

Adaptive decoding of MPEG-4 sprites for memory-constrained
embedded systems
Citation for published version (APA):
Pastrnak, M., Farin, D. S., & With, de, P. H. N. (2005). Adaptive decoding of MPEG-4 sprites for memory-
constrained embedded systems. In J. Cardinal, N. Cerf, & O. Delgrnage (Eds.), 26th Symposium on Information
Theory in the Benelux (pp. 137-144). Werkgemeenschap voor Informatie- en Communicatietheorie (WIC).

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/45252af3-e68e-4a40-a356-641ad12e9e48

ADAPTIVE DECODING OF MPEG-4 SPRITES FOR
MEMORY-CONSTRAINED EMBEDDED SYSTEMS

Milan Pastrna.k,,·b, Dirk Farinb, Peter H. N. de With,,·b

aLogicaCMG Nederland B.v., PO Box 7089, 5605JB Eindhoven, The Netherlands

bUniversity Techno!. Eindhoven, PO Box 513, 5600MB Eindhoven, The NetherlaJ;}ds

Email: M.Pastrnak@tue.nl

Abstract

Backgmund sprite decoding is an essent'ial part. of object-based video cod­

ing. The composit'ion and rendering of a .final scene involves t,he placing

of individ1wlvideo objects in a predefined way s'upel'imposed on the decoded

backgmund irnage. The MPEG-4 standard inclndes the decoding alg07'ithm

f07' backgmnnd image decoding. bnt this alg07'ithm is not suitable for im­

plement.ation on a mem,ory-constmined plaifoT'/7).. In this paper' we present

a mod~ficat,ion of the decoding algorithm that decodes MPEG-4 sequences

while fulfilling the requirements of a memollJ-constmined mnltipl'ocess07'

system with only 17% crtm overhead of compntat.ion. OUT algordhm re­

dnces the memory cost of such decoding with a factol' of foul'. Additionally,

07(,1' alg07'ithm offer's the possibility of high level data pamllclism and conse-

quently contr'ibutes to an increase of th:mughput mte.

1. INTRODUCTION

Object-oriented video coding enables new fea.tures for portable multimedia

devices. This type of video processing requires a considerable amount of memory

to render the final scene. The memory requirement contrasts with the mini­

mization of resource usage in porta.ble devices. Recent studies revealed t,hat. a.

multiprocessor system-on-chip (lvlP-SoC) [1] or a cell-processor system [2] provide

high computational resources with low power consumption. The proposed CELL

processor implementation poses a limitation on other t.ypes of resources such as

memories and communication resources.

l'vlultiprocessor archit.ectures are described as a set, of processing tiles con­

nected together via a bus or a network. The efficient implementation of streaming

applica.tions on such platforms intrinsically ask for partitioning of complex algo­

rithms into smaller subtasks, which can fit to the resources of a. processing tile.

137

Pipelined execution of individual subt.asks results in complete functionality of

the original algorithm. The CELL processor meets computational requirements

of complex state-of-the-art applications such as MPEG-4 coding [3]. However,

the limited size of local memory requires a modification of the IvIPEG-4 sprite­

decoding algorithm. The implement,ation of a first-generation CELL processor

consists of a 64-bit power processor element (PPE) and its L2 cache, multiple syn­

ergistic processor elem.ents (SPE). Each SPE has its own local memory (LS) [il].
Synergistic aspects in processing are that individual processing tiles are directly

connected and perform pipelined execution of distributed algorithms. As shown

in Figure 1, an SPE unit cont.ains four 64 kByte memory blocks.

SPE mem64k
mrmd('(" ,W!l('(' --- >.

(3

"'Tilt' 1-""+-4--1--13:" 1-+-4--1--1
Datil -to>- ~ -,

\. PH'~dt'CUdo:<1tz~$::;=~:t-J::$~=~~ , Addl"e-<;s t·' 1
\. ,
nJb] , , ,
Tfl rdb41, th{-I~
to D.1ta Flo,,' ... ~ ~~.: (:5 (4)

To nlbl cil"l"db1. th~n to ILIH):\IA

Dat:! Flow I'dh41

Figure 1: Loca.l memory organization in SPE (taken from [4]).

A ma.jor cost problem of the :rvIPEG-4 decoding algorithm is the buffering

of the decoded scene background. The Ma.in Visua.! Profile Level 2 (MP(QlL2)

of the l'vIPEG-4 standard bounds the maximulll size of reference image for the

sprite reconstruction to 1584 MacroBiocks (MBs) at. CrF resolution (a. single

video picture is 396 MBs) [5]. The target processing-tile memory limitation of

256 kByte can handle decoding of rectangular video pict.ures or arbitrary-shaped

video object. decoding, but it cannot int.ernally buffer the complete reference sprite

image. In this paper we present. a new algorithm that. decodes MPEG-4 compliant

sequences which satisfies the t.arget. platform constraints on memory (MP@L2).

138

Furthermore, it introduces the data-level parallelism.

The paper is organized as follows. Section 2 presents the sprite reconstruction

principle and addresses MPEG-4 standard decoding. Section 3 gives our new

decoding algorithm while Section 4 provides details on the corresponding da.ta

struct.ures. Section 5 describes the experiments and Section 6 concludes the paper.

2. SPRITE RECONSTRUCTION AND MPEG-4 DECODING

Object-oriented coding in the MPEG-4 standard enables individual process­

ing of foreground object.s and the scene background (also called sprite). The

background sprite image is used for the reconstruction of the scene background

for a set. of succeeding frames. The reference sprite is constructed by merging

several views into one large image that is further encoded and transmit.ted.

I-VOP
Bitstream

s-VOP
Bitstream

Shape I Texture
Decoding

Shape I Texture
Update Decoding

Warping Vector
Decoding

Sprite Buffer

Warping Reconstructed
Samples

Figure 2: IVIPEG-4 decoding of background sprite.

The sprite warping (see Figure 2) generates the actual camera. view that is

used in the renderer for the scene composition. The warping t.ra.nsformation is

modeled as a mapping between the decoded reference sprite plane and the actual

view plane. This mapping is described by the following l'vIPEG-4 GIvIC formula.s:

moO·:z:+mOl·y+m02,
:1" = 'Y

p" . :1' + }Jy . y + 1 ' .
(1)

where .1", y' are the transformed display coordinates and :1', y denote the orig­

inal coordinates for the video texture in the sprite buffer. The global motion

paramet.ers m'ij in the above equations are calculated during encoding.

The .MPEG-4 st.atie sprite coding provides the reconstructed scene back­

ground for the actual video scene and may require substantial memory. In the

139

MPEG-4 st.andard, the sprite decoding consists of four major steps: shape/texture

decoding, buffering of the complete sprite, decoding of the warping vector and

geometrical warping (Fig. 2). The I-VOP (Intra-coded Video Object Plane) con­

tains coded data for shape and texture of the referenced sprite. An S-VOP (Sprite

Video Object Plane) contains coded warping vectors.

The luminance, chrominance and grayscale alpha data of a sprite are stored

in two-dimensional arrays. The width and height of the luminance array are spec­

ified by the syntax parameters sprite_width and spri te.Jleight, respectively.

These planes are stored in the so-called Sprite Bujfer' and are used as references

for the actual camera. view reconstruction. The decoding of the current view

background applies to the previously described warping process.

3. NEW SPRITE DECODING ALGORITHM

In the new algorithm, we focus on the partitioning and optimal buffering of

sprite data, because it. is intrinsically a costly function due to the high amount of

involved MBs. The large latency of accessing data in a processor network system,

specifically for an off-tile memory location, requires a complete modification of

the original MPEG-4 standard decoding process. The primary difference is in the

way how MB data are stored. The original approach keeps the whole reference

image in an uncompressed form. We propose to keep the reference sprite image in

compressed form and decode only the part that is required for the reconstruction.

As a consequence, the decoding process is decomposed into four steps: (1) the

I·VOP
Bilslream

Reconstrucled
Samples

Figure 3: New decoding of background sprites and corresponding task-to­
processor assignment..

140

construction of an information matrix for random access of MB data, (2) decoding

of warping vectors, (3) decoding of the requiredlvIB texture data, and (4) warping
of the actual sprite.

Figure 3 gives the block scheme of the new approach. Let us simplify the

decoding problem to the situation when the bitstream cont,ains only one fully

encoded sprite image and it is followed by a number of S-VOPs without updates

of texture/shape information. The decoding of the actual background involves
the following steps:

1. Parsing of the 1-VOP bitstream and construction of the Random. Access

Data Matrix (details are given in the next section).

2. Decoding of warping vectors.

3. Calculating of the bounding box that defines the a.ctual referenced sprite
view.

4. Fetching and decoding of MB data that was not available in the previous

referenced ima.ge for the actual bounding box.

5. Recalc:ulating of the image origin.

6. \Varping of the background image.

In Figure 3, we indicate by a vertical dotted line, that the algorithm has to be

split, at least into two parts and mapped onto two processing elements. This split

fulfills the SPE constraints on the memory size (256 kBytes).]'vlore analysis and

proof that the split. ensures the decoding without problems is given in Section 5.

4. CONSTRUCTION OF MB DATA MATRIX FOR RANDOM ACCESS

The MPEG-4 compressed bitst,ream does not. con(;ain ma.rkers for accessing

image data at. a macroblock granularity level. At. (,he first stage, we construct the

MB access matri:r for access to the bitstream of MB compressed data. The texture

processing is performed in t,hree steps: DC/ AC prediction based on the previous

neighboring blocks, decoclillg of DCT coefficients and Inverse DCT transfonna­

tion. To provide random access to the IvlB data, two approaches are available.

First, storing data in matrices of 8 x 8 DCT coefficients. Second, buffering for

each MB DC / AC predictors and pos(;poning (;he decoding of DCT coefficients un­

til the moment that t.he .MB is required for the warping process. Since the t.arget.

matrix for storing DCT coefficients has t.he same size as t.he complete sprit.e, we

have to adopt. the second approach to save memory.

141

,-L--,--,--A,-..,-----T---___ , matrix of pointers to original bitstream
& DCIAC prediction

original coded bitstrec

Figure 4: Data organization for the new sprite decoding algorithm.

Figure 4 portrays the data organization for the new sprite decoding algo­

rithm. Note that memory blocks E, L are dotted, because these blocks require

t.he decompression of encoded e, l MB data. The calculation of the adive area

(Step .5 in the algorithmic description) indicates the needs for these IVIBs ill the

further warping process. The algorithm looks to the matrix of pointers to identify

the positions in the original coded bitstream buffer.

A major gain in the use of pointers for the decoding process is achieved

during the reconstruction of the first frame (I-VOP). The l'vIPEG-4 standard al­

gorithm performs DC/AC prediction, DCT coefficients decoding and IDCT on

the complete reference image. Instead, we perform first two simple processing

stages (without buffering of DCT coefficients) on the whole image and only the

last. step performs actual full decoding but on a restricted image size. This last

step introduces an extra overhead caused by the redundant decoding of DCT co­

efficients for the first image. However, this overhead can be removed if we obtain

the warping vectors for the first image a. pr-i071, to texture parsing. vVhen using

this modification, the reduction of the number of MBs for the first image IDCT

transformation is 76%. Additionally, we can speedup the texture processing by

instantiating subsequent DCT coefficients decoding and IDCT transformation
with parallel l'vIB decoding.

142

5. EXPERIMENTS

We have implemented the new version of the MPEG-4 sprite decoder. Fig­

ure 5 shows the results of decoding the well-known MPEG "tennis player" se­

quence. The amount of required MBs for decoding processing is illustrated at

the left of Figure 5 by the (noisy) bold line at the bottom. The decoding of

the background reference sprite requested for the first image processing of the

complete reference image (in our case 225]'vIBs) is shown at the top of the same

figure. For this test sequence, the maximum number of uploaded MBs for the

decoding of the active sprite area was 41 MBs.

Referenced Sprite Image

I
- Corrplele image size in MBs I
-Decoded MBs /VOP

VOPindex

Number of processed blocks
perVOP I

[J tJ,odn ied algorfthm

D Original Mf£G-4 rv'S
2000r------------i __ ~p~m~ce~S~Sin~g __ _,~1

.::: 1500 J i 1000

~ SOO

o ~ ____ ~ __ ~~ __ ~ __ ~r_
1 2 3 4 5 6 7 8 9 10 11 12 13 14

VOPindex

Figure 5: Left: Processing of "t.ennis player" sequence by t.he new algorit.hm.
Right: Comparison of the original and modified size of the burrel'.

At the right. of Figure 5, we show the required buffer sizes in t.erms of IvIBs,

and compare the original and the new algorithm. The original decoding requires

1701 MBs stored in an uncompressed way (1584 is the maximum, but. multiple Hi­

pixel IvIB grid alignments increases this number to 1701). The maximum size of

the reference sprite WHS never higher than 400 MBs. It was fouud that t.he original

algorithm requires 4.25 t.imes more memory than our new algorithm. The figure

also shows that our algorit.hm requires small bursts of blocks for decoding during

the scene, but. t.hese bursts do not accumulate t.o a significant number, so that. the

total remains much smaller than t.he big burst required for the original algorithm.

However, compared to the original algorithm, we fouud t.hat our proposal

has the disadvant.age of occw3ional extra decoding of MBs for special background

movement.s. For example, this occurs Khen t.he active window leads to the release

of decoded rvIBs and after some frames requires the same pict.ure data leading to

repet.itive decodiug of already released MBs. This disadvantage depends on the

camera motion in the backgrouud. During our experiment., we observed that. the

repetitive decoding involved 17% of extra MBs decoding. The amount of lllemory

143

to store the original bitstream was 37.440 kBytes and the resulting random-access

data matrix needed 7 kBytes of memory (fixed small memory space).

6. CONCLUSIONS

We have proposed and implemented a new MPEG-4 background sprite de­

coding algorithm. The new algorit.hm features minimum use of local memory

in the processing elements of the target processor network. A second feature is

that. it. is based on constructing a special information matrix for random access to

MBs data, which enables independent MB processing. This potentially increases

the level of parallelism to perform the decoding on more processing elements at a

higher speed (for a VOP). It was shown that the required memory reduces with

the factor of 4.25, with only 17% computation overhead due to repetitive MB
decoding for the complete sequence.

REFERENCES

[1] M. Berekovic, H.-J. Stollberg, and P. Pirsch, "Ivlulticore System-On-Chip Ar­

chitect.ure for MPEG-4 Streaming Video," in IEEE Transactions on Circuit.s

and Syst.ems f01' Video Technology, August. 2002, vol. 12 of 8, pp. 688-699.

[2] B. Flachs et. aI., "A Streaming Processing Unit for a CELL Processor," in

Pmceedings of IEEE Int.emational Solid-St.at.e Circuits ConIe1'ence, February
2005, pp. 134-135.

[3] M. Pastrnak, P. Poplavko, P.H.N. de With, and J. van Meerbergen, "On

Resource Est;imation of l'vIPEG-4 Video Decoding for a Ivlultiprocessor Archi­

tecture," in Pmceedings of PROGRESS fd003, October 2003, pp. 185-193.

[4] S.H. Dhong et aI., "A 4.8GHz Fully Pipelined Embedded SRAM in the

Streaming Processor of a CELL processor," in Pmceedings of IEEE Int.er­

national Solid-St.ate Ci1'cuits ConIe/'ence, February 2005, pp. 134-135.

[5] Dirk Farin, Peter H. N. de 'With, and Wolfgang Effelsberg, "l'\linimizing

MPEG-4 Sprite Coding-Cost Using Multi-Sprites," in SPIE Visual Commu­

nicat.ions and Image Pmcessing, Vol. 5308/1, January 2004, pp. 234-245.

144

