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Structural Petri Net Equivalence 

M. Voorhoeve (email: wsinmarc@win.tue.nl) 

Eindhoven University of Technology 

Abstract 

An equivalence relation, called structural bisimilarity, is given for labeled Place-Transition 
nets. In contrast to behavioral bisimilarity of nets, this equivalence only depends upon the 
structure of the nets considered, that is, their places and transitions and the way these are 
connected. It does not involve any conversion to transition systems. Algorithms are given 
for reducing a net to its normal form and deciding whether two given nets are bisimilar. The 
paper concludes by giving a behavioral characterization of structural net bisimilarity. A given 
net induces an ordered process space by considering markings as states, steps as transitions 
and bag inclusion as the partial ordering. Structural bisimilarity of nets is equivalent to order­
preserving (noninterleaving) bisimilarity of their induced process spaces. 

Keywords: Petri Nets, Concurrency, Bisimulation, Oraph algorithms. 

1 Introduction 

A Petri net is a bipartite directed graph. The nodes of a net are divided into passive nodes, called 
places and active ones, called transitions 1. The edges are divided into consumption edges lead­
ing from places to transitions and production edges leading from transitions to places. Places 
that have a consumption (production) edge leading to (from) a transition are called input (output) 
places of that transition. A Petri net can be marked with tokens in its places. 

Marked Petri nets can model the behavior of concurrent dynamic systems. The state of such a 
system is represented by the marking of the net. A step of the system consists of the concurrent 
firing of one or more transitions. The step can occur if the transitions in it are enabled, i.e. they 
all can consume enough tokens from their input places. If the step occurs, the enabling tokens are 
consumed from the input places and new tokens are produced for the output places. This leads to 
a new marking (state). 

Marked Petri nets are widely used in concurrency theory. They can be represented graphically and 
their behavior can be easily understood. Constructions exist for operators in languages like ACP 
and CCS: sequential composition, choice, interleaved merge and concurrent merge (c.f. [GIVa87]). 
Causal subtleties like confusion, disjunctive causality and resolved conflict (see [Ola95]) that can­
not be expressed in ACP and CCS are expressible in the behavior of Petri nets. Since the con­
structions for sequential composition and choice are somewhat cumbersome, Petri nets are being 
regarded as a kind of "assembly language" of concurrency, providing models for "higher" alge-

'The term "transition" in Petri net theory deviates from common usage. Petri transitions can bring about state 
changes (ordinary transitions). We caB state changes "steps" as much as possible to avoid confusion. 
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braic languages. As a consequence, the states of nets are abstracted from and reduced to mere 
"causes" for future actions. An exponent of this approach is the Petri Box Calculus [BeDH92]. 

However, this use of Petri nets does not fully exploit its potential. High-level Petri nets are being 
used to describe large-scale systems in a concise and accessible way. With tools like DesignlCPN 
([Jen92D and ExSpect ([HeSV9ID, Petri nets have become a specification language as well! Ad­
vantages of such a direct Petri net based modeling are the graphical representation and access­
ability for non-specialists. 

Another advantage is the possibility to describe an externally visible state. In fact, states (bags 
of places) are the dual of steps (bags of transitions). Many concurrent systems possess a state 
that can be observed by its environment and is used to base decisions upon. However, what can 
be observed from the state is in general only a projection of the actual system's state, just like 
what is observed from a step is a projection of the actual step taking place within the system. An 
ACP-based approach that incorporates states in a similar way can be found in [BaBe95]. 

Making the distinction between observable and actual states and steps can be done by labeling 
places and transitions. The labels constitute the observable part of a state or step. Places and 
transitions with the same label may cause different states or steps to be observed as the same. 
By relabeling the net, thus identifying some states and steps, one obtains projection or abstrac­
tion. Often, one wants to verify that some projection of a complex system (the implementation) 
is equivalent to some simple system (the specification). 

In this respect, Petri net based modeling suffers from a major drawback when compared to al­
gebraic languages. These languages possess operators for renaming and abstraction, with a rich 
and powerful equivalence theory. Such a theory is less well developed for Petri nets, possibly be­
cause of its assembly language status. One way of catching up is to convert nets into algebraic 
process terms, like in [Ba V095]. However, this approach amounts to computing the occurrence 
graph, so equiValence relations stemming from it may be undecidable, even for finite nets. Note 
that finite nets can have infinite behavior. Also the state of a net is disregarded. Other approaches, 
viz. [PoRS92] have similar drawbacks. 

In this paper, the more ambitious approach is taken of developing a purely Petri net oriented equiv­
alence theory, that does not require any translation from the net to a transition system. A bisimu­
lation oriented equiValence relation for Petri nets is defined that is decidable for finite nets. Algo­
rithms are given for normalizing a net and deciding bisimilarity of nets. It is proved that this struc­
tural bisimilarity corresponds to order preserving bisimilarity for the (ordered) process spaces in­
duced by the net. The relation thus preserves behavioral properties, like liveness and bounded­
ness. We assert that it also preserves many structural properties. 
The advantages of this novel approach for Petri net analysis are manifold. Instead of analyzing a 
given net, its (smaller) normal form can be taken as a starting point for analysis. Most important, 
however, is the theoretical foundation of an equivalence theory that takes both actions and states 
into account. 

The paper starts with a notation section. In a section on Petri nets we give our structural equiva­
lence relation and establish some basic properties. A next section is devoted to an algorithm that 
normalizes a given net. The following sections give the promised behavioral characterization of 
structural net bisimulation and a small example. The final section discusses the practical meaning 
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of structural net bisimilarity. 

The author wishes to acknowledge Andries Brouwer for sharing his insights in graph algorithms 
and 1\van Basten for many fruitful discussions and suggestions for improvement. 

2 Basic notions 

Let A, B, C be sets. A x B is the set of ordered pairs (a, b) with a EA and bE B. ]P(A x B) is the 
set of relations between A and B. Let R E ]P(A x B) be such a relation. For a E A; bE B we write 
aRb iff (a, b) E R. The domain dom(R) of R is defined as the set{a EA I 3b E B : a R b). The 
inverse R-I of R is defined by b R- I a {} aRb. R is total iff dom(R) = A and functional iff 
Va E A; b, b' E B : aRb A a Rbi =} b = b'. R is injective iff R-I is functional and surjective iff 
R-I is total. Functional relations are called functions. The set of total functions within ]P(A x B) 
is denoted A -+ B. For f E A -+ B; a EA, the unique element b such that a f b is named f(a). 
A bijective relation or bijection is functional, total, injective and surjective. The composition Ro S 
of relations R E ]P(A x B) and S E ]P(B x C) is defined by Va E A; c E C : a R 0 S c {} 3b E 
B : (a R b A b S c). The transitive closure R+ of a relation R E ]P(A x A) is the relation 
R U (R 0 R) U (R 0 (R 0 R» U .... 

The set IB(A) of bags with elements from A is the set of total functions in A -+ IN. For fJ E 
IB(A); a E A, fJ(a) is called the multiplicity of a in fJ. We write a E fJ iff fJ(a) > O. fJ is called 
finite iff the set {a E A I a EfJ} is finite. A finite bag fJ is denoted by juxtaposing the elements a E fJ, 
superscripted with their multiplicity like a l (a singleton bag) ora2b l c3• The empty bag is denoted 
O. The size of a finite bag a:' ... a!' is kl + ... +kn. Fora, fJ E IB(A), bag addition and subtraction 
is defined by Va E A : (a+ fJ)(a) = a(a)+ fJ(a) and Va E A : (a - fJ)(a) = max(O, a(a) - fJ(a}}. 
For n > 0; a E IB(A), we write n.a for a + ... + a iterated n times. By definition, O.a = O. If 
I = {il ... ,in} is a finite set and Olj E IB(A) for i E I, then we write I;jelaj for Olj, + ... + aj,. 
I;je0aj equals 0 by definition. If 1= i:' .,. i!' is a finite bag and aj EIB(A) for i Edom(I), then 
we write I;jelaj for kl.aj, + .. . +kn.Olj,. I;jeOOlj equals 0 by definition. The partial order:5 on bags 
is defined by a :5 fJ {} a - fJ = O. This is called bag inclusion. We set a < fJ {} a :5 fJ A a f= fJ 
(strict bag inclusion). 

For R E]P(A x B), the relation R E]P(IB(A) x IB(B» relates bags iff the elements ofthese bags 
can be related by R. R is defined as the minimal (w.r.t. set inclusion) relation satisfying 0 R 0, 
a l RbI {} aRb and al R fJI A a2 R fJ2 =} al + 012 R fJI + fJ2. If R is a function, so is R. 

3 Labeled PIT nets 

We presuppose an alphabet 1: of labels. A labeled place-transition net (or LPT net) is a bipartite 
directed graph (with multiple edges allowed) having labeled nodes. 

Definition 1 An LPT net N is a four-tuple (S, T, F, e), where S, T are disjoint sets (of places 
and transitions respectively); FE IB«T x S) U (S x T» is the weighted flow relation and e E 

(T U S) -+ 1: is the labeling function. The pairs (d, e) in dom(F) with F(d, e) > 0 are called 
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N M 

Figure 1: Example nets 

arcs and F(d, e) is the weight of such an arc. Given a net N, its components are denoted by 
subscripting them with N. 

For a given net, the cause and effect functions C, E E T -+ IB(S) are defined as follows. For 
t E T, C(t) = 'EpEsF(p, t).pl and E(t) = 'EpEsF(t, p).pl. 

In many cases the weights in the flow relation are 1. For this class of LPT nets, the definitions of 
F, C and E can be simplified, involving sets instead of bags. 

The most distinctive equivalence relation on LPT nets is isomorphism. Two nets are isomorphic 
iff their nodes can be mapped 1-1 to one another while preserving node labels and edges with their 
weights. Isomorphism abstracts from the sets S and T of an LPT net by considering the labels 
and the net structure alone. 

Definition 2 An isomorphism between LPTnets Nand M is a bijection l/J EIP«SN x SM)U(TN x 
TM)) such that for all d, e E TN USN: IN(d) == eM(l/J(d)) and FN(d, e) == FM(l/J(d), l/J(e)). LPT 
nets Nand M are called isomorphic iff there exists an isomorphism between them. 

Clearly, isomorphism is an equivalence relation on LPT nets. Up to isomorphism, LPT nets are 
depicted by drawing the places as circles and the transitions as squares, with their labels inscribed. 
These elements are connected by arrows representing arcs, where the weight of the corresponding 
arc, if greater than I, is shown. For reference, identifiers (not labels!) can be added next to the 
components (places or transitions) of nets. 

Example The Figure 1 shows two LPT nets N and M. Both nets possess places with labels a and 
b and transitions with labels h and k. All the arcs from the a-labeled places in N and some arcs 
from the a-labeled places in M have weight 2. Clearly, N and M are not isomorphic. D 

Process graph isomorphism is considered too fine an equivalence relation for concurrent systems 
as it allows hardly any verifications. It distinguishes a process x from the choice between x and 
x. Bisimulation abstracts from choices between equivalent alternatives while preserving choices 
that do affect the future behavior of a process. It is said that bisimulation preserves the branching 
structure of a process. 

Likewise, we define a structural equivalence relation on LPT nets that is coarser than isomorphism 
but preserves the branching structure of the net, i.e. the way in which causes determine effects and 
the point where effects with the same cause diverge. Two LPT nets are considered equivalent iff 
their places and transitions can be related in such a way that (1) only elements of the same kind 
and with the same label are related, (2) causes and effects of related transitions are related, and 
(3-4) a bag related to a transition cause is a cause of some related transition. 
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M N 

Figure 2: A bisimulation 

Definition 3 Let N, M be LPT nets. A structural bisimulation between Nand M is a total and 
surjective relation R ElP«SN x SM)U(TN x TM» such thatforall t E TN; u E TM; dE SNUTN; e E 
SM U TM; P ElB(SN); Q ElB(SM), 
1 d R e => IN(d) = lM(e), 
2 t R u => CN(t) R CM(u) 1\ EN(t) R EM(u) 
3 CN(t)RQ => 3VETM :CM(V)=QI\tRv, 
4 P R CM(u) => 3VETN : CN(v) = P 1\ v R u, 

Nets Nand M, are called bisimilar iff there exists a bisimulation between them. If there exists a 
functional bisimulation between Nand M, M is called a projection of N. A total and surjective 
relation satisfying conditions 1 and 2 above is called action preserving. 

We simply use the term "bisimulation" in the context of LPT nets to denote structural bisimu­
lation. Note that for state machines (all transitions having singleton cause and effect) with all 
places having the same label, structural bisimilarity coincides with "standard" bisimilarity (c.f. 
[Ba Ve95]). Also note the asymmetry in parts 3 and 4 of the definition. The absence of an anal­
ogous requirement for the E function signifies that bisimulation is biased toward the future of a 
marking, rather than its history. 
Example The Figure 2 illustrates a bisimulation between the nets L and M. The bisimulation is 
indicated by dotted lines. Note that the nets L and N are not bisimilar. This can be deduced from 
the fact that the bag plql in N must be related to the bag r2 in L if a bisimulation existed. Now, 
r2 = CL(t), whereas no transition u in N exists such that CN(u) = plql. 0 

Lemma 1 The following properties hold. Let N, M, L be LPT nets. 

i) An isomorphism between N and M is a bisimulation. 

ii) The inverse of a bisimulation between Nand M is a bisimulation between M and N. 

iii) The composition of a bisimulation between Nand M and a bisimulation between M and 
L is a bisimulation between N and L. 

i v) Bisimilarity is an equivalence relation on LPT nets. 

v) A bijective action preserving relation between N and M is an isomorphism. 

vi) If N is a projection of M and M a projection of N, then N and M are isomorphic. 
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N 

Figure 3: Bisimilar nets 

Proof: The first three properties are trivial from the definition. The fourth follows from the first 
three. The identity isomorphism yields reflexivity. Taking the inverse yields symmetry. Compo­
sition yields transitivity. To prove the fifth,let <P be a bijective action preserving relation between 
Nand M and let t E TN. By action preservation condition 2, (P(EN(t) = EM(<P(t» and since 
<P is bijective, EN(t)(P) = (P(EN(t»(<P(p». So we deduce for any p E SN that FN(t, p) = 
EN(t)(P) = EM(<P(t»(<P(p» = FM(<P(t), <P(p». Similarly,FN(p, t) = F M(<P(P), <P(t». The 
last property follows from the fifth, since a projection that does not reduce the number of places 
and transitions of a net must be bijective. 0 
The following property illustrates the way in which structural properties of nets are preserved 
under bisimilarity. 

Definition 4 Let N be an LPT net and P a set of places of N. 
P isasiphonofN iffYtETN: I]p<PFN(t,p) >o=} I]p<PFN(p,t) > O. 
P is a trap of N iffYt E TN : I]p<PFN(p, t) > 0 =} I]p<PFN(t, p) > O. 

Property 1 If N, Mare bisimilar LPT nets, then to each trap P of N there corresponds a trap 
Q of M having the same set of labels. 

Proof: Let R be a bisimulation between N and M and let P be a trap of N. We will show that 
the set Q = {qESM /3pEP: p R q} is a trap of M. Suppose P is a trap and letq E Q; uETM 
be such that FM(q, u) > 0, so q E CM(u). It suffices to show that there exists a q' E Q such 
that q' E EM(u). By Definition 3.3, there exists apE P; t E TN, such that p R q, t R u and 
p E CN(t). Since P is a trap and FN(p, t) > 0, there exists a p' E P such that p' E EN(t). Thus 
by definition 3.2, there exists a q' such that p' R q' (so q' E Q) and q' E EM(U). 0 

An analogous property for siphons does not exist, as is shown by Figure 3. The place p is a siphon 
of net N, but the bisimilar net M does not contain a siphon. 

4 Algorithms 

In this section, we study equivalence classes of LPT nets modulo bisimilarity. We use a standard 
technique (see e.g. [Cau90]) to arrive at a normal form for each equivalence class (modulo iso­
morphism). 

We define a class of bisimulations of a given net N with itself called congruences. Unlike ordi­
nary bisimulations, this class can be closed under (relation) union and we can compute the largest 
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congruence R of N w.r.t. set inclusion. We prove that R can be regarded as an equivalence rela­
tion upon the places and transitions of N and construct the "quotient" N / R. This quotient net is 
bisimilar to N and is unique up to isomorphism. 

Computing the largest congruence of a net N is polynomial-bounded w.r.t. the number of places 
and transitions of N, but no effort has been made to optimize the straightforward algorithm. 

Checking whether two LPT nets are isomorphic is equivalent to checking graph isomorphism. 
This even holds for the subclass of nets in nonnal fonn w.r.t. bisimilarity ([Br096]). Graph iso­
morphism may be intractable (c.f. [GaJ079]), but in practice Petri net isomorphism is easily estab­
lished, e.g. by the algorithm in [Mit881. In the first step of this algorithm, the initial partitioning 
must also be done on the basis of label and kind (transition vs. place). 

Definition 5 A congruence of an LPT net N is a bisimulation R between N and N that satisfies 
ford,e,fESNUTN, 

reflexivity d R d 
symmetry d R e => e R d 
transitivity d R e 1\ e R f => d R f 

An action preserving relation between Nand N satisfying these conditions is called congruent. 

We give a characterization for congruences that is easier to check than the defining conditions. 
In a congruence that relates places p and q, to every transition t with p E C(t) corresponds a 
transition U such that C(u) = C(t) - pi + ql and any congruent action preserving relation with 
this property is a congruence. 

Lemma 2 Let N be an LPTnet. A congruent action preserving relation R ElP((SN x SN)U(TN x 
TN» is a congruence iffforall p, q E SN and t E TN. 
P R q 1\ pECN(t) => 3UETN : t R u 1\ CN(U) = CNCt) _ pi +ql. 

Proof: Suppose that R is a congruence and let p, q E SN; t E TN such that p E CN(t) and p R q. 
Since p R q and p R p, we have that CN(t) R (CNCt) - pi + ql), so there must exist a U E TN 
such that t R u. 

Conversely, let R satisfy the lemma conditions and lett E TN; Q E IB(SN) such that CN(t) R Q. 
There must exist a k ~ 0 and Plo ql .... Pko qk such that Q = CNU) - pi + ql··· - p1 + ql· 
By the lemma conditions we conclude that there exist UI, ... , Uk E TN such that t R UI ... R Uk 
and for I E l..k, CN(U/) = CNCt) - pi + ql .. · - pi + qi, so Q = CN(Uk). 

Since R is transitive, we conclude that t R Uk. By symmetry, Q R CN(u) implies the existence 
of atE TN such that Q = CN(t) and t R u. So R is a bisimulation, and thus a congruence. 0 
As a corollary, we deduce that the transitive closure of the union of two congruences is again a 
congruence. This entails that every LPT net N possesses a maximal congruence, which is ob­
tained by taking the transitive closure of the union of all congruences of N. 

Lemma 3 Let N be an LPT net and let R, S be congruences of N. Then (R U S)+ is also a 
congruence of N. 

7 



Proof: Clearly, the union of R and S is action preserving, reflexive and symmetric, so (R U S)+ 
is congruent. We shall prove that (R U S)+ satisfies the condition of the previous lemma. Let 
p, q E SN; t E TN such that p (R U S)+ q and p E CN(t). By the definition of (R U S)+, there 
must exist PI ... ,Pk E SN and QI ... , Qk, Qk+1 E {R, S} such that P QI PI ... Qk Pk Qk+1 q. 
By the condition of the previous lemma, there must exist tl'" ,tto U E TN such that CN(tI) = 
CN(t) - pI + pl ... ,CN(tk) = CN(tk-1 - p1-1 + p1) and CN(u) = CN(td - p1 + ql, whereas 
t QI tl ... Qk tk Qk+1 U. SO CN(u) = CN(t) - pI + ql and t (R U S)+ u. 0 

Given an LPT net N and a congruence R of N, we construct the net M = N / R (N modulo the 
congruence) as follows. 

Construction 1 Partition S N and TN into sets of elements related by R, so that elements from 
different sets are unrelated. For dES N U TN let a denote the set containing d. Let S M = {P I P E 

SN} andTM = {f It E TN} respectively. ForfE TM; PESM, set FM(f, P) = L;qEpFN(t,q) and 
FM(P, f) = L;qEpFN(q, t) for some t Ef. Finally, let iM(a) = iN(d). 

Note that the construction of iM does not depend upon the choice of d. Let t, u E TN with f = u, 
so t R u and let P E SM. Since R is action preserving, we have CN (t) R CN(u), so L;bEpFN(b, t) = 
L;bEpFN(b, u). Thus FM(f, P) does not depend upon the choice oft. The argument for FM(P, f) 
is similar. 

Example In Figure 2, the net M possesses a congruence R, which can be obtained by relating all 
nodes with the same label. The net L is isomorphic to M / R. 0 

Lemma 4 Let N be an LPT net and let R be a congruence of N. The net N / R is bisimilar to N. 

Proof: Let p = (Cd, a) IdE SN U TN}. We shall prove that p is a bisimulation between N and 
M = N/ R. Note that p and thus .0 are functions, so ford E SN U TN; e E SM U TM; D EIB(SN) U 
IB(TN); E EIB(SM) U IB(TM) we have p(d) = pee) * d R e and p(D) = peE) * D R E. 

Clearly, iN (d) = iM(a), so bisimulation property 1 holds. 

Let t E TN' We want to show CNCt) .0 CM(t), and thus p(CN(t» = CM(f). Now p(CNCt» = 
PCL;PESNFN(P, t).pl) = L;PESNp(FN(P, t).pl) = L;pESNFN(P, t).pl = L;PESML;qEpFN(t, q).ijl = 
L;pESM(L;qEpFN(t, q».pl = L;PESMFM(f, p).pl = CM(f). Similarly, p(EN(t» = EM(f). This 
completes our check of bisimulation property 2. 

Now let t E TN; Q E IB(SM) such that CNCt) fJ Q. By the foregoing, Q = p(CN(t» = CM(f), 
proving property 3. 

Finally, let U E TM; P EIB(SN) such that P .0 CM(u), so pep) = CM(u). Choose a u in U. Then 
p(CN(u» = CM(u) and p(u) = u. Since pep) = p(CN(u» we must have that CN(u) R P. 
Since R is a bisimulation, there must be atE TN such that CN(t) = P and t R u. Thus, f = u, so 
t p u. This proves property 4 and thus completes our proof. 0 

The function p = (Cd, a) IdE SN U TN} is called the canonical projection of N onto N / R. 
Normalizing an LPT net N consists of finding the maximal congruence R within N. 

Theorem 1 Let R be a maximal congruence of an LPT net N. Then N / R is - up to isomorphism 
- a unique normal form of the equivalence class of LPT nets bisimilar to N. 

8 



Given an LPT net N, compute a maximal congruence R of N. 

R ~ (p, q e SN I l(p) = l(q)) U (t, u e TN I let) = leu)}, 
u ~ true; 
while U do 

U ~false; 
for(d,e)eRdo 

if de SN A (3t edom(EN(d» : 

(Yu e TN : t R u => CN(U) i- CN(t - d l + e l » 
vd e TN A (CN(d), CN(e» rf. R v (EN(d), EN(e» rf. R) 
then R ~ R - (Cd, e)}, U ~ true fi 

od 
od. 

Table I: Maximal congruence algorithm 

Proof: Let p be the bisimulation between N and N / R. If Q is a bisimulation between a net M 
and N, the transitive closure of Q-I 0 Q is a congruence of N, and thus must be contained in R 
(by the maximality). Soford,eeSN U TN; feSM U TM we have f Q d A f Q e => d R e. So 
Q 0 p is a projection. Thus, by Lemma 1.6, N / R is unique up to isomorphism. 0 

The algorithm in Table 1 constructs the maximal congruence of a given net N. Initially all ele­
ments with the same label are related to one another. Any related pair violating the conditions of 
a bisimulation is removed. The removal of relations may cause other pairs to violate the condi­
tions. This process is repeated until no pair needs to be removed anymore. The resulting relation 
is the maximal congruence of the net. The boolean variable U indicates whether an update of the 
relation R has occurred in the current loop. 

The algorithm gives a congruence, for if U remains false, all pairs in R have been checked to 
satisfy the condition of Lemma 2 as well as the action preservation condition. It contains the 
identity relation, so it is reflexive. The loop invariant is that R contains the maximal reflexive 
bisimulation as a subrelation, which proves that R is maximal. It must therefore be symmetric 
and transitive and thus a congruence. 

5 Process theory 

We now define processes associated to LPT nets. We start by defining transition systems aug­
mented with a partial order, and where states, like steps, are labeled. Let L be a fixed set of labels. 

Definition 6 An ordered process space consists of disjoint sets P of states, and A of steps together 
with a ternary step (transition) relation _ --=+ _ in !P(P x A x P). partial orders ~ on A and on 
P and afunction l in (A U P) ~ L. 
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Figure 4: Net and process space 

For ordered process spaces, bisimulation equivalence can be extended with order preservation. 
Ordered process spaces are order preserving bisimilar iff their states and steps can be related in 
such a way that related objects are of the same kind, have the same label and have the "transfer 
property" w.r.t. both the transition relation and partial order. 

Definition 7 Let V, W be ordered process spaces. A total and surjective relation R E lP«Pv x 
Pw) U (Av x Aw)) is called an order preserving bisimulation (or OP-bisimulationfor short) 
between V and W ifffor all d, d', d" E Pv U Av; e, e', e" E Pw U Aw such that d R e, 

1 eyed) = ew(e), 
2 d:S v d' => 3f E Pw U Aw : e :Sw f /\ d' R f, 
3 e:Sw e' => 3f E Pv U Av : d :Sv f /\ f R e', 

4 d~vd" => 3fEAw,gEPw:e~wg/\d'R//\d"Rg, 
~ f 5 e---+we" => 3/EAv ,gEPv :d---+ v g/\/Re'/\gRe", 

6 d''''':!'''''vd'' => 3/,gEPw:f~wg/\d'R//\d"Rg, 
7 e'~we" => 3j,gEPv :j....:!...,.vg/\jRe'/\gRe". 

V and W are called OP-bisimilar iff there exists an OP-bisimulation R between them. 

Bisimilarity is an equivalence relation, which can be proved by taking the identity relation for 
reflexivity, the inverse relation for symmetry and relation composition for transitivity. Note that 
if the partial order is trivial (Le. d :S e either always or only if d = e) and all states have the 
same label, steps with the same label can always be related and OP-bisimilarity corresponds to 
"standard" bisimilarity. 

An LPT net N defines an ordered process space V by defining states as markings or bags of places 
and steps as bags of transitions, the partial order by bag inclusion and the transition relation by 
token consumption and production, allowing for autoconcurrency (firing of the same transition 
concurrently with itself). 

Definition 8 Let L = !B(C). An LPTnet N defines an ordered process space V = VN as/ollows. 
Pv = !B(SN); Av = !B(TN); ev = IN. The partial order :S on V is given by bag inclusion. 
For p. p' E Pv; ex E Av we have p ~ v p' iff ('£'EUCN (t)) :S P /\ p' = P - ('£'EUCN(t)) + 
('£'EuEN(t)). 

Example The Figure 4 shows a net and part of the process space defined by it. The net is in normal 
form w.r.t. structural bisimulation and thus cannot be reduced. This net can be interpreted as a 
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factory floor containing three machines. The machines t, U can process the same jobs b, whereas 
the machine v processes jobs c. The machines u, v need an a-resource (operator). The t machine 
can work without operator. 

In the process space, the I-superscripts of the states and steps have been omitted. Note that the 
steps t l and u l cannot be related by an OP-bisimulation, since t l :s tlvl and there does not exist a 
step 2: u l between the states plqlrl and rl. The interpretation is that the machine u can occupy a 
resource also needed by v, so they cannot work concurrently. This behavior does not occur when 
u is removed, so the factory floor with and without u have a different (qualitative!) behavior. 0 

We now prove our main theorem relating structurally bisimilar nets to order preserving bisimilar 
process spaces. 

Theorem 2 Let N, M be LPTnets and let V, W be the respective process spaces defined by them. 
Then V and Ware OP-bisimilar iff Nand M are structurally bisimilar. 

Proof: We first prove the "if' part. Let R be a structural bisimulation between N and M. Let Q be 
the relation between V and W defined by Q = it We shall prove that Q is an OP-bisimulation. 
Bisimulation conditions 1-3 for Q can be verified trivially. 

We prove condition 4. Condition 5 then follows by symmetry. Let d' E Av; d, d" E Pv ; e E 

Pw such that d Q e and d ~v d". Then (:E'Ed,CN(t» :s d and d" = d - (:E'Ed,CN(t» + 
(:E'Ed,EN(t». For t Ed', we can find bags B, E Pw such that :E'Ed,B, :s e and Vt Ed' : CN(t) Q B,. 
Since R is abisimulation between N andM, theremustexistau, E TM such that CN(u,) = B, and 
t R u,. Take e' = :E'Ed'U:. Clearly, d' Q e'. Moreover, :EuEe'CN(U) = :E'Ed,CN(U,) = :E'Ed,B, :s 
e. So there exists a (unique) e" such thate ~w e" Sinced' R e', there exists a 1-1 correspondence 
between the t in d' and u in e' such that corresponding t and u satisfy t R u. Since R is action 
preserving, it follows that :E'Ed,EN(t) R :EuEe,EN(u). By the definition of d" and e", we conclude 
that d" Q e". 
We prove condition 6. Condition 7 then follows by symmetry. Let dE Av; d', d" E Pv ; e E Av 

such thatd Q e andd' ~v d". Let do = :E'EdCN(t). Then do :s d' andd" = d'-do+:E'EdEN(t). 
For each tEd we can find a u, E e such thatt R u, and e = :E'EdU:. Let eo = :E'EdCN (u,). Since 
do Q eo, we can find an el E Pw such that d' Q eo + el. Take e' = eo + el and e" such that 
e' ~ we". Clearly, d" Q e" as well. This settles the "if" part. 

We now prove the "only if' part. Let Q be an OP-bisimulation between V and W. Note that, 
by OP-bisimulation condition I, we can deduce that in this case OP-bisimulation conditions 2-3 
also hold when strict inclusion is substituted for inclusion. So from Lemma 5 we may deduce that 
there exists a total and surjective relation REIP«SN x TN) U (SM x TM» such that Q = it We 
shall prove that R is a structural bisimulation between N and M. Property 1 is easy. 

We prove net bisimulation property 2. Let t E TN and u E TM such that t R u. We know that 

CN(t) ~v EN(t) and CN(u) ~w EN(U), whereas t l QUI. Since Q is an OP-bisimulation, 
we deduce that CN(t) Q CN(u) and EN(t) Q EN(U). 
We prove net bisimulation property 3. Property 4 then follows by symmetry. Let t E TN; B E 

IB(SM) such that CN(t) Q B. Since CN(t) ~v EN(t), there must exist fJ E Aw, B' E Pw such 
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that B ~w B' and t l Q fJ. Since t l is a singleton, fJ must be a singleton, say u l and t R u. 
Moreover, CN(t) is the smallest state in Pv admitting the step tl. It follows from properties 2-3 
of Q that B has the same property w.r.t. the step u. So B = CN(u). Thus R is indeed a structural 
bisimulation. 0 

Lemma 5 Let A, B befinite sets and let Q E!P(18(A) x 18(B» be a total and surjective relation 
satisfying for a, a' E 18(A); fJ, fJ' E 18(B) such that a Q fJ, 
a < a' =} 3y E18(B) : fJ < y 1\ a' Q y, 

fJ < fJ' =} 3y E 18(A) : a < y 1\ Y Q fJ'. 
Then there exists a total and surjective relation R E !P(A x B) such that Q = it 

Proof: Note that all bags are finite since A and B are finite. We prove by induction that Q equals 
some R when restricted to bags of size::: k. Because of the conditions on Q and since 0 is the 
minimal element in both sets, we deduce that Q relates 0 to and only to O. Since singleton bags 
are the only bags that have 0 as a strict subbag, Q must relate singletons to and only to singletons. 
This settles the cases for sizes 0 and 1. Clearly, R must be the relation defined by aRb {} a l Q b l • 

Let a E 18(A); fJ E 18(B) such that a Q fJ. Let ai for i E I be the set of all strict subbags of a 
and let fJj for j E J be the set of all strict subbags of fJ. By the conditions on Q, each ai must be 
Q-related (and thus R-related by the induction hypothesis) to a fJj and vice versa. By some case 
analysis it is easy to show that a R fJ. 0 

6 Behavioral properties of nets 

Theorem 2 shows how behavioral properties of LPT nets are preserved under structural bisimu­
lation. We define a few of these properties. If N is an LPT net and V the process space derived 

from it, we adopt the notation P [A)N Q for P ~v Q. 

Definition 9 A markedLPTnetisapair(N, P) where N is an LPTnetand P E18(SN) a marking 
of N. A marking Q E 18(SN) is called reachable from (N, P) (notation P [*)N Q) iff there exist 
k > 0; P = QI, ... ,Qk = Q E 18(SN); AI ... Ak- I E 18(TN) such that Qi [Ai)N Qi+J for 
o < i < k. The marked net (N, P) is called bounded iff there exists an n > 0 such that every 
Q E 18(SN) with P [*)N Q has size < n. It is live ifffor every Q E lB(SN) with P [*)N Q and 
t E TN there exists a Q', Q" E 18(SN) such that Q [*)N Q' [t1)N Q". It deadlocks iff there is no 
t E TN; Q E 18(SN) such that P [t1)N Q. It has a deadlock iff there exists a Q E 18(SN) with 
P [*)N Q such that Q deadlocks. 

The proof of the following property is trivial from Theorem 2. Note that liveness is not completely 
preserved. A counterexample can be found in Figure 3. This counterexample - and the whole idea 
behind transition labeling - suggest a weakened definition of liveness: an LPT net is live iff for 
every reachable state Q and transition t a subsequent state Q' and transition u with the same label 
can be found such that u can fire. 

12 
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Figure 5: Queuing systems 

Property 2 Let (N, P) be a marked LPT net, R a congruence of N, M = N / R, P the canonical 
projection of N to M and Q = pCP). Then 

(N, P) is bounded iff(M, Q) is bounded, 
(N, P) deadlocks iff(M, Q) deadlocks, 
(N, P) has a deadlock iff(M, Q) has a deadlock, 
(N, P) is live implies (M, Q) is live. 

7 Example 

In Figure 5 two bisimilar nets are depicted that implement queues. The [(input)-labeled place 
contains clients that are to be served by the system. Tokens are produced for this place by the 
firing of the A(arrival) transition. The R(resource) places contain available servers. When an 
S(start) transition fires, a client and server are consumed and a B(busy) client-server combination 
is produced. When F(finish) fires, this B combination is consumed, the client is transferred to 
O(output) and the server to R. The D(departure) transition can remove these clients. 

In M, two parallel queue systems are depicted, whereas N is a single queue system. Clearly, 
both nets are structurally bisimilar, so their process spaces are OP-bisimilar. This means that e.g. 
adding two tokens in place R of N and one each in the resource places of M will result in processes 
that behave the same. 

Interleaving bisimilarity of the "action" parts of the nets N and M can also be proved by more 
or less standard techniques, viz. BPA. with recursion (c.f. [BaVe95]). In this case, steps consist 
of the firing of a single transition and states are not labeled. The nodes in the process space V N 

correspond to markings of the net N. Let X k•l•m.n denote the node corresponding to the marking 
[k BI Rm Dn. We derive the following recursive equations (*) for k, I, m, n E IN: 

where Ap denotes the action A if P is true and 8 if P is false. For the net M similar equations can 
be derived for nodes Yk,ll./z,ml,m,.n' From these equations it can be deduced that Y k•h ,12.ml,m2,n and 
Xk,h+/z,ml+m2,n satisfy the same set of (guarded) equations derived from (*). The RSP rule then 
yields bisimilarity of the process spaces, giving another structural equivalence of the nets. 
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Figure 6: LPT net testing device 

The method sketched above can be generalized to arbitrary finite nets, showing e.g. that the net 
in Figure 4 and the same net with u deleted are bisimilar. It has the advantage of an axiomatic 
approach, but is hard to derive algorithmically. The method of this paper has the advantage of 
simplicity, modeling states and a concurrent step semantics. 

8 Conclusions and further work 

One may ask what structural LPT net bisimilarity amounts to in practice. This question may be 
answered by a metaphor in the style of [Gla90j. An observer is given an LPT net M. At the same 
time, an LPT net N is inserted in a testing device, which is depicted in Figure 6. 

The device possesses four buttons, labeled "fire", "add", "del" and "undo". It also possesses three 
rows of dials, labeled "marking", "step" and "warp". Each dial is labeled with a label from £. and 
displays a nonnegative integer. The "step" and ~'warp" dials can be set by the observer. 

Initially, the marking dials display zeros. To test the net N, the observer may set the "warp" dials 
and press "add". The device will respond by adding tokens to the net N. If the "warp" dial labeled 
with a is set with a number n > 0, then n tokens will be inserted in a-labeled places and likewise 
for the other labels. Tokens can be removed by setting the "warp" dial and pressing "del". If the 
"warp" dial labeled with a is set with a number n > 0, then n tokens will be removed from a­
labeled places and likewise for the other labels. If the specified warp cannot be executed (there are 
no a-labeled places in N or these places do not contain enough tokens), the maximum possible 
number of tokens is added or removed. If there are several possibilities for adding or removing 
tokens, one of them is chosen nondeterrninistically. After the warp, the "warp" dials display the 
actual number of tokens added or removed and the "marking" dials display the marking (number 
of tokens in a-labeled places for each label a). 

The observer may also set the "step" dials and press "fire". The device will respond by executing 
a step corresponding to the set dials. If the "step" dial labeled with h is set with a number n > 0, 
then n concurrent firings of h-Iabeled transitions will be included in the step and likewise for the 
other labels. If the specified step cannot be executed (e.g. there are not enough tokens available), 
a maximal substep of the specified step is chosen. From the possible steps, one is chosen nonde-
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terministically. 

The device, while executing a step F, displays in the "step" dials the number of concurrent firings 
of h-Iabeled transitions for each label h in F and displays in the "marking" dials first the state 
reached after consuming the tokens required for F and then the state reached after completing 
the step F. 

At any time, the observer may press "undo", restoring the situation before his last action. The 
observer is assigned the task of experimenting with N through the device and trying to match 
his observations to the behavior of net M. He must report whether he can detect any differences 
between M and N. 

Such a difference may arise when N displays an observable behavior that cannot be matched by 
any behavior of M. If N and M would be the nets in Figure 2, he could warp to the state a2 , and 
discover that firing h I blocks. Since such a deadlock cannot occur in M, he can report their being 
different. 

However, had N and M been interchanged, he cannot be sure so easily. He can warp to a2 and fire 
h I as often as he likes, but, for all he knows, every time he warps to a2 , a non-deadlocking state 
may be chosen. So the non-occurrence of a deadlock in N gives no information as to M and N 
being different. For this very reason the LPT net testing device comes with a "fairness warranty" 
from its manufacturer: 

By performing sufficiently many experiments with our device, every possible out­
come will occur. 

In small print, it is defined what "sufficiently many" means in terms of the size of the net N in­
serted and the nature of the experiments conducted. So after a while, failing to observe a deadlock, 
the observer may conclude that M and N are indeed different, provided that the number of places 
and transitions of the net N does not exceed a given upper bound. 

We assert that LPT nets N and M are structurally bisimilar iff the observer cannot discover any 
differences between them in the above way. For instance, the difference between the net in Fig 4 
and the same net with transition u removed can be discovered by warping to alblcl and discov­
ering that one net sometimes refuses the step hlkl and the other not. 

The testing device described above is very powerful indeed. One may remove the fairness war­
ranty (giving ready simulation), the undo button (giving failure-like equivalences) and/or the warp 
buttons and dials (giving behavioral equivalences). These possibilities certainly merit further in­
vestigation, especially the structural ones (allowing warps), as the behavioral ones will be similar 
to those mentioned in [PoRS92]. 

We have introduced structural net bisimulation and studied a few of its properties. Other prop­
erties of this equivalence relation, like causality preservation or congruence w.r.t. operations like 
refining transitions and/or places need further investigation. 

The bisimilarity relations in this paper can be compared to strong bisimilarity for process graphs. 
Each token within the state and each transition firing in a step is of importance. In contrast, weak 
bisimilarity allows places and transitions to be labeled with the invisible label •. Tokens in .­
labeled places should only be noticed by the fact that they enable steps that can be noticed. Sim-
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ilarly, the inclusion of -r-Iabeled transitions in a step is only noticed by the fact that tokens are 
consumed or produced that can be noticed. 

For practical verifications, some form of weak bisimilarity cannot be dispensed with, so an ex­
tension of the present theory in this direction is necessary. Another interesting extension is to 
high-level (e.g. colored) nets. 
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