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MIMO jerk derivative feedforward for motion systems

Matthijs Boerlage

Abstract— This paper shows that flexible modes in motion
systems result in residual dynamics that can not be reduced
using conventional acceleration feedforward and static decou-
pling. When reference trajectories with low frequency excitation
are applied, low frequency tracking errors and cross-talk errors
occur as peaks during jerk phases of a motion. A multivariable
jerk derivative feedforward controller is presented which com-
pensates for the joint contribution of all flexible modes in the
low frequency region. Furthermore it is shown that no higher
order (than 4) feedforward controller is required to improve
low frequency tracking performance. A simulation example of
a positioning device shows a significant improvement of the
tracking performance.

I. I NTRODUCTION

Industrial motion control systems require high tracking
performance involving short move times and small settling
times. Typical applications are positioning devices in
semiconductor industry, DVD player mechanisms and many
robots. In most of these applications, a combination of
feedforward and feedback control is used in a two degree
of freedom control architecture, see Figure 1. Herein, the
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Fig. 1. Multivariable control architecture used in this work.

signals r, e, u, y are the reference trajectory, servo error,
plant input and plant output. The systems,G,K, F denote
the plant, feedback controller and feedforward controller
respectively. The design of the feedback controller is not
discussed in this work, however we focus on the situation
that a decentralized controller will be used, [12]. Hence,
static input and output decoupling transformationsTu, Ty

are facilitated to achieve the required level of diagonal
dominance, [7].

As Tu, Ty do not vary per frequency, decoupling of
the rigid body dynamics does not necessarily imply
decoupling of the flexible dynamics. When smooth step
and scanning motions are applied, mostly low frequency
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dynamics are excited. It will be shown that this low
frequency tracking problem requires a different approach
than that of residual vibration suppression as discussed in
[9] and references therein.

The contribution of this work is a multivariable extension
of [2] which not only improves tracking performance of
the diagonal terms, but also reduces cross-talk significantly.
Therefore, design freedom which is not exploited due to
static decoupling can be recovered using this multivariable
feedforward controller.

The outline of this paper is as follows. The following
section discusses the properties of the reference profiles
used in the applications we study. Next, properties of the
plant are discussed, followed by a section on the implication
of static decoupling techniques. Subsequently, an analysis
of low frequency tracking performance is presented from
which the multivariable feedforward controller is proposed
in Section VI. Finally a simulation example is presented to
illustrate the newly developed theory.

II. REFERENCE PROFILES

Many industrial motion systems are designed to perform
step and scanning movements. Typically, piecewise finite or-
der polynomials are used as reference profile. These profiles
have motion phases with constant velocity, acceleration, jerk,
the derivative of jerk, etc. Reference trajectories are designed
to contain mostly low frequency energy, hence resonance
dynamics are little excited. If this would not be the case,
excitation of resonance dynamics should be avoided using
methods known asinput shaping techniques, see [5],[6],[9]
and references therein. Throughout this work, it is assumed
that the fourth derivative of the position trajectory exists,
in [2] it was shown that due to digital implementation this
requirement is often met in practice.

III. PLANT DYNAMICS

We focus on linear time invariant electromechanical sys-
tems which have the same number of actuators and sensors as
rigid body modes. These systems are typically constructed to
be light and stiff, so that resonance modes appear far above
the bandwidth of the feedback controller. As the mechanical
dynamics are dominant, one can assume that these systems
have low internal damping which is considered being pro-
portional. Also it is assumed that friction or damping to the
world can be neglected or is compensated for otherwise. The



plant can then be expressed as;

G(s) =
Nrb∑

j=1

uT
j vj

s2

︸ ︷︷ ︸
rigid dynamics

+
N∑

i=Nrb+1

uT
i vi

(s2 + 2ζiωis + ω2
i )

︸ ︷︷ ︸
flexible dynamics

= Grb
1
s2

+ Gflex(s) (1)

whereζi, ωi are the relative damping and the resonance fre-
quencies of the flexible modes respectively. The eigenmodes
of the plant are denoted byu and v. Note that ats = 0,
the contribution of the flexible part of the dynamics is a
constant which we define aŝGflex = Gflex(0). Hence, when
a simplified model of the plant is made in the frequency
region below the first resonance, the model contains a
constant matrix representingall modal contributions in low
frequencies added to a rigid body model, so that

Ĝ(s) = Grb
1
s2

+ Ĝflex (2)

This model equals the singular perturbation approximation
of the plant dynamics, see [11].

IV. D ECOUPLING

In industrial practice, decentralized controllers are used to
allow design based on single input single output loopshaping
theory. To facilitate independent design of the elements of
the decentralized feedback controller,diagonal dominanceis
required, [3], [7]. A system is diagonal dominant when

ρ(Gii(s)−1Gij(s)) < 1 ∀s ∈ DN ,

G(s) = Gii(s) + Gij(s), det(Gii(s)) 6= 0 (3)

wereρ(.) is the spectral radius,DN is the Nyquist contour
while Gii(s) and Gij(s), i 6= j are the diagonal and non-
diagonal elements ofG(s) respectively. In order to achieve
diagonal dominance, static input and output transformations
Tu, Ty are used to decouple the rigid body dynamics.
Decoupling of the rigid body dynamics expresses the servo
errors in the cartesian framework which is favorable for
practical control design. The transformationsTu, Ty can
be derived considering the kinematics of the plant, [1], or
considering frequency response functions, [10].

When the rigid body decoupling input and output
transformations are applied, we can define the plant
as

G̃(s) = TyĜ(s)Tu = TyGrbTu
1
s2

+ TyĜflexTu

= G̃rb
1
s2

+ G̃flex (4)

where nowG̃rb is diagonal while the term̃Gflex can still
exhibit interaction. In many practical situations, interaction
of the flexible modes might increase slightly when the
rigid body modes are decoupled. This is because, in many
cases, the eigenmodes of the flexible dynamics do not
have the same alignment as the eigenmodes of the rigid
body dynamics. Due to the term1s2 , the system is diagonal

dominant in low and midrange frequencies and as long
as Equation 3 is valid, a small amount of interaction is
still allowed. However, from a performance point of view,
any residual interaction means crosstalk so it may still be
necessary to compensate for this.

In order to eliminate crosstalk, it is desirable to decouple
the path from the disturbances to the servo error. For
the typical class of applications we discuss here, the
reference trajectory is the most dominant disturbance.
Hence, feedforward control is used to eliminate crosstalk
due to residual interaction.

V. L OW FREQUENCY TRACKING PERFORMANCE

The objective is to follow a given reference profile at
all time instances during the motion. We assume that the
plant outputy is measured at the location where tracking
performance is to be achieved. Therefore, the low frequency
tracking problem can be studied considering the transfer
function from reference trajectoryr to the servo errore,
Figure 1;

e = So(s)(I − TyG(s)TuF (s))r (5)

with the output sensitivity defined asSo(s) = (I +
TyG(s)TuK(s))−1. It is common to design a feedforward
controller that approximates the inverse of the plant. As many
motion systems contain dominant rigid body behavior, it is
common practice to use rigid body feedforward inversion by
means ofacceleration feedforward, so that

F (s) = G̃−1
rb s2 (6)

Using the plant model from Equation 4, the transfer function
of interest equals

e = So(s)(I − (G̃rb
1
s2

+ G̃flex)(G̃−1
rb s2))r

= −So(s)G̃flexG̃−1
rb s2r (7)

It is clear that there exists a residual transfer function
between the acceleration of the reference trajectory and the
servo error. The term̃GflexG̃−1

rb is constant. Hence when no
feedback control is applied (So = I) the servo error equals
the acceleration of the reference profile scaled with the factor
G̃flexG̃−1

rb . When feedback control is applied, the output
sensitivity function has at least slope+2 at low frequencies,
so that the servo error shows peaks during non-zero jerk
phases of a motion, as will be illustrated in Section VII.
Note that, as the plant had the same number of inputs as
outputs, the spectral radius of this residual is proportional to
the dominance measure of Equation 3. Therefore the residual
transfer function between acceleration and the servo error is
responsible for both cross-talk and low frequency tracking of
the diagonal terms. This transfer function can not be reduced
using acceleration feedforward.



VI. MIMO JERK DERIVATIVE FEEDFORWARD

In the last section it was illustrated that acceleration
feedforward has no ability to improve low frequency tracking
and reduce cross-talk. In this section the multivariable jerk
derivative feedforward will be derived. This feedforward
controller is a fourth order Taylor approximate of the inverse
plant from Equation 4, so that

F (s) = (G̃rb
1
s2

+ G̃flex)−1

= (I + G̃−1
rb G̃flexs2)−1G̃−1

rb s2

= G̃−1
rb s2 − G̃−1

rb G̃flexG̃−1
rb s4 +O(6) (8)

The jerk derivative feedforward controller considers the
fourth order approximate so that the new MIMO jerk deriva-
tive feedforward controller becomes

F (s) = Faccs
2 + Fdjerks4

Facc = G̃−1
rb , Fdjerk = −G̃−1

rb G̃flexG̃−1
rb (9)

The first term equals conventional acceleration feedforward
while the second term equals (multivariable) jerk derivative
feedforward. Note that as rigid body decoupling is applied,
only the jerk derivative feedforward part will be non-
diagonal.

In order to study the low frequency tracking error, we
return to Equation 5. For ease of notation, the situation
without feedback controlSo = I is studied, the open-loop
tracking error then equals

e = (I − G̃(s)F (s))r

= I − (G̃rb
1
s2

+ G̃flex)(G̃−1
rb s2 − G̃−1

rb G̃flexG̃−1
rb s4)r

= G̃flexG̃−1
rb G̃flexG̃−1

rb s4r. (10)

So there is a residual transfer function between the derivative
of jerk and the open-loop servo error. Increasing the order
of the approximation in Equation 9 would again lead to
a smaller residual. As the residuals will be quadratically
smaller each time, choosing higher order feedforward
controllers would have limited practical use.

A specific implementation of the feedforward controller
is to construct the feedforward controller as a summation
of scaled motion phases. The jerk derivative feedforward
controller can then be implemented as depicted in Figure
2. Note that due to this implementation, jerk derivative
feedforward can be tuned subsequently to tuning acceleration
feedforward control. Therefore, manual tuning is facilitated,
gradually increasing the complexity of the feedforward
controller.

VII. S IMULATION EXAMPLE

To illustrate MIMO jerk derivative feedforward, a
simulation example of a positioning device is studied. A
schematic presentation of the plant is depicted in Figure 3.
Two direct drive actuators apply a force iny direction on
the beamB. The cartA is positioned a distancex from of
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Fig. 2. A suggested implementation of the jerk derivative feedforward con-
troller. Motion phases from the reference trajectory generator are multiplied
with constants which can be tuned manually in the time domain.
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Fig. 3. Schematic picture of a typical positioning multi input multi output
device.

the center of gravity ofB. Two springs model stiffness of
the connection between the beam and the cart. The position
and rotation of the cart are measured directly asy1, Rz

respectively. The total mass of the system is22kg. The bode
diagram of the plantG(s) is depicted in Figure 4.

In order to derive the decoupling transformations, the
stiffness between beam and cart is considered to be infinite,
hence kinematic relations (distances to and from the center
of gravity) can be used to transform the plant,

[
y1

Rz

]
=

[
Gy1,F1(s) Gy1,F2(s)
GRz,F1(s) GRz,F2(s)

]

︸ ︷︷ ︸
G

[
F1

F2

]
(11)

into a plant which is rigid body decoupled;
[

y
Rz

]
=

[
G̃y,Fy (s) G̃y,TRz

(s)
G̃Rz,Fy (s) G̃Rz,TRz (s)

]

︸ ︷︷ ︸
G̃=TyG(s)Tu

[
Fy

TRz

]
. (12)

The bode diagram of the rigid body decoupled plant,
TyG(s)Tu, is shown in Figure 4. The diagonal dominance
measure of Section IV is used to quantify interaction before
and after static decoupling withTy, Tu, Figure 5. Interaction
is reduced significantly with rigid body decoupling.
As expected, interaction slightly increases around the
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Fig. 4. Bode diagram of the positioning deviceG(s) and the plant after
rigid body decouplingG̃ = TyG(s)Tu.
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Fig. 5. Diagonal dominance measure of the original plantG and the plant
after rigid body decouplingTyG(s)Tu.

frequencies of the resonance dynamics because the different
alignment of the rigid body and the flexible modes. As
long as the bandwidth of the feedback controller is below
100Hz, the system can be considered to be diagonal
dominant and the elements of a decentralized feedback
controller can be designed independently. Note that in low
frequencies, residual interaction in Figure 5 is proportional
to s2. This indicates that when dynamic decoupling is
used to reduce this residual interaction, at least a double
differentiating operator is to be included in the feedback
loop. This is highly undesired from a practical point of view.

A step in y direction is applied, while feedback control
and acceleration feedforwardF (s) = G̃−1

rb s2 is designed
for good tracking of the cart. The rotations of the cart in

Parameter Value

xmax 2× 10−2m
vmax 0.8m/s
amax 15m/s2

jmax 1× 103m/s3

djmax 2× 105m/s4

TABLE I

REFERENCE TRAJECTORY PARAMETERS.

Rz must be kept zero, hence no cross-talk is allowed. The
reference profile is of fourth order, generated using the
toolbox of [4], with the parameters given in Table I. The
various motion phases are plotted in Figure 6. The spectrum
of the acceleration of the reference profile is plotted in
Figure 7. It is visible that the energy of the reference
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Fig. 6. Motion phases of the reference profile used in the example.

profile is a factor300 larger in low frequencies than at
frequencies around the resonance dynamics. Therefore,
mostly low frequency tracking errors can be expected. The
servo errors during motion are plotted in Figure 8. Due
to residual terms, low frequency tracking errors appear as
peaks during jerk phase iny direction. Also, low frequency
tracking errors appear inRz direction due to cross-talk
(again residual terms).

Next, the MIMO jerk derivative feedforward controller
is applied to compensate for these residual terms. Tuning
of the parameters of the feedforward controller can be
done with hardware in the loop experiments (manually)
or considering frequency response functions and using
Equation 4. When the same reference profile is applied in
y direction, it is visible that the low frequency tracking
performance increased spectacularly, bottom Figure 8 (mind
the scale). Both low frequency errors iny and cross-talk to
Rz are eliminated. The remaining servo errors appear due
to little residual vibration of the resonance dynamics. In a
practical environment, these remaining tracking errors will
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not be visible due to the presence of measurement errors
and disturbances. Furthermore, we have from Equation 10
that

‖G̃flexG̃−1
rb G̃flexG̃−1

rb ‖2 = 2.7× 10−12. (13)

Which again justifies the fourth order approximation in
Equation 8. The plant input in the last phase of the motion is
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Fig. 8. Servo error of they and Rz axis during step motion inRz ,
see scaled acceleration trajectory in top figure. With standard acceleration
(diagonal) feedforward (top figure) and acceleration feedforward with jerk
derivative feedforward (bottom figure).

shown in Figure 9. During the acceleration and derivative of
jerk phases, the contribution of the feedforward controller
is clearly visible, recall Equation 9. In the case without
jerk derivative feedforward, the feedback controller tries to
compensate for the low frequency tracking errors. As the
bandwidth of the feedback controller is limited, performance
can not be achieved.
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Fig. 9. Plant input iny (top figure) andRz (bottom figure) direction with
and without snap feedforward during last phase of the motion.

VIII. C ONCLUSIONS

Even when ideal rigid body decoupling and acceleration
feedforward are applied, flexible dynamics result in non-
zero low frequency residuals. When step and scanning ref-
erence profiles are applied, low frequency tracking errors
and cross-talk appear. The new multivariable jerk derivative
feedforward compensates for these residuals in the low
frequency region, thereby significantly increasing tracking
performance. It is shown that as the proposed feedforward
controller compensates for the summed residuals ofall
internal flexible modes, the effect of using higher order
(than 4) feedforward controllers will result in negligible
improvements of performance. Due to the specific structure
of the feedforward controller, manual (time domain) tuning is
facilitated, providing a straightforward extension of common
industrial acceleration feedforward control. Simulations on
an example positioning device show promising results.
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