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Memorandum COSOR 95-33, 1995, Eindhoven University of Technology

Unit�time Open�shop Scheduling Problems with

Symmetric Objective Functions �

N�V� Shakhlevich

Academy of Sciences of Belarus

Surganov Street �� ������ Minsk� Belarus

Abstract

The paper deals with the open�shop problems with unit�time operations and nonde�

creasing symmetric objective functions depending on job completion times� We construct

two schedules� one of them is optimal for any symmetric convex function� the other is

optimal for any symmetric concave function� Each of these two schedules is given by an

analytically de�ned function which assigns to each operation the number of a unit�time

slot for its processing�

� Introduction

We consider the following open�shop problem with n jobs N � fJ�� � � � � Jng and m machines
M � fM�� � � � �Mmg� Each job should be processed by each machine� the processing time
pik of each operation Oik� � � i � n� � � k � m� being given� The operations of each job
may be processed in any order� Each machine can handle at most one operation at a time
and each job can be processed by at most one machine at a time� If preemption is forbidden�
then a schedule s may be de�ned as a feasible combination of job and machine orders� It
can be given by starting or completion times of all operations� and the e�ectiveness of the
schedule s is characterized by vector C	s
 � 	C�	s
� � � � � Cn	s

 of completion times of jobs in
N � We also consider the analogous problem with preemption� the processing of any operation
Oik may be interrupted at any time and resumed later� the total length of all parts of the
operation being equal to pik�

The objective is to construct a schedule which minimizes a given function F 	s
 �
F 	C�	s
� � � � � Cn	s

 depending on completion times of jobs N � The function F is nondecreas�
ing with respect to each its argument� This means that if for two schedules s� and s�� we have
C	s�
 � C	s��
� then F 	s�
 � F 	s��
� We write X � Y for X � 	x�� � � � � xn
�Y � 	y�� � � � � yn

if xi � yi for each i� � � i � n�

In this paper we consider open�shop problems with unit�time operations 	i�e�� pik � � for
� � i � n� � � k � m
 and nondecreasing symmetric objective functions�
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Function F is symmetric if it has the same value for any permutation of its arguments�

Function F is convex if for any two vectors C��C� � Rn and any number �� � � � � ��

F 	�C�  	�� �
C�
 � �F 	C�
  	�� �
F 	C�
�

For concave function the opposite inequality is valid� We denote nondecreasing symmetric

convex function as
�

F and nondecreasing symmetric concave function as
�

F �

In what follows we use an auxiliary scheduling problem with m identical parallel machines�
Each job Ji� � � i � n� can be processed by any machine Mk � � � k � m� which requires
time pi� The objective is to construct a schedule which minimizes function F �

To denote scheduling problems� we follow classi�cation scheme �j�j� ���� where � describes
the machine environment� � stands for the job characteristics� and � is the objective function�
In the case of the open�shop problem we have � � O� and in the case of the parallel machine
problem � � P � The job characteristic � may include one of the conditions pik � �� or
pi � m� Parameter Pmtn in the second �eld denotes that preemption is allowed� The third

�eld � is equal to
�

F or
�

F � For instance� the problem of minimizing symmetric convex function

in the unit�time open�shop is denoted by Ojpik � �j
�

F and the same problem with preemption

is denoted by Ojpik � �� Pmtnj
�

F �

The paper is organized as follows� In Sections ��� we construct optimal schedules s��� s�� for the
problems with symmetric convex function

�

F and symmetric concave function
�

F respectively�
Both problems are considered under the assumption that n � m� 	Otherwise� these problems
are trivial�
 For schedules s�� and s�� we propose analytically de�ned functions t�	i� k
 and
t�	i� k
 respectively� each function assigns to an operation Oik� � � i � n� � � k � m�
the number of a unit�time slot for its processing� It should be mentioned that the result of
Section � is substantially based on the result from ����

In Section � we extend these results to the case of more general objective functions
�

F e and
�

F e respectively�

� Optimal schedule for symmetric convex function

In this section we de�ne a schedule s�� which is optimal for both problem Ojpik � �� Pmtnj
�

F

and problem Ojpik � �j
�

F � In this schedule completion times of the �rst q jobs are equal to
m� where q � n �mb n

m
c is the remainder of dividing n by m� Completion times of the next

m jobs are equal to q m� The next m jobs are completed at time q  �m� etc� 	see Fig�
�
� For simplicity of notation� we introduce b n

m
c  � subsets of job indices� I�

�
� f�� � � � � qg�

I l
�
� fq  	l� �
m �� � � � � q  lmg� � � l � b n

m
c�

Schedule s�� can be speci�ed by a function t�	i� k
 which for each i � �� � � � � n and k � �� � � � � m
de�nes the number of a unit�time slot for processing the operation Oik� To calculate the value
t�	i� k
 for some � � i � n� � � k � m� one needs to determine which of inequalities 	�
� 	�

is satis�ed�

i k � � � �i� 	�


i k � � � �i� 	�


�
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Figure �� Optimal schedule s�� for the problem Ojpik � �j
�

F 	s
� n � ��� m � �

where

�i �

�
m for i � I��

q  lm for i � I l� l � �� � � � � b n
m
c�

	�


�



The formula for t�	i� k
 is given by

t�	i� k

�
�

��������������������
�������������������

i k � �� if i � I� and 	�
�
i k � ��m� if i � I� and 	�
�

i k � �� if i � I� and 	�
�
i k �m� q � �� if i � I� and 	�
� k � K��

i� �	m� k  �
� if i � I� and 	�
� k � K��
i� 	m� k  �
� if i � I� and 	�
� k � K��

i k � �� if i � I� � � � �� Ib
n
m
c and 	�
�

i k � ��m� if i � I� � � � �� Ib
n
m
c and 	�
�

	�


where K� � f �� � � � � m� q  � g�
K� � f m� q  �� � � � � �m� i � g�
K� � f �m� i �� � � � � m g�

Theorem � The optimal schedule s�� for the problems Ojpik � �j
�

F and Ojpik � �� Pmtnj
�

F
can be speci�ed by function t�	i� k
 given by ����

In the proof of Theorem � we use an auxiliary problem P jpi � m�Pmtnj
�

F and the following
result from ��� ���

Lemma � �Gordon� Tanaev� ����� A feasible schedule for the problem P jpi � m�
PmtnjCi � Di� D� � D� � � � � � Dn� exists if and only if the following inequalities
hold�

D� � m�
�P

i���m��

Di � 	m� 	 � m �� � � � � n�
	�


Proof of Theorem �� It is easy to check that value t�	i� k
 is de�ned for each pair 	i� k
� ��
i � n� � � k � m� and t�	i� k
 � �� We prove that formula 	�
 speci�es a feasible open�shop

schedule 	Subsection ���
 and that this schedule is optimal for Ojpik � �j
�

F and Ojpik �

�� Pmtnj
�

F 	Subsection ���
�

	
� The feasibility of schedule s��
 To prove that the schedule de�ned by formula 	�
 is
feasible� we show that

i
 for each job Ji � N all values ft�	i� k
j�� k � mg are di�erent� t�	i� k�
 �� t�	i� k�
 for
k� �� k��

ii
 for each machine Mk � M all values ft�	i� k
j� � i � ng are di�erent� t�	i�� k
 ��
t�	i�� k
 for i� �� i��

The proof of conditions i
 and ii
 for jobs Ji� i � I� � � � � � Ib
n
m
c� is straightforward� We

consider jobs Ji� i � I� � I��

�



i� Observe that condition i
 is straightforward for any job Ji� i � I��

Consider job Ji� i � I�� processed by machines Mk� �Mk� �

�� If inequality 	�
 holds for both machines� Mk� and Mk� � then t�	i� k�
 � i k� � � and
t�	i� k�
 � i k� � �� which implies t�	i� k�
 �� t�	i� k�
�

�� If we have 	�
 for k � k� and 	�
 for k � k�� then t�	i� k�
 � i  k� � � � i� whereas
t�	i� k�
 � maxfi k �m� q � �� i� �	m� k  �
� i� 	m� k  �
g 
 i�

�� Consider the case that 	�
 holds for both machine numbers� k� and k�� It is clear that
if both numbers� k� and k�� belong to the same subset Kl� then t�	i� k�
 �� t�	i� k�
�
Otherwise� for kl � Kl we have

� � t�	i� k�
 
 i� �q  ��
i� �q  � � t�	i� k�
 
 m�

m 
 t�	i� k�
 
 q m�

Hence� t�	i� k�
 
 t�	i� k�
 
 t�	i� k�
� which implies i
�

ii� Consider machine Mk � � � k � m� processing jobs Ji� � Ji� �

�� Let k � K�� Consider two subsets of job indices U� �
� f�� � � � � q  m � k  �g and

U� �
� fq m� k  �� � � � � q mg� Observe that U� � U� � I� � I��

If i � U�� then 	�
 holds and t�	i� k
 � i k � � � k�
If i � U�� then 	�
 holds and t�	i� k
 � i k �m� q � � � k � ��

This means that if both job indices� i� and i�� belong to the same subset U l� then
condition ii
 is valid� Otherwise� if i� � U�� i� � U�� we have t�	i�� k
 
 t�	i�� k
� which
also implies ii
�

�� Let k � K� �K�� Consider �ve subsets of job indices�
V � �

� f�� � � � � m� k  �g�
V � �

� fm� k  �� � � � � qg�
V � �

� fq  �� � � � � q m � k  �g�
V � �

� fq m� k  �� � � � � �m� k  �g�
V � �

� f�m� k  �� � � � � q mg�

If i � V �� then t�	i� k
 � i k � ��
If i � V �� then t�	i� k
 � i k �m� ��
If i � V �� then t�	i� k
 � i k � ��
If i � V �� then t�	i� k
 � i� �	m� k  �
�
If i � V �� then t�	i� k
 � i� 	m� k  �
�

This means that if both job indices belong to the same subset V l� then condition ii
 is
valid� Otherwise� for il � V l we have

k � t�	i�� k
 � m�
� � t�	i�� k
 � q  k �m� ��

q  k � � 
 t�	i�� k
 � q m�
q  k �m� � 
 t�	i�� k
 � k � ��

m 
 t�	i�� k
 � q  k � ��

�



Hence� t�	i�� k
 
 t�	i�� k
 
 t�	i�� k
 
 t�	i�� k
 
 t�	i�� k
�

This completes the proof of feasibility of schedule s���

	
	 The optimality of schedule s��
 We consider the parallel�machine problem P jpi �

m�Pmtnj
�

F and prove that schedule s�� de�ned by 	�
 is optimal for it� 	Taking into account
that s�� is a feasible open�shop schedule� this immediately implies that s�� is optimal for the

problems Ojpik � �j
�

F and Ojpik � �� Pmtnj
�

F as well�


For this purpose� we consider an arbitrary feasible schedule s� for the problem P jpi � m�

Pmtnj
�

F and prove that
�

F 	s�
 �
�

F 	s��
� To this end� we construct a sequence of n�vectors
C��C�� � � � �Cr for which

�

F 	s
�
 �

�

F 	C
�
 �

�

F 	C
�
 � � � ��

�

F 	C
r
 �

�

F 	s
�
�
� 	�


The vector C� � 	C�
� � � � � � C

�
n
 is obtained from the vector C	s�
 � 	C�	s�
� � � � � Cn	s�

 by

sequencing values Ci	s
�
 in nondecreasing order� Since

�

F is a symmetric function� we have
�

F 	s�
 �
�

F 	C�
�

The components of the vector Cr are given by the following formula�

Cr
i �

�
C�
i for i � I��

C
k

for i � Ik� k � �� � � � � b n
m
c�

where C
k
is the mean value of the components i � Ik of the vector C�� C

k
� �

jIkj
P
i�Ik

C�
i �

Observe that Cr � C	s��
� which implies
�

F 	Cr
 �
�

F 	s��
� Indeed� since s� is a feasible
schedule� we have C�

i � m for any i � I�� and due to Lemma �
P

i�I l C�
i � 	q lm
m � �im

for any l� � � l � b n
m
c� Hence Cr

i � �i� i � �� � � � � n� From the other hand� due to formula
	�
 completion times of jobs in schedule s�� satisfy the relation Ci	s

�
�
 � max��k�m t�	i� k
 �

�i� � � i � n� Hence� we have Cr
i � Ci	s

�
�
 for any i� � � i � n�

Vectors C�� � � � �Cr are constructed in such a way that the components fCj
i ji � I�g are the

same for all j� � � j � r� Cj
i � C�

i � i � I�� and for each subset of indices Ik� k � �� � � � � b n
m
c�

the mean values of the components fCj
i ji � Ikg are equal for all j� � � j � r�

�

jIkj

X
i�Ik

Cj
i � C

k
� � � j � r�

The algorithm starts with the last subset Ib
n
m
c and modi�es only these components� Then

it proceeds with Ib
n
m
c��� � � � � I��

�



Algorithm �


j �� ��
FOR k �� b n

m
c TO � BY �� DO

select	Cj� Ik� u� v
�
WHILE u � Ik DO

modify	Cj
u� C

j
v�C

j��
 �
j � j  ��
select	Cj� Ik� u� v
�

END �
END �
STOP�

Procedure select	Cj� Ik� u� v
 considers subset of indices Ik of the vector Cj and selects two
components Cj

u and Cj
v in the following way� value Cj

u is the largest component which is less

than C
k
� and value Cj

v is the smallest component which is greater than C
k
� If for vector Cj

all components fCj
i ji � Ikg are equal� Cj

i � C
k
� i � Ik� then we set u � q  	k � �
m to go

on with the next subset Ik���

Procedure modify	Cj
u� C

j
v�C

j��
 constructs the next vector Cj�� by modifying two selected
components Cj

u and Cj
v of vector C

j �

Cj��
u � Cj

u  ��

Cj��
v � Cj

v � ��

where � � minfC
k
�Cj

u� C
j
v�C

k
g� As a result� one of the values Cj��

u or Cj��
v becomes equal

to C
k
�

Thus� if we consider the set Q of components that are identical for vectors Cj and Cr� then
for initial vector C� we have Q � I� and each iteration adds at least one more component to
the set Q� Therefore� in at most n � q iterations Algorithm � constructs the vector Cr�

To illustrate how Algorithm � works� we consider the following instance of the open�shop
problem with �� jobs and � machines�

Let s� be a feasible schedule with the following vector of job completion times�

C�� 	�� �� �� �� �� ��

p
��� ���

p
��� ��� ��
�

For this instance we have two subsets of indices� I� � f�� � � � � �g and I� � f�� � � � � ��g�
Applying algorithm � to subset I�� we obtain the following vectors C��C��C��C� � Cr�

C�� 	�� �� �� �� ��

p
�� ��� ���

p
��� ��� ��
�

C�� 	�� �� �� �� ��

p
�� ��� ��� ���

p
��� ��
�

C�� 	�� �� �� ��

p
�� ��� ��� ��� ��� ���

p
��
�

C�� 	�� �� �� �� ��� ��� ��� ��� ��� ��� ��
�

�



Let us now prove that F 	Cj
 � F 	Cj��
� � � j � r � �� We introduce a vector Xj which
di�ers from Cj by permutation of components Cj

u and Cj
v �

Cj � 	Cj
�� � � � � C

j
u� � � � � C

j
v� � � � � C

j
n
�

Xj � 	Cj
�� � � � � C

j
v� � � � � C

j
u� � � � � C

j
n
�

It is easily checked that vector Cj�� may be represented by Cj�� � �Cj  	�� �
Xj� where
� � �� ��	Cj

v � Cj
u
�

The objective function F is convex� F 	Cj��
 � �F 	Cj
 	���
F 	Xj
� and it is symmetric�
F 	Cj
 � F 	Xj
� Thus� F 	Cj��
 � F 	Cj
� This completes the proof of Theorem ��

Theorem � can be applied to Ojpik � �j
�

F with
�

F � Cmax � max��i�nfCig or
�

F �
Pn

i�� C
�
i

for � � �� Since both objective functions are convex symmetric functions� schedule s�� is
optimal for both criteria� Cmax and

P
C�
i �

� Optimal schedule for symmetric concave function

Theorem 	 The optimal schedule s�� for the problems Ojpik � �j
�

F and Ojpik � �� Pmtnj
�

F
is speci�ed by function

t�	i� k

�
�

�
i k � �� if i k � � � di�mem�
i k � ��m� if i k � � � di�mem�

	�


An instance of schedule s�� is represented in Fig� ��

Proof� It is easy to check that t�	i� k
 is de�ned for each pair 	i� k
 and t�	i� k
 � �� The
feasibility of schedule s�� 	the validity of conditions i
� ii
 from Section �
 is straightforward�

To prove the optimality of schedule s��� we show that schedule s�� de�nes by 	�
 is optimal

for the problem P jpi � m� Pmtnj
�

F � As it was proved in ���� for the problem P jPmtnj
�

F
there exists an optimal schedule without preemption� This implies that an optimal schedule

s�P for the problem P jpik � m� Pmtnj
�

F with equal processing times can be constructed
by the following simple procedure� schedule m jobs in time interval ��� m�� next m jobs in
time interval 	m� �m�� and so on� It is immaterial which m jobs we choose in each step
since the objective function is symmetric� So� job completion times for s�P can be given
by Ci	s�P 
 � di�mem� i � �� � � � � n� From the other hand� job completion times in s�� satisfy
relations Ci	s

�
�
 � max��k�mft	i� k
g � di�mem� This means that s�� is optimal for P jpi � m�

Pmtnj
�

F and hence it is optimal for Ojpik � �� Pmtnj
�

F and Ojpik � �j
�

F as well� Theorem is
proved�

Observe that function
P
Ci is convex and concave simultaneously� and hence� both schedules�

s�� and s��� are optimal for this objective function� It should be mentioned here that optimal
schedule for the problem Ojpik � �j

P
Ci was constructed earlier in ��� �� ��� The other useful

observation is that function
P
C�
i is concave for any �� � 
 � � �� and therefore� schedule s��

is optimal for it�

�
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Figure �� Optimal schedule s�� for the problem Ojpik � �j
�

F 	s
� n � ��� m � ��

� Some generalizations

In this section we consider more general e�quasiconvex and e�quasiconcave functions� Note
that due to ��� the schedule s�� is optimal for any e�quasiconcave nondecreasing objective
function even if this function is not symmetric�

�



The de�nition of convex function is given in Section �� We remind now the de�nitions of
quasiconvex and e�quasiconvex functions�

Let En
� be a set of all vectors in Rn with components from the set f�� ����g�

Function F 	C
 is quasiconvex if the inequality

F 	�C�  	�� �
C�
 � maxfF 	C�
� F 	C�
g 	�


holds for any two vectors C��C� � Rn and any number �� � � � � ��

Function F is e	quasiconvex if 	�
 holds for any two vectors C��C� � Rn such that C� �
C�  �e� e � En

� � and � � R�

By de�nition� any convex function is quasiconvex� and any quasiconvex function is e�
quasiconvex� It is easy to check that there exist e�quasiconvex functions which are not
quasiconvex� and there also exist quasiconvex functions which are not convex�

The de�nitions of concave� quasiconcave and e�quasiconcave functions are similar� it is just
su�cient to replace the sign � by �� and min by max�

Let us show that the schedule s�� constructed in Section � is optimal for arbitrary e�quasiconvex

nondecreasing symmetric function
�

F e�

Indeed� the convexity of function
�

F is used in the proof of Theorem � to establish that
�

F 	Cj��
 �
�

F 	Cj
� Let us show that the analogous inequality holds for
�

F e� We considered
two vectors Cj and Xj� These vectors satisfy the relation Xj � Cj �e� where � � Cj

v �Cj
u

and vector e has only two nonzero components eu � �� ev � ���

Due to the de�nition of e�quasiconvex function� vector Cj�� � �Cj  	� � �
Xj satis�es

the inequality
�

F e	Cj��
 � maxf
�

F e	Cj
�
�

F e	Xj
g� Taking into account that function
�

F e is

symmetric� we obtain
�

F e	Cj
 �
�

F e	Xj
� which implies
�

F e	Cj��
 �
�

F e	Cj
�
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