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Abstract

Let f : {O,l}k + {O,l} and let ~f : {O,I}Z + {O,l}l be defined by

( ~ f~) n : = f (s , S I ' .•• ,s k I) •n n+ n+ -

Such a mapping is called finitely generated. This report studies finitely

generated bijections of {O,l}l. The main result is a non-trivial example

for k = 4.
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I. Introduction

In recent research work concerning an Ising model J.M. Beltman encountered

a problem on finitely generated bijections of {a, I}l to itself (for defini­

tions see section 2). The main question was whether there are any non-trivi­

al examples of such mappings. Since we were not able to discover any litera­

ture concerning this problem but we did find the required examples and other

related results we have combined what we have found in this report. The au­

thors would appreciate receiving information concerning similar results in

the literature.

2.

ZLet S := {O,I} • Elements of S are denoted by underlined letters,

s = (... ,s_l,sO,sl,s2'''')' We define

(2. I)

Then (S,d) is a compact metric space.

We are interested in mappings from S to S. The translation T 18 defined by

(2.2) \;J S '<:f '17 [(Ts) : = s 1J •SE nEL - n n+

Furthermore we define the complement operator C by

(2.3) \i s\:1 '11 [(Cs) := s + IJ,SE nE~ - n n

(2.5)

where from now on addition is mod 2. We shall also use the symbol a for

a + I (mod 2).

(~.4) Definition. A mapping ~ : S + S is called finitely generated if there

is a k E :IN and a function f {O, I}k + {O,I} and apE l such that

":j \j [(4)s) := f(s s s )JSES nEE - n n+p' n+p+I"'" n+p+k-I •

The set of all such mappings is denoted by g= and we denote the subset of bi­

jections in ~ by~. Clearly T E ~ and all mappings in ~ commute with T. We
k .

shall use the following notation. If f : {a, I} + {O,I} then 4>f denotes the

mapping in~ with (~f~)n := f(sn,sn+I"" ,sn+k-l) for all n, i.e. TP4>f is the

mapping 4> of (2.5).
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(2.6) THEOREM. Let ~ : S + S be a mapping which commutes with T. Then ~ is

continuous iff ~ E S .

Proof.

(i) Let ¢ E:J:: and let p, k, i he as In (2.4). If E: > 0 we choose N such

that

00

L 2-n < E:

n=N-Tpl-k 2

and then define 0 := 2-N• Then clearly

(ii) Suppose ~ commutes with T and ¢ is continuous. Let

for i = 0,1.

t E Sand d(s,t) < 0 then t E S .• In other

~n the coord~n~tes t. for ~hich12-lil < o.
1

we define f in accordance with s E So ors

Since <P is uniformly continuous because (S,d) 1S compact, the two sets

SO' S\ which are clearly both open and closed and furthermore disjoint

have positive distance O. Hence for i = 0,1 it follows that if s E S.,
- 1

words (¢!)o does not depend

On the remaining coordinates

E SI' Since (<P~)n = (Tn~~)O

it follows that ep E fr..

Now we observe that the mappings 1n ~ are continuous bijections of a

compact metric space to itself. Therefore these mappings are homeomorphisms.

Therefore Theorem (2.6) implies that each mapping in& has an inverse in~,

i.e. if a finitely generated function is one to one its inverse is also fi-

ely generated.

From our definitions it is obvious that the product of 2 finitely gene­

nated functions is again finitely generated. Therefore we h~ve proved:

~

(2. 7) THEOREM. ({J::, 0) is a group.
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\ole have seen that C and T are elements of this group with order 2 resp. 00.

- i-IIf f(x l ,x2 , .. , ,~) = xi then ~f E ~_because ~f = T • In the same way

f(xl,x2""'~) = xi yields a ~f E~. In the next section we shall consider

the question whether &has any other elements than the elements of the sub-

group generated by C and T. Firf

next section,

state some properties we need in the

-
(2.8) LEMMA. Let ~ Ea:'. If~Q=Qand (4)..~)n =
small enough.

a for n < a then s = a for n
n

f 1 1 1 , T-k h·' f -I (-k 0)Proo . C ear y 1m ¢s = Q. By t e cont1nu1ty a ~ we have d T ~,_ < I
k-)o<lO

and hence s_k = a if k large enough.

-(2.9) LEMMA. If ~ f is in <J:" then C4>fC
- - -

g (x I ' Xz' ... ,~) := f (x I ' .. , ,~) .

Proof. Straightforward substitution.

...
is also in ~a:ndit 1:8 genel'ated in glJheroe

(2.10) LEMMA. Let R be the bijection on S dEfined by (~)n := s_n' Then

4>f E g,: implies R4> f R E a=, and Tk-IMfR is generated by g where g(x
l

, ... ,~):=

:= f(~, ... ,xl)·

Proof. Straightforward substitution.

Remark. In Lennna (2.9) and Lennna (Z.IO) we have g(O,O, ••• ,a) = 0 if

f(O,O, ••• ,0) = O.

3. Nontrivial finitely generated bijections

In our search for functions f for which 4> f E &- we shall make use of a num­

ber of principles which we list below and number P, (i = 1,2, ••• ).
1

(P I) W.l. o. g. we may assume f (0 ,0, •• ,,0) = a because C E &.
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We first describe some more notations. From now on when describing

s E S we let So be preceded by a semicolon. Thus we destinguish between the

elements ( ... ,0,0,0;1,1,1, .•• ) and ( ... ,0,0;0,1,1,1, ••• ). Since periodic

sequences often occur we introduce a notation which is obvious, denoting a

period by square brackets, e.g.

( ••. 0,1,0,1,0,1,0,1,1;1,0,1,1,1,1,1, ••• ) = ([O,IJ,I;I,O,[1J) .

From PI we have ~f([OJ) = ([OJ). Since ~f([IJ) = ([f(I,I, ••• ,I)J) we must

have f(I,I, ••• ,l) = 1. It follows that f(x l ,x2) = xl and f(x l ,x2) = x2 are

the only functions of 2 variables which satisfy our conditions because

f (0, I) f(I,O) would imply that ~f([O,lJ;) = ([OJ) or ([lJ) and then ~f

is not a bijection.

Let us use the symbol Fk to denote the set 0: functions f : {O,l}k~{O,I}

with f(O,O, ••• ,O) = 0, f(l,I, ••• ,I) = I and ~f E~~. We have already seen

that Fk contains k functions corresponding to translations.

To illustrate the method (which will become rather complicated for

k = 4) we now consider k = 3. We consider the De Bruijn graph (cf. M. Hall,

Combinatorial Theory, Ch. 9, Blaisdell, Waltham, 1967).

,

I
figure I.

The points of the graph are the pairs E {O,I}Z and (al,aZ) is joined by an

edge to (bl,bZ) if a2 = b 1• For arbitrary k the definition is analogous:

(al,a2""'~_I) is joined to (a2,a3""'~-1'~)' In figure 1 we place be­

side the edge from (a
1
,a

2
) to (a

Z
,a

3
) the number f(a l ,a

Z
,a

3
). In this way

figure I describes a possible element of F
3

•
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We then have:

(P2) If f E F
k

then the corresponding De Bruijn graph does not contain a

circuit with all values of edges equal to 0, except for the loop on

(0,0, •.• ,0). The sam~ holds for the value 1.

(P3) In figure I we have e :f f because 4>f([O,IJ;) :f ([OJ) or ([1J). The

same principle holds for k > 3.

(P4) The idea of P3 generalizes to periodic sequences with other periods,

e.g. in figure I ~f([O,O,IJ;) = ([a,e,dJ;) and 4>f([O,I,IJ;) = ([b,c,fJ;)

from which it follows that one of the triples (a,e,d), (b,c,f) has 2

zeros and a one, the other has 2 ones and a zero.

(PS) There must be a unique sequence which is mapped by 4>f into ([OJ;[IJ).

By Lemma (2.8) this implies that in the De Bruijn graph there is a

unique path from (0,0, ••• ,0) to (1,1, ••• ,1) such that the values along

this path are a number of O's followed by a number of I's. E.g. in fi­

gure we cannot have a = 1, b = 0.

(P6) In the De Bruijn graph there must be a path from (0,0, ••• ,0) to

(O,C, .•• ,O), i.e. a circuit, with all values along the path equal to °
except for a single I. This path is unique. This principle follows from

the fact that ([OJ;I,[OJ) must have an inverse under ~£ (again using

Lemma 2.8).

(P7) If in the De Bruijn graph the edge from (0,0, .•• ,0) to (0,0, ••• ,0,1)

has value then in each point the 2 edges pointing out have different

value. This is more difficult to see. First observe that a sequence

([OJ;I,x l ,x2 , ... ) must be 4>f2 where ~ = ([O];O,O, ... ,O,I,sk,sk+I"")'

Since both xl = ° and xl = I are possible we must have £(0,0, ••• ,0,1,0) ~

:f £(0,0, ••• ,0,1,1); etc.

As a consequence we always have f(O, ••• ,O,l) ~ f(I,I, ••• ,I,O) and then

by Lemmas 2.9 and 2.10 we have f(1 ,0, ••• ,0) ;. f(O,I, •.• ,1). The construction

o£ the function g from f, described in these lemmas corresponds in, figure I

and figure 2 to moving the number placed beside the edge to the edge diame­

trically opposite and taking complements (Lemma 2.9), respectively to moving

t~e number to the mirror image with respect to the axis through 00 and II

(Lemma 2.10). This symmetry reduces the number of cases to be considered.

We shall need more principles but we first finish the discussion for k = 3.
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(i) If in figure I we have a = I then b = I by P5 and e = 0 by P7. Then

f = I by P3 and d = 0 by P7. Also c = 0 by P7 and we have

f(x
l
,x2,x3) = x3'

(ii) Let a = O. Then by svmr1etry d = I. This g~ves f (xI ,x2 ,x3) = xI'. The

same solutions turn up when c = 0 or b = O.

(iii) Let a = 0, d = 0, c = 1, b = I. Then e = I by P6 and f = 0 by P3 and

thus we have f(x
l
,x2,x3) = x2 '

...
This proves that IF31 = 3, i.e. only trivial functions exist with ~f E ~ if

k :0; 3.

The case k = 4. In figure 0 we consider the De Bruijn graph corresponding

tok = 4 and label the edges with the function values.

. I
hgure 2.

H~ce we also shall use:

(P8) b , e. This follows from a consideration of the three 4-cycles in fi­

gure 2: ahif, gbre, pqcd. According to P4 these must correspond to

011 I, 0011 and 0001. Hence among abcdefghipqr there are 6 zeros. In

the same way we see that among ighpqr there are 3 zeros. The result

then follows from a , d and c , f.
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First we consider the case a = I.

By P7 we have d O. By P5 we find c = I and f = O.

(i) a = I, b I. By ?8 we have e O. Furthermore h = i =0 and p = q =

by P6. Then g = 1 and r = 0 hy P4 and x = 0 by P7 and hence

f(x 1,x2 ,x3,x4) = x4•

(ii) a = I, b = O. Again d 0, c = I, f = 0, but now e = I. By P5 we have

h = x = q = 1 and p = x = i = O. This is a contradiction because

qcdp = ahif.

So we turn to the case a = 0: By Lemma 2.10 taking f = 1 will give us

f(x
l
,x2 ,x3 ,x4) = xI' Hence we can assume f = 0, c = d = I.

By Lemma 2.10 we may assume b = 0, e = 1.

(i) Suppose g = I. By P6 and P4 we must have r = 1 (consider ahif and

abref) and p = q = O. If h = 1 and i = 0 then ([lJ,d,e;f,[OJ) and

([IJ,d,e,g,h;i,f,[OJ) are both ([IJ;[OJ). Therefore h = 0, i = 1. Then

P5 im;:1.ies that x = I and hence f(x 1,x2 ,x
3

,x4) = x2 + x 1x
3
x4 •

(ii) Suppose g = O. By symmetry r = 0 results in f(x
1

,x2 ,x
3

,x
4

) = x2 + x
1
x

3
x4•

So let r = 1. If h = i = 1 then ([O],a;h.i,f,[O]) and (IOJ,a,b;r.e,f,[O])

are the same. If h = 1, i = 0 then by P5 we have x = 1, P = O. This pro­

duces the identical sequences ([OJ,a,b;r,p,x,i,f,[OJ) and

([OJ,a;h,~,x,i,f,[OJ).Henceh = 0, i = 1 and the other values again

follow ftom P5 and P4. This yields f(x l ,x2 ,x
3

,x4) = xz'

The search which we have described yielded the trivial functions and 4 other

possibilities which are actually the same by the lemmas 2.9 and 2.10.

The ="Clction f(x
1
,x

2
,x

3
,x

4
) = x2 + x 1x

3
x4•

~e shall now show that this function is in F4• This example was first

discovered by W. Nuij. The simplest proof is by considering (4!f)2. Substitu­

tion shows that (~f)2 = T2 and hence 4!f E~. Another way of seeing this is

to consider a sequence containing 1 x 01 as a sequence of 4 consecutive

symbols, e. g•

••• abclxOlpqr •••••
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definition x is - T- I¢Then by mapped into x by but the I , a and I are mapp-f
that (T-I 41 )2 =ed into 1,0,!. A second application then shows 1• The ad-. f

vantage of this second approach is that one easily guesses generalizations

of the results we have found.

4. ~ for k > 4

The ideas of section 3 immediately generalize. Let

... x xn-I n
(n ~ 4) •

By straightforward calculation one finds (41 )2 = T2 and hence f E: F .f n
To generali ze the second point of view in section 3 we define a good se-

quence (a
l
,a2,···,an) to be a finite sequence such that for 2 s k S n - I •

We then try to find a sequence (E 1, ••• ,En) such that for some k and t and

all choices of x),x2""'~ the sequence (E),E2, ••• ,Ek,x),x2, ••• ,~,Et+)'"

••• ,En) is good. The method is best illustrated by an example. Let

f
l

: {O,I}2 + {O,I}, f
2

: {0,1}2 + {a,)}.

We define g : {0,1}9 + {a,)} as follows:

g (a) , ) ,°,°,°,p , q , I , I) := f I (p ,q) ,

g(I,O,O,O,p,q,I,I,a) := f 2 (p,q) ,

otherwise.

Cons~Jer T-S
4/ • If for some s we have T-5 4! s {:: s, then s contains asubse-
g - g- - -

quence (I,O,O,O,p,q,I,I) which is good. It is easily seen that the corres-

ponding coordinates OfT-:-541g~are I,O,O,O,f
l
(p,q),f2 (p,q),I,I. If we take

(f l ,f2) =: ! where !(O,O) ~ (0,0), !(O,) = (1,1), f(l,1) = (I,D), !O,O) =
-s 3 -5 A

= (0,1) then (T 4!) = I, i.e. T 4! is an element of order 3 in~.g g
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A natural question ~s whether there is a function f E Fk such that

<P f # T~ and yet <P f has infinite order. By section 3 this is not the case

for k = 4. We give an example for k = 7. Let f(x
l
,x2 ,x

3
,x4) := x3 + x

l
x2x4 '

( ) - - T-2~ T-2~ Th ~fg x l ,x2 ,x3 ,x4 := x3 + x l x2x4 ' A:= "'f' B:= "'g' en.L

~:= ([OJ;I,O,I,O,[I,O,OJ) we find BA~ = ([OJ;I,O,I,O,I,O,[J,O,OJ),
2(BA) ~ = ([OJ;I,O,I,O,I,O,I,O,[I,O,OJ), etc.,

i.e. BA has order 00. Since A en B both have order 2 we see that A andB do

not cormnute.

S. More dimensions

We have not studied this problem extensively for more dimensions but

we shall give one example to show that similar results hold. Let
2

s = (s .. ; i,j E l) be an element of S := {O,I}E • We consider a finitely
. ~J

generated map <PfS defined by

(<t>s) •• := s .. if s. I . s. '+1' = I and s. I • = s. I . 1 = 0,.- ~J ~J ~- ,J ~,J ~+ ,J ~- ,J+

(<ps) .. := s .. otherwise
- ~J ~J

i.e. s .. ~ s .. only if the neighboring coordinates form the configuration
~J ~J

° I

I s .. °~J

In the same way as before we see that the resulting configuration is

° I

-
I s .. °~J

. 2, ~.e. <t> = I .
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Notaties:

"nolN betekent: "Voor ieder natuurlijk getal nil.

3 betekent: "Er is een element p van de verzameling A waarvoorpEA "...... .
{x I ••••• } betekent: de verzameling bestaande uit aIle x waarvoor ••••••

geldt. Zo is bijvoorbeeld {n E zl n < O} de verzameling der negatieve gehele

getallen.




