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Preface. 

"Graphs and Association Schemes" was the subject of the Combinatorial Theory 

Seminar Eindhoven in the fall semester of 1982. The selection of this subject 

was governed both by didactical considerations and by preference and scien­

tific involvement of the lecturers. Each week lectures were given by one of 

the senior members and by one of the student members. The present notes have 

been worked out by the students J.P. Boly and C.P.M. van Hoesel. 

Chapter 1 introduces spectral methods in graph theory, concentrating on 

graphs with a = 2 , and on those with a . = -2. Apart from most of the max m1n 
line graphs, this last class contains some further interesting graphs; they 

are interrelated by switching. Finally Turan's theorem on cocliques is applied 

to a problem in coding theory. In Chapter 2 some more results on eigenvalues 

of matrices are derived such as interlacing theorems. These are applied in 

the theory of graphs (e. g. in connection with generalized quadrangles) and 

of des (e.g. in connection with absolute points in a projective plane). 

The next chapters are dedicated to association schemes. Chapter 3 introduces 

the Bose-Mesner algebra and P- and Q- polynomial schemes. Examples from 

PG(2,4), from generalized hexagons, and from regular two-graphs are worked out. 

The chapter culminates in the MacWilliams transform and in Delsarte's code­

clique theorem. There is an appendix on algebraic tools. Chapter 4 discusses 

Hollman's results on Pseudo-cyclic association schemes: (i) equal multipli­

cities iff equal valencies plus an extra condition; (ii) construction of 

a new 3-scheme on 28 vertices which, with Mathon's scheme. is 

unique; (iii) construction of a new class of schemes from the action of 

PO(3,q) on PG(2,q), q = 2m. 

Chapter 5 deals with few-distance sets. The absolute and the mod p bound 

for spherical s-distance sets are proved. The relations between two~graphs, 

switching classes and equiangular lines are indicated. The possibilities for 

equiangular lines having cos $ = 1/3 are worked out in detail. Finally, 

in Chapter 6 the following theorems from combinatorial geometry are proved. 

(i) For large d there are at least (1. d points in Rdhaving only acute 

(ii) There are at least (1 + 4y )d points 1n ,Rdhaving all angles 

smaller than y + TI/3 (Erdos-Furedi). 



- 2 -

(iii) Indecomposable isosceles sets in Rd are two-distance sets. 

We hope that the present notes will serve the members of the seminar and 

many others. 

May 1983 J.J. Seidel, 

A. Blokhuis, 

H.A. Wilbrink. 
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Chapter 1. 

Graphs and their spectra. 

1.1. Introduction. 

In the past years much attention has been paid to the question, what 

properties of graphs are characterized by the spectrum of their 

adjacency matrix. In particular we can ask ournelves whether a graph 

or a class of graphs is uniquely determined by its spectrum. 

This chapter deals with connected graphs, having largest eigenvalue 

2 and those with smallest eigenvalue -2. Also the spectra of two classes 

of graphs are determined and further an equivalence relation on graphs, 

based on their spectrum, is given. Finally we derive a theorem about 

the largest coclique in a graph, with an application to coding theory. 

General references for this chapter are [3J. [9J, [IIJ, [13J. [21J, 

[31] . 

1.2. Graphs with largest eigenvalue 2. 

A graph (V,E), where V is the set of vertices and E the set of edges, 

has an adjacency matrix A defined by 

a .. = iff (i,j) E 
1J 

E (i and j € V) 

a .. = 0 iff (i, j) r/. E. 
1J 

Remark. a-, . = 0 for all i E V. 
11 

IL2.I. Example. The pentagon graph consists of five vertices with cyclic 

adjacencies. The adjacency matrix is 

0 0 0 0 0 0 0 

0 0 a a 0 a a 
AS = 0 0 0 Ps + pT where Ps 0 a 0 0 

5 
0 a 0 0 0 0 a 

0 0 0 a a 0 0 

The eigenvalues of AS can be derived from those of Ps' Because 

(P ) 5 5 
5 = I, the five eigenvalues of P5 satisfy a. = I, 
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h · { 2~ik/5 1 T 1S leads to spec(P) = e k = 1, •• ,5 }, and therefore, 

() { -2~ik/5 2~ik/5 . T spec A = e + e } = { 2cos(2~k/S) }, S1nce Ps = 
It rs easy to see that a = 2. A method to determine all eigenvalues max 
explicitly is given below: 

II 

a "----....... b d c 

Let 2cos(2~/S) = T - 1. The triangles I and II are similar and bcd is 

isosceles, so bd and ad = cd = T. Similarity of I and II leads to 

T - 1 
or ,2 = , + 1, with positive solution !(/S + 1). 

T 

Henceforth we will reserve the symbol T to denote this number called the 

II golden ratio" • 

In terms of T we have 

-1 -1 
spec(A) = { 2, T , T ,-T, -T }. 

All graphs with a = 2 can easily be found with the help of the next max 
three theorems. 

1.2.2. Theorem. (Perron-Frobenius). Let A be an irreducible, nonnegative, 

square matrix, th~ the largest eigenvalue of A is positive of 

multiplicity one, and it has an eigenvector with all entries 

positive. 

Remarks. 

(i) We only deal with the adjacency matrices of connected graphs. 

These are irreducible. 

(ii) All eigenvectors belonging to a. 1 a have at least one negative 
1 max 

entry, since they are orthogonal to a positive vector. 
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1.2.3. Lennna. If A = [~ :] and A is irreducible and all its entries 

are nonnegative, then a (A) > a (A). max max 

Proof. From 1.2.2. we know that the eigenvector x 
..., 

a (A) is positive. Therefore max 

a
2 

(A) = 
max max II. Axil 

Ilxll 
> max 

IIAx} + Bx21 2 

Ilxl 112 + II x211
z 

+ II ex} + Dx211 2 

+ II x 211 2 

of A for 

> 

Since 'A is irreducible, Band C are not null matrices. So inequality 

holds. 

I • Z • 4. Den ni t 

o 
The complete bipartite graph K .. is a graph whose vertices 

:t,J 
can be divided into two subsets XI and X2 of i and j 

vertices, respectively, such that Xl and Xz form two 

cocliques and each vertex of Xl is adjacent to all the 

vertices of XZ' 

A k-claw is a complete bipartite graph K} k' , 
}.2.S. Lennna. A graph having a = 2 does not contain k-claws with k > 4. 

max 

Proof. Let A be the adjacency matrix of the graph, where the first 

k + I vertices form the k-claw. Since a (A) ~ 2, 
max 

2 -

2I - A o 

T 
B 

o B 

is positive semidefinite. 

2 

c 

This implies that the upperleft submatrix is positive semidefinite. 
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Hence det~ det [2 
- k/2 :J > 0 
0 

Therefore 2 - k/2 > 0 and so k ~ 4. 
For k 4 we must have B = O. 

0 

Remark. If a graph has a = 2 with eigenvector x, this eigenvector max 
satisfies Ax = 2x hence 

For all i 2x. = E x. where the summation is over all j with 

j adjacent to i. 
1 J 

To find all graphs with a = 2, we search systematicly for all max 
possibilities, starting with the 4-claw. 

I) t 

2) 
1 

0 1 
. . 

" ' . .... ... 

The 4-claw has a = 2 with eigenvector 
T max 

(1,1,1,1,2) . This implies, by lemma 1.2.3., 

that all graphs having a 4-claw as a proper 

sub graph have a > 2. max 
The graphs with only 2-claws are circular graphs. 

Adding edges cannot lead to other graphs with 

a 2, since these graphs have a circular max 
graph as a subgraph or they are circular them-

selves. 

3) Now consider a 3-claw. Being a subgraph of the 4-claw a 3-claw 

has a < 2. We add vertices in all possible ways until we obtain max 
graphs with a ~ 2. No further adding of vertices is possible, max 
according to 1.2.3. 

~B 1 B If we add a vertex to k we obtain the 4-claw_aga in. 

We distinguish three other cases: 

(i) Add vertices to all three vertices 

B, C and D. This gives the graph on the 

right, that has a 
T max 

(1,2,3,2,1,2, I) . 

2, with eigenvector 

2 3 2 

2 
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E 
o 

B A C F 

(ii) Add vertices only to Band C. This graph 

0 .... --(;1[-----0---0 
U 

has still ct < 2. Adding another point 
max 

to B yields a graph with ct > 2 as we will max 
see in (iii). 

The only two ways left to get a graph with ct = 2, are: 
max 

adding vertices to E only (3) or one vertex to both E and F. 
1 2 3 4 5 6 4 2 1 2 4 
0---0--0 0 0 

L 
0 0 0---0 

L 
3 2 

r--Oo-----<O 

(iii) The last possibility is adding a vertex to B only. This can 

only be done as following: 
I 

2 ••.•.••• ~ 
I 

c 
2 2 

B 
D 

Remark. We will encounter these graphs again, in relation with 

sets of lines in Euclidean d-spaces in section 1.5. 

1.3. Line 

The incidence metrix N of a graph is a v x e matrix, where v is 

the number of vertices and e the number of edges of the graph. 

(N).. iff vertex i and edge j are incident, 
1.J 

(N) .. = 0 otherwise. 
1.J 

One can simply verify that 

NNT 
= D + A and T N N = 21 + L, 

where D is diagonal with d .. the number of vertices adjacent 
1.1. 

to i, A 1.S the adjacency matrix of the graph and L is the adjacency 

matrix of the linegraph. The vertices of the linegraph correspond 

with the edges of the graph. Two vertices of the linegraph are 

adjacent, whenever the corresponding edges have a common vertex. 
2 

12 23 Example. 

G L(G) 
3 

41 34 

4 

D 

1 
o 
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The importance of the incidence matrix lies in the fact that if we 
T T know the eigenvalues of NN or N N we can easily find the eigenvalues 

of L and those of A, if A is regular. This is expressed in the next 

theorem. 

1.3.1. Theorem. NN
T 

and NTN have the same eigenvalues, except for 0, with 

the same multiplicities. 

Pro6f. Let A ~ 0 be an eigenvalue of NNT of multiplicity f. 

Then NNTU = AU for a matrix U of rank f. Therefore 

NTNNTU = ANTU, 

Rank(U) = rank(AU) rank(NNTU) < rank(NTU) ~ rank(U). 
T 

Hence rank(N U) = f. 
T T T T 

Because N N(N U) AN U, we find that A is an eigenvalue of N N of 

mUltiplicity f. o 
Examples. The complete graph K(n) has the trian~ular graph T(n) 

as its linegraph 

K(S) T(S) 

aa---\--I--~. d 

e 
The incidence matrix N has size n x 

T NN = (n - I)I + J - I 

e abc d 

spec (NNT)=([2n_2J 1,[n_2]n-l) 
T I n-l Hn-3)n spec (N N)=([2n-2J ,[n-2] ,[0] ) 

s1nce L spec (A(T(n»)=([2n-4]I ,[n_4J n- 1 ,[_2]!(n-3)n) 

The complete bipartite graph K has as its linegraph the lattice 
n,n 

graph L2 (n) • 
a 

a b 

K has 
2 2n x n incidence matrix N for which holds 

n,n 

f 

e 

lc 
d 
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NN
T= nl + [~~] with 

T spec(NN ) 
T 

spec(N N) 

2n-2 I 
([ nJ ,[ 2nJ ,C OJ) 2 

([nJ 2n- 2 ,[2nJ I ,[OJ(n-I» 2 

spec(A(L2(n») = ([n_2J 2n- 2 ,[2n_2J I ,C_2J,n-l) ) 

We see that these linegraphs all have smallest eigenvalue -2. 

The reason is that the original graphs have more edges than vertices. In 

that case the size of NNT is smaller than that of NTN which means that _. 

NTN, being positive semidefinite has smallest eigenvalue_O. So the 

linegraph has smallest eigenvalue -2. 

1.4. The Switching-classes of ,T(5) , T(8), L
Z

(4). 

Apart from the (0,1) adjacency matrix A of a graph, we have the 

(-1,1) adjacency matrix C, where C .. = -I iff the vertices i and J 
1.J 

are adjacent, and c .. = 1 iff they are not adjacent, diag(C) = O. 
1.J 

The relation between A and C is 

C = J - I - 2A 

For regular graphs the spectra of A and C are related as following 

specCC) = (y m = v-1-2um, Yi = -1- 2u i) 

where a is the largest eigenvalue of A and a. are the others. m 1. 

I .4. 1 •. ' Examples. 

T(n) has C-spectrum 

L2(n) has C-spectrum 

( ~(n-2)(n-7)!! 7-2n n-I, 3 ~n(n-3» 

( (n-l)(n-3) 1, 3-2n 2n-2, 3 n2-2n+l) 

In general T(n) and L2(n) have three different eigenvalues. However 

for some n there are only two distinct eigenvalues. 

T(n): if !<n-2)(n-7) 7-2n then n = 5 

or ~ (n-2)(n-7) = 3 then n = 8 

L2(n): if (n-) )(n-3) = 3 then n ,= 4 

So in this case the (O,~l) adjacency matrices satisfy a 

quadratic equation: 
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(C - 31)(C + 31) = 0 

(C - 31)(C + 91) = 0 

(C - 31)(C + 51) 0 

v = 10 

v 28 

v 16 

k = 6 

k = 12 

k 6 

Let x be any vertex of a graph. Switching with respect to x is defined 

to be the following operation: cancel all existing adjacencies to x 

and add all nonexisting adjacencies to x. The effect of switching 

with respect to x one the adjacency matrix C is that the row and column 

corresponding to x are multiplied by -I. 

Example of switching (w.r.t; vertex 6): 

0 + + + + + 
+ 0 + + -
+ - o - + + 

C = 2 + + - 0 - + 
2 5 o -+ + + -

+ - + + - a 
6 

Switching with respect to any number of vertices is an equivalence 

relation on the set of all graphs on v vertices. For a given (-1,1) 

adjacency matrix C, the switching class consists of graphs with 

(-1,1) adjacency matrices DCD, where D = diag(~l). It is clear that 

the C~spectra of switching equivalent graphs are the same. 

Switching with respect to a certain subset of a graph has the same 

effect as switching with respect to the subset's complement. In terms 

of matrices this is changing D into -D. 

Problem. Find all regular graphs, possibly except for an isolated 

vertex, in the switching-classes of T(5), T(8), L2(4). 

There are two ways in which one may obtain a strongly regular graph 

from a graph whose C~matrix has only two eigenvalues. The first one 

is to isolate one vertex. Then the graph on the remaining vertices 

is strongly regular. The second one occurs if it is possible to switch 

in such a way that the resulting graph is regular (it is easy to see 

that there are only two possible valencies). The graph will then be 

automatically strongly regular. 
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1) Isolation. 

We isolate the .-marked vertex (a "black" vertex), by switching with 

respect to the 0 -marked vertices C'white" vertices). 

T(5): we get L
2

(3) and an 

isolated vertex. 

we get T(6), k = 8, 

and an isolated vertex. 

• 

• 

We get the Schlafli-graph. In this graph 

each vertex in the switching set is 

adjacent to six other~switchpoints 

and to ten nonwswitchpoints. The 

non-switchpoints are adjacent to 

eight others and to',eight switch­

points. So the Schlafli~graph is 

regular with k = 16, hence strongly 

regular. 

2) Non-isomorphic graphs with the same valency. 
12 15 2 

9 ]3 
leads to 

6 
2 1---<::>--t.>- 14 

1 1 , ] 5 7 
3 J---t----'D--m 

12 8 
4 0---'----'---0(:') 16 

(In the second grapht~9 vertices are adjacent iff they are adjacent 

in the picture, in L
2

(4) two vertices are adjacent iff they are on 

one line) 

5 
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The second graph is called the Shrikhande-graph. This graph-is not 

isomorphic to 12(4). In 12(4) each vertex is adjacent to two groups 

of three vertices, and in the Shrikhande-graph each vertex is adjacent 

to a 6-cycle. 

T(8). 

Switching into a non-isomorphic gra?h with k = 12, can only be done in 

three essentially different ways, leading to the following "Chang-graphs". 

None of these graphs is isomorphic 

to T(8), because each point in T(8) 

is adjacent to a 6-clique. 

T(5) has no non-isomorphic graphs 

with k == 6. 
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3) Graphs with a different valency k. 

Regular graphs in one of the switching-classes satisfy v-I-2k= y , 
m 

where y is an eigenvalue of the adjacency matrix C. This reduces 
m 

the number of possible valencies k to_two: 

C(T(5» has eigenvalues 3 (k 3) and -3 (k = 6) 

C(12(4» has eigenvalues 3 (k 6) and -5 (k =10) 

C(T(S» has eigenvalues 3 (k = I 2) and -9 (k =IS) 

T(5): . We get the Petersen-graph, k = 3, 

We get the Clebsch-graph, k 10, 

In the Clebsch-graph two,.~-vertices or two O-vertices are adjacent 

iff they have a line in common and a .-vertex and a O-vertex 

are adjacent iff they have no line in common. 

Remark. Shrikhande has proved that the only regular graphs with 

v = 16 and k = 6 or k = JO are the three graphs that we met here: 

1 2(4), Shrikhande and the Clebsch-graph. 

T(S): 

Switching to a graph with k 18 is not possible. 

Proof. 1et A be the (0,1) adjacency matrix of such a graph. Then its 

eigenvalues are k = 18, r = 4 and s = -2. (y = -9, y. = -9 or 3) 
m 1 

with multiplicities 1, f and g. Because the multiplicities add up to 

v and trace(A) = 0 we know 1 +£ + g = 28 and 18 + 4£ - 2g = O. 

This leads to £ = 6 and g = 21. 
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So spec(A) 

i= (I, I, 

= (18 1, 46 , (_2)21) and spec(21 + A) = (20 1, 66 , 021 ). 
T 

.• I) is an eigenvector of A with eigenvalue k = 18. 

Because i is also an eigenvector of J with eigenvalue v = 28, 
20 I 6 21 ,.re get: spec(A + 21 - 28 J) = (0 , 6 , 0 ). 

Consider A + 21 ;~ J as the Grammatrix of 28 vectors in ~6. These 

28 vectors form a spherical two-distance set since 

where 2 
20 

a. = - 28 ' 
20 ["" SlY] 20 J A + 21 - = 

SlY' ••. a 
S -28 28 

Y = 

But a spherical two-distance set in R
6contains at most 

!·6·(6+3) = 27 vectors. So the graph cannot exist. 

20 
28 

(In sectinn S.l.we will show that a spherical two-distance set in 

R
d . I cannot contaln more than ~d(d + 3) points). 

[l 

Remark. The graphs, we have found here are all strongly regular 

graphs. They have adjacency matrices C that satisfy 

(C - (l)I)(C - a 2I) = O. Graphs with this property are examples of 

strong graphs, and regular graphs that are strong are strongly regular. 

t~S. Graphs with smallest eigenvalue -2. 

We start with some examples. We have already met the line graphs 

In section 1.2. Some other graphs are the cocktail party graphs 

on 2n vertices. These are graphs with 

A 

Further the strongly regular graphs of Petersen (v = 10), Clebsch (16), 

Shrikhande (16), Schlafli (27), Chang (28). 

If a graph has (l. = -2 then mln 

21 + A 

can be considered as the Grammatrix of 

90 d 
. d egrees ln R . 

=[ 2 •• 011] 
0/1' . 

2 

a set of --ttt!ctors at 60 and 
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Since each vector spans a line, through the origin, we have a set of 

lines at 60 and 90 degrees in Rd. Conversely suppose we have a set 

of I lines at 60 and 90 degrees. We can take two vectors along each 

line, of length ~. Their Grannnatrix G has entries {,!.Z,,!.I, 0 }, 

and it is positive semidefinite. If we rearrange G we get 

G 

Z.OL I! 
O/-'I'Z O/I/-I/Z 

Z 

·Z 
,--,,,.---

O/I/-I/-Z Z 
'9/ 1 

0/1 'z 

The upperleft submatrix is ZI - B, where B lS a (0,1) matrix with 
a < Z. The lowerright submatrix is ZI + A, where A lS a (0,1) max 
adjacency matrix having a > -Z. Such a set of lines can be completed 

max 
in the following sense. If it contains two lines, I and m an 60

0 

a third'line; in the plane of I and m, can be added at 60 0 with I 

and m, and at 60 0 and 90 0 with all other lines. A 

collection to which no more lines like these can be added is called 

star-closed. 

Theorem. The irreducible sets of lines at 600 and 90 0 which are 

star-closed, are the root systems: 

A , D n' E
6

, E
7

, ES' n 

(Irreducible sets of lines are collections that cannot be 

divided in two or more orthogonal subsets.) 

Let !:.I' 
n 

. . e be the orthonormal basis in R . The root-systems 
-n 

A , D , E (n 
n n n 

D := 
n 

A := n 

{< 

{< 

For exalpple the 

6,7,S) are described as following: 

+ e. + e.> Ii r J E { 1 , Z, . n}}, I D I n(n- 1) . 
--l - -J n 

e. - e.> Ii f= J E { I ,Z, . n+ I nil Ani ~n(n+l) . 
-l -J 

cocktail party graphs consist of a subset of D : 
n 

{<!:.I ,!. ~i> i = Z, ... _. n+l} where two "vertices" are adjacent 

iff they have only ~I incomrnon, hence it is the complement of the 

graph 

I I I I (n times) 
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The friendship graph {<~1 !~i>1 i = 1,2, ... 8} u {~9 + ~10}' 

For the graph G = ( {~1' • ,. , .e } , E ), its linegraph is described 
-n 

by { + ~j>1 (i,j) E E} where two elements are adjacent iff they 

have e. or e. Ln cornman. 
-L -] 

L(K
6

) = { + e·>1 i ., J 
-J 

i,j = 1,2, .. , 6} 

L(K3 3) = {<e. - e·;.1 i = 1,2,3, 
, -L-J 

j = 4,5,6} 
8 

8. = +1, 11 8. = I} • 
1 - i=l L 

ES contains 56 + 64 = 120 lines. If we take one vector along each 

line we find a Grammatrix 21 + C. Since rank(2I + C) = Sand 21 + C 

is p.s.d. the following holds: 

1 12 
s pe c (C) = « - 2) , AI' 

8 
We have trace C = 0 = 112(-2) + 2:: A. 

2 1 L 2 
trace C = 120(120-1-63) =2:: A. + 

L 

= 224 
S 2 

112-4, LA. 
J L 

S·2S. 

So with help of the inequality of Cauchy-Schwarz Al = •• = AS 28. 

This results in 

(c + 2I)(C - 281) = O. 

Furthermore graphs in ES have $ 36 vertices, valency $ 28 and regular 

graphs have $ 28 vertices with valency $ 16. 

Example: the Sch lafli -graph LS 

{< + e.> I i,j = 1 ,2, . 6, i -I j } U -J 
9 

u{ 1t~Fk - e.) I i I ,2, 6, J = 7,S } . 
-J 

E7 LS the set of lines orthogonal to a single line in ES' It has 

63 lines. 

E6 is the line set orthogonal to a star in Eg , It contains 36 lines. 

We refer to[9 ]to further details and proofs. 
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1.6. The theorem of Turanabout the largest coclique in a graph; 

an applitationtocodingtheoty. 

1.6. I. Theorem. (Turan, [34]). In a graph on v vertices and with e edges, 

the size of the 

M .. min { mEN 

largest coclique is at least M, where 

[v~+ I) 
I e ~ [:~.v -( m

Z 
·m} 

Proof. Assume that for some mEN the graph does not contain a coclique 

of more than m vertices. Let q := [v/mJ. So v .. q.m + r, where 

o ~ r < m. Divide the graph in a subgraph on m vertices, that contains 

the largest coclique, and a sub­

graph on (q-J)m+r vertices. 

Repeat thisproces on the latter 

graph q - 1 times. Now each column 

in B. contains at least one I, since 
1 

the corresponding coclique is maxi-

mal (see diagram). So 

e ~ (v-m) + (v-2m) + . • • • . • . (v - qm) 

q+l = qv - ( 2 )m. 

m 

o 
1.6.2. Theorem. In a gra!;>h on v vertices and with e edges, the S1ze M of the 

largest coclique is at least 2 
v / (v + 2e) 

Proof. Consider the graphs in which the largest coclique contains 

at most m vertices. Fix 0 ~ r < m. For these graphs on qm + r 

vertices we prove that 

Note that 

e ~ v(v-m)/2m 

(*) ~ (**). 

. (**) 

We use induction to q. For q = a (**) is trivial, because in that 

case v < m holds, which means v(v-m)/2m < O. 

Assume (**) holds for q. Divide the graph on v' .. (q+l)m + r 

once as in 1.6.1. We immediately see 

e~ ~ v + v(v-m)/2m v(v+m)/2m = 
(v'-m)v'/2m. 

This can be done for any r, 

o S r < m. 0 
qm+r 
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Remark. The graph with 

I ~ (J m-r 

o 

-I)J 
is an example for which in theorem 1.5.1. equality holds, for 

I! q+1 
maxcocligue = m and e = qv - ( 2 pm. 

For theorem 1.6.2. such a graph cannot be found for all v and m. 

Auplication. (For more details see [12J). 

Consider two transmitters that transmit 

simultaneously along a single channel. 

We are interested in block-codes such 

that the receiver can read the infor­

mation that each transmitter has sent. 

So we want codes 

c c 
n 

{D. H , D C 
n {O,l} , with the 

pronerty that for all .5::., .5::. 1 E C and 

for all~, dIE D the following holds: 

c + d cl+d' iff c=c',d=d' (*) 

(here "+" is addition in Z). 

Example. C = {OO,II} D = {OI,IO,II}. 

Now choose C, and let all words have length n. 

Lemma. If (*) holds and .5::.. c' E C, .5::. 1 c' and u ,- {O,l}n 
-

with u. = I ~ c. = e ~ , then either c. f) u or c' !B u in 
1 1 1 -

D.but not both. e !B is addition mod 2) • 

Proof. We can easily verify that c + (c ' !B u) 

1.6.4. Lemma. If not both d and d' are allowed in D}then there are 

.5::., c ' E C and there a u for which holds: 

u. = 1 then c. = c! 
1 1 1 

such that 

d,.= c' Ii) u and d t = C !B u -
Proof. Let .5::., c' E C and c + d = c' + d' • 

o 
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Without loss of generality we have 

c =: O. . 0 O . . .0 I. · .1 I. .1 

d = O. . .0 1. . .1 O. · .0 1. . .1 

c + d = O. . . . .0 l. • 1 1. · • 1 2. . .2 -

and c'= O. .0 O •• 0 I •• 1 O •• 0 . . I I. . •• 1 

d'= O. . • .0 1. . o .. 0 1 •• 1 0 •. 0 1. . i 

define u:= 0 •..••• 01 •• 10 •• 00 •• 01 •• 1 1 •••••• 1 

1. 6.5. Co["oll'ary. Define the graph Gc = (V C' EC) where V C 

(the vertices), and EC := 

D 

u u U {{c(j) ~, c' (j) u}} 

CE:C ~' EC\{~} ul u.=1 ~c.=c! 
- ~ ~ 1 

(the edges). Now, a code D for which (*) holds ~s a 

coclique in GC 
and a coclique in GC 

is a suitable code 

1.6.6. Theorem. Fix code C again, with C c {O,I}n. Let 

Ai := ~ {(~, ~') E C
2 I ~ (~,~') = U. dh is the Hamming 

distance between two vectors, that is the number of 

coordinates with iCi - 'I:" o. 
The maximum cardinality for D such that (*) holds ~s at 

least 

D. 

Furthermore 
E 1 L 

eEC 
c ')-1 

c' ~I •••. 

n 
L: 

i=i 
2n- i - 1 L: 

(c,e')Ec2Idh(c,c')=i 
n' 

=2n- 1 L: Ie{ 
i=i 

Apply 1.6.1. and 1.6.5. Then we get: the max~mum cardinality of a 

eoclique is at least 

D 
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Chapter 2. 

Eigenvalue techniques in graph artddesign theory. 

2. I . Introduction. 

In this chapter we shall derive some results about eigenvalues of ma­

trices. We will also apply these results to graph theory (e.g. gene­

ralized quadrangles) and design theory (e.g. projective planes). the 

matrices considered will be real 'and square of size n. If A € spec(A) , 

then the span of the eigenvectors of A for A is called E)" (A).Suppose A 

has n (not necessarily distinct) real eigenvalues; Then we shall denote 

these eigenvalues by 

• •• ;;:: )" (A). 
n 

General references for this chapter are [13 J, [ ?l J. 

2.2. Some basic theorems. 

2.2. I. Theorem. Let A be a symmetric matrix. 

(i) If )" E spec(A), then A E R. 

(H) If A I' A2 E spec(A), A I :f. 1. 2 ' 

then < x x
2 

> = O. 
I ' 

X E 
1 

(iii) There exists an orthonormal basis of eigenvectors of A. 

(in other words: there exists an orthogonal matrix S with 

STAS = diag(A I , ... , An)' where A] ;;:: ••. ;;:: An are the eigen­

values of A.) 

Proof. (i) Let x be an eigenvector of A for A. Then 

-T -T T - =r-- -T - T- --T 
AX x = x Ax = x Ax = x Ax = AX x = AX x = AX x. Therefore A E R. 

AJ # ),,2' hence < Xl' x2 > = o. 

(iii) This we prove by induction on n, the size of A. 

If n = 0, there is nothing to prove. Suppose n> O. A has at least one 

eigenvalue AI' Let XI E EA (A), < Xl' x
J 

> = I. If 8 1 is the matrix with 

first column XI and as oth~r columns an orthonormal basis of < XI >.1 

then SI is orthogonal and 

T 
SI AS ) 

A) 0 0 
o 

o 

(2) , where A is symmetric of size n - I. 
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By the induction hypothesis, there exists an orthogonal matrix S2 with 

= 

If S , then S ~s orthogonal, and 

o 

2.2.2. Theorem. (Rayley's principle) 

Let A be a symmetric matrix of size n, and assume that ~ has 

eigenvalues Al (A) ~ .•• ~ ~n(A). 

Let u l ' ... , un be an orthonormal basis of eigenvectors of A, 

u i E EA.(A)(A), i = 1, ••• , n. Then: 
~ 

T 
(i) A.(A) < u Au 

~ - uTu ' for u E < u l ' ••• , ui >, u:f 0, 0< i:s; n; 

equality holds iff u ~s an eigenvector of A for A.(A). 
~ 

T 
( H) A > u Au 

i+1 ---T-
u u 

for u E< < ~i+l"'" un > , 

u :f 0, ° :s; i < n; 

equality holds iff u is an eigenvector of A for A. I (A) . 
~+ 

i 
Proof. u = E. I a.u .. Then, 

J= J J 

T l:: 
2 

LE a.A. u Au .J ] , --T- ::: ~ u u 
E 2 

E a. 
] 

Equality holds iff 

i.e. iff u E EA.(A)(A). 
~ 

~ 

2 a. 
J 

== A •• 2 ~ a. 
] 

2 
A.)a. == 0, ~.e. iff A. > A. 
~ J J ~ 

«ii) can be seen replacing A by -A). 

~a. == 0, 
J 

o 
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T u Au 
T 

u u 
min 

u 

T u Au 
T u u 

2.2.4. Theorem. If A is a symmetric matrix of size n, __ [ATll A12] 

Al2 A22 

Ay] symmetric of size m, then 

A (A). 
n 

Proof. T T T u Au u Au u
1
A

11
u l 

A I (A) = m~x-T- ~ max --- max 
u={;~ 

T u
l 

T u u u u u1u 1 
ex (A) :;; Am (All) can be proved 1n the same way by n 
to -A and -All ). 

2.2.5. Corollary. Let 8
1 

be a n x m matrix such that 

symmetric matrix of size n. Define 

Al (A) ~ Al(B) ~ Am(B) ~ An(A}. 

= A1 (All )· 

applying the 

0 

above 

Proof. (Note that B is also symmetric). Let 82 := (Xl"'" xn- m) , where 

xI"'" xn- m is an orthonormal basisof <8 1; «8 1> being the span of 

the columns of 81), Then (811 8
2

) satisfies 8T
S = I and S is square; 

hence 8T = 8- 1. Also 

STA8 has the same spectrum as A. Therefore, theorem (2.2.4.) yields 

A (B) ~ A (A). m n o 

2.2.6. Corollary. Let A be a symmetric matrix partitioned as follows 

A • [:~: : : : : : :: J 
such that A .. 

11 

Let b .. be the 
1J 

1,2, .••• m)of size n i • 

average row sum of A .. , for i,j = I, ... m. 
1J 

square for i 

Define the m x m matrix B : = (b .• ). 
1J 

Then 
~ A (A). 

n 



Proof. Define 
1 . 
0 . 

tr 
(') 

I 
:= 

- 25 -

0 

. 0 

. 0 0 

0 

. 0 

o . 0 

o . 0 

o . 0 

1 1 ----­n 
m 

,... -] 
:= SID • 

-I ,..T- 2 
n)D = I and SIS] = D • • , m m' 

the sum of the entries of A ... 
~J 

Hence -2-T - -} r 
B = D SIAS} , and therefore DBD = SIAS!. 

-1 
B has the same eigenvalues as DBD . Hence corollary 2.2.5. yields 

A (A). 
n o 

Using corollary 2.2.6 the following theorem in the graph theory 

can easily be proved: 

2.2.7. Theorem. Let G be a regular graph on n vertices of degree k, 

containing a coclique of size c. Then 

c(k - A (A»~ -nA (A), 
n n 

whereA (A) is the smallest eigenvalue of the adjacency 
n 

matrix A of G. 

Proof. We can write A as 

A 

The average row sum matrix of A, corresponding to this 

with eigenvalues AI(B) = 

Corollary 2.2.6 yields 

k 

B 

and 

kc 
n-c 

hence, c(k - A (A» ~ -nA (A). 
n n 

[ 0 (n-:C)k] ck 
n-c n-c 

A
2

(B) 
kc 
n-c 

2: A (A). 
n 

partition, 

o 

~s 
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In- the following paragraph we shall give more applications of the 

results obtained sofar. 

2.3. Generalized Quadrangles. 

2.3.1. Definition. A generalizedquadtangle of order (s,t) is an incidence 

structure with pointsand lines such that: 

(i) each line has s + 1 points, 

(ii) each point is on t + 1 lines, 

(iii) two distinct lines meet in at most one point, 

(iv) for any nonincident point - line pair x,l there 

is a unique line through x that meets 1. 

We can easily see that the number of points in a generalized qua­

drangle of order (s,t) is (s + l)(st + 1). 

The ~ graph of a generalized quadrangle Q is the graph, whose 

vertices ane the points of Q, two points being adjacent, whenever 

they are on a line of Q. 

This graph 1S strongly regular with parameters 

v (s + I )(st + 1 ) k set + I) 

A s 11 t + I 

The complement of this graph has parameters 

(s + 1) (st + 1 ) k 
2 

v == s t 

A == 
2 

s t - st - s + t 
2 

11 = s t - st 

An account of the theory of generalized quadrangles can be found 

in [23]; [34 J . 

2.3.2. Lemma. The smallest eigenvalue of the complement G of the point 

graph of a generalized quadrangle of order (s,t) is -so 

Proof. Let A be the adjacency matrix of the graph G. Because G is 

strongly regular, the following holds: 
2 AJ = kJ and A = kI + AA + l1(J - I - A). 

Hence, A and J aan be diagonalized simultaneously, and therefore 
2 

P + (11 - k) + (11 - A)Q = 0 for the eigenvalues p t k of A. 

This yields -s as the smallest eigenvalue of A. 

o 
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2.3.3. Theorem. Let Q denote a generalized quadrangle of order (s,t), 
2 s > 1. Then t s s . 

Proof. Let G be a regular graph on n points of degree k, and assume 

that G contains ~wo disjoint cliques of size I and m, respectively, 

such that no two points in different cliques are adjacent. 

If A is the adjacency matrix of G, then we can write 

[i I 

0 
AI3 ] 

A = J - I A23 T 
AI3 A23 A33 

The average row sum matrix of A ~s in this case 

B = 
1 -

o 
l(k-l+l) 
n-l-m 

o 
m-

m(k-m+ I) 
n-l-m 

k - 1 + 

k m+ 

k- l(k-l+l) + m(k-m+l) 
n-l-m 

It is easy to see that Al(E) = k. 
Call a := trace(B) - k = (l+m) (n-k+l) - 2(n-ml) = A (B) A (B) 

n - 1 - m 2 + 3 . 

and 
8 := det B .k- 1 (n-2k)lm - (n-k)(l+m) + n 

n - 1 - m 

Hence. A2 (B), A3 (B) are the roots of the equation 

A2(B)'A3(B) 

2 x - ax + f3 

If we apply this on the complement of the point graph of Q with 

n = (1 + s)(1 + st) ,k s and smallest eigenvalue -s 

with corollary 2.2.6 that (_s)2 - a(-s) + S ~ O. 
2 This yields s = 1 or (l-l)(m-I) $ s • 

we finC! 

Clearly, in a generalized quadrangle (s,t) the induced subgraph on 

the configuration of two nonadjacent points x,y together with the 

t + 1 points that are adjacent to both x and y is a K2 1 graph ,t+ 

o. 

(see chapter J)~ so we can apply the ahove with 1 "" 2 and m = t + I. 
2 Then we find that if s > 1, then t s s • 

o 
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2.3.4. Theotem. Assume that a generalized quadrangle Q of order (s,t) 

contains a subquadrangle Q] of order (sl,t]). 

Then s = s] or sltl ~ s. 

Proof. The parameters of the complement of the point graph of Q are 

. (s+l)(st+l) A = 2 v s t st - s + t 

k 2 2 s t ].I s t st. 

The parameters of the complement of the point graph of Q
I 

are 
2 

Vj (s]+])(s]t]+l) A I = s] t] - s ] t 1 - sl + t] 

k] 
2 2 

SIt] ].11 
::::: slt l - SIt] 

We can partition the adjacency matrix of the complement of the point 

graph of Q in such a way that we get the following average 

matrix 

[ k
J k - k ] B = 

v 1 (k-~l) v I (k-k1 ) k -
v-v

I 

It is easy to see that A1(B) = k. Furthermore, 

AI (B) + AZ(B) = trace(B)= k1 +k - Vj (k-k1) • 
v-v] 

Hence A (B) = k -
2 I 

VI 

v-v] 

Corollary 2.2.6. yields 

A (A) = -s , and therefore 
v 

2 

(k-k
1

) • 

v 
k] - ___ 1_ (k-k ) ~ -so 

v-v1 I 

row 

This 

Then 

leads to (s-sl)(s t+s-ss l t 1t-s
2

t 1) ~ O. 

s = sl or, because s ~ sJ ' s t + S - sSlt]t - s]tl ~ 0 

Therefore. 
s = ~1 or SIt] ~ s. 

o 
2.4. Interlacing of eigenvalues. 

We now introduce a useful property of eigenvalues. 

sum 

2.4.1. Definition. Suppose A and B are square real matrices of size nand m 

(m ~ n), respectively, having only real eigenvalues. 

If A.(A) ~ A.(B)~ A .(A), for all i = I, .. m, 1 1 n-m+1 
then we say that the eigenvalues of B interlace the 

eigenvalues of A. 
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2.4.2~ Theorem. Let 

A:: [A~ 1 
A12] 

A12 A22 

be a symmetric matrix of size n. All square of S1ze m. 

Then the eigenvalues of All interlace those of A. 

Proof. Let ~l"'" v be a orthonormal basis of 

and define v~:= (~I (0 •. 0». for all i = 

eigenvectors of All' 

1 1" ___ 
n'::m 

I, ... , m. 

Let u
l 
•...• un be an orthonormal basis of eigenvectors of A. For 

i = 1 ••••• m, select a _u E «u .•..•• u> n <vI •.•.• v»\{O} . 
1 n m 

(This is possible because dim«u .••••• u » :: n - i + 1. and 
1 n 

dim«v) ..... v.» = i. and therefore dim«u., ... , u > n <vI •..•• 
1 1 n 

Then u has the following structure: u :: (u I 0 ••• 0). and 
'n!-m" therefore we find 

T u Au 
A. (A) ;:: -T- = 

1 u U 

with theorem 2.2.2. that 

If we do the same with -A and -All we find: 

-A l' (All) = A • I (-All) :S A . 1 (-A) = -A +' (A) • m-1+ m-1+ n-m 1 

A • (A). for all i n-m+1 = 1, •••• m. 

T 
2.4.3. Corollary.Let £1 be a n x m matrix such that S]SI I m· 

Let A be a symmetric matrix of size n and define 
T 

B := S lAS 1 • 

o 

v.>h 1). 
1 

Then. the/eigenvalues of B interlace the eigenvalues of A. 

Proof. Define 8
2 

and S as in the proof of corollary 2.2.5., and use 

theorem 2.4.2. 

2.4.4, Corollary. Let A be a symmetric matrix partitioned as follows: 

A 

A 
rom 

and let B be the average row sum matrix of A. 

Then the eigenvalues of B interlace those of A. 

o 
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,... 
Proof. Define SI' D and SI as in corollary 2.2.6.; then 

DBD-
l = S~ASI' 

With corollary 2.4.3. we find that the eigenvalues of B interlace 

the eigenvalues of A. 
[~ 

The following shows an application to graph theory: 

2.4.5. Theorem. (Cvetkovic bound). 

Proof. A 

Then with 

Let G be a graph on n vertices with a coclique of size c. 

Then c doesn't exceed the number of nonnegative (or nonpositive) 

eigenvalues of the adjacency matrix A of G. 

can be partitioned as follows: 

A = [Oc~c 
A12 

A12] 
A22 

theorem 2.4.2. we find that 

A (A) > A (0) = 0 and A 1 (A) < AI (0) = O. 
c - c n-c+-

Hence, c cannot exceed the number of nonegative (or nonpositive) 

eigenvalues of A. 
[] 

2.5. Block designs. 

2.5. I. Definition. A block design (balanced incomplete block design) with 

parameters (v,k;b,r,A) is a set X of v elements and a 

collection of b-subsets of X, called blocks, such that, 

1) each block has cardinality k, 

2) each element of X occurs in exactly r blocks, 

3) each pair of distinct elements of X occurs in exactly A 

blocks. 

In other words, a block design is a 2-(v,k,A) design. 

A block design is called symmetric_if v = b. 

We want to apply the results obtained in the preceeding paragraphs to 

block designs. But, because the incidence matrix of a block design is 

usualy nonsymmetric, we need the following theorem: 
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2.5.2. Theorem. Let MT and N be real mIx m2 matrices. Put 

A- [~ :J 
then the following are equivalent: 

(i)' A :f= 0 is an eigenvalue of A of multiplicity f· , 
(ii) - A :f= 0 ~s an eigenvalue of A of mu 1 tip li ci ty f; 

(iii) A2 :f= 0 is an eigenvalue of MN of mu 1 ti p li ci ty f; 

(iv) A2 :f= 0 ~s an eigenvalue of NM of mu ltj!p li ci ty f. 

Proof. (i)t==>(ii) • 

Let AU = AU, for some matrix U of rank f. Write U = (~~] and define 

U -[-~~]. where "i h., IDi row, for i 

This implies AU =-AU. Since rank U 
,.. . 

rank U, the f~rst equivalence ~s 

proved. 

(iii)"(iv) • 

Let MNU' = A2UI
, for some matrix U' of rank f, A2 :f= O. Then 

NM(NU I) = A2UI , and rank NUl = rank VI, since, 
2 rank Vt = rank A VI = rank ~1NVI .::.. rank NV I < rank VI. 

This proves the second equivalence. 

(i)~(iii) • 

[ NMo MN°1 Because A2 = , it follows that (i)~(iii). 

If MNV I = A2VI
, V' of rank f, then 

[
NU

I1 
A AU' = [~~~:] [NUt] [NVI] 

A A V I ,and A U I has also rank f. Hence (iii)==t(i). 

[J 

2.5.3. Theorem. Let N be the incidence matrix of size v x b of a block design 
v-I 

with parameters (v.k;b,r,A) ( r = k-I A). 

Assume 

Let r l be the average row sum of N1, and k1 = vlr l the average 
b

I column sum of N1. 

(vr 1 - b 1k)(bk1 -

Then, 
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Proof. Con,ider the 'ymmetric matrix A - [~T :]. 

Because NN
T 

= (r - A, ) I + A.J, we find that the eigenvalues T of NN are 

kr, of multiplicity 1, and (r - A, ) of multiplicity v - I. With theorem 

2.5.2. we see that the eigenvalues of A are (rk)~ and -(rk)!, each of 

mUltiplicity I, (r -A,)! and - (r -A )!, each of multiplicity v - I, 

and 0 of multiplicity b - v. If we write 

0 0 N) N2 

° 0 N3 N4 

A = 
NT 

Nt 

NT 

Ni 
0 0 , then the average row sum matrix of A is: 

2 4 
0 0 

0 0 r
l 

r-r
1 

0 0 x r-x 

B = kl k-k 0 0 I 
y k-y 0 0 

It is easy to see that 

b) (k - k j ) 

, where x = v - vI and y 

AI(B) = - A4(B) = (rk)!, and with 

det(B) = rk(r
l 

- x)(k l - y) and trace(B) = 0, we ~lso find that 

A
2

(B) = -A
3

(B) =«r
l 

- x)(k
l 

- y»2. 
Corollary 2.4.4. yields A

2
(B) ~ A2(A) , and therefore 

(r l - x)(k l - y) < r - A • Hence 

(vr l - b}k) (bk l - vir) ~ (r -A, )(v - vt)(b - bl)' 
o 

2.5.4. Corollary. If a block occurs s times in a block design, then 

b / ~ s . 
v 

Proof. In this case we can write for the incidence matrix of the 

block design: 

N 

then, if we use theorem 2.5.3. with vI C k1 = k and b l 
we find that b/v ~ s 

s, then 

o 
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2.5.5. Corollary. A subplane of a projective plane of order n has order 

m ~ vh. 
2 Proof. A projective plane of order n is a symmetric 2-(n +n+l, n+I,I) 

2 design, with r = n + 1 and b = n + n + I. Theorem 2.5.3. with 
2 

b 1= v I= m + m + I and k(' r
1
= m +- 1 yields m ~ In. (equality holds 

for Baer subplanes.) 
r 1 

2.5.6. Corollary. If f is the number of fixed points of an automorfism of 

a symmetric 2-(v,k,N design, then 

f ~ k + In, where Xl = k - A • 

Proof. (Note that # fixed points = # fixed blocks.) 

Let NJ be the incidence matrix of the nonfixed points and the nonfixed 

blocks. A nonH_xed block cannot contain more than A fixed points (for. 

if B is a nonfixed block and B' its image, then the points in B\B' 

are nonfixed). Therefore we can use theorem 2.5.3. with 

v l = b l = v-f. k]= rl~ k - A= n. This yields f ~k +/n. 

n 
2.6. Tight -interlacing of eigenvalues. 

2.6.1. Definition. Suppose A and B are square matrices of s nand m, respec-

tively (m ~ n), having only real eigenvalues, and assume that 

the eigenvalues of B interlace the eigenvalues of A. 

(Hence A.(A)? )..(B) ~). .(A), i = I, .... m) 1 1 n-m+1 
If there exists an integer k. ask s m such that 

\. (A) 
1 

\ +' (A) = n-m 1 

Then the interlacing 

__ IATII A12] 2.6.2. Theorem. Suppose A 

Al2 An 

A. (B) • 
1 

\. (B) , 
1 

i 

i 

1 , •••• k 

k+l, ••• m. 

18 called tight. 

is a symmetric matrix of size n, 

All square of size m. We know that the eigenvalues of All 

interlace those of A(theorem 2.4.2.), 

If the interlacing is tight, then A12= O. 
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Proof. Let 1 be an integer with Ai (A) = Ai (All)' for i = 1, ••• , 1, 

and let v1"",vm be an orthonormal basis of eigenvectors of All' 

We shall first prove the following by induction on 1: - "" 
(x) vI =(~}) ." .v

l
=( ~l) are orthonormal eigenvectors of A for 

the eigenvalues Aj (A II ), ••. ,A l (A}l)' 

If 1 = O. then there is nothing to prove. Suppose 1 > O. We have 

Al (A) = Al (All) = V~Al}Vl = V~Avl' 
J. 

Because < vI' •••• vl _} > , and by the induction hypothesis 

vl,· •. ,vl _ 1 are orthonormal eigenvectors of A for the eigenvalues 

A1(A) •..• 'A l _1(A). we find with theorem 2.2.2.(ii) that vI E EA1(A)(A). 

This proves (x). 

If the interlacing is tight, then there exists an interger 0 ~ k ~ m 

with Ai(A) = Ai (A11 ) for i = I, •.• ,k, An_m+i(A) = Ai (A l1 ) for i=k+I, .• ,m. 

If we apply (x) to All and A with 1 = k and to -All arid -A with 1 = m -k, 

we find that_if v] .... ,v
m 

is an orthonormal basis cof eigenvectors of'A I1 , 

then v I (~l) ..... v m (: m ) are orthonormal eigenvectors of A. - '" .... If V = ( v l' ... , v m ) and V = ( VI"'" v m ), then and 

AV = VD, where D is a diagonal matrix. Therefore 

V is nonsingular we find that A}2 = a 
0, and because 

o 
T 2.6.3. Corollary. Let 81 be a nxm matrix such that S}SI = 1m' Let A be 

T 
symmetric of size n. Define B = SIASt' We know that the 

eigenvalues of B and A interlace (corollary 2.4.3.). 

If the interlacing is tight, then SIB = AS I . 

Proof. Define S2 as in the proof of corollary 2.2.5 •. Then 

T T T 
I = (S1' S2)(SI' S2) = SIS} + S2S2 ' and with theorem 2.6.2. we see 

that S~ AS l = 0 (see also the proof of corollary 2.2.5.), Therefore 

T T o = S2S2AS} = ( I - SIS} )AS} = AS} - SIB. 

Hence, AS] = SIB. 
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2.6.4. Corollary. Let B be the average row sum matrix of 

A = 
[

All' ••• AIm] 

: : , A symmetric of 
A 1 •••• A m nun 

size n. 

l;.]e know that the eigenvalues of B interlace those of A 

(corollary 2.4.4.). If the interlacing is tight, then 

A .. , i,j = l, ... ,m has constant row and column sums. 
1J .... 

Proof. Use the proof of corollary 2.2.6. ( define SI' SI' D the same 
-] T 

way). Then DBD = SIAS I . If the interlacing of B and A is tight, 

then the interlacing of DBD- 1 and A is also tight. With corollary 2.6.3. 

we obtain AS] = S}DBD-
I

• This yields AS1 ::: SIB. 
Hence, the average row (and column) sums of the A .. are constant. 

1J 

We now apply tight interlacing to graph and design theory: 

I) In theorem 2.2.7. we see that the interlacing of the eigenvalues 

of B and A (see the proof of theorem -2.2.7. ) is tight when the graph 

contains a coclique of size ( -n\ (A»/(k - \ (A». In that case, 
n n 

A ~~:c :::] and B· [~n (Al k+:n (All 

Al~ has constant row and column sums, viz. -An (A) (corollary 2.n.4.). 

Hence every vertex not in the coelique is adjacent to -\ (A) vertices 
n 

of the coclique. 

If the considered graph is strongly regular (with n,k,A,~), then we 

can construct a 2-«-n\ (A»/(k-\ (A», -\ (A), ~ ) design as follows: 
n n n 

- the points are the vertices of the coclique; v =(-n\ (A»/(k-\ (A»; n n 
- let x be a vertex not in the coclique. Then all the vertices of the 

coclique adjacent to x define a block. With what is stated above we 

see that each block contains -\ (A) points. Furthermore, we can 
n 

easily see that each pair of distinct points occurs in ~ blocks. 
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2) In theorem 2.5.3. we see that if equality holds, then 

(r j - x)(k) - y) = r - A.(see the-proof of the theorem). 

Hence, 

AI(B) = A)(A), A2(B) = A2(A), A3(B) = An_I(A), A4 (B) = An(A), 

and this means that the interlacing is tight. 

3) Consider a block design with a block that occurs s times(see corollary 

2.5.4.). If b = vs, then equality holds in theorem 2.5.3. and with 2) 

and corollary 2.6.4. we find that the column sums of N2 are constant, viz. 

k r-s • We claim that the points of the repeated block and the blocks of 

the or1ginal block design, the repeated block excluded, constitute a 
r-s 

2-(k,k A-s) design, for: the number of points k; 

r-s each block has k points (viz. the row sums of N2); a pair of 

distinct points occurs in A - s blocks. 

The next and final paragraph of this chapter is an example of interlacing 

in projective geometry. 

2.7. Absolute points 1n PG(2 1n). 

Consider the projective plane of order n, denoted by PG(2,n). 

A polarity TI of PG(2,n) is a permutation of order 2 of the points and 

lines of PG(2,n) such that: 

i) 'IT is a line for every point p p, 

ii) liT is a point for every line 1, 

iii) p E 1~1'IT E P , for all points p and lines 1. 

iT Points p of PG(2,n) with pEp are called absolute points; We denote 

their number with a. Lines 1 in PG(2,n) with E 1 are called 

absolute lines. It is easy to see that their number equals a. 

2.7. I. Theorem. a ~ ), and if n is not a square, then a = n + I. 

Proof. We can write the incidence matrix of PG(2,n) as follows: 
'IT 'IT 

p) ....... P 2 I 

N= ~iDn+n+ 
p 2 

n +n+l 

N 1S symmetric, for: P. E P.~ P. E P .• 
1 J J 1 
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Therefore N2 

for N: 

NNT = nI + J. This leads to the following eigenvalues 

I 

n + 1, of multiplicity 1; n 2 
1 

, of multiplicity a; ~(n)2 

(3, a and i3 being integers with a + 
1 

a = trace(N) = n + 1 + ( a- (3)n2~ 
1 

2 6 = n + n.~Then 

1). 

, of multiplicity 

If a = 0, then n 2 is an integer and (n + 1). But this is not pos-

sible. Hence a ~ 1. 

If n is not a square, then n4 is not an integer and therefore as. 
This yields a = n + 1. 

[l 

2.7.2. Lemma. A nonabsolute line has an even number of nonabsolute points. 

Proof. 

Consider a nonabsolute line 1 and let x be a nonabsolute point on 1. 

l
1T d .111' 11' 1T •• J. 

~ 1, x ~ x and XE 1. Hence x and x meets 1 1n a p01nt y T X. 

Y is also nonabsolute, because: y Eland y E x
11'

, and therefore x E l 
and 111' E y7f, and this yields y t/. l (y is nonabsolute) and yTf meets 1 in x. 

This way, the set of the nonabsolute points on 1 is partitioned in pairs. 

Hence 1 has an even number of nonabsolute points. 

[l 

2.7.3. Theorem. Assume that n is odd. 

Then a ~ n + 1, and if a = n + 1, then the set of the absolute 

points 1S an oval in PG(2,n). 

Proof. Consider an absolute point x (a ~ I). n + I distinct lines meet 

l.n x and exactly one of these is absolute, viz. x11' (if x E l, y absolute, 
11' 11' 11' 

then y E X and thus x,y E x and x,y E y . This yields x = y). In other 

words, n nonabsolute lines meet in x. Each of these nonabsolute lines 

contains n + ] (an even number) of points, and an even number of these 

points is nonabsolute (lemma 2.7.2.). In other words, on each nonabsolute 

line through x there is, x excluded, an odd number of absolute points, so 

at least one. Hence a :::: n + 1 (x is absolute). 
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If a = n + 1, then then the above yields that a nonabsolute line has 

at most 2 absolute points. An absolute line has exactly one absolute 

point. Hence, the set of the absolute points is an oval. 
n 

2.7.4. Theorem. Assume that n is even. 

Then a"> n + I 

lie on a line. 

and if a = n + I , then the absolute points 

Proof. Comlider II nonabsolutt, point x (if this IS not posl'dhlo, thcn 

there is nothing to prove). 

n + 1 lines meet in x, and on each line there is an odd number of points 

(viz. n + I). An absolute line contains exactly one absolute point. 

A nonabsolute line contains an even number of nonabsolute points, 

hence an odd number of absolute points, so at least one. 

This means that every line through x has at least one absolute point. 

x nonabsolute; hence a:?: n + I. 

If a = n +.1, then the above yields that a line, that has a nonabso­

lute point, has exactly one absolute point. But this means that the 

line through 2 absolute points only has absolute points. 

Hence, the n + absolute points lie on a line. o 

2.7.5. Theorem. Assume that n 2 m. 

Then a:O; in
3 + 1, and if a = m3 + 1, then the absolute 

points and "the nonabsolute ~ines constitute a 

2-(m3+1, m+l, I) design (a unital). 

Proof. Consider the incidence matrix of PG(2.n) as in theorem 

2.7.1., partitioned as follows: 

~;xa Nl~] N = 
NI2 N22 

matrix of the absolute points and I being the (sub-)incidence axa 
lines. The average row sum matrix of N is: 

B 
2 m a 

4 2 m +m +l-a 

2 
m 

2 2 m a 
m + 1 - --:-4 "";";"2"';;--1 

m +m +1-a 
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The eigenvalues of N are m
2

+1 (multiplicity 1), m (multiplicity a), 

-m (multiplicity S) (see 2.7.1.). 

m
2 

+ 1 + ea - S)m a. 

Because 4 2 
a 5: m +m + I, we find S J:> O. 

2 
At(N) = m +1 , A 4 2 (N) = -me 

m +m +1 
Hence, 

We can easily see that the eigenvalues of Bare 

2 
A1(B) = m +1 

2 
J!Ull 

A2 (B) = 1 - . 4 ~ 
m +m +1-a 

Corollary 2.4.4. says that the eigenvalues of B interlace those of N. 

This yields 

A 2 (B) = 1 - --:----0:::---
2': 

)-a 

This leads to a 5: m3 + I. 

Ifa 

Hence, the interlacing is 

A 4 2 (N) 
m +m +1 

A 4 2 (N). 
m~+m +1 

-me 

Therefore, the column sums of N12 are constant and equal to m+l. 

(corollary 2.6.4.). 

This means that a nonabsolute line has m+1 absolute points. Further­

more, the line through 2 absolute points is nonabsolute. 

Hence, the absolute points and teh nonabsolute lines constitute 
3 . 

a 2-Cm +1, m+l, I) design. 

D 

(See also [18J p. 63-65) 
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Chapter 3. 

Association schemes. 

3.1. Introduction. 

Association schemes first appeared in statistics. They were introduced 

in combinatorial theory by Bose and Smimamoto as a generalization of 

strongly regular graphs. 

The theory of association schemes has proved to be useful in the 

study of permutation groups and graphs. Ph. Delsarte applied 

association schemes in coding theory and combinatorics. 

This chapter contains an outline of part of the work of Delsarte. 

We begin with the Bose-~1esner algebra of an association scheme in 

section 3.2. together with some examples. The relations between its 

two bases are described in section 3.3., as well as the important 

p- and Q-polynomial schemes. 

To motivate the study of association schemes we continue with three 

applications. These are a theorem about generalized hexagons, an 

association scheme in PG(2,4) and regular two-graphs as association 

schemes. Section 3.7. uses the setting of A-modules. In.3.8. we intro­

duce the distribution matrix D(~,Z)' It leads directly to the Mac­

Williams transform and it provides the link to the linear programming 

method. 

Section 3.9. contains a proof of the code-clique theorem and its 

dual concerning designs. 

Two appendices are added ~n which theorems, used in this chapter 

about minimal idempotents and the A-module, are proved. 

General references for this chapter are [8J, [15J. 

3.2. Bose-Hesner algebra. 

Consider the regular hexagon. On its six vertices three graphs can 

be defined as stated in the pictures 

I II III 
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Their adjacency matrices are respectively 

A = pI 5 2 p4 A = p3 1 + P ,A2 = P + '3 where P 

o 0 0 0 0 
o 0 100 0 
000 I 0 0 
o 0 0 0 1 0 
00000 1 
100000 

Since the three graphs together form a complete graph we have 

Relations between the A. for i 1,2,3 are 
A2 2I + A2 

1 2 
2I + A2 = I = A2 A2 1 3 

AJA2 = Al + 2A3 AIA3 = A2 A2A3 = Al 

This expresses that the vector space <I, AI' A2, A3>R is an algebra 

over R. 

This example can be generalized in the following way: 

3.2.1. Definition. An association scheme 

cons ts of a set ~ together with a partition of the 

set of 2-element subsets of X into s relations 

r
l

, •.• r
s

' satisfying the following conditions: 

(i) 

(H) 

For each W E ro, the number v. of q E X with 
1 

{w,q} E r. depends only on i; 
1 

For 
k 

a .. 
1J 

each pair w,_w' with {w, WI} E r
k 

the number 

of q E X with {w,q} E r. and {w',q} E r. 
1 J 

depends only on i,j and k. 

In other words, if we take the complete graph of X, we colour all edges 

with the"colours" r., for i = 1,2, ..• s. Then the first condition 
1 

asserts that each graph r. is regular; the second, that the number 
1 

of triangles with given colouring on a given base depends only on the 

colouring and not on the base points. 

w w w 

o 
v .• - a .. 

1 11 
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k 
The a .. are called the intersection numbers. 

1.J 

It is clear that the following relations hold 

1) 

2) 

3) 

s 
I v. = n 

i=O 1. 

S k 
I a.. v. 

i=O 1.J J 

k k 
a .. = a .. 
1J J1 

since all vertices have some relation to w. 

for each k, since the vertices that have 

relation r. to WI have also some relation to w 
1. 

We now translate the defining conditions above in terms of the 

~O,l) adjacency matrices A. of the colours r .. Since the graph on 
1. 1. 

n is complete, we have 

.+A =J-I. 
s 

Condition (i) translates into 

A.J = v.J. 
1 1. 

BY,analysis of the matrix product it is seen that condition (ii) 

'translates into s k 
A.A. = I a .. A • 

1 J k=O 1.J-K 

These formulae imply that the R-vector space 

is an algebra with respect to matrix multiplication. This so called 

Bose-Mesner algebra of the association scheme is commutative. This 

follows from 3) and 

A.A. 
1. J 

sk skT sk T 
kIOa .. A- = kIoa .. A~ = (kLOa .• A ) = 1J-K = 1J-K = 1J_K 

T T T 
= (A.A.) = A.A. = A.A .. 

1. J ] 1. J 1. 

3.2.2. Example. An association scheme with two colours (s = 2) consists 

of a strongly regular graph r and its complement. The numbers k, A, ~ 

are defined by: 

In terms of the gdjacency matrices A of rand B of the complement of r 
this reads 

AJ = kJ 
2 

A = kI + AA + llB J - I = A + B. 
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3.2.3. Example. In a distance regular gr?ph any pair of vertices x, y 

with distance k has a constant number of vertices z such that 

dist(x,z) = i and dist(y,z) = j. This number a~. does not depend 
1J 

on the choice of x and y. The adjacency matrix A. of the relation 
1 

r i (distance i in the graph) is a polynomial in Al of degree i , 

for i = ], ... ,s. The relations I, r
l

, ... r constitute an 
_s 

association scheme. 

The regular hexagon provides an example of a distance regular graph 

and 
2 lA3 _ 

Al = A A2 = A - 21 ,A
3 

= q Al . 
] I 2 I 

3.2.4. Example. A permutation group G on a finite set ~ is called gene­

rously transitive if 

3.2.5. 

Va,s ":J [ci
g = S sg = aJ 

E ~ ~g E G ' 

The orbits on 
2 

~ of such a group constitute an association scheme. 

For instance, the symmetric group 8
4 

on four symbols contains the 

subgroup 
{(I), (1,2)(3,4), (l,3J(2,4), (J,4)(2,3)} , 

called the Klein-group. This group is generously transitive on ~ := 

{I, 2, 3, 4}. The orbits in ~2 are, 

I'o r] 

( I , I ) ( 1 ,2) 
(2,2) (2,1) 
(3,3) (3,4) 
(4,4) (4,3) 

Example. The Hamming scheme 

r2 

(1 ,3) 
(3, I) 
(2,4) 
(4,2) 

H (v, 2) is defined 

(] ,4) 
(4, J) 
(2,3) 
(3,2) 

as follows. 
v The set ~ consists of the vectors of the vector space F
2

. Two 

vectors are in the relation r. whenever their Hamming distance, the 
1 

number of coordinates in which they differ, equals i. This defines 

an association scheme with the parameters 

n v. = (:') 
1 1 

k 
a .. 

1:J 

( . k ) (V-k ) 
= [ 1 (i "j+k) o· Hi +j-k) 

if i+j+k 1S odd. 

if i+j+k 1S even 

Indeed, let wand WI have Hamming distance k. Without loss of 
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generality we can take w :: (0, 0, •• , 0) and w' = (1, .•. I, a , ••. 0 ) 
~ "--'Y--' 

k v-k 

The number of vectors to be counted are those that have distance 

i to wand j to w'. SO x contains i ones. Let a be the number of 

ones at the first k coordinates of x and b the number of ones at 

the last v-k coordinates. 

WI (I, . . . . . ] 0, . . . . . 0) 

x ( I , . . I , 0, 0 , 1, • . I , o. .0) 
'- .... , "'---' ~ -..,........ 

a k-a b v-k-b 

Now it is clear that dist(w',x) :: k-a+b = j and a+b = i. 
So a = !(k+i-j) and b = !(i+j-k). 

The number of possible x is (~)(~k) 

if i+j+k 1S even, and 0 otherwise. 

3.2.6. Example. The Johnson scheme J(v,k) is defined as follows. The set 

n consists of the k-subsets of a v-set. Two k-subsets are in the 

relation r. whenever their intersection has k - i elements. This 
1 

defines an association scheme with the parameters 

n v. :: 
1 

J(v,k) may be viewed as the set of all words of weight k in H(v,2). 

In this terminology the notion of a t-(V,k,A) design may be defined 

as following. A subset X c J(v,k) is a t-(V,k,A) design over the 

v-set if for each ~ E J(v,t) the number of blocks x E X having 

distance k-t to z is a constant, independent of ~, called A. 

3.3. Bases for the Bose-Mesner algebra. 

The Bose-Mesner algebra of an association scheme 

consists of commutiog, hence simultaneously diagonalizable symmetric 

matrices. 
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Therefore A also has a basis of s+1 orthogonal minimal idempotents 

(see appendix): 

A = <E 
0 =J..r n ' E 1 ' . . . .Es>R 

Example. For s 2, for a strongly regular graph with 

spec(A) f 
r , sg) we have the idempotents 

EO ..!.J , of rank 1 , n 

E
J = (A - sl + k-s J) of rank f , r-s n 

E = k-r of rank g (r1 - A +-J) , 
2 r-s n 

By definition, the algebra A is closed with respect to matrix multi­

plication. Since the A. are (0,1) matrices, the algebra A is also 
. 1 

closed with respect to Schur multiplication, that is, the entrywise 

mUltiplication of matrices 
A 0 B = C with c .. a .. b ... 

1J 1J 1J 

Hence 
E.'E:. = 6 .• E. A. o A. 6 •. A. 1 J 1J 1 1 J 1J 1 

S k s k 
A.A. = I a .. ~ E. o E. Ib .. Ek 1 J k=O 1J 1 J k=O 1J 

The coefficients b~. are nonnegative, since E. 0 E. 1S a principle 
1J 1 J 

submatrix of E. ~ E. , the Kronecker product, hence positive semi-
1 J 

definite. Since the eigenvalues of E. @ E. are the numbers A(E.)·A(E.) 
1 J 1 J 

wi th A (E .) and 
1 

A (E .) E {O, I } , 
1 

A(E.) eigenvalues of E. and E. respectively, and 
J 2 1 J k 

since E. E .. An explicite expression for b .. is 
1 1 1J 

obtained by use of 

L entries M 0 N = trace MNT ; 

I entries (E. 0 E. 0 E
k

) 
1 J 

trace(E. 
1 

k 
b ..• fl

k
, 

1J 

where flk 1S the multiplicity of the eigenvalue J of E . 
k 
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Expressing one basis into the other we define the coefficients 

p ik and qki by 

By multiplication the formulae 

A. E. = P'kE. -K 1 1 1 

are obtained. We define the diagonal 

t>. diag(v
k

) v for the 

t>. diag(~.) for the 
]J 1 

viz. trace(E.) trace(E. I) ]1. = = 0 
1 1 1 

matrices 

valencies v = k Pok 

multiplicities ]J . 
1 qoi 

1 = trace( - q .1) = q .. n 01 01 

The character table P := [PikJ, and its inverse Q (from PQ nI QP), 

satisfy the following theorem 

3.3.2. Theorem. ~.p 
]1 

Proof. (~P)'k ~.P'k 
~ 1 1 1 

P' k tr(E.) = tr(~E.)= L entries(E. 0 ~) 
1 1 -K 1 1 -K 

1 
"""'i1 qki I entries(~) = qkivk = (QT'~v)ik' 

o 
s 

3.3.3. Corollary. z~o]JzPZkPZl = nVk °kl' 

If Pzi is a polynomial in Pzl of degree i, for i = 1, .. ,s then the 

corollary implies that the p . constitute a family of polynomials, 
Z1 

orthogonal with respect to the weight function ]1 • This corresponds 
Z 

to a P-polynomial association scheme. 

Observing that 

imply 

A.A. 
1 J 

s k '" I a .. ~ 
k=O 1J-K 

s k 
PZiPzJ' = I '\jPzk 

k=O 

We give the following equivalent definitions for an association 

scheme (n, <I, r l , r
2

, .••• r
s
» to be P~polynomial: 
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3.3.4. (0 Pzi is a polynomial in PzI of degree i, for ~ 1, .•. ,s 

(H) 

(iii) 

i+l ..J. • 
a. 1 T 0 for ~ = 1, ••• ,s-1 and 
R' a .. :of 0 only if Ii - j I ::;; k::;; i + j 
~J 

f is the (distance i) relation in the graph (n,f]) for i 
i = 1,2 .... ,s. 

s 
3.3.5. Corollary. L vzqzkqzl = n~k6kl 

z-O 

3.3.6. 

If q . is a polynomial in q I of degree i, then the corollary implies 
z~ z 

that the q • constitute a family of polynomials, orthogonal with 
Zl 

respect to the weight function v . This corresponds to a Q-polynomial 
z 

association scheme. 

Observing that 

imply 

s k 
E. 0 E. = \ b .. E

k ~ J k~O ~J 

s k 
QziQ2j = klobijqzk 

E. 0 A 
~ z 

= _I q A 
n zi z 

We give the following equivalent definitions for an association 

(i) qzi is a polynomial in qz1 of degree ~. for i = 1, ••. ,8; 

(ii) b i + l 
i,l :of 0 for i = 1, ... ,s-1 and 

k 
:of 0 only Ii jl i b .. - S k ~ + J . q 

For Q-polynomial schemes no combinatorial interpretation is known 

which would be the analogue of the condition (iii) above. 

The preceding is illustrated in a few examples. More details and 

further examples may be foundin the references. 

3.3.7. Example. The Hamming scheme H(v,2) has 

v 
v. = ~. = (.) 
~ 1 ~ 

It is both P- and Q-polynomial, with the same family of orthogonal 

polynomials; viz. the Krawtchouk polynomials. 

3.3.8. Example. The Johnson scheme J(v,k) has 

v. 
~ 
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It is Q-polynomial with Hahn polynomials, and P-polynomial with 

dual Hahn polynomials. The underlying group is the symmetric group 

on v letters. 

3.3.9. Example. Let ~ denote the set of the k-subspaces of the vector 

space V(v,F ). Two k-subspaces are in the relation r. whenever 
q 1 

their intersection has dimension k-i. The resulting association scheme 

is P- and Q-polynomial, with q-Hahn polynomials, under the group 

GL(v,F ). 
q 

3.3.10.Example. Polynomial schemes are provided by the action of the sum­

plectic, the orthogonal, and the unitary group, respectively, on 

the set of the maximal totally isotropic subspaces (of dimension k, 

say), two such subspaces being in the relation r. whenever their 
1 

intersection has dimension k~i. 

3.3.11.Example. Polynomial schemes are provided by the 2m(2m-l) 

alternating bilinear forms on V(2m,F2), two forms being in the 

relation r. whenever their sum has rank 2i. 
1 

3.4. An inequality for generalized hexagons. 

3.4.1. Definition. A generalized hexagon H of order (s,t) is an incidence 

structure with points and lines, such that 

(i) 

(ii) 

(iii) 

(iv) 

each line has s+1 points, 

each point is on t+l lines, 

two distinct points are on at most one line, 

for any non-incident point-line pair x,L there is a 

unique path of length ~ 2, between x and L. 

From the definition it is immediately clear that the only possible 

situations fo a point x and a line L are: 

L x 
• 

L 
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3.4.2. Theorem. The number of points v, of a generalized hexagon H of 

order (s,t) equals 

k 

0 

I 

2 

3 

2 2 (s+I)(s t +5t+l) • 

Proof. Take a line L with its s+1 points x. for i = 1, •••• ,5+1. 
l. 

Through each x. there are t lines 
l. 

distinct from L, with each s points 

different from x .• The total number 
l. 

of points at distance 1 to L there-

L fore is (s+l)st. Analogously we 

find st distinct points at distance 

2 from L for any of the points at distance I. So there are (s+l)stst -

points at distance 2 to L. Due to property (iv) of the generalized 

hexagons these are all distinct and we have now found all points. 

Hence the total number 1.S 

2 2 2 2 
(s+]) + (s+l)st + (s+l)s t = (s+I}(s t +st+]). 

We define an association scheme on the points of H as follows. Two 

points are in relation r. for i = 0,],2.3, if their distance equals 
1. 

i. The adjacency matrix of r. is A .. By 
1. 1-

H one can find the intersection numbers 

use of the definition of 
k a .. by straightforward 
1.J 

counting. The amount of work in computing these numbers can be 

reduced by use of the equalities 

3 k I a .. 
. 0 1.J 
1.= 

v. 
J 

3 
L v. 

. 0 J J= 

2 2 
v = (s+I)(s t +st+l) . 

k The a .. 
1.J can be found in the following table which shows at once 

that the association scheme is distance regular. 

k k k k k k 
all a

12 
a22 a l3 a23 9-33 

s (t+l) 0 s2t (t+ 1) 0 0 
3 2 s t 

st st(s-]) 0 
2 2 2 

(s-1 ) s s t 5 

o 

1 s-\ s( t-l) st(s-)(t+l) 2 
st st (s t-st-s+t) 

0 t+l (s-1) (t+) ) 2 (s-I)(t+l) 2 (t+l)(s t-st-s+t) 2 t(s-I)(s t-s+t)+l 

(see [20], p. 53) 
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3.4.3. Theorem. For a generalized hexagon of order (s,t) the 

following holds: 

s = 1. 

Proof. Let A := A2 - (s-I)A
1 

' then we find with the help of 

AI + A2 + A3 + I = J and AJ = kJ (k=s(t+l) (st-s+l» 

2 
(A + (s -s+I)I)(A - (t+I)(s+t-I)1) = s(t+I)(st-s+I)J 

So 12m n spec(A) = ([s(t+I)(st-s+I)J , [-(s -s+I)] , [(t+I)(s+t-l)] ). 

2 2 ) m n 
spec(A + (s -s+I)1)= ([s(t+I)(st-s+l) + (s -s+I)J , 0 , A ) 

where A = 2 (t+I)(s+t-1) + (s -s+I). 

But trace (A + (s2-s +1)1) = (s2-s +1)v k + nA 

This yields 2 2 
3 (s t +st+l) 

n = s 2 2 (s +st+t ) 

and rank (A + (/ -s+ I) I) 1 + n. 

Now take a line L and consider all points x for which dist(x.L) "" I. 

We divide these points in s+l 

classes (each point on L coincides 

with one class). Each class is 

divided again in t blocks (the 

lines) that consist of s points. 

We define B} to be the adjacency 

matrix of fl (distance 1), if 

only the points in a class are 

considered. 

s J-I 
o 

J-I 

st o 
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Analogously B2 is the 

adjacency matrix of r 2 , if 

only the points in one class 

are considered. 

s 0 

So B) = I B J - I 
t s st B2 = J - I B J . st t s 

Define B := B2 - (s-I)B
1 

2 2 
+ (s -s+l)Ist = s I st - SIt r;g J s ' 

spec(B) 221 2 m n 
([s +st-s ] , [s ] , 0 ). 

trace(B) 2 2 st(s -s+l) = st + s m. 

This yields m = st - t and rank(B) = (st-t+l). 

A' := I 1 B B s+ I rank(A') = (s+l) (st-t+l). 

Since A' is a principle submatrix of A the following holds 

rank(A') ~ rank (A) , 

2 2 
So (s+l)(st-t+l) ~ 

3 (s t +st+l9: 
+ s 2 2 

s +st+t 

which leads to 223 t (s -l)(t-s ) ~ O. o 

Remark. If we define the points as "lines" and the lines as IIpoints" 

we get an incidence structure that is again a generalized hexagon, 

of order (t,s), as can be simply verified. But this means that 

3.4.3. holds in this case too, 

or t = 1. 

st 
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3.5. An association scheme in PG(2,4). 

(In this paragraph <, >F denotes the standard inner product in a 

vectorspace over the field F). 

Consider the projective plane PG(2,4). It has 2] points, which we 

denote by Pl' .••• 'P21 ' and 2] lines, which we denote by 11, •..• ,121 .. 

Furthermore, each point is on 5 lines and each line has 5 points. 

For i = 1, ••. ,2] we define the vector E V(21, GF(2» by 

(1.) . 
-1 J 

(1. ). = 0 
-1 J 

if p 1. j E 1 

if p. l 1. 
J ]. 

1. is the characteristic vector of the line 1 .. 
-1 ]. 

j 1, ... ,21. 

Consider the code C generated by !1' •••• ' !21 over GF(2). 

C is a binary linear code of length 2]. We recall the following 

definition: 

3.5.1. Definition. Let X be a linear code of length n and dimension k over 

the field F. 
i • 

The dual code X· of X 1S defined as follows: . 

It is easy to see that Xi is a linear code of length 

n and dimension n-k. 

3.5.2. Theorem. The dimension of C is at most 11. 

Proof. The extended code C of C consists of the vectors 

and 22 
I c. = 0 

i= I ]. 
(in GF(2». 

Clearly, C is a linear code, and has the same dimension as C. 

Also C is generated by 1" .... ,12 ] , 

and 
;;1. ,1'>F = 0 , 
-1 -J 2 

i,j 1,2, ... ,21. 

Let E.lt C and ~2 E C. Then, we can write 

E.J 
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21 
<: '£'1' E.2 >F = I 

2 i=J 

This yields C c (<3).L. 

Therefore, if k is the dimension of C, then k ~ 22-k 

(C has length 22). Hence k ~ 11, and so 

dim(C) = dim(C)~ 11. o 
3.5.3. Lemma. Let x be a word of C of even weight w(x). Then 

w(x) = 0 mod 4. 

Proof. We can easily see that a word of even weight of C is 

generated by an even number of lines. Inother words, the words of 

C of even weight are generated by 

~l :=!J + !2 ' 

The following holds: 

,b'>R w(b.) = 8 
-1 -1 

1 1,2, .•. ,20 

w(~i + ~j) = w(!i+l + !j+J) = 0 mod 8 

i,j 1,2, .•. ,20. 

we get <b., b'>R 
-1 -J 

o mod 4 i,j 1,2, ••. ,10. 

Now let dEC have even • Then we can write 

20 
d 'I d. b. , d. E {O, 1 }, and therefore 

L 1-1 1 

i=120 20 
wed) <::;!. ;!> R = I I d. d. , E.

J
• > R = 0 mod 4. 

. l' 1 J 
1= J=l 

3.5.4. Theorem. The dimension of C is at most 10. 

o 

Proof. A hyperoval H in PG(2,4) consists of 6 points, such that each 

line of PG(2,4) has 0 or 2 points of H. Let h be the characteristic 

vector of H. Then h has weight 6, and with lemma 3.5.3. this yields 

hI/C. 
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o i 1,2, .. ,21. 

for /H n Iii = 0 or 2, and (~)22 = O. 

Let C E C 
_ 21 _ 

then c = \' C • 1 . 
L 1-1 

i=1 

Hence h E (C) and h' C 

- -.L 
dim(C) < dim«C)'), and therefore 

and 

( h , C). 

o. 

This yields 

dim(C) dim(C) :'> 10 (see also theorem 3.5.2.) 

o 
3.5.5. Theorem. The dimension of C is 10 and C has the following 

weight distribution: 

weight 0 5 8 9 12 13 

words I 21 210 280 280 210 

Proof. We prove this theorem by simply counting: 

I) 0 E C , hence there is one word of weight O. 

16 

21 

2) a line in PG(2,4) is a word of weight 5 in C. Hence the number 

of words of weight 5 ~ 21. 

21 

1 

3) A pair of lines in PG(2,4) is a word of weight 8 in C. Hence the 

number of words of weight 8 ~ (2~) = 210. 

4) A triple of lines in PG(2,4) that don.t go through nhe same point 

1S a word of weight 9: 
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There are ZI'ZO-16 
3 , = 1120 of such triples in PG(2,4). We will now 

• 
show that for every triple there are 3 other (distinct) triples that 

lead to the codeword produced by that triple. Consider the triple above. 

Select a point a Z on lZ not on 1
1

,1
3 

(there are 3 possibilities) and 

let a3 be the intersection point of the lines a
j 

U and 13' Let 

Cz := (b
1 

u a
3

) n 1
Z 

and let b
2 

be the third point on lZ that is not 

on 11 or ~3' Then the lines b
1 

u b2 and 13 meet in a point b3 f a 3 · 

Call c3 the third point on 13 that is not on 1] or 1Z' Then it is 

easy to see that c
3 

= (c
I 

U c
2

) n 1
3

, 

Now assume that the lines (a
l 

U a
2 

u a
3
), (b] u b

Z 
u b

3
) and 

(c
l 

U Cz U c
3

) meet in one point x, Then there are at least 6 distinct 

lines that meet in x, viz. 

Cal u aZ U a3), (b l u bZ U b
3
), (c 1 U Cz U c3), (x u A), (x U B) 

and (x U C). 

But this LS in contradiction with the fact that only 5 lines meet in x. 

Hence (a l U a 2 U a3), (hI U b
Z 

U b
3
),and (c

l 
U c2 U c

3
) form a triangle 

in PG(Z,4) that leads to the same codeword as the original triangle. 

There are in total 4 triangles that lead to that word (there are 

3 choices for aZ); hence 
l1Z0 # words of weight 9 ~ --4- = 280. 

21 
5) (1,1, ... ,1) E C for (1, ... ,1) I 1. 

i=l-L 

(each point is on 5 lines), 

Therefore the complement of every codeword is in the code. This yields 

a lower bound on the number of words of weight 12, 13, 16 and 21. 

We see that ICI ~ 1024. Theorem 3.5.4. says that ICI ~ IOZ4. 

Hence ICI 10Z4 and therefore, C has dimension 10 and weight distri-

bution as above. o 
Consider the code D that consists of the words in C of even weight. 

Clearly, D is a linear code and has dimension 9 (IDI = 51Z). 

Define the following relations on D: 
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let !::!.,!::!.' E D 

{.:::, WI} E r, :~the Hamming distance dh(!;l.· !;l.') E D between 

w and w' is 16. 

{!::!.' WI} E r2 : ¢::> dh (!;l., 
w t) 8. 

{!::!.' WI} E :~dh (!;l.. w t) 12. 

Without proof we state the following theorem: 

3.5.6. Theorem. (D, {id, r
l

, f2' r
3

}) is a 3-class Q-polynomial 

association scheme. 

We will now determine the character table P. Let AI' A
2

, A3 be the 

(512 x 512)-matrices corresponding with r
l

, r
2

, r
3

, respectively, 

and AO 1
512

, 

With the relations AOEi p·OE. i 
~ ~ 

0,1,2,3 and ~EO = POkEO 
k = 0,1,2,3 it is easy to see that P iO = J , i = 0, 1 , 2 , 3 and 

POI = vI = 21, P02 = v2 = 210, P03 v3 = 280. 

Furthermore we have the following relations: 

A. A. 
~ J 

~ k 
l a .. p k 

k=O ~J z 
. 3 

= L a~.A 
k=O q k 

z,i,j 

i,j = 0, I ,2,3 

. ( ) . k , To solve the equat~ons of *, we have to determ~ne the a .. s. 
~J 

The combinatorial interpretation of the a~.Is (see 3.2.) is 
~J 

w w 

Without loss of generality we can take w 0. 

Then: 

o I 
I) Clearly, all vI = 21, and all = 0 for, it is not possible to 

find 2 vectors in V(21,GF(2» of weight 16 and Hamming distance 16. 
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2) Let w' have weight 8, x have weight 16 and assume that dh(~"~) 16 

then <~ I, x> = 4. 

,The {:!Qmpletnent of x is a line 1 in PG(2,4) and <~', 1> = 4. 

~' is a pair of lines in PG(2,4), hence l is one of those lines, 

and therefore there are 2 x's with the above properties. This 

yields a71 = 2. 

o for it is not possible to find 2 vectors of weight 12 

and 16, respectively, with Hamming distance 16. 

o 
4) a

l2 
= 0 (trivial). 

5) It is easy to see that the following equality holds: 

Hence 20. 

k Similar techniques can be used to determine the other a .. 
~J 

With this and the equations (*), we find 

p = I 21 210 280 '] 
-11 50 -40 
52- 8 

- 3 - 6 8 

(Note that 2 = l(p 
2 zl 21) (the scheme is P-polynomial2). 

With PQ + nI we find that Q = P. 

Also, because 

/':, 
v I::. = 

II 

diag(POk), I::. 
II 

[, 0 0 1] o 21 0', 
o 0 210 
o 0 0 

diag(q .) we find 
o~ 

Hence the scheme is self-dual and P- and Q-polynomial. 

3.6. Regular Two-graphs as Association schemes. 

Let A and B denote symmetric (0,1) matrices such that 

A + B = J - I and A - B has only two distinct eigenvalues. 

k 
= a.". 

J~ 
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Consider the 2n x 2n matrices 

AO [: :] Al [: :] A2 [: :] , A3 [: :] 
We claim that A

O
' AI' A2 , A3 determine a 3-class association scheme. 

Before proving this, we consider the following examples: 

Example. n = 4, and 

[-! -1] 
1 -1 

A - B 0 1 
0 

-1 

Clearly, A + B = J - I. Also (A - B)2 + 31 - 2(A - B) = 0, and 

therefore (A - B + 31)(A - B-1) = O. Hence (A - B) has 2 eigenvalues 

viz. -3 and +1. 

Consider the 8 vertices of a cube in R3. 

AI' A2 , A3 correspond to the relations 

r I , r
2

, r
3

, respectively, where: 

r 1 : two vertices are ~n relation r l 
iff 

r
2

: two vertices are ~n relation r 2 
iff 

a- or a -- - line. 

r3: two vertices are in relation r3 iff 

7f11-__ """;;;'_ 

they are connected by a --line. 

they are not connected by 

they are connected by a-- -line. 

3.6.2. Example. n 6, and 
0 1 1 

0 1 -1 -1 

A - B 
1 0 1 -1 -1 

-1 . ] 0 1 -] 

-1 -1 0 1 
] -1 -] 0 

Clearly, A + B = J - I and (A - B)2 = 51. Hence, A - B has eigenvalues 

15 and -/5. The relations corresponding to AI' A2 , A3 are similar to those 

given in example 3.6.1., but on a icosahedron instead of a cube. 

3 
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We return to the general case stated above. Then 

2 
(J - I) = (n-2)J + I = (n-2) (A + B) + l(n-I)I 

Also A - B has two eigenvalues, say p and o. 

Then (A - B - pI)(A - B - 01) = 0, and this yields 

(A - B)2 = (p + o)(A - B) - pol. 

It is easy to see that (A + B)2 and (A - B)2 have the same diagonal. 

Therefore (*) and (**) yield 

n - 1 -po. 

With this we can write 

A2 + B2 + AB + BA -(p~+I)(A + B) - pol and 

A2 + B2 - AB - BA (p+~) (A - B) - pol 

Hence, 

{ 

2 B2) 
( ) 

2(A + 
*** . 

-2pI - (l-p)(l-o)A - (l+p)(I+o)B 

2(AB + BA) - (l-p)(l-o)B + (l+p)(l+o)A 

Now we can prove the following theorem: 

3.6.3. Theorem. The matrices AO' AI' A2 , A3 defined as above 

determine a 3~class association scheme. 

Proof. 

2) We have to prove: 
3 k 

For i 0 

A2 
I 

A2 
2 

AIA2 

and 

A.A. = 
~ J 

i 3 

[A2 + 
B2 

AB + BA 

[AB + BA 

A2 + B2 

La . . A 
k=O ~J-K 

f . k E , or certa~n a .. 
~J 

it ~s trivial. Furthermore 

AB + BA ] and 

A2 + B2 

A2 
+ B2 ] 

AB+ BA 

R , i,j 0,1,2,3. 



With (11**) we see 

A2 = 
1 

A2 
2 

-poA -
0 

A1AZ -poA -
3 

k 
Because a .. 

1.J 
k 

a .. 
J1 
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that 

!<l-p) (l-a)A) - H 1 +p )( 1 +0 ) A2 and 

H hp)( l-cr)A
2 

-!(l+p) (I+cr)A
j

• 

i,j,k = O,I,Z,3, we have proved the theorem. 
o 

We are interested 1n the charactertable P of the association scheme. Let 

~ and v be the multiplicities of the eigenvalues p and a of A-B. 

(for ~,v,p,a the following holds: 

~ + V = n . and trace(A- B) = 0 = p~ + crv). Let x and y be eigenvectors 

of A - B for p and cr , respectively, Then it is easy to see that 

A ( x) o -x 

A ( y) o -y 

A ( x) 
I -x 

A ( y) 
I -y 

x pC) 

a( y) 
-y 

A ( x) 
2 -x 

A ( y) 
2 -y 

( x) A ( x) 
-P -x " 3-x 

= -a( y) 
-y 

A ( y) 
3 -y 

Hence this way we have found ~ + v = n simultaneous orthogonal 

eigenvectors of AO' AI' A2 , A
3

, Also because (A + B)j = (J - I)j = 
(n-l)j we see that 

= (n-l)(~) . J 

Hence j is also a simultaneous eigenvector of AO' AI' A2, A3, 

Let z be a vector with zT j = O. (we can choose n-l of these vectors 

that are orthogonal). Then 

We now have ~+v+l+n-1 = 2n , simultaneous orthogonal eigenvectors 

of AO' AI' A
2

, A3 ' and they determine the 4 simultaneous eigenspaces 

of AO' Al ' A
2

, A
3

. Then, 

[i 
n-I n-I I] 

p -I I 1 
p - p -I 
cr - cr -I 

Also ~ = diag(l,n-I,n-I,l) and ~ 
v v 

diag ( 1 , n-l , lJ ,v) . 
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The matrix A - B can be considered as the (-1,1) adjacency matrix 

of a graph. Clearly, graphs that are switching equivalent with this 

graph lead to the same association scheme, for the (-1,1) adjacency 

matrices of graphs that are switching equivalent have the same eigenvalues 

and multiplicities for further details see chapter 5.5.: "Two-graphs". 

3.7. The A-module V. 

We now return to the theory of the association schemes. 

For the set n of cardinality n, let V denote the vector space of 

dimension n which consists of all formal real combinations 

x = I x(w)w 
WE:n 

x(W) R. 

The space V ~s provided with the inner product 

<x,y> = ,I x(w) y (W) 
WEn 

Consider the basis { W I WEn} of V. Let ~(w) be the vector 

representing x(w)w w.r.t. this basis. Then the matrices of the Bose­

Mesner algebra A of an association scheme on n act on V following 

and decompose V into the simultaneous eigenspaces V.: 
~ 

V A V. = P'kV" -K ~ ~ ~ 

Let IT. : V ~ V denote the projection onto V., then it is easy to 
~ ~ 

see that 

<ILw, n.w'> 
~ ~ 

<w, n.w'> = E.(w,w'). 
~ ~ 

(Note that EO"'" Es are the projections on the s+l simultaneous 

eigenspaces of AO"" As). 

This leads to the following: 
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I) Q. := {n.w I wEO} I has Gram and coordinate matrix E .. 
~ ~ ~ 

2) 
~ 

{n.w ·@n.w I wd1} 
~ ~ 

(E. 0 E.) = [<II. w, 
~ ~ ~ 

has Grammatrix 
, 2] II. w > • 

~ 

(we remind the reader that the 2-tensor a @ b has the com­

ponents (a@ b) .. = a.b., and that two 2-tensors have inner 
- ~J ~ J 

product 

3) Q ••• := {n.w @II,w@ n.w 
~~~ ~ ~ ~ 

WEO} has Grammatrix 

(E. 0 
~ 

o E.) 
~ 

[ I 3] <]].w, n.w > • 
~ 1. 

The orthogonal projection Q. of the orthonormal frame n is spherical. 
~ 

Indea:l, takek 0 in the equation 

Then we get 

nE. 0 I = q . I. 
~ o~ 

Hence 

<IT.w, n.w> = q ./n ,WE Q , and therefore o. is a subset 
~ ~ o~ 1-

of a sphere. 

In addition in[IO] it 1S shown that n. is a spherical 2-design 1-n V., 
. . . . ~f1f i a 1 and that 1t 1S a spher~cal 3-des~gn ~ b .. = , 

~1 

equivalently 
L E. 0 E. 0 E. = O. 

1. ~ ~ 

(Let X be a subset of the unit sphere in Rd. X is a spherical t-design 

if for ":0; k ~ t the sum of the values of any homogeneous harmonic 

polynomial of degree k over the points of X is zero.) 

For {w, W'}E rk the equation nE i 0 ~ = qki~ reads 

<]].w, II-w'> 
~ ~ 

This is the addition formula in V., in particular in the Q-polynomial 
~ 

case when the qki are polynomials in qkl of degree i. 

The vectorspace V provides a setting for the subsets of the set O. 

For instance, 

X = {w 1 ' •••• ,w m} C 0 = {w J ' •••• ,wn } , 

is represented by thevector x = (1m, On-m) E V. The cardinality of X, 

of the intersection X n Y of two subsets, and the average valency ~ 
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of r
k 

restricted to X are expressed by 

IX I = ~, ~> , IX n Y I = ~, 1.> , 

for k O,I, .•. ,s. 

For any ~, 1. E V, we define the distribution matrix D(~,J..) 

to be either side of the following equality: 

s 
3.7.1. Theorem. L <x, Ay>~ = 

k=O - -K- v 
s k 

s 
L <x, 

i=O -

Proof. With ~ L p·kE. 
i=O- 1. 1. 

we see that: s s s 

f... P 
11 

! <~, ~.r ~ =.I .I I <~,Ei1.> 
k-O V

k 
1.=OJ=Ok=O 

s s s 

L L L ~x, 
i=Oj=Ok=O 

E.y> E. 
1.- J 

E.y> 
nE. 

1. 
1.-

11-1. 

QTf... and 
v 

PQ 

11 • 1. 

Putting x = 1. we obtain the inner distribution 

s 
= \' <~, E. x> E L. 1.- n .• 

i=O --11-.-- 1. 
1. 

The transition of the coefficients 

1 
to - <x, 

11i -

nI, 

D 

1.S well-known as the Mac Williams transform. It's significance stems 

from the nonnegativity of the inner product <_x, E.x>. 
1.-

Multiplication of D(~,~) by E. yields 
1. 

s 
<~, ~> L akQk 1.' = n <~, E.x> ~ O. 

k=O 1.-

1, the constraints 

provide a setting for application of the linear programming method. [IS]· 

(For more detai ls on the A-module, see appendix 3.2). 
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3.8. Cliques and codes. 

Let R = {l,2, ••. ,r} c {1,2, ••• ,s}. For an association scheme 

(n, {rO' r l , .... , rs}) we define: 

x c Q is an R-clique if its elements have only relations r
k 

with 

k E R, that is, if <~, ~~> ::= 0 for r < k ~ s. 

Y c Q is an R-code if its elements have no relations r
k 

with k t;: R, 

that is if <~, ~~> = 0 for 1 ~ k ~ r. 

3.8. ). Theorem. For an R-c lique X and an R-code Y we have 

If equality holds~, then IX n yl 1. 

Proof. nIXI·IYI = n <~, x> <Z' Z> ::= 

n I <~, 
2 k 

n L <x, 

!Xl
t

!YI
2 

~~> <Z' 

E.x> <Z, 
1-

, hence 

2 
E.y>/p. ~ n ~~. Eo=x> <~, EO~> 
1- 1 

(note that <x, E.z> ~ 0 
- 1-

and E~ 
1 

::=~<z, 
n - 1..> i 

. 2 . 2 
<~, 1..> <~, 1..> ::= 

for all z). 

If equality holds, then IX!~YI = n , and we see above that 

s 
\' <~, E.x> 
[, 1-

i=O 

Hence 

This yields 

and therefore 

s 

E.y> / p. 
1- 1 

\' <_x, E. x> <_y, E. y> L 1- 1-
i=l 

E.x = 0 or E.y = 0, 
1- 1-

Th('n (note that I) 

O. 

for i 1,2, ••• , s 

o for i = 1,2,... s. 
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8 

IX n yl <~, X"> <~, = L <~, E.y> ='<x, Eo¥-> 
i=O 1.-

1 < 

i..> 
1 

i> IXI·lyl l. =-<x d': =-<x d> -- 0 n -' n -' n 

Dually, X c rl 1.8 an R-design if <~, E.x> 
1.- '" 0 for i E: R , that 1.S 

if E.x = 0 for i R , that is, 
1.-

s 
if I ak

q
k · ::: 0 for 1. E R. 

k=O 1. 

3.8.2. Example. In J(v,k) an R-design translates into a r-(v,k,X) design. 

3.8.3. Theorem. X and an (S\R)-design y. 

Proof. 

Ixl'lyl ~ Irll , foranR-design 

222 Ixl ·lyl = n <~, E~~ <~, Eo¥-> = n
2 I E.x> <y, E.y>/ ~. 

1.- - 1.- 1. 
s i=O 

nlxl·lyl. = n I <~, ~~~ <~. ~~>/vk 
whi80p roves the assertion. 

The vectors ~, ~ f Rn are called design-orthogonal if 

<~, E.x> <y, E.y> 0 for 1. = 1,2, ... , s. 
1.- - 1.-

[J 

If so then <~, E.y> = 0 for i = 1, ••• , s (see the proof of theorem 
1.-

3. 8. 1 . ) Hence 
1 

D(~,Z) = <~, EO.~> nEO =n<~' i> <~, 1> J. 

Therefore, for k = D, 1, ••• , s we have 

s 
= L 1)ik<x, 

i=OV- -
k 

E.y> = 
1.-

1 
Er.,Y> :=: - <x, i> <~, i> 
v- n-

<~, AnY> = <~, ~> and this proves 
V o v-

3.8.4. Theorem. If x and ~ are design-orthogonal, then 
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Appendix 3.1. Minimal idempotents. 

A.3.1.1. Definition. Let F denote a commutative field. An algebra over F 

is a set A on which an addition, multiplication and 

scalar multiplication is defined, such that 

( i) A 1S a ring with unit element e. 

(H) A is a vectors pace over F of finite dimension. 

(Hi) (Aa)b a(Ab) A (ab) 1. a == a , for all 

a,b r: A , A F ( 1 is the unit element of F) • 

In this paragraph we will also assume that the ring multiplication 

~s commutative and that 
2 

a o a = 0 for all a EA. 

For a more general treatment of the theory of associative algebras 

see [25], Ch. V. 

A.3.1.2. Examples. 

I) A - C, F = R. 

2) In the theory of the cyclic codes, the algebra 

A = F[xJ/(xn-l) , with F = GF(q) , (q,n) == 1. 

3) The Bose-Mesner algebra of an association scheme. 

We will now investigate the structure of an algebra A. 

First we recall the following definition: 

A.3.1.3. Definition. An "idealB of A is a subring of A, such that ab ( R 

for all a E r1 and b E R. 

An ideal B # {a} of A is called minimal if for all 

ideals B' of A with BI c B the following holds: 

B' { O} or B I = B 

(0 is the unit element of the additive group of A) • 

A. 3. J .4. Theorem. An ideal B of A is a subspace of A • 

Proof. Clearly, a + bEll for all a,b E B. Also, if A E F and 

b E B, then Ab = A(eb) == (Ae)b E B. 

o 
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A.3. 1.5. Theorem. Let M] and 

Then M
j
M

2 

M2 denote distinct minimal ideals of A. 
(i) (i) (i) 

= {OJ (M1M2 := {fm1 m2 ~ m] EM] 

1 

Proof. Clearly, M]M2 is an ideal of A and M]M2c (M] n M2). 

Also (M
1 

n H
2

) c H] and (M
1 

n M
2

) -.F M]. 

(for M1 -.F H2 and M ] , M 2 are minimal). 

Hence 

Because 

M] is minimal, this yields M] M2 = fO}. 

n 
A.3.1.6. Theorem. Let M

O
' M

1
, •••• , Ms denote distinct minimal ideals of/\. 

A. 3.]. 7. 

Then the ideal M .- MO + M1 + .. + Ms is a direct sum. 

Proof. If 0 = mO + ••. + ms for m
i 

E M
i

, 

with theorem A.3.].5. we see that 

1 0, .•. , s, then 

0 O.m. 
2 

for a11 i 0, ... , s . = m. 
1 1 

Therefore m. = 0 for a11 i 0, ... , S. 
1 

Hence M = MO tP M] tP tPM s 
. D 

Theorem A.3.].6. implies that there is only a finite number of 

minimal ideals in A (note that A has finite dimension). 

Let MO' M1, .... , Ms denote the minimal ideals of A Then: 

Theorem. IfM NO tP N] tP • . . tPM then M = A. 
s 

Proof. Select an m. E M. \{ O} for all 1 = 0,1, .... ,s and let 
1 1 

m := mO + m + + m . 1 s 
We define the linear mapping 1>m : A -+M by 

1> (a) m := ma for a11 a E A 

Assume that A -.F M. 

Then N := {a E A I 1>m(a) = O}-.F {O}. Because N is an ideal of A 

(this is easy to see), we can find a minimal ideal M. of A such that 
2 1 

M. c N. But then 
1 

hence A = M. 

o = 1> (m.) = m. and therefore m. O. This is impossible 
m 1 1 1 

D 
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So @ 14 and we can write 
s 

+ e 
s e. E M. 

1. 1 
O,l, ••• ,s. 

A.3.1.B. Theorem. (i) The e. 's are idempotents (e~ = e. , 1= O.I •...• s) 
111 

(ii) 

(iii) 

(iv) 

and are called the minimal idenrpotents of A,' 

Also e.e. = ° 
1 J 

If a E A, then 

where a. = ae. 
1 1 

if i '" j. 

a = a
O 

+ a
1 

+ • • . + as 

(i + O,I ..... s). 

M. is a field with unit element (i = O,I, ••• ,s). 
1 

Let B be an ideal of A. Then B is tha sum of a number 

of M.'s and B contains a unique idempotent that generates 
1 

the ideal B. Also every idempotent of A is the sum of 

a number of e. 'so 
1 

Proof. Evident, with preceding theorems. o 

A.3.1.9. Theorem. The dimension of M. equals I, for all 
1 

i=O,I, ... ,s, 
iff for all a E A : A is the sum of the eigenspaces 

of the linear mapping ¢a : A + A 
defined by 

¢ (x) := ax, for all x EA. 
a 

Proof. 

1) <== Let i E {O,I, ... ,s} and m. E 
1-

M •• 
1 

Clearly an eigenspace of ¢ is an 
m. 

ideal of A. If 

£1""'£ are the eigenspac~s of¢ 
t m. for the eigenvalues ~l""'At' 

""-and A = £1 (j) ••• (j) £t ' then 1 

2) 

£1 (j) •••• @ E:
t 

= 140 @ 141 @ •••• @ Ms • 

With theorem A.3.1.8 (iv) we see that there must be a £. such 
J 

that M. c £ •• 
1 J 

Now m. 
1 

Hence M. 
1 

= m.e = m.e. = $ (e.) = A.e .. 
11.1 m 1 J 1 

has dimension 1 f~r all i= O,I, ... ,s. 

~ Let a E A. Thus a = AOeO + ••. + Ase
s 

and therefore 

NO, ••• ,Ms are the eigenspaces of ¢a' Hence A is the sum of the 

eigenspaces of the mapping ¢ . 
a 

o 
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He now return to the association scheme case, so let A be the 

Bose-Mesner algebra of an association scheme. 

Consider again the linear mapping ~ : A + A defined by . 'fa 

<PA(X) := AX for all X € A (A E A). 

Then the mapping <p : A + <P
A

:= {<P
A 

I A E A} defined by 

for all A E A. is an algebra isomorphism. 

Therefore, A and <PA (A E A) have the same minimal polynomial 

($0 is the minimal polynomial of A if $0 to, $O(A) = 0 , 

$0 is monic, and if ~ 1 0 and $(A) 0, then degree(~) ~ degree(~o»)' 

Without proof we state the following theorem: 

A.3.1.10. Theorem. Let M be a n x n matrix and AI, ••. ,A
p 

be distinct reals. 

Then: 

M is diagonalizable with distinct eigenvalues 

iff the minimal polynomial of M ~s 

p 
~ (X) :- IT (x-l.). 

o i=I 1-

A is symmetric for all A E A, and therefore diagonalizable. 

Then theorem A.3.J.IO. and the fact that A and <PA have the same m1-n1-­

mal polynomial yield: 

<PA is diagonalizable for all A E A, and therefore A is the sum of the 

eigenspaces of <PA, for all A E A. Therefore, with theorem A.3.1.9. 

we see that the minimal ideals of A have dimension 1. Hence the minimal 

idempotents of A constitute a basis of A (theorem A.3.1.8.(ii». 

Appendix 3.2. The A-module. 

Let A be a commutative algebra over F, as described in appendix 3~1. 

wi th minimal ideals M
O

' M 1" ••• , M s and minimal idempotents 

eO' e l , .. ··, e i € Mi I 1- = O,I, .•• ,s. 
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A.3.2.1. Definition. A vectorspace V over F of finite dimension ~s called 

A -module if there exis ts a mapping cp: A xV V, Ha,v) 

such that for all aI"~2 E A , V E V and A e F the 

following holds: 

(1) (a l + a2)v = alv + a
2

v 

(2) (a l a2)v = a
I

(a
2
v) 

(3) ev = v 

(4) a(v
I 

+ v
2

) = aV
I 

+ aV
2 

(5) a(Av) = (Aa)v = A(av). 

Properties (4) and (5) imply that the mapping fa:= r av 
VEV 

~s a linear mapping of V into V (<lEA). The properties (I), (2), (5) 

say that the mapping a -+ f (<lEA) is a homomorphism of algebras of 
a 

~. into the algebra consisting of all linear maps of V into V. 

A.3.2.2. Examples. 

(I) A is a A-module. 

(2) Every ideal of A is a A -module. 

(3) The standardA-module V of an association scheme as described ~n 

paragraph 3.7. is a A -module. 

av, 

A.3.2.3. Theorem. LetV be a A-module and define V. := e.V for all i 0, ... , s . 

Then 
V 

ProOf. 

(1) Let v E V. Then v 

and 
e.v E V., 
~ ~ 

(2) Assume that 0 = Vo + 

Let i E {O,I, •.. ,s}. 
2 

Hence, e.v. e.w = 
~ ~ ~ 

e.v. e.e.w 
J ~ J ~ 

Therefore, for all i 

o 

Hence 

e .. O 
~ 

~ 

vI + 

Then 

e.w = 
~ 

= O·w 

@V 
s 

~ ~ 

0,1 , .•• , s . 

+ v for certain 
S 

v. e.w for a certain 
~ ~ 

v. and 
~ 

= 0 for J 1: i. 

v 

O,I, ... ,s 

@V. 
s 

v .• 
~ 

E V .. 
~ ~ 

WEV. 
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If dim M. = ] for a certain 1 e {a,I, ... ,s}, then V. is an eigenspace 
1 1 

of f for all a e A, because if a e A and v. e V., then 
a 1 1 

f (v.) 
a 1 

avo 
1 

ae.v. 
1 1 

Av. 
1 

), e F-.-

Now consider the association scheme case with the standard A-module 

V described in paragraph 3.7 .. In appendix 3.1. we have seen that all 

the Mils have dimension 1, and therefore we see that Va' .... ' Vs are 

the simultaneous eigenspaces of the matrices of the Bose-Mesner algebra 

A of the association scheme. If V. := dim(V.) 
1 1 

i = a, J , ••• , s , we see 

that v. = 
1 

dim(V.) = dim(E.V) 
1 1 

1 trace{- q .1) = q .. 
n 01 01 

rank(E.) trace{E.) 
1 1 

trace(E.oI)= 
1 
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4. 

Pseudo-cyclic Association Schemes. 

General references are E 3» ,[ 22 ] , [ 24 J , [ 25 J . 

4. I . A theorem. 

Let (n, { id, r I' ..... , r s}) denote an s-class association scheme 

on n = Inl points, with va' vI ••• , v
s

' and multiplicities 

]la, "', ]ls' and intersection numbers a'~j (i,j,k = 0, ... , s) and 

character table P [Pik] chapter 3). 

4.1. I. Definition. The association scheme (n, {id, r I' .... , r s}) is 

called 
~---"'----

if]ll = ]lZ = ... = ]ls' 

In chapter 3 we have seen that a strongly regular graph is a 2-class 

association scheme. For example, the pentagon graph P(5) is strongly 

regular with parameters n == 5, k == 2, A == 0, ]l = 1 and spectrum 

Therefore peS) is a pseudo-cyclic association scheme, for]11 =]lZ 2. 

Note also that VI 

Moreover, all conference graphs are pseudo-cyclic 2-class associa­

tion schemes with VI = v
2

' since the parameters of a conference 

graph p(q) are (q = pr, p prime and q = 1 mod 4) 

n = q , k == !(q - I) !< q .,. 5) ,]l !(q - 1) . 

The spectrum of p(q) ~s 

([!(q _ 1)J 1 , [!(-l-lq)J!(q-1), [~(_] +/q)] Hq-1) ). 

Therefore Jl I ! (q - 1) ==]l 2 and VI = k == ~(q - I) = n - 1 - k == v 2 • 

The fact that a certain association scheme has all valencies equal 

does not always imply that it is pseudo-cyclic. For example 

the triangular graph T(7) has parameters 

n == 21, k = 10, A == 5,]1 = 4 and spectrum ( 10
1

, (-Z) 14, 3
6

) • 



- 73 -

Hence, v = v = 10 
1 2 and ~I = 14 # ~2 = 6. 

4.1.2. Theorem. The association scheme (~,{ id, r
I

, .... , rs}) is 

pseudo-cyclic if and only if there exists an integer 

t such that 

Proof. 

(1 ) 

Also if 

(2) 

I) 

2) 

VI = v2 
s 

L a7. 
i=O 1J 

First, consider the following: 
)18 k 

(i ,j ,z Pzi Pzj = , a .. p k 
k=O 1J z 

Q = [q .. ] then PQ QP = 
s 1J s 

LP·kqk· L Pk·q·k no .. 
k=O 1 J k=O 1 J 1J 

t -

v 
s 

t. 

for all J 

we know that 

= 0,1, ... ,$.) 

nI, and this yields 

( i,j = 0,1, ... , s) 

Furthermore, Pok = vk ' qok = ~ , Pko = 1 

and qko = 1 (because (I/n)qko~ = EO 0 ~ = 
k = 0, 1, ... , s. 

(because PkoEk 
(I/n)~) for all 

With (2) sthis yields s 
(3) LV 

k=O k 
= n and k~OPik 0 for i 1,2, ... ,s 

s s 
(4) L II k = n and L q'k 0 for j I,2, ... ,s 

l;-O 
3) . 

k=O J 
(see c apter 

If we mUltiply (1) with q. and take the sum over i and z, 
1Z 

then we get: s s 

.I L PziPzJ·qiz 
1=OZ=0 

s s s k 
L I I a .. p k q · • 

i=O z=o k=O 1J Z 1Z 
With (2) this yields 

s s s 
k L n Pzj L L n °ki a .. , and therefore 

z=o i=O k=O 1J 
S s i 

(5) 1. Pzj L a .. for all J 0,1, ... ,8. 
z=O i=O 1J 

t; P QT t; (see chapter 3) yields llzP zj 
= v.q. , or 

II v J J z 

2 j 
= 

v. J , z 0,1, ... ,s. 
J 

1,2, ... , s. 
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If we substitute this in (5) , we obtain 

s qjz s 
(6) L -- L a~. , for all j =0.1 ••••• s. 

11 z v. i=O 1J z=O J 

Now we can prove the theorem. 

(i) ~ If (~, {id, r 1 ' •. " r s} ) pseudo-cyclic, then 

l-l0 :::: 1, l-l] = l-l] = •••• = l-ls 

With (6) we see that 

t for a certain integer t. 

8 . 
1 I a .. = . 1J 

1=0 

s q;z 
v. I-" =v.(l+ 

J z=O)J z J 

Ifj=I.2, ••• ,s 

and therefore 

then (3) yields 

8 i I t (7) I a .. v. (1 - -) :::: v. 
1J J t J i=O 

This yields t v. and therefore 
J 

Also 
8 8 s 

st + 1 Iu, I v. :::: 1 + I . 0 J . 0 J 
Hence J= J= j=1 

vI = v2 = v t. s 

If we substitute this 1n (7) we obtain 

s 

8 
\' q. ) • 
I, J z 

z=1 
-1 

-
t 

j 

t :0; v. for 
J 

v .• 
J 

:::: 1,2, .•• ,8. 

J = 1,2, ••• ,s. 

i I a .. = t - 1 , for all j= 1,2, ••• ,8. 
i=O 1J 

(ii) <= Assume that vI 

and 

For a certain integer t. 

8 

= Vz = . . 
s i I a .. = t - ] 

. 0 1.J 
1.= 

= 

Then (5) yield8 

v t 
s 

for j 

(8) I Pzj 
S i I a .. = t - 1 

. 0 1J 
(j = 1,2, ... ,8) 

z=O 1= 
Consider 

(1, t, t, .... , t) P :::: (1, t, t, ... , t) 

v] V z 
PI] PI2' 

P21 P22 

I,Z, •••• 8. 

v 
s 

• PIs 

P28 
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This equals n (1,0,0, ••• ,0) for: 

s 
1 + st = I vi = n 

i=O 
s 

v j + t L P zj = Vj 
z=l 

«3) ) 

+ t(t-1-v.) = a 
J 

Q is the unique matrix such that QP = nI. Hence 

and 

«8» . 

(l,t,t, .... ,t) is the first row of Q. The first row of Q is also 

(PO, .•.. ,Ps). Hence 
].1 =lJ = . . =11 = t. 

2 s 
2 2 

I a~J 1 1 and L a~2 = 7. Remark. For T(7) 

For P(q) 
i""O 

.!o 
i=O 

f atl Hq-3) . 
i=O ~= 

4.2. Pseudo-cyclic association schemes with 3 classes, ort 28 vertices. 

[1 

In this section we discuss a method to construct a 3-class association 

scheme out of an existing one. Then we apply this method to the 

so called Mathon-scheme. Finally, it is pointed out that this 

pseudo-cyclic association scheme, together with Hollman's scheme, 

the one formed out of the Mathon-scheme by the mentioned construction, 

are the only pseudo-cyclic 3-class association schemes on 28 vertices. 

4.2. I .. A Construction. 

Consider a 3-class association scheme (X, {I = rO' r l , r 2 , r)J) 
with a subset Y, consisting of four points a, b, c, d, such that 

(i) For all x ~ Y = {a,b,c,d} the relations (x,a), (x,b), (x,c) 

and (x,d) are distinct: 

1", rz /1 
,y 

f) /, r3 

V/ '>! 
f] 

(ii) All x E X\Y have only two different relations to the points 

of Y, say r. and r. and each relation appears exactly twice. 
1 J 
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For instance (x,a),(x,b) E r. and 
_ 1 

X is said to be of type {i,j}. 

(x,~),(x,d) E r., 
J 

From (X,r) a new association scheme (X,~), with the same intersection 

numbers can be constructed as following. 

(i) For (x,y) E: (Y x Y) u (X\ Y x X\ Y) we define 

(x,y) E ~. ~ (x,y) E r .. 
1 1 

(ii) For (x,y) E (X\Y) x Y and x of type {i,j} we define 

(x,y) E I:J.. ~ (x,y) E r .. 
1 J 

These definitions provide a new association scheme. 

Proof. We will show that for (x,y) E 8
k 

18. (x) n I:J.. (y) I 
1 J 

l., where 1I.(x) := {z 1 (x,z) E 8.} 
1J 1 1 

* Furthermore ~,(x) := 11. (x) n Y 
1 1 

** and 8, (x) := LL(x)\Y. 
1 1 

The proof is divided into three cases. 

Case 1. Let x E Y and y E Y. 

18, (x) n 8.(y)1 I ~ ~ (x) n M (y) 1 I ** n t,. ~* (y) I Then + 11. (x) = 
1 J 1 J 1 J 

I r~ (x) n r~ (y) I I ** n r~* (y) I (+) + r. (x) = 
1 J J 1 

I r~ (x) r~(Y)1 I ** ** I = n + r. (x) a r. (y) 
J 1 J 1 

I r ,(x) n r. (y) 1 
k k 

== == a .. == a.,. 
J 1 J1 1J 

Remark (+) can easily be seen by the inspection of 
r 1 

Case 2. Let x E X\Y and y E X\Y. 

* * I + II:J.~* (x) ** Then 18, (x) n 8, (y) 1 = I ~. (x) n 11. (y) n ~. (y) 1= 
1 J 1 J 1 J 

I r~ ex) n r~ (y) I ** ** I + 1 r. (x) n r. (y) = 
1 J 1 J 

I r. (x) n (y) I k 
== a .•• 

1 1J 
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Case 3. Let x E X\Y and y E Y. 

Without loss of generality we can assume that y 

be the type of x and assume i' {k,l}. 

a. Let {k,l} 

Define 
V := {z E r.(x) {z} x Y n r.} f.¢ 

1 J 
W := {z E V I (z,a) 1/ r.L 

J 

Since V n Y = !O (i '{k,l}) and (x,a) E r
l 

the following holds 

fj. (x) 
1 

Now define S 

If (X,u) r
l 

If (x,u) E fk 

This gives us 

n fj. (a) 
J 

= w and 

:= { (z, u) E r. (x) x Y 
1 

then the number of z 

then the number of z 

1 k N=2a .. +2a 
1J 

Iwi "" 

Z E 

S is 

S 1S 

If z E V then two Y E Y satisfy (z,y) E 

So N 2·lvl. 

Ivi 1 
- a .. · 

1J 

r. (u) 
J 

} , N:=lsl. 

1 
ij' 
k 

a· ., 
1J 

r .. 
J 

This gives us 1 
2a .. 

1J 
+ 2a ~. = 2· I V I = 2· I wi'" 2a ~ .. 

1J 1J 

or Iwl = I~.(x) n ~.(y) I = 
1 J 

k 
a ... 

1J 

The case 1 E {k,l} is proved analogously. 

The scheme of Mathon. 

o 

If a group G has a generously transitive action on a set ~, i.e. 

Ll 3 [a g - S sg aJ then the orbits of G on ~ x ~, Va,SE~ gEG -, 

that is the sets {(ag,sg)l g E G} , form an association scheme (see 3.2.4.). 

Now let 0 be a hyperoval in P = PG(2,8). The 73 lines of Pare 

divided in (l~) = 45 secants and 28 passants. Consider the group of 

linear transformations on V = (F~), Gl(3,8). The subgroup of GL(3,8) 

that maps the hyperoval on itself. 
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acts generously transitive on n, the set of passants. The so constructed 

scheme has been described first by Mathon. Hollman has shown that we 

can construct another association scheme out of Mathon's scheme with 

the method described at the beginning of this section. 

More precisely,if we take the hyperoval 

2 ° = {( I ,0,0) , (0, I ,0) , (~,f; ,1)'1 GF(8)} .1 

then 

y {oo ,OJ ,02 ,03} 

where 3 3..L 
O} ( I ,a. 

5 5).1 00 ( 1,0. ,a. ) ,a. 

O· ( I ,a. 6 6)1 °3 (1,1,1).1 
2 ,a. 

satisfies the conditions (i) and (ii) of 4.2.1. (Q. 1.S primitive 

in GF(8) with 0.3 0.+1). 

Note that the four passants meet in one point V1.Z. (0,1,1). 

Pseudo-cyclic 3-class association schemes. 

In pseudo-cyclic association schemes all non-trivial mUltiplicities 

are the same. For a 3-class scheme that means 

Inl = 3t+\ and 11} 112 113 t. 

This is equivalent to 
3 k 

Vj = v2 = v3 t and l a' k = t-1. 
k=O 1. 

To find the intersection numbers the following lemmas are needed 

4.2.2. Lemma. 3 m k I alka' i ~ for all i,j,l,m. 
k=O J 

Proof 1. Since the Bose-Mesner algebra of an association scheme 

is commutative and associative: 

(A.A. )Al = (A.A. )A
l 

= A. (A.Al ) 
1.J J1. J 1. 

80 

(a .A. )A
1 

oA ( k ( t k a .. ~)Al oA 1. J m 1.J m 
k 

a .. A Al)oA 1.J-k m 

( 
k s 

L a .. ( E ~lA »oA 
k 1.J 8 S m 

k 8 

Lk L: a. '~l (A oA ) 
s 1.J 8 m 

( k rn r. a .. ak1)A 
k 1J m 
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and analogously t m 
A. (A. Al ) oA = (L a

l
. a .) A 

J ~ m t ~ tJ m 
r. 
J Proof 2. Take p and q such that (p,q) € r , 

m 
and count the number of squares pqrs with 

(q,r) E rl , (r,s) E ri and (s,p) E r .. 
m - J 

The number of s is t a tj . If (q,s) E r t 
t 

rPO:· m ~ 

q r 

4.2.3. 

there are ail r's with (s,r) E rio 

So the total number of different squares is I 
t 

r
l 

The number of r is Ika~k' If (p,q) ? fk then the number of s 
k with (s,r) € r. is a ... 

~ ~J m k 
So the number of squares ~s also I alka

ij
, 

3 3 k 
\' m t \' m k 
L at,a' l = Lalka ... 

t=O J ~ k=O IJ 
That gives us [ 

Corollary. j I 
for all l,t 0 ali = a .. > 

J~ 

Proof. Take m= 0 in 4.2.2. With 0 a .. t the result follows. 
11 

4.2.4. Corollary. La] =t-], 
k kk 

if j > O. 

Proof. Take I 

So t-] := 

4.2.5. Lemma. 

i = k in 4.2.3. then ~k = a~k' 
L a~k' 
k 

v. 
J 

for all i and j. 

Proof. Count the points that have relation J to a fixed point. 

4.2.6. Theorem. The intersection matrices are 

n 

n 

II 
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Proof. Let s 1 
and 1 :::;:: a l2 r := a 13 · 

I From 4.2.5. we know alII t-r-s-I. 

Since [a~jJ is 
1 symmetric a21 sand a31 r. 

With 4.2.4. 
I 

+ a~2 + 
I 

t-I t-r-s-l 
1 

all a33 
+ a22 

So 1 I 
(*) a22 + a

33 
r+s 

With 4.2.5. I 1 
(**) s + a

22 
+ a

33 
t 

I I 
(***) r + + a

33 = t 

(*) , (**)~ (***) lead 1 1 and to ap r , a33 = s 
I 

a23 = a32 
= t-r-s. 

The matrices [a~jJ and [a~j] can be found from [a~j] with 

4.2.3., ~.2.4. and 4.2.5. 

D 

4.2.7. Theorem. For rand sand t holds 

2 2 
J+2(r+s)-3(r-s) = (1+3(r+s)-2t) • 

1 
+ a33 • 

Proof. Application of lemma 4.2.2. in the case 1 = i 2, j .. 1 

gives 

So 

s 
\" t 1 
L a a 

t=O 22 t 1 

222 
r(t-r-s-l)+(t-r-s-l)s+sr = s +r +(t-r-s) or 

2 2 
J+2(r+s)-3(r-s) = (J+3(r+s-2t) . 

D 

Equation 4.2.7. has integer solutions r, s, tiff 

has integer solutions. 

Here L = 6t-2-9(r+s) , M = r-s , V = 3t+l. 

In the schemes on 28 vertices we have the unique solution 

v 28, L = :2 M = +2 or without loss of generality 

r=4,s=2,t 9. 
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Thus the intersection matrices 1n our case are uniquely determined 

viz. 

ra~.l=r;:jl ~~}=[:i~l ra~'J=[~;~] 
[ 1 jJ L4 3 ;J l>i1 3 2 4 [1J 3 4 2 

The schemes of Mathon and Hollman are the only pseudo-eyclic 

3-class association schemes on 28 • This is partly the 

result f1:'om the uniqueness of the intersection numbers. Hollmann has 

shown that the two association schemes are the only ones with these 

intersection numbers by detailed examination of substructures' of the" 
scheme. 

4.3. Pseudo-cyclic Assbciation schemes from PSL(2,q), q = 2m. 

Let V(2,q), q = 2
m

, denote the vectorspace of dimension 2, over the 

Galois F . The projective special linear group PSL(2,q) the 
q 

group of the permutations of the points of PG(I,q) (these 

are the lines through the origin of V(2,q» induced by the 

maps of V(2,q) into V(2,q) with 1. 

We recall the following definitions and lemmas from group theory. 

4.3.1. Definitions. Let G denote a transformation group of a set A. 

G is called itive on A if for all 

Xl' x 2' .... , 'YI' Y2' .... , Yk E A. 

Xi '" Xj ~ Yi I Yj , i,j == 1,2, ....• k, i:f J, 

there 1S agE G such that 

g(X. ) 
1. 

If this g 1.8 

on A. 

for all i = 1.2, ..•. ,k. 

then G is called sharply k-transitive 

E A, then the stabilizer 

G of xl' ., ••• , xI!! is defined as 
x1"",xm -

(Clearly, 

{g IS G I g(x.) 
1. 

X. 
1. 

1. = 1,2, ••• , m} • 

, ••• ,x
m 

is a subgroup of G). 
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4.3.2. Lemma. Let G be a finite group of permutations on a set A, 

T an orbit of G, a EO T and G the stabilizer of a. Then 
a 

4.3.3. Lemma. Let G be a permutation group on a set A, a E A. Then 

G is k-transitive on A iff G is transitive on A and 

G is (k-])-transitive on A\{a}. 
a 

4.3.4. Theorem. PSL(2,q) sharply 3-transitive on the points of PG(l,q). 

Proof. Let G := PSL(2,q) and let n be the set of the points of PG(I,q). 

I) Consider two elements x,y of Q\~],O», «O,I»} 

Then x = «a,I»,y < (b, 1 h, a,b E Fq\{O}. 

1° I ]" 

a2b- z 

Consider the matrix 

A 

C 1 ea r 1 y, A E G « (l ,0),. , « (0 • 1 » and 

~ I I I 
«a,l)A> = «a b Z, aib- i » = «b,I». 

Hence, G 
«1,0»,«0,1» 

Moreover, G is transitive on Q\{«l,O»} for, <(l,0» 

if 

B := [a~ ~!] 
a 2 a 2 

then and 

«l,O)B> = «a~, a-~» = «a,I», for all a E F \{O}. 
q 

With lemma 4.3.3. we see that G«] ,O»is 2-transitive 

on Q\ {« ] , 0) >} • 

2) If 

c = [~ :] 

then C E G and «l,O)C> = «0,1» , and therefore, G is 

transitive on Q. Then with 2) and lemma 4.3.3. we see that G 

is 3-transitive on n. 
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3) It is easy to see that the matrices of G that fix «1,0» and 

«0,1» are of the form 

Also 

(for 1 in F 
q 

-J 
«a,a » 

m 
q = Z ). 

Z 
«a ,1» = «1,1» iff a = 

Hence, the only matrix of G that fixes «1,0», «0,1» and «1,1» 

is I Zx2 ' 

Now let xl' xz' x3 E V(Z,q) , YI' YZ' Y3 E V(2,q) 

x. "I x. y. 'f y. i 'f j , 
1. J 1. J 

then there are A E G and BEG such that 

<YIB> «1,0» 

<y3B> = «l,I» 

-1 
Hence, <x.AB > = <y.> 

1. 1. 
i 

If <x.D> B.<Y.>, i = 1,2,3, 
1. • 1. 

<x2A> = <y2B> = «0,1» 

(Because G is 3-transitive on n). 

1,2,3. 

then A-1DB fixes «0,1» , «1,0» 
-I and «J,l» and therfore A DB = I or D = AB- 1

• Hence, G is sharply 

3-transitive on n. 

We want to use PSL(2,q) to define a pseudo ,-cyclic association scheme. 

To do this, we consider another permutation group that is isomorphic 

with PSL(2,q). 

Let V(3,q) • q 2
m

, denote the 3-dimensional vectorspace over F 
2 q 

and let Q be the quadratic form Q(x) = x
O

+x
1
x

2 
' x = (x

O
'x

1
,x

2
) E V(3,q). 

!be bilinear form corresponding to Q is 

(x,y) := Q(x+y) - Q(x) - Q(y) = x1Y2-x2Yl x 1Y2 + x
2
Y

1 
X,y EV(3,q) 

Clearly, R :=<(1,0,0» is the radical of (,) (in other words 

«I,O,O),y) = o for all y E V(3,q». Also, the q+1 projective points 

<:x:> of PG(2,q) with Q(x) ° constitute an oval C in PG (2 ,q) and the 

projective lines through R are the tangents of C (hence, R is the 

nucleus of C ). 
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The projective orthogonal group PO(3,q) is the group of the permutations 

of PG(Z,q) induced by ~he linear transformations A of V(3,q) with 

Q(x) = Q(xA) , for all x E V(3,q) (hence, if A E PO(3,q), then 

(x,y) = (xA, yA) holds for all x,y E V(3,q». 

Let N := {<x> E PG(Z,q) 1 Q(x) ~ O}\{R}, T the set of the tangents 

of C, S the set of the secants of C and E the set of the passants 

of C. 

Clearly, «l,O,O)A> «1,0,0» for all A E PO(3,q) 

«(l,O,O)A,y) = «1,O,O),yA- 1) = 0 for all y E V(3,q» 

and therefore {R} is an orbit of PO(3,q) on the points of PG(Z,q). 

We shall see that PO(3,q) has 3 orbits on the points of PG(Z,q), 

V1Z. {RJ, C and N, and PO(3,q) has 3 orbits on the lines of PG(Z,q) 

V1Z. T, Sand E. But first, consider the following: 

Let A E PO(3,q). Then A is a nonsingular 3 x 3 matrix such that 

Q(x) = Q(xA) for all x E V(3,q). Because 

«l,O,O)A> = «1,0,0» , A is of the form 

Q(x) = Q(xA) yields 

X~+XIXZ a~x~+(a~+bllbIZ)xZ+(a~+bZlbzz)X~+(bllb2Z+bZlbI2)xJx2 
for all x E V(3,q). 

Hence, 

Apparently, the matrices of PO(3;q) are of the form 

[ :1 ° b~~ ] ~ i "" 1,2 A = b 1 J t a. = ( bit biZ)' 1. 

aZ b Z1 b ZZ 

Then, with the map <P PO(3,q) .... PSL(Z,q) 

r 1 ° b~2] [b11 b12] · ( l a1 b l J 1 ) := 

a2 bZJ b Z2 
bZ1 

bZ2 

det(b .. ) = J. 
1.J 

det(bij) = 1. 
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it is clear that the groups PO(~q) and PSL(2,q) are isomorphic. 

Furthermore, the permutation representation of PO(3,q) on C is iso­

morphic with the permutation representation of PSL(2,q) on PG(I,q), 

for: 

IT : C + PG(I,q) is the map IT«(xO'xl,xZ») := «x
1

,x2», 
then «x

O
,x

1
,x

2
»ATI= «xO,x

l
,x2»IT¢(A). 

With theorem 4.3.4. this yields 

4.3.5. Theorem. PO(3,q) is sharply 3-transitive on the points of C, and 

therefore also on the lines of T (for, aTE T is of the 

form R + <x>, <x> E C). 

4.3.6. Theorem. The action of PO(3,q) on the points of PG(2,q) has 

3 orbits, viz. {R}, C and N. 

Proof. I) We have seen above that {R} is an orbit. 

2) Clearly, C ~s an orbit, for <xA> E C for all x E C, 

A E PO(3,q) (0 = Q(x) = Q(xA» and PO(3,q) is transitive on C 

(4.3.5.). 

3) If <x> E.N and A E PO(3,q) , then <xA> E N 

(QxA) = Q(x) ~ 0, and R ~s an orbit). To prove that PO(3,q) 

is transitive on N, it is sufficient to show that PO(3,q) is 

transitive on N nT, for a T E_T , because each point of N 

~s on a line of T and PO(3,q) is transitive on T (4.3.5.). 

So let T E T , <x>, <y> E N n T. Let <a> := T n C 

and select <d> E C, <d> # <a>. 

Define <b>:= «d>+<x» n C and <c> := «d>+<y» n C . 
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Because PO(3,q) is 3-transitive on C, there is a A € PO(3,q) such that 

<a>A =<a>, <d>A = <d>, <b>A 

Then, 

<c> ; note that A is linear. 

<x>A = «R + <a» n «b> + <d»)A = (R + <a» n «b>A + <d>A) 

(R + <a» n «c> + <d» = <y> • 

Hence PO(3,q) is transitive on N, and therefore N is an orbit. 

Because PG(2,q) = {R} U C u N, we have proved the theorem. 0 

4.3.7. Theorem. The action of PO(3,q) on the lines of PG(2,q) has 3 orbits, 

viz. T, Sand E. Also, PO(3,q) is generously transitive on 

the lines of E. 

Proof. 1) Because C is an orbit of PO(3,q) on the points of PG(2,q), 

it is easy to see that T is an orbit of PO(3,q) on the lines of PG(2,q). 

2) S is also an orbit, for C is an orbit of PO(3,q) on the points 

of PG(2,q) and PO(3,q) is 2-transitive on C. 

3) Because N is an orbit of PO(3,q) on the points of PG(2,q), and 

because the lines of E only have points of N~ it is clear that EA € E, 

for all EEE ,and A E Po(3,q). 
< > For all <a> E N, we define the linear map A : V(3,q) ~ V(3,q) 

a 
by 

xA := x + (x,a) a 
a Q(a) 

Then A E PO(3,q), for 
a 

for all x E V(3,q). 

Q(xAa ) = Q(x + (~(:~ a) = 
2 

Q(x) + (x,a) Q(a) + (x,a) (x,a) 
Q2(a) ~ 

for all x € V(3,q). 

Q(x), 

Also, because xA = x if (x,a) = 0, A fixes all the points of the 
a a 

tangent R + <a> (note that (R,a) = (a,a) = O. Note also that A # I). a 
Moreover, A has order 2 for 

a 
2 (x a) = x + (xCa) a + (x,a) a = x 

xAa = (x + ~ a)Aa Q a) Q(a) 

for all x E V(3,q). 

Let <a> € N , <b> € «a> + R) n N. Then b = a + A(I ,0,0) and 

= ex + (xCa) ) (x,b) b + (x,a) xA.A for 
xAa~ Q a) a ~ = x + Q"('b) Q(a) a = --0 a ' 

all x E v(3,q). 
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Hence, if <a> <b> • then Aa~ = I, and if <a> F <b> , then 

A A = A_ A = A , where 
a b -0 a c c = a + Q;a(1 ,0,0) = A-2(Q(b)a+Q(a)b), 

<c> E «a> + R) n N. 

With this we see that for every T ET the set 

H(T) := {I} u {A~ I <a> TuN} 

is an elementary Abelian subgroup of PO(3,q) of order q 2m. 

Also, the elements of H(T) fix all the points of T. 

Now, let EJ and E2 be distinct lines of E. Then E) and E2 meet in a 

point <a> E N. Let T := <a> + R (then T E T). 

Clearly, if ~ E H(T)\{I} and <b> " <a> , then ~ cannot fix E} 

(otherwise ~ = I). Therefore, H(T)E {I,A }. 
1 a 

(H(T)>r: is the H(T)-stabilizer of E
1
). Then, with lemma 4.3.2, we 

I 
see that the H(T)-orbit that contains EI has length 

l!!i'!2L q 
~I 2' 

I 
Hence the HCT) orbit that contains El consists of the q/2 lines of 

E through <a> (note that HCT) fixes <a». Therefore, there is an 

A E H(T) c PO(3,q) such that E2 = EIA , and because A has order 2, 

E2A = E
I

, Hence PO(3,q) is generously transitive on E and E is the 

third (and last) orbit of PO(3,q) on the lines of PG(2,q). 

o 
Now, consider the following:, 

Let r a , r 1 ' •••• , rs denote the orbits of the action of PO(3,q) 

on E x E, where rO is the orbit {(EA, EA) A E PO(3,q)} , 
for a certain E E E. Clearly, ra {(E,E) I E E E }, for PO(3,q) 

is transitive on F. 

Because PO(3,q) is generously transitive on E, (E,{rO' f l ,····, rs}) 

is an association scheme (this we have seen In chapter 3. Note also 

that rO = id.). 

4.3.8. Theorem. The association scheme (E, {id, f l , •••• , r }) 
. s 

is pseUdo-cyclic. 
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Proof. We will show that vI = v
2 

s 

•••. = v = q+ I 
s 

L a~. = q • for all J = 1, •••• ,n. 
i=l 1.1 

and 

for the valencies and intersection numbers of the association scheme 

(this is equivalent with the fact that the association scheme is 

pseudo-cyclic (theorem 4.1.2.». 

Then, 

V. 

I PO (3 , q) EEl 
I' 2 

1 

r. 
1. 

for: 

(i E {l ..... ,S}). 

let A := {E EEl (EI,E) E f i }. It is clear that vi = IAI, 

But A is also the PO(3,q)E orbit that contains EZ' 

Lemma 4.3.Z. yields I 
IpO(3,q) E I 

IA! = 1 
vi IPO(3,q)E E I 

I' 2 

Because PO(3,q) is sharply 3-transitive on the q+l points of the oval 

C, it is easy to see that PO(3,q) has order (q+l)q(q-l). 

Also lemma 4.3.Z. and the fact that PO(3,q) is transitive on E 

yield 

2 q+1 = lEI = q +q+l-q+l-( Z ) = !q(q-l), 

Hence, 

Let <a> := El n E2• Then <a> E N and the transitivity of PO(3,q) 

on N yields 

!P0(3,q)<a>1 = 
IpO(3,q) I 

IN! 
(q+ 1 ) q (q- 1 ) 

2 
q -1 '" q. 

If T = R + <a> , then H(T) is a subgroup of PO(3,q) and we 
<a> 

have seen that IH(T)! = q (see the proof of theorem 4.3.7.), 

But then, H(T) = PO(3,q) , and therefore, 
<a> 

PO(3,q)E E = (PO(3,q) )E E = n(T)E E 
l' 2 < a> l' 2 l' 2 

= H(T)E = { I, A } 
'I a 

Hence, 
V. 

1. 

IPO(3,q)E I 
I 2(q+l)/2 q+l for all i = I,Z, ••. ,s. 

I PO (3 ,q)E E I 
l' 2 
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o 2) Let j E {1,2, •... ,s}. Because aOj 
0, we have to show that 

s i I a .• = q 
i-I 1.J 

Select a E E E. Clearly. the number of pairs (E', E") E E x E such 

that (E,E') E r. , (E,E") E rk and (E.',E") E r. is v.a~k ' and 
k 1. • kJ 1.J 

also vka.. (i,j,k::: J, •••• ,s). Thus a~k = a.. (because 
1.J J 1.J •. 

for all i,j,k = I, .... ,s, and in particular, a~. = a~. 
1.J 1.1. 

Hence, s . 
I a:. = 

i=) . 1J 

s . 
I aL 

i=I II 

(j = 1, •••• , s) . 

E2, E3 E E , El ~ E2 ' E) i E3 ' E2 i E3 

::: E2 n E3 = E] n E3 = <a> «a> EN). 

and 

Vi =vk ), 

(i,j = I, ... ,s). 

Let E], 

E) n E2 
All the relations (except the identity) betwwen E

I
, E

2
, E3 are different. 

for: 

if (E 1,E2) E fi and (EI,E) E fi for a certain i E {l, .•.• s}. 

then there exists an A E PO(3,q) such that E]A = E1 and E2A = E3 , 

and thus, 

<a>A = (E
I 

n E2)A = El n E3 <a>. But then, 

A E (PO(3,q) )E = H(T)E = {I, A } ,where T = R + <a> , 
<a> I ) a 

and this is not possible for E2Aa = E2 ~ E
3

• So, the relations 

must be different. Now, consider Z lines of E, say El and E
Z 

that are 

in relation r j • We have seen above that a line E3 E E\{E) ,E2} , 

that has relation fi with EI and E2 (i E {I , .•• ,s}) cannot go 

through <a> :=E
1 

n E2• So, E3 = <b> + <c>, <b> EEl' 

<c> E EZ ' <b> i <a> " <c>. For the same reason a line 

E4 EE\ {E
1

,E
2

,E3} that has relation r
k 

with El and E
Z 

(k = 1, ••• ,s), 

cannot meet E3 in <b> or <C>, (otherwise two relations between 

EI , E3 , E4 or E
2

, E
3

, E4 would be the same, and that is impossible). 

Then it is easy to see that 

s . 
I a:. = 

i=1 1.J 

s . 
I a~. ~ q 

i=1 u 
for all j ::: 1, •••• ,s. 

Let E E E. Then the number of pairs (E' ,E") E E x E, E' ~ E", 

E :fE' , E i E", such that relation(E,E') = relation(E,E"), 

equals s s . 
I L a:,v .. 

j=1 i=] 1J 1 
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s 
But this 1.S also L v.(v.-I). 

i=1 1. 1. 

Because vI = v2 = v = q+ I, this yields s 
s s 
L L a~. nq. 

j=l I 1.J 
s 

With ( *) this yields I i for a1l j a .• q 
i=1 1.J 

1, •..• ,8. 

4.3.9. Remark. 

A -+ ).? 
If we extend PO(3,q) with the field isomorphism 

(A E F ) that has order m, then we obtain a group, 
q 

PEO(3,q) of order m(q+l)q(q-l) that also fixes the oval C. 
. 2 2 2 222 2 

(1f xO+xI+xZ = 0 then (xO) +x
t
x2 = (XO+X

t
X2) = 0). 

IJ 

called 

Furthermore, the orbits of PEO(3,q) on E x E are unions of orbits 

of PO(3,q) onEt x E This way we ob tain a new:rassociation scheme. For 

example, if q = 24 = 16, then we get a 3-class association scheme on 

120 points with valencies vI = 17 v = Z·17 = 34 , v3 =: 68 and , 2 

intersection numbers 

I 
2 3 Z 2 3 3 2 3 a .. a. , a. , 

1J 1.J 1.J 

0 8 8 4 12 2 6 9 

2 8 2 24 2 12 20 2 6 10 18 

3 0 24 36 3 12 20 36 3 9 18 40 

With these parameters, it is easy to see that if we take the first 

and second class together we obtain a 2-class association scheme on 

120 points or in other words, a strongly regular graph on 120 vertices. 

If q = Zp , p prime, then the association scheme obtained with the orbits 

of PEO(3,q) on E x E is pseudo-cyclic with valencies (q+l)p. 

Appendix 4. 1. m The action ofPSL(2,q) on PG(Z,q), q = 2 • 

Let q := 2m. In paragraph 4.3, we have seen that PSL(2,q) is isomorphic 

with PO(3,q), and that the action of PO(3,q) on the lines of PG(2,q) 

has 3 orbits. Hence, PSL(Z,q) induces an action on PG(2,q), that has 

3 orbits on the lines of PG(2,q). Another proof of this fact is as 

follows: 

Let V := V(2,q) and let S be the space of all symmetric linear maps 

A : V -+ V, that is (with respect to any ~rthonormal basis) the space 
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of all synmetric m;trices [: :] a, b, c, F q 

(In fact, S = sym( )(V), the space of all symmetric 2-tensors 

over V). Obviously, dimeS) = 3. 

For any symmetric 2-tensors ~ and ~, with matrices ~ and ~ with 

respect to an orthonormal basis {~1'~2} of V, the trace inner product 
2 

(<P,1/!) := L {ji ••• ~ •• 
i,}=] ~J 1J 

is independent of the orthonormal basis {~1'~2} , and serves as an 

inner product for S. Special elements of S are the P!ojections. 

For any ~ E V\{Q} the projections onto the subspace <~ is the 

2-tensor ~@~, that is the symmetric idempotent linear map 

having <a> as its image, that is the symmetric matrix 

[ 2 a} 
a

l
:

2
] 

a 1a2 a2 

A.4.1.1. Lemma. If~,~, ~ E V are pairwise independent, then 

~ fj ~ , ~ g ~ , ~ g ~ are independent. 

Proof. Without loss of generality we can take c ~a + Bb , ~8 ¥ O. 

Then, 
2 2 

c g c = ~ (~@~) + B (~g~) + ~8(~ g ~ + ~ g a). 

since a and b are independent vectors, the 3 summands on the right 

hand side are independent symmetric 2-tensors. 

So, a @ a , b @ band c @ c are also independent (~B =f. 0) • 

A.4.1.2. Lemma. If~, ~ E V are independent,then D := [~ ~] 
(D E S) , ~ @ ~ , ~ @ ~ are independent. 

Proof. Same as lemma A.4.1.1. In fact, for any independent 

~, ~ E V, the 2-tensor a @ b + b g a is a multiple of D. 

The map <P V -+ S defined by 

o 

o 

induces a map of the q+l points of PG(I,F ) onto the q+l points of 
q 

an oval in PG(,2,F ). This follows from lemma A.4.1.1 •• From lemma 
q 

A.4.1.2. we infer that the nucleus of this oval is the projective 

point <D>. 
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PSL(2,q) induces an action on PG(2,q). Indeed,foro E PSL(2,q) 

define cr by linear extension of 

Under this action, the nucleus <D> is fixed and the oval is fixed 

setwise. 

A.4.1.3. Lemma. PSL(2,q) has 3 orbits on the points of PG(2,q). 

Proof. <D>is one orbit; the oval is one orbit. 

Take any P ~ <D>outside the oval. Call 

PI := (oval) n (p u <D», P3 := (oval) n (p u P2) , for any P2 ~ PI 

on the oval. Then 

PI' P2' P3 determine p. Now, we have seen that PSL(2,q) acts 

3-transitively on the points of PG(I,q) (theorem 4.3.4.), hence on 

the points of the oval. Therefore, the points ~ <D> outside the oval 

form an orbit. o 

A.4.1.4. Theorem. The action of PSL(2,q) on the lines of PG(2,q) has 

3 orbits, viz. the q+l tangents, the ~q(q-l) passants 

and the ~q(q+l) secants of the oval. 

Proof. The tangents are represented by <~ @ ~> + <D> , and the 

secants by <~ @ ~ + <~ @ ~, where a @ a , ~ @ b are on the oval. 

Then, it is easy to see that the tangents and the secants each form 

an orbit. 

But so do the passants, since there are 3 orbits altogether. This 

follows from the fact ([18J p. 21) that any group of automorphisms 

of PG(2,q) has equally many orbits on points and on lines, since 

the incidence matrix is nonsingular. 
o 



- 93 -

Chapter 5. 

Few distance sets. 

5.1. Spherical s-distartce ~ets. (Ref. [16J). 

Let X. of finite cardinality n. denote a subset of the unit .sphere 

in Euclidean Rd with inner product 

<I;.n> 

Assume that the vectors of X admit only s inner products ~ 1, say 

a l •..•• , as (s is called the degree of X). 

In other words, the vectors of X admit s distances ~ O. Then X is 

called a spherical s-distance set. 

5.1.1. Example. Consider the case s = 1. Projection of an orthonormal basis 

5.1.2. 

. Rd+1 
~n onto the hyperplane 

XI + •••• + xd+1 0, 

yields a set X of d+J vectors ~n Rd having 
I 

I d+1 - d+i J d+l 

as their Gram matrix of inner products. Hence. the vectors of X 

lie on a sphere and admit only one distance ~ O. In other words, X 

is a spherical one-distance set in Rd , called the regular simplex. 

Example. Consider the case s = 2. In R2 the maximum n equals 5, 

attained by the vertices of the regular pentagon. In R3 the maximum 

n equals 6, attained by the vertices of the octahedron, but also by 

any 6 of the 12 vertices of the icosahedron which do not contain an 
_1 

antipodal pair (such sets have inner product + 5 2), 

For general Rd. at least n = !d(d+l) may be achieved, viz. the 

(d+ I). ." 2 d- I d+ I 2 po~nts w~th coordinates (1 ,0 ). which in R . lie on the 

hyperplane 
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5.1.3. Theorem. (absolute bound). 

< (d+s-I) (d+s-2) 
n - d-] + d-! ' for the cardinality n of a 

spherical s-diitance set in Rd. 

Proof. [26J For each vector y E X we define the function 

s 
Fy(O := in!( <y,l;> - a i ) , r; E rid' 

Cal' a 2,····, as are the admissable inner products; 1 in X~) 

These are n polynomials of degree ~ s in the variables l;!, ••• , r;d' 

restricted to rid' The linear space of all such polynomials is 

poles), and has dimension 

(see 5.1.5.). 

The polynomials F (l;), y E X are linearly independent, for: 
y 

let 

Since 

L c F (£;) 0 , £; E rl
d

, for c E R, Y E X. 
YEX Y Y Y 

s 
F (x) = 0 ,TIj(l-a,) for all X,y E X, Y x,y ~== ~ 

we find 
s 

c .TI1(I-a.) ~ 0 for all y E X. Y ~== ~ 

This yields c == 0 for all y E X 
Y 

Thus, the n polynomials F (r;) , y 
y 

poles). Therefore, n cannot exceed 

of poles). 

(note that a. ; 1). 
~ 

E X, are linearly independent in 

the dimension 

o 

5,1.4. Remark. If s = 1 then n ~ d+l. Equality holds for the regular simplex. 

If s = 2, then n ~ id(d+3). The only known cases for which 

n == !d(d+3) 'are (n,d) == (5,2), (27,6), (275,22). 

5.1.5. Remark. The linear space poles) of the polynomials of degree ~ s, 

restricted to rld is the direct sum of the linear spaces Hom(s) and 

Hom(s-I), where Hom(s) is the space of the homogeneous polynomials 

of degree s, restricted to rl
d

, (In other words, the span of the mono-

mials a a 
E; I E;d 

al + .... + a = s, restricted to Qd)' 1 ' ....... , d d 
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The dimension of Hom(s) is (d~~~J), and therefore, the dimension of 

Pol(s) is 

(d+s-l) . (d+s-2) 
d-J + d-I • 

5.2. The mod p bound. 

In some cases we can obtain an upper bound, which is better than the 

one given in 5.1.3. (For a more general approach see [7J). 

First we prove the following lemma: 

5.2.1. Lemma. Let M denote a subset of R of finite, positive cardinality. 

If ZM c pZM , for a certain prime p, then M = {OJ. 

Proof. Assume that ZM c pZM for a certain prime p. 
QM is a linear space over Q of finite dimension f. We select a basis 

e
1

, e
2

, ••. , e
f 

in QM and denote every m € QM by the unique vector 

(ql' q2"'" qf) with f 

If q. '/ 0, 
1. 

m = I q.e. q. E Q • 
• 1.1. 1. 
1.=1 

where Pj is prime, ai' Sij E Z 

(Note that this factorization is unique). 

For m E (QM)\{O} we define 

p(m) := min' {a. 
1. 

q. '/ O} • 1. 

Since ZM c pZM, and therefore ZM = pZM, the following holds: 

But also: 

It is easy 

therefore 

With (*), 

min 
mEpZM\ {a} 

p(m) = min p(m) 
mEZM\ {OJ 

min p(m) 1 + m1.n p(m) 
mEpZM\ {O} mEZM\ {OJ 

to see that p(m+n) ~ min p(m), pen) 

min p(m) min p(m). 
mEZM\ {OJ mE M\{O} 

this yields 

min p(m) I + min p(m). 
mEM\{ O} mEM\{ O} 

• and 
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M has finite, positive cardinality, and therefore the above yields 
M :; {O}. 

c 
5.2.2. Theorem. (mod p bound) 

Let X ~ Qd' of cardinality n, denote a spherical s-distance 

. d . h d' b' d (..L I) set 1.n R W1.t a m1.ssa Ie 1.nner pro ucts al, •.• ,a
s 

T • 

Assume that for a certain integer k: ka. € Z, for all 
1. 

i=I, .•. ,s. 
If P is a prime such that ka. ~ k mod p , i 

1. 

then 
n :::; (d+Sp-l) + (d+Sp-2) 

d-J d-) 

I, ... ,s, 

where s is the cardinality of the set {ka. mod p I i 
p 1. 

Proof.' Let {ka i mod p I i = I, ••• , s} = {fs!, ••.• , 13 s } 
p 

Define for each vector y € X the function: 

s 
Fy(~) := igr(k<y,~> - Bi ) 

l, ... ,s} . 

These F (~), Y E X are n polynomials in poles ). They are linearly 
y p 

independent, for: 

let 

Since 

and 

we find 

L m F (~) - 0 ,~€ Qd ' for my E R , Y € X. 
yEX Y Y 

s 
F (y) 

Y 
i g¥ (k<y,y> - Bi ) i a mod p , 

s 
F (x) = .rrP! (k<y,x> - s.) y 1= 1. 

o mod p, x:f: y , 

m F (x) = - I m F (x) € pZM , x € X. 
X X y~x y y 

Because F (x) 1 0 mod p , x E X, we obtain m € pZM, x ( X. x x 
Hence, M c pZM, and so ZM c pZM. 

The lemma 5.2.1. yields M = {OJ. 

Hence, the n polynomials F (~), Y € X are linearly independent in 
y 

poles ). Therefore, n cannot exceed the dimension p 

of poles ). 
p 

o 
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5.2.3. Example. Let X be a set of binary d-vectors with weight 7 and with 

admissable inner products (~7) 0,2,4,6. Then X is a sperical 

f d ' ,d our- 1stance set 1n R • 

With theorem 5.1.3. we obtain (lj24)(d+7)(d+2)(d+l) as an upperbound 

for the cardinality n of X. But, if we use theorem 5.2.2. with k=l 

and p=2 we have sp=l, and this yields 
n S 

Until now we have only spoken of spherical few-distance sets 1n 

Rd h b I f d' . d? • But w at a out genera ew- 1stance sets 1n R 

Let X denote a s-distance set in Rd with admissable distances (fO) 

a
I

, .... , as' If we use the same techniques as for spherical 

s-distance sets, in other words, if we define the polynomials 

F (~) 
Y 

which are linearly independent, we only get 

Ixi ~ (d~s) + (d+~-l) , 

h b d f h · I' , d+l t e same oun as or sp er1ca s-d1stance sets 1n R . 

But it is possible to choose (d+~-l) polynomials fi with the property 

that the set 

{F I y € X} u {£. I i 
y 1 

remains independent, and therefore find 

5.3. Equiangular lines. 

d+s-I 
l'''''(d )} 

ref: [5]. 

Equiangular lines -in Rd are lines through Q 1n Rd that admit only 

one angle ~ 0. 
. d • 

Note that a set of equiangular lines in R 1S a one-distance set in 

(d-I)-dimensional elliptic geometry. 
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We will nowstate an absolute bound for the cardinality of such a set 

(in 5.4. we will give an interesting example of a set of equiangular 

lines, and in 5.5. we will investigate the ralation between equian­

gular line sets and other combinatorial structures).See also [28J. 

5.3.1. Theorem. (absolute bound) 

n ~ !d(d+I), for the cardinality n of a set of equiangular 

lines in Rd. 

Proof. First, note that the linear space of the symmetric 2-tensors 

in Rd has dimension ~d(d+I). Recall that the 2-tensor (a @ b) has 

components (a @ b) .. a.b. 
~ J 

d - -
~, b E R and that two 2-tensors have 

- - ~J 

inner product 

<a 8~, c 8 d> 

<~ '8 ~, b 8 b> 

Let L, of finite cardinality n, denote a set of equiangular lines 

in Rd with admissable angle (#0) ~. 
We select a unit vector along each line and denote the set of those 

n vectors with X. 

The Gram-matrix of the vectors of X is I + C cos(¢), 
n n 

where c = 
n 

With property (*), it follows that the Gram matrix of the vectors 

~ 8 ~ , X E X is 

I + (J 
n n 

2 
- I ) cos (¢), 

n 

which has only positive eigenvalues 

A2 = ..•. = An = sin
2(¢». 

(A I=sin
2

(4»+n 
2 cos (4)), 

Therefore, the n vectors x e~ , x E X are linearly independent 

in the linear space of the symmetric 2-tensors in 

dimension Hd+l)d. Hence, n'~ !d(d+I). 

d R , of 

o 

5.3.2. Remark. This theorem can also be derived with the proof of 5.1.3., 

viz. the vectors of X admit 2 inner products # I (cos(¢) and -cos(¢». 

The polynomials F (~) are in this case 
y 
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Hence, the F (~) are n independent polynomials in Hom(2) of 
y 

dimension !d(d+l) , and therefore n $ ~d(d+I). 

5.4. Sets of equiangular lines in Rd with angle arccos(l/3). 

Let Xd denote a set of equiangular lines in Rd with admissable 

angle arccos(l/3). We are interested in the maximum cardinality 

of Xd' which we denote by v1/ 3(d). 

We claim that 

d '" 3 4 5 6 7 8 15 d ;::: 16 

v I / 3 (d) = 4 6 10 16 28 28 28 2 (d-l) 

Proof. The problem is to find a maximum set X of unit vectors in 
Rd with admissable inner products (=II) 1/3 and -1/3 (*) • 

1) d = 3. We can always find 3 vectors in R3 with the above pro-

«p.,p.> = 1, for i = 1,2,3). 
-~ -1. 

There are 2 non-equivalent cases: 

(i) <p.,p.> = -1/3 for all i =I j 
-1. -] 

(ii) <po ,p. > 1/3 for all i =I j. 
-1 -] 

All other possibilities lead to a set of lines produced by 

(ii) . 

(i) 

Important is the fact that RI' must be independent in R3 

or 

Therefore. all other vectors E with property (*) can be written as 

Then we find that case (i) yields one additional vector,viz. 

E = -E] - E2 - E3' Case (ii) does not produce any additional vectors. 

Hence, v l / 3 (3) = 4. A maximum set is: 

E, = ;t [=:] E2· ;} [~:] E3 • A [=;] E4 = 4 ;] 
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2) To prove the cases d ~ 4, we first investigate the structure of 

. X· d. I d h d· maX1mum vector sets 1n R w1th <E,E> = ,E E X. an ot er a m1S-

sable inner products 1/3 and -1/3. 

First, note that it is always possible to select 3 vectors of length 

and mutual inner products -1/3 (if not, then the Gram matrix may 

be put in the form (2/3)1 + (1/2)J, and this yields ~ d vectors). 

Call these vectors EI' E2' E3· The vector ~ := -EI-E2-E3 must also 

be in X, for, X is maximal (i.e. the set is tetrahedrally;closed). 

So, X must contain 4 vectors (a maximum set) EI' E2' E3' ~ of length 

1, mutual inner products -1/3, that lie in R3. Other elements of 

X must lie outside R3. Therefore, we have to look for vectors x E Rd 
.d 3 . OutS1 e R w1th 

1, <x,p.> = (1/3)£. 
- -1: 1 

E. = +1 
1 

i 1,2,3,4. 

P +p +p +p = 0 Y'elds ~1+~2+~3+~4 = O. Hence, there are 3 non--1 -2 -3.!:.4 _.L Co Co Co Co 

equivalent possibilities for the E. 's , viz. 
1 

(i) EI E '" E2 = E3 -1 4 
(ii) E E3 -I E2 E4 I 
(iii) E E .,..1 E E4 I 2. 3 

We can write x = h + c where h E R3 

Then <h,p.> = (1/3)E. and therefore there are 3 possibilities for h:' 
- -1 1 

(i) E.l = ! (EtE2-E3+~) 
(ii) E.2 =!(~EI+E2-E3+E4) 

(iii) E.3 =! (-EI-E2+E3+E4) 

In other words, the elements of X\{El,E2,E3,E4} can be written as 
3 

E.l+~1 ,E.2+~2 ' E.3+~3 
{h.+c I h.+c EX} (i 
-1 - -1-

of the pillar. 

where ~1 '~2 '~3 .1 R . 
= 1,2,3) is called a pillar. h. 1S the socle 

-1 

The question is: how can we "fill" the pillars? 

Assume that the first pillar is filled (or the second or the third), 

. and that the other two are empty. Let Y be the set of the vectors 

E.I + ~ in the pillar. 
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The Gram 1I1atrix G of the vectors of Y is G = 1 + (I T3)A, 

where A ~ l!; !:] 
Because the vectors of Y can be written as ~l + ~, we can also say 

that G = (1/3)J + C , where C is the Gram matrix of the CIS 

(note that <~l '~l> = 1/3). This yields 

0/-1 

0/-1 

Hence, for 2 different vectors ~1 + ~ and ~J + c' in the same pillar, 
o 0 

~ and ~I have angle 90 or 180 . The CIS lie in (d-3)-dimensional 

space and therefore there are at most 2(d-3) vectors c with the 

above property. Hence, if one pillar is full and the other two empty, 

then the full pillar contains 2(d-3) vectors. 

Consider the first pillar with a vector ~1 + ~, and the second 

with s vectors ~2 + ~J ' 'j'" , ~2 + ~s ' where ~l , •••• , ~s 
is an orthogonal s-set ~ R (hence, 0 ~ s ~ d-3). 

The Gram matrix of the vectors ~l + ~ , ~2 + ~I , •.••• , ~2 + ~s 

in the pillars is 
0 +1 +J -

G I + I +1 -3 +1 J -1 - s s 
+1 

But also 
0 0 0 ... 

G 
1 0 = 3 + C 

J 
, 

s 
0 

where C is the Gram matrix of ~, •.• , ~s (note <~1'~2> 0). 
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I 
s 

C is a Gram matrix and therefore det(C) ~ O. 

Henc, 1-!«!1)2 + ••• + C!I)2) = 1 - is ~ O. This yields s ~ 4. 

Because a pillar can only be filled with elements h. + c where 
-1. 

the crs form a double-orthogonal set (angles 900 and 180°), 

we can state: 

If more than one pillar is filled, each pillar can not contain more 

than 8 vectors. Thus, if we fill more than one pillar, we obtain 

at most 4 + 3-8 28 vectors with property (*). 

Now we can continue with the proof. 

3) d = 4. If we fill one pillar, we get: v
1

/ 3(4) ~ 4 + 2 = 6. 

Assume that in the first pillar we have a vector E.) + ..::.' and 1.n the 

second a vector E.2 + "::'2' The Gram-matrix of "::'1 and £2 is: 

c 
4 3 

C has rank 2, But because £1' E R and ~ R , C must have rank ~ I. 

Hence, we can only fill one pillar. This yields v
l
/ 3 (4) 6. 

4) d = 5. If we fill one pillar we get: v
l

/ 3 (5) ~ 4 + 4 = 8. 

Assume that one pillar (the first) contains one vector ~l + "::'1 and 

another (the second) contains two vectors E.z + and E.2 + "::'2 
with <c ,c'> O. The Gram-matrix of the c's is: 

-2 -2 

c = ~: :1 :~] 
l!~ a 1 

h ' . 5 d 3 But t e c s are 1.n R an ~ R , 

, which has rank 3. 

and therefore C must have rank $ 2. 

Hence, if we fill all three pillars, we can put at most 2 vectors 

in each pillar. 

This yields v
l

/ 3 (5) $ 4 + 3.2 = 10. 
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Now consider the (-1,1) adjacency matrix C of the Petersen-graph: 

C = [ AS J-2I] 

J-2I -AS 

where. AS 

C satisfies C
2 = 91 and CJ = 3J. 

~: ~ ~ ~ :] + + - 0 -
- + + - 0 

Hence, C has smallest eigenvalue -3 of mUltiplicity S , and 

largest eigenvalue 3 of multiplicity S. 

If we use theo~em 5.S.1. in the next paragraph, we find that C 

leads to a set of 10 lines in RS with angle arccos(I/3). 

This yields v l / 3(5) = 10. 

S) d = 6. In the same way as for d S, we can show that 

v
l
/
3

(6) s 4 + 3.4 = 16 (each pillar can not contain more than 

4 vectors). 

Consider now the following vectors in R6: 

o 
I 
I 
o 
1 
o 

o 
o 
1 
I 
o 
1 

I 
o 
o 
o 
I 
1 

Change 1n each vector the ones in each of the following combinations: 

m. ~:]. [U· FU . 
This way we get 16 vectors in R6 with cos (a) 

Hence, v
l

/ 3 (6) = 16. 

::(1/3) • 

6) d = 7. If we fill one pillar, we get v
l

/ 3 (7) ~ 4 + 2(7-3) 12. 

If we fill all three pillars, we get v
1

/ 3 (7) ~ 4 + 3·8 = 28. 
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Consider the incidence matrix of the Fano plane: 

I 0 0 0 0 
o I I 0 I 0 0 

If we change in each of 001101 0 the rows of 

F = 000 I 0 ] the ones in each of the following 
I 0 0 0 ] ) 0 

combinations: o ) 000 I I 
) 0 1 000 

[i] bl t:J ri] • 

we obtain 28 vectors in R7 with cos(~) 
Hence. v'/3(7) = 28. 

7) d = 8, 9, •...• 15. If we fill one pillar we obtain less (or no 

more, (d=15» than 28 vectors. Therefore v
1

/
3

(7) = v
1

/
3

(8) = •••.• 

= v 1/3(15) = 28. 

8) d ~ 16. If we fill one pillar we obtain more than 28 vectors. 

Therefore, v l / 3 (d) = 4 + 2(d-3) = 2(d-I). 0 

5.5. Two-graphs. (Ref: [30J, [33J). 

F 

5.5.1. Theorem. There is a I-I correspondence between sets of equiangular 

lines and switching classes of graphs. 

Proof. 

I) Consider a switching class S of graphs on n points. Let C be the 

{-I,I) adjacency matrix of such a graph, with smallest eigenvalue 

-s of mUltiplicity n-d. Then I + (l/s)C is positive semidefinite 

of rank d. Therefore, I + (l/s)C is the Gram 'matrix of n vectors 
d 

~n R of length I, and with inner products +(I/s). Hence, these 

n vectors determine n equiangular lines in ;d with angle arccos(l/s). 

Switching w.r.t. a vertex of the considered graph is equivalent 

to changing the direction of the unit vector on the corresponding 

line. Therefore, all the graphs of S yield the same set of equi­

angular lines. 

2) Consider a set X of n equiangular lines spanning Rd. Select a unit 

vector along each line. We may write the Gram"matrix of these vectors 

as I + C cos (d) , where C is the (-1,1) adjacency matrix of a graph 

on n points, a the angle between the lines. 
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If we choose another set of unit vectors that also pxoduces X, 

then the Gram 'matrix of these vectors can be put in the form 

I + C'cos(a), where C' DCD, D = diag(~I). Hence, the graphs 

of C and C' are switching equivalent. 
o 

5.5.2. Definition. A two-graph (n,b) is a set n and a collection b of triples 

in n, such that every 4-subset of n contains an even 

number of triples of 6. 

If there exists an integer k, such that every pair in n 
occurs in k triples of ~, then we call the two-graph 

(n,b) regular. 

Let n, of cardinality n, denote a set of equiangular lines in Rd 

with angle 0 < ~ < ~/2. We select along each line a vector and define 

the following graph on those n vectors: 

2 vectors are adjacent iff the angle between the vectors is obtuse. 

A triple of lines in n is called good if we can choose 3 vectors 

along the lines, one along each line, such that all three angles are 

obtuse. 

e.g. 

A triple of lines in n is called bad if we can choose 3 vectors 

along the lines, one along each line, such that all three angles are 

acute. 

Observe that a triple of lines is either good or bad, and that there 

~s no third possibility. 

To be more precise, consider a good triple of lines in rl. If we 

choose any three vectors along the lines (one along each line), 

then the graph of these vectors 

or / • 
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If the triple is bad, then the graph is 

• 
or • • 

For the vertices a and b (a ~ b) of a graph, we define the following: 

[ab] := 

[ab] := -I 

if ab 1S a nonedge, 

if ab is an edge. 

The following can be easily verified: 

a triple of lines in n is good iff for the vertices a,b,c of the 

corresponding graph [ab][ac][bc] = -1 holds, and it is bad 

iff [ab][bc][ac] = 1. 

Call [abc] := [ab][ac][bcJ. 

We claim that every 4-subset X of n contains an even number of good 

triples. 

Proof. Consider the graph corresponding with X on 4 vertices a,b,c,d. 

The triples are abc, abd, acd, bed. [abcJ[abdJ[acdJ[bcdJ = I, holds 

because every [xyJ, x,y = a,b,c,d x ~ y occurs exactly twice in the 

product. Hence,the number of good triples in X is even. 
o 

5.5.2. Example. The 6 diagonals of the icosahedron make up 20 triples. 

Among these, 10 are bad. Every diagonal accurs in five bad triples, 

every pair of diagonals in two bad triples. 

We have shown above that a set of equiangular lines in Rd is a 

two-graph. 

Likewise, the converse holds (this we state without proof). 

Hence, we can formulate the conclusions of this paragraph as follows: 

5.5.3. Theorem. Two-graphs, switching classes of graph, and sets of 

dependent equiangular lines are equivalent structures. 
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Chapter 6. 

Some problems from combinatorial geometry. 

6.1. Introduction. 

In this chapter we will deal with some problems of the Hungarian 

mathematician Paul Erdos, in the area of combinatorial geometry. 

First we will discuss sets of points with angles that are smaller 

than u/2 and u/3 + y , respectively, where y is small. (see [14J and 

[19J ). 

Secondly we examine sets of points in which each triangle is isosceles, 

the so called isosceles sets, first introduced by L.M. Kelly. These 

will turn out to be closely related to two-distance sets (see[ 4J). 

6.2. Sets of points with rto obtuse angles. 

6.2.1. 

Paul Erdos conjectured many years ago that in d-dimensional R-space 

the maximum number of points fed), with all angles not larger than 

u/2 equals Zd and is realized by the d-dimensional hypercube {O,I}d. 

that is {x E Rd I x. E {O,I}, i = 1,2, .. ,d}. A simple proof for this 
1. 

conjecture was given by L. Danzer and B. Grunbaum [14J. 

If also no right angles are allowed, one can easily see that f(2) 3, 

Croft proved f(3) = 5 and we will show the following result by 

Erdos and Furedi. 

19J Th . b f . . d h 'd I • e maX1.mum num er a p01.nts 1.n R t at provl. e on y 

sharp angles is larger than (1.15)d , for large d. 

d Proof. Consider the collection of vertices from the d-cube {O,I} . 

For any vertex a we define A := {i I a, = I}. The triangle (a,b,c) 
1. 

has a right angle in c iff 

(A n B) C C c (A U B) 

Since (a,b,c) right in c means <a-c,b-c> = ° which 

equivalent to 

'9'1~i~d [ a. = c. or b = ] . 
1. 1 i 
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So 
if = then '(a. 1. b. 0) C c: A u 1. 
if c. a then '(a. b, = I) A n B c: 

1. 1. 1. 

We see now that the combinations (0,0,1) and (J,I,O) for 

make the triangle (a,b,c) acute in c. 

Now choose 2m'! 2m d Th . I' p01.nts a , ••.• , a at ran om. at 1.mp 1.es 

prob(a~ = 0) = prob(a~ = 1) = !. .1.1. 
It is clear now that 

So 

prob «a, b, c: satisfy (*» 

3 d 
E(# (a,b,c) with (*» = 2m(2m-l)(2m-2) ('4) • 

B 

C 

(a.,b.,c,) 
1. 1. ~ 

We are now looking for an m which satisfies E( •• ) ~ m. This results 

1.n the inequality 
. 3 d 

2m(2m-l )(2m-2) ('4) ~ m • 

This inequality holds if 

or 

We know now that we can find 2m points with at most m right triangles. 

If we remove one point from all those triangles, there are still m 

points left and no right triangles. 

So 

for sufficiently large d. 

o 
Remark. Some of the counting in this proof can be done much better. 

However, it was not our intention to get the best possible result, 

but only to show that the maximal number of points is exponential in d. 

The method used in the proof of 6.2.1. can be used to solve the problem 

of finding an upperbound of the maximum cardinality of sets in Rd 

with the property that all 3-subsets determine "near"-equiangular 

triangles. We need the following lemma. 
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6.2.2. Lennna. Let X = {l,2, ••. ,d}. ~ there exists a collection 
VI:: dO , I} 

such that 
1) IF. n F. I < I::k i :/: j 

1. J 

2) ]F I > (1 + 0.4 Eh d
• 

Proof. Take 's with IF. n F.I <ek. Assume that we have found n: 

Define G 
n 

F 1 ' 

1. J 

, ....... , F . 
n 

:= {G c X I IGI = k , 3. 
1 

IG n F.I > kd. 
1 

d 
As long as the cardinality of G does not exceed (k) we can find an Fn+ 1, 

For any i the number of G's with 

is at most 

F. rest 
1 

It now follows 

IGn I 
So in the end at least 

.......... 1 

n ;:-: 

Choose now k ~ ide. We find with Stirling's formula 

(n '" nne-nh'ITn) that 
2 d 

;:-: (I + 0.4 I:: ) • o 

6.2.3. Theorem.D9] The maximum cardinality of a set in Rd with the property 

that all its 3-subsets determine angles smaller than 'IT/3 + y, 

where y is a small real, is higher than 

( 
I 2) d 1 + 2. Y • 

Proof. The k-subsets of a d-set as used in lennna 6.2.2. can be consi­

dered as vertices x of the d-cube, lying in the hyperplane 

d 
x. = k 

1 1 
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If we take three vertices X,y,z out of F then 

Thus cos (Lyxz) 

<y-x,z-x> 

<y-x,y-x> 

<z-x,z-x> 

k-2€k 
:::>: 2k 

:::>: k-2€k 
1 

S; (20 2 

s; (20 ! 

! - €. 

Since cos(TI/3 +y) ~ ~ - ~13 y we find 

So 

63 I I · . d .. sosce es p01nt sets 1n R . 

n 

An isosceles set in Rd is a collection X of points, such that any triple 

among them determines an isosceles triangle. The terminology that we 

use is the following 

(i) Let X = {x
j
,x2 , •.. ,x

v
}' then the affine hull aff(X) 1S defined 

as 
, v 

aff(X) := { 4:_1 a.x. , E a. I}. 1- 1 1 1 

We assume that aff(X) = Rd. 

(ii) For any subset Xl C X, dim(X
1

) is the dimension of aff(X
1
). 

(iii) A(X) represents the set of distances between points of X. 

(iv) For a E A(X) let X be the graph defined on the set X, with 
a 

two points joined by an edge iff their distance equals a. 

(v) Finally X is called decomposable if X can be partitioned into 

XI and X2 with Fx
2

, > I, such that each point of XI has the 

same distance to all points of X2 ' this distance may be dif­

ferent for distinct points of XI' though. 

6.3.1. Lemma. If X is decomposable, and (XI' X
2

) is a decomposition for X, 

then 
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Proof. Let P be the orthogonal projection on aff(X2). Then for 

any xl E Xl ' PX
I 

is the center of a sphere in aff(X2), containing 

X2• Since X2 spans aff(X2), P maps Xl onto a single point. Therefore 

the flats aff(X1) and aff(X
2

) are orthogonal and the result follows. 

6.3.2. "'rheorem. If X is indecomposable then it is a two-distance set. 

Proof. First we examine the case that there is some distance a for 

which'X is disconnected. Then we look at the case where there 1S 
a 

D 

some a for which X has diameter larger than two. Finally we consider 
a 

the case that X has diameter two for each a E A(X). 
a 

Case I. Suppose there is an a E A(X) such that X is disconnected, 
a 

then X is decomposable, for let X2 be a component of Xa having more 

than one point. From the isosceles property it now follows that any 

point not in X2 has the same distance to all points in X2• 

Case 2. Now suppose X 1S connected for all a E A(X) and let b be 
a 

a distance such that there are two points, u and v, at distance three 

in ~. Let a be the Euclidean distance between u and v. We claim that 

X is a two-distance set. 

Let U be the set of points in X that are closer to u than to v in the 

graph ~ and let V = X.U. For any Z in U there is a (u,z) path 

entirely in U. So by the isosceles property v and z have distance a. 

Similarly u has Euc lidean distance a to any point in V. Now take 

ZI E U and Zz E V and let Pl be a shortest (z1'u) path,P
z 

a shortest 

(zZ,v) path. If zl is adjacent to z2 in ~, they have distance b. 

If zl is not adjacent to any point in Pz then they have distance a 

by the isosceles property. Similarly if z2 is not adjacent to any 

point of Pl' Now if both points 

do have a neighbour on the 

other path it is clear from the 

picture that the following 

holds; u 

where db(x,y) is the "distance" of x and y in ~. 

lfhis is a contradiction. 

u v 

v 



- 112 -

Now for any further distance c the graph X cannot be connected, 
c 

since U and V are only joined by distances a and b. 

Therefore X 1S a two-distance set. 

Case 3. Suppose now that X is connected for every distance a, 
a 

and has diameter 2. Suppose there are three distances. Call them 

a, band c. We will construct an infinite subset of X, thus obtaining 

a contradiction. 

Let z be an arbitrary point in X and a
l 

a point at distance a from z. 

In X there is a point b
I 

having distance b to both z and a 1 for the 

diameter of ~ is 2. Similarly we can find a point c) having distance 

c to both z and b l , Since cIa) part of the triangle c1a]b 1 ' 

c l a 1 is either c or b, but since it is also a side of the triangle 

c)a1z it is either a or c, and therefore it has to be c. Now let a2 
be a point at distance a from both c) and z and define b2 , c2 , a3 , . 

in the way indicated above, we will show that at each step at the 

construction of the infinite set the last constructed point has the 

same distance to all previous constructed points. Suppose the last 

point we added 

for all points 

where d = a, b 

was a
k

, we assume that our induction assumption holds 

preceding ~, i.e. if d
j 

is a point of the sequence, 

or c and j < k, then d. has distance d to all pointH 
J 

preceding dj . By definition ~ has distance a to z and c
k

-
1

. 

Comparing the triangles z~bj and Ck_I~bj we see that ~bj is a. 

Similarly, comparing the triangles za c. and b. )a c. (where 
k J J+ k J 

j+l < k) we conclude that ~Cj is a. Finally the triangles bk_l~aj 

and ck_I~aj force aka j to be a. Since every point has a different 

distance to its predecessors all points we obtain in this way are new, 

therefore we constructed an infinite subset of X, a contradiction. 

Therefore X is a two-distance set. o 

Remark. Cases 2 and 3 can be considered as the proof of the following 

pure graph-theoretic theorem: 

Let K (the complete graph on n vertices) be edge-coloured with k 
n 

colours, such that every triangle has at most two colours, and for each 

colour, the induced graph on that colour is connected. Then k = 2. 
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6.3.3. Theorem.['4 ]. Let X be an isosceles set in R
d

, then 

card(X) ~ !(d+l)(d+2) • 

Equality implies that X is a two-distance set, or a 

spherical two-distance set together with its center. 

Proof. The proof is by induction. If d = 1 then 3 is the maximum 

cardinality and X is a spherical set together with it's center. 

For d = 2 Kelly proved that the maximum is 6, realized by the 

centered regular pentagon. 

Now let d > 2. If X is a two-distance set then we have the required 

inequality (see 5.2. ).Now suppose X is decomposable, (X1 'X2) 

being a decomposition. 

Case 1. dim Xl 1 O. Since Ix21 > 1 we have 0 ~ dim(X 1) < d. 

Let d
1 

= dim(X
1
), then by induction we have 

Case 2. dim(X
1
) = O. In this case Xl is a single point and therefore 

X
2 

is spherical. If Xz is not a two-distance set it is decomposable 

say X2 = (X
Z

,X2). But now (Xl u XZ,XZ) is a decomposition of X as 

in case 1. This finishes the proof. 

o 
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