

An algebraic semantics for hierarchical P/T nets

Citation for published version (APA):
Basten, T., & Voorhoeve, M. (1995). An algebraic semantics for hierarchical P/T nets. (Computing science
reports; Vol. 9535). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/0d09deac-b50e-4662-80ce-e9abcb08eed3

An Algebraic Semantics for Hierarchical Ptr Nets

ISSN 0926-4515

All rights reserved
editors: prof.dr. R.c. Backhouse

prof. dr. I.C.M. Baeten

Reports are available at:
http://www.win.tue.nl/win/cs

by

T. Basten and M. Voorboeve

Computing Science Report 95/35
Eindhoven, December 1995

95/35

An Algebraic Semantics for Hierarchical PIT Nets*

Twan Basten and Marc Voorhoeve

Department of Computing Science, Eindhoven University of Technology, The Netherlands
email: {tbasten.wsinmarcj@win.tue.nl

Abstract

The first part of this paper gives an algebraic semantics for Placell'ransition nets in terms of an algebra
which is based on the process algebra ACP. The algebraic semantics is such that a Pff net and its term
representation have the same operational behavior. As opposed to other approaches in the literature, the
actions in the algebra do not correspond to the firing of a transition, but to the consumption or production
of tokens. Equality of Pff nets can be determined in a purely equational way.

The second part of this paper extends the results to hierarchical Pff nets. It gives a compositional al
gebraic semantics for both their complete operational behavior and their high-level, observable behavior.
By means of a non-trivial example, the Alternating-Bit Protocol, it is shown that the notions of abstrac
tion and verification in the process algebra ACP can be used to verify in an equational way whether a
hierarchical Pff net satisfies some algebraic specification of its observable behavior. Thus, the theory in
this paper can be used to determine whether two hierarchical Pff nets have the same observable behavior.
As an example, it is shown that the Alternating-Bit Protocol behaves as a simple one-place buffer. The
theory forms a basis for a modular, top-down design methodology based on Petri nets.

Key words: Placeffransition nets - hierarchical Petri nets - process algebra - algebraic semantics - abstrac
tion - verification - top-down design

1 Introduction

Motivation. The theory of Petri nets (see for example [31]) has been developed to design and analyze dis
tributed systems. In order to support the design oflarge, complex systems, high-level Petri nets [21, 23] have
been defined, which include hierarchy, data, and time. Based on high-level Petri nets, automated tools, such
as DesignlCPN [26] and ExSpect [1], have been developed. The most important reasons for the widespread
use of Petri nets in the area of system design, are their intuitive graphical representation and the simplic
ity of the main concepts of the theory. Unfortunately, the class of Placeffransition nets, which underlies all
other classes of Petri nets, also lacks one important property, which is essential to top-down, modular design:
compositionality.

Several other theories for describing concurrent systems do have this property. For example, process al
gebras, such as CCS [27], CSP [22], and ACP [4], all support compositionality. Therefore, it is not surprising
that several attempts have been made to integrate Pff nets and process algebra. Some approaches give a net
semantics for some process algebra; others describe an algebraic semantics for (some subclass of) Pff nets.
All approaches have in common that there is a one-tn-one correspondence between actions in the calculus
and transitions in the Pff nets. Usually, only flat Pff nets are considered. Below, a brief survey is given of
some recent results described in the literature.

This paper presents a different approach. First, it gives an algebraic semantics for flat Pff nets in terms
of an ACP-like process algebra [4] in which atomic actions correspond to the consumption or production of
a single token. This correspondence is the essential idea that allows for a straightforward extension to hi
erarchical nets. The algebraic semantics is such that the two transition systems which form the operational
semantics of a Pff net and its algebraic representation are equivalent. The process algebra ACP is chosen,

• An extended abstract of this report appeared as [6)

1

because it emphasizes equational reasoning as opposed to model-based reasoning. An equational theory is
given which can be used to detennine equality of Pff nets, without referring to their operational semantics.
Second, this paper gives an algebraic semantics for both the complete behavior and the observable behav
ior of hierarchical Pff nets. The complete behavior of a hierarchical Pff net is the behavior of the flat net
which is obtained when the hierarchical net is unfolded; the observable behavior of a hierarchical net is the
behavior after hiding the internal behavior. The algebraic semantics for the observable behavior of hierar
chical Pff nets can be used to verify whether a net satisfies some algebraic specification of its behavior, and,
as a result, to determine whether two hierarchical nets have the same observable behavior. All this can be
done in a purely equational and compositional way. The theory thus fonns the basis for a top-down design
methodology based on hierarchical Petri nets. Figure 1 gives an example, which is used to further explain
and motivate the research described in this paper.

b

a a
I c
I 10 I I • _____ y----J ~ ____ y----J

a?· (b?·8 + c?·8) a?·b?·8 + a?·c?·8

Figure I: Motivating example.

The two nets shown in Figure 1 look like ordinary Pff nets. However, the dashed boxes divide the set
of places into pins and internal places. The idea is that pins are connectors to an environment, which can
remove tokens from or add tokens to the pins. The internal structure of the net is hidden as in a black box.
Thus Pff nets with pins are a very simple fonn of hierarchical nets. It is straightforward to extend such Pff
nets with pins to more general hierarchical Pff nets. Besides places and transitions, the internal structure of
a high-level, hierarchical net can also contain subnets, whose pins are connected to internal places or pins
from the high-level net. Essentially, this is the hierarchy construct underlying the high-level nets described
in [21]. It is also one of the constructs used to build hierarchical nets as described in [23]. Furthennore, it is
supported by tools as DesignlCPN and ExSpect.

The main objective of this paper is to give an algebraic semantics for the observable behavior of hierarch i
cal nets, that is, their behavior projected onto pins. Therefore, it seems most appropriate to define the behavior
of a net in tenns of production and consumption of tokens. Consider, for example, the left net in Figure 1.
Assuming that the environment provides sufficiently many tokens, it is easy to see that it first consumes a to
ken from a, then, either consumes a token from b or from c, after which it deadlocks. In an ACP-like process
algebra, one could express this kind of behavior by the tenn a?·(b?·8 +c?·8), where a question mark denotes
the consumption of a token, . denotes sequential composition, + denotes a choice, and 8 denotes deadlock.

In order to compare hierarchical nets, some suitable notion of equivalence is needed. In the context of
this paper, two hierarchical nets are considered equivalent if and only if their observable behavior is the same.
For example, consider the right net in Figure 1. From the environment, it looks the same as the other net.
However, it does not have the same observable behavior. Obviously, like the other net, it first consumes a
token from a. But after that, its behavior is different. If the uppennost transition consumed the token from
a, after that, it will only consume a token from b but not from c. The consumption of a token from a implies
a choice between b and c. For the left net, this is not the case. After consuming a token from a, it is still able
to consume a token from either b or c. The behavior of the nets is different, because their moments of choice
are different.

2

So, an appropriate notion of equivalence should capture the moments of choice in a process, often called
the branching structure o/the process. In [15], Van GIabbeek formally defines the branching structure ofa
process. He shows that an equivalence notion captures the branching structure if and only if it distinguishes
more processes than bisimulation equivalence. Two processes are bisimilar if and only if, at any time, they
can copy, or simulate, each others actions. Therefore, in this paper, two hierarchical Pff nets are considered
equivalent if and only if their observable behavior is bisimilar. Consequently, the two nets of Figure 1 are not
equivalent. In their survey on refinement of Petri nets, Brauer, Gold, and Vogler [12] propose bisimulation
equivalence for similar reasons as explained above. It also appears in the survey on equivalence notions for
Petri nets by Pomello, Rozenberg, and Simone [30]. Note that in this paper bisimulation is not used explicitly
to determine equivalence of nets. Instead, an equational theory is given which can be used for this purpose.
Since it is not the main subject of this paper to investigate equivalences on Petri nets, it is left for future
work to investigate other notions of equivalence which might be of interest in the context of this paper. True
concurrency equivalences seem to be interesting candidates.

Note that the notion of equivalence of hierarchical nets introduced above has an interesting consequence.
For example, adding an internal output place to any of the transitions of a net in Figure 1 does not change its
observable behavior. This behavior is even independent of the number of initial tokens in such an additional
place. This means that nets with different reachable states can have equivalent observable behavior.

Summarizing, this paper gives an algebraic semantics for hierarchical Pff nets, in which atomic actions
correspond to the consumption or production of tokens. An equational theory is given which can be used to
determine equivalence of hierarchical nets.

Related work. One way to integrate Pff nets with process algebra is to give a net semantics for terms in the
algebra, thus providing the process algebra with a true concurrency semantics. Examples of this approach are
Best, Devillers, and Hall [10], Degano, De Nicola, and Montanari [13], Van Glabbeek and Vaandrager [16],
Goltz [19], Montanari and Yankelevich [28], Olderog [29], and Taubner [33]. As explained, this paper does
the converse. It gives an algebraic semantics for Pff nets. Examples of this approach are Baeten and Berg
stra [2], Boudol, Roucairol, and De Simone [11], and Dietz and Schreibert [14]. All three approaches are
discussed briefly.

Dietz and Schreibert [14] give an algebraic semantics for Pff nets which reflects the parallelism in their
dynamic behavior. The parallel components in the algebraic representation of a net do not correspond to its
structural components. Such a relationship does exist in the other two papers. Boudol, Roucairol, and De
Simone [11] give an algebraic term for each place and each transition of a Pff net. The complete behavior of
the net is the parallel composition of all these terms. The communication between these terms corresponds
to the flow of tokens. A similar approach is taken by Baeten and Bergstra [2]. Atomic actions in the alge
bra correspond to transitions in the Pff nets. So-called input and output causes are added to these actions,

corresponding to input and output places. The behavior of a net is the parallel composition of all actions cor
responding to its transitions. A so-called causal state operator is used to restrict the behavior in such a way
that it corresponds to the flow of tokens in the net. As opposed to Boudol, Roucairol, and De Simone, Baeten
and Bergstra emphasize equational reasoning.

The approach pursued in this paper is most closely related to the work of Baeten and Bergstra. The al
gebraic semantics given is very similar to theirs. However, as mentioned before, an important difference be
tween this paper and all other approaches is that, in this paper, actions in the algebraic semantics correspond
to the consumption or production of tokens, whereas, in the other approaches, there is a correspondence be
tween actions and transitions. In the latter case, there is no straightforward extension to hierarchical nets.
As this paper shows, there is a straightforward extension when actions correspond to the consumption or
production of tokens.

3

Organization. The paper is organised as follows. Section 2 introduces a framework of transition systems
which serve as the operational semantics for both PIf nets and terms in the process algebra. In Section 3. PIf
nets with pins and their operational behavior are defined. Section 4 introduces the equational theory P'INA.
for Place/Fransition-Net Algebra. and its operational semantics. The algebraic semantics of a PIf net with
pins is a closed P'INA term. It has the same operational semantics as the PIf net. Section 5 introduces the
distinction between internal and observable behavior. It extends the algebraic semantics to general hierar
chical nets. In Section 6. a fairness principle and a recursion principle are introduced. which are needed in
Section 7. where the theory is applied to the example of the Alternating-Bit Protocol. Finally. Section 8 ends
with some concluding remarks and a discussion of future work. The appendices give some proofs which are
not essential to the understanding of the paper. as well as some large and complicated proofs.

Notation. For any set X. the notation P X denotes the powerset of X and IB X denotes the set of all bags
over X. where a bag is a finite multi-set. The standard operators minus (-) and union (U) on sets are also
used on bags. Minus binds stronger than union. Set inclusion (S;;) is also extended to bags. Furthermore.
restriction of some set or bag X to some domain D is denoted X f D. Restriction binds stronger than minus
and union. The emptyset symbol (IS) is also used to denote the empty bag. A non-empty bag is written as a
sequence of its elements in arbitrary order. where each element appears only once and a superscript denotes its
cardinality. Furthermore. for an associative binary operator 0. some function !. some n E IN. and operands
xo • ...• Xn• the quantifier notation (0 i : 0 SiS n: f(xj» is used as a shorthand notation for !(xo)0 ... 0
!(xn). For an associative binary operator Ell that is also commutative. the notation (Ell x : x EX: !(x».
where X is some bag of operands. is sometimes used.

2 Processes

This section introduces a general framework oflabeled transition systems. It serves as the process domain in
which the operational semantics of both PIf nets and algebraic terms are defined. In this way. the behavior
of PIf nets and algebraic terms can be compared in an unambiguous way. For now. there is no distinction
between internal and observable behavior.

Definition 2.1. (Process space) A process space over some set of actions Act is a pair (P. -+). where P
is a set of processes. and _ -=+ _: P(P x Act x (P U {.J}» a ternary transition relation.

Intuitively. for any P. p' E P and a E Act. the predicate p ~ p' means that process p can perform an

action a. thus transiting into a process p'. The predicate p ~ .; means that process p terminates success
fully upon executing an action a. In PIf-net theory. no distinction is made between successful and unsuc
cessful termination (deadlock). However. in the process algebra ACP. such a distinction does exist. Hence.
the distinction is made in the process domain. Of course. PIf nets should represent processes which cannot
terminate successfully.

An equivalence on processes which captures their branching structure is defined as follows. Let (P. -+)
be some process space over Act.

Definition 2.2. (Bisimulation) A binary relation n: P(P x P) is called a bisimulation if and only if. for
any P. P'. q. q' E P and a E Act.

i) p'Rq /\ P ~ p' * (3 q': q' E P: q ~ q' /\ p''Rq').

ii) p'Rq /\ q ~ q' * (3 p': p' E P: p ~ p' /\ p''Rq').

4

iii) p'TUj => p ~ ,J <* q ~ ,J.

1\\'0 processes p and q are called bisimilar, denoted p ~ q, if and only if there exists a bisimulation 'R such
that p'TUj.

3 PIT Nets with Pins

This section formalizes the notion of Pff nets with pins and their operational semantics. No distinction is
made between observable and internal behavior. This means that the dashed box in the graphical represen
tation of Pff nets with pins merely is a glass box instead of a black box. Let Lp be some universe of place
labels and Lt a universe of transition labels.

Definition 3.1. (pff net with pins) A Pff-net structure with pins is a 5-tuple (P, T, i, 0, I), where P ~ Lp
is a finite, non empty set of places, T ~ Lt is a finite, non empty set of transitions, i: T -+ B P a function
which gives the input places for each transition, 0: T -+ B P a function which gives the output places for
each transition, and 1 ~ P the set of internal places. The set P - 1 is the set of pins. The functions i and 0

must satisfy the following two conditions: (i) for any peP, there must exist ate T such that p e it U ot,
which means that there are no isolated places; (ii) for any t e T, it Uot is not empty, which means that there
are no isolated transitions. A Pff net with pins, in the remainder simply called Pff net or net, is a pair (N, s),
where N is its structure as defined above and s : B 1 is its state or marking.

Note that, when the set of pins is empty, a Pff net with pins is just an ordinary Pff net. The state of a
Pff net with pins is a bag of internal places. As usual, an element a of the state of a Pff net is often referred
to as a token residing in place a. The reason for not considering pins in the state of a net is that we want to
determine the behavior of a Pff net under the assumption that the environment is responsible for producing
tokens on and consuming tokens from pins.

The dynamic behavior of a Pff net is a process space in which the Pff nets are the processes and the tran
sition relation determines what actions a PIT net can perform. To formalize this definition, some terminology
and definitions are given first.

Let (N, s) be a Pff net, where N = (P, T, i, o,/). A transition t e T is enabled if and only if, for each
internal place a e 1 with positive cardinality n in it, there are at least n tokens in a available in s. More
concisely, a transition t is enabled if and only if it r 1 ~ s. If a transition is enabled, it can fire. Upon firing,
a transition t removes n tokens from each of its input places a, where n is again the cardinality of a in it;
it adds m tokens to each of its output places b, where m is the cardinality of b in ot. This means that upon
firing t, the Pff net (N, s) evolves into another Pff net (N, s - it U ot r /). Note that it follows from the
standard definition of" -" that it is not necessary to restrict it to I. The tokens that are removed from the net
when firing a transition are often referred to as consumed tokens or the consumption of a transition; tokens
that are added are referred to as the production of a transition. If 1 is chosen equal to P, that is, all places are
internal, the definitions above are the usual ones for Pff nets without pins. Or, from a different viewpoint, the
definitions given here are the usual ones provided that the environment supplies sufficiently many tokens on
the input pins. It is assumed that transitions cannot fire simultaneously. However, as explained in Section 8,
this is not a real restriction. All results can be extended to Pff nets with an operational semantics that allows
transitions to fire simultaneously. The reason for not doing so, is thant 9nnecessarily complicates the theory
and examples that follow, and thus distracts the reader frol\l,the essential points of this paper.

The definitions given so far are sufficient to formalm ihe operational semantics of Pff nets. Let PTN
be the set of all Pff nets. A single action of a net, which is the firing of a single transition, is determined
by two bags, the consumption and the production of the transition. Therefore, let Act be B Lp x IB Lp. The
transition relation _ --=-... _ : P(PTN x Act x (PTN U (,J))) is the smallest relation satisfying, for any net
structure N = (P, T, i, 0,1), bags s, s' EEl, and transition t e T,

5

(It •• ,)
(N. sUit f /) ---+ (N. s U ot P).

Note that. according to this definition. PfT nets have no successful termination. If a PfT net cannot perform
any actions anymore. it is deadlocked. This conforms to the usual semantics for nets. where no distinction is
made between successful and unsuccessful termination.

Example 3.2. LetPTNo = (No. io) andPTN) = (N). io) be the left and right PfTnet in Figure 1 respectively.
Figure 2 visualizes the transition relations of both nets. Since internal activity is visible. and hence the two
nets perform different actions. they are obviously not bisimilar.

(No. io) ! (aio. ill

(No. ill

(bil.~~il'~)
(No.~) (No.~)

(Nl. io)

(aio.il)~aio.i2)
(Nl.il) (Nl.i2)

(bilo~) ! ! (ci2.~)
(Nl.~) (Nl.~)

Figure 2: The transition relations of PTNo and PTN).

4 An Algebraic Semantics for prr Nets

This section introduces an ACP-like equational theory and its operational semantics. It gives an algebraic
semantics for PfT nets such that a PfT net and its term representation have the same operational behavior.

The theory P'INA. An equational theory consists of a signature and a set of axioms. The signature defines
the sorts of a theory and its functions. A O-ary function is often called a constant.

The equational theory used in this paper is P'INA, Place/l'ransition-Net Algebra. The signature and the
axioms are given in Table I. The theory is parameterized by a set of constants Lp. which is the set of place
labels introduced in the previous section. The first part of Table I lists the sorts of PTNA; the second part
defines the functions and the third part the axioms. An informal explanation is given below.

Intuitively. A is the set of atomic actions. AC the set of actions. and P the set of processes. Each atomic
action is either the consumption of a token or the production of a token. A consumption is denoted by "1"
and a production by "!." An action is the simultaneous consumption andlor production of one or more tokens.
Actions are constructed by the synchronous-merge operator I. In an equational theory. nothing is an element
of a subsort unless explicitly stated. This yields the following property.

Property 4.1. For any a E A. there exists abe Lp. such that a = b? or a = b!. For any b E Lp. b? E A and
b! EA. For any e E AC. there exist ao • ...• an EA. for some n E IN. such that e = <I i : 0 ~ i ~ n : aj).
Foranyao •...• an E A, wheren E IN, <I i: 0 ~ i ~ n: ail E AC.

The synchronous merge is a very simple form of the communication merge as defined in [8]. There, the
axioms Sl and S2 appear as Cl and C2 respectively. The reason for changing the names is that there is
no communication in PTNA. The operators + and . denote choice and sequential composition respectively.
Axiom A4 states the right distributivity of sequential composition over choice. To be able to distinguish
between processes with different moments of choice, the converse, left distributivity, is not an axiom of the

6

_PTNA(Lp) _____________________ _

A, AC, P; A c AC c P
8 : P _ ?, _! : Lp --+ A

.: PxP--+P ° . PxP--+P _+_: PxP--+P
11: PxP--+P _I - : AC x AC --+ AC

J..: : (P Lp x J3 Lp) --+ (P --+ P) c_, p_ : AC --+ 18 Lp
d: ACU{8}; e,f,g: AC; x,y,z: P; I: PLp; s: 18Lp

x+y=y+x Al elf=fle
(x + y) + z = x + (y + z) A2 (e 1 f) 1 g = e 1 (f 1 g)
x+x=x A3
(x+y)·z=x·z+y·z A4
(x·y)·z = x·(y·z) A5
x+8 =X A6
8·x=8 A7

J..:(8) = 8
ce r I £ s =} J..: (e) = e

xlly=x!Ly+yltx
dltx=d·x
d·x!Ly=d·(xlly)
(x + y) It z = x It z + y It z

(x It y) It z = x It (y II z)
(x II y) II Z = x II (y II z)

Sl
S2

MI
M2
M3
M4

ASCI
ASC2

ce fI g; s =} J..: (e) = 8
J..:(e.x) = J..:(e) ·J..:_celJp<r/(x)
J..:(x + y) = J..:(x) +J..:(y)

CSOI
CS02
CS03
CS04

CS05

x·y=x.(x·y)+y BKSI

x·(y·z) = (XOy)·z BKS2
x· (y. «x + y)' z) + z) = (x + y)' Z BKS3

Table I: PlacelTransition-Net Algebra.

theory. As expressed by axioms A6 and A 7, the special process 8 can be interpreted as inaction or deadlock.
The merge operator II can be interpreted as parallel execution. It is axiomatized using an auxiliary operator
It, called the left merge. The left merge has the same meaning as the merge except that the left process must
execute the first action. Axioms ASCI and ASC2 are the so-called axioms of standard concurrency. Often,
they are derivable for closed terms and omitted from the theory. However, in combination with the binary
KIeene star (0) they are not derivable for closed terms and hence included. The binary Kleene star adds a
simple form of recursion to the theory. It is the original star operator as introduced by KIeene [24). In [7),
where the axioms BKSI-3 are given, it was introduced into process algebra. Because of its simplicity, the
binary KIeene star is preferred over general recursion (see for example [4)). The remainder of this paper
shows that it is powerful enough to capture the behavior of PfI' nets. Finally, the causal state operator J.. is a

special version of the state operator as described in [4]. It is very similar to the causal state operator as defined
in [2). A state operator has a parameter, the superscript, and a certain state space, the subscript. The state
space of the causal state operator can be interpreted as the state or marking of some pfI' net and its parameter
as the set of internal places. For I, s and x as in Table I, the term J..:(x) can be thought of as the pfI' net
x with internal places I and state s. Using Property 4.1, the auxiliary functions c, p: AC --+ 18 Lp, for
consumption and production respectively, can be defined as follows. For all a E Lp and e E AC, ca? = a,
cal = iii, c(a? 1 e) = a U ce, and c(a! 1 e) = ce; pa? = iii, pal = a, p(a? 1 e) = pe, and p(a! 1 e) = a U pe.

The binding precedence of the above operators is as follows. Unary operators bind stronger than binary
operators. Sequential composition and KIeene star bind stronger than all other binary operators. Choice binds
weaker than all other operators.

The main purpose of a theory as PTNA is that it can be used to reason about processes in a purely equa
tional way. For any processes x and y, PTNA f- x = y denotes that x = y can be derived from the axioms.

7

In order to formalize the intuitive notions given above and to be able to compare processes defined by P'INA
terms to processes defined by Pff nets, the next paragraph gives an operational semantics for P'INA.

Operational semantics for P'INA. A semantics or model of a theory is an interpretation in a, usually well
known and well understood, mathematical domain, such that the axioms are valid in the interpretation. An
operational semantics is a model obtained by giving a process space as defined in Section 2.

To obtain a model of the theory P'INA, interpretations of the sorts A, AC, and P must be given. Define the
interpretation of the set of processes P as the set of closed P'INA terms, denoted C(P1NA). Since it follows
from Property 4.1 that A is a subset of all closed terms, the interpretation of A is simply A itself. For the same
reason, the interpretation of AC is AC itself. Obviously, these definitions satisfy A !;; AC !;; P.

It remains to define the transition relation for processes in C(P1NA). First, the set Act must be de
fined. Intuitively, processes in C(P1NA) can execute an action in AC, thus transiting into another process
in C(P'INA). Therefore, elements in Act should be interpretations of actions which serve as the labels of the
transition relation. Let <p: AC -4 Act be a function that maps actions in AC to actions in Act. The seman
tics given in the previous section for Pff nets suggests that the semantics of an algebra of Pff nets should
have pairs of bags as transition labels, where the first element is the consumption and the second element the
production of an action. The auxiliary functions c and p exactly define the consumption and production of
each action in AC. Therefore, let Act be equal to B Lp x B Lp and let for any e E AC, <p(e) = (ce, pe).
The transition relation _ ---=+ _: P(C(P1NA) x Act x (C(P1NA) U (v1» can now be defined as the smallest
relation satisfying the derivation rules in Table 2.

a: Act; e: AC; s : IB Lp; I : P Lp; p, p', q, q' : C(P'INA)

<p(e) .j p4p' p4.j
e_ a , a

p.q-p .q p.q-q

p4p' q4q' p4.j

p+q 4 p' p+q4q' p+q 4.j

p4p' q4q' p4.j

pllq4p'lIq pllq4pllq'
a

pllq-q

p4p' p4.j

ph4p'lIq
a

p ilq - q
p4p' q4q' p4.j

p*q 4 p'.(p*q) p*q4q' p*q4p*q
<p(e) ,

p-p
<p(e) .j

p-
I <p(e) I (')

ASLkefl (p) - ASUpefl p I q*1 .j AsLkef/(P)

Table 2: The transition relation for P'INA.

q4.j

p+q4.j

q4.j
a

pllq-p

It remains to show that the process space as defined above is indeed a model of the theory P'INA. Recall
that a process space is a model if and only if all equations that can be derived from the axioms are valid in the
process space. The notion of validity is formalized as follows. In Section 2, bisimulation is defined, which is
an equivalence relation on processes. Therefore, it is possible to look at equivalence classes of closed P'INA
terms modulo bisimulation, denoted C (P'INA) / ~. For closed terms p and q, the equation p = q is valid,
denoted C (P'INA) / ~ 1= p = q, if and only if p ~ q. That is, if and only if p and q are bisimilar and thus

8

elements of the same equivalence class. The following theorem states that if equality of two processes can
be derived from the axioms, then the processes are bisimilar, and thus the equality is valid. This means that
one can indeed use equational reasoning instead of model-based reasoning.

Theorem 4.2. The set of closed P1NA terms modulo bisimulation is a model for P1NA. That is, for any
p, q E C(PTNA), P1NA f- p = q => C(P1NA)/ - F p = q.

Proof. It follows from the format of the derivation rules in Table 2 that bisimulation equivalence is a con
gruence on C(P1NA) [3]. Therefore, it suffices to verify the validity of each axiom of P1NA to prove the
theorem. The validity of an axiom can be shown by constructing a bisimulation. The details can be found in
Appendix A. 0

An algebraic semantics for Ptr nets. The following definition associates a closed P1NA term to each PfT
net. The idea is to define first the unrestricted behavior of a net. That is, its behavior when every transition
is always enabled. Then, the causal state operator instantiated with the initial marking is used to restrict the
behavior to all possible firing sequences. The unrestricted behavior of a single transition is the infinite itera
tion of its consumption and production of tokens. The unrestricted behavior of a net is the parallel execution
of all its transitions.

Definition 4.3. (Algebraic semantics for Ptr nets) Let PTN = (N, s) be a PfT net, where N = (P, T,I,
o,l). The algebraic semantics of PTN, denoted N[p1N], is defined as follows:

N[PTN] = >..: <II t: t E T: T[t]) ,
where, for any t E T,

T[t] = «I i : i E it: i?) I (10: 0 E ot : 01» * 8.
Empty quantifications should be simply omitted.

The following theorem states that a net and its algebraic representation have the same operational behav
ior. That is, any step that a net can make can be simulated by its algebraic semantics and vice versa. Further
more, since a PfT net cannot terminate successfully, its algebraic semantics cannot terminate successfully
either. Recall that (PTN, --+) and (C(PTNA), ---+) are the operational semantics for PfT nets and P1NA
respectively. The set Act is equal to B Lp x E Lp.

Theorem 4.4. For any PfT nets (N, s) and (N, s'), where N = (P, T, i, o,l), closed P1NA term p, and
a E Act,

i) (N, s) ~ (N, s') => N[(N, s)] ~ N[(N, s')],

ii) N[(N, s)] ~ P => (3 s': s' E IB I: p = N[(N, s')] 1\ (N, s) ~ (N, s'»,

iii) N[(N, s)] .,4 .j.

Proof.

i) Assume that (N, s) ~ (N, s'). Then, according to the operational semantics for PfT nets given in
Section 3, there exists a i E T such that a = (ii, 01), Ii r I £; s, and s' = s -Ii U oi r I. Let e be an
abbreviation of (I i : i E ii: i?) I (I 0: 0 E oi: o!). Hence, the algebraic semantics of transition i,
T[i], is equal to e* 8. It is easy to see that t/>(e) = (ce, pe) = (ii,ol) = a. Now, the rules in Table 2
yield
e~.j

9

and hence
e'8 ~ e·8.

Since 7[1] = e'8 and t e T,
(II t: t e T: 7[t]) ~ (II t: t e T: 7[t]).

It follows from it r I S; s and it = ce, that ce r I S; s. Since also s' = s - itU ot fI = s - ce U pe r I,
).:(11 t: t e T: 7[t]) ~).1,(11 t: t e T: 7[t]).

Finally, because N[(N, s)] =).!(II t: t e T: 7[t]) andN[(N, s')] =).:,(11 t: t e T: 7[t]),
we may conclude that

N[(N, s)] ~ N[(N, s')].

ii) Assume N[(N, s)] ~ p. The definition of N[.] yields that
).: (II t : t e T : 7[t]) ~ p.

It follows from the derivation rules for the causal state operator in Table 2 that there exists an e e AC,
and q e C(P1NA), such that a = </>(e) = (ce, pe), ce r I S; s,

P =).:-ceUpef/(q),
and

(II t: t e T: 7[t]) ~ q.
Let s' = s - ce U pe r I. We can show that s' is the bag of internal places such that p = N[(N, s')]
and (N, s) ~ (N, s').

The derivation rules for the merge operator yield that there must exist ate T and r e C (P1NA),
such that

q = r II (II t: t e T "t f. t: 7[t]),
and
7[t]~r.

Since 7[1] = «I i : i e it: i?) I (I 0: 0 e ot: o!»' 8 and since a = </>(e), it follows that
e = (I i : i e it: i?) I (I 0: 0 e ot: o!) and that r = 7[1]. As a result, q = (II t: t e T: 7[t])
and p =).1,«11 t: t e T: 7[t]». The definition of N[.] yields that

p = N[(N, s')],
which proves the first proof obligation. Since a = ¢(e) = (ce, pe) = (it, ot), ce r I S; s, and
s' = s - ce U pe r I, it follows that it r I S; s and s' = s - it U ot r I. We may conclude from the
operational semantics for PfT nets given in Section 3, that

(N, s) ~ (N, s').

iii) Assume N[(N, s)] ~ .j, where N = (P, T, i, o,/). It follows from the definition of N[.] that

).: (II t: t e T: 7[t]) ~ .j.
It follows from the rules in Table 2 that

(II t: t e T: 7[t]) ~ .j
and thus that T must be a singleton (i), for some t e Lt. such that

7[1] ~.j.
It follows from the definition of 7[.] and the rules in Table 2 that this is a contradiction. Hence,

N[(N, s)] A .j.
o

Theorem 4.4 states that, in the union of the two process spaces P7N and C(P1NA), the PfT net (N, s)
is bisimilar to its algebraic representation N[(N, s)].

10

Expansion. The following results are useful for simplifying many calculations. Their proofs can be found
in Appendix A.

Theorem 4.5. (Expansion) For any xo, ... , Xn e P, n e IN - {OJ
(IIi: O:'Oi:'O n: Xi) = (+i: 0:'0 i:'O n: Xi !LOU: 0:'0 j :'OnAj ,#i: Xj».

Property 4.6. For any non empty bag E e B AC,
(lie: eeE: e*8)=(+e: eeE: e'(lIf: feE: 1*8».

Example 4.7. Let PTNo = (No, io) be the left PIr net in Figure 1. Let Xo be the algebraic representation of
PTNo, that is, Xo = N[PTNo]. This example shows how a simple expression can be derived for Xo, which
is an algebraic term for the behavior of PTNo. In the derivation below, the causal state operator is written
without the superscript {io, i d.

=
Xo

{ Xo = N[PTNo]; Definition 4.3 (Algebraic semantics for PIr nets) }
Aio«a1 I i01 I i)I)*811 (b? I i)?)*811 (c1 I i)1)*8)

{Property 4.6; Let X = (a? I io? I i)!) * 811 (b? I i)?) * 8 II (c? I i)?) * 8 }
Aio«a? I io? I i)!)·X + (b? I i)?)·X + (c1 I i)?)·X)

{Axiom CS05; Axiom CS04 (3x)}

Aio(a1 I io? I i)!) 'Ai1 (X) + Ai.<b? I i)?) . Aio(X) + Aio(c? I i)?)'Aio(X)
{Axiom CS02; Axiom CS03 (2x)}

(a? I i01 I i)!) 'Ai1 (X) + 8 'Aio(X) + 8'Aio(X)
{Axiom A7 (2x); Axiom A6 (2x); Let X) = Ai, (X) }

(a? I io? I i)!)·X)

A derivation similar to the one above yields the following result for X).

X, = (b? I i,?)·8 + (c? I i1?)·8.

It is straightforward to verify that the transition relation of Xo is the same as the transition relation of PTNo
that is directly obtained from the operational semantics for nets given in Section 3 (See Figure 2). It is left
to the reader to verify that also for the right PIr net in Figure I, the transition relations for the net and its
representation are the same.

5 An Algebraic Semantics for Hierarchical Pff Nets

In this section, hierarchical PIr nets are defined and an algebraic semantics for their complete operational
behavior is given. Then, the notion of internal behavior is introduced in the process domain as well as in
the theory P1NA. The abstraction mechanism from the process algebra ACP is adapted to give an algebraic
semantics for the observable behavior of hierarchical PIr nets. This algebraic semantics indirectly specifies
an operational semantics for the observable behavior of hierarchical nets.

5.1 Hierarchical Pff nets

In addition to places and transitions, a hierarchical PIr net has subnets which, in tum, are hierarchical PIr
nets.

Definition 5.1. (Hierarchical PIr nets) A hierarchical PITnet is a 7-tuple (P, T, S, i, 0, I, s), where P £;
Lp is a finite, non empty set of places, T £; Lt is a finite set of transitions, and S a finite set of hierarchical

11

PIT nets, such that T U S is not empty; function i: (T U S) --+ IE! P gives the input places for each transition
and each subnet, 0: (T U S) --+ E P gives the output places, I S;; P is the set of internal places, and s : E I
is the marking of the hierarchical net. It is assumed that there are no isolated places, transitions, or subnets.
Set S must be such that for each subnet the set of input and output places is equal to the set of pins of the
subnet. The set of places of a hierarchical PIT net and the sets of internal places of all its subnets must be
mutually disjoint. A hierarchical PIT net can be unfolded in the usual way. The unfolding of a hierarchical
net must be finite.

Figure 5 in Section 7 shows an example of a hierarchical net. The two nets in Figure 1 are also examples
of simple hierarchical nets. A hierarchical net without any subnets is a PIT net as defined in Definition 3.1.
The complete operational behavior of a hierarchical PIT net is the operational semantics of its unfolding. This
semantics can be obtained algebraically as follows.

Definition 5.2. (Complete behavior of hierarchical Ptr nets) Let HN = (P, T, S, i, 0, I, s). Extend the
function N[.], as defined in Definition 4.3, inductively as follows. As before, empty quantifications should
be omitted.

N[HN] = ":«11 t : t E T: T[t]) II (II sn: sn E S: N[sn]».

Note that the unfolding of a net must be finite, because only then the net has a finite algebraic represen
tation.

5.2 Processes with Silent Actions.

In Section 2, a process is defined as a labeled transition system over some set of actions. A process can
execute actions, thus transiting into some other process. An action that is executed by a process is part of its
observable behavior. To be able to distinguish between observable and internal behavior, silent actions are
introduced. Usually, silent actions are denoted T. Only a single symbol is needed, since all internal actions
are equal in the sense that they do not have any visible, external effects. The notion of silent actions in an
algebraic setting was first introduced by Milner [27].

The definition of a process space given in Section 2 can still be used in a context with silent actions. How
ever, since bisimulation does not distinguish between observable and silent actions, the notion of equality on
processes needs to be changed. Processes with the same observable behavior, but with different internal be
havior should be equal. As before, the equivalence relation on processes should distinguish processes with
different moments of choice. In [15], Van Glabbeek shows that (rooted) branching bisimulation is exactly
the equivalence that satisfies these two requirements. Branching bisimulation is a slightly finer equivalence
than the better known observation equivalence [27]. That is, it distinguishes more processes than observation
equiValence.

Let (P, ---+) be some process space over Act equal to A U {T}, for some set of action symbols A. The
following auxiliary relation expresses that a process can evolve into another process by executing a sequence
of zero or more T actions. For the sake of simplicity, the termination symbol ../ is treated as a process.

Definition 5.3. The relation ___ : P((P U (../}) x (P U (../}» is defined as the smallest relation satisfying,
for any p, pi, p" E P U {../},

p-p,
p_plApl-2... p" =} p-p".

Let, for any p, pi E P U {../} and a E Act, p ~ pi be an abbreviation of p 4 pi V (a = TAp = pi).

Th · <r) I d &' A <a) I' • I a I at IS, p ---+ p means zero or one T steps an ,lor any a E , P ---+ P IS sImp y p ---+ p .

12

Definition 5.4. «Rooted) Branching Bisimulation) A binary relation 'R : P«1' U (0) x (1' U (0» is
called a branching bisimulation if and only if, for any p, p', q, q' e l' U (0 and a e Act,

• a (a)
I) p'Rq 1\ p --+ p' ~ (3q', q": q', q" e l' U (0 : q _q" --+ q' 1\ p'Rq" 1\ p''Rq'),

a h 00 ii) p'Rq 1\ q --+ q' ~ (3 p', p" : p', p" e l' U ('" I: p _ p" --+ p' 1\ p"'Rq 1\ p''Rq'),

iii) p'Rq ~ p _../ # q _../.

A branching bisimulation 'R is called a rooted branching bisimulation between p and q in l' if and only if
p'Rq and, for any p', q' e l' U (0 and a e Act,

iv) p 4 p' ~ (3q': q' e l' U {../}: q 4 q' 1\ p''Rq'),

v) q4q' ~ (3p': p'e1'U{0: p4p'l\p''Rq').

Two processes p and q are called rooted branching bisimilar, denoted p ~rb q, if and only if there exists a
rooted branching bisimulation between p and q.

p q p q

T r'-,-,]
-----.
p' q" =q'

111:'-----

a 1 "'"L"
p"""l a

•
q'

Figure 3: Branching bisimulation.

Figure 3 shows the essence of branching bisimulation. The root condition is introduced, because branch
ing bisimulation is not a congruence for the algebraic choice operator, whereas rooted branching bisimulation
is. This property is needed in the next section, where rooted branching bisimulation is used to give an oper
ational semantics for PTNA extended with silent actions.

Note that the definition given here differs from the original definition given by Van Glabbeek and Weij
land in [17]. In fact, it is the definition of semi-branching bisimulation, which was first defined in [18], as it
appears in [5]. It can be shown that the two notions are equivalent [18, 5]. The reason for using the alternative
definition is that it is more concise and more intuitive than the original definition. It also yields shorter proofs.
A comparison of the two definitions can be found in [5].

Property 5.5. Rooted branching bisimulation, ~rb, is an equivalence on processes.

Proof. It must be shown that rooted branching bisimulation is reflexive, symmetric, and transitive.
Reflexivity: Let I be the identity relation on l' U (0. Obviously, I is arooted branching bisimulation.

Hence, for any peP, p ~rb p.
SymmetIy. Let p and q be processes in 1'. Let 'R be a rooted branching bisimulation between p and

q. It follows from the symmetry in the definition of rooted branching bisimulation that the inverse of'R is a
rooted branching bisimulation between q and p. Hence, for any p, q e 1', p ~rb q ~ q ~rb p.

Transitivity: Let p, q, and r be processes in 1'. Let Q and 'R be rooted branching bisimulations between
p and q, and q and r respectively. It is straightforward to verify by means of a case analysis that Q 0 'R,
where 0 denotes relation composition, is a rooted branching bisimulation between p and r. Hence, for any
p, q, reP, p ~rb q 1\ q ~rb r ~ P ~rb r. 0

13

5.3 PlacelTransition-Net Algebra with Silent Actions.

The theory PTNA r • In this paragraph, the silent action T and an abstraction operator are added to the theory
PTNA, yielding the theory PTNA r , for PTNA with silent actions. Table 3 gives a definition of PTNA r. Recall
that Lp is the set of place labels. The first entry of Table 3 means that PTNA r is a modular extension of
PTNA. That is, PTNAr has all sorts, functions, and axioms given in Thbles I and 3. The auxiliary functions
C, p: AC -+ B Lp that appear in Table I are extended to T as follows: CT = pT = I!!.

_PTNAr{Lp) _________________ _

PTNA{Lp)
T : AC T _ : P Lp -+ (P -+ P)

a: Lp; e,!: AC; X,Y,z: P; I: PLp

e I T =e AT x·y =X BI
X· {T' (Y + z) + y) = X· (y + z) B2

ael =} T/{a?) = T TACI a e 1 =} T/{a!) = T TAPI

a rf. 1 =} T/{a?) = a? TAC2 a rf. 1 =} T/{a!) = a! TAn

T/(8) = 8 TAD T/{e I f) = T/{e) I T/(f) TAl
T/{T) = T TAT T/{X + y) = T/{X) + T/{Y) TA2

T/{X'Y) = T/{X)'T/{Y) TA3
T/{X' Y) = T/{X)' T/{Y) TA4

Table 3: PlacelTransition-Net Algebra with silent actions.

For any set of place labels I, the abstraction operator T/ simply renames actions from 1 to T. The axioms
BI and B2 are an axiomatization of branching bisimulation [17]. Axiom AT states that only the visible part
of the simultaneous execution of some action and T is observed. It is different from the normal axioms for
T in ACP with silent actions. There, for any action e, e I T is equal to 8. The reasoning behind this is that I
means communication. Since an invisible action cannot communicate, every attempt to communicate with
T results in deadlock.

Operational semantics for PTNA r • Let the set of processes be the set of closed PTNA r terms, C(PTNN).
As before, let Act be equal to B Lp x B Lp; let t/>: AC ---+ Act, for any e e AC, be defined as t/>{e) =
(ce, pe). Note that t/>{T) = (I!!,I!!). This means that, in the process domain, the action (I!!,I!!) is the silent
action. As mentioned in the previous subsection, the silent action in the process domain is usually called T
as well. The reason for this is that actions in the theory often coincide with actions in the process domain. In
the remainder, T always refers to the silent action in the theory, except in Appendix B, where T is also used
as an abbreviation for (I!!,I!!). The transition relation _ -.:... _: P{C{PTNAr) x Act x (C(PTNAr) U {.J})) is
the smallest relation satisfying the rules in Tables 2 and 4. In Table 2,Iet p, p', q, q' range over C(PTNAr).

Property 5.6. Rooted branching bisimulation, -rb, is a congruence on closed PTNA r tenns.

Proof. Property 5.5 states that -rb is an equiValence relation. It remains to show that for each n-ary PTNA r
operator ! on processes and closed PTNA r terms PI, ... , P., ql, ... , q. such that PI - rb qlo ... , P. - rb q.,
!(PI, ... , P.) -rb !(ql, .. ·, q.). The details can be found in Appendix A. 0

14

e: AC; I: PLp; P.P': C(P1NAT)

</>(e) ,
P-->P

() </>(T/(e» (')
'f1 P --> 'f1 P

Table 4: The transition relation for the abstraction operator.

The following theorem states that if equality of two processes can be derived from the axioms of P1NA T •
then the two processes are rooted branching bisimilar. Hence. equational reasoning can be used instead of
model-based reasoning.

Theorem 5.7. The set of closed P1NA T tenns modulo rooted branching bisimulation is a model for P1NA T .
That is. for any p. q E C(P1NAT). P1NAT f- p = q => C(P1NAT)/~rb 1= p = q.

Proof. It follows from Property 5.6 that it suffices to verify the validity of each axiom ofP1NAT. It is straight
forward to construct a rooted branching bisimulation for each axiom. See Appendix A for more details. 0

An algebraic semantics for hierarchical Ptr nets. The algebraic semantics for the observable behavior
of a hierarchical Ptr net strongly resembles the algebraic semantics which describes its complete behavior.
The essential difference is that the abstraction operator is used to hide the internal behavior of the net itself
and its components.

Definition 5.8. (Observable behavior of hierarchical Ptr nets) LetHN = (P. T. S. i. o. I. s) be a hierar
chical Pffnet. The algebraic semantics forits observable behavior. 'H[HN]. is defined as follows. As before.
omit empty quantifications.

'H[HN] = 'f1 0 J..: «1/ t: t E T: T[t]) 1/ (1/ sn : sn E S: 'H[sn]».
where 0 denotes function composition and T[.] is as in Definition 4.3.

Example 5.9. Again. let PTNo = (No. io) be the left Pff net in Figure I. In Example 4.7. the following
expression is derived for its complete behavior Xo = N[PTNo]:

Xo = (a? I io? I i1!H(b? I i1?)·8 + (c? I i1?)-8).
Since PTNo is a lIat Pff net. its observable behavior 'H[PTNo] is equal to 'f10(XO). where 10 = (io. id. Use
the axioms TAI-3. AT and TAD to derive the following result.

'f10(XO) = (a?I'fI'f)·«b?I'f)·'f10(8)+(c?I'f)·'f10(8» = a?·(b?·8+c?·8).

The transition relation of 'f10 (Xo) is shown in Figure 4. The expression a?· (b?· 6 + c? . 6) describes the
behavior of PTNo projected onto its pins. It corresponds to the expression already given in the motivating
example (Figure 1). In a similar way. it is possible to derive the expression a?· b?· 8 + a?· c? . 8 for the
observable behavior of the right Pffnet in Figure 1. PTN1. The transition relation of this term is also shown
in Figure 4. Obviously. the two processes are not (rooted branching) bisimilar. which is the desired result.

6 Recursion and Fairness

In order to apply the theory developed so far to non-trivial examples. we must be able to reason about recur
sion andfairness. The theory P1NAT already includes a recursion operator. namely the binary Kleene star.
In this section. we give a fairness principle for the binary Kleene star and a recursion principle that gives for a

15

a?·(b?·8 +c?·8) ! (a, il)

b?·8 + c?·8

(b'ilnC'il)

8 8

a?·b?·8 + a?·c?·8

(a'ilna'il)

b?·8 c?·8

(b'il)! !(C'il)

8 8

Figure 4: The transition relations of 1t[P7No] and 1t[P7Nl].

restricted set of recursive equations a solution in tenns of the binary Kleene star. The reason for not including
these principles in the theory PlNA T is that, depending on the application, it might be desirable to extend
the theory with different fairness and recursion principles.

Fairness of the binary Kleene star can be expressed by a single axiom: the Fair Iteration Rule (FIR). It
states that a sequence of silent steps cannot be infinitely long. In tenns ofPfT nets, it means that, in an internal
conflict situation, it is not possible that one transition is always chosen.

x: P
,·x=x+,·x FIR

Property 6.1. The Fair Iteration Rule is valid in the model of closed PlNAT tenns modulo rooted branching
bisimulation. That is, for any p e C(P1NN), C(PlNAT)/-rb 1= " p = p +,. p.

Proof. It is straightforward to verify that, for any p e C (P1NA T), the following relation is a rooted branching
bisimulation between , • p and p + , . p.

{(,' p, p +,.p) I p e C(P1NAT)}U {(,' p, p) I p e C(P1NAT)}U{(p, p) I p e C(P1NAT) U{J}}. 0

The Recursive Specification Principle for the binary Kleene star (RSP*) is a derivation rule which gives
a solution for some restricted set of recursive equations. Such a rule is necessary since many processes are
inherently recursive. RSP* uses the notion of a guard which is defined as follows.

Definition 6.2. (Guard) A closed PlNAT tenn p is a guard if and only if, using the axioms of PlNAT, it
can be·rewritten into an equivalent tenn of any of the following fonns:

i) 8 ore, for any e e AC - {,};

ii) q 'r, for closed PlNAT tenns q and r where either q or r or both are guards;

iii) q + r, for any closed PlNA T tenns q and r where both q and r are guards.

x,y,z: P
x=y,x+z, yisaguard

x =y'z
RSP*

Infonnally, the requirement "y is a guard" means that y cannot tenninate successfully without executing
at least one visible action.

Property 6.3. The derivation rule RSP* is valid in the model of closed PlNA T tenns modulo rooted branching
bisimulation. That is,for any p, q, r e C(P1NN) such thatq is a guard, C(PlNAT)/-rb 1= p = q·p+r =}

C(P1NAT)/-rb 1= p = q' r.

16

Proof. Let p, q, and r be closed tenns such that q is a guard; let n be a rooted branching bisimulation between
p and q . p + r. It can be shown that the following relation which uses the transitive closure of n, denoted
n +, is a rooted branching bisimulation between p and q • r. An explanation of this relation and the details
of the proof can be found in Appendix B.

Q = {(p, q. r)} U n+ U {(s, q' r) 1 s E C(P'INN) U {J} /\ sn+ p}
U {(s, t· (q. r» 1 s E C(P'INAT) U {J} At E C(P'INAT) /\ sn+t· pl.

o

7 Example: The Alternating-Bit Protocol

In this section, the theory developed in this paper is applied to a non-trivial example, namely the Alternating
Bit Protocol (ABP). The version of the ABP considered here consists of four components: a sender, a re
ceiver, a message channel, and an acknowledgement channel. Both messages and acknowledgments can be
corrupted. In order to identify messages and acknowledgements, they are marked a1ternatingly with a zero
and a one bit. Each time the sender sends a message, it waits for an acknowledgment from the receiver.

The example of the ABP is used to show two applications of the theory developed in this paper. First,
it can be used to verify the behavior of a hierarchical pfI' net against an algebraic specification. At each
hierarchical level, the algebraic tenns describing the observable behavior of the subnets can, on the one hand,
be seen as the specification of the level below, and, on the other hand, as the implementation of the level
above. The theory of this paper can be used to verify such implementations against their specifications in a
purely equational and compositional way. Second, the theory can be used to show that different hierarchical
nets have the same observable behavior. In a hierarchical pfI' net, one can exchange subnets with the same
observable behavior, without influencing the observable behavior at higher levels of abstraction.

Figure 5 gives a three-level hierarchical pfI' net of the ABP which confonns to the infonnal description
given above. Since for each net it is clear what are pins and what are internal places, dashed boxes are omitted.
Table 5 explains the names of the subnets, transitions, and places.

To demonstrate the first application of the theory, a bottom-up verification of the ABP is given, which
consists of four steps. First, simple algebraic expressions are derived for the behavior of the four nets at
the most detailed level. Second, the abstraction operator is used to hide their internal behavior. Third, the
results of these two steps are used to derive an expression for the behavior of the net at the intennediate level.
Finally, by hiding the internal behavior of the intennediate net, it is shown that the subnet "abp" satisfies its
specification given in Figure 5. To demonstrate the other application of the theory, it is shown that, on the
highest level of abstraction, the ABP behaves as a one-place buffer. A pfI' net of the one-place buffer is given
in Figure 6. The observable behavior of the ABP is the same as the observable behavior of this net.

The verification of the ABP. In the following, a transition name t is used as an abbreviation of (I i : i E
it : i?) 1 (I 0: 0 E ot: o!). For example, Ot is an abbreviation of (i? 1 Os? 1 Ow! 1 Om 1!). Furthennore, the
following abbreviations are introduced:

S = Ot'oll Ortl'oll Ort2·011 0a·0Illt·01l1rtl"01l1rt2·01l1a·o,
R = Oa·oll Onal'oll Ona2"01l1a'01l1nal'01l1na2"o,
M = fOm·ollcOm·ollflm·ollc1m"o,
A = fOa'oll cOa'oll fla"oll c1a·o.

The first part of the verification is to derive expressions for1i[sen], 1i[rec], 1i[mc], and 1i[ac]. It consists
of two steps. First, expressions are derived for the complete behavior of each component; second, their inter
nal behavior is hidden. To start with, expressions are calculated for the two channels. Applying Property 4.6
and the axioms for the causal state operator yields the following result.

17

Specification:

ABP= (i?·o!)*8

Iml

sen: ree:
Oal

0a2

Iw

Is Ir

.La .Lm 0

Im20--i':':!I;i

~-::-_~") la2

lal

Oml
me: ac:

Iml(}~ ___ ~p~~~)lm2

.Lm

Oml):::..--- 1--:-;:---0 Om2

Figure 5: A hierarchical PfT net of the alternating-bit protocol.

18

je{O,l}
Specification:

;,0
abp

System abp:
sen, rec
mc,ac
jml/2
.Lm
jal/2, .La

System sen:
js
jw
jt,jrtl/2
ja

System rec:
jr
ja,jnal/2

Systems mc, ac:
Jim/a, cjm/a

input/output pin for messages from!to the environment;
the system that implements the ABP.

the sender and receiver;
the message channel and acknowledgement channel;
places for messages with bit j;
conupted messages;
idem for acknowledgements.

the sender is ready to send a j message.
the sender has sent a j message and is waiting for an ack.;
(re)transmit a j message;
receive an acknowledgement of a j message;

the receiver is ready to receive a j message;
acknowledge a j message; send a negative jack.;

forward resp. conupt message/acknowledgement.

Table 5: Informal explanation of the Alternating-Bit Protocol

'--Q-P--c------' , . ,
iq.- 0

, b' I _________ __ I

Figure 6: A one-place buffer.

Mo = A:(M) = fOm·Mo+cOm·Mo+/lm·Mo+clm.Mo.
RSP* yields:

Mo = (fOm + cOm + 11m + clm) * 8.

Similarly,

Ao = A:(A) = (fOa + cOa + Ila + cia) * 8.

Next, an expression is calculated for the sender. The state operatoris written without the superscript {Os, Ow,
Is,lw}.

So = AOs(S) = Ot· SI.
SI = Aow(S) = Ortl· SI + Ort2· SI + Oa· S2,
S2 = Als(S) = It,S3, and
S3 = Alw(S) = lrtl,S3+lrt2,S3+1a·So·

Applying RSP and BKS2 on the last equation yields:

S3 = (lrtl + lrt2) * (la· So) = ((Irtl + lrt2) *la)· So

Substituting this result and repeatedly applying RSP* and BKS2 gives:

So = (Ot·«Ortl +Ort2)*0a)·(lt·«lrtl + lrt2)*la)))*8

Observe that this equation conforms to the intuitive notion of what the sender should do. First, it sends a

19

zero message; if necessary, it retransmits this message until it receives an acknowledgement; then, it repeats
this behavior for a one message, after which it starts allover again. Similar to the calculations above, the
following equation can be derived for the receiver:

Ro = A:· lr
} (R) = (Oa· «Onal + Ona2) ·la) + Inal + Ina2)· ~

The second step is to hide the internal behavior of the sender and receiver in order to obtain their observable
behavior. Since the two channels do not have internal places, their observable behavior is already given by
the expressions above. The axioms for the abstraction operator plus AT yield the following results:

TSo = '[Os.ow.1s.lw}(SO)
= ((i? I Om I!) . «1.a? I Om I! + la2? I Om I!) • 0a2?) .

(i? I 1m 11) . «1.a? 11m I! + 0a2? I 1m 11) • la2?))* ~
TRo = '[Or.lr} (Ro)

= «Om2? I Oalll o!)· «1.m? I Oall + Om2? I 0aI!)· (1m2? 11aI! lo!»
+1.m? 11aI! + 1m2? 11al!)· ~

This completes the first part of the verification. Summarizing,1i[sen] = TSo,1i[rec] = TRo,1i[mc] =
Mo, and 1i[ac] = Ao.

The second part of the verification is to use the expressions derived for 1i[sen], 1i[rec], 1i[mc], and
1i[ac] to determine an expression for 1i[abp], the observable behavior of the subnet "abp." The result
should satisfy the specification given in Figure 5. As the first part, 1i[abp] is calculated in two steps. First, an
expression is calculated for Xo = A~(TSo II Mo II TRo II Ao), where I is equal to {Oml, Iml, Om2, 1.m, 1m2,
Oal, lal, 0a2,1.a, la2}. Second, the internal behavior of Xo is hidden. The calculations of the first step are
tedious, but not very complicated. In principle, one just repeatedly applies the expansion theorem (Theo
rem 4.5) and the axioms of PTNA. Figure 7 shows the transition relation of Xo. With RSJ>* and BKS2, the
following equations are obtained for XO-X9:

Xo = (i? I Om1!),XI
Xl = «(Oml? l1.m!)·(1.m? 11al!)·«lal? 11a2!)·(la2? I Om1!)

+Oal? l1.a!H1.a? I Omll)))·(Oml? I Om2!»,X2
X2 = (Om2? I Oal! 101)· X3
X3 = «(Oal? l1.a!)· (1.a? I OmlI)· «Om 1 ? I Om2IHOm2? 10a1I)

+(Oml? l1.m!)· (1.m? I Oal!)))· (Oat? I 0a2!»· X4
X4 = 0a2?·Xs
Xs = (i?llml!)·X6
X6 = «Oml? l1.m!H1.m? I Oa l!H(OaI? I 0a2!HOa2? 11ml!)

+(Oal? l1.a!)·(1.a? I Im1!))) " (Iml? 11m2!»,X7
X7 = (1m2? 11al! I o!)· Xg
Xg = «(lal? l1.aIH1.a? Ilm1!)·«lml? Ilm2!)·(1m2? Ilall)

+Oml? l1.m!H1.m? 11al!)))"Oal? 11a2!»,X9
X9 = la2?·Xo

The final step is to hide the internal places I. Use the axioms for the abstraction operator plus AT, Bl, A3,
and FIR to obtain the following result:

ABP = 'I(XO)
= i?'«""("'+"'»"')"I(X2)
= i?'('"')"I(X2)
= i?·(,+'t"·'t")·'I(X2)
= i?"I(X2)

Repeating this derivation for X2-X9 and substituting the result in the equation above yields:

20

X23

(.La. ImI~ ~ImI'.Lm)
(1m I. 1m2)

n ~ ~

(IaI • .La) ~m2. I~ IaI)

X9 • ~8
(1aI.Ia2) \..

X 13 (Ia2.~) (1m2. IaI 0) "" (ImI • .Lm) X20 (.Lm. OaI)

(IaI·~.La~ (i.:I) (ImI~~ / ~~i~
Xu I.OmI)~1 ~0a2.;; 19

~. Iaga2/1 ~~om2) (i'~7 ~I~ • .La)

(.Lm. Ia~ ~I2 (OmI • .Lm) ",,(Om2.OaI 0) (0a2.~)/ X21

XIO

" (OaI. 0a2) /
X3 • X.

(.Lm. OaI) / ~ (OaI • .La)

/ (Om2.0a~
XI7 XI6 X I4

(omI~~(.La'OmI)
XIS

Figure 7: The transition relation of the Alternating-Bit Protocol.

ABP = i1·01·i?·0! ·ABP

So, by RSP',

ABP = (i?·0!·i?·0!)*8

From the observation that, for any process x,

x*8 = x ·(x*8) + 8 = x·(x· (x*8) + 8) + 8 = x·(x·(x*8» + 8 = (x·x)· (x*8) + 8,

which by RSP' implies that x * 8 = (x· x) * 8, it follows that

ABP = (i?·01)*8.

This completes the verification of the ABP. The algebraic term which is derived for its observable behavior
satisfies the specification given in Figure 5.

The ABP and the one-place buffer. As mentioned, the theory developed in this paper can be used to de
termine whether two hierarchical PIT nets have the same observable behavior. In the previous paragraph, an
algebraic expression has been derived for the observable behavior of the ABP. In this paragraph, it is shown

21

that the one-place buffer of Figure 6 has the same observable behavior. Thus, on a high level of abstraction,
the one-place buffer and the ABP are equivalent.

Let BUF denote the observable behavior of the one-place buffer, 1i[bui], where ''buf'' is the net shown
in Figure 6. Let I = {b, e) and let B = (i? I e? I b!)*8 II (b? I e! I 0!)*8. As usual, the state operatoris written
without superscript I. Use Property 4.6 and the axioms for the causal state operator.

Bo = Ac(B) = (i? I e? I b!)'Ab(B) = (i? I e? I ~!)·(b? I ell o!)·Bo

RSP*yields:

Bo = «i? I e? I bl)·(b? I ell 0!))*8

Hiding the internal places gives:

BUF= TJ(Bo) = «i?ITIT)'(TITlo!))*o = (i?·ol)*o

It follows that BUF equals ABP as derived in the previous paragraph. It means that the ABP and the one-place
buffer have indeed the same observable behavior, and are thus equivalent.

ffigh-Ievel Petri nets. So far, only Pff nets have been considered. However, in practice, high-level nets, or
colored nets, extended to data are used. In colored nets, tokens have values. As long as the values of tokens
range over a finite domain, the results presented in this paper can be simply extended to data. For example,
if messages in the ABP are taken from some finite data domain D, one could specify its behavior as follows:
ABP = (+ d: d ED: (i(d)?· o(d) !) * 8), where i(d)? means the consumption of a token (message) with
value d from place i, and o(d)! means the production ofa token with value d. All calculations given above
can be easily adapted to incorporate data. Furthermore, the Pff net of the ABP can be simplified by adding
the bit which is used to mark messages and acknowledgements to the value of the tokens. Thus, the explicit
distinction made in the current net is not necessary anymore.

In case of infinite data domains, the results of this Pilper must be adapted to an algebraic formalism which
supports data, such as for example tLCRL [20] or PSF [25].

8 Concluding Remarks and Future Work

The first part of this paper gives an algebraic semantics for Pff nets which is consistent with their usual in
terleaving semantics. The second part gives an algebraic semantics for the complete operational behavior of
hierarchical Pff nets, as well as a semantics for their high-level, observable behavior. The latter can be used
to determine whether a hierarchical net satisfies some algebraic specification of its observable behavior and,
thus, to determine whether two hierarchical nets can be considered equivalent.

Although the first results appear to be promising, it is necessary to further investigate the theoretical foun
dation and applicability of the approach presented in this paper. It is interesting to study the meaning of an
arbitrary P1NA (r) term in Pff-net theory. Furthermol'(l, it is worthwile to investigate the meaning of results
from Petri-net theory, such as place and transition invariants, in the theories P1NA (r).

There are several interesting ways to extend the results presented in this paper. It has already briefly been
mentioned how they can be extended to colored nets. Furthermore, it seems worthwile to investigate other
hierarchical constructs than the one presented in this paper, and maybe time or stochastic aspects.

Finally, it is interesting to look at other semantics than the interleaving semantics. It is straightforward
to extend the results to a step semantics, in which multiple transitions can fire simultaneously. It is only
necessary to define the synchronous-merge operator on processes in the same way as the communication
merge is defined in [2]. A true concurrency semantics appears to be another interesting candidate for future
investigation.

22

Acknowledgements. The authors want to thank Wtl van der Aals!, Jos Baeten, Roland Bol, Pedro D' Arge
nio, Kees van Hee, Sjouke Mauw, Paul Rambags, and Michel Reniers for the many fruitful discussions and
their valuable suggestions. Special thanks go to Paul Rambags for his careful reading of an earlier version
of this paper.

References

1. ASPT Foundation. ExSpect Reference Manual, Release 5.0, 1994. PO Box 23103, 1100 DP, Amsterdam, the
Netherlands.

2. J.C.M. Baeten and J.A. Bergstra. Non Interleaving Process Algebra. In Best [91, pages 308-323.

3. I.C.M. Baeten and C. Verhoef. A Congruence Theorem for Structured Operational Semantics with Predicates. In
Best [91, pages 477--492.

4. J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, Cambridge, UK, 1990.

5. T. Basten. Branching Bisimulation is an Equivalence indeed! To appear.

6. T. Basten and M. Voorhoeve. An Algebraic Semantics for Hierarchical Pff Nets (extended abstract). In G. De
Michelis and M. Diaz, editors, Application and Theory of Petri Nets 1995, 16th. International Conference, Pro
ceedings, volume 935 of Lecture Notes in Computer Science, pages 45-{i5, Torino, Italy, June 1995. Springer
Verlag, Berlin, Germany, 1995.

7. J.A. Bergstra, I. Bethke, and A. Ponse. Process Algebra with Iteration and Nesting. The Computer Journal,
37(4):241-258,1994.

8. J.A. Bergstra and J.W. Kiop. The Algebra of Recursively Defined Processes and the Algebra of Regular Processes.
In J. Paredaens, editor, Automata, Languages and Programming, 11 tho Colloquium, volume 172 of Lecture Notes
in Computer Science, pages 82-95, Antwerpen, Belgium, July 1984. Springer-Verlag, Berlin, Germany, 1984.

9. E. Best, editor. CONCUR '93, 4th. International Conference on Concurrency Theory, Proceedings, volume 715
of Lecture Notes in Computer Science, Hildesheim, Germany, August 1993. Springer-Verlag, Berlin, Germany,
1993.

10. E. Best, R. Devillers, and J.G. Hall. The Box Calculus: A New Causal Algebra with Multi-label Communication.
In Rozenberg [321, pages 21-{i9.

11. G. Boudol, G. Roucairol, and R. de Simone. Petri Nets and Algebraic Calculi of Processes. In G. Rozenberg,
editor, Advances in Petri Nets 1985, volume 222 of Lecture Notes in Computer Science, pages 41-58. Springer
Verlag, Berlin, Germany, 1985.

12. W. Brauer, R. Gold, and W. Vogler. A Survey of Behaviour and Equivalence Preserving Refinements of Petri Nets.
In G. Rozenberg, editor, Advances in Petri Nets 1990, volume 483 of Lecture Notes in Computer Science, pages
1--46. Springer-Verlag, Berlin, Germany, 1990.

13. P. Degano, R. De Nicola, and U. Montanari. A Distributed Operational Semantics for CCS Based on Condi
tionlEvent Systems. Acta Informatica, 26(112):59-91, October 1988.

14. C. Dietz and G. Schreiber!. A Term Representation of Pff Systems. In R. Valette, editor, Application and Theory of
Petri Nets 1994, 15th. International Conference, Proceedings, volume 815 of Lecture Notes in Computer Science,
pages 239--257, Zaragoza, Spain, June 1994. Springer-Verlag, Berlin, Germany, 1994.

15. R.J. van Glabbeek. What is Branching Time Semantics and Why to Use It? In Bulletin of the EATCS, number 53,
pages 191-198. European Association for Theoretical Computer Science, June 1994.

16. R.J. van Glabbeek and EW. Vaandrager. Petri Net Models for Algebraic Theories of Concurrency. In J.W. de
Bakker, A.J. Nijman, and P.C. Treleaven, editors, PARLE Parallel Architectures and Languages Europe, Volume 11:
Parallel Languages, Proceedings, volume 259 of Lecture Notes in Computer Science, pages 224--242, Eindhoven,
The Netherlands, June 1987. Springer-Verlag, Berlin, Germany, 1987.

23

17. R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisimulation Semantics (extended
abstract). In G.x. Ritter, editor, Information Processing 89: Proceedings of the IFIP 11th. World Computer
Congress, pages 613-618, San Fransisco, California, USA, August/September 1989. Elsevier Science Publishers
B.V., North-Holland, 1989.

18. R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisimulation Semantics. Report CS
R9120, Centre for Mathematics and Computer Science, CWI, Amsterdam, The Netherlands, 1991. A revised ver
sion will appear in Journal of the ACM.

19. U. Goltz. On Representing CCS Programs by Finite Petri Nets. In M.P. Chytil, L. Janiga, and V. Koubek, editors,
Mathemiltical Foundations of Computer Science 1988, Proceedings, volume 324 of Lecture Notes in Computer
Science, pages 339-350, Carlsbad, Czechoslovakia, August/September 1988. Springer-Verlag, Berlin, Germany,
1988.

20. J.E Groote and A. Ponse. The Syntax and Semantics of /LCRL. In A. Ponse, C. Verhoef, and S.EM. van Vlij
men, editors, Algebra of Communicating Processes 1994, Workshops in Computing, pages 26-62, Utrecht, The
Netherlands, May 1994. Springer-Verlag, Berlin, Germany, 1995.

21. K.M. van Hee. Information Systems Engineering: A FormalApproach. Cambridge University Press, Cambridge,
UK,1994.

22. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, London, UK, 1985.

23. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use, volume 1, Basic Concepts,
volume 28 of EATCS monographs on Theoretical Computer Science. Springer-Verlag, Berlin, Germany, 1992.

24. S.C. Kleene. Representation of Events in Nerve Nets and Finite Automata. In C.B. Shannon and J. McCarthy,
editors, Automata Studies, number 34 in Annals of Mathematics Studies, pages ~1. Princeton University Press,
Princeton, New Jersey, USA, 1956.

25. S. Mauw and G.J. Veltink, editors. Algebraic SpecijicationofCommunication Protocols, volume 36 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge, UK, 1993.

26. Meta Software Corporation, Cambridge, Massachusetts, USA. DesignlCPN Manual, 1991.

27. R. Milner. A Calculus of Communcating Systems, volume 92 of Lecture Notes in Computer Science. Springer
Verlag, Berlin, Germany, 1980.

28. U. Montanari and D. Yankelevich. Combining CCS and Petri Nets via Structural Axioms. Fundamenta Informat
icae, 20(l-3):193-229, May 1994.

29. E.-R. Olderog. Petri Nets and Algebraic Calculi of Processes. In G. Rozenberg, editor, Advances in Petri Nets
1987, volume 266 of Lecture Notes in Computer Science, pages 196-223. Springer-Verlag, Berlin, Germany, 1987.

30. L. Pomello, G. Rozenberg, and C. Simone. A Survey of Equivalence Notions for Net Based Systems. In Rozenberg
[32], pages 410-472.

31. W. Reisig. Petri Nets: An Introduction, volume 4 of EATCS monographs on Theoretical Computer Science.
Springer-Verlag, Berlin, Germany, 1985.

32. G. Rozenberg, editor. Advances in Petri Nets 1992, volume 609 of Lecture Notes in Computer Science. Springer
Verlag, Berlin, Germany, 1992.

33. D. Taubner. Finite Representations of ccs and TCSP Programs by Automata and Petri Nets, volume 369 of Lec
ture Notes in Computer Science. Springer-Verlag, Berlin, Germany, 1989.

24

A Some Proofs

Theorem 4.2. The set of closed P'INA tenns modulo bisimulation is a model for P'INA. That is, for any
p, q e C(P1NA), P'INA I- p = q => C(P1NA)/ ~ 1= p = q.

Proof. Since it follows from the fonnat of the derivation rules in Table 2 that bisimulation equivalence is
a congruence on C(P1NA) [3], it suffices to verify the validity of each axiom of P'INA. Below, for each
axiom, a bisimulation is given. It is left to the reader to verify that the relations are indeed bisimulations. Let
D(C(P1NA» be an abbreviation of {(p, p) I p e C(P1NA)).

Axiom Bisimulation

Al
A2
A3
A4
A5
A6
A7

S}
S2

MI

M2
M3
M4

ASCI ,2

CSOI
CS02
CS03
CS04

CS05

BKSI
BKS2

BKS3

{(p + q, q + p) I p, q e C(P1NA)) U D(C(P1NA»
{«p + q) + r, p + (q + r» I p, q, r e C(P1NA)) U D(C(P1NA»
{(p + p, p) I p e C(P1NA)) U D(C(P1NA»
(«p+q)·r,p·r+q·r) I p,q,r eC(P1NA))UD(C(P'INA))
(«p·q)·r,p.(q.r» I p,q,r eC(P1NA))UD(C(P1NA))
{(p + 0, p) I p e C(P1NA)) U D(C(P1NA»
{(o· p, 0) I p e C(P1NA))

{(e I t, t I e) I e, t e AC}
{«e I f) I g, e I (f I g» I e, t, g e AC}

{(p IIq,p ILq +q ILp) I p,q eC(P1NA))U{(p II q,q II p) I p,q eC(P'INA))U
D(C(P1NA»

{(d IL p, d· p) Ide AC U (oj 1\ p e C(P1NA)) U D(C(P1NA»
{(d· p IL q, d· (p II q» Ide AC U (oj 1\ p, q e C(P1NA)) U D(C(P1NA»
{(p + q) IL r, p IL r + q IL r) I p, q, r e C(P1NA)) U D(C(P1NA»

{(p IL q) IL r, p IL (q II r» I p, q, r e C(P1NA))U
{«p II q) II r, p II (q II r» I p, q, r e C(P1NA)} U D(C(P1NA»

W.: (0),0) II e P Lp 1\ seE Lp}
W.:(e),e) II ePLpl\s e ELpl\e e ACl\ce fl ~ s} W.: (e), 0) II e P Lp 1\ seE Lp 1\ e e AC 1\ ce fIg; s}
((A:(e.p),A:(e).A:_ceUpef/p» II ePLpl\s elBLpl\e eACl\p eC(P'INA))U

D(C(P'INA»
{(A: (p + q), A:(P)+ A: (q» II e P Lp 1\ s e IB Lp 1\ p, q e C(P1NA)) U D(C(P1NA»

{(p*q, p' (p*q)+ q) I p, q e C(P1NA)) UD(C(P'INA»
{(p*(q·r), (p*q)·r) I p,q,r eC(P1NA»)U

{(p'. (p* (q ·r», (p'. (p* q» ·r) I p, p','q, r e C(P1NA)) U D(C(P1NA»
{(p*(q·«p+q)*r)+r),(p+q)*r) I p,q,r eC(P1NA))U

{(p'. (p* (q. «p + q) * r) + r», p'. «p + q)* r» I p, p', q, r e C(P1NA)) U D(C(P1NA»
o

Theorem 4.5. (Expansion) Porany Xo, ... , x. e P, n e IN - {OJ
(II i : 0::: i ::: n: Xi) = (+i : 0::: i ::: n: Xi IL (II j : 0::: j ::: n 1\ j #- i : Xj».

Proof. The proof is by induction on n. The basic case where n = I is simply axiom MI. Assume n > 1.

(II i : 0::: i ::: n : XI)

(Associativity of the merge (ASC2))

25

=

(II i : 0::: i < n : Xi) II X.
I Axiom MI }

(II i : 0::: i < n : Xi) IL X. + X. IL (II i : 0::: i < n : Xi)
I Induction }

(+ i : 0::: i < n : XI IL (II j : 0::: j < n A j ,p i : X j» IL X. + X. IL (II i : 0 ::: i < n : Xi)
I Axioms M 4 and ASCI }

(+i: 0::: i < n: Xi 1L«lIj: 0::: j < nAj,pi: Xj) IIx.»+x. 1L(lIi: 0::: i < n: Xi)
I Associativity of the merge (ASC2); dummy change; calculus}

(+ i : 0::: i < n : Xi IL (II j : 0::: j ::: n A j ,p i : Xj» + X. IL (II j : 0 ::: j ::: n A j ,p n : Xj)
I Associativity of the choice (A2) }

(+i: 0::: i::: n: Xi IL<lIj: 0::: j :::nAj,pi: Xj»

Property 4.6. For any non empty bag E e B AC,
(lie: eeE: e'~)=(+e: eeE: e'(II/: leE: f*~».

o

Proof. If E is a singleton containing only one action e, then the above equation reduces to e' ~ = e· (e' ~),
which follows immediately from BKSI and A6. So assume, E contains at least two different actions.

=
(lie: eeE: e'~)

I Expansion }
(+e: eeE: (e'~)IL(II/: leEAe,p/: f*~»

I Axioms BKSI and A6 }

(+e: eeE: (e·(e·~» IL(II/: leEAe,p/: f*~»
I Axiom M3}

(+e: eeE: e·«e·~)II(lI/: leEAe,p/: f*~)))
I Associativity of the merge (ASC2) }

(+e: e e E: e'(11 I: leE: I'~»

Property 5.6. Rooted branching bisimulation, ~rb, is a congruence on closed PTNA f terms.

o

Proof. Property 5.5 states that ~rb is an equivalence relation. It remains to show that for each n-ary PTNAf
operator I on processes and closed PTNA f terms pJ, ... , P., ql, ... , q. such that PI ~rb ql, ... , P. ~rb q.,

I(PI, ...• P.) ~rb l(qJ,···. q.).
For the constants of PTNAf the desired result follows trivially from the reflexivity of the ~rb relation.

There is one operator on actions only. the synchronous merge I. Let el. e2. II, h e AC such that el ~rb II
and e2 ~ rb h. Let Q be defined as {(ell e2, III h), (.../, ..j)}. Obviously, Q is a rooted branching bisimulation.
Hence, ~ rb is a congruence for the synchronous merge.

There are seven operators on processes, five binary operators and two unary ones. Let pJ, P2, ql. q2 be
closed PTNAf terms. Let 1<.1 and 1<.2 be rooted branchingbisimulations such that PI1<.lql and P21<.2q2. It
must be shown that there exist rooted branching bisimulations QI •... , Q7, such that (PI + P2) QI (ql + q2),
(PI' P2)(22(ql ·q2), (PI' P2H23(ql • q2), (PI II P2)Q4(ql II q2), (PI IL P2)QS(ql IL Q2), and, such that for any
Ie PLp and s e B Lp, >-f(PI)Q6>-f(QI), and T/(PI)Q7T/(P2). The seven rooted branching bisimulations
are given below. It is left to the reader to verify that the relations are indeed rooted branching bisimulations.
To avoid unnecessarily complex formulas. some notational abbreviations are introduced. Let, for any P e
C(PTNAf) U I..j}, "'/.p = P and.../II P = P 11.../ = p. and, for any Ie PLp and s e B Lp, >-f(..j) =.../ and
T/(..j) = .../.

26

QI = 'R.I U 'R.2 U {(PI + P2. ql + q2))
Q2='R.2U{(P·P2.q·q2) I p'R.lq}
Q3 = 'R.2 U {(PI • P2. ql • q2)) U {(p. (PI' P2). q. (ql • q2» I p'R.lq}
Q4 = {(p II P'. q II q') I p'R.lq " p''R.2q'}
Qs = ~ U {(PI It P2. ql It q2))
~ = {(A: (p). A: (q» I p'R.lq "I E P Lp "s E :B Lp}
Q7 = ((T/(p). T/(q» I p'R.lq " I E P Lp} o

Theorem 5.7. The set of closed PTNA T tenns modulo rooted branching bisimulation is a model for PTNA T .
That is,for any p. q E C(PTNAT). PTNA' f- p = q =} C(PTNAT)/-rb 1= p = q.

Proof. It follows from Property 5.6 that it suffices to verify the validity of each axiom of PTNAT. Since
any bisimulation as defined in Definition 2.2. extended with the pair (.j • .J). is a rooted branching bisimu·
lation. the axioms given in Table I are valid in C(PTNAT)/-rb' Therefore. it remains to verify the validity
of the axioms given in Table 3. The table below gives a rooted branching bisimulation for each of these ax
ioms. Again. it is left to the reader to verify that the relations are indeed rooted branching bisimulations. Let
V(C(PTNAT) U (.j) = {(Po p) I p E C(PTNAT) U (.j)}.

Axiom Bisimulation

AT {(e I T. e) lee AC} U {(.j • .J)}
BI {(P·T. p) I p E C(PTNAT)) U {(T • .J). (.j • .J)}
B2 {(P'(T .(q + r) + q). p. (q + r) I p. q. r E C(PTNAT))U

{(T'(p + q)+ p). p + q) I p. q E C(PTNAT)) U V(C(PTNA') U (.j)
TACI {(T/(a?). T) I I E P Lp "a E I} U {(.j • .J)}
TAC2 {(T/(a?). a?) I I E P Lp "a E Lp - I} U {(.j • .J)}
TAPI {(T/(a!). T) I I E P Lp "a E I} U {(.j • .J)}
TAn {(T/(al). a!) I I E PLp" a E Lp - I} U {(.j • .J)}
TAD {(T/(~).~) I I E P Lp}
TAT {(T/(T). T) I I E P Lp} U {(.j • .J)}
TAl {(T/(e I f). T/(e) I T/(f» Ie. f E AC" I E P Lp} U {(.j • .J)}
TA2 {(T/(p + q). T/(p) + T/(q» I p. q E C(PTNAT) "I E P Lp} U V(C(PTNAT) U (.j)
TA3 {(T/(p·q). T/(p), T/(q» I p. q E C(PTNA') "I E P Lp} U V(C(PTNA') U (.j)
TA4 {(T/(P' q). T/(p)' T/(q» I p. q E C(PTNA') " I E P Lp}U

{(T/(P' (q' r». T/(p), (T/(q)' T/(r))) I P. q. r E C(PTNA') " I E P Lp}U
V(C(PTNA') U (.j)

27

o

B Proving the Validity of RSP*

Recall that RSP* has been defined as follows.

x,y,z: P
x=y'x+z, yisaguard

x = y*z
RSP*

One way to prove the validity of RSP* is to show that the model satisfies the so-called Approximation
Induction Principle AlP. AlP states that any processes with the same finite prefixes are equivalent. If a model
satisfies AlP, or a slightly weaker variant of AlP called AlP- ,then it also satisfies RSP, which is the Recursive
Specification Principle for general recursion. This line of proof is used in for example [4] to show that the
models introduced there satisfy RSP.

Since a model that satisfies RSP also satisfies RSP*, the same line of reasoning could be used to prove
the validity of RSP* in this paper. However, the validity of RSP* can also be shown directly by construct
ing a rooted branching bisimulation. The advantage of such a proof is that it is not necessary to introduce
any auxiliary notions as AlP. Furthermore, once the idea behind the construction of the rooted branching
bisimulation is understood, the proof is rather straightforward.

The following two lemmas are useful in the proof.

Lemma B.I. Let P be a closed PTNA f term. If p is a guard, then p -I*,J.

Proof. Since p is a guard, it can be rewritten into an equivalent closed PTNA f term q which is of any of the
forms given in Definition 6.2. Using the operational rules given in Table 2, it is straightforward to prove by
means of stuctural induction that q -I*,J. Since PTNA f I- P = q, the soundness of the PTNA faxioms
yields that P ~rb q. It follows immediately from the definition of rooted branching bisimulation, Defini
tion 5.4, that p -I*,J. 0

Lemma B.2. Let (P, ---+) be a process space over Act equal to A U {T: }, for some set of action symbols A.
LetR. be a branching bisimulation. Porany p, p', q, q' e P U {../}.

p - p' /\ pR.q => (3 q' : q' e P U {,J} /\ q _q' : p'R.q') and
q -q' /\ pR.q => (3 p' : p' e P U {../}/\ P - p' : p'R.q')

Proof. Straightforward by induction to the number of T: steps from p to p' and q to q' respectively. See
~~. 0

Property 6.3. The derivation rule RSP* is valid in the model of closed PTNA f terms modulo rooted branching
bisimulation. That is,for any p, q, r e C(PTNAf) such thatq is a guard, C(PTNAf)/~rb 1= p = q·p+r =>
C(PTNN)/~rb 1= p = q*r.

Proof. Let p, q, and r be closed terms such that q is a guard; let R. be a rooted branching bisimulation between
p and q . p + r. It must be shown that there exists a rooted branching bisimulation Q between p and q * r. In
the construction of Q, the transitive closure of R., denoted R. +, is used.

Q = {(p, q * r)} U R.+ U {(s, q. r) I s e C(PTNN) U {,J} /\ sR.+ p}
U{(s,t·(q*r» Is eC(PTNN)U{../}At eC(PTNAf)/\sR.+t·p}.

The example depicted below shows the idea behind the construction of Q. In this example, R. is depicted
from left to right, whereas Q is depicted from right to left. Obviously, it is required that p Qq • r. Since R.
is a rooted branching bisimulation between p and q . p + r, q . p + r can simulate any step that p can make.
Therefore, if p can evolve into some process p' by executing an a step, then q . p + r can simulate this step

28

q*r Q p n q·p+r

q'.(q*r~I ~; ~~E~ ~ ~l:..p
q*r~ Q s~ n ~p n q·p+r

p r-~- -F~ --F~--lp
_____ "' _________ e

q".(q*r) s' _ p" _"",;1q".p ----
... ...

...

and evolve into, for example, q' . p. However, this means that also q * r can do an a step, in which case it
evolves into q'·(q*r). This means that all pairs of the form (p', q'·(q*r» must be added to Q. This explains
the basic form of Q.

The reason why the transitive closure of n is needed, can be explained as follows. Assume that after a
number of steps p' evolves into some process s and q'. p simulates these steps evolving into p. Then, snp
and since q' . (q " r) evolves into q * r again, also s Qq * r. Note that the definition of Q indeed implies that
it contains the element (s, q * r). Now assume that s can execute some f3 step evolving into s'. For the sake
of simplicity, also assume that p can simulate this step without executing any preceding, steps. Then, also
q . p + r can do a f3 step evolving into, for example, q" . p. However, this implies that q * r can do a f3 step to
q"·(q"r), which means that Q must relate s' toq"·(q*r). The example shows that this would not necessarily
have been the case if the definition of Q would have used n instead of n+, because n does not relate s'
directly to q". p. However, n2, the relation composition ofR with itself, does relate s' to q". p. Since the
process sketched here can repeat itself, this example suggests to use the transitive closure of R instead of n
itself in the construction of Q. Below, it is shown that Q is indeed a rooted branching bisimulation between
pandq*r.

The proof uses the fact that n + is a rooted branching bisimulation between p and q . p + r. This follows
from the observation that the relation composition as well as the union of two branching bisimulations is again
a branching bisimulation (see the proof of Property 5.5 and [5]). Furthermore, if a branching bisimulation
satisfies the root condition for two processes, then also any larger branching bisimulation satisfies the root
condition for these two processes, where "larger" is defined by means of the superset relation.

First, we show that Q satisfies the root condition for p and q * r. The == sign is used to denote syntactical
equivalence on closed FINN terms plus ../. Recall that , is used as an abbreviation of «(6, (6).

i) Assume p ~ p' for some a e Act and p' e C(P1NA f) U {.J}. It must be shown that there exists a
v' e C (P1NA f) U {.J} such that q "r ~ v' and p' Qv'.

Since R satisfies the root condition for p and q . p + r, it follows from the operational rules for
choice and sequential composition in Table 2 that three cases can be distinguished.

(a) First, q ~ q', for some q' e C(FINN), and q. p + r ~ q'. p such that p''Rq'. p. It follows
immediately from the operational rules for the binary Kleene star in Table 2 and the definition of
Q that q*r ~ q' ·(q*r) and p'Qq' .(q Or).

(b) Second, q ~ ../ and q. p + r ~ p such that p'np. It follows immediately that q * r ~ q" r
and p'Qq* r.

29

(c) Third, r ~ r' E C(PTNA') u {v1 and q. p + r ~ r' such that p'nr'. It follows immediately

that q' r ~ r' and p'Qr'.

i i) Assume q , r ~ v' for some a E Act and v' E C (PTNA T) U {v1. It must be shown that there exists

a p' E C(PTNAT) U {v1 such that p ~ p' and p'Qv'. Again, three cases can be distinguished.

(a) First,q~q' E C(PTNAT)andq'r~v' == q' ·(q'r). Itfollowsthatq· p + r~q" p. Since

p'Rq. p + rand n satisfies the root condition for p and q. p + r, p ~ p' E C(PTNAT) U {v1
such that p''Rq'. p. Hence, p ~ p' and p'Qv' == q'. (q'r).

(b) Second, q ~ ./ and q'r ~ v' == q·r. It follows that q. p +r ~ p. Since p'Rq.p +r
and n satisfies the root condition for p and q. p + r, p ~ p' E C(PTNAT) U {v1 such that

p'np. Hence, p ~ p' and p'Qv' == q·r.

(c) Third, r ~ r' E C(P1NAT) U {v1 and q' r ~ v' == r'. It follows that q. p + r ~ r' and

therefore p ~ p' E C(P1NAT) U {v1 such that p'nr'. Hence, p ~ p' and p'Qv' == r'.

The above two cases show that Q satisfies the root condition for p and q . p + r.
Second, assume that for any a E Act and u, u', v E C(P1NAT) U {v1, u ~ u' and uQv. It must be

shown that there exist v', v" E C (P1NAT) U {v1 such that v _ v" ~ v', u Qv", and u' Qv'. Using the
definition of Q, three cases can be distinguished.

i) First, un+v. Since n+ is a rooted branching bisimulation, it follows immediately that there exist
(al + + v', v" E C(P1NAT) U {v1 such that v -v" --+ v', un v", and u'n v', and hence also uQv",

and u'Qv'.

ii) Second, v == q'r and un+ p. Two cases can be distinguished, corresponding to whether or not p does
at least one, step before possibly doing an a step.

(a) Assume p ~ p' E C(P1NAT) U{v1 such that u'n+ p'. According to the definition of p (a
l, p'

again two cases can be distinguised .

• First, a = , and p' == p. It follows immediately from the assumptions and u'n+ p' == p
(Tl

that v == q'r _q'r --+ q'r, uQq'r, and u'Qq'r.

• Second, p ~ p'. Since p'Rq . p + r and n satisfies the root condition for p and q . p + r,
as above, three cases can be distinguished.

- Assume q ~ q' E C(PTNAT) and q. p + r ~ q'. P such that p''Rq'. p. The as

sumption uQv and u'n+ p'nq'· jJ yield immediately v == q' r _q' r ~ q'. (q' r),
uQq'r, and u'Qq'· (q' r).

- Assume q ~ ./ and q. p + r ~ p such that p'np. It follows immediately that
a

V == q'r _q'r --+ q*r, uQq'r, and u'Qq ·r.
a a

- Assume r --+ r' E C(P1NA') U {v1 and q. p + r --+ r' such that p'nr'. It follows

immediately that v == q' r _q * r ~ r', uQq' r, and u'Qr'.
T 00 h + (b) Assume p --+ p'" _p" --+ p', for some p', p", p'" E C(PTNAT) U {" I such that un p"

and u'n+ p'. Since p'Rq. p + r, n satisfies the root condition for p and q . p + r, and q is a

guard, which by Lemma B.l excludes the possibility that q ~ ./, it follows that q ~ q'" E

C(P1NAT) such that p"''Rq'''. p. Lemmas B.l and B.2 yield that q'" _q" E C(PTNA') such
that p"'Rq" . p. Two cases can be distinguished.

30

• First, a = T and p' == p". Then, v == q *r _q". (q * r) ~ q". (q * r). Furthennore,
uR.+ p"'R.q" . p and u'R.+ p' == p"'R.q" . p yield that u Qq" . (q * r) and u' Qq" . (q * r) .

• Second, p" ~ p'. Since q is a guard andq _q", LemmaB.l yields thatq" -;;. Since
p"'R.q" . p, again two cases can be distinguished.

- First, q" _q (a
l, q', for some q, q' e C(P1NAf), p"'R.ij. p, and p''R.q'. p. It follows

that v == q * r _q. (q * r)~q" (q * r). Since uR.+ p"'R.ij. p and u'R.+ p''R.q'' p, also
uQq· (q * r) and u'Qq'. (q Or).

- Second, q" _q ~ ../, for some q e C(P1NAf), p"'R.ij. p, and p'R.p. It fol

lows immediately that v == q * r _q. (q * r)~q * r. Furthennore, uR.+ p"'R.ij. p and
u'R.+ p'R.p yield u Qq . (q * r) and u' Qq * r.

iii) Third, v == t·(q*r) and uR.+t·p, for some t e C(P1NAf). Since R.+ is a rooted branching bisimulation

and u ~ u', three cases can be distinguished.

(a) First, t _t" ~ t', for some t', t" e C(P1NAf) such that uR.+t"· p and u'R.+t'· p. It follows
(al

that v == t·(q*r) _t" ·(q*r) --+ t' ·(q"r), uQt" .(q*r), and u'Qt' ·(q"r).

(b) Second, t _t" ~ ../, for some t" e C(P1NN) such that uR.+t"· p and u'R.+ p. It follows
(a)

that v == t·(q"r) _t".(q"r) --+ q*r, uQt" ·(q*r), and u'Qq"r.

(c) Third, t _../ and p _ p" (al, p', for some p', p" e C(P1NAf) U {..j} such that uR.+ p" and
u'R.+ p'. In this case, the proof proceeds along the lines of case ii) immediately above.

The above three cases show that for any a e Act and u, u', v e C(P1NAf) U {..j}, such that u ~ u' and

uQv, there exist v', v" e C(P1NAf) U {..j} such that v -v" ~ v', uQv", and u'Qv'.
Third, assume that for any a e Act and u, v, v' e C(P1NA f) U {..j}, v ~ v' and u Qv. It must be shown

that there exist u', u" e C(P1NAf) U (../l such that u _u" ~ u', u"Qv, and u'Qv'. Using the definition
of Q, as before, three cases can be distinguished.

i) First, uR.+v. Since R.+ is a rooted branching bisimulation, the desired result follows immediately.

i i) Second, v == q" r and uR. + p. Since p'R.q . p + r and R. satisfies the root condition for p and q . p + r,
three cases can be distinguished.

(a) First, q~q' e C(P1NAf) and p~ p' e C(P1NN)U{..j} such that p''R.q'.p. Since uR.+ p, it
(a) + + follows that u _u" --+ u', for some u', u" e C(P1NAf) U{..j} such that u"R. p, and u'R. p'.

Hence, it follows from v == q • r ~ q' . (q • r) == v' and u'R.+ p''R.q' . p that u" Qv == q * r, and
u'Qv' == q' .(q*r).

(b) Second, q ~ ../ and p ~ p' e C(P1NAf) U {..j} such that p'R.p. Since uR.+ p, it follows
00 + that u _u" --+ u', for some u', u" e C(P1NAf)U{..j} such that u"R.+ p, and u'R. p'. Hence,

it follows from v == q* r ~ q" r == v' and u'R.+ p'R.p that u"Qv '" q "r, and u'Qv' == q * r.
(c) Third, r ~ r' e C(P1NN) U {..j} and p ~ p' e C(P1NAf) U {..j} such that p'R.r'. Since

uR.+ p, it follows that u _u" ~ u', for some u', u" e C(P1NAf) U {..j} such that u"R.+ p,
and u'R.+r'. Hence, it follows from v == q" r ~ r' == v' that u"Qv == q * r, and u'Qv' == r'.

iii) Third, v == t· (q' r) and uR.+t· p, for some t e C(P1NN). Two cases can be distinguished.

31

(a) First, t ~ t' e C(P1NAT). Since u1<.+t· p, there exist u', u" e C(P1NAT) U (.J) such that

u _u" ~u', u"1<.+t·p, andu'1<.+t'·p. Hence, it follows from v == t .(q·r)~t'.(q*r) == v'
that u"Qv == t· (q * r), and u'Qv' == t'· (q * r).

(b) Second, t ~ .y'Since u1<.+t·p, there exist u', u" e C(P1NN)U{.J) such that u _u" ~ u',

u"1<.+t·p, and u'1<.+ p. Hence, it follows from v == t· (q * r) ~ q * r == v' that u"Qv == t·(q*r),
and u'Qv' == q * r.

The above three cases show that for any a e Act and u, v, v' e C(P1NAT) U (.J) such that v ~ v' and

uQv, there exist u', u" e C(P1NAT) U (.y') such that u _u" ~ u', u"Qv, and u'Qv'.
Finally, for any u, v e C(P1NN) U (.J) such that uQv, it must be shown that u _.y' {} v _.y'. As

before, three cases can be distinguised.

i) First, u1<.+v. Since 1<.+ is a rooted branching bisimulation, the desired result follows immediately.

ii) Second, v == q' rand u1<.+ p. Assume u _.y'. Since u1<.+ p'Rq. P + r, q. p + r _.y'. Since q
is a guard, Lemma B.I yields that r _.y'. He!lce, v == q * r _.y'. Assume v == q * r _.y'. This
implies that r _.y'. Since u1<.+ p'Rq. P + r, u _.y'.

iii) Third, v == t· (q * r) and u1<.+t . p, for some t e C(P1NAT). Assume u _.y'. Since u1<.+t . p,
t _.y' and p _.y'. Since p1<.q . P + r, using the same argument as in the previous case, it follows
that r _.y'. Since also t _.y', V == t·(q*r) _.y'. Assume v == t·(q*r) _.y'. Therefore, t _.y'
and r _.y'. Since p'Rq. p + r, also p _.y'. Finally, it follows from u1<.+t· p that u _.y'.

These two cases show that also the last requirement of a branching bisimulation is satisfied, which concludes
the proof of the validity of RSP. 0

32

Computing Science Reports

In this series appeared:

93J1)l R. van Geldl'q)

93J1l2 T. Verhoeff

93ft)3 T. Verhoeff

93ft]4 E.H.L. Aorts
J.H.M Karst
PJ. Zwietering

93/05 J.c.M. Baeten
C. Verhoef

93/06 J.P. Veltkamp

93trn P.D. Moorland

93/08 J. Vemoosel

93/09 K.M. van Hee

93/10 K.M. van Hee

93/11 K.M. van Hee

93/12 K.M. van Hee

93/13 K.M. van Hee

93/14 J.C.M Baeten
I.A. Bergstra

93/15 I.C.M. Baeten
I.A. Bergstra
R.N. Bol

93/16 H. Schepers
J. Hooman

93/17 D. Alstein
P. van der Stok

93/18 C. Vemoef

93/19 G-l Rouben

93120 F.S. de Boer

93J21 M. Codish
D.Daro!
G. File
M. Bruynooghe

93122 E. Poll

93123 E. de Kogel

93124 E. Poll and Paula Severi

93125 H. Schepers and R. Gerth

93126 W.M.P. van der Aalst

93127 T. KIoks and D. Kratsch

93128 F. Kamareddine and
R. Nederpeh

93129 R. Post and P. De Bra

93/30 1. Deogun
T. KIoks
D. Kratsch
H. Muller

Department of Mathematics and Computing Science
Eindhoven University of Technology

Deriving the Aho-Corasick algoritluns: a case smdy into the synergy of program_
ming methods, p. 36.

A cootinuous version of the Prisoner's Dilennna, p. 17

Quicksort for linked liltS, p. 8.

Detenninistic and randomized local search, p. 78.

A ccngruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogranuning, p. 97

A Fonna! Detenninistic Scheduling Model for Hard Real-Time Executions in
DEDOS,p.32

Systems Engineering: a Fonnal Approach
Part I: System Concepts, p. 72

Systems Engineering: a Fonnal Approach
Part n: Frameworks, p. 44.

SystemS Engineering: a Fonna! Approach
Part 1lI: Modeling Melhod., p. 101.

Systems Engineering: a Fonnal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Fonnal Approach Part V: Specification Language. p. 89.

On Sequential Compositioo, Action Prefixes and
Process Prefix, p. 21.

A Real-TIme Process Logic, p. 31.

A Trace-Based Compositiooal Proof Theory for
Faull Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p.19.

A congruence theorem for structured operatiooal
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Programming, p. IS.

Freeness Analysis for Logic Programs - And Correctness, p. 24

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real-Time Distributed Systems,
p.31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. 11.

A Semantics for a fine l-ca1cu1us with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Pennutation and Other Graphs,
p. II.

93/31 W. KOrver

93/32 H. ten Eikelder and
H. van Geldrop

93/33 L Loyens and 1. Moonen

93/34 I.C.M Baeten and
J .A. Bergstra

93/35 W. Ferrer and
P. Severi

93/36 I.C.M. Baeten and
l.A. 8ergstra

93/37 I. Bnmekreef
I-P. Katoen
R. Koymans
S. Mauw

93/38 C. VeIhoef

93/39 W.P M. Nuijten
E.H.L Ams
D.A.A. van Erp Taalman Kip
K.M. van Hee

93/40 P.D.V. van der Stok
M.M.M.P J. Qaessen
D. Alstein

93/41 A. BiJ1sma

93/42 P.M.P. Rambags

93/43 B.W. Watson

93/44 B.W. Watson

93/45 E.l. Luit
I.M.M. Martin

93/46 T. Kloks
D. Kratsch
J. Spinrad

93/47 W. v.d. Aalst
P. De Bra
GJ. Houben
Y. KornatzJcy

93/48 R. Gerth

94/01 P. America
M. van der Kammen
R.P. Nederpell
0.5. van Roosmalen
H.C.M. de Swart

94/02 F. Kamareddine
R.P. Nederpelt

94/03 L.B. Hartman
K.M. van Hee

94/04 I.C.M. Baeten
I.A. Bergstra

94/05 P. Zhou
J. Hooman

94/06 T. Basten
T. KlUlZ
I. Black
M. Coffin
D. Taylor

94/07 K.R. Apt
R. Bol

94/08 O.S. van Roosmalen

94/09 I.C.M. Baeten
I.A. Bergstra

Derivation of delay insensitive and speed independent CMOS circuits, using
directed conunands and production rule sets, p. 40.

On the Correcb1ess of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

II.lAS, a sequential language for parallel matrix computatioos, p. 20.

Real Time Process Algebra with Infmitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction. p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transfonners, p. 11.

Automatic Verificatioo of Regular Protocols in P{f Nets, p. 23.

A taxomomy of fmite automata construction algorithms, p. 87.

A taxonomy of fmite automata minimization algorithms, p. 23.

A precise clock synchroniutioo protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
BOWlded Dimensioo, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refmement., p. 20.

The object-oriented paradigm, p. 28.

Canonicait)'ping and II-conversion. p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Fonnal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey. p. 62.

A Hierarchical Diagrammatic Representation of Cass Structure, p. 22.

Process Algebra with Panial Choice. p. 16.

94/10 T. verhoeff

94/11 J. Peleska
C. Huizing
C. Petersohn

94/12 T. KIoks
D. Kratsch
H. Milller

94/13 R. Seljee

94/14 W. Peremans

94/15 RJ.M. Vaessens
E.H.L Aans
1.K. Lenst ..

94/16 R.C. Backhouse
H. Doornbos

94/17 S. Mauw
M.A. Renien

94/18 F. Kamareddine
R. Nederpelt

94/19 B.W. Watson

94/20 R. B100
F. Kamareddine
R. Nederpelt

94/21 B.W. Watson

94/22 B.W. Watson

94/23 S. Mauw and M.A. Reniers

94/24 D. Dams
o. Grumberg
R. Genh

94/25 T. K10ks

94/26 R.R. Hoogerwoord

94/27 S. Mauw and H. Mulder

94/28 C,W.A.M. van Overve1d
M. Verhoeven

94/29 1. Hooman

94/30 I.C.M. Baeten
I.A. Bergstea
Gh. ~fanescu

94/31 B.W. Watsoo
R.E. Watson

94/32 JJ. Vereijken

94/33 T. Laan

94/34 R. Bloo
F. Kamareddine
R. N ederpelt

94/35 I.C.M. Baeten
S. Mauw

94/36 F. Kamareddine
R. Nederpelt

94/37 T. Basten
R. Bol
M. Voorhoeve

94/38 A. BiJlsma
C.S. Scholten

The testing Paradigm Applied 10 Networlc: Structure. p. 31.

A Comparison of Ward & Mellor's Transformation
Schema wilh State· & Activitycharts, p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in Deductive Databases, p. 34.

Ups and Downs of Type Theory. p. 9.

Job Shop Scheduling by l.ocal Search. p. 21.

Mathematica1lnduction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, p. 9.

Refming Reduction in the lamtxia Calculus, p. 15.

The perfonnance of single-keyword and multiple-keyword pattem matching
algoritluns, p. 46.

Beyond p-Reduction in Clturch's ,\ -+, p. 22.

An introduction to the Fire engine: A C++ toolkit for Fmite automata and Regular
Expressions.

The design and implementation of the FIRE engine:
A C++ toolkit for Finite automata and regular Expressions.

An algebraic semantics of Message Sequence Charts. p. 43.

Abstract Intetpretation of Reactive Systems:
AbstraC1ions Preserving V'CfL*, 3CfL* and cu.*, p. 28.

I
Kl,J-free and W .. -free graphs, p. 10.

On the foundations of functional programming: a programmer's point of view. p.
54.

Regularity of BPA-Systems is Decidable. p. 14.

Stars or Stripes: a ccmparative srudy of fmite and
transfinite techniques for surface modelling. p. 20.

Correctness of Real Time Systems by Constructioo, p. 22.

Process Algebra with Feedback. p. 22.

A Boyer-Moore type algorithm for regular expression
pattern matching. p. 22.

Fischer's Protocol in Timed Process Algebra. p. 38.

A fonnalization of the Ramified Type Theory. p.40.

The Barendregt Cube with Definitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. 15.

Canonical typing and II-cooversion in the Barendregt
Cube. p. 19.

Simulating and Analyzing Railway Interlockings in
ExSpect. p. 30.

Point-free substitution, p. 10.

94/39 A. Blokhuis
T. Kloks

94/40 D. Alstein

94/41 T. KIoks
D. Kralsch

94/42 I. EV!eHriet
1J. ereijken

94/43 R.C. Backhouse
M. Bijsterve1d

94/44 E. Brinksma I. Davies
R. Gerth S.Gnof
W. Janssen 8. Jonsson
S. Katz G. Lowe
M. Poe! A. Pnueli
C. Rump 1. Zwien

94/45 GJ. Hooben

94/46 R. B100
F. Kamareddine
R. Nederpelt

94/47 R. B100
F. Kamareddine
R. Nederpelt

94/48 Mathematics of Program
Construction Group

94/49 I.C.M. Baeten
I.A. Bergstra

94/50 H. Geuvers

94/51 T. KIoks
D. Kratsch
H. Muller

94/52 W. Penczek
R. Kuiper

94/53 R. Gerth
R. Kuiper
D. Peled
W. Penczek

9SJIlI JJ. Lukkien

95J1)2 M. Bezem
R. Bo1
J.F. Groote

95J1)3 I,C.M Baeten
C.Veffioef

95J1)4 1. Hidders

95J1l5 P. Severi

95J1)6 T.W.M. Vossen
M.O.A. Verhoeven
H.M.M. ten Eikelder
E.H.L Aart.

95J1)7 G.A.M. de Bruyn
O.S. van Roosmalen

95J1l8 R. 8100

95J1)9 I.C.M. Baeten
I.A. Bergstra

95/10 R.C. Backhouse
R. Verhoeven
O.Weber

On the equivalence covering number of splitgraphs, p. 4.

Distributed Cmsensus and Hard Real·lunc Systems, p.34.

Computing a perfect edge without vertex elimination
ordering of a chordal bipartite graph. p. 6.

Concatenati~ of Graphs, p. 7.

Category Theory as Coherently Coostructive Lattice
Theory: An lliustratioo, p. 35.

Verifying Sequentially Coosistent Memory. p. 160

Tutorial voor de ExSpect-bibliotheek voor "Administratieve Logistiek". p. 43.

The .:\ -cube with classes of tenns modulo conversion,
p.16.

On IT-<:OI1version in Type Theory, p. 12.

Fixed-Point Calculus, p. 11.

Process Algebra with Propositional Signals, p. 25.

A short and flexible prcxi of Strong Nonna1azation
for the Calculus of Constructions, p. Zl.

Usting simplicial vertices and recognizing
diamond-free graphs, p. 4.

Traces and Logic, p. 81

A Partial Order Approach to
Branching Time Logic Model Checking, p. 20.

The Construction of a small CommunicationLibrary, p.16.

Formalizing Process Algebraic Verifications in the Calculus
of Constructions, p.49.

Concrete process algebra, p. 134.

An Isotopic Invariant for Planar Drawings of Connected Planar Graphs, p. 9.

A Type Inference Algorithm for Pure Type Systems, p.20.

A Quantitative Analysis of Iterated Local Search. p.23.

Drawing Execution Graphs by Parsing, p. 10.

Preservation of Strong Normalisation for Explicit Substitution, p. 12.

Discrete Time Process Algebra, p. 20

MathJpad: A System for On-Line Prepararation of Mathematical
Documents, p. 1 S

95/H R. Seljee

95/12 S. Mauw and M. Reniers

95/13 B.W. Watson and G. Zwaan

95/14 A. Poose, C. Verhoef,
S.F.M. Vlijrnen (eds.)

95/15 P. Niebert and W. Penczek

95/16 D. Dams, O. Gnunberg, R. Gerth

95/17 S. Mauw and E.A. van der MeuJen

95/18 F. Kamareddine and T. Laan

95/19 I.C.M Baeten and I.A. Bergstra

95f}JJ F. van Raamsdonk and P. Severi

95/21 A. van Deunen

95{l.2 B. Arnold, A. v. Deursen, M. Res

95/23 W.M.P. van der Aalsl

95/24 F.P.M. Dignum, W,P.M. Nuijten.
LM.A. Janssen

95/25 L Fcijs

95{26 W.M.P. van det Aalst

95{27 P.D.V. van der Stok, 1. van deT Wal

95{28 W. Fokkink. C. Verhoef

95{29 H. Jurjus

95/30 1. Hidders, C. Hoskens, 1. Paredaens

95/31 P. Kelb, D. Dams and R. Gerth

95/32 W.M.P. van der Aalst

95/33 J, Engelfriet and IJ. VereiJKen

95/34 J. Zwanenburg

Deductive Database Systems and integrity constraint cheaing. p. 36.

Empty Interworkings and Refinement
Semantics of Jnterworkings Revised, p. 19.

A taxonomy of sublinear multiple keyword pattern matching algorithms, p. 26.

De proceedings: ACP'95. p.

On the Connection of Partial Order Logics and Partial Order Reduction Methods.
p. 12.

Abstract Intezpretation of Reactive Systems: Preservation of CTL*, p. 27.

Specification of tools for Message Sequence CJ.arts, p. 36.

A Reflection <Xl Russell's Ramified Types and Kripke's Hierarchy of Truths,
p.14.

Discrete Tune Process Algebra with Abstraction, p. 15.

On Nonnalisation, p. 33.

Axiomatizing Early and late Input by Variable Elimination, p. 44.

An Algebraic Specification of a Language for Describing Financial Products,
p.11.

Petri net based scheduling, p. 20.

Solving a Time Tabling Problem by Constraint Satisfaction, p. 14.

Synchronous Sequence Otarts In Action, p. 36.

A Class of Petri nets for modeling and analyzing business processes, p. 24.

Proceedings of the Real-Time Database Workshop, p. 106.

A Conservative Look at tenn Deduction Systems with Variable Binding, p. 29.

On Nesting of a Nonmonotonic Conditional, p. 14

The Fonnal Model of a Pauem Browsing Technique. p.24.

Practical Symbolic Model Checking of the full .u-calculus using Compositional
Abstraaions, p. 17.

Handboek simulatie, p. 51.

Context-Free Graph Grannnars and Concatenation of Graphs, p. 35.

Record concatenation with interseaion types, p. 46.

	Abstract
	1. Introduction
	2. Processes
	3. P/T Nets with Pins
	4. An Algebraic Semantics for P/T Nets
	5. An Algebraic Semantics for Hierarchical P/T Nets
	5.1 Hierarchical P/T nets
	5.2 Processes with Silent Actions
	5.3 Place/Transition-Net Algebra with Silent Actions
	6. Recursion and Fairness
	7. Example: The Alternating-Bit Protocol
	8. Concluding Remarks and Future Work
	References
	A: Some Proofs
	B: Proving the Validity of RSP*

