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Structural Petri Net Equivalence

M. Voorhoeve {email: wsinmarc@win.tue.nl)

Eindhoven University of Technology

Abstract

An equivalence relation, called structural bisimilarity, is given for labeled Place-Transition
nets. In contrast to behavioral bisimilarity of nets, this equivalence only depends upon the
structure of the nets considered, that is, their places and transitions and the way these are
connected. It does not involve any conversion to transition systems. Algorithms are given
for reducing a net to its normal form and deciding whether two given nets are bisimilar. The
paper concludes by giving a behavioral characterization of structural net bisimilarity, A given
net induces an ordered process space by considering markings as states, steps as transitions
and bag inclusion as the partial ordering. Structural bisimilarity of nets is equivalent to order-
preserving (noninterleaving) bisimilarity of their induced process spaces.

Keywords: Petri Nets, Concurrency, Bisimulation, Graph algorithms.

1 Introduction

A Petri net is a bipartite directed graph. The nodes of a net are divided into passive nodes, called
places and active ones, called transitions . The edges are divided into consumption edges lead-
ing from places to transitions and production edges leading from transitions to places. Places
that have a consumption (production) edge leading to (from) a transition are called input (output)
places of that transition. A Petri net can be marked with tokens in its places.

Marked Petri nets can model the behavior of concurrent dynamic systems. The state of such a
system is represented by the marking of the net. A step of the system consists of the concurrent
Jfiring of one or more transitions. The step can occur if the transitions in it are enabled, i.c. they
all can consume enough tokens from their input places. If the step occurs, the enabling tokens are
consumed from the input places and new tokens are produced for the output places. This leads to
a new marking (state).

Marked Petri nets are widely used in concurrency theory. They can be represented graphically and
their behavior can be easily understood. Constructions exist for operators in languages like ACP
and CCS: sequential composition, choice, interleaved merge and concurrent merge (c.f. [G1Va871).
Causal subtleties like confusion, disjunctive causality and resolved conflict (see [Gla95]) that can-
not be expressed in ACP and CCS are expressible in the behavior of Petri nets. Since the con-
structions for sequential composition and choice are somewhat cumbersome, Petri nets are being
regarded as a kind of “assembly language” of concurrency, providing models for “higher” aige-

'The term “transition” in Petri net theory deviates from common usage. Petri transitions can bring about state
changes (ordinary transitions). We call state changes “steps” as much as possible to avoid confusion,




braic languages. As a consequence, the states of nets are abstracted from and reduced to mere
“causes” for future actions. An exponent of this approach is the Petri Box Calculus [BeDH92].
However, this use of Petri nets does not fully exploit its potential. High-level Petri nets are being
used to describe large-scale systems in a concise and accessible way. With tools like Design/CPN
([Jen92]) and ExSpect ([HeSV91]), Petri nets have become a specification language as well! Ad-
vantages of such a direct Petri net based modeling are the graphical representation and access-
ability for non-specialists.

Another advantage is the possibility to describe an externally visible state. In fact, states (bags
of places) are the dual of steps (bags of transitions). Many concurrent systems possess a state
that can be observed by its environment and is used to base decisions upon. However, what can
be observed from the state is in general only a projection of the actual system’s state, just like
what is observed from a step is a projection of the actual step taking place within the system. An
ACP-based approach that incorporates states in a similar way can be found in [BaBe95].
Making the distinction between observable and actual states and steps can be done by labeling
places and transitions, The labels constitute the observable part of a state or step. Places and
transitions with the same label may cause different states or steps to be observed as the same.
By relabeling the net, thus identifying some states and steps, one obtains projection or abstrac-
tion. Often, one wants to verify that some projection of a complex system (the implementation)
is equivalent to some simple system (the specification).

In this respect, Petri net based modeling suffers from a major drawback when compared to al-
gebraic languages. These languages possess operators for renaming and abstraction, with a rich
and powerful equivalence theory. Such a theory is less well developed for Petri nets, possibly be-
cause of its assembly language status. One way of catching up is to convert nets into algebraic
process terms, like in [BaVo95]. However, this approach amounts to computing the occurrence
graph, so equivalence relations stemming from it may be undecidable, even for finite nets. Note
that finite nets can have infinite behavior. Also the state of a net is disregarded. Other approaches,
viz. [PoRS92] have similar drawbacks.

In this paper, the more ambitious approach is taken of developing a purely Petri net oriented equiv-
alence theory, that does not require any transiation from the net to a transition system. A bisimu-
lation oriented equivalence relation for Petri nets is defined that is decidable for finite nets. Algo-
rithms are given for normalizing a net and deciding bisimilarity of nets. It is proved that this struc-
tural bisimilarity corresponds to order preserving bisimilarity for the (ordered) process spaces in-
duced by the net. The relation thus preserves behavioral properties, like liveness and bounded-
ness. We assert that it also preserves many structural properties.

The advantages of this novel approach for Petri net analysis are manifold. Instead of analyzing a
given net, its (smaller) normal form can be taken as a starting point for analysis. Most important,
however, is the theoretical foundation of an equivalence theory that takes both actions and states
into account.

The paper starts with a notation section, In a section on Petri nets we give our structural equiva-
lence relation and establish some basic properties. A next section is devoted to an algorithm that
normalizes a given net. The following sections give the promised behavioral characterization of
structural net bisimulation and a small example. The final section discusses the practical meaning
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of structural net bisimilarity.

The author wishes to acknowledge Andries Brouwer for sharing his insights in graph algorithms
and Twan Basten for many fruitful discussions and suggestions for improvement.

2 Basic notions

Let A, B, C be sets. A x B is the set of ordered pairs (a, ) witha € A and b € B. IP(A x B) is the
set of relations between A and B. Let R € IP(A x B) be such arelation. For a € A; b € B we write
a R b iff (a, b) € R. The domain dom(R) of R is defined asthe set {ac A | 3be B : a R b}. The
inverse R™! of R is defined by » R™' a & a R b. R is total iff dom(R) = A and functional iff
VacA;b,beB:aRbAa RV = b=1V. Ris injective iff R~! is functional and surjective iff
R~!is total. Functional relations are called functions. The set of total functions within IP(A x B)
isdenoted A — B. For f € A — B; a<€ A, the unique element b such thata f b is named f (a).
A bijective relation or bijection is functional, total, injective and surjective. The composition Ro S
of relations ReIP(A x B)and S€IP(B x C) isdefinedby Vac A;ceC:aRoSc & Jbe
B :(a@aRb A bSc). The transitive closure Rt of a relation R € IP(A x A) is the relation
RU(RoRYU(Ro(RoR)U....

The set IB(A) of bags with elements from A is the set of total functions in A — IN. For 8 €
IB(A); a € A, B(a) is called the multiplicity of a in 8. We write a € B iff 8(a) > 0. B is called
Sfiniteiffthe set{a € A | a € B} isfinite. A finite bag 8 is denoted by juxtaposing the elements a € 8,
superscripted with their multiplicity like a! (a singleton bag) or a®b'c®. The empty bag is denoted
0. The size of a finite bag ai‘l ...a"isk +...+k,. Fora, § € B(A), bag addition and subtraction
isdefinedby Vac A : (w+B)(a) = a(a)+B(a)andVa€ A : (@ — B){a) = max(0, a(a) — B{(a)).
For n > 0; a € IB(A), we write n. fora + ... + « iterated n times. By definition, 0.a = 0. If
I = {i1...,i,}is a finite set and o; € IB(A) for i € I, then we write Z;g;c; fore, + ... + a;, .
X, epa; equals 0 by definition. If I = if‘ ... % is a finite bag and o; € B(A) for i edom([), then
we write ;e ; fork; .o +. . .+k,.t;,. Z;co0; equals 0 by definition. The partial order < on bags
isdefinedbya < 8 & a— B = 0. This is called bag inclusion. Weseta < § S a < SAra # f
(strict bag inclusion).

For ReIP(A x B), the relation R € IP(IB(A) x IB(B)) relates bags iff the elements of these bags
can be related by R. R is defined as the minimal (w.r.t. set inclusion) relation satisfying 0 R 0,

a R & aRbanday Rﬁ1 /\azRﬁz = o +a2R}5‘1 + B,. If R is a function, so is R.

3 Labeled P/T nets

We presuppose an alphabet £ of labels. A labeled place-transition net (or LPT net) is a bipartite
directed graph (with multiple edges aliowed) having labeled nodes.

Definition 1 An LPT net N is a four-tuple (S, T, F, £), where S, T are disjoint sets (of places
and transitions respectively); F € B((T x S)U (§ x T)) is the weighted flow relation and € €
(T U 8) - Lis the labeling function. The pairs (d, e) in dom(F) with F(d, e) > 0 are called
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Figure 1: Example nets

arcs and F(d,e) is the weight of such an arc. Given a net N, its components are denoted by
subscripting them with N.

For a given net, the cause and effect functions C, E € T — IB(S) are defined as follows. For
teT,C(t) = ZpesF(p,t).p' and E(t) = T,esF (2, p).p'.

In many cases the weights in the flow relation are 1. For this class of LPT nets, the definitions of
F, C and E can be simplified, involving sets instead of bags.

The most distinctive equivalence relation on LPT nets is isomorphism, Two nets are isomorphic
iff their nodes can be mapped 1-1 to one another while preserving node labels and edges with their
weights. Isomorphism abstracts from the sets S and T of an LPT net by considering the labels
and the net structure alone.

Definition 2 An isomorphism between LPT nets N and M is a bijection ¢ € P((Sy X Sy ) U (Ty x
Tym)) such that foralld, eeTy U Sy: €x(d) = Lyu(P(d)) and Fy(d, e) = Fy(¢p(d), ¢ (e)). LPT
nets N and M are called isomorphic iff there exists an isomorphism between them.

Clearly, isomorphism is an equivalence relation on LPT nets. Up to isomorphism, LPT nets are
depicted by drawing the places as circles and the transitions as squares, with their labels inscribed.
These elements are connected by arrows representing arcs, where the weight of the corresponding
arc, if greater than 1, is shown. For reference, identifiers (not labels!) can be added next to the
components (places or transitions) of nets.

Example The Figure 1 shows two LPT nets N and M. Both nets possess places with labels @ and
b and transitions with labels ~ and k. All the arcs from the a-labeled places in N and some arcs
from the a-labeled places in M have weight 2. Clearly, N and M are not isomorphic. O

Process graph isomorphism is considered too fine an equivalence relation for concurrent systems
as it allows hardly any verifications. It distinguishes a process x from the choice between x and
x. Bisimulation abstracts from choices between equivalent alternatives while preserving choices
that do affect the future behavior of a process. It is said that bisimulation preserves the branching
structure of a process.

Likewise, we define a structural equivalence relation on LPT nets that is coarser than isomorphism
but preserves the branching structure of the net, i.e. the way in which causes determine effects and
the point where effects with the same cause diverge. Two LPT nets are considered equivalent iff
their places and transitions can be related in such a way that (1) only elements of the same kind
and with the same label are related, (2) causes and effects of related transitions are related, and
(3-4) a bag related to a transition cause is a cause of some related transition.
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Figure 2: A bisimulation

Definition 3 Let N, M be LPT nets. A structural bisimulation between N and M is a total and
surjective relation R € IP((Sy x Sy)U(Tw x Ty)) such thatforallt e Ty, ue Ty, de SyUTy e
Sy UTy; PelB(Sy); Q€IB(Sy),

1 dRe = Iy(d) = £ (e),

2 tRu = Cn@) R Cyu) A Ex(t) R Ex(u)

3 Ch®RQ = FweTy:Cuv)=QAtRuv,

4 PRCyw) = 3FweTy:Cy(v)=PAvRu,
Nets N and M, are called bisimilar iff there exists a bisimulation between them. If there exists a
functional bisimulation between N and M, M is called a projection of N. A total and surjective
relation satisfying conditions 1 and 2 above is called action preserving,

We simply use the term “bisimulation” in the context of LPT nets to denote structural bisimu-
lation. Note that for state machines (all transitions having singleton cause and effect) with all
places having the same label, structural bisimilarity coincides with “standard” bisimilarity (c.f.
[BaVe95]). Also note the asymmetry in parts 3 and 4 of the definition. The absence of an anal-
ogous requirement for the E function signifies that bisimulation is biased toward the future of a
marking, rather than its history.

Example The Figure 2 illustrates a bisimulation between the nets L and M. The bisimulation is
indicated by dotted lines. Note that the nets L and N are not bisimilar. This can be deduced from
the fact that the bag p'q' in N must be related to the bag r? in L if a bisimulation existed. Now,
r? = C.(¢), whereas no transition u in N exists such that Cy (1) = p'q’. O

Lemma 1 The following properties hold. Let N, M, L be LPT nets.

i) An isomorphism between N and M is a bisimulation.
ii) The inverse of a bisimulation between N and M is a bisimulation between M and N.

iii) The composition of a bisimulation between N and M and a bisimulation between M and
L is a bisimulation between N and L.

iv) Bisimilarity is an equivalence relation on LPT nets.
v} A bijective action preserving relation between N and M is an isomorphism.

vi) If N is a projection of M and M a projection of N, then N and M are isomorphic.




Figure 3: Bisimilar nets

Proof: The first three properties are trivial from the definition. The fourth follows from the first
three. The identity isomorphism yields reflexivity. Taking the inverse yields symmetry. Compo-
sition yields transitivity. To prove the fifth, let ¢ be a bijective action preserving relation between
N and M and let ¢t € Ty. By action preservation condition 2, P(En(t)) = Epn(¢@)) and since
¢ is bijective, Ex(0)(p) = S(Ex(®))(@(p)). So we deduce for any p € Sy that Fy(z, p) =
En()(p) = En(¢())@(P)) = Fu(p(0), ¢(p)). Similarly, Fy(p,?) = Fyu(@(p),d(#)). The
last property follows from the fifth, since a projection that does not reduce the number of places
and transitions of a net must be bijective. O
The following property illustrates the way in which structural properties of nets are preserved
under bisimilarity.

Definition 4 Let N be an LPT net and P a set of places of N.
P isasiphon of N iff Vi €Ty : ZpepFn(t, p) > 0= Zpep Fx(p,t) > 0.
Pisatrapof N iff Vi€ Ty : Zpep Fn(p,t) > 0= Zpep Fy(t, p) > 0.

Property 1 If N, M are bisimilar LPT nets, then to each trap P of N there corresponds a trap
Q of M having the same set of labels.

Proof: Let R be a bisimulation between N and M and let P be a trap of N. We will show that
theset Q ={geSy |IpeP : pRgqg}isatrapof M. Suppose Pisatrapandletge Q; u Ty
be such that Fy (g, u) > 0, s0 g € Cp(u). It suffices to show that there exists a ¢’ € Q such
that ¢° € Ep(u). By Definition 3.3, there exists a p € P;t € Ty, such that p R ¢,t R u and
pe€Cy(1). Since P is atrap and Fy(p, t) > O, there exists a p’ € P such that p’ € Ex(¢). Thus
by definition 3.2, there exists a ¢’ such that p’ R ¢’ (so ¢’ € Q) and g’ € Ep (u). O
An analogous property for siphons does not exist, as is shown by Figure 3. The place p is a siphon
of net NV, but the bisimilar net M does not contain a siphon.

4 Algorithms

In this section, we study equivalence classes of LPT nets modulo bisimilarity. We use a standard
technique (see e.g. [Cau90]) to arrive at a normal form for each equivalence class (modulo iso-
morphism).

We define a class of bisimulations of a given net N with itself called congruences. Unlike ordi-
nary bisimulations, this class can be closed under (relation) union and we can compute the largest

6




congruence R of N w.r.t. set inclusion. We prove that R can be regarded as an equivalence rela-
tion upon the places and transitions of N and construct the “quotient” N/R. This quotient net is
bisimilar to ¥ and is unique up to isomorphism.

Computing the largest congruence of a net N is polynomial-bounded w.r.t. the number of places
and transitions of N, but no effort has been made to optimize the straightforward algorithm.
Checking whether two LPT nets are isomorphic is equivalent to checking graph isomorphism.
This even holds for the subclass of nets in normal form w.r.t. bisimilarity ([Bro96]). Graph iso-
morphism may be intractable (c.f. [GaJo79]), but in practice Petri net isomorphism is easily estab-
lished, e.g. by the algorithm in [Mit88]. In the first step of this algorithm, the initial partitioning
must also be done on the basis of label and kind (transition vs. place).

Definition 5 A congruence of an LPT net N is a bisimulation R between N and N that satisfies
ford,e, feSnUTy,

reflexivity dRd

symmetry dRe=eRd

transitivity d ReneR f=dR f
An action preserving relation between N and N satisfying these conditions is called congruent.

We give a characterization for congruences that is easier to check than the defining conditions.
In a congruence that relates places p and ¢, to every transition ¢ with p € C(¢) corresponds a
transition u such that C(u) = C(¢) — p! + g' and any congruent action preserving relation with
this property is a congruence.

Lemma 2 Let N be an LPT net. A congruent action preserving relation R €IP((Sy x SyYU(Ty %
Tw)) is a congruence iff for all p,q€ Sy and t €Ty,
PRgApeCy(®) = ueTy:t RunCyu)=Cxn(t)—p'+4q.

Proof: Suppose that R is a congruence and let p, g € Sy; t € Ty such that pe Cx(#) and p R gq.
Since p R g and p R p, we have that Cy (2) R (Cy(t) — p! + q'), so there must exist a u € Ty
such thatz R u.

Conversely, let R satisfy the lemma conditions and let ¢ € Ty; Q € B(Sw) such that Cy (¢) R Q.
There must existak > Oand py,q: ..., pi, ge Suchthat @ = Cy(t) — p; +q} ... — pl +q,.
By the lemma conditions we conclude that there exist 1, ... ,#, €Ty suchthatt Ru;... Ru,
and forle€ 1.k, Cy(u)) = Cy(t) — pl + 4} ... — p! +4a],50 Q = Cy(wy).

Since R is transitive, we conclude that ¢t R u;. By symmetry, Q R Cy(u) implies the existence
of ate Ty such that Q = Cy(t) and ¢ R u. So R is a bisimulation, and thus a congruence. O
As a corollary, we deduce that the transitive closure of the union of two congruences is again a
congruence. This entails that every LPT net N possesses a maximal congruence, which is ob-
tained by taking the transitive closure of the union of all congruences of N.

Lemma 3 Let N be an LPT net and let R, S be congruences of N. Then (R U S)* is also a
congruence of N.




Proof: Clearly, the union of R and § is action preserving, reflexive and symmetric, so (R U §)*
is congruent. We shall prove that (R U §)* satisfies the condition of the previous lemma. Let
Psq € Sy; t € Ty such that p (RU $)* g and p € Cy(1). By the definition of (R U §)*, there
mustexist p;...,pr€Syvand Q... , O, Qrr1 €{R, S} suchthat p Oy p1... Gx pr Or+1 q.

By the condition of the previous lemma, there must exist ¢,... , &, ¥4 € Ty such that Cy(f)) =
Cv(@)—p'+pl...,Cn{te) = Cn(ti1 — p)_, + pl) and Cn(w) = Cy () — p} + q', whereas
tQiti... Qe Qupr u. SoCy(w) = Cn(®) —pl +q*and ¢t (RU St u. 0

Given an LPT net N and a congruence R of N, we construct the net M = N/R (N modulo the
congruence) as follows.

Construction 1 Partition Sy and Ty into sets of elements related by R, so that elements from
different sets are unrelated. For d € Sy U Ty let d denote the set containing d. Let Sy = {p | pe
Sn}and Ty = {t | t € Ty} respectively. For i € Ty; p € Sy, set Fy(f, p) = ZyepFn(t, q) and
Fu(p,t) = ZyepFn(q. 1) for some t €i. Finally, let Lu(d) = Ex(d).

Note that the construction of £,; does not depend upon the choice of d. Let t, u € Ty withf = &,
sot R u and let p € ). Since R is action preserving, we have Cy () R Cy(u),so TpepFn(b, 1) =
ZpepFn(b, u). Thus Fy (2, p) does not depend upon the choice of t. The argument for Fy (5, f)
is similar,

Example In Figure 2, the net M possesses a congruence R, which can be obtained by relating all
nodes with the same label. The net L is isomorphic to M/R. g

Lemma 4 Let N be an LPT net and let R be a congruence of N. The net N/R is bisimilarto N.

Proof: Let p = {(d,d) | d € Sy U Tx}. We shall prove that p is a bisimulation between N and
M = N/R. Note that p and thus p are functions, so forde Sy U Ty; e Sy U Ty; DeB(Sy) U
B(Ty); E €IB(Sy) U IB(Ty) we have p(d) = ple) ©& d Reand p(D) = p(E) < D RE.
Clearly, £x(d) = £)(d), so bisimulation property 1 holds.

Let t € Ty. We want to show Cy(t) § Cy (), and thus 3(Cy(2)) = Cy(f). Now s(Cy (1)) =
B(EpesyFn(p, 1).pY) = Zpes, SEN(P, 1).p") = Zpesy Fn(p, 1). 5! = Tpesy TqepFn(t. q).§" =
2 pesu(ZqepFult, q)).p' = Zpesy,Fu(E, p).p' = Cu (7). Similarly, p(En (1)) = Ey (7). This
completes our check of bisimulation property 2.

Now let t € Ty; Q € IB(Sy) such that Cy(r) § Q. By the foregoing, Q@ = A(Cn (1)) = Cy (1),
proving property 3.

Finally, let it € Tyy; P €eIB(Sy) such that P p Cy (i), so p(P) = Cy (). Choose a u in i. Then
A(Cn(u)) = Cy (@) and p(u) = &. Since H(P) = H(Cwn(u)) we must have that Cy(u) R P.
Since R is a bisimulation, there must be a t € Ty such that Cy(t) = P and ¢ R u. Thus, { = &, so
t p i2. This proves property 4 and thus completes our proof. a
The function p = {(d,d) | d € Sy U Ty} is called the canonical projection of N onto N/R.
Normalizing an LPT net N consists of finding the maximal congruence R within N.

Theorem 1 Let R be a maximal congruence of an LPT net N. Then N/R is - up to isomorphism
- a unique normal form of the equivalence class of LPT nets bisimilar to N.
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Given an LPT net N, compute a maximal congruence R of N.

R« {p,geSy|t(p)=L(@}U{t,ueTy| () = £},
U « true;
while ¥/ do
U < false;
for (d,e)e R do
ifdeSy A (3tedom(En{d)) :

(VueTy:t Ru= Cy(u) # Cn(t —d' +e'))
vdeTy A (Cn(d), Cn(e)) & RV (En(@), Ex(e)) € R)
then R «<— R — {(d, e)}, U « truefi

od
od.

Table 1: Maximal congruence algorithm

Proof: Let p be the bisimulation between N and N/R. If Q is a bisimulation between a net M
and N, the transitive closure of @~! o Q is a congruence of N, and thus must be contained in R
(by the maximality). Soford,ee Sy U Ty; feSuUTy wehave f QdA f Qe=dRe. So
Q o p is a projection. Thus, by Lemma 1.6, N/R is unique up to isomorphism. O
The algorithm in Table 1 constructs the maximal congruence of a given net N. Initially all ele-
ments with the same label are related to one another. Any related pair violating the conditions of
a bisimulation is removed. The removal of relations may cause other pairs to violate the condi-
tions. This process is repeated until no pair needs to be removed anymore. The resulting relation
is the maximal congruence of the net. The boolean variable U indicates whether an update of the
relation R has occurred in the current loop.

The algorithm gives a congruence, for if U remains false, all pairs in R have been checked to
satisfy the condition of Lemma 2 as well as the action preservation condition. It contains the
identity relation, so it is reflexive. The loop invariant is that R contains the maximal reflexive
bisimulation as a subrelation, which proves that R is maximal. It must therefore be symmetric
and transitive and thus a congruence.

5 Process theory

We now define processes associated to LPT nets. We start by defining transition systems aug-
mented with a partial order, and where states, like steps, are labeled. Let L be a fixed set of labels.

Definition 6 An ordered process space consists of disjoint sets P of states, and A of steps together
with a ternary step (transition) relation _~— _inIP(P x A x P), partial orders < on A and on
P and a function £in (AU P) > L.




Figure 4: Net and process space

For ordered process spaces, bisimulation equivalence can be extended with order preservation.
Ordered process spaces are order preserving bisimilar iff their states and steps can be related in
such a way that related objects are of the same kind, have the same label and have the “transfer
property” w.r.t. both the transition relation and partial order.

Definition 7 Let V, W be ordered process spaces. A total and surjective relation R € P((Py x
Pw) U (Ay x Aw)) is called an order preserving bisimulation (or OP-bisimulation for short)
between V and W iff foralld,d’,d" e Py U Av;e,€',e" € Py U Ay such thatd R e,

1 &v(d) = Ewle),

2 d<yd = IfePyUAy:e<w fAd R,

3 e<wyeé = afEPVUAdefvf/\fRe',

4 d—d'-a»vd” = ElfeAw,gePW:e—ngAd’Rf/\d”Rg,
5 ei>we” = EifeAy,ger:d—f>vg/\fRe’/\gRe”,
6 d-2>,d" = 3f,gePy:f->ygAd RfAd Rg,

7 e —sye” = EIf,gePV:f—dn»Vg/\fRe’/\gRe”.

V and W are called OP-bisimilar iff there exists an OP-bisimulation R between them.

Bisimilarity is an equivalence relation, which can be proved by taking the identity relation for
reflexivity, the inverse relation for symmetry and relation composition for transitivity. Note that
if the partial order is trivial (i.e. d < e either always or only if d = e) and all states have the
same label, steps with the same label can always be related and OP-bisimilarity corresponds to
“standard” bisimilarity.

AnLPT net N defines an ordered process space V by defining states as markings or bags of places
and steps as bags of transitions, the partial order by bag inclusion and the transition relation by
token consumption and production, allowing for autoconcurrency (firing of the same transition
concurrently with itself).

Definition 8 Let L = IB(L). An LPT net N defines an ordered process space V = Vy as follows.
Py = B(Sy); Ay = B(Ty); &y = £y. The partial order < on 'V is given by bag inclusion.
For p,p' € Py;a € Ay we have p =5, p' iff (Z1eaCn(8)) < PA P = p — (ZraCn () +
(ZreaEN(t))o

Example The Figure 4 shows a net and part of the process space defined by it. The netis in normal
form w.r.t. structural bisimulation and thus cannot be reduced. This net can be interpreted as a
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factory floor containing three machines. The machines ¢, 4 can process the same jobs b, whereas
the machine v processes jobs ¢. The machines u, v need an a-resource {operator). The ¢t machine
can work without operator.

In the process space, the 1-superscripts of the states and steps have been omitted. Note that the
steps ¢! and u! cannot be related by an OP-bisimulation, since ¢! < ¢!v! and there does not exist a
step > u! between the states p'g'r! and r'. The interpretation is that the machine u can occupy a
resource also needed by v, so they cannot work concurrently. This behavior does not occur when
u is removed, so the factory floor with and without u have a different (qualitative!) behavior. [
We now prove our main theorem relating structurally bisimilar nets to order preserving bisimilar
process spaces.

Theorem 2 Let N, M be LPTnets and let V, W be the respective process spaces defined by them.
Then V and W are OP-bisimilar iff N and M are structurally bisimilar.

Proof: We first prove the “if” part. Let R be a structural bisimulation between N and M. Let O be
the relation between V and W defined by O = R. We shall prove that Q is an OP-bisimulation,
Bisimulation conditions 1-3 for Q can be verified trivially.

We prove condition 4. Condition 5 then follows by symmetry. Let d’ € Ay;d,d” € Py;e €
Py such that 4 @ e and diw d”. Then (Z,c0Cn(t)) < dandd” = d — (Z,caCn(@®) +
(Ziea En(1)). Fort €d’, we can find bags B, € Py suchthat £, B, < eandVted’': Cy(t) Q B,.
Since R is a bisimulation between N and M, there must exist a u, € T)s such that Cy (u,) = B, and
t R u,. Take €’ = Zyequ,. Clearly, d’ Q €. Moreover, Zyee Cn () = i Cn () = Tiea By <
e. Sothere exists a (unique) ¢” such thate N w €’ Sinced’ R ¢, there exists a 1-1 correspondence
between the ¢ in d’ and u in €’ such that corresponding ¢ and u satisfy + R u. Since R is action
preserving, it follows that ,c v En (1) R Z.,c. Ex(u). By the definition of d” and e”, we conclude
thatd” Q e”.

We prove condition 6. Condition 7 then follows by symmetry. Letd € Ay; d’,d" € Py; e € Ay
suchthatd Q e andd’ —%5 , d”. Letdy = £,c4Cn (¢). Thendy < d’ andd” = d'—do+Z:ea En (£).
Foreachted wecan find au,cesuchthatf R u, and e = E,Edu}. Let eg = ZyesCn{(u,). Since
dy Q ey, we can find an e; € Py such that d' Q ey + €. Take ¢’ = ey + e; and ¢” such that
¢ 2> €. Clearly,d” Q e” as well. This settles the “if” part.

We now prove the “only if” part. Let Q be an OP-bisimulation between V and W. Note that,
by OP-bisimulation condition 1, we can deduce that in this case OP-bisimulation conditions 2-3
also hold when strict inclusion is substituted for inclusion. So from Lemma 5 we may deduce that
there exists a total and surjective relation R € P({(Sy x Ty) U (Sy x Ty)) such that Q = R. We
shall prove that R is a structural bisimulation between N and M. Property 1 is easy.

We prove net bisimulation property 2. Let t € Ty and u € Ty, such that ¢ R u. We know that
Cn () ~>y En(?) and Cy () -S>, Ex(u), whereas ! Q u!. Since Q is an OP-bisimulation,
we deduce that Cy (¢) Q Cy(u) and En(2) O En{(u).

We prove net bisimulation property 3. Property 4 then follows by symmetry. Lett € Ty; B €

IB(Sy) such that Cy(¢) @ B. Since Cy(t) L v En(t), there must exist § € Aw, B’ € Py such
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that B 25, B’ and ¢! Q B. Since ¢! is a singleton, B must be a singleton, say x* and ¢ R u.
Moreover, Cy(t) is the smallest state in Py admitting the step ¢'. It follows from properties 2-3
of Q that B has the same property w.r.t. the step u. So B = Cy(u). Thus R is indeed a structural
bisimulation. O

Lemma 5 Let A, B be finite sets and let Q € IP(IB(A) x IB(B)) be a total and surjective relation
satisfying for o, o' €IB(A); B, B’ € B(B) such thata Q B,

a<a = AyeBB):B<yAd Qvy,

B<pB = FyeBA):a<yAy @F.
Then there exists a total and surjective relation R € IP(A x B) such that Q = R.

Proof: Note that all bags are finite since A and B are finite. We prove by induction that Q equals
some R when restricted to bags of size < k. Because of the conditions on Q and since 0 is the
minimal element in both sets, we deduce that Q relates 0 to and only to 0. Since singleton bags
are the only bags that have 0 as a strict subbag, Q must relate singletons to and only to singletons.
This settles the cases for sizes 0 and 1. Clearly, R must be the relation definedbya Rb < a'! Qb'.
Let € IB(A); B € IB(B) such thata Q 8. Let o; for i € I be the set of all strict subbags of o
and let §; for j € J be the set of all strict subbags of 8. By the conditions on @, each «; must be
Q-related (and thus R-related by the induction hypothesis) to a ; and vice versa. By some case
analysis it is easy to show that o R 8. g

6 Behavioral properties of nets

Theorem 2 shows how behavioral properties of LPT nets are preserved under structural bisimu-
lation. We define a few of these properties. If N is an LPT net and V the process space derived

from it, we adopt the notation P [A)y Q for P 25, Q.

Definition 9 A marked LPT net is a pair (N, P) where N is an LPT net and P € B(Sy) amarking
of N. A marking Q € IB(Sy) is called reachable from (N, P) (notation P [*)y Q) iff there exist
k> 0P = 0Q1,...,0 = Q € B(Sy); A1... A € IB(Ty) such that Q; [Ai)x Qi1 for
0 < i < k. The marked net (N, P) is called bounded iff there exists an n > O such that every
O € B(Sx) with P [x)y Q has size < n. It is live iff for every Q € B(Sy) with P [%)y O and
t € Ty there exists a @', Q" € IB(Sy) such that Q [x)y Q' [t")x Q". It deadlocks iff there is no
t € Ty; Q € BB(Sy) such that P [t'}y Q. It has a deadlock iff there exists a Q € B(Sy) with
P %)y Q such that Q deadlocks.

The proof of the following property is trivial from Theorem 2. Note that liveness is not completely
preserved. A counterexample can be found in Figure 3. This counterexample - and the whole idea
behind transition labeling - suggest a weakened definition of liveness: an LPT net is live iff for
every reachable state Q and transition ¢ a subsequent state Q' and transition u with the same label
can be found such that « can fire.
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Figure 5: Queuing systems

Property 2 Let (N, P) be a marked LPT net, R a congruence of N, M = N/R, p the canonical
projection of N to M and Q = p(P). Then

(N, P) is bounded iff (M, Q) is bounded,

(N, P) deadlocks iff (M, Q) deadlocks,

(N, P) has a deadlock iff (M, Q) has a deadlock,

(N, P) is live implies (M, Q) is live.

7 Example

In Figure 5 two bisimilar nets are depicted that implement queues. The I(input)-labeled place
contains clients that are to be served by the system. Tokens are produced for this place by the
firing of the A(arrival) transition. The R(resource) places contain available servers. When an
S (start) transition fires, a client and server are consumed and a B(busy) client-server combination
is produced. When F(finish) fires, this B combination is consumed, the client is transferred to
O(output) and the server to R. The D(departure) transition can remove these clients.

In M, two parallel queue systems are depicted, whereas N is a single queue system. Clearly,
both nets are structurally bisimilar, so their process spaces are OP-bisimilar. This means thate.g.
adding two tokens in place R of N and one each in the resource places of M will result in processes
that behave the same.

Interleaving bisimilarity of the “action” parts of the nets N and M can also be proved by more
or less standard techniques, viz. BPA; with recursion (c.f. [BaVe95]). In this case, steps consist
of the firing of a single transition and states are not labeled. The nodes in the process space Vy
correspond to markings of the net N. Let Xy ;. » denote the node corresponding to the marking
I*B'R™ D", We derive the following recursive equations (*) for k, I, m, n €IN:

Xiimn = AXeq10mn + Sks0mm>0-Xi—1041.m—1.0 + Fino0. Xet—1,my1.0 + Dnso- Xt mon—1,

where Ap denotes the action A if P istrue and § if P is false. For the net M similar equations can
be derived for nodes Y 4, 1,.m,.m,.n- From these equations it can be deduced that Y, 1, m;,m,,» and
X1+, m+my,n Satisfy the same set of (guarded) equations derived from (*). The RSP rule then
yields bisimilarity of the process spaces, giving another structural equivalence of the nets.
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Figure 6: LPT net testing device

The method sketched above can be generalized to arbitrary finite nets, showing e.g. that the net
in Figure 4 and the same net with « deleted are bisimilar. It has the advantage of an axiomatic
approach, but is hard to derive algorithmically. The method of this paper has the advantage of
simplicity, modeling states and a concurrent step semantics.

8 Conclusions and further work

One may ask what structural LPT net bisimilarity amounts to in practice. This question may be
answered by a metaphor in the style of [Gla90]. An observer is given an LPT net M. At the same
time, an LPT net N is inserted in a testing device, which is depicted in Figure 6.

The device possesses four buttons, labeled “fire”, “add”, “del” and “undo”. It also possesses three
rows of dials, labeled “marking”, “step” and “warp”. Each dial is labeled with alabel from £ and
displays a nonnegative integer. The “step” and “warp” dials can be set by the observer.

Initially, the marking dials display zeros. To test the net N, the observer may set the “warp” dials
and press “add”. The device will respond by adding tokens to the net N. If the “warp” dial labeled
with a is set with a number n > 0, then n tokens will be inserted in a-labeled places and likewise
for the other labels. Tokens can be removed by setting the “warp” dial and pressing “del”. If the
“warp” dial labeled with a is set with a number #» > 0, then n tokens will be removed from a-
labeled places and likewise for the other labels. If the specified warp cannot be executed (there are
no a-labeled places in N or these places do not contain enough tokens), the maximum possible
number of tokens is added or removed. If there are several possibilities for adding or removing
tokens, one of them is chosen nondeterministically. After the warp, the “warp” dials display the
actual number of tokens added or removed and the “marking” dials display the marking (number
of tokens in g-labeled places for each label a).

The observer may also set the “step” dials and press “fire”. The device will respond by executing
a step corresponding to the set dials. If the “step” dial labeled with 4 is set with a numbern > 0,
then »n concurrent firings of A-labeled transitions will be included in the step and likewise for the
other labels. If the specified step cannot be executed (e.g. there are not enough tokens available),
a maximal substep of the specified step is chosen. From the possible steps, one is chosen nonde-
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terministically,

The device, while executing a step F, displays in the “step” dials the number of concurrent firings
of h-labeled transitions for each label 4 in F and displays in the “marking” dials first the state
reached after consuming the tokens required for F and then the state reached after completing
the step F.

At any time, the observer may press “undo”, restoring the situation before his last action. The
observer is assigned the task of experimenting with N through the device and trying to match
his observations to the behavior of net M. He must report whether he can detect any differences
between M and N.

Such a difference may arise when N displays an observable behavior that cannot be matched by
any behavior of M. If N and M would be the nets in Figure 2, he could warp to the state a2, and
discover that firing h! blocks. Since such a deadlock cannot occur in M, he can report their being
different.

However, had N and M been interchanged, he cannot be sure so easily. He can warp to a? and fire
h! as often as he likes, but, for all he knows, every time he warps to a2, a non-deadlocking state
may be chosen. So the non-occurrence of a deadlock in N gives no information as to M and N
being different. For this very reason the LPT net testing device comes with a “fairness warranty”
from its manufacturer:

By performing sufficiently many experiments with our device, every possible out-
come will occur.

In small print, it is defined what “sufficiently many” means in terms of the size of the net N in-
serted and the nature of the experiments conducted. So after a while, failing to observe a deadlock,
the observer may conclude that M and N are indeed different, provided that the number of places
and transitions of the net N does not exceed a given upper bound.

We assert that LPT nets N and M are structurally bisimilar iff the observer cannot discover any
differences between them in the above way. For instance, the difference between the net in Fig 4
and the same net with transition u removed can be discovered by warping to a'b!c! and discov-
ering that one net sometimes refuses the step 4'k! and the other not.

The testing device described above is very powerful indeed. One may remove the fairness war-
ranty (giving ready simulation), the undo button (giving failure-like equivalences) and/or the warp
buttons and dials (giving behavioral equivalences). These possibilities certainly merit further in-
vestigation, especially the structural ones (allowing warps), as the behavioral ones will be similar
to those mentioned in [PoRS92].

We have introduced structural net bisimulation and studied a few of its properties. Other prop-
erties of this equivalence relation, like causality preservation or congruence w.r.t. operations like
refining transitions and/or places need further investigation.

The bisimilarity relations in this paper can be compared to strong bisimilarity for process graphs.
Each token within the state and each transition firing in a step is of importance. In contrast, weak
bisimilarity allows places and transitions to be labeled with the invisible label 7. Tokens in t-
labeled places should only be noticed by the fact that they enable steps that can be noticed. Sim-
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ilarly, the inclusion of 7-labeled transitions in a step is only noticed by the fact that tokens are
consumed or produced that can be noticed.

For practical verifications, some form of weak bisimilarity cannot be dispensed with, so an ex-
tension of the present theory in this direction is necessary. Another interesting extension is to
high-level (e.g. colored) nets.
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