
 

Online multi-server dial-a-ride problems

Citation for published version (APA):
Bonifaci, V., Lipmann, M., & Stougie, L. (2006). Online multi-server dial-a-ride problems. (SPOR-Report : reports
in statistics, probability and operations research; Vol. 200604). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/faccee5e-129c-4578-b3f4-4d1d17598e6d


Online multi-server dial-a-ride problems

Vincenzo Bonifaci1,2?, Maarten Lipmann1, and Leen Stougie1,3??

1 Department of Mathematics and Computer Science
Eindhoven University of Technology

Den Dolech 2 – PO Box 513, 5600 MB Eindhoven, The Netherlands.
v.bonifaci@tue.nl, m.lipmann@tue.nl, l.stougie@tue.nl

2 Department of Computer and Systems Science
University of Rome “La Sapienza”

Via Salaria, 113 – 00198 Roma, Italy.
bonifaci@dis.uniroma1.it

3 CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands.
stougie@cwi.nl

Abstract. In an online dial-a-ride problem, a crew of servers has to
process transportation requests as they arrive in real time. Possible ob-
jective functions include minimizing the makespan and minimizing the
sum of completion times. We give competitive algorithms and negative
results for several online dial-a-ride problems with multiple servers. Sur-
prisingly, in some cases the competitive ratio is dramatically better than
that of the corresponding single server problem.

1 Introduction

Dial-a-ride problems form an important general class of transportation prob-
lems. In a dial-a-ride problem, a number of vehicles (servers) move in a metric
space in order to process transportation requests; every request for a ride, con-
sists of two points of the space, a source and a destination, which must be visited
in this order. The problem is to find transportation schedules for the servers that
together serve all the given rides, while meeting some optimality criterion.

We study dial-a-ride problems in their natural online version, where decisions
have to be taken without having any information about future requests. They
arrive while processing previous requests. Examples of such problems are taxi-
services, elevator systems, drugs courier services, pizza delivery. The online model
that we employ is often called the real time model, in contrast to the one-by-one
model, which is the more common model in texts about online optimization [5],
but inadequate for dial-a-ride problems. The same real time model is also the
natural model and indeed is used for machine scheduling problems [17]. In fact,
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many of the algorithms for online dial-a-ride problems are adaptations of online
machine scheduling algorithms.

Competitive analysis [5] has become the standard way to study online op-
timization problems: an online algorithm A is said to be c-competitive if, for
any instance σ, the cost of A on σ is at most c times the offline optimum on
σ. This worst-case measure can be seen as the outcome of a game between the
online algorithm and an offline adversary, that is trying to build input instances
for which the cost ratio is as large as possible. Thus, the emphasis is not, as in
offline optimization, on computational complexity, but rather on the amount of
inefficiency generated by the absence of complete information.

There is an abundant amount of literature on off-line dial-a-ride problems. A
classification effort of the offline complexity of the many variants of dial-a-ride
problems has been carried out in [8]. Online single server dial-a-ride problems
have a recent but growing literature. The first paper by Ausiello et al. [3] intro-
duced the model for the online traveling salesman problem, which can be seen as
a dial-a-ride problem in which the source and destination of the rides coincide.
Later works investigated competitiveness of more general dial-a-ride problems
[1, 9] and studied different objective functions or different adversarial models
[2, 4, 11, 13, 14, 16]. A summary of single server results is contained in the thesis
[15].

Prior to this publication, there was essentially no work on online multi-server
dial-a-ride problems, except for some isolated algorithms [1, 4]. We give com-
petitive algorithms and negative results for online dial-a-ride problems with any
number of servers, with the objective of minimizing either makespan or aver-
age completion time. In the case of makespan we consider two more variants,
depending if the servers are required to return in the origin after serving all
requests or not. Apart from being the first paper dedicated to multi-server on-
line dial-a-ride problems the results are quite unexpected. The paper gives the
first results of online problems for which multiple server versions admit lower
competitive ratios than their single server counterparts. In almost all versions of
the problem we study here the competitive ratio does not increase. For several
versions we see a decrease with respect to the single server version. In some cases
competitive ratios even tend to 1 with increasing number of servers.

In scheduling a lot of research has been conducted to online multiple ma-
chine problems [17]. In the one-by-one model competitive ratios increase with
increasing number of machines. In real time online scheduling nobody has been
able to show smaller competitive ratios for multiple machine problems than for
the single machine versions, though here lower bounds do not exclude that such
results exist (and indeed people believe they do) [6, 7].

The rest of our paper is structured as follows. In Section 2, we specify and
formalize the problems that we study. The competitiveness results are presented
in Sections 3, 4, and 5, grouped according to objective function. In Section 6 we
give our conclusions.



2 The model

We assume a real time online model, in which requests arrive over time in a
metric space M . Every request is a triple (r, xs, xd) ∈ R+ ×M ×M where r is
the release time of the request, xs the location of the source of the request and
xd that of the destination; the pair (xs, xd) is called a ride. All the information
on a request with release time r is revealed only at time r.

An algorithm controls k vehicles or servers. Initially, at time 0, all these
servers are located in a distinguished point o of the metric space, the origin.
The algorithm can then move the servers around the space at speed at most 1.
(We do not consider the case in which servers have different maximum speeds;
in compliance with machine scheduling vocabulary we could say that the servers
are identical and work in parallel.) To process a request, a server has to visit
first the source and then the destination of the associated ride. In this paper we
only consider problems in which the vehicles have unit capacity, that is, each of
them can serve only one ride at a time, and in which rides cannot be preempted,
i.e., once started, the destination must be reached before the vehicle can move
freely again.

We consider so-called path metric spaces, in which the distance d between two
points is equal to the length of the shortest path between them. We also require
the spaces to be continuous, in the sense that for every x, y ∈ M and every
a ∈ [0, 1] there is z ∈ M such that d(x, z) = ad(x, y) and d(z, y) = (1−a)d(x, y).
A discrete space, like a weighted graph, can be extended to a continuous path
metric space in the natural way; the continuous space thus obtained is said to
be induced by the original space. For completeness, we recall that a function
d : M2 → R+ is a metric if it has the following properties: definiteness (∀x, y ∈
M , d(x, y) = 0 ⇔ x = y); symmetry (∀x, y ∈ M , d(x, y) = d(y, x)); triangle
inequality (∀x, y, z ∈ M , d(x, z)+d(z, y) ≥ d(x, y)). When referring to a general
space, we mean any element of our class of continuous, path-metric spaces. We
will also be interested in special cases, namely the real line R and the real halfline
R+, both with the origin o at 0.

We study as objective functions the makespan and the average completion
time. Defining the completion time of a ride as the time at which the ride has
been finished at the destination, the makespan is the maximum completion time.
Minimizing the makespan is the objective of what we call nomadic dial-a-ride
problems (N-DARP). The variations in which the goal is minimizing the time
at which the last server has returned to the origin after all the requests have
been completed are called homing dial-a-ride problems (H-DARP)4. Also in this
case we speak of the objective as the makespan. It will always be clear of the
context which of the two notions of makespan we mean. Minimizing average
completion time is the objective of the so-called latency dial-a-ride problems
(L-DARP). When the source and destination of every ride coincide, these prob-
lems are called respectively the nomadic traveling salesman problem (N-TSP),
the homing traveling salesman problem (H-TSP), and the traveling repairman

4 Notice that an online algorithm does not know when all requests have been released.



Table 1. Homing TSP competitiveness bounds

1-server LB Ref. 1-server UB Ref.

General spaces 2 [3] 2 [1, 3]
Line 1.64 [3] 1.64 [15]
Halfline 1.5 [4] 1.5 [4]

k-server LB Ref. k-server UB Ref.

General spaces 2 Thm. 3.1 2 [1]
Line 1.5 ↓ 1.5 Thm. 3.3
Halfline 1.5 Thm. 3.2 1.5 Thm. 3.2

problem (TRP). In these cases a request is represented by a pair (r, x), with r
release time and x location of the point to be visited.

We will use σ to denote a sequence of requests. Given a sequence σ, a feasible
schedule for σ is a sequence of moves of the servers such that the following con-
ditions are satisfied: (1) the servers start in the origin o, (2) each ride requested
in σ is served, (3) the servers do not start to serve any ride before its release
time, and (4) in the homing case, the servers end in the origin o. For an online
algorithm ol, ol(σ) will be the cost on σ, and opt(σ) the optimal offline cost
on σ. ol is said to be c-competitive if ol(σ) ≤ c · opt(σ) ∀σ.

We use s1, . . . , sk to denote the k vehicles, and write sj(t) for the position of
vehicle sj at time t. For a schedule S of the requests over the vehicles, we denote
the total length of S by |S|.

3 Homing dial-a-ride problems

We study the Homing k-server TSP and the Homing k-server DARP, shortly
H-kTSP and H-kDARP. The results are summarized in Tables 1 and 2, respec-
tively. LB and UB stand for lower bounds and upper bounds on the competitive
ratio of the problem, respectively; a lower bound of b means that no algorithm
is c-competitive with c < b, while an upper bound of c means that there exists
a c-competitive algorithm. The tables include references for the results, either
to theorems in this paper or to the literature. An arrow in the references points
to the more general case from which the corresponding result follows for upper
bounds or to a specific case from which it follows for lower bounds.

The lower bound for H-kTSP and H-kDARP on general metric spaces comes
from a generalization of the H-kTSP-bound in case k = 1 [3, 15].

Theorem 3.1. Any ρ-competitive algorithm for H-kTSP on general spaces has
ρ ≥ 2.

Proof. The proof is given in the Appendix. ut

A best possible 2-competitive algorithm for the H-kTSP and H-kDARP on
general spaces was already known [1].



Table 2. Homing DARP competitiveness bounds

1-server LB Ref. 1-server UB Ref.

General spaces 2 [3] 2 [1]
Line 1.75 [15] 2 ↑
Halfline 1.7 [1] 2 ↑

k-server LB Ref. k-server UB Ref.

General spaces 2 Thm. 3.1 2 [1]
Line 1.5 ↓ 2 ↑
Halfline 1.5 Thm. 3.2 2 ↑

For the bounds for H-kTSP on the line R and the halfline R+ with o in 0, in
Table 1, the following property is crucial.

Lemma 3.1. Let Ak be an algorithm for H-kTSP on R+. Then there exists an
algorithm A1 for Homing 1-server TSP on R+ such that A1(σ) = Ak(σ) for all
σ. Moreover, if Ak is online, A1 is also online.

Proof. Move A1’s server s so that s(t) = max{s1(t), s2(t), . . . , sk(t)} at any time
t. All the requests that are served by any sj will also be served by s, and the
value of the makespan is the same for both algorithms. ut

This means that for the Homing TSP on the halfline, any algorithm restricted to
use only one server does not lose any power. In particular it implies that the 3/2
best possible competitive ratio for the single-server problem is also attainable for
H-kTSP by the same algorithm [4], which we give here for sake of completeness.

Algorithm 1 (Move Right If Necessary). We call right the direction of
increasing (absolute) coordinates. The server moves right at full speed if there
are unserved requests to his right. Else, the server moves towards o at full speed.

Theorem 3.2. Any ρ-competitive algorithm for the H-kTSP on the halfline has
ρ ≥ 3/2. Move Right If Necessary is 3/2-competitive for H-kTSP. ut

The obvious idea for H-kTSP on R, with k ≥ 2 is to use only 2 servers, one on
each of the two halflines R+ and R−. That this is true for the optimal offline
solution was already noticed by Blom et al. [4].

Lemma 3.2 ([4]). There is an optimal offline strategy for the
Homing k-server TSP on the real line with k ≥ 2 servers such that no
server ever crosses the origin. ut

Algorithm 2 (Split Move Right if Necessary). Assign one server to each
halfline. Apply Move Right if Necessary to each halfline.

Theorem 3.3 ([4]). Split Move Right if Necessary is a best possible 3/2-
competitive algorithm for H-kTSP on the real line with k ≥ 2 servers. ut



Table 3. Nomadic TSP competitiveness bounds

1-server LB Ref. 1-server UB Ref.

General spaces 2.03 ↓ 2.42 [15]
Line 2.03 [15] 2.06 [15]
Halfline 1.63 [15] 2.06 [15]

k-server LB Ref. k-server UB Ref.

General spaces 2 Thm. 4.1 2.42 Thm. 4.2
Line 1 + 1/k Thm. 4.4 1 + O(log k/k) Thm. 4.5
Halfline 1 + 1/2k Thm. 4.4 1 + O(log k/k) Thm. 4.3

Table 4. Nomadic DARP competitiveness bounds

1-server LB Ref. 1-server UB Ref.

General spaces 2.03 ↓ 2.62 [15]
Line 2.03 [15] 2.62 ↑
Halfline 1.90 [15] 2.62 ↑

k-server LB Ref. k-server UB Ref.

General spaces 2 ↓ 3.42 [12]
Line 2 Thm. 4.6 3.42 ↑
Halfline 1.5 Thm. 4.6 3.42 ↑

We notice that the single-server case on the real line, admits a best possible
algorithm with competitive ratio (9 +

√
17)/8 ' 1.64 [15].

The lower bounds for H-kDARP in Table 2 come directly from those for
H-kTSP, and the upper bounds descend from the algorithm on general spaces
[1]. It is worth trying to improve these results on the line and the halfline, similar
to the single server case.

4 Nomadic dial-a-ride problems

The competitiveness results for the N-kTSP and the N-kDARP, summarized in
Tables 3 and 4, respectively, are more surprising than their counterparts for the
Homing versions.

4.1 The nomadic traveling salesman problem

A lower bound of 2 on the competitive ratio of any online algorithm for the
N-kTSP on general spaces is easily proved.

Theorem 4.1. Any ρ-competitive algorithm for the N-kTSP on general spaces
has ρ ≥ 2.



Proof. Consider the metric space induced by a star graph with k + 1 rays. At
time 1, there must be a ray on which there are no servers. The adversary gives
a request on this ray at distance 1 from the origin, serving it immediately. The
makespan of the online servers will be at least 2. ut

The best algorithm we have found for general spaces is a generalization of a
(1 +

√
2)-competitive algorithm for the single-server case [15].

Algorithm 3 (Return Home(α)). As soon as a new request arrives, let all
servers return to the origin at full speed. Once they are all at the origin, compute
a set of k paths {P1, . . . , Pk} serving all requests and having minimum maximum
length. For all j = 1, . . . , k let server sj start to follow path Pj at the highest
possible speed but remaining at a distance at most αt from the origin at any
time t.

Theorem 4.2. Return Home(α) is max{2 + α, 1
α}-competitive for N-kTSP on

general spaces. Hence, Return Home(
√

2− 1) is (1 +
√

2)-competitive. ut

Having more servers has an enormous impact on the competitiveness of the
N-kTSP in case the metric space is the halfline or the line. More precisely, with
respect to k, the best competitive ratio we found is 1+ o(1) comparing to a 1.63
[15] lower bound for the single server case.

Algorithm 4 (Geometric Progression Speeds). As a preprocessing step,
the algorithm delays each request (r, x) for which x ≥ t to time x; that is, the
release time of each request (r, x) is reset at max{r, x}.

Then, let fk be the unique root greater than 1 of the equation fk
k

fk−1
fk+1 = 1,

and define αj = f j−1
k

fk−1
fk+1 for j ∈ {1, 2, . . . , k}. For every j, server sj departs at

time 0 from the origin at speed αj . Servers s2 to sk always proceed in the same
direction. The first server, instead, turns back at full speed as soon as a new
request is given between the origin and its current position, and proceeds until
it reaches the unserved request that is nearest to the origin. Then it proceeds
away from the origin at full speed until it reaches again the space-time line
s1(t) = α1t. At that point it follows that space-time line until the next request,
turning back as before if necessary.

Theorem 4.3. Geometric Progression Speeds is fk-competitive for N-kTSP on
the halfline for any k ≥ 1.

Proof. First, notice that the modified release times are still lower bounds on the
cost of an optimal solution. Thus it is enough to prove that, for every request,
the time at which it is served is at most fkr, where r is the modified release time
of some (not necessarily the same) request.

For 1 < j < k, we say that a request (r, x) is in zone j if αj ≤ x/r < αj+1

(wlog we assume t > 0). A request is in zone 1 if x/r < α2; it is in zone k if
x/r ≥ αk. Thus, every request is in some zone and a request in zone j will be
eventually served by server sj .



For a request (r, x) in a zone j with 1 < j < k, since the request is served by
server sj at time x/αj and since x ≤ αj+1r, the ratio between completion time
and release time is at most αj+1/αj . Similarly, for a request in zone k, since
x ≤ r, the ratio between completion time and release time is at most 1/αk.

We still need to give a bound for requests in zone 1. Consider such a request
(r, x) which is served at time τ . If τ ≤ x/α1, we know that τ ≤ (α2/α1)r. If
τ > x/α1, it means that the first server, at time x/α1, was either going to serve
some other request between its current position and the origin, or was returning
after having served such a request. Either way, if the release time of that request
is r′ ≥ r, it has to be at least r′ ≥ τ/(1 + α1 + α2), since otherwise at time at
most r′ + α1r

′ + α2r
′ < τ the server would have returned and served request

(r, x). Similarly, if r′ < r we have that τ ≤ r′ + α1r
′ + α2r < (1 + α1 + α2)r.

Thus, the competitive ratio is bounded by

max{1 + α1 + α2, α2/α1, α3/α2, . . . , αk/αk−1, 1/αk}

= max{1 +
fk − 1
fk + 1

+ fk
fk − 1
fk + 1

, fk,
fk + 1

fk−1
k (fk − 1)

}

= fk.

ut
The following Lemma gives insight into the quality of the bound fk.

Lemma 4.1. For every k ≥ 1, fk ≤ 1 + 2 log k+2
k .

Proof. The proof is given in the Appendix. ut
The above upper bound compares with a lower bound of 1 + 1

2k for the
problem on the halfline.

Theorem 4.4. Any ρ-competitive algorithm for N-kTSP on the halfline has
ρ ≥ 1 + 1

2k . Any ρ-competitive algorithm for N-kTSP on the line has ρ ≥ 1 + 1
k .

Proof. The proof is given in the Appendix. ut
By contrast, the best known algorithm for a single server on the halfline has a
competitive ratio of 2.06 [15].

For the line, a simple idea is to split the servers as evenly as possible on the
two halflines and then use Geometric Progression Speeds.

Algorithm 5 (Split Geometric Progression Speeds). Assign dk/2e servers
to R+ and bk/2c servers to R−, and apply Algorithm 4 to each of them.

Theorem 4.5. Split Geometric Progression Speeds is fbk/2c-competitive for
N-kTSP on the line for any k ≥ 2.

Proof. Notice that the only lower bounds on the offline cost that we used in
the proof of Theorem 4.3 were simply the distance of every request from the
origin and the release time of every request, which are valid independently of
the number of vehicles of the offline algorithm. In particular, they hold even if
the number of offline vehicles is twice the number of online vehicles. Thus, we
can analyze the competitiveness of the online servers on each of the two halflines
separately and take the worst of the two competitive ratios. ut



4.2 The nomadic dial-a-ride problem

For the single server Nomadic Dial-A-Ride problem, the best known algorithm
has a competitive ratio of 3+

√
5

2 ' 2.618 [15]. For the multiple server case, we
were not able to reach this competitive ratio. However, we can prove that an
adaption of the 2-competitive algorithm for H-kDARP [1] is (2+

√
2)-competitive

in a way similar to [12] where this was proved to hold for the single server
problem.

In contrast with N-kTSP, here even on the line and the halfline the compet-
itive ratio cannot approach 1 as the number of vehicles grows.

Theorem 4.6. Any ρ-competitive algorithm for N-kDARP on the line has ρ ≥
2. Any ρ-competitive algorithm for N-kDARP on the halfline has ρ ≥ 3/2.

Proof. The proof is given in the Appendix. ut

Thus, the lower bounds for multiple servers are not very far from those for
the single server cases, which are 2.03 for the line and 1.9 for the halfline [15].
We have not tried particularly hard to design algorithms for N-kDARP on these
two metric spaces.

5 Latency dial-a-ride problems

The results on the k-server TRP and the Latency k-server DARP, shortly kTRP
and L-kDARP, are summarized in Tables 5 and 6, respectively.

First we study kTRP. A (1 +
√

2)2-competitive algorithm for kTRP follows
from a more general result on L-kDARP in Theorem 5.4.

All the lower bounds given for the N-kTSP also apply to the kTRP because
the adversarial sequences consisted of a single request.

Theorem 5.1. Any ρ-competitive algorithm for kTRP has ρ ≥ 2 on general
spaces, ρ ≥ 1 + 1/k on the line and ρ ≥ 1 + 1/2k on the halfline. ut

Interestingly, for kTRP on the halfline an approach similar to that for
N-kTSP can be used to get a competitive ratio of 1 + o(1).

Algorithm 6 (Geometric Progression Speeds with Sweeps). As a pre-
processing step, the algorithm delays every request (r, x) for which x ≥ r to time
x; that is, the release time of each request (r, x) is reset at r′ := max{r, x}.

Then, let gk be the unique root greater than 1 of the equation gk
k = 3gk−1

gk−1 ,

and define αj = gj−k−1
k for j ∈ {2, 3, . . . , k}. For every j > 1, server sj departs

at time 0 from the origin at speed αj and never turns back. The first server s1

waits in the origin until the first request (r0, x0) is released with x0 < s2(r0).
For i ≥ 0, define ti = gi

kr0. For i ≥ 1 during the interval [ti−1, ti], s1 moves first
from o to gk−1

2 ti−1 and back to o at full speed.

Theorem 5.2. Algorithm 6 is gk-competitive for kTRP on the halfline.



Table 5. TRP competitiveness bounds

1-server LB Ref. 1-server UB Ref.

General spaces 2.41 ↓ 5.83 [13]
Line 2.41 [9] 5.83 ↑
Halfline 2 [15] 3.5 [15]

k-server LB Ref. k-server UB Ref.

General spaces 2 Thm. 5.1 5.83 Thm. 5.4
Line 1 + 1/k Thm. 5.1 1 + O(log k/k) Thm. 5.3
Halfline 1 + 1/2k Thm. 5.1 1 + O(log k/k) Thm. 5.2

Proof. As in the proof of Theorem 4.3 we define zones {(r′, x) | αj ≤ x/r′ <
αj+1} for 0 < j < k (using αk+1 = ∞). The proof for requests in zones 2 to k is
the same as in the proof of Theorem 4.3.

Take any request in zone 1, i.e., a request (r′, x) such that x < α2r
′ and

suppose it served during at time τ ∈ [ti−1, ti] for some i. If r′ ≥ ti−1, then since
τ ≤ ti the ratio between τ and r′ is at most gk by definition of ti, i ≥ 0.

If r′ < ti−1, then since τ > ti−1 only two possible cases remain. First, the
situation that x > gk−1

2 ti−2. Since τ = ti−1 + x and r′ ≥ x/α2, we have

τ

r′
≤ x + ti−1

x/α2
≤ α2

(
1 +

2gkti−2

(gk − 1)ti−2

)
= α2

3gk − 1
gk − 1

≤ α2gk ≤ gk.

In the second situation, x ≤ gk−1
2 ti−2. r′ must be such that s1 was already on

his way back to 0 during [ti−2, ti1 ], in particular r′ ≥ gkti−2 − x. Thus,

τ/r′ ≤ gkti−2 + x

gkti−2 − x
≤ 3gk − 1

gk + 1
≤ gk. ut

Lemma 5.1. For every k ≥ 1, gk ≤ 1 + 2 log k+3
k .

Proof. The proof is along the same lines as the proof of Lemma 4.1. ut

For kTRP on the line, as for N-kTSP on the line, we can split the k servers
evenly between the two halflines.

Algorithm 7 (Split Geometric Progression Speeds with Sweeps). As-
sign dk/2e servers to R+ and bk/2c servers to R−, and apply Algorithm 6 to
each of them.

Theorem 5.3. Algorithm 7 is gbk/2c-competitive for kTRP on the line.

Proof. As in the proof of Theorem 4.5, the lower bounds on the optimal com-
pletion times are valid independently of the number of offline vehicles. ut



Table 6. Latency DARP competitiveness bounds

1-server LB Ref. 1-server UB Ref.

General spaces 3 ↓ 5.83 [13]
Line 3 [9] 5.83 ↑
Halfline 2.41 [15] 5.83 ↑

k-server LB Ref. k-server UB Ref.

General spaces 2 Thm. 5.1 5.83 Thm. 5.4
Line 1.5 Thm. 5.5 5.83 ↑
Halfline 1.33 Thm. 5.5 5.83 ↑

We turn to L-kDARP now. The best known algorithm for the single server la-
tency dial-a-ride problem, called Interval [13], is an adaptation to vehicle routing
of an algorithm for online job scheduling [10]. A rather straightforward general-
ization of Interval has the same competitive ratio as the one for the single server
[13].

Theorem 5.4. A multiple server adaption of Interval is (1 +
√

2)2-competitive
for L-kDARP. ut

As in the case of N-kDARP, the competitive ratio cannot approach 1 when k
grows. The lower bounds that we are able to prove are weaker though.

Theorem 5.5. Any ρ-competitive algorithm for L-kDARP on the line has ρ ≥
3/2. Any ρ-competitive algorithm for L-kDARP on the halfline has ρ ≥ 4/3.

Proof. At time 1, consider the barycentrum s = 1
k

∑
i si of the positions of the

servers; assume wlog s ≤ 0. An adversary gives k requests (1, 1, 0). Since the
time needed to serve a ride and return to point 1 is 2, we may assume that each
of these rides will be handled by a different server. Thus, the online cost is at
least

∑
i(1 + 1− si + 1) = 3k − ks ≥ 3k, compared to an optimal offline cost of

2k. The proof for the halfline is similar. ut

6 Conclusions

After analyzing the differences between multiple and single vehicle variants we
can conclude that, generally speaking, having multiple vehicles is more beneficial
to the online algorithm than to the offline adversary. With one exception (the
nomadic dial-a-ride problem), the algorithms for the multiple server case have
a competitive ratio that is at least as good as for a single server. In some cases,
including the traveling repairman problem on the line, it is even possible to
do better and approach the offline cost when there are enough vehicles. In the
presence of proper rides, these extremely favorable situation cannot occur. Still
in N-kDARP and L-kDARP it is conceivable that the competitive ratios become
lower than those of the corresponding single vehicle problems.
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Appendix

Proof (of Theorem 3.1). Consider the metric space induced by a star graph
with kn rays (for some fixed n); i.e., the space induced by M = (X, d) where
X = {o, 1, 2, . . . , kn}, d(o, x) = 1 for all x ∈ X \ {o} and d(x, y) = 2 for all
x, y ∈ X \ {o} such that x 6= y.

At time 0, an adversary gives a request in each of the kn points of X \ {o}.
Moreover, if one of the servers of an online algorithm visits a point i ∈ X \ {o}
at time t when t ≤ 2n−2, then at time t+1 a new request in point i is released.
In this way, until time 2n − 2 the online algorithm keeps facing requests in all
kn locations. The makespan will be at least 2n− 2 + 2n− 1 = 4n− 3.

Instead, the adversary can serve the requests in first-in first-out order, ignor-
ing old requests at repeatedly requested locations. Hence, at most k(n− bt/2c)
requests are yet to be served at any time t ≤ 2n− 2, and the servers can finish
by time 2n. Thus, the competitive ratio is at least (4n − 3)/2n, which can be
made arbitrarily close to 2. ut

Proof (of Lemma 4.1). We consider the unique root greater than 1 of the equa-
tion zk = 1+ 2

z−1 . Since as z tends to infinity the left hand side is greater than the
right hand side, and the root is unique, it suffices to prove that Z = 1+ 2 log k+2

k
satisfies Zk ≥ 1 + 2

Z−1 . By the binomial theorem,

Zk − 1 =
k∑

j=1

(
k

j

)
(2 log k + 2)j

kj

and this, using the standard fact that
(
k
j

)
≥ kj

jj , is at least

k∑
j=1

(2 log k + 2)j

jj
≥

blog kc+1∑
j=1

(2 log k + 2
j

)j

≥
blog kc+1∑

j=1

2j

≥ 2log k+1 − 2 = 2k − 2.

Now it can be verified that for all k > 1, 2k−2 > 2k
k+2 log k+2 = 1+ 2

Z−1 . Finally,
the bound also holds for k = 1 since f1 = 1 +

√
2 ≤ 3. ut

Proof (of Theorem 4.4). At time 1, consider the positions of the servers and the
points 0 and 1. These k + 2 points induce a partitioning of [0, 1] into (at most)
k + 1 subintervals. Call an interval external if it contains 0 or 1. If there is an
external interval of length at least 1/2k, the adversary gives a request in the
extreme of the interval so that the online algorithm cannot serve the request
before time 1 + 1/2k. Otherwise, there must be an internal interval of length
at least 1−1/k

k−1 = 1/k. The adversary then gives a request in the middle of this
interval, and the online algorithm cannot serve it before time 1 + 1/2k. In both
cases the adversary will serve the request immediately at time 1.

The proof for the case of the line is similar. ut



Proof (of Theorem 4.6). At time 1, consider the online server nearest to an
extreme of [−1, 1]. Suppose that this server is located at x and that wlog x ≥ 0.
The adversary then requests k rides from −1 to x− 1. Since there are no servers
in the interval [−1,−x), the latest completion time of the online algorithm will
be at least 1 + x + (1 + x) while the adversary can pay only 1 + x.

The proof for the case of the halfline is similar. ut


