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Abstract 

The first part of this paper gives an algebraic semantics for Placell'ransition nets in terms of an algebra 
which is based on the process algebra ACP. The algebraic semantics is such that a Pff net and its term 
representation have the same operational behavior. As opposed to other approaches in the literature, the 
actions in the algebra do not correspond to the firing of a transition, but to the consumption or production 
of tokens. Equality of Pff nets can be determined in a purely equational way. 

The second part of this paper extends the results to hierarchical Pff nets. It gives a compositional al
gebraic semantics for both their complete operational behavior and their high-level, observable behavior. 
By means of a non-trivial example, the Alternating-Bit Protocol, it is shown that the notions of abstrac
tion and verification in the process algebra ACP can be used to verify in an equational way whether a 
hierarchical Pff net satisfies some algebraic specification of its observable behavior. Thus, the theory in 
this paper can be used to determine whether two hierarchical Pff nets have the same observable behavior. 
As an example, it is shown that the Alternating-Bit Protocol behaves as a simple one-place buffer. The 
theory forms a basis for a modular, top-down design methodology based on Petri nets. 

Key words: Placeffransition nets - hierarchical Petri nets - process algebra - algebraic semantics - abstrac
tion - verification - top-down design 

1 Introduction 

Motivation. The theory of Petri nets (see for example [31]) has been developed to design and analyze dis
tributed systems. In order to support the design oflarge, complex systems, high-level Petri nets [21, 23] have 
been defined, which include hierarchy, data, and time. Based on high-level Petri nets, automated tools, such 
as DesignlCPN [26] and ExSpect [1], have been developed. The most important reasons for the widespread 
use of Petri nets in the area of system design, are their intuitive graphical representation and the simplic
ity of the main concepts of the theory. Unfortunately, the class of Placeffransition nets, which underlies all 
other classes of Petri nets, also lacks one important property, which is essential to top-down, modular design: 
compositionality. 

Several other theories for describing concurrent systems do have this property. For example, process al
gebras, such as CCS [27], CSP [22], and ACP [4], all support compositionality. Therefore, it is not surprising 
that several attempts have been made to integrate Pff nets and process algebra. Some approaches give a net 
semantics for some process algebra; others describe an algebraic semantics for (some subclass of) Pff nets. 
All approaches have in common that there is a one-tn-one correspondence between actions in the calculus 
and transitions in the Pff nets. Usually, only flat Pff nets are considered. Below, a brief survey is given of 
some recent results described in the literature. 

This paper presents a different approach. First, it gives an algebraic semantics for flat Pff nets in terms 
of an ACP-like process algebra [4] in which atomic actions correspond to the consumption or production of 
a single token. This correspondence is the essential idea that allows for a straightforward extension to hi
erarchical nets. The algebraic semantics is such that the two transition systems which form the operational 
semantics of a Pff net and its algebraic representation are equivalent. The process algebra ACP is chosen, 

• An extended abstract of this report appeared as [6) 
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because it emphasizes equational reasoning as opposed to model-based reasoning. An equational theory is 
given which can be used to detennine equality of Pff nets, without referring to their operational semantics. 
Second, this paper gives an algebraic semantics for both the complete behavior and the observable behav
ior of hierarchical Pff nets. The complete behavior of a hierarchical Pff net is the behavior of the flat net 
which is obtained when the hierarchical net is unfolded; the observable behavior of a hierarchical net is the 
behavior after hiding the internal behavior. The algebraic semantics for the observable behavior of hierar
chical Pff nets can be used to verify whether a net satisfies some algebraic specification of its behavior, and, 
as a result, to determine whether two hierarchical nets have the same observable behavior. All this can be 
done in a purely equational and compositional way. The theory thus fonns the basis for a top-down design 
methodology based on hierarchical Petri nets. Figure 1 gives an example, which is used to further explain 
and motivate the research described in this paper. 

b 

a a 
I c 
I 10 I I • _____ y----J ~ ____ y----J 

a?· (b?·8 + c?·8) a?·b?·8 + a?·c?·8 

Figure I: Motivating example. 

The two nets shown in Figure 1 look like ordinary Pff nets. However, the dashed boxes divide the set 
of places into pins and internal places. The idea is that pins are connectors to an environment, which can 
remove tokens from or add tokens to the pins. The internal structure of the net is hidden as in a black box. 
Thus Pff nets with pins are a very simple fonn of hierarchical nets. It is straightforward to extend such Pff 
nets with pins to more general hierarchical Pff nets. Besides places and transitions, the internal structure of 
a high-level, hierarchical net can also contain subnets, whose pins are connected to internal places or pins 
from the high-level net. Essentially, this is the hierarchy construct underlying the high-level nets described 
in [21]. It is also one of the constructs used to build hierarchical nets as described in [23]. Furthennore, it is 
supported by tools as DesignlCPN and ExSpect. 

The main objective of this paper is to give an algebraic semantics for the observable behavior of hierarch i
cal nets, that is, their behavior projected onto pins. Therefore, it seems most appropriate to define the behavior 
of a net in tenns of production and consumption of tokens. Consider, for example, the left net in Figure 1. 
Assuming that the environment provides sufficiently many tokens, it is easy to see that it first consumes a to
ken from a, then, either consumes a token from b or from c, after which it deadlocks. In an ACP-like process 
algebra, one could express this kind of behavior by the tenn a?·(b?·8 +c?·8), where a question mark denotes 
the consumption of a token, . denotes sequential composition, + denotes a choice, and 8 denotes deadlock. 

In order to compare hierarchical nets, some suitable notion of equivalence is needed. In the context of 
this paper, two hierarchical nets are considered equivalent if and only if their observable behavior is the same. 
For example, consider the right net in Figure 1. From the environment, it looks the same as the other net. 
However, it does not have the same observable behavior. Obviously, like the other net, it first consumes a 
token from a. But after that, its behavior is different. If the uppennost transition consumed the token from 
a, after that, it will only consume a token from b but not from c. The consumption of a token from a implies 
a choice between b and c. For the left net, this is not the case. After consuming a token from a, it is still able 
to consume a token from either b or c. The behavior of the nets is different, because their moments of choice 
are different. 
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So, an appropriate notion of equivalence should capture the moments of choice in a process, often called 
the branching structure o/the process. In [15], Van GIabbeek formally defines the branching structure ofa 
process. He shows that an equivalence notion captures the branching structure if and only if it distinguishes 
more processes than bisimulation equivalence. Two processes are bisimilar if and only if, at any time, they 
can copy, or simulate, each others actions. Therefore, in this paper, two hierarchical Pff nets are considered 
equivalent if and only if their observable behavior is bisimilar. Consequently, the two nets of Figure 1 are not 
equivalent. In their survey on refinement of Petri nets, Brauer, Gold, and Vogler [12] propose bisimulation 
equivalence for similar reasons as explained above. It also appears in the survey on equivalence notions for 
Petri nets by Pomello, Rozenberg, and Simone [30]. Note that in this paper bisimulation is not used explicitly 
to determine equivalence of nets. Instead, an equational theory is given which can be used for this purpose. 
Since it is not the main subject of this paper to investigate equivalences on Petri nets, it is left for future 
work to investigate other notions of equivalence which might be of interest in the context of this paper. True 
concurrency equivalences seem to be interesting candidates. 

Note that the notion of equivalence of hierarchical nets introduced above has an interesting consequence. 
For example, adding an internal output place to any of the transitions of a net in Figure 1 does not change its 
observable behavior. This behavior is even independent of the number of initial tokens in such an additional 
place. This means that nets with different reachable states can have equivalent observable behavior. 

Summarizing, this paper gives an algebraic semantics for hierarchical Pff nets, in which atomic actions 
correspond to the consumption or production of tokens. An equational theory is given which can be used to 
determine equivalence of hierarchical nets. 

Related work. One way to integrate Pff nets with process algebra is to give a net semantics for terms in the 
algebra, thus providing the process algebra with a true concurrency semantics. Examples of this approach are 
Best, Devillers, and Hall [10], Degano, De Nicola, and Montanari [13], Van Glabbeek and Vaandrager [16], 
Goltz [19], Montanari and Yankelevich [28], Olderog [29], and Taubner [33]. As explained, this paper does 
the converse. It gives an algebraic semantics for Pff nets. Examples of this approach are Baeten and Berg
stra [2], Boudol, Roucairol, and De Simone [11], and Dietz and Schreibert [14]. All three approaches are 
discussed briefly. 

Dietz and Schreibert [14] give an algebraic semantics for Pff nets which reflects the parallelism in their 
dynamic behavior. The parallel components in the algebraic representation of a net do not correspond to its 
structural components. Such a relationship does exist in the other two papers. Boudol, Roucairol, and De 
Simone [11] give an algebraic term for each place and each transition of a Pff net. The complete behavior of 
the net is the parallel composition of all these terms. The communication between these terms corresponds 
to the flow of tokens. A similar approach is taken by Baeten and Bergstra [2]. Atomic actions in the alge
bra correspond to transitions in the Pff nets. So-called input and output causes are added to these actions, 

corresponding to input and output places. The behavior of a net is the parallel composition of all actions cor
responding to its transitions. A so-called causal state operator is used to restrict the behavior in such a way 
that it corresponds to the flow of tokens in the net. As opposed to Boudol, Roucairol, and De Simone, Baeten 
and Bergstra emphasize equational reasoning. 

The approach pursued in this paper is most closely related to the work of Baeten and Bergstra. The al
gebraic semantics given is very similar to theirs. However, as mentioned before, an important difference be
tween this paper and all other approaches is that, in this paper, actions in the algebraic semantics correspond 
to the consumption or production of tokens, whereas, in the other approaches, there is a correspondence be
tween actions and transitions. In the latter case, there is no straightforward extension to hierarchical nets. 
As this paper shows, there is a straightforward extension when actions correspond to the consumption or 
production of tokens. 
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Organization. The paper is organised as follows. Section 2 introduces a framework of transition systems 
which serve as the operational semantics for both PIf nets and terms in the process algebra. In Section 3. PIf 
nets with pins and their operational behavior are defined. Section 4 introduces the equational theory P'INA. 
for Place/Fransition-Net Algebra. and its operational semantics. The algebraic semantics of a PIf net with 
pins is a closed P'INA term. It has the same operational semantics as the PIf net. Section 5 introduces the 
distinction between internal and observable behavior. It extends the algebraic semantics to general hierar
chical nets. In Section 6. a fairness principle and a recursion principle are introduced. which are needed in 
Section 7. where the theory is applied to the example of the Alternating-Bit Protocol. Finally. Section 8 ends 
with some concluding remarks and a discussion of future work. The appendices give some proofs which are 
not essential to the understanding of the paper. as well as some large and complicated proofs. 

Notation. For any set X. the notation P X denotes the powerset of X and IB X denotes the set of all bags 
over X. where a bag is a finite multi-set. The standard operators minus (-) and union (U) on sets are also 
used on bags. Minus binds stronger than union. Set inclusion (S;;) is also extended to bags. Furthermore. 
restriction of some set or bag X to some domain D is denoted X f D. Restriction binds stronger than minus 
and union. The emptyset symbol (IS) is also used to denote the empty bag. A non-empty bag is written as a 
sequence of its elements in arbitrary order. where each element appears only once and a superscript denotes its 
cardinality. Furthermore. for an associative binary operator 0. some function !. some n E IN. and operands 
xo • ...• Xn• the quantifier notation (0 i : 0 SiS n: f(xj» is used as a shorthand notation for !(xo)0 ... 0 
!(xn). For an associative binary operator Ell that is also commutative. the notation (Ell x : x EX: !(x». 
where X is some bag of operands. is sometimes used. 

2 Processes 

This section introduces a general framework oflabeled transition systems. It serves as the process domain in 
which the operational semantics of both PIf nets and algebraic terms are defined. In this way. the behavior 
of PIf nets and algebraic terms can be compared in an unambiguous way. For now. there is no distinction 
between internal and observable behavior. 

Definition 2.1. (Process space) A process space over some set of actions Act is a pair (P. -+). where P 
is a set of processes. and _ -=+ _: P(P x Act x (P U {.J}» a ternary transition relation. 

Intuitively. for any P. p' E P and a E Act. the predicate p ~ p' means that process p can perform an 

action a. thus transiting into a process p'. The predicate p ~ .; means that process p terminates success
fully upon executing an action a. In PIf-net theory. no distinction is made between successful and unsuc
cessful termination (deadlock). However. in the process algebra ACP. such a distinction does exist. Hence. 
the distinction is made in the process domain. Of course. PIf nets should represent processes which cannot 
terminate successfully. 

An equivalence on processes which captures their branching structure is defined as follows. Let (P. -+) 
be some process space over Act. 

Definition 2.2. (Bisimulation) A binary relation n: P(P x P) is called a bisimulation if and only if. for 
any P. P'. q. q' E P and a E Act. 

i) p'Rq /\ P ~ p' * (3 q': q' E P: q ~ q' /\ p''Rq'). 

ii) p'Rq /\ q ~ q' * (3 p': p' E P: p ~ p' /\ p''Rq'). 
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iii) p'TUj => p ~ ,J <* q ~ ,J. 

1\\'0 processes p and q are called bisimilar, denoted p ~ q, if and only if there exists a bisimulation 'R such 
that p'TUj. 

3 PIT Nets with Pins 

This section formalizes the notion of Pff nets with pins and their operational semantics. No distinction is 
made between observable and internal behavior. This means that the dashed box in the graphical represen
tation of Pff nets with pins merely is a glass box instead of a black box. Let Lp be some universe of place 
labels and Lt a universe of transition labels. 

Definition 3.1. (pff net with pins) A Pff-net structure with pins is a 5-tuple (P, T, i, 0, I), where P ~ Lp 
is a finite, non empty set of places, T ~ Lt is a finite, non empty set of transitions, i: T -+ B P a function 
which gives the input places for each transition, 0: T -+ B P a function which gives the output places for 
each transition, and 1 ~ P the set of internal places. The set P - 1 is the set of pins. The functions i and 0 

must satisfy the following two conditions: (i) for any peP, there must exist ate T such that p e it U ot, 
which means that there are no isolated places; (ii) for any t e T, it Uot is not empty, which means that there 
are no isolated transitions. A Pff net with pins, in the remainder simply called Pff net or net, is a pair (N, s), 
where N is its structure as defined above and s : B 1 is its state or marking. 

Note that, when the set of pins is empty, a Pff net with pins is just an ordinary Pff net. The state of a 
Pff net with pins is a bag of internal places. As usual, an element a of the state of a Pff net is often referred 
to as a token residing in place a. The reason for not considering pins in the state of a net is that we want to 
determine the behavior of a Pff net under the assumption that the environment is responsible for producing 
tokens on and consuming tokens from pins. 

The dynamic behavior of a Pff net is a process space in which the Pff nets are the processes and the tran
sition relation determines what actions a PIT net can perform. To formalize this definition, some terminology 
and definitions are given first. 

Let (N, s) be a Pff net, where N = (P, T, i, o,/). A transition t e T is enabled if and only if, for each 
internal place a e 1 with positive cardinality n in it, there are at least n tokens in a available in s. More 
concisely, a transition t is enabled if and only if it r 1 ~ s. If a transition is enabled, it can fire. Upon firing, 
a transition t removes n tokens from each of its input places a, where n is again the cardinality of a in it; 
it adds m tokens to each of its output places b, where m is the cardinality of b in ot. This means that upon 
firing t, the Pff net (N, s) evolves into another Pff net (N, s - it U ot r /). Note that it follows from the 
standard definition of" -" that it is not necessary to restrict it to I. The tokens that are removed from the net 
when firing a transition are often referred to as consumed tokens or the consumption of a transition; tokens 
that are added are referred to as the production of a transition. If 1 is chosen equal to P, that is, all places are 
internal, the definitions above are the usual ones for Pff nets without pins. Or, from a different viewpoint, the 
definitions given here are the usual ones provided that the environment supplies sufficiently many tokens on 
the input pins. It is assumed that transitions cannot fire simultaneously. However, as explained in Section 8, 
this is not a real restriction. All results can be extended to Pff nets with an operational semantics that allows 
transitions to fire simultaneously. The reason for not doing so, is thant 9nnecessarily complicates the theory 
and examples that follow, and thus distracts the reader frol\l,the essential points of this paper. 

The definitions given so far are sufficient to formalm ihe operational semantics of Pff nets. Let PTN 
be the set of all Pff nets. A single action of a net, which is the firing of a single transition, is determined 
by two bags, the consumption and the production of the transition. Therefore, let Act be B Lp x IB Lp. The 
transition relation _ --=-... _ : P(PTN x Act x (PTN U (,J))) is the smallest relation satisfying, for any net 
structure N = (P, T, i, 0,1), bags s, s' EEl, and transition t e T, 
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(It •• ,) 
(N. sUit f /) ---+ (N. s U ot P). 

Note that. according to this definition. PfT nets have no successful termination. If a PfT net cannot perform 
any actions anymore. it is deadlocked. This conforms to the usual semantics for nets. where no distinction is 
made between successful and unsuccessful termination. 

Example 3.2. LetPTNo = (No. io) andPTN) = (N). io) be the left and right PfTnet in Figure 1 respectively. 
Figure 2 visualizes the transition relations of both nets. Since internal activity is visible. and hence the two 
nets perform different actions. they are obviously not bisimilar. 

(No. io) ! (aio. ill 

(No. ill 

(bil.~~il'~) 
(No.~) (No.~) 

(Nl. io) 

(aio.il)~aio.i2) 
(Nl.il) (Nl.i2) 

(bilo~) ! ! (ci2.~) 
(Nl.~) (Nl.~) 

Figure 2: The transition relations of PTNo and PTN). 

4 An Algebraic Semantics for prr Nets 

This section introduces an ACP-like equational theory and its operational semantics. It gives an algebraic 
semantics for PfT nets such that a PfT net and its term representation have the same operational behavior. 

The theory P'INA. An equational theory consists of a signature and a set of axioms. The signature defines 
the sorts of a theory and its functions. A O-ary function is often called a constant. 

The equational theory used in this paper is P'INA, Place/l'ransition-Net Algebra. The signature and the 
axioms are given in Table I. The theory is parameterized by a set of constants Lp. which is the set of place 
labels introduced in the previous section. The first part of Table I lists the sorts of PTNA; the second part 
defines the functions and the third part the axioms. An informal explanation is given below. 

Intuitively. A is the set of atomic actions. AC the set of actions. and P the set of processes. Each atomic 
action is either the consumption of a token or the production of a token. A consumption is denoted by "1" 
and a production by "!." An action is the simultaneous consumption andlor production of one or more tokens. 
Actions are constructed by the synchronous-merge operator I. In an equational theory. nothing is an element 
of a subsort unless explicitly stated. This yields the following property. 

Property 4.1. For any a E A. there exists abe Lp. such that a = b? or a = b!. For any b E Lp. b? E A and 
b! EA. For any e E AC. there exist ao • ...• an EA. for some n E IN. such that e = <I i : 0 ~ i ~ n : aj). 
Foranyao •...• an E A, wheren E IN, <I i: 0 ~ i ~ n: ail E AC. 

The synchronous merge is a very simple form of the communication merge as defined in [8]. There, the 
axioms Sl and S2 appear as Cl and C2 respectively. The reason for changing the names is that there is 
no communication in PTNA. The operators + and . denote choice and sequential composition respectively. 
Axiom A4 states the right distributivity of sequential composition over choice. To be able to distinguish 
between processes with different moments of choice, the converse, left distributivity, is not an axiom of the 
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_PTNA(Lp) _____________________ _ 

A, AC, P; A c AC c P 
8 : P _ ?, _! : Lp --+ A 

_._: PxP--+P ° . PxP--+P _+_: PxP--+P 
_11_: PxP--+P _I - : AC x AC --+ AC 

J..: : (P Lp x J3 Lp) --+ (P --+ P) c_, p_ : AC --+ 18 Lp 
d: ACU{8}; e,f,g: AC; x,y,z: P; I: PLp; s: 18Lp 

x+y=y+x Al elf=fle 
(x + y) + z = x + (y + z) A2 (e 1 f) 1 g = e 1 (f 1 g) 
x+x=x A3 
(x+y)·z=x·z+y·z A4 
(x·y)·z = x·(y·z) A5 
x+8 =X A6 
8·x=8 A7 

J..:(8) = 8 
ce r I £ s =} J..: (e) = e 

xlly=x!Ly+yltx 
dltx=d·x 
d·x!Ly=d·(xlly) 
(x + y) It z = x It z + y It z 

(x It y) It z = x It (y II z) 
(x II y) II Z = x II (y II z) 

Sl 
S2 

MI 
M2 
M3 
M4 

ASCI 
ASC2 

ce fI g; s =} J..: (e) = 8 
J..:(e.x) = J..:(e) ·J..:_celJp<r/(x) 
J..:(x + y) = J..:(x) +J..:(y) 

CSOI 
CS02 
CS03 
CS04 

CS05 

x·y=x.(x·y)+y BKSI 

x·(y·z) = (XOy)·z BKS2 
x· (y. «x + y)' z) + z) = (x + y)' Z BKS3 

Table I: PlacelTransition-Net Algebra. 

theory. As expressed by axioms A6 and A 7, the special process 8 can be interpreted as inaction or deadlock. 
The merge operator II can be interpreted as parallel execution. It is axiomatized using an auxiliary operator 
It, called the left merge. The left merge has the same meaning as the merge except that the left process must 
execute the first action. Axioms ASCI and ASC2 are the so-called axioms of standard concurrency. Often, 
they are derivable for closed terms and omitted from the theory. However, in combination with the binary 
KIeene star (0) they are not derivable for closed terms and hence included. The binary Kleene star adds a 
simple form of recursion to the theory. It is the original star operator as introduced by KIeene [24). In [7), 
where the axioms BKSI-3 are given, it was introduced into process algebra. Because of its simplicity, the 
binary KIeene star is preferred over general recursion (see for example [4)). The remainder of this paper 
shows that it is powerful enough to capture the behavior of PfI' nets. Finally, the causal state operator J.. is a 

special version of the state operator as described in [4]. It is very similar to the causal state operator as defined 
in [2). A state operator has a parameter, the superscript, and a certain state space, the subscript. The state 
space of the causal state operator can be interpreted as the state or marking of some pfI' net and its parameter 
as the set of internal places. For I, s and x as in Table I, the term J..:(x) can be thought of as the pfI' net 
x with internal places I and state s. Using Property 4.1, the auxiliary functions c, p: AC --+ 18 Lp, for 
consumption and production respectively, can be defined as follows. For all a E Lp and e E AC, ca? = a, 
cal = iii, c(a? 1 e) = a U ce, and c(a! 1 e) = ce; pa? = iii, pal = a, p(a? 1 e) = pe, and p(a! 1 e) = a U pe. 

The binding precedence of the above operators is as follows. Unary operators bind stronger than binary 
operators. Sequential composition and KIeene star bind stronger than all other binary operators. Choice binds 
weaker than all other operators. 

The main purpose of a theory as PTNA is that it can be used to reason about processes in a purely equa
tional way. For any processes x and y, PTNA f- x = y denotes that x = y can be derived from the axioms. 
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In order to formalize the intuitive notions given above and to be able to compare processes defined by P'INA 
terms to processes defined by Pff nets, the next paragraph gives an operational semantics for P'INA. 

Operational semantics for P'INA. A semantics or model of a theory is an interpretation in a, usually well 
known and well understood, mathematical domain, such that the axioms are valid in the interpretation. An 
operational semantics is a model obtained by giving a process space as defined in Section 2. 

To obtain a model of the theory P'INA, interpretations of the sorts A, AC, and P must be given. Define the 
interpretation of the set of processes P as the set of closed P'INA terms, denoted C(P1NA). Since it follows 
from Property 4.1 that A is a subset of all closed terms, the interpretation of A is simply A itself. For the same 
reason, the interpretation of AC is AC itself. Obviously, these definitions satisfy A !;; AC !;; P. 

It remains to define the transition relation for processes in C(P1NA). First, the set Act must be de
fined. Intuitively, processes in C(P1NA) can execute an action in AC, thus transiting into another process 
in C(P'INA). Therefore, elements in Act should be interpretations of actions which serve as the labels of the 
transition relation. Let <p: AC -4 Act be a function that maps actions in AC to actions in Act. The seman
tics given in the previous section for Pff nets suggests that the semantics of an algebra of Pff nets should 
have pairs of bags as transition labels, where the first element is the consumption and the second element the 
production of an action. The auxiliary functions c and p exactly define the consumption and production of 
each action in AC. Therefore, let Act be equal to B Lp x B Lp and let for any e E AC, <p(e) = (ce, pe). 
The transition relation _ ---=+ _: P(C(P1NA) x Act x (C(P1NA) U (v1» can now be defined as the smallest 
relation satisfying the derivation rules in Table 2. 

a: Act; e: AC; s : IB Lp; I : P Lp; p, p', q, q' : C(P'INA) 

<p(e) .j p4p' p4.j 
e_ a , a 

p.q-p .q p.q-q 

p4p' q4q' p4.j 

p+q 4 p' p+q4q' p+q 4.j 

p4p' q4q' p4.j 

pllq4p'lIq pllq4pllq' 
a 

pllq-q 

p4p' p4.j 

ph4p'lIq 
a 

p ilq - q 
p4p' q4q' p4.j 

p*q 4 p'.(p*q) p*q4q' p*q4p*q 
<p(e) , 

p-p 
<p(e) .j 

p-
I <p(e) I (') 

ASLkefl (p) - ASUpefl p I q*1 .j AsLkef/(P) 

Table 2: The transition relation for P'INA. 

q4.j 

p+q4.j 

q4.j 
a 

pllq-p 

It remains to show that the process space as defined above is indeed a model of the theory P'INA. Recall 
that a process space is a model if and only if all equations that can be derived from the axioms are valid in the 
process space. The notion of validity is formalized as follows. In Section 2, bisimulation is defined, which is 
an equivalence relation on processes. Therefore, it is possible to look at equivalence classes of closed P'INA 
terms modulo bisimulation, denoted C (P'INA) / ~. For closed terms p and q, the equation p = q is valid, 
denoted C (P'INA) / ~ 1= p = q, if and only if p ~ q. That is, if and only if p and q are bisimilar and thus 
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elements of the same equivalence class. The following theorem states that if equality of two processes can 
be derived from the axioms, then the processes are bisimilar, and thus the equality is valid. This means that 
one can indeed use equational reasoning instead of model-based reasoning. 

Theorem 4.2. The set of closed P1NA terms modulo bisimulation is a model for P1NA. That is, for any 
p, q E C(PTNA), P1NA f- p = q => C(P1NA)/ - F p = q. 

Proof. It follows from the format of the derivation rules in Table 2 that bisimulation equivalence is a con
gruence on C(P1NA) [3]. Therefore, it suffices to verify the validity of each axiom of P1NA to prove the 
theorem. The validity of an axiom can be shown by constructing a bisimulation. The details can be found in 
Appendix A. 0 

An algebraic semantics for Ptr nets. The following definition associates a closed P1NA term to each PfT 
net. The idea is to define first the unrestricted behavior of a net. That is, its behavior when every transition 
is always enabled. Then, the causal state operator instantiated with the initial marking is used to restrict the 
behavior to all possible firing sequences. The unrestricted behavior of a single transition is the infinite itera
tion of its consumption and production of tokens. The unrestricted behavior of a net is the parallel execution 
of all its transitions. 

Definition 4.3. (Algebraic semantics for Ptr nets) Let PTN = (N, s) be a PfT net, where N = (P, T,I, 
o,l). The algebraic semantics of PTN, denoted N[p1N], is defined as follows: 

N[PTN] = >..: <II t: t E T: T[t]) , 
where, for any t E T, 

T[t] = «I i : i E it: i?) I (10: 0 E ot : 01» * 8. 
Empty quantifications should be simply omitted. 

The following theorem states that a net and its algebraic representation have the same operational behav
ior. That is, any step that a net can make can be simulated by its algebraic semantics and vice versa. Further
more, since a PfT net cannot terminate successfully, its algebraic semantics cannot terminate successfully 
either. Recall that (PTN, --+) and (C(PTNA), ---+) are the operational semantics for PfT nets and P1NA 
respectively. The set Act is equal to B Lp x E Lp. 

Theorem 4.4. For any PfT nets (N, s) and (N, s'), where N = (P, T, i, o,l), closed P1NA term p, and 
a E Act, 

i) (N, s) ~ (N, s') => N[(N, s)] ~ N[(N, s')], 

ii) N[(N, s)] ~ P => (3 s': s' E IB I: p = N[(N, s')] 1\ (N, s) ~ (N, s'», 

iii) N[(N, s)] .,4 .j. 

Proof. 

i) Assume that (N, s) ~ (N, s'). Then, according to the operational semantics for PfT nets given in 
Section 3, there exists a i E T such that a = (ii, 01), Ii r I £; s, and s' = s -Ii U oi r I. Let e be an 
abbreviation of (I i : i E ii: i?) I (I 0: 0 E oi: o!). Hence, the algebraic semantics of transition i, 
T[i], is equal to e* 8. It is easy to see that t/>(e) = (ce, pe) = (ii,ol) = a. Now, the rules in Table 2 
yield 
e~.j 
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and hence 
e'8 ~ e·8. 

Since 7[1] = e'8 and t e T, 
(II t: t e T: 7[t]) ~ (II t: t e T: 7[t]). 

It follows from it r I S; s and it = ce, that ce r I S; s. Since also s' = s - itU ot fI = s - ce U pe r I, 
).:(11 t: t e T: 7[t]) ~ ).1,(11 t: t e T: 7[t]). 

Finally, because N[(N, s)] = ).!(II t: t e T: 7[t]) andN[(N, s')] = ).:,(11 t: t e T: 7[t]), 
we may conclude that 

N[(N, s)] ~ N[(N, s')]. 

ii) Assume N[(N, s)] ~ p. The definition of N[.] yields that 
).: (II t : t e T : 7[t]) ~ p. 

It follows from the derivation rules for the causal state operator in Table 2 that there exists an e e AC, 
and q e C(P1NA), such that a = </>(e) = (ce, pe), ce r I S; s, 

P = ).:-ceUpef/(q), 
and 

(II t: t e T: 7[t]) ~ q. 
Let s' = s - ce U pe r I. We can show that s' is the bag of internal places such that p = N[(N, s')] 
and (N, s) ~ (N, s'). 

The derivation rules for the merge operator yield that there must exist ate T and r e C (P1NA), 
such that 

q = r II (II t: t e T "t f. t: 7[t]), 
and 
7[t]~r. 

Since 7[1] = «I i : i e it: i?) I (I 0: 0 e ot: o!»' 8 and since a = </>(e), it follows that 
e = (I i : i e it: i?) I (I 0: 0 e ot: o!) and that r = 7[1]. As a result, q = (II t: t e T: 7[t]) 
and p = ).1,«11 t: t e T: 7[t]». The definition of N[.] yields that 

p = N[(N, s')], 
which proves the first proof obligation. Since a = ¢(e) = (ce, pe) = (it, ot), ce r I S; s, and 
s' = s - ce U pe r I, it follows that it r I S; s and s' = s - it U ot r I. We may conclude from the 
operational semantics for PfT nets given in Section 3, that 

(N, s) ~ (N, s'). 

iii) Assume N[(N, s)] ~ .j, where N = (P, T, i, o,/). It follows from the definition of N[.] that 

).: (II t: t e T: 7[t]) ~ .j. 
It follows from the rules in Table 2 that 

(II t: t e T: 7[t]) ~ .j 
and thus that T must be a singleton (i), for some t e Lt. such that 

7[1] ~.j. 
It follows from the definition of 7[.] and the rules in Table 2 that this is a contradiction. Hence, 

N[(N, s)] A .j. 
o 

Theorem 4.4 states that, in the union of the two process spaces P7N and C(P1NA), the PfT net (N, s) 
is bisimilar to its algebraic representation N[(N, s)]. 
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Expansion. The following results are useful for simplifying many calculations. Their proofs can be found 
in Appendix A. 

Theorem 4.5. (Expansion) For any xo, ... , Xn e P, n e IN - {OJ 
(IIi: O:'Oi:'O n: Xi) = (+i: 0:'0 i:'O n: Xi !LOU: 0:'0 j :'OnAj ,#i: Xj». 

Property 4.6. For any non empty bag E e B AC, 
(lie: eeE: e*8)=(+e: eeE: e'(lIf: feE: 1*8». 

Example 4.7. Let PTNo = (No, io) be the left PIr net in Figure 1. Let Xo be the algebraic representation of 
PTNo, that is, Xo = N[PTNo]. This example shows how a simple expression can be derived for Xo, which 
is an algebraic term for the behavior of PTNo. In the derivation below, the causal state operator is written 
without the superscript {io, i d. 

= 
Xo 

{ Xo = N[PTNo]; Definition 4.3 (Algebraic semantics for PIr nets) } 
Aio«a1 I i01 I i)I)*811 (b? I i)?)*811 (c1 I i)1)*8) 

{Property 4.6; Let X = (a? I io? I i)!) * 811 (b? I i)?) * 8 II (c? I i)?) * 8 } 
Aio«a? I io? I i)!)·X + (b? I i)?)·X + (c1 I i)?)·X) 

{Axiom CS05; Axiom CS04 (3x)} 

Aio(a1 I io? I i)!) 'Ai1 (X) + Ai.<b? I i)?) . Aio(X) + Aio(c? I i)?)'Aio(X) 
{Axiom CS02; Axiom CS03 (2x)} 

(a? I i01 I i)!) 'Ai1 (X) + 8 'Aio(X) + 8'Aio(X) 
{Axiom A7 (2x); Axiom A6 (2x); Let X) = Ai, (X) } 

(a? I io? I i)!)·X) 

A derivation similar to the one above yields the following result for X). 

X, = (b? I i,?)·8 + (c? I i1?)·8. 

It is straightforward to verify that the transition relation of Xo is the same as the transition relation of PTNo 
that is directly obtained from the operational semantics for nets given in Section 3 (See Figure 2). It is left 
to the reader to verify that also for the right PIr net in Figure I, the transition relations for the net and its 
representation are the same. 

5 An Algebraic Semantics for Hierarchical Pff Nets 

In this section, hierarchical PIr nets are defined and an algebraic semantics for their complete operational 
behavior is given. Then, the notion of internal behavior is introduced in the process domain as well as in 
the theory P1NA. The abstraction mechanism from the process algebra ACP is adapted to give an algebraic 
semantics for the observable behavior of hierarchical PIr nets. This algebraic semantics indirectly specifies 
an operational semantics for the observable behavior of hierarchical nets. 

5.1 Hierarchical Pff nets 

In addition to places and transitions, a hierarchical PIr net has subnets which, in tum, are hierarchical PIr 
nets. 

Definition 5.1. (Hierarchical PIr nets) A hierarchical PITnet is a 7-tuple (P, T, S, i, 0, I, s), where P £; 
Lp is a finite, non empty set of places, T £; Lt is a finite set of transitions, and S a finite set of hierarchical 
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PIT nets, such that T U S is not empty; function i: (T U S) --+ IE! P gives the input places for each transition 
and each subnet, 0: (T U S) --+ E P gives the output places, I S;; P is the set of internal places, and s : E I 
is the marking of the hierarchical net. It is assumed that there are no isolated places, transitions, or subnets. 
Set S must be such that for each subnet the set of input and output places is equal to the set of pins of the 
subnet. The set of places of a hierarchical PIT net and the sets of internal places of all its subnets must be 
mutually disjoint. A hierarchical PIT net can be unfolded in the usual way. The unfolding of a hierarchical 
net must be finite. 

Figure 5 in Section 7 shows an example of a hierarchical net. The two nets in Figure 1 are also examples 
of simple hierarchical nets. A hierarchical net without any subnets is a PIT net as defined in Definition 3.1. 
The complete operational behavior of a hierarchical PIT net is the operational semantics of its unfolding. This 
semantics can be obtained algebraically as follows. 

Definition 5.2. (Complete behavior of hierarchical Ptr nets) Let HN = (P, T, S, i, 0, I, s). Extend the 
function N[.], as defined in Definition 4.3, inductively as follows. As before, empty quantifications should 
be omitted. 

N[HN] = ":«11 t : t E T: T[t]) II (II sn: sn E S: N[sn]». 

Note that the unfolding of a net must be finite, because only then the net has a finite algebraic represen
tation. 

5.2 Processes with Silent Actions. 

In Section 2, a process is defined as a labeled transition system over some set of actions. A process can 
execute actions, thus transiting into some other process. An action that is executed by a process is part of its 
observable behavior. To be able to distinguish between observable and internal behavior, silent actions are 
introduced. Usually, silent actions are denoted T. Only a single symbol is needed, since all internal actions 
are equal in the sense that they do not have any visible, external effects. The notion of silent actions in an 
algebraic setting was first introduced by Milner [27]. 

The definition of a process space given in Section 2 can still be used in a context with silent actions. How
ever, since bisimulation does not distinguish between observable and silent actions, the notion of equality on 
processes needs to be changed. Processes with the same observable behavior, but with different internal be
havior should be equal. As before, the equivalence relation on processes should distinguish processes with 
different moments of choice. In [15], Van Glabbeek shows that (rooted) branching bisimulation is exactly 
the equivalence that satisfies these two requirements. Branching bisimulation is a slightly finer equivalence 
than the better known observation equivalence [27]. That is, it distinguishes more processes than observation 
equiValence. 

Let (P, ---+) be some process space over Act equal to A U {T}, for some set of action symbols A. The 
following auxiliary relation expresses that a process can evolve into another process by executing a sequence 
of zero or more T actions. For the sake of simplicity, the termination symbol ../ is treated as a process. 

Definition 5.3. The relation ___ : P( (P U (../}) x (P U (../}» is defined as the smallest relation satisfying, 
for any p, pi, p" E P U {../}, 

p-p, 
p_plApl-2... p" =} p-p". 

Let, for any p, pi E P U {../} and a E Act, p ~ pi be an abbreviation of p 4 pi V (a = TAp = pi). 

Th · <r) I d &' A <a) I' • I a I at IS, p ---+ p means zero or one T steps an ,lor any a E , P ---+ P IS sImp y p ---+ p . 
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Definition 5.4. «Rooted) Branching Bisimulation) A binary relation 'R : P«1' U (0) x (1' U (0» is 
called a branching bisimulation if and only if, for any p, p', q, q' e l' U (0 and a e Act, 

• a (a) 
I) p'Rq 1\ p --+ p' ~ (3q', q": q', q" e l' U (0 : q _q" --+ q' 1\ p'Rq" 1\ p''Rq'), 

a h 00 ii) p'Rq 1\ q --+ q' ~ (3 p', p" : p', p" e l' U ('" I: p _ p" --+ p' 1\ p"'Rq 1\ p''Rq'), 

iii) p'Rq ~ p _../ # q _../. 

A branching bisimulation 'R is called a rooted branching bisimulation between p and q in l' if and only if 
p'Rq and, for any p', q' e l' U (0 and a e Act, 

iv) p 4 p' ~ (3q': q' e l' U {../}: q 4 q' 1\ p''Rq'), 

v) q4q' ~ (3p': p'e1'U{0: p4p'l\p''Rq'). 

Two processes p and q are called rooted branching bisimilar, denoted p ~rb q, if and only if there exists a 
rooted branching bisimulation between p and q. 

p q p q 

T r'-,-,] 
-----. 
p' q" =q' 

111:'-----

a 1 "'"L" 
p"""l a 

• 
q' 

Figure 3: Branching bisimulation. 

Figure 3 shows the essence of branching bisimulation. The root condition is introduced, because branch
ing bisimulation is not a congruence for the algebraic choice operator, whereas rooted branching bisimulation 
is. This property is needed in the next section, where rooted branching bisimulation is used to give an oper
ational semantics for PTNA extended with silent actions. 

Note that the definition given here differs from the original definition given by Van Glabbeek and Weij
land in [17]. In fact, it is the definition of semi-branching bisimulation, which was first defined in [18], as it 
appears in [5]. It can be shown that the two notions are equivalent [18, 5]. The reason for using the alternative 
definition is that it is more concise and more intuitive than the original definition. It also yields shorter proofs. 
A comparison of the two definitions can be found in [5]. 

Property 5.5. Rooted branching bisimulation, ~rb, is an equivalence on processes. 

Proof. It must be shown that rooted branching bisimulation is reflexive, symmetric, and transitive. 
Reflexivity: Let I be the identity relation on l' U (0. Obviously, I is arooted branching bisimulation. 

Hence, for any peP, p ~rb p. 
SymmetIy. Let p and q be processes in 1'. Let 'R be a rooted branching bisimulation between p and 

q. It follows from the symmetry in the definition of rooted branching bisimulation that the inverse of'R is a 
rooted branching bisimulation between q and p. Hence, for any p, q e 1', p ~rb q ~ q ~rb p. 

Transitivity: Let p, q, and r be processes in 1'. Let Q and 'R be rooted branching bisimulations between 
p and q, and q and r respectively. It is straightforward to verify by means of a case analysis that Q 0 'R, 
where 0 denotes relation composition, is a rooted branching bisimulation between p and r. Hence, for any 
p, q, reP, p ~rb q 1\ q ~rb r ~ P ~rb r. 0 
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5.3 PlacelTransition-Net Algebra with Silent Actions. 

The theory PTNA r • In this paragraph, the silent action T and an abstraction operator are added to the theory 
PTNA, yielding the theory PTNA r , for PTNA with silent actions. Table 3 gives a definition of PTNA r. Recall 
that Lp is the set of place labels. The first entry of Table 3 means that PTNA r is a modular extension of 
PTNA. That is, PTNAr has all sorts, functions, and axioms given in Thbles I and 3. The auxiliary functions 
C, p: AC -+ B Lp that appear in Table I are extended to T as follows: CT = pT = I!!. 

_PTNAr{Lp) _________________ _ 

PTNA{Lp) 
T : AC T _ : P Lp -+ (P -+ P) 

a: Lp; e,!: AC; X,Y,z: P; I: PLp 

e I T =e AT x·y =X BI 
X· {T' (Y + z) + y) = X· (y + z) B2 

ael =} T/{a?) = T TACI a e 1 =} T/{a!) = T TAPI 

a rf. 1 =} T/{a?) = a? TAC2 a rf. 1 =} T/{a!) = a! TAn 

T/(8) = 8 TAD T/{e I f) = T/{e) I T/(f) TAl 
T/{T) = T TAT T/{X + y) = T/{X) + T/{Y) TA2 

T/{X'Y) = T/{X)'T/{Y) TA3 
T/{X' Y) = T/{X)' T/{Y) TA4 

Table 3: PlacelTransition-Net Algebra with silent actions. 

For any set of place labels I, the abstraction operator T/ simply renames actions from 1 to T. The axioms 
BI and B2 are an axiomatization of branching bisimulation [17]. Axiom AT states that only the visible part 
of the simultaneous execution of some action and T is observed. It is different from the normal axioms for 
T in ACP with silent actions. There, for any action e, e I T is equal to 8. The reasoning behind this is that I 
means communication. Since an invisible action cannot communicate, every attempt to communicate with 
T results in deadlock. 

Operational semantics for PTNA r • Let the set of processes be the set of closed PTNA r terms, C(PTNN). 
As before, let Act be equal to B Lp x B Lp; let t/>: AC ---+ Act, for any e e AC, be defined as t/>{e) = 
(ce, pe). Note that t/>{T) = (I!!,I!!). This means that, in the process domain, the action (I!!,I!!) is the silent 
action. As mentioned in the previous subsection, the silent action in the process domain is usually called T 
as well. The reason for this is that actions in the theory often coincide with actions in the process domain. In 
the remainder, T always refers to the silent action in the theory, except in Appendix B, where T is also used 
as an abbreviation for (I!!,I!!). The transition relation _ -.:... _: P{C{PTNAr) x Act x (C(PTNAr) U {.J})) is 
the smallest relation satisfying the rules in Tables 2 and 4. In Table 2,Iet p, p', q, q' range over C(PTNAr). 

Property 5.6. Rooted branching bisimulation, -rb, is a congruence on closed PTNA r tenns. 

Proof. Property 5.5 states that -rb is an equiValence relation. It remains to show that for each n-ary PTNA r 
operator ! on processes and closed PTNA r terms PI, ... , P., ql, ... , q. such that PI - rb qlo ... , P. - rb q., 
!(PI, ... , P.) -rb !(ql, .. ·, q.). The details can be found in Appendix A. 0 
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e: AC; I: PLp; P.P': C(P1NAT) 

</>(e) , 
P-->P 

( ) </>(T/(e» (') 
'f1 P --> 'f1 P 

Table 4: The transition relation for the abstraction operator. 

The following theorem states that if equality of two processes can be derived from the axioms of P1NA T • 
then the two processes are rooted branching bisimilar. Hence. equational reasoning can be used instead of 
model-based reasoning. 

Theorem 5.7. The set of closed P1NA T tenns modulo rooted branching bisimulation is a model for P1NA T . 
That is. for any p. q E C(P1NAT). P1NAT f- p = q => C(P1NAT)/~rb 1= p = q. 

Proof. It follows from Property 5.6 that it suffices to verify the validity of each axiom ofP1NAT. It is straight
forward to construct a rooted branching bisimulation for each axiom. See Appendix A for more details. 0 

An algebraic semantics for hierarchical Ptr nets. The algebraic semantics for the observable behavior 
of a hierarchical Ptr net strongly resembles the algebraic semantics which describes its complete behavior. 
The essential difference is that the abstraction operator is used to hide the internal behavior of the net itself 
and its components. 

Definition 5.8. (Observable behavior of hierarchical Ptr nets) LetHN = (P. T. S. i. o. I. s) be a hierar
chical Pffnet. The algebraic semantics forits observable behavior. 'H[HN]. is defined as follows. As before. 
omit empty quantifications. 

'H[HN] = 'f1 0 J..: «1/ t: t E T: T[t]) 1/ (1/ sn : sn E S: 'H[sn]». 
where 0 denotes function composition and T[.] is as in Definition 4.3. 

Example 5.9. Again. let PTNo = (No. io) be the left Pff net in Figure I. In Example 4.7. the following 
expression is derived for its complete behavior Xo = N[PTNo]: 

Xo = (a? I io? I i1!H(b? I i1?)·8 + (c? I i1?)-8). 
Since PTNo is a lIat Pff net. its observable behavior 'H[PTNo] is equal to 'f10(XO). where 10 = (io. id. Use 
the axioms TAI-3. AT and TAD to derive the following result. 

'f10(XO) = (a?I'fI'f)·«b?I'f)·'f10(8)+(c?I'f)·'f10(8» = a?·(b?·8+c?·8). 

The transition relation of 'f10 (Xo) is shown in Figure 4. The expression a?· (b?· 6 + c? . 6) describes the 
behavior of PTNo projected onto its pins. It corresponds to the expression already given in the motivating 
example (Figure 1). In a similar way. it is possible to derive the expression a?· b?· 8 + a?· c? . 8 for the 
observable behavior of the right Pffnet in Figure 1. PTN1. The transition relation of this term is also shown 
in Figure 4. Obviously. the two processes are not (rooted branching) bisimilar. which is the desired result. 

6 Recursion and Fairness 

In order to apply the theory developed so far to non-trivial examples. we must be able to reason about recur
sion andfairness. The theory P1NAT already includes a recursion operator. namely the binary Kleene star. 
In this section. we give a fairness principle for the binary Kleene star and a recursion principle that gives for a 
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a?·(b?·8 +c?·8) ! (a, il) 

b?·8 + c?·8 

(b'ilnC'il) 

8 8 

a?·b?·8 + a?·c?·8 

(a'ilna'il) 

b?·8 c?·8 

(b'il)! !(C'il) 

8 8 

Figure 4: The transition relations of 1t[P7No] and 1t[P7Nl]. 

restricted set of recursive equations a solution in tenns of the binary Kleene star. The reason for not including 
these principles in the theory PlNA T is that, depending on the application, it might be desirable to extend 
the theory with different fairness and recursion principles. 

Fairness of the binary Kleene star can be expressed by a single axiom: the Fair Iteration Rule (FIR). It 
states that a sequence of silent steps cannot be infinitely long. In tenns ofPfT nets, it means that, in an internal 
conflict situation, it is not possible that one transition is always chosen. 

x: P 
,·x=x+,·x FIR 

Property 6.1. The Fair Iteration Rule is valid in the model of closed PlNAT tenns modulo rooted branching 
bisimulation. That is, for any p e C(P1NN), C(PlNAT)/-rb 1= " p = p +,. p. 

Proof. It is straightforward to verify that, for any p e C (P1NA T), the following relation is a rooted branching 
bisimulation between , • p and p + , . p. 

{(,' p, p +,.p) I p e C(P1NAT)}U {(,' p, p) I p e C(P1NAT)}U{(p, p) I p e C(P1NAT) U{J}}. 0 

The Recursive Specification Principle for the binary Kleene star (RSP*) is a derivation rule which gives 
a solution for some restricted set of recursive equations. Such a rule is necessary since many processes are 
inherently recursive. RSP* uses the notion of a guard which is defined as follows. 

Definition 6.2. (Guard) A closed PlNAT tenn p is a guard if and only if, using the axioms of PlNAT, it 
can be·rewritten into an equivalent tenn of any of the following fonns: 

i) 8 ore, for any e e AC - {,}; 

ii) q 'r, for closed PlNAT tenns q and r where either q or r or both are guards; 

iii) q + r, for any closed PlNA T tenns q and r where both q and r are guards. 

x,y,z: P 
x=y,x+z, yisaguard 

x =y'z 
RSP* 

Infonnally, the requirement "y is a guard" means that y cannot tenninate successfully without executing 
at least one visible action. 

Property 6.3. The derivation rule RSP* is valid in the model of closed PlNA T tenns modulo rooted branching 
bisimulation. That is,for any p, q, r e C(P1NN) such thatq is a guard, C(PlNAT)/-rb 1= p = q·p+r =} 

C(P1NAT)/-rb 1= p = q' r. 
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Proof. Let p, q, and r be closed tenns such that q is a guard; let n be a rooted branching bisimulation between 
p and q . p + r. It can be shown that the following relation which uses the transitive closure of n, denoted 
n +, is a rooted branching bisimulation between p and q • r. An explanation of this relation and the details 
of the proof can be found in Appendix B. 

Q = {(p, q. r)} U n+ U {(s, q' r) 1 s E C(P'INN) U {J} /\ sn+ p} 
U {(s, t· (q. r» 1 s E C(P'INAT) U {J} At E C(P'INAT) /\ sn+t· pl. 

o 

7 Example: The Alternating-Bit Protocol 

In this section, the theory developed in this paper is applied to a non-trivial example, namely the Alternating
Bit Protocol (ABP). The version of the ABP considered here consists of four components: a sender, a re
ceiver, a message channel, and an acknowledgement channel. Both messages and acknowledgments can be 
corrupted. In order to identify messages and acknowledgements, they are marked a1ternatingly with a zero 
and a one bit. Each time the sender sends a message, it waits for an acknowledgment from the receiver. 

The example of the ABP is used to show two applications of the theory developed in this paper. First, 
it can be used to verify the behavior of a hierarchical pfI' net against an algebraic specification. At each 
hierarchical level, the algebraic tenns describing the observable behavior of the subnets can, on the one hand, 
be seen as the specification of the level below, and, on the other hand, as the implementation of the level 
above. The theory of this paper can be used to verify such implementations against their specifications in a 
purely equational and compositional way. Second, the theory can be used to show that different hierarchical 
nets have the same observable behavior. In a hierarchical pfI' net, one can exchange subnets with the same 
observable behavior, without influencing the observable behavior at higher levels of abstraction. 

Figure 5 gives a three-level hierarchical pfI' net of the ABP which confonns to the infonnal description 
given above. Since for each net it is clear what are pins and what are internal places, dashed boxes are omitted. 
Table 5 explains the names of the subnets, transitions, and places. 

To demonstrate the first application of the theory, a bottom-up verification of the ABP is given, which 
consists of four steps. First, simple algebraic expressions are derived for the behavior of the four nets at 
the most detailed level. Second, the abstraction operator is used to hide their internal behavior. Third, the 
results of these two steps are used to derive an expression for the behavior of the net at the intennediate level. 
Finally, by hiding the internal behavior of the intennediate net, it is shown that the subnet "abp" satisfies its 
specification given in Figure 5. To demonstrate the other application of the theory, it is shown that, on the 
highest level of abstraction, the ABP behaves as a one-place buffer. A pfI' net of the one-place buffer is given 
in Figure 6. The observable behavior of the ABP is the same as the observable behavior of this net. 

The verification of the ABP. In the following, a transition name t is used as an abbreviation of (I i : i E 
it : i?) 1 (I 0: 0 E ot: o!). For example, Ot is an abbreviation of (i? 1 Os? 1 Ow! 1 Om 1!). Furthennore, the 
following abbreviations are introduced: 

S = Ot'oll Ortl'oll Ort2·011 0a·0Illt·01l1rtl"01l1rt2·01l1a·o, 
R = Oa·oll Onal'oll Ona2"01l1a'01l1nal'01l1na2"o, 
M = fOm·ollcOm·ollflm·ollc1m"o, 
A = fOa'oll cOa'oll fla"oll c1a·o. 

The first part of the verification is to derive expressions for1i[sen], 1i[rec], 1i[mc], and 1i[ac]. It consists 
of two steps. First, expressions are derived for the complete behavior of each component; second, their inter
nal behavior is hidden. To start with, expressions are calculated for the two channels. Applying Property 4.6 
and the axioms for the causal state operator yields the following result. 
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Specification: 

ABP= (i?·o!)*8 

Iml 

sen: ree: 
Oal 

0a2 

Iw 

Is Ir 

.La .Lm 0 

Im20--i':':!I;i 

~-::-_~") la2 

lal 

Oml 
me: ac: 

Iml(}~ ___ ~p~~~)lm2 

.Lm 

Oml ):::..--- 1--:-;:---0 Om2 

Figure 5: A hierarchical PfT net of the alternating-bit protocol. 
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je{O,l} 
Specification: 

;,0 
abp 

System abp: 
sen, rec 
mc,ac 
jml/2 
.Lm 
jal/2, .La 

System sen: 
js 
jw 
jt,jrtl/2 
ja 

System rec: 
jr 
ja,jnal/2 

Systems mc, ac: 
Jim/a, cjm/a 

input/output pin for messages from!to the environment; 
the system that implements the ABP. 

the sender and receiver; 
the message channel and acknowledgement channel; 
places for messages with bit j; 
conupted messages; 
idem for acknowledgements. 

the sender is ready to send a j message. 
the sender has sent a j message and is waiting for an ack.; 
(re)transmit a j message; 
receive an acknowledgement of a j message; 

the receiver is ready to receive a j message; 
acknowledge a j message; send a negative jack.; 

forward resp. conupt message/acknowledgement. 

Table 5: Informal explanation of the Alternating-Bit Protocol 

'--Q-P--c------' , . , 
iq.- 0 

, b' I _________ __ I 

Figure 6: A one-place buffer. 

Mo = A:(M) = fOm·Mo+cOm·Mo+/lm·Mo+clm.Mo. 
RSP* yields: 

Mo = (fOm + cOm + 11m + clm) * 8. 

Similarly, 

Ao = A:(A) = (fOa + cOa + Ila + cia) * 8. 

Next, an expression is calculated for the sender. The state operatoris written without the superscript {Os, Ow, 
Is,lw}. 

So = AOs(S) = Ot· SI. 
SI = Aow(S) = Ortl· SI + Ort2· SI + Oa· S2, 
S2 = Als(S) = It,S3, and 
S3 = Alw(S) = lrtl,S3+lrt2,S3+1a·So· 

Applying RSP and BKS2 on the last equation yields: 

S3 = (lrtl + lrt2) * (la· So) = ((Irtl + lrt2) *la)· So 

Substituting this result and repeatedly applying RSP* and BKS2 gives: 

So = (Ot·«Ortl +Ort2)*0a)·(lt·«lrtl + lrt2)*la)))*8 

Observe that this equation conforms to the intuitive notion of what the sender should do. First, it sends a 
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zero message; if necessary, it retransmits this message until it receives an acknowledgement; then, it repeats 
this behavior for a one message, after which it starts allover again. Similar to the calculations above, the 
following equation can be derived for the receiver: 

Ro = A:· lr
} (R) = (Oa· «Onal + Ona2) ·la) + Inal + Ina2)· ~ 

The second step is to hide the internal behavior of the sender and receiver in order to obtain their observable 
behavior. Since the two channels do not have internal places, their observable behavior is already given by 
the expressions above. The axioms for the abstraction operator plus AT yield the following results: 

TSo = '[Os.ow.1s.lw}(SO) 
= ((i? I Om I!) . «1.a? I Om I! + la2? I Om I!) • 0a2?) . 

(i? I 1m 11) . «1.a? 11m I! + 0a2? I 1m 11) • la2?))* ~ 
TRo = '[Or.lr} (Ro) 

= «Om2? I Oalll o!)· «1.m? I Oall + Om2? I 0aI!)· (1m2? 11aI! lo!» 
+1.m? 11aI! + 1m2? 11al!)· ~ 

This completes the first part of the verification. Summarizing,1i[sen] = TSo,1i[rec] = TRo,1i[mc] = 
Mo, and 1i[ac] = Ao. 

The second part of the verification is to use the expressions derived for 1i[sen], 1i[rec], 1i[mc], and 
1i[ac] to determine an expression for 1i[abp], the observable behavior of the subnet "abp." The result 
should satisfy the specification given in Figure 5. As the first part, 1i[abp] is calculated in two steps. First, an 
expression is calculated for Xo = A~(TSo II Mo II TRo II Ao), where I is equal to {Oml, Iml, Om2, 1.m, 1m2, 
Oal, lal, 0a2,1.a, la2}. Second, the internal behavior of Xo is hidden. The calculations of the first step are 
tedious, but not very complicated. In principle, one just repeatedly applies the expansion theorem (Theo
rem 4.5) and the axioms of PTNA. Figure 7 shows the transition relation of Xo. With RSJ>* and BKS2, the 
following equations are obtained for XO-X9: 

Xo = (i? I Om1!),XI 
Xl = «(Oml? l1.m!)·(1.m? 11al!)·«lal? 11a2!)·(la2? I Om1!) 

+Oal? l1.a!H1.a? I Omll)))·(Oml? I Om2!»,X2 
X2 = (Om2? I Oal! 101)· X3 
X3 = «(Oal? l1.a!)· (1.a? I OmlI)· «Om 1 ? I Om2IHOm2? 10a1I) 

+(Oml? l1.m!)· (1.m? I Oal!)))· (Oat? I 0a2!»· X4 
X4 = 0a2?·Xs 
Xs = (i?llml!)·X6 
X6 = «Oml? l1.m!H1.m? I Oa l!H(OaI? I 0a2!HOa2? 11ml!) 

+(Oal? l1.a!)·(1.a? I Im1!))) " (Iml? 11m2!»,X7 
X7 = (1m2? 11al! I o!)· Xg 
Xg = «(lal? l1.aIH1.a? Ilm1!)·«lml? Ilm2!)·(1m2? Ilall) 

+Oml? l1.m!H1.m? 11al!)))"Oal? 11a2!»,X9 
X9 = la2?·Xo 

The final step is to hide the internal places I. Use the axioms for the abstraction operator plus AT, Bl, A3, 
and FIR to obtain the following result: 

ABP = 'I(XO) 
= i?'«""("'+"'»"')"I(X2) 
= i?'('"')"I(X2) 
= i?·(,+'t"·'t")·'I(X2) 
= i?"I(X2) 

Repeating this derivation for X2-X9 and substituting the result in the equation above yields: 
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X23 

(.La. ImI~ ~ImI'.Lm) 
(1m I. 1m2) 

n ~ ~ 

(IaI • .La) ~m2. I~ IaI) 

X9 • ~8 
(1aI.Ia2) \.. 

X 13 (Ia2.~) (1m2. IaI 0) "" (ImI • .Lm) X20 (.Lm. OaI) 

(IaI·~.La~ (i.:I) (ImI~~ / ~~i~ 
Xu I.OmI)~1 ~0a2.;; 19 

~. Iaga2/1 ~~om2) (i'~7 ~I~ • .La) 

(.Lm. Ia~ ~I2 (OmI • .Lm) ",,(Om2.OaI 0) (0a2.~)/ X21 

XIO 

" (OaI. 0a2) / 
X3 • X. 

(.Lm. OaI) / ~ (OaI • .La) 

/ (Om2.0a~ 
XI7 XI6 X I4 

(omI~~(.La'OmI) 
XIS 

Figure 7: The transition relation of the Alternating-Bit Protocol. 

ABP = i1·01·i?·0! ·ABP 

So, by RSP', 

ABP = (i?·0!·i?·0!)*8 

From the observation that, for any process x, 

x*8 = x ·(x*8) + 8 = x·(x· (x*8) + 8) + 8 = x·(x·(x*8» + 8 = (x·x)· (x*8) + 8, 

which by RSP' implies that x * 8 = (x· x) * 8, it follows that 

ABP = (i?·01)*8. 

This completes the verification of the ABP. The algebraic term which is derived for its observable behavior 
satisfies the specification given in Figure 5. 

The ABP and the one-place buffer. As mentioned, the theory developed in this paper can be used to de
termine whether two hierarchical PIT nets have the same observable behavior. In the previous paragraph, an 
algebraic expression has been derived for the observable behavior of the ABP. In this paragraph, it is shown 

21 



that the one-place buffer of Figure 6 has the same observable behavior. Thus, on a high level of abstraction, 
the one-place buffer and the ABP are equivalent. 

Let BUF denote the observable behavior of the one-place buffer, 1i[bui], where ''buf'' is the net shown 
in Figure 6. Let I = {b, e) and let B = (i? I e? I b!)*8 II (b? I e! I 0!)*8. As usual, the state operatoris written 
without superscript I. Use Property 4.6 and the axioms for the causal state operator. 

Bo = Ac(B) = (i? I e? I b!)'Ab(B) = (i? I e? I ~!)·(b? I ell o!)·Bo 

RSP*yields: 

Bo = «i? I e? I bl)·(b? I ell 0!))*8 

Hiding the internal places gives: 

BUF= TJ(Bo) = «i?ITIT)'(TITlo!))*o = (i?·ol)*o 

It follows that BUF equals ABP as derived in the previous paragraph. It means that the ABP and the one-place 
buffer have indeed the same observable behavior, and are thus equivalent. 

ffigh-Ievel Petri nets. So far, only Pff nets have been considered. However, in practice, high-level nets, or 
colored nets, extended to data are used. In colored nets, tokens have values. As long as the values of tokens 
range over a finite domain, the results presented in this paper can be simply extended to data. For example, 
if messages in the ABP are taken from some finite data domain D, one could specify its behavior as follows: 
ABP = (+ d: d ED: (i(d)?· o(d) !) * 8), where i(d)? means the consumption of a token (message) with 
value d from place i, and o(d)! means the production ofa token with value d. All calculations given above 
can be easily adapted to incorporate data. Furthermore, the Pff net of the ABP can be simplified by adding 
the bit which is used to mark messages and acknowledgements to the value of the tokens. Thus, the explicit 
distinction made in the current net is not necessary anymore. 

In case of infinite data domains, the results of this Pilper must be adapted to an algebraic formalism which 
supports data, such as for example tLCRL [20] or PSF [25]. 

8 Concluding Remarks and Future Work 

The first part of this paper gives an algebraic semantics for Pff nets which is consistent with their usual in
terleaving semantics. The second part gives an algebraic semantics for the complete operational behavior of 
hierarchical Pff nets, as well as a semantics for their high-level, observable behavior. The latter can be used 
to determine whether a hierarchical net satisfies some algebraic specification of its observable behavior and, 
thus, to determine whether two hierarchical nets can be considered equivalent. 

Although the first results appear to be promising, it is necessary to further investigate the theoretical foun
dation and applicability of the approach presented in this paper. It is interesting to study the meaning of an 
arbitrary P1NA (r) term in Pff-net theory. Furthermol'(l, it is worthwile to investigate the meaning of results 
from Petri-net theory, such as place and transition invariants, in the theories P1NA (r). 

There are several interesting ways to extend the results presented in this paper. It has already briefly been 
mentioned how they can be extended to colored nets. Furthermore, it seems worthwile to investigate other 
hierarchical constructs than the one presented in this paper, and maybe time or stochastic aspects. 

Finally, it is interesting to look at other semantics than the interleaving semantics. It is straightforward 
to extend the results to a step semantics, in which multiple transitions can fire simultaneously. It is only 
necessary to define the synchronous-merge operator on processes in the same way as the communication 
merge is defined in [2]. A true concurrency semantics appears to be another interesting candidate for future 
investigation. 
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A Some Proofs 

Theorem 4.2. The set of closed P'INA tenns modulo bisimulation is a model for P'INA. That is, for any 
p, q e C(P1NA), P'INA I- p = q => C(P1NA)/ ~ 1= p = q. 

Proof. Since it follows from the fonnat of the derivation rules in Table 2 that bisimulation equivalence is 
a congruence on C(P1NA) [3], it suffices to verify the validity of each axiom of P'INA. Below, for each 
axiom, a bisimulation is given. It is left to the reader to verify that the relations are indeed bisimulations. Let 
D(C(P1NA» be an abbreviation of {(p, p) I p e C(P1NA)). 

Axiom Bisimulation 

Al 
A2 
A3 
A4 
A5 
A6 
A7 

S} 
S2 

MI 

M2 
M3 
M4 

ASCI ,2 

CSOI 
CS02 
CS03 
CS04 

CS05 

BKSI 
BKS2 

BKS3 

{(p + q, q + p) I p, q e C(P1NA)) U D(C(P1NA» 
{«p + q) + r, p + (q + r» I p, q, r e C(P1NA)) U D(C(P1NA» 
{(p + p, p) I p e C(P1NA)) U D(C(P1NA» 
(«p+q)·r,p·r+q·r) I p,q,r eC(P1NA))UD(C(P'INA)) 
(«p·q)·r,p.(q.r» I p,q,r eC(P1NA))UD(C(P1NA)) 
{(p + 0, p) I p e C(P1NA)) U D(C(P1NA» 
{(o· p, 0) I p e C(P1NA)) 

{(e I t, t I e) I e, t e AC} 
{«e I f) I g, e I (f I g» I e, t, g e AC} 

{(p IIq,p ILq +q ILp) I p,q eC(P1NA))U{(p II q,q II p) I p,q eC(P'INA))U 
D(C(P1NA» 

{(d IL p, d· p) Ide AC U (oj 1\ p e C(P1NA)) U D(C(P1NA» 
{(d· p IL q, d· (p II q» Ide AC U (oj 1\ p, q e C(P1NA)) U D(C(P1NA» 
{(p + q) IL r, p IL r + q IL r) I p, q, r e C(P1NA)) U D(C(P1NA» 

{(p IL q) IL r, p IL (q II r» I p, q, r e C(P1NA))U 
{«p II q) II r, p II (q II r» I p, q, r e C(P1NA)} U D(C(P1NA» 

W.: (0),0) II e P Lp 1\ seE Lp} 
W.:(e),e) II ePLpl\s e ELpl\e e ACl\ce fl ~ s} W.: (e), 0) II e P Lp 1\ seE Lp 1\ e e AC 1\ ce fIg; s} 
((A:(e.p),A:(e).A:_ceUpef/p» II ePLpl\s elBLpl\e eACl\p eC(P'INA))U 

D(C(P'INA» 
{(A: (p + q), A:(P)+ A: (q» II e P Lp 1\ s e IB Lp 1\ p, q e C(P1NA)) U D(C(P1NA» 

{(p*q, p' (p*q)+ q) I p, q e C(P1NA)) UD(C(P'INA» 
{(p*(q·r), (p*q)·r) I p,q,r eC(P1NA»)U 

{(p'. (p* (q ·r», (p'. (p* q» ·r) I p, p','q, r e C(P1NA)) U D(C(P1NA» 
{(p*(q·«p+q)*r)+r),(p+q)*r) I p,q,r eC(P1NA))U 

{(p'. (p* (q. «p + q) * r) + r», p'. «p + q)* r» I p, p', q, r e C(P1NA)) U D(C(P1NA» 
o 

Theorem 4.5. (Expansion) Porany Xo, ... , x. e P, n e IN - {OJ 
(II i : 0::: i ::: n: Xi) = (+i : 0::: i ::: n: Xi IL (II j : 0::: j ::: n 1\ j #- i : Xj». 

Proof. The proof is by induction on n. The basic case where n = I is simply axiom MI. Assume n > 1. 

(II i : 0::: i ::: n : XI) 

( Associativity of the merge (ASC2) ) 
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= 

(II i : 0::: i < n : Xi) II X. 
I Axiom MI } 

(II i : 0::: i < n : Xi) IL X. + X. IL (II i : 0::: i < n : Xi) 
I Induction } 

(+ i : 0::: i < n : XI IL (II j : 0::: j < n A j ,p i : X j» IL X. + X. IL (II i : 0 ::: i < n : Xi) 
I Axioms M 4 and ASCI } 

(+i: 0::: i < n: Xi 1L«lIj: 0::: j < nAj,pi: Xj) IIx.»+x. 1L(lIi: 0::: i < n: Xi) 
I Associativity of the merge (ASC2); dummy change; calculus} 

(+ i : 0::: i < n : Xi IL (II j : 0::: j ::: n A j ,p i : Xj» + X. IL (II j : 0 ::: j ::: n A j ,p n : Xj) 
I Associativity of the choice (A2) } 

(+i: 0::: i::: n: Xi IL<lIj: 0::: j :::nAj,pi: Xj» 

Property 4.6. For any non empty bag E e B AC, 
(lie: eeE: e'~)=(+e: eeE: e'(II/: leE: f*~». 

o 

Proof. If E is a singleton containing only one action e, then the above equation reduces to e' ~ = e· (e' ~), 
which follows immediately from BKSI and A6. So assume, E contains at least two different actions. 

= 
(lie: eeE: e'~) 

I Expansion } 
(+e: eeE: (e'~)IL(II/: leEAe,p/: f*~» 

I Axioms BKSI and A6 } 

(+e: eeE: (e·(e·~» IL(II/: leEAe,p/: f*~» 
I Axiom M3} 

(+e: eeE: e·«e·~)II(lI/: leEAe,p/: f*~))) 
I Associativity of the merge (ASC2) } 

(+e: e e E: e'(11 I: leE: I'~» 

Property 5.6. Rooted branching bisimulation, ~rb, is a congruence on closed PTNA f terms. 

o 

Proof. Property 5.5 states that ~rb is an equivalence relation. It remains to show that for each n-ary PTNAf 
operator I on processes and closed PTNA f terms pJ, ... , P., ql, ... , q. such that PI ~rb ql, ... , P. ~rb q., 

I(PI, ...• P.) ~rb l(qJ,···. q.). 
For the constants of PTNAf the desired result follows trivially from the reflexivity of the ~rb relation. 

There is one operator on actions only. the synchronous merge I. Let el. e2. II, h e AC such that el ~rb II 
and e2 ~ rb h. Let Q be defined as {(ell e2, III h), (.../, ..j)}. Obviously, Q is a rooted branching bisimulation. 
Hence, ~ rb is a congruence for the synchronous merge. 

There are seven operators on processes, five binary operators and two unary ones. Let pJ, P2, ql. q2 be 
closed PTNAf terms. Let 1<.1 and 1<.2 be rooted branchingbisimulations such that PI1<.lql and P21<.2q2. It 
must be shown that there exist rooted branching bisimulations QI •... , Q7, such that (PI + P2) QI (ql + q2), 
(PI' P2)(22(ql ·q2), (PI' P2H23(ql • q2), (PI II P2)Q4(ql II q2), (PI IL P2)QS(ql IL Q2), and, such that for any 
Ie PLp and s e B Lp, >-f(PI)Q6>-f(QI), and T/(PI)Q7T/(P2). The seven rooted branching bisimulations 
are given below. It is left to the reader to verify that the relations are indeed rooted branching bisimulations. 
To avoid unnecessarily complex formulas. some notational abbreviations are introduced. Let, for any P e 
C(PTNAf) U I..j}, "'/.p = P and.../II P = P 11.../ = p. and, for any Ie PLp and s e B Lp, >-f(..j) =.../ and 
T/(..j) = .../. 
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QI = 'R.I U 'R.2 U {(PI + P2. ql + q2)) 
Q2='R.2U{(P·P2.q·q2) I p'R.lq} 
Q3 = 'R.2 U {(PI • P2. ql • q2)) U {(p. (PI' P2). q. (ql • q2» I p'R.lq} 
Q4 = {(p II P'. q II q') I p'R.lq " p''R.2q'} 
Qs = ~ U {(PI It P2. ql It q2)) 
~ = {(A: (p). A: (q» I p'R.lq "I E P Lp "s E :B Lp} 
Q7 = ((T/(p). T/(q» I p'R.lq " I E P Lp} o 

Theorem 5.7. The set of closed PTNA T tenns modulo rooted branching bisimulation is a model for PTNA T . 
That is,for any p. q E C(PTNAT). PTNA' f- p = q =} C(PTNAT)/-rb 1= p = q. 

Proof. It follows from Property 5.6 that it suffices to verify the validity of each axiom of PTNAT. Since 
any bisimulation as defined in Definition 2.2. extended with the pair (.j • .J). is a rooted branching bisimu· 
lation. the axioms given in Table I are valid in C(PTNAT)/-rb' Therefore. it remains to verify the validity 
of the axioms given in Table 3. The table below gives a rooted branching bisimulation for each of these ax
ioms. Again. it is left to the reader to verify that the relations are indeed rooted branching bisimulations. Let 
V(C(PTNAT) U (.j) = {(Po p) I p E C(PTNAT) U (.j)}. 

Axiom Bisimulation 

AT {(e I T. e) lee AC} U {(.j • .J)} 
BI {(P·T. p) I p E C(PTNAT)) U {(T • .J). (.j • .J)} 
B2 {(P'(T .(q + r) + q). p. (q + r) I p. q. r E C(PTNAT))U 

{(T'(p + q)+ p). p + q) I p. q E C(PTNAT)) U V(C(PTNA') U (.j) 
TACI {(T/(a?). T) I I E P Lp "a E I} U {(.j • .J)} 
TAC2 {(T/(a?). a?) I I E P Lp "a E Lp - I} U {(.j • .J)} 
TAPI {(T/(a!). T) I I E P Lp "a E I} U {(.j • .J)} 
TAn {(T/(al). a!) I I E PLp" a E Lp - I} U {(.j • .J)} 
TAD {(T/(~).~) I I E P Lp} 
TAT {(T/(T). T) I I E P Lp} U {(.j • .J)} 
TAl {(T/(e I f). T/(e) I T/(f» Ie. f E AC" I E P Lp} U {(.j • .J)} 
TA2 {(T/(p + q). T/(p) + T/(q» I p. q E C(PTNAT) "I E P Lp} U V(C(PTNAT) U (.j) 
TA3 {(T/(p·q). T/(p), T/(q» I p. q E C(PTNA') "I E P Lp} U V(C(PTNA') U (.j) 
TA4 {(T/(P' q). T/(p)' T/(q» I p. q E C(PTNA') " I E P Lp}U 

{(T/(P' (q' r». T/(p), (T/(q)' T/(r))) I P. q. r E C(PTNA') " I E P Lp}U 
V(C(PTNA') U (.j) 
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B Proving the Validity of RSP* 

Recall that RSP* has been defined as follows. 

x,y,z: P 
x=y'x+z, yisaguard 

x = y*z 
RSP* 

One way to prove the validity of RSP* is to show that the model satisfies the so-called Approximation 
Induction Principle AlP. AlP states that any processes with the same finite prefixes are equivalent. If a model 
satisfies AlP, or a slightly weaker variant of AlP called AlP- ,then it also satisfies RSP, which is the Recursive 
Specification Principle for general recursion. This line of proof is used in for example [4] to show that the 
models introduced there satisfy RSP. 

Since a model that satisfies RSP also satisfies RSP*, the same line of reasoning could be used to prove 
the validity of RSP* in this paper. However, the validity of RSP* can also be shown directly by construct
ing a rooted branching bisimulation. The advantage of such a proof is that it is not necessary to introduce 
any auxiliary notions as AlP. Furthermore, once the idea behind the construction of the rooted branching 
bisimulation is understood, the proof is rather straightforward. 

The following two lemmas are useful in the proof. 

Lemma B.I. Let P be a closed PTNA f term. If p is a guard, then p -I*,J. 

Proof. Since p is a guard, it can be rewritten into an equivalent closed PTNA f term q which is of any of the 
forms given in Definition 6.2. Using the operational rules given in Table 2, it is straightforward to prove by 
means of stuctural induction that q -I*,J. Since PTNA f I- P = q, the soundness of the PTNA faxioms 
yields that P ~rb q. It follows immediately from the definition of rooted branching bisimulation, Defini
tion 5.4, that p -I*,J. 0 

Lemma B.2. Let (P, ---+) be a process space over Act equal to A U {T: }, for some set of action symbols A. 
LetR. be a branching bisimulation. Porany p, p', q, q' e P U {../}. 

p - p' /\ pR.q => (3 q' : q' e P U {,J} /\ q _q' : p'R.q') and 
q -q' /\ pR.q => (3 p' : p' e P U {../}/\ P - p' : p'R.q') 

Proof. Straightforward by induction to the number of T: steps from p to p' and q to q' respectively. See 
~~. 0 

Property 6.3. The derivation rule RSP* is valid in the model of closed PTNA f terms modulo rooted branching 
bisimulation. That is,for any p, q, r e C(PTNAf) such thatq is a guard, C(PTNAf)/~rb 1= p = q·p+r => 
C(PTNN)/~rb 1= p = q*r. 

Proof. Let p, q, and r be closed terms such that q is a guard; let R. be a rooted branching bisimulation between 
p and q . p + r. It must be shown that there exists a rooted branching bisimulation Q between p and q * r. In 
the construction of Q, the transitive closure of R., denoted R. +, is used. 

Q = {(p, q * r)} U R.+ U {(s, q. r) I s e C(PTNN) U {,J} /\ sR.+ p} 
U{(s,t·(q*r» Is eC(PTNN)U{../}At eC(PTNAf)/\sR.+t·p}. 

The example depicted below shows the idea behind the construction of Q. In this example, R. is depicted 
from left to right, whereas Q is depicted from right to left. Obviously, it is required that p Qq • r. Since R. 
is a rooted branching bisimulation between p and q . p + r, q . p + r can simulate any step that p can make. 
Therefore, if p can evolve into some process p' by executing an a step, then q . p + r can simulate this step 
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q*r Q p n q·p+r 

q'.(q*r~I ~; ~~E~ ~ ~l:..p 
q*r~ Q s~ n ~p n q·p+r 

p r-~- -F~ --F~--lp 
_____ "' _________ e 

q".(q*r) s' ....... _ p" _"",;1q".p ----
... ... 

... 

and evolve into, for example, q' . p. However, this means that also q * r can do an a step, in which case it 
evolves into q'·(q*r). This means that all pairs of the form (p', q'·(q*r» must be added to Q. This explains 
the basic form of Q. 

The reason why the transitive closure of n is needed, can be explained as follows. Assume that after a 
number of steps p' evolves into some process s and q'. p simulates these steps evolving into p. Then, snp 
and since q' . (q " r) evolves into q * r again, also s Qq * r. Note that the definition of Q indeed implies that 
it contains the element (s, q * r). Now assume that s can execute some f3 step evolving into s'. For the sake 
of simplicity, also assume that p can simulate this step without executing any preceding, steps. Then, also 
q . p + r can do a f3 step evolving into, for example, q" . p. However, this implies that q * r can do a f3 step to 
q"·(q"r), which means that Q must relate s' toq"·(q*r). The example shows that this would not necessarily 
have been the case if the definition of Q would have used n instead of n+, because n does not relate s' 
directly to q". p. However, n2, the relation composition ofR with itself, does relate s' to q". p. Since the 
process sketched here can repeat itself, this example suggests to use the transitive closure of R instead of n 
itself in the construction of Q. Below, it is shown that Q is indeed a rooted branching bisimulation between 
pandq*r. 

The proof uses the fact that n + is a rooted branching bisimulation between p and q . p + r. This follows 
from the observation that the relation composition as well as the union of two branching bisimulations is again 
a branching bisimulation (see the proof of Property 5.5 and [5]). Furthermore, if a branching bisimulation 
satisfies the root condition for two processes, then also any larger branching bisimulation satisfies the root 
condition for these two processes, where "larger" is defined by means of the superset relation. 

First, we show that Q satisfies the root condition for p and q * r. The == sign is used to denote syntactical 
equivalence on closed FINN terms plus ../. Recall that , is used as an abbreviation of «(6, (6). 

i) Assume p ~ p' for some a e Act and p' e C(P1NA f) U {.J}. It must be shown that there exists a 
v' e C (P1NA f) U {.J} such that q "r ~ v' and p' Qv'. 

Since R satisfies the root condition for p and q . p + r, it follows from the operational rules for 
choice and sequential composition in Table 2 that three cases can be distinguished. 

(a) First, q ~ q', for some q' e C(FINN), and q. p + r ~ q'. p such that p''Rq'. p. It follows 
immediately from the operational rules for the binary Kleene star in Table 2 and the definition of 
Q that q*r ~ q' ·(q*r) and p'Qq' .(q Or). 

(b) Second, q ~ ../ and q. p + r ~ p such that p'np. It follows immediately that q * r ~ q" r 
and p'Qq* r. 
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(c) Third, r ~ r' E C(PTNA') u {v1 and q. p + r ~ r' such that p'nr'. It follows immediately 

that q' r ~ r' and p'Qr'. 

i i) Assume q , r ~ v' for some a E Act and v' E C (PTNA T) U {v1. It must be shown that there exists 

a p' E C(PTNAT) U {v1 such that p ~ p' and p'Qv'. Again, three cases can be distinguished. 

(a) First,q~q' E C(PTNAT)andq'r~v' == q' ·(q'r). Itfollowsthatq· p + r~q" p. Since 

p'Rq. p + rand n satisfies the root condition for p and q. p + r, p ~ p' E C(PTNAT) U {v1 
such that p''Rq'. p. Hence, p ~ p' and p'Qv' == q'. (q'r). 

(b) Second, q ~ ./ and q'r ~ v' == q·r. It follows that q. p +r ~ p. Since p'Rq.p +r 
and n satisfies the root condition for p and q. p + r, p ~ p' E C(PTNAT) U {v1 such that 

p'np. Hence, p ~ p' and p'Qv' == q·r. 

(c) Third, r ~ r' E C(P1NAT) U {v1 and q' r ~ v' == r'. It follows that q. p + r ~ r' and 

therefore p ~ p' E C(P1NAT) U {v1 such that p'nr'. Hence, p ~ p' and p'Qv' == r'. 

The above two cases show that Q satisfies the root condition for p and q . p + r. 
Second, assume that for any a E Act and u, u', v E C(P1NAT) U {v1, u ~ u' and uQv. It must be 

shown that there exist v', v" E C (P1NAT) U {v1 such that v _ v" ~ v', u Qv", and u' Qv'. Using the 
definition of Q, three cases can be distinguished. 

i) First, un+v. Since n+ is a rooted branching bisimulation, it follows immediately that there exist 
(al + + v', v" E C(P1NAT) U {v1 such that v -v" --+ v', un v", and u'n v', and hence also uQv", 

and u'Qv'. 

ii) Second, v == q'r and un+ p. Two cases can be distinguished, corresponding to whether or not p does 
at least one, step before possibly doing an a step. 

(a) Assume p ~ p' E C(P1NAT) U{v1 such that u'n+ p'. According to the definition of p (a
l, p' 

again two cases can be distinguised . 

• First, a = , and p' == p. It follows immediately from the assumptions and u'n+ p' == p 
(Tl 

that v == q'r _q'r --+ q'r, uQq'r, and u'Qq'r. 

• Second, p ~ p'. Since p'Rq . p + r and n satisfies the root condition for p and q . p + r, 
as above, three cases can be distinguished. 

- Assume q ~ q' E C(PTNAT) and q. p + r ~ q'. P such that p''Rq'. p. The as

sumption uQv and u'n+ p'nq'· jJ yield immediately v == q' r _q' r ~ q'. (q' r), 
uQq'r, and u'Qq'· (q' r). 

- Assume q ~ ./ and q. p + r ~ p such that p'np. It follows immediately that 
a 

V == q'r _q'r --+ q*r, uQq'r, and u'Qq ·r. 
a a 

- Assume r --+ r' E C(P1NA') U {v1 and q. p + r --+ r' such that p'nr'. It follows 

immediately that v == q' r _q * r ~ r', uQq' r, and u'Qr'. 
T 00 h + (b) Assume p --+ p'" _p" --+ p', for some p', p", p'" E C(PTNAT) U {" I such that un p" 

and u'n+ p'. Since p'Rq. p + r, n satisfies the root condition for p and q . p + r, and q is a 

guard, which by Lemma B.l excludes the possibility that q ~ ./, it follows that q ~ q'" E 

C(P1NAT) such that p"''Rq'''. p. Lemmas B.l and B.2 yield that q'" _q" E C(PTNA') such 
that p"'Rq" . p. Two cases can be distinguished. 
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• First, a = T and p' == p". Then, v == q *r _q". (q * r) ~ q". (q * r). Furthennore, 
uR.+ p"'R.q" . p and u'R.+ p' == p"'R.q" . p yield that u Qq" . (q * r) and u' Qq" . (q * r) . 

• Second, p" ~ p'. Since q is a guard andq _q", LemmaB.l yields thatq" -; ... .;. Since 
p"'R.q" . p, again two cases can be distinguished. 

- First, q" _q (a
l, q', for some q, q' e C(P1NAf), p"'R.ij. p, and p''R.q'. p. It follows 

that v == q * r _q. (q * r)~q" (q * r). Since uR.+ p"'R.ij. p and u'R.+ p''R.q'' p, also 
uQq· (q * r) and u'Qq'. (q Or). 

- Second, q" _q ~ ../, for some q e C(P1NAf), p"'R.ij. p, and p'R.p. It fol

lows immediately that v == q * r _q. (q * r)~q * r. Furthennore, uR.+ p"'R.ij. p and 
u'R.+ p'R.p yield u Qq . (q * r) and u' Qq * r. 

iii) Third, v == t·(q*r) and uR.+t·p, for some t e C(P1NAf). Since R.+ is a rooted branching bisimulation 

and u ~ u', three cases can be distinguished. 

(a) First, t _t" ~ t', for some t', t" e C(P1NAf) such that uR.+t"· p and u'R.+t'· p. It follows 
(al 

that v == t·(q*r) _t" ·(q*r) --+ t' ·(q"r), uQt" .(q*r), and u'Qt' ·(q"r). 

(b) Second, t _t" ~ ../, for some t" e C(P1NN) such that uR.+t"· p and u'R.+ p. It follows 
(a) 

that v == t·(q"r) _t".(q"r) --+ q*r, uQt" ·(q*r), and u'Qq"r. 

(c) Third, t _../ and p _ p" (al, p', for some p', p" e C(P1NAf) U {..j} such that uR.+ p" and 
u'R.+ p'. In this case, the proof proceeds along the lines of case ii) immediately above. 

The above three cases show that for any a e Act and u, u', v e C(P1NAf) U {..j}, such that u ~ u' and 

uQv, there exist v', v" e C(P1NAf) U {..j} such that v -v" ~ v', uQv", and u'Qv'. 
Third, assume that for any a e Act and u, v, v' e C(P1NA f) U {..j}, v ~ v' and u Qv. It must be shown 

that there exist u', u" e C(P1NAf) U (../l such that u _u" ~ u', u"Qv, and u'Qv'. Using the definition 
of Q, as before, three cases can be distinguished. 

i) First, uR.+v. Since R.+ is a rooted branching bisimulation, the desired result follows immediately. 

i i) Second, v == q" r and uR. + p. Since p'R.q . p + r and R. satisfies the root condition for p and q . p + r, 
three cases can be distinguished. 

(a) First, q~q' e C(P1NAf) and p~ p' e C(P1NN)U{..j} such that p''R.q'.p. Since uR.+ p, it 
(a) + + follows that u _u" --+ u', for some u', u" e C(P1NAf) U{..j} such that u"R. p, and u'R. p'. 

Hence, it follows from v == q • r ~ q' . (q • r) == v' and u'R.+ p''R.q' . p that u" Qv == q * r, and 
u'Qv' == q' .(q*r). 

(b) Second, q ~ ../ and p ~ p' e C(P1NAf) U {..j} such that p'R.p. Since uR.+ p, it follows 
00 + that u _u" --+ u', for some u', u" e C(P1NAf)U{..j} such that u"R.+ p, and u'R. p'. Hence, 

it follows from v == q* r ~ q" r == v' and u'R.+ p'R.p that u"Qv '" q "r, and u'Qv' == q * r. 
(c) Third, r ~ r' e C(P1NN) U {..j} and p ~ p' e C(P1NAf) U {..j} such that p'R.r'. Since 

uR.+ p, it follows that u _u" ~ u', for some u', u" e C(P1NAf) U {..j} such that u"R.+ p, 
and u'R.+r'. Hence, it follows from v == q" r ~ r' == v' that u"Qv == q * r, and u'Qv' == r'. 

iii) Third, v == t· (q' r) and uR.+t· p, for some t e C(P1NN). Two cases can be distinguished. 
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(a) First, t ~ t' e C(P1NAT). Since u1<.+t· p, there exist u', u" e C(P1NAT) U (.J) such that 

u _u" ~u', u"1<.+t·p, andu'1<.+t'·p. Hence, it follows from v == t .(q·r)~t'.(q*r) == v' 
that u"Qv == t· (q * r), and u'Qv' == t'· (q * r). 

(b) Second, t ~ .y'Since u1<.+t·p, there exist u', u" e C(P1NN)U{.J) such that u _u" ~ u', 

u"1<.+t·p, and u'1<.+ p. Hence, it follows from v == t· (q * r) ~ q * r == v' that u"Qv == t·(q*r), 
and u'Qv' == q * r. 

The above three cases show that for any a e Act and u, v, v' e C(P1NAT) U (.J) such that v ~ v' and 

uQv, there exist u', u" e C(P1NAT) U (.y') such that u _u" ~ u', u"Qv, and u'Qv'. 
Finally, for any u, v e C(P1NN) U (.J) such that uQv, it must be shown that u _.y' {} v _.y'. As 

before, three cases can be distinguised. 

i) First, u1<.+v. Since 1<.+ is a rooted branching bisimulation, the desired result follows immediately. 

ii) Second, v == q' rand u1<.+ p. Assume u _.y'. Since u1<.+ p'Rq. P + r, q. p + r _.y'. Since q 
is a guard, Lemma B.I yields that r _.y'. He!lce, v == q * r _.y'. Assume v == q * r _.y'. This 
implies that r _.y'. Since u1<.+ p'Rq. P + r, u _.y'. 

iii) Third, v == t· (q * r) and u1<.+t . p, for some t e C(P1NAT). Assume u _.y'. Since u1<.+t . p, 
t _.y' and p _.y'. Since p1<.q . P + r, using the same argument as in the previous case, it follows 
that r _.y'. Since also t _.y', V == t·(q*r) _.y'. Assume v == t·(q*r) _.y'. Therefore, t _.y' 
and r _.y'. Since p'Rq. p + r, also p _.y'. Finally, it follows from u1<.+t· p that u _.y'. 

These two cases show that also the last requirement of a branching bisimulation is satisfied, which concludes 
the proof of the validity of RSP. 0 
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