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Abstract 

Backgmund sprite decoding is an essent'ial part. of object-based video cod­

ing. The composit'ion and rendering of a .final scene involves t,he placing 

of individ1wlvideo objects in a predefined way s'upel'imposed on the decoded 

backgmund irnage. The MPEG-4 standard inclndes the decoding alg07'ithm 

f07' backgmnnd image decoding. bnt this alg07'ithm is not suitable for im­

plement.ation on a mem,ory-constmined plaifoT'/7).. In this paper' we present 

a mod~ficat,ion of the decoding algorithm that decodes MPEG-4 sequences 

while fulfilling the requirements of a memollJ-constmined mnltipl'ocess07' 

system with only 17% crtm overhead of compntat.ion. OUT algordhm re­

dnces the memory cost of such decoding with a factol' of foul'. Additionally, 

07(,1' alg07'ithm offer's the possibility of high level data pamllclism and conse-

quently contr'ibutes to an increase of th:mughput mte. 

1. INTRODUCTION 

Object-oriented video coding enables new fea.tures for portable multimedia 

devices. This type of video processing requires a considerable amount of memory 

to render the final scene. The memory requirement contrasts with the mini­

mization of resource usage in porta.ble devices. Recent studies revealed t,hat. a. 

multiprocessor system-on-chip (lvlP-SoC) [1] or a cell-processor system [2] provide 

high computational resources with low power consumption. The proposed CELL 

processor implementation poses a limitation on other t.ypes of resources such as 

memories and communication resources. 

l'vlultiprocessor archit.ectures are described as a set, of processing tiles con­

nected together via a bus or a network. The efficient implementation of streaming 

applica.tions on such platforms intrinsically ask for partitioning of complex algo­

rithms into smaller subtasks, which can fit to the resources of a. processing tile. 
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Pipelined execution of individual subt.asks results in complete functionality of 

the original algorithm. The CELL processor meets computational requirements 

of complex state-of-the-art applications such as MPEG-4 coding [3]. However, 

the limited size of local memory requires a modification of the IvIPEG-4 sprite­

decoding algorithm. The implement,ation of a first-generation CELL processor 

consists of a 64-bit power processor element (PPE) and its L2 cache, multiple syn­

ergistic processor elem.ents (SPE). Each SPE has its own local memory (LS) [il]. 
Synergistic aspects in processing are that individual processing tiles are directly 

connected and perform pipelined execution of distributed algorithms. As shown 

in Figure 1, an SPE unit cont.ains four 64 kByte memory blocks. 

SPE mem64k 
mrmd('(" ,W!l('(' --- >. 
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to D.1ta Flo,,' ... ~ . ................... ... ~~.: (:5 ................. (4) 
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Dat:! Flow I'dh41 

Figure 1: Loca.l memory organization in SPE (taken from [4]). 

A ma.jor cost problem of the :rvIPEG-4 decoding algorithm is the buffering 

of the decoded scene background. The Ma.in Visua.! Profile Level 2 (MP(QlL2) 

of the l'vIPEG-4 standard bounds the maximulll size of reference image for the 

sprite reconstruction to 1584 MacroBiocks (MBs) at. CrF resolution (a. single 

video picture is 396 MBs) [5]. The target processing-tile memory limitation of 

256 kByte can handle decoding of rectangular video pict.ures or arbitrary-shaped 

video object. decoding, but it cannot int.ernally buffer the complete reference sprite 

image. In this paper we present. a new algorithm that. decodes MPEG-4 compliant 

sequences which satisfies the t.arget. platform constraints on memory (MP@L2). 
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Furthermore, it introduces the data-level parallelism. 

The paper is organized as follows. Section 2 presents the sprite reconstruction 

principle and addresses MPEG-4 standard decoding. Section 3 gives our new 

decoding algorithm while Section 4 provides details on the corresponding da.ta 

struct.ures. Section 5 describes the experiments and Section 6 concludes the paper. 

2. SPRITE RECONSTRUCTION AND MPEG-4 DECODING 

Object-oriented coding in the MPEG-4 standard enables individual process­

ing of foreground object.s and the scene background (also called sprite). The 

background sprite image is used for the reconstruction of the scene background 

for a set. of succeeding frames. The reference sprite is constructed by merging 

several views into one large image that is further encoded and transmit.ted. 

I-VOP 
Bitstream 

s-VOP 
Bitstream 

Shape I Texture 
Decoding 

Shape I Texture 
Update Decoding 

Warping Vector 
Decoding 

Sprite Buffer 

Warping Reconstructed 
Samples 

Figure 2: IVIPEG-4 decoding of background sprite. 

The sprite warping (see Figure 2) generates the actual camera. view that is 

used in the renderer for the scene composition. The warping t.ra.nsformation is 

modeled as a mapping between the decoded reference sprite plane and the actual 

view plane. This mapping is described by the following l'vIPEG-4 GIvIC formula.s: 

moO·:z:+mOl·y+m02, 
:1" = 'Y 

p" . :1' + }Jy . y + 1 ' . 
(1) 

where .1", y' are the transformed display coordinates and :1', y denote the orig­

inal coordinates for the video texture in the sprite buffer. The global motion 

paramet.ers m'ij in the above equations are calculated during encoding. 

The .MPEG-4 st.atie sprite coding provides the reconstructed scene back­

ground for the actual video scene and may require substantial memory. In the 
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MPEG-4 st.andard, the sprite decoding consists of four major steps: shape/texture 

decoding, buffering of the complete sprite, decoding of the warping vector and 

geometrical warping (Fig. 2). The I-VOP (Intra-coded Video Object Plane) con­

tains coded data for shape and texture of the referenced sprite. An S-VOP (Sprite 

Video Object Plane) contains coded warping vectors. 

The luminance, chrominance and grayscale alpha data of a sprite are stored 

in two-dimensional arrays. The width and height of the luminance array are spec­

ified by the syntax parameters sprite_width and spri te.Jleight, respectively. 

These planes are stored in the so-called Sprite Bujfer' and are used as references 

for the actual camera. view reconstruction. The decoding of the current view 

background applies to the previously described warping process. 

3. NEW SPRITE DECODING ALGORITHM 

In the new algorithm, we focus on the partitioning and optimal buffering of 

sprite data, because it. is intrinsically a costly function due to the high amount of 

involved MBs. The large latency of accessing data in a processor network system, 

specifically for an off-tile memory location, requires a complete modification of 

the original MPEG-4 standard decoding process. The primary difference is in the 

way how MB data are stored. The original approach keeps the whole reference 

image in an uncompressed form. We propose to keep the reference sprite image in 

compressed form and decode only the part that is required for the reconstruction. 

As a consequence, the decoding process is decomposed into four steps: (1) the 

I·VOP 
Bilslream 

Reconstrucled 
Samples 

Figure 3: New decoding of background sprites and corresponding task-to­
processor assignment.. 
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construction of an information matrix for random access of MB data, (2) decoding 

of warping vectors, (3) decoding of the requiredlvIB texture data, and (4) warping 
of the actual sprite. 

Figure 3 gives the block scheme of the new approach. Let us simplify the 

decoding problem to the situation when the bitstream cont,ains only one fully 

encoded sprite image and it is followed by a number of S-VOPs without updates 

of texture/shape information. The decoding of the actual background involves 
the following steps: 

1. Parsing of the 1-VOP bitstream and construction of the Random. Access 

Data Matrix (details are given in the next section). 

2. Decoding of warping vectors. 

3. Calculating of the bounding box that defines the a.ctual referenced sprite 
view. 

4. Fetching and decoding of MB data that was not available in the previous 

referenced ima.ge for the actual bounding box. 

5. Recalc:ulating of the image origin. 

6. \Varping of the background image. 

In Figure 3, we indicate by a vertical dotted line, that the algorithm has to be 

split, at least into two parts and mapped onto two processing elements. This split 

fulfills the SPE constraints on the memory size (256 kBytes). ]'vlore analysis and 

proof that the split. ensures the decoding without problems is given in Section 5. 

4. CONSTRUCTION OF MB DATA MATRIX FOR RANDOM ACCESS 

The MPEG-4 compressed bitst,ream does not. con(;ain ma.rkers for accessing 

image data at. a macroblock granularity level. At. (,he first stage, we construct the 

MB access matri:r for access to the bitstream of MB compressed data. The texture 

processing is performed in t,hree steps: DC/ AC prediction based on the previous 

neighboring blocks, decoclillg of DCT coefficients and Inverse DCT transfonna­

tion. To provide random access to the IvlB data, two approaches are available. 

First, storing data in matrices of 8 x 8 DCT coefficients. Second, buffering for 

each MB DC / AC predictors and pos(;poning (;he decoding of DCT coefficients un­

til the moment that t.he .MB is required for the warping process. Since the t.arget. 

matrix for storing DCT coefficients has t.he same size as t.he complete sprit.e, we 

have to adopt. the second approach to save memory. 
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Figure 4: Data organization for the new sprite decoding algorithm. 

Figure 4 portrays the data organization for the new sprite decoding algo­

rithm. Note that memory blocks E, L are dotted, because these blocks require 

t.he decompression of encoded e, l MB data. The calculation of the adive area 

(Step .5 in the algorithmic description) indicates the needs for these IVIBs ill the 

further warping process. The algorithm looks to the matrix of pointers to identify 

the positions in the original coded bitstream buffer. 

A major gain in the use of pointers for the decoding process is achieved 

during the reconstruction of the first frame (I-VOP). The l'vIPEG-4 standard al­

gorithm performs DC/AC prediction, DCT coefficients decoding and IDCT on 

the complete reference image. Instead, we perform first two simple processing 

stages (without buffering of DCT coefficients) on the whole image and only the 

last. step performs actual full decoding but on a restricted image size. This last 

step introduces an extra overhead caused by the redundant decoding of DCT co­

efficients for the first image. However, this overhead can be removed if we obtain 

the warping vectors for the first image a. pr-i071, to texture parsing. vVhen using 

this modification, the reduction of the number of MBs for the first image IDCT 

transformation is 76%. Additionally, we can speedup the texture processing by 

instantiating subsequent DCT coefficients decoding and IDCT transformation 
with parallel l'vIB decoding. 
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5. EXPERIMENTS 

We have implemented the new version of the MPEG-4 sprite decoder. Fig­

ure 5 shows the results of decoding the well-known MPEG "tennis player" se­

quence. The amount of required MBs for decoding processing is illustrated at 

the left of Figure 5 by the (noisy) bold line at the bottom. The decoding of 

the background reference sprite requested for the first image processing of the 

complete reference image (in our case 225 ]'vIBs) is shown at the top of the same 

figure. For this test sequence, the maximum number of uploaded MBs for the 

decoding of the active sprite area was 41 MBs. 

Referenced Sprite Image 

I 
- Corrplele image size in MBs I 
-Decoded MBs /VOP 

VOPindex 

Number of processed blocks 
perVOP I 

[J tJ,odn ied algorfthm 

D Original Mf£G-4 rv'S 
2000r------------i __ ~p~m~ce~S~Sin~g __ _,~1 

.::: 1500 J i 1000 

~ SOO 

o ~ ____ ~ __ ~~ __ ~ __ ~r_ 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

VOPindex 

Figure 5: Left: Processing of "t.ennis player" sequence by t.he new algorit.hm. 
Right: Comparison of the original and modified size of the burrel'. 

At the right. of Figure 5, we show the required buffer sizes in t.erms of IvIBs, 

and compare the original and the new algorithm. The original decoding requires 

1701 MBs stored in an uncompressed way (1584 is the maximum, but. multiple Hi­

pixel IvIB grid alignments increases this number to 1701). The maximum size of 

the reference sprite WHS never higher than 400 MBs. It was fouud that t.he original 

algorithm requires 4.25 t.imes more memory than our new algorithm. The figure 

also shows that our algorit.hm requires small bursts of blocks for decoding during 

the scene, but. t.hese bursts do not accumulate t.o a significant number, so that. the 

total remains much smaller than t.he big burst required for the original algorithm. 

However, compared to the original algorithm, we fouud t.hat our proposal 

has the disadvant.age of occw3ional extra decoding of MBs for special background 

movement.s. For example, this occurs Khen t.he active window leads to the release 

of decoded rvIBs and after some frames requires the same pict.ure data leading to 

repet.itive decodiug of already released MBs. This disadvantage depends on the 

camera motion in the backgrouud. During our experiment., we observed that. the 

repetitive decoding involved 17% of extra MBs decoding. The amount of lllemory 
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to store the original bitstream was 37.440 kBytes and the resulting random-access 

data matrix needed 7 kBytes of memory (fixed small memory space). 

6. CONCLUSIONS 

We have proposed and implemented a new MPEG-4 background sprite de­

coding algorithm. The new algorit.hm features minimum use of local memory 

in the processing elements of the target processor network. A second feature is 

that. it. is based on constructing a special information matrix for random access to 

MBs data, which enables independent MB processing. This potentially increases 

the level of parallelism to perform the decoding on more processing elements at a 

higher speed (for a VOP). It was shown that the required memory reduces with 

the factor of 4.25, with only 17% computation overhead due to repetitive MB 
decoding for the complete sequence. 
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