efficiently, one wished to have a minimum selection 
of varieties that discriminates between all diseases. This application involved 28 
diseases (items) and 63 varieties (tests). 

The problem came to the attention of the second group of researchers in 
a project on protein identification by epitope recognition [6]. It proposed a 
new approach of using a set of antibodies that recognize and bind specifically 
to short peptide sequences, called epitopes. Such an epitope can distinguish 
proteins that contain it from those that do not. The epitopes are fluorescently 
tagged, so that the binding of antibodies to an unidentified protein can be 
detected. Thus the output is a binary vector of dimension equal to the number of 
antibodies, indicating to which of the antibodies the protein is bound. The idea is 
to generate a set of antibodies with three properties: they recognize epitopes that 
are shared by many proteins, the epitopes together cover all possible proteins 
in the organism's proteome, and each protein is recognized by a unique subset 
of antibodies. This leads to a test cover problem, with proteins as items and 
antibodies as tests. The cited application involved about 6,000 proteins. The 
eventual goal is to handle much larger catalogues and, in particular, the human 
organism, which has between 40,000 and 100,000 proteins. 

Both problems were successfully attacked by a combination of greedy and 
local improvement algorithms. For the Dutch problem, optimality of the result
ing solution was proved by a simple branch-and-bound algorithm, using a lower 
bound based on the observation that, for distinguishing m items, one needs 
at least fIOg2 m 1 tests, and a branching scheme preferring tests of size close 
to m/2 to smaller or larger ones. This work inspired research into the perfor
mance of greedy and local improvement algorithms for the problem and into its 
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complexity and approximability. After two earlier reports [5] [13), the present 
paper gives a joint account of our research. A complementary paper [2) discusses 
optimization algorithms for the test cover problems. 

The TCP is NP-hard in the strong sense [4]. Moret & Shapiro [16] established 
a strong relation between the TCP and the well-known set covering problem, 
and used it to prove that the greedy algorithm for the TCP has a worst-case 
performance ratio to the optimum of 8(logm). In Section 2 we recall these 
results, and we show that no polynomial-time algorithm for the TCP is likely 
to have a lower-order performance ratio. 

In Section 3 we consider the case that each test contains at most k items, 
where k is part of the input. This is a common restriction for the TCP. For 
the above protein identification problem the novelty of the approach is the 
utilization of antibodies that bind to many proteins. However, most known 
antibodies bind specifically to protein fragments, which justifies interest in the 
TCP with small tests. We give an O(logk)-approximation algorithm for the 
TCP with no more than k items per test. 

In Section 4 we turn to the special case that each test contains at most 
two items, denoted by TCP2. We formulate it as an optimization problem on a 
graph and prove a performance ratio of 11/8 for the natural greedy algorithm. 
We then relate the TCP2 to the problem of packing paths of length 2 in a graph, 
which immediately implies its NP-hardness. (The TCP2 has been stated to be 
solvable in polynomial time [4], a claim that was withdrawn due to our work [9}.) 
The relation between the two problems carries over to approximation bounds. 
In fact, the greedy algorithm for the path packing problem gives an algorithm 
for the TCP2 with performance ratio 4/3, which is better than 11/8. We prove 
that both problems are APX-hard and hence do not have a polynomial-time 
approximation scheme unless P = NP. 

Finally, in Section 5 we present a series of local improvement heuristics 
for the path packing problem and the TCP2. Each next heuristic in the series 
searches over a larger neighborhood. Our analysis of these heuristics adds to the 
growing body of literature on performance guarantees for local search. 

Some of the more technical proofs are given in Appendices A and B. 

2 The general TCP 

The TCP has a natural reformulation as a cut covering problem on a complete 
graph. Items correspond to vertices and item pairs to edges. Each test defines a 
cut, consisting of the item pairs covered by the test. The objective is to find a 
minimum-size sub collection of those cuts whose union is the complete edge set. 
The cut covering problem can in turn be formulated as a set covering problem 
(SCP). In the SCP, given a set of M elements and a collection of N subsets, 
one wishes to find a minimum-size sub collection of subsets whose union is the 
entire set. Obviously, edges correspond to elements and cuts to subsets. Starting 
with a TCP instance with m items and n tests, one obtains an equivalent SCP 
instance with M = m(m-I)/2 elements and N = n subsets. 
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As a consequence, algorithms for the SCP also apply to the TCP. The greedy 
algorithm for the SCP, which iteratively selects a subset covering the largest 
number of yet uncovered elements, has a performance ratio 1 + In M [8] [15]. It 
directly gives a greedy algorithm for the TCP, always choosing a test covering the 
largest number of uncovered pairs, with performance ratio 1 +21n m [16] [I1J. 

Moret & Shapiro [16J showed, conversely, how to reduce the SCP to the 
TCP. They observe that this alternative strong NP-hardness proof for the TCP 
precludes the existence of a fully polynomial-time approximation scheme, unless 
P = NP, and also use the reduction to show that the performance ratio of the 
greedy algorithm is tight. We repeat their reduction here. 

Consider an SCP instance with elements {I, ... , M} and subsets Sl, ... ,SN. 
Construct a TCP instance with m = 2M items and N + fiOg2 Ml tests, as 
follows. For each element i create a female item fi and a male item mi. For each 
subset Sj define a test Tj = {fi : i E Sj}. In addition, introduce a minimum-size 
collection M of tests that covers all pairs of male items; note that fiOg2 Ml tests 
are necessary and sufficient for this purpose. Finally, if a test in M contains an 
item mi, put its partner fi in the test as well. See Figure 1. 

We claim that there is a set cover of size at most (! if and only if there is a 
test cover of size at most (! + POg2 Ml. Any test cover must include M, as there 
is no other way to cover the male pairs. M also covers the female pairs and 
the mixed pairs with unequal index values. Other tests only serve to cover pairs 
(fi, IDi). Since these tests only contain female items, a collection of such tests 
covers those pairs if and only if the corresponding subsets form a set cover. That 
is, S is a set cover if and only if MU{TjISj E S} is a test cover. 

This argument not only shows that the TCP is NP-hard. Also inapprox
imability results for the SCP carryover to the TCP, if we can eliminate the 
influence of the term flog2 Ml [16]. Given an instance of the SCP, we make 
k = Iog~ M disjoint copies of it and perform the above reduction to an in
stance of the TCP. The original SCP instance has a solution of size at most 

51 52 53 

1 ' 1 0 0 f1 1 1 1 0 0 1 

2 0 1 0 > f2 

3 1 1 1 f3 

1 0 0 1 0 

0 1 ! 1 1 1 

4 ' 1 0 1 f4 0 0
' 

1 0 1 

m1 1 1 0 0 0 

m2 '1 0 0 0 0 

m3 iO 1 0 0 0 

110 m4 0 0 0 0 

Figure 1: Reduction from SCP to TCP 
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a if and only if the multiplied instance has a solution of size at most ka, 
and hence if and only if the resulting TCP instance has a solution of size 
at most ka + flog2 kMl = ka(1 + 6), with ° ::; 0 ::; 2/log2 M. (Note that 
0= POg2 kMl/(ka) ::; log2 M2/k = 2/ log2 M.) 

Now, if we were able to approximate the TCP optimum within a factor of 
p, then we could apply our method to the instance constructed above, divide 
the result by log~ M, and obtain an algorithm for the SCP with performance 
ratio pel + 0(1/ log M». We cite two inapproximability results for the SCP: 
No polynomial-time algorithm can have a performance ratio o(log M) unless 
P = NP [1]. And no such algorithm can have a performance ratio (1 - f) In M, 
for any f > 0, unless NP C DTIME(M1og1ogM) [3]. 

Theorem 2.1 The TCP has no polynomial-time algorithm with performance 
bound o(log m), unless P = NP, and no polynomial-time algorithm with perfor
mance bound (1- €)lnm, for any f > 0, unless NPCDTIME{mloglogm). 

3 The TCP with tests of size at most k 

We now consider the TCP in which each test contains at most k items, denoted 
by TCPk. We propose an algorithm with performance ratio O{log k). 

First note that a partial test cover defines an equivalence relation on the set 
of items, where two items are equivalent if there is no test in the partial cover 
that differentiates them. The equivalence classes are the subsets of pairwise 
equivalent items. 

Our two-phase greedy algorithm proceeds as follows. In phase 1, given a TCP 
instance, view it as an SCP instance with items as elements and tests as subsets, 
and apply the greedy algorithm for the SCP to find a set cover SG. If SG is a 
test cover, then stop. Otherwise, in phase 2 apply the greedy algorithm for the 
TCP to extend the partial test cover SG to a complete test cover. 

Let a* and 1'* denote the size of an optimum set cover and an optimum test 
cover for the item set, respectively. The greedy set cover SG found in phase 1 
has size a G ::; (1 + In k )a* [8] [15]. Since any test cover is a set cover of all but at 
most one of the items, we have a* ::; 1'* + 1 and hence a G = O(log k )1'* . 

At the start of phase 2, each equivalence class contains at most k items, 
because each item is in some test of SG and thereby differentiated from at 
least m k other items. It follows that the largest set of uncovered item pairs 
has size at most k(k - 1)/2, so that the greedy test cover found in phase 2 
has size TG ::; {I + In(k(k - 1)/2»1'* [8] [15]. The overall test cover has size 
aG + TG = O(log k)T*. 

Theorem 3.1 The two-phase greedy algorithm for TCPk has a performance 
ratio 0 (log k). 
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4 The TCP with tests of size at most 2 

4.1 A problem on graphs 

The rest of this paper is concerned with the special case that each test contains 
at most two items, denoted by TCP2. We first argue that we may assume that 
each test contains exactly two items. 

Lemma 4.1 Any instance of the TCP with tests of size at most 2 can be 
transformed into an instance of the TCP with tests of size exactly 2. 

PROOF. Let T = {Tl, ... , Tn}, and let reT be a minimum test cover. Suppose 
that we have u items not contained in any test in T with u E {O, I}, v items 
gl, ... ,gv with gt only contained in the test {gt} E T, for t = 1, ... ,v, and w item 
pairs {h1 ,il},"" {hw,iw} with the property that, for t = 1, ... ,w, {ht,it } E T, 
{ht} E T, possibly {it} E T, and no other test contains ht or it. If u+v+w > 0, 
then r contains, without loss of generality, the first u + v + 2w 1 tests from 
{gl}, .. . ,{gu}, {hI}, {hI, it}, ... , {hw}, {hw, i w}, leaving one item isolated. 

Each item h not among those u + v + 2w ones has the properties that (a) 
there exists an item i such that {h, i} E T, and (b) for all such {h, i} there exists 
an {h',i'} E T such that I{h,i}n{h',nl = 1. 

We may assume without loss of generality that r does not contain singleton 
tests except the ones mentioned above. For suppose r contains another singleton 
test {h}. As r is minimum, it does not contain two tests {h, i} and {h, i'}. If 
r contains no test {h,·}, replace {h} by any test {h, i} E T, which exists by 
(a). If by this action hand i become indistinguishable (i was apparently left 
isolated), or if r already contains a test {h, i}, replace {h} by the corresponding 
test {h',i'} E T, see (b). 

By eliminating all u + v + 2w items involved, the tests that contain them, 
and all other singleton tests, and adding one isolated item if u + v + w > 0, we 
obtain an equivalent instance of the TCP2 with tests of size 2 only. 0 

From now on we will restrict our attention to the TCP2 with tests of size exactly 
2. This TCP2 can be formulated as an optimization problem on a graph, in 
which the m items correspond to vertices and the n tests to edges. We obtain 
the following characterization of test covers. 

Lemma 4.2 In a graph G = (V, E), a subset E' C E is a test cover if and only 
if the graph G' = (V, E') has no isolated edges and at most one isolated vertex. 

PROOF. If E' is a test cover, then G' = (V, E') has at most one isolated vertex 
(an item with an all-zero signature) and no isolated edges (since otherwise its 
vertices would not be differentiated). Conversely, a graph with these properties 
satisfies the condition that, for any two vertices, there is an edge incident to 
exactly one of them. 0 
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Note that this lemma also characterizes feasible instances of the TCP2. We will 
assume from now on that the instances that we consider are feasible. 

A test cover is minimal if no edge can be deleted from it without causing 
infeasibility. In addition to having the properties stated in Lemma 4.2, a minimal 
test cover is obviously acyclic. This implies the following. 

Lemma 4.3 In a graph G = (V, E), if E' c E is a minimal test cover, then at 
most one of the components of G' = (V, E') is an isolated vertex and each other 
component is a tree of at least two edges. 

We state the following characterization of minimal test covers without proof. 

Lemma 4.4 In a graph G = (V, E), a subset E' C E is a minimal test cover if 
and only if at most one of the components of G' = (V, E') is an isolated vertex 
and each other component is a tree with diameter at least 2 and at most 4, 
containing at most one vertex with degree larger than 2. 

The greedy algorithm for the TCP2 iteratively selects an edge that covers 
the largest number of yet uncovered vertex pairs. In Appendix A we prove the 
following performance bound for the greedy algorithm. 

Theorem 4.1 The greedy algorithm for the TCP2 has performance ratio 11/8. 
This bound is asymptotically tight. 

4.2 Packing paths of length 2 

We will now examine the relation of the TCP2 to another optimization problem 
on a graph. In the problem of packing paths of length 2 (PPP2), we are given a 
graph on m vertices, and we wish to find a maximum number of vertex-disjoint 
paths of length 2, leaving at least one vertex isolated. We will often use the term 
path packing to indicate a feasible solution to the PPP2. The seemingly artificial 
condition that a vertex must be left isolated is introduced for the sake of the 
relation to the TCP2. The PPP2 is NP-hard, because the problem of partitioning 
a graph into paths oflength 2 is NP-complete [12] [4]. 

Given a test cover, we can easily find a path packing. 

Lemma 4.5 If a graph G 
has a path packing of size 7r 

(V, E) has a minimal test cover of size 1', then it 
m 1-1'. 

PROOF. Let E' C E be the minimal test cover. Suppose that the graph G' = 
(V,E') has k components. By Lemma 4.3, G' is a forest, and hence r = IE'I = 
m - k. By the same lemma, we can select a path of length 2 from each but one of 
the components, and obtain a path packing of size 7r k - 1 = m - 1 - 1'. 0 

A converse relation holds as well. A path packing is maximal if no path can be 
added to it. 
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Lemma 4.6 If a graph G = (V, E) has a maximal path packing of size 7r, then 
it has a test cover of size r = m - 1 - 7r. 

PROOF. The graph induced by the path packing contains m - 37r isolated ver
tices. We distinguish two cases. 

(I) The path packing has a path in each component of G. We extend it to a 
test cover by successively connecting all but one of the isolated vertices to one of 
the paths, and obtain a test cover of size r = 27r+m-37r-l = m-l-7r. 

(2) The path packing has a path in each but one component of G. (Since G 
is feasible, the component without a path has one or three vertices.) We extend 
the path packing to a test cover by spanning a tree in the component without a 
path and connecting each of the remaining isolated vertices to one of the paths, 
and thus obtain a test cover of size r = 27r + m - 37r - 1 = m - 1 - 7r. 0 

Given any algorithm that produces a maximal path packing, its extension to the 
TCP2 constructs a test cover by the procedure in the above proof. 

Lemmas 4.5 and 4.6 together imply a relation between optimal solution 
values to the TCP2 and the PPP2, and also allow us to relate the performance 
of approximation algorithms. 

Theorem 4.2 In a graph G = (V, E), the size 7r* of a maximum path packing 
and the size r* of a minimum test cover satisfy 7r* + r* = m 1. 

Since the PPP2 is NP-hard, it follows that the TCP2 is NP-hard too. 

Theorem 4.3 If the PPP2 has an algorithm with performance ratio p, then 
the TCP2 has an algorithm with performance ratio 3/2 - p/2. 

PROOF. Suppose algorithm A for the PPP2 satisfies 7rA ~ p7r*. Consider its 
extension AI to the TCP2. We know that rA' + 7rA = m - 1 = r* + 7r*. Hence, 
TA' = T* + 7r* - 7rA :::; T* + (1 - p)7r*. Since 7r* :::; T* /2, we have TA' :::; T* + (1-
p)T* /2 = (3/2 - p/2)T*. 0 

The greedy algorithm for the PPP2 iteratively selects a path of length 2 
from the graph and deletes its vertices and adjacent edges. When the graph 
contains no path of length 2 or no more than three vertices, it terminates with 
a maximal path packing. A bad example is given by the graph in Figure 2. The 
greedy algorithm may select only one path of length 2, whereas three is optimal. 
We show that this is the worst case. 

• • 

Figure 2: Worst-case instance for the greedy algorithm for the PPP2 
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Theorem 4.4 The greedy algorithm for the PPP2 has performance ratio 1/3. 
Its extension to the TCP2 has performance ratio 4/3. These bounds are tight. 

PROOF. Any path of length 2 in the greedy solution intersects at most three 
paths of length 2 in the optimal solution. Since the greedy solution is maximal, 
either each path in the optimal solution intersects a greedy path, which implies 
the desired performance bound, or the greedy solution leaves exactly three ver
tices isolated that form a path of length 2, in which case the greedy solution is 
optimal. Theorem 4.3 implies the bound for the extension to the TCP2. 0 

Theorems 4.1 and 4.4 tell us that, for the TCP2, picking paths of length 2 at 
random gives a better guarantee than choosing most distinctive single edges. 

4.3 APX-hardness 

We will show that the PPP2 and thereby also the TCP2 is APX-hard. Our 
result will follow through a reduction from 3-dimensional matching with at most 
three occurrences per element (3DM3): Given disjont sets X, Y, Z containing s 
elements each, and a set 0 of t triples in X x Y x Z, such that each element 
of X U Y U Z occurs in at most three triples of 0, find a maximum-cardinality 
matching 0' C 0, i.e., a subset of triples such that no element of X U Y U Z 
occurs in more than one triple. 3DM3 is known to be APX-hard [10]. 

Lemma 4.7 There exists a constant € > 0 such that it is NP-hard to determine 
whether an instance of the PPP2 has a path packing of size (m -1)/3 or of size 
at most (1 - €)(m - 1)/3. 

PROOF. Given an instance of 3DM3, we create a graph G with m = 6s + 3t + 1 
vertices 

- Xg,Xg for each Xg E X, Yh,Yh for each Yh E Y, Zi,Zi for each Zi E Z, 

cj,cJ,cj for each Cj E 0, 
- W, a vertex that wil remain isolated, 

and n = 3s + 5t edges 

{Xg,Xg} for each Xg E X, {Yh,Yh} for each Yh E Y, {Zi,Zi} for each Zi E Z, 

- {xg,cn, {Yh,cH, {zi,cH for each triple Cj = {Xg,Yh,Zi} EO, 

{ cj , cJ}, {cJ ,cH for each Cj EO. 

We claim that G contains 2s + t vertex-disjoint paths of length 2 if and only if 
there exists a matching of size s. The reduction is illustrated in Figure 3. 

If the instance of 3DM3 has a matching 0' of size s, then G contains paths 
(xg,Xg,cj), (Yh,Yh,CJ), (Zi,zi,cj) for each triple Cj = {xg,Yh,zd E 0' and a 
path (cj, cJ, cj) for each triple Cj E 0\0', giving a total number of 3s + (t - s) = 
2s + t paths. 

Now, let a maximum matching consist of J1.* triples, and let an optimal path 
packing P consist of 11"* paths. P contains element paths of type (7, 'Y, c'Y) and 
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w 

Figure 3: Reduction of 3DM3 to PPP2 

triple paths of type (cj, c~, cj) j it is easy to see that other types of paths in any 
path packing can be replaced by element paths. We will bound 1l'* in terms of 
J.L*. Let to, tl, t2, ta be the number of triples in C intersecting 0,1,2,3 element 
paths in P, respectively. Then, 

* I( ) 1 3 I * 
1l' ::; to + tl + 2t2 + 3t3 = t + t2 + 2t3 = t + 2 2t2 + 3t3 + 2" t 3 ::; t + 2"8 + 2"J.L • 

The first equality holds because t = to + t1 + t2 + t3. The second inequality 
follows from h + 2t2 + 3t3 ::; 38 (P contains at most 38 element paths) and 
t3 ::; J.L*. 

Let t' > 0 be such that it is NP-hard to decide whether J.L* = 8 or J.L* ::; 
(1 - t')8. Hence, it is NP-hard to decide whether 1l'* = 28 + t = (m - 1)/3 or 
1l'* ::; 28 + t t' 8/2 = (1 - €)(m - 1)/3, if we choose € = €' 8/(48 + 2t). 0 

Lemma 4.7 and Theorem 4.2 imply the following. 

Theorem 4.5 The PPP2 and the TCP2 are both APX-hard. 

5 Local improvement for PPP2 and TCP2 

In this final section we propose a series of local improvement algorithms for the 
PPP2. Each next algorithm in the series starts from a maximal path packing, 
searches over a larger neighborhood, and requires more time. Its extension to the 
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TCP2, as described in Section 4.2, transforms the locally optimal path packing 
into a test cover. 

The basic heuristic, denoted Ho, applies the greedy algorithm to obtain a 
maximal path packing. For k 2: 1, the kth heuristic in the series, denoted Hk, 
starts from a maximal path packing, and attempts to improve it by replacing 
any k paths of length 2 by k + 1 paths of length 2. This involves a complete 
search over all sets of k paths and, for each such set, over all possibilities for 
improvement. When no further improvements are found, Hk terminates. 

The performance ratio of Hk+l will be no worse than that of Hk. For fixed 
k, Hk runs in polynomial time, but the running time of Hk is not known to be 
polynomial in k. 

Hurkens & Schrijver [7] consider a series of analogous local improvement 
algorithms for the more general problem of packing vertex-disjoint subgraphs 
on t vertices in a given graph. Their work was, in fact, inspired by questions 
about the performance of our heuristics Hk. They derive a lower bound tPk 
on the performance ratio of their kth heuristic, and prove that it is tight if the 
subgraph is a clique. In particular, for t = 3, 

if k is even, 

if k is odd. 

Let Pk be the performance ratio of heuristic Hk, for k ;::: O. Since a path of 
length 2 is a subgraph on three vertices, we know that Pk ;::: tPk. Theorem 4.4 
states that Po = 1/3. We will determine PI, P2, P3, and P4· 

Table 1 lists the values of tPk (k ;::: 0) for the problem of packing triangles, Pk 
(k = 0, ... ,4) for the PPP2, and the corresponding ratios for the TCP2 that are 
implied by Theorem 4.3. Note that H4 has a performance ratio that can only 
be achieved in the limit when one has to pack triangles instead of paths. The 
asymptotic value limk-tco Pk remains open, but it is likely to be strictly smaller 
than 1, in view of Theorem 4.5. 

Theorem 5.1 The local improvement algorithms HI, H2 , H3 , and H4 for the 
PPP2 have the performance ratios given in Table 1. These bounds are tight. 

The proof is given in Appendix B. We give worst-case instances for HI. H2 , 

H3 , and H4 in Figures 7, 8, 10, and 13, respectively, where we have omitted the 

problem k 0 1 2 3 4 5 6 7 8 ... 00 

triangle packing tPk 1 1 5 3 13 14 29 30 61 ... £. 
"3 2" 9 "5 21 22 45 46 93 3 

PPP2 Pk 
1 1 P. 7 2 
'3 2 9 11 "3 

TCP2 3 & 4 P. 11 13 7 
2 2 "3 4 g- IT 6' 

Table 1: Performance ratios for local improvement heuristics 
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mandatory isolated vertex. The performance upper bounds provided by these 
examples match the lower bounds 4>k for k 1 and k = 2. 

The proofs for k = 3 and k = 4 are based on linear programming formula
tions. Unfortunately, the difference in structure between paths of length 2 and 
triangles prohibits the use of the relatively clean analysis of Hurkens & Schrijver. 
A direct analysis as for Ho in the proof of Theorem 4.4 may be extended to Hl , 

but it becomes cumbersome for H2 and we do not see how to use it for Ha. The 
LP argument at least provides an analysis for Ha and H4 • It may be extended 
to handle H5 and H6 , but we have not attempted to do so. 
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A Analysis of the greedy algorithm for TCP2 

We consider the greedy algorithm for the TCP2 defined on the graph G = (V, E) 
with m vertices (items) and n edges (tests). The greedy algorithm iteratively 
selects an edge that covers the largest number of yet uncovered vertex pairs. 

To examine the options, consider a partial test cover E' c E. Let Vk denote 
the set of vertices that lie in a component of G' (V, E') of size k. By adding an 
edge connecting h, i E VI we cover 2(IVII-2) more vertex pairs. An edge between 
h E VI and i E V2 covers lVil more vertex pairs, whereas an edge between h E VI 
and i rt VI U V2 covers IVi I - 1 more vertex pairs. An edge between h, i E % 
connects two isolated edges and hence covers two more vertex pairs. Finally, an 
edge between h E V2 and i rt VI UV2 covers one more vertex pair. 

It follows that, as long as there are at least four isolated vertices, the greedy 
algorithm will select isolated edges. In phase 1, the greedy algorithm constructs 
a maximal matching, provided that at least two vertices remain unmatched. Let 
E{ be the set of edges in the matching. 

In phase 2 the greedy algorithm selects edges that are incident to only one 
edge in E~, thus creating paths of length 2 in the graph, until this is no longer 
possible, or until only one vertex is left isolated. Let E~ be the set of edges 
selected in this phase. After phase 2, the graph G2 = (V, Ei u E~) consists of 
paths of length 2, isolated edges, and isolated vertices. 

In phase 3 edges are selected that connect isolated vertices to a path in G2 , 

until at most two isolated vertices are left. Let E~ be the set of edges selected in 
this phase. The graph Ga = (V, E{ U E~ U E~) consists of trees on three or more 
vertices, isolated edges, and at most two isolated vertices. 

In phase 4 edges are selected that connect two isolated edges in Ga, consti
tuting the set E~. The resulting subgraph is G4. 

Finally, in phase 5 edges are selected that connect the remaining isolated 
edges and at most one isolated vertex to trees in G4, constituting the set E~. 
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We are now ready to prove Theorem 4.1. 
The edges that are isolated at the start of phase 4 were already isolated at 

the end of phase 2. Thus, reversing phases 3 and 4 does not change the outcome 
of the greedy algorithm. The components of the graph G~ = (V, Ef u E~ u E~) 
are paths of length 3 and 2, isolated edges, and isolated vertices. We denote 
their number by C4, C3, C2, and Cl, respectively, where the index indicates the 
number of vertices in the components. In phase 3 and 5, all isolated edges and 
all but one of the isolated vertices in G~ are connected to one of the paths in 
G~. Therefore, the size of the resulting greedy test cover is 

TG = 3C4 + 2C3 + C2 + (C2 + Cl - 1) = 3C4 + 2C3 + 2C2 + Cl - 1. (1) 

Theorem 4.2 together with 11". ~ {m - 1)/3 implies that T* ~ 2(m - 1)/3. 
Since m-l = 4C4 +3C3 +2C2+Cl -1, we have 

(2) 

To obtain another lower bound on T*, we consider the graph G~ again. Each of 
its isolated edges and each of its isolated vertices except one needs an adjacent 
edge. Moreover, no pair of isolated edges or vertices can be combined by an 
extra edge into a path of length 2 or 3, as otherwise this would have been done 
in phase 2 or phase 4. Since the Instances that we consider are feasible, we may 
assume that there is no solution in which the isolated edges and isolated vertices 
of G4 belong to the same path of length 2. Hence, 

Adding 9/8 times (2) and 2/8 times (3) and applying (1) yields 

11 * 9 G gT ~ 3C4 + 4C3 + 2C2 + Cl - 1 ~ T . 

(3) 

To show that the bound is asymptotically tight, consider the graph given 
in Figure 4. It consists of C equal components on twelve vertices each and one 
isolated vertex. The numbers displayed at the edges indicate the phases in which 

5 1 1 1 1 

4 5 5 5 5 

• 1 
4 

1 1 
4 

1 

5 5 5 5 5 

1 1 1 1 1 

Figure 4: Worst-case instance for the greedy algorithm for the TCP2 
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the greedy algorithm selects the edges. The greedy test cover has size rG = 
lIe - 1. Since each of the large components can be partitioned into four paths 
oflength 2, we have r* = 8e. Thus, limc-too rG /r* = 11/8. 

B Analysis of local improvement for PPP2 

We denote the vertex set of a graph G by V(G). Consider the graph G = 
({u} u V(1i) U V(O),E{1i) U E(O)), with u an isolated vertex that we will 
disregard from now on, 1i a collection of paths of length 2 that cannot be 
improved within G by the heuristic Hk, and ° another collection of paths of 
length 2. 

From now on we will use the word path for a path of length 2. We distinguish 
ll-paths and O-paths. Clearly, heuristic Hk achieves its worst-case performance 
on a graph G with 101//1i/ as large as possible. To determine upper bounds on 
this ratio for Ho, .•. , H4 , we formulate five linear programming problems. 

We give each vertex in V(1i) a label; vertices in V(O)\V(1i) will remain 
unlabeled. The labeling is illustrated in Figure 5. Here and in all following 
figures we represent 1i-paths by dashed lines and O-paths by solid lines. All 
vertices v E V(ll)\ YeO) receive label O. All other vertices are both on an 0-
path and on an ll-path, and their label depends on how the O-path intersects 
the collection of ll-paths. 

Let p be an O-path. If p intersects three 1i-paths, then each v E p receives 
label 4. 

If p intersects two 1i-paths, then one of the following two cases occurs. One 
1i-path contains two vertices of p, both getting label 5, whereas the remaining 
vertex of p gets label 3. In the other case both 1i-paths contain only one vertex 
of p; the remaining vertex is unlabeled. If one of the border vertices is unlabeled, 
then the middle vertex of p gets label 2 and the border vertex of p gets label 3. 
The case in which the middle vertex is unlabeled is dominated by the previous 
case, which we illustrate by an exchange argument in Figure 6. 

If p intersects only one 1i-path, then v E p receives label! if lV(l£)n V(p)/ = 
1. If 1V(1£) n V(p)1 = 2, then v receives label 6, and if 1V(1£) n V(p)1 = 3, then v 
receives label 7. However, the last case will not occur in a worst-case graph. A 
configuration with a label 6 vertex is dominated by a configuration with a label 
1 vertex; see Figure 6. We disregard labels 6 and 7 from now on. 

We denote the set of vertices with label i by Vi, for i = 0, ... ,5, and express 

G--e!--o G - - r1
- Q G - - I~ -Q 

I G--r--o 
G --!~ --0 
G-- --Q 

G-- ~--o 

Figure 5: Labeling of vertices; black dots are unlabeled 
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Figure 6: Configurations replaced by dominating ones 

the number of O-paths as 

(4) 

Let an o:/J'Y-path be an 1i-path with the middle vertex labeled /J and the 
border vertices labeled 0: and 'Y, with 0: ~ 'Y, 0 ~ 0:, /J, 'Y ~ 5. If f(o:fh) is the 
fraction of O:/J'Y-paths among the 1i-paths, then, for i = 0, ... ,5, 

IViI = L 11ilf(O:/J'Y)(li(O:) + li(/J) + 1i('Y)), (5) 
(aJJ1' ) 

where li{x) = 1 if x = i and 0 otherwise. Substituting (5) in (4) and dividing 
the result by 11i1 yields a formulation of the objective of finding a graph with a 
highest possible ratio 101/11i1. 

The objective function is to be maximized under the restriction that all 
fractions are non-negative and add up to 1: 

L f(o:/J'Y) = 1. (6) 
(athl 

Another restriction follows from the definition of the labels 2, 3, and 5. For any 
vertex with label 3 there must be either a vertex with label 2 or two vertices 
with label 5. We therefore add the equality 

(7) 

The solution to this first LP problem, which we denote by LPo, gives an upper 
bound on the ratio 1/ Po for Ho. The solution is 3, with f(111) = 1 and all other 
fractions equal to O. The bound is matched by the example given in Figure 2. 
This result was already proved in Theorem 4.4. 

Since a Ill-path can be improved by any Hk, k 2:: 1, such paths should get 
a O-fraction in the LP solution for k 2:: 1. However, there are more path types 
to be excluded, even for Hi; think e.g. of a 132-path. In order to facilitate the 
definition of the proper restriction, we define the notion of a black vertex. 

Define Nll(v) as the pair of vertices on the same 1i-path as v, and No{v) 
as the pair of vertices on the same O-path as v. A vertex v is black if v E 
V(1i) and the subgraph induced by the vertex set V(O)\ V(1i) U(Nll (v)\No(v» 
contains a path. A vertex being black depends only on the type of 1i-path 
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• • 
• I 
I I 

y.y. 
I 

Figure 7: Worst-case instance for Hl 

containing it. For instance, a Ill-path has three black vertices, of a 212-path 
the two vertices labeled 2 are black but the vertex labeled 1 is not, a 333-
paths does not contain any black vertices. A black vertex threatens to create 
a possibility for improvement. Specifically, if a black vertex exists with labell, 
then HI can improve 1-l, which must be excluded at this point. Let BL(1-l) be 
the set of black vertices. Thus, to create LPl , we add to LPo the restriction that 
fractions of path types that contain black vertices with label 1 are O. We give the 
description of this constraint comprehensively in terms of vertex sets, since the 
direct description in terms of fractions would be rather lengthy, and descriptions 
would become even lengthier in the next LP formulations. 

!BL(1-l) n VI! = o. (8) 

The optimal solution value of LPl is 2, which is matched by the example given 
in Figure 7. We emphasize that we did not aim at finding the LP formulation 
that excludes all configurations on which an Hl -improvement is possible. 

To find an upper bound on 1/ P2, we observe that any a-path containing a 
black vertex labeled 3 and a black vertex labeled 2 or two black vertices labeled 5 
(black vertices labeled 5 always come in pairs) gives rise to an H2-improvement. 
Thus, for any 1-l-path p with a black vertex labeled 2 or two vertices labeled 
5, there must exist an 1-l-path q with a non-black vertex labeled 3 that is on 
the same a-path as the black vertex. The other way round should also hold. 
Therefore, a constraint that enforces these situations does not only depend on 
a pair of path-types but also on how they are related through an a-path. To 
define such a constraint, we distinguish 1-l-paths of type 033, 303,333,032,233, 
334, 343, 234, 344, 434, 255, 355, 535, or 525 with a + or a - label. A path q of 
any of these types gets a + label if there is a black vertex v E V2 U V3 U Vs \ V (q) 
with No(v)nV(q) =p 0, and a label otherwise. For these types of paths we also 
distinguish two variables /(0:/3"/+) and /(0:/3"/-) in our LP formulations. The 
non-black vertices v E V2 U V3 U Vs contained in an 1-l-path with a - label are 
white. As a consequence, an a-path cannot contain a black and a white vertex. 
All vertices in V(1-l) that are not white or black are gray. 

We define BL(1-l), GR(1-l), and WH(1-l) as the sets of black, gray, and white 
vertices, respectively. We obtain the formulation LP2 for bounding 1/ P2 by 
adding the following constraints to LPl : 

!BL(1-l) n V2 ! + ~!BL(1-l) n Vs! ~ !GR(1-l) n Val, 

IBL(1L) n V3 1 ~ IGR(1L) n V2 1 + ~IGR(1-l) n Vsl. 
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Figure 8: Worst-case instance for H2 

The optimal solution value of LP2 is 9/5, which is matched by the example 
given in Figure 8. 

In order to find an upper bound on 1/ Pa, we define LPa by adding three 
constraints to LP2 • The first and the second constraint are based on the following 
observation. If two gray vertices v and w labeled 2, 3, or 5 are on the same 11.
path but not on the same V-path, then Noev) and No(w) cannot both contain 
a black vertex, unless these two vertices are contained in one 1I.-path q of type 
202, 222, 232, 242, 323, or 223. If in this case q is of type 222, 232, 323, or 223, 
there cannot be an V-path containing the gray vertex contained in q and a black 
vertex. Figure 9 illustrates these situations. The relative sizes of configurations 
that are excluded in the above observations lead to the following two constraints, 
in which la,B'Y1 denotes the number of paths of type a,B'Y: 

IBL(1l) n V21 + tIBL(1l) n V51-12021-12221-12421 
::; 11l-paths containing a gray vertex labeled 31; 

IBL(1-l) n (V2 U Va)1 + tIBL(1l) n V51-12021 12421 
::; 11I.-paths containing a gray vertex labeled 2, 3, or 51. 

(11) 

(12) 

The third constraint is based on the observation that an V-path cannot contain 
three black vertices labeled 4: 

(13) 

The optimal solution value of LPa is 11/7, matched by the example given in 
Figure 10. 

The upper bound for 1/ P4 is obtained by adding constraints based on two 
observations. First, consider an 1l-path containing at least two gray vertices 
labeled 2, 3, or 5 that are not contained in the same V-path. By definition 
such a path has a + label and therefore contains a gray vertex v for which 

,-.~---\ j----<r----j j----<r----j 
t--e-- Q G--e--! t-----<r----1 t-----f----1 

Figure 9: Ha improves the graphs on the left and on the right, but not the 
middle one 
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~-Ch 
I I I I I .--...-. .--...-. .--...-. .--...-. .--...-. 
I I I I I 

~J--)/ 
Figure 10: Worst-case instance for Ha 

No(v) n BL(ll) n (V2 U V3 U Vs) :f. 0. Now observe that for each vertex u E 
(N1-£ev) \ No(v» n GR(ll) n (V2 U Va U Vs) there can only be an ll-path p with 
a + label for which V(p) n No(u) :f. 0 if there is an ll-path q of type 202,222, 
232, 242, 323 or 223 containing a black vertex in No(v) and a black vertex w 
for which V(p) n No(w) :f. 0. If in this case q is of type 222, 232, 323, or 223, 
there cannot be an O-path containing the gray vertex contained in q and a black 
vertex. 

If No(u) contains at least one black vertex, then an ll-path r of type 202, 
222,232,242,323 or 223 can also contain the black vertices in No (v) and No(u). 
If in this case r is of type 222, 232, 323 or 223, then the gray vertex contained 
in r cannot be contained in the same O-path as a black vertex or a gray vertex 
contained in a path with a + label. In all other cases the gray vertices of type 2, 
3, or 5 incident to an ll-path without a label can be contained in the same 0-
path as vertex u. Vertex u can also be incident to an O-path containing a white 
vertex; see Figure 11. We therefore add the following constraint to LPa: 

2IBL(1i) n (V2 U V3 )1 + IBL(ll) n Vsl-12221-12321-13231-12231 
-312421- 312021 :5 11l-paths with a + labell - 1333+1 + 1434+1 + 1344+1 
+211l-paths without a label containing a gray vertex labeled 2, 3, or 51 
+1 WH(ll) n (V2 U Va)1 + ~I WH(ll) n Vsl. 

(14) 

Second, note that for a gray vertex v labeled 4 with No(v)nBL(ll) 2 there 
cannot exist a vertex wE N1-£(V)nV3nGR(1l) with No(W)n(V2 UVs)nBL(1i) :f. 
0; see Figure 12. The only exception is that there is an ll-path of type 224 that 

G-f-~ G-i-~ 
i--s--~ G--S--f ~-----e----~ G-.· ----~ i---- --{) 

, ---~--. .ooi .. r---.. \.~ , .. j -.-. 
Figure 11: H4 improves the graph on the left, but not the other ones 
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f
---.. ~-----o l~~~~:~~~~~: 
-----1< -----0 ----1< -----0 

G----- -----0 G----- -----0 

G----- -----0 G----- -----0 

t----~---' 

lz----+---- 0----- ----j 
""!-----. -----, o-----~----1 

Figure 12: H4 improves the graph on the left, but not the other ones 

is incident to a vertex in No(v) and with a vertex in No(w). Note that for a 
vertex v labeled 4 incident to an ll-path of type 344+, 434+, 334+, or 343+ we 
have INo(v) n BL(ll) 1 ~ 1, and as a consequence INo(v) n GR(ll)1 ::::: 1. We 
complete LP4 by adding the following constraint: 

2 'IBL(ll) n V4 1 + 2 'IBL(ll) n V21 + IBL(ll) n V5 1 2 ·12021 
-2.12221 2 '12321- 2 '12421- 2 ·12241 ~ 4 'IGR(ll) n V4 1 

+2 ·lll-paths incident to at least one gray vertex labeled 3 and no 
gray vertex labeled 41- 4 ·1344+1- 4 ·1434+1 1334+1-1343+1 

(15) 

The optimal solution value of LP4 is 3/2, which is matched by the example 
given in Figure 13. 

LP4 could be extended to an LP formulation for bounding 1/ P5, but the 
formulations become rather complicated. Also, the analysis thus far did not shed 
much light on patterns that could be used in analyzing local order improvement 
heuristics of a higher order. We therefore decided to stop here. 

t--r--f t--r -l t -r -f t -t -i 
--1:~:L~J:~-r 

Figure 13: Worst-case instance for H4 
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