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Preface.

"Graphs and Association Schemes' was the subject of the Combinatorial Theory
Seminar Eindhoven in the fall semester of 1982, The selection of this subject
was governed both by didactical considerations and by preference and scien-
tific involvement of the lecturers. Each week lectures were given by one of
the senior members and by one of the student members. The present notes have
been worked owt by the students J.P. Boly and C.P.M. van Hoesel.

Chapter 1 introduces spectral methods in graph theory, concentrating on
graphs with a max - 2 , and on those with ¢ min = —~2. Apart from most of the
line graphs, this last class contains some further interesting graphs; they
are interrelated by switching. Finally Turan's theorem on cocliques 1is applied
to a problem in coding theory. In Chapter 2 some more results on eigenvalues
of matrices are derived such as interlacing theorems. These are applied in
the theory of graphs(e.g. in connection with generalized quadrangles) and
of designs (e.g. in connection with absoclute points in a projective plane).
The next chapters are dedicated to association schemes. Chapter 3 introduces
the Bose~Mesner algebra and P- and Q- polynomial schemes. Examples from
PG(2,4), from generalized hexagons, and from regular two-graphs are worked out.
The chapter culminates in the MacWilliams transform and in Delsarte's code-
clique theorem. There is an appendix on algebraic tools. Chapter 4 discusses
Hollman's results on Pseudo-cyclic association schemes: (i) equal multipli-
cities iff equal valencies plus an extra condition; (ii) comstruction of
a new 3-scheme on 28 vertices which, together with Mathon's scheme, is
unique; (iii) construction of a new class of schemes from the action of
PO(3,q) on PG(2,q), q = 2".

Chapter 5 deals with few-distance sets. The absolute and the mod p bound
for spherical s-distance sets are proved. The relations between twowgraphs,
switching classes and equiangular lines are indicated. The possibilities for
equiangular lines having cos ¢ = 1/3 are worked out in detail. Finally,
in Chapter 6 the following theorems from combinatorial geometry are proved.
(1) For large d there are at least (I.lS)d points in Rdhaving only acute
angles. (ii) There are at least (1 + j}vy )d points in.\Rdhaving all angles

smaller than y + /3 (Erdds-Furedi).



d are two~distance sets.

(iii) Indecomposable isosceles sets in R
We hope that the present notes will serve the members of the seminar and

many others.

May 1983 J.J. Seidel,
A. Blokhuis,
H.A. Wilbrink.
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Chapter 1.

Graphs and their spectra.

Introduction.

In the past years much attention has been paid to the question, what
properties of graphs are characterized by the spectrum of their
adjacency matrix. In particular we can ask oursnelves whether a graph
or a class of graphs is uniquely determined by its spectrum.

This chapter deals with connected graphs, having largest eigenvalue

2 and those with smallest eigenvalue ~2. Also the spectra of two classes

of graphs are determined and further an equivalence relation on graphs,
based on their spectrum, is given. Finally we derive a theorem about
the largest coclique in a graph, with an application to coding theory.
General references for this chapter are [3], [9], [11], [131, [21],
£311].

A graph (V,E), where V is the set of vertices and E the set of edges,

a,, = 1 iff {(i,3i) € E (i and j ¢ V)

1.2. Graphs with largest eigenvalue 2.
has an adjacency matrix A defined by
ij -
aij =0 iff (i,j) ¢ E.
Remark. aii = 0 for all i ¢ V.
1.2, 1.

Example. The pentagon graph consists of five vertices with cyclic

adjacencies. The adjacency matrix is

01 0 0 I] 0 1 0 0 0
1 6 1 0 g 0 1 0
- - T =
AS = 0 1t ¢ 1 0 = PS + PS where PS 0O 0 0 1 0
0O 0 1 0 1 g 0 0 0 1
1 0 0 1 0 1 0 0 0
The eigenvalues of A, can be derived from those of P_.. Because

5 5°
(P5)5 = I, the five eigenvalues of P, satisfy o = 1.



| k=1,..,51}, and therefore,

This leads to spec(P) = { e2ﬁlk/5
} = { 2cos(27k/5) }, since PL = P.).

spec(A) = 1 e-2w1k/5 N eEﬂlk/S : :

It s easy to see that @ = 2. A method to determine all eigenvalues
explicitly is given below:

C

IT

a b d c
Let 2cos(27/5) =

isosceles, so bd

-
i

1. The triangles I and II are similar and bed is

fl

and ad = ¢d = t. Similarity of I and II leads to

T =1 I
= —  or TZ = T + 1, with positive solution %(/S + 1.
1 T
Henceforth we will reserve the symbol 1 to denote this number called the

"golden ratio” -

In terms of T we have

spec(A) = { 2, T-l, T-l, -T, =T }.

All graphs with O ax - 2 can easily be found with the help of the next

three theorems.

Theorem. (Perron-Frobenius). Let A be an irreducible, nonnegative,
square matrix, the the largest eigenvalue of A is positive of
multiplicity one, and it has an eigenvector with all entries

positive.
Remarks.

(i) We only deal with the adjacency matrices of connected graphs.
These are irreducible.
(ii) All eigenvectors belonging to @, # & o have at least one negative

entry, since they are orthogonal to a positive vector.



1.2.3. Lemma. If A = [A ]1 and A is irreducible and all its entries
C D

> ~ > .
are nonnegative, then amaX(A) amaX(A)
Proof. From 1.2.2. we know that the eigenvector x = [zl] of & for
2
o ax(A) is positive. Therefore

m
2 2
o2 () = max L§§ﬂ_§ ) maxllel + Bx2" 2 + u Cx12+ sz“ .
max
I~ IR
o= - Bl : " AX]“ T
T S g

Since X is irreducible, B and C are not null matrices. So inequality
holds.

0

1.2.4. Definition. The complete bipartite graph K,. is a graph whose vertices

can be divided into two subsets X1 and X2 of 1 and j

vertices, respectively, such that X] and X2 form two

cocliques and each vertex of X, is adjacent to all the

1

vertices of Xz.

A k-claw is a complete bipartite graph Kl K
3

1.2.5, Lemma. A graph having & ok = 2 does not contain k—claws with k > 4,

Proof. Let A be the adjacency matrix of the graph, where the first

k + | vertices form the k-claw. Since amax(A) % 2,

21 - A = 0 is positive semidefinite.

b -

This implies that the upperleft submatrix is positive semidefinite.



Hence 2 - k/2 0
= det s 0
0 21 -
Therefore 2 - k/Z_z 0 and so k g 4.
For k = 4 we must have B = 0. 0

Remark. If a graph has oy = 2 with eigenvector x, this eigenvector
satisfies Ax = 2x , hence '
For all i 2xi = T xj where the summation is over all j with

j adjacent to i.

To find all graphs with O ax 2, we search systematicly for all

possibilities, starting with the 4-claw.

1)t 1 The 4-claw has &y = 2 with eigenvector
(1,1,1,1,2)T. This implies, by lemma 1.2.3.,
2 that all graphs having a 4-claw as a proper
1 1 subgraph have @ ax > 2.
2) The graphs with only 2-claws are circular graphs.

Adding edges cannot lead to other graphs with

1 & o = 2, since these graphs have a circular

graph as a subgraph or they are circular them—

selves.

3) Now consider a 3-claw. Being a subgraph of the 4-claw a 3-claw
has @ ax < 2. We add vertices in all possible ways until we obtain
graphs with amaxz 2. No further adding of vertices is possible,
according to 1.2.3,

D . .
If we add a vertex to & we obtain the 4-claw.again.

B
We distinguish three other cases: ] 2 3 2 1

(1) Add vertices to all three vertices
B, C and D. This gives the graph on the 9
right, that has g = 2, with eigenvector
o max
(1,2,3,2,1,2,1) . |



1.3,

2 3 4 5 6 4 2 03 2 3 4 3

(ii1) Add vertices only to B and C. This graph
has still o < 2. Adding another point
max

to B yields a graph with « > 2 as we will
max

gsee in (iii).
The only two ways left to get a graph with O = 2, are:

adding vertices to E only (3) or one vertex to both E and F.

O
65—

£
W

3 2
(iii) The last possibility is adding a vertex to B only. This can

only be done as following:
1 1

A 2 2 2 2 2
B

C

D A
1 i
Remark. We will encounter these graphs again, in relation with

sets of lines in Euclidean d-spaces in section 1.5.

Line Graphs.

The incidence metrix N of a graph is a v X e matrix, where v is

the number of vertices and e the number of edges of the graph.

(N)ij = | iff vertex i and edge j are incident,
(N)ij = (0 otherwise.

One can simply verify that
NN =D + A and NN = 21 + L,

where D is diagonal with dii the number of vertices adjacent

to i, A is the adjacency matrix of the graph and L is the adjacency
matrix of the linegraph. The vertices of the linegraph correspond
with the edges of the graph. Two vertices of the linegraph are

adjacent, whenever the corresponding edges have a common vertex.
2

Example. 12 23

G = L{(G) =




1

.3,

1

N . . n
The incidence matrix N has size n x (2)

- 10 -

The importance of the incidence matrix lies in the fact that if we
know the eigenvalues of NNT or NTN we can easily find the eigenvalues
of L. and those of A, if A is regular. This is expressed in the next

theorem.

T T . .
. Theorem. NN* and N N have the same eigenvalues, except for 0, with

the same multiplicities.
Prodf. Let X # 0 be an eigenvalue of NNT of multiplicity f.
Then NNTU = AU for a matrix U of rank f. Therefore
NTNNTU = ANTU,
Rank(U) = rank(A\U) = rank(NNTU) ﬁ_rank(NTU) < rank(U).
Hence rank(NTU) = f.
Because NTN(NTU) = ANTU, we find that A is an eigenvalue of NTN of
multiplicity £. O
Examples. The complete graph K(n) has the triancular graph T(n)

as its linegraph

K(5) T(5)

spec (NNT)ﬁ([2n—2]l,[n—2]n~])
spec (NTN)=([2n-2]1,[n—2]n-],
since L = N'N - 2I spec (A(T(m))=([20-41" ,[n-a1""! (212 (79

NN= (n- DI4J-1
[0]%(11‘3)11)

The complete bipartite graph Kn 0 has as its linegraph the lattice
2

graph Lz(n).

a b c
K35
d e £
K has 2n x n2 incidence matrix N for which holds

n,n



- 11 -

2072 rond' o),
Zn—Z’[zn]l,[Oj(n—l) )
2072 [ op-21",0-200 D)

(I'n]
([nl
{([n-2]

NN"= nI + [2 g] with spec(NNT)
spec(NTN)
spec(A(Lz(n)))

2
)

We see that these linegraphs all have smallest eigenvalue -2,

The reason is that the original graphs have more edges than vertices. In
that case the size of NNT is smaller than that of NTN which means that .
NTN, being positive semidefinite has smallest eigenvalue 0. So the

linegraph has smallest eigenvalue -2,

The Switching-classes of  T(3), T(8), Lz(&}-

Apart from the (0,1) adjacency matrix A of a graph, we have the
(-1,1) adjacency matrix C, where Cij = -1 1ff the vertices i and j
are adjacent, and Cij = 1 iff they are mot adjacent, diag(C) = 0.
The relation between A and C is

C=J-1-24A

For regular graphs the spectra of A and € are related as following

spec(C) = (y n v-1-2a_, Y; T w]—Zui)
where o is the largest eigenvalue of A and a, are the others.

“Examples.

n-1 3 %n(n~3))

£

T{(n) has C-spectrum ( %(n—?}(n~7)fi 7-2n

1 In-2 ., fii-2n+l
Lz(n) has C-spectrum ( (n-1)(n~3) ~, 3-2n n s 3 n )

In general T(n) and Lz(n) have three different eigenvalues. However

for some n there are only two distinct eigenvalues.

T{(n): if ${(n-2)(n-7) = 7-2n then n = 5
or i (n-2)(n-7) = 3 then n =
Lz(n): if (o-1)(n-3) = 3 then n = 4

So in this case the (0,+1) adjacency matrices satisfy a

quadratic equation:



- 12 -

T(5) (C - 3I)(C + 3I) = v = 10 k=6
T(8) (C - 3D)(C + 91I) = v = 28 k = 12
L2(4) (C - 31)(C + 5I) = v = 16 k =6
Switching.

Let x be any vertex of a graph. Switching with respect to x is defined
to be the following operation: cancel all existing adjacencies to x
and add all nonexisting adjacencies to x. The effect of switching
with respect to x on.the adjacency matrix C is that the row and column

corresponding to x are multiplied by -1.

Example of switching {(w.r.t. vertex 6):

3 Q 4 D+ + + + + 3 4
+ 0 -+ + -
]+~ 0~-+ =
C=1s4- 0 - + 2 5
2 5 + 4+ + - 0 -
+ -+ + =0
6 - - 6

Switching with respect to any number of vertices is an equivalence
relation on the set of all graohs on v vertices. For a given (-1,1)
adjacency matiix C, the switching class consists of graphs with
(-1,1) adjacency matrices DCD, where D = diag(+1). It is clear that
the C=spectra of switching equivalent graphs are the same.

Switching with respect to a certain subset of a graph has the same
effect as switching with respect to the subset's complement. In terms

of matrices this is changing D into -D.

‘Problem. Find all regular graphs, possibly except for an isolated

vertex, in the switching-classes of T(5), T(8), Lz(é).

There are two ways in which one may obtain a strongly regular graph
from a graph whose C-matrix has only two eigenvalues. The first one

is to isolate one vertex. Then the graph on the remaining vertices

is strongly regular. The second one occurs if it is possible to switch
in such a way that the resulting graph is regular (it is easy to see
that there are only two possible valencies). The graph will then be

automatically strongly regular.
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1) Isolation.

We isolate the @-marked vertex (a "black! vertex), by switching with

respect to the @ ~marked vertices (Ywhite" vertices).

T(5): we get LZ(S) and an

oo

L, (4):
2 O—O0
we get T(6), k = 8, °®
: and an isolated vertex.

T(8): We get the Schléfli-graph. In thisgraph
E eath vertex in the switching set is

isolated vertex.

adjacent to six other_switchpoints

and to ten non=switchpoints. The

Ny

a non-switchpoints are adjacent to

<L PN eight others and to.eight switch-

points. So the Schlafli-graph is

ﬁ l ‘\\\ regular with k = 16, hence strongly
o- A
‘ ‘\\ regular,

2) Non-isomorphic graphs with the same valency.

: 5 9 13
L%%gl——4p ~ leads to
2 16 10 144

; - A ..
44 8 12 >16 5 .,AVAY‘V‘

(In the second graphtW9 vertices are adjacent iff they are adjacent

in the picture, in L2(4) two vertices are adjacent iff they are on

one line)



- 14 =

The second graph is called the Shrikhande-graph. This graph -is not
isomorphic to Lz(d). In LZ(&) each vertex is adjacent to two groups
of three vertices, and in the Shrikhande-graph each vertex is adjacent

to a b-cycle.

T(8).
Switching into a non—isomorphic graph with k = 12, can only be done in

three essentially different yays, leading to the following "Chang-graphs”.

None of these graphs is isomorphic
to T{8), because each point in T(8)

is adjacent to a 6-clique.

T{(5) has no non-isomorphic graphs
with k = 6,




- 15 =

Regular graphs in one of the switching~classes satisfy v-1-2k= Yo
where Yo is an eigenvalue of the adjacency matrix C. This reduces

the number of possible valencies k to.two:

C(T(5)) has eigenvalues 3 (k = 3) and -3 (k = 6)
C(Lz(ﬁ)) has eigenvalues 3 (k 6) and -5 (k =10)
C(T(8))  has eigenvalues 3 (k =12) and -9 (k =18)

T(5): We get the Petersen-graph, k = 3,

L,(4): We get the Clebsch-graph, k = 10,

In the Ciebscﬁ-gréph two @-—vertices or two O-vertices are adjacent
iff they have a line in common and a @-vertex and a O-vertex

are adjacent iff they have no line in common,

Remark. Shrikhande has proved that the only regular graphs with

v =16 and k = 6 or k = 10 are the three graphs that we met here:
L2(4), Shrikhande and the Clebsch-graph.

T(8):

Switching to a graph with k = 18 is not possible.

Proof. Let A be the (0,1) adjacency matrix of such a graph. Then its
eigenvalues are k = 18, r = 4 and s = ~2, (Ym = =9, Y; = ~9 or 3)
with multiplicities t, f and g. Because the multiplicities add up to
v and trace(A) = 0 we know 1| +f + g = 28 and 18 + 4f - 2g = 0.

This leads to f = 6 and g = 21.



(W23
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So spec(d) = (181, 46, (-2)21) and spec(21 + A) = (20], 66, 02]).

. T . . . .
3=, 1, .. .1) is an eigenvector of A with eigenvalue k = 18,
Because j is also an eigenvector of J with eigenvalue v = 28,

20 i 6 21
38 Jy = (0, 6, 07 ).

Consider A + 21 - §§-J as the Grammatrix of 28 vectors in R6. These

28 vectors form a spherical two-distance set since

we get: spec(A + 21 -

- .20
o . ﬁ/& where a = 2 58 °
20 . . - - 20
By -2
o y = 1 58

But a spherical two-distance set in Rbcontains at most
$-6-(6+3) = 27 vectors. So the graph cannot exist.
(In section 5.1.we will show that a spherical two-distance set in

d .
R* cannot contain more than }d(d + 3) points).

0

Remark. The graphs, we have found here are all strongly regular
graphs. They have adjacency matrices C that satisfy
(I @]I}(C - aZI) = 0. Graphs with this property are examples of

strong graohs, and regular graphs that are strong are strongly regular.

Graphs with smallest eigenvalue -2,

We start with some examples. We have already met the line graphs
in section 1.2, Some other graphs are the cocktail party graphs
on 2n vertices. These are graphs with

A= spec(A) = (2n—21, 0", -Zn—])-

Further the strongly regular graphs of Petersen (v = 10), Clebsch (16),
Shrikhande (16), Schlafli (27), Chang (28).

If a graph has o ., = -2 then
A " ¥ min 2

21 + a=| 0001
o/1 ",

can be considered as the Grammatrix of a set of —ggctors at 60 and

90 degrees in Rd.



1

5.

i,

- 17 -

Since each vector spans a line, through the origin, we have a set of
lines at 60 and 90 degrees in Rd. Conversely suppose we have a set
of 1 lines at 60 and 90 degrees. We can take two vectors along each
line, of length +2. Their Grammatrix G has entries {+2, +#1, 0 1},

and it is positive semidefinite. If we rearrange G we get

2 0/,
0/-1+9| 0/1/-1/2
2
G = .,
2
—_1/= 2

0/1/-1/-2 L0/1

0/1 +9

The upperleft submatrix is 2I - B, where B is a (0,1) matrix with

amax < 2. The lowerright submatrix is 2I + A, where A is a (0,1)
adjacency matrix having o ax > —2. Such a set of lines can be completed
in the following sense. If it contains two lines, 1 and m ah 600’

a third line; in the plane of 1 and m, can be added at 60° with 1

and m, and at 60° and 90° with all other lines. A
collection to which no more lines like these can be added is called

star-closed.

Theorem. The irreducible sets of lines at 60° and‘900 which are

star-closed, are the root systems:

Ay Do Egs By Ege

(Irreducible sets of lines are collections that cannot be
divided in two or more orthogonal subsets.)
. n
Let L be the orthonormal basis in R . The root-systems

An’ Dn’ En (n =6,7,8) are described as following:

D
n

{<+ e, i_55>li #je{1,2, .. .n3},|D | =n(a-1).

in(n+1).

A= e ey -esfiffe 1,2, . atIA

For example the cocktail party graphs consist of a subset of Dn:

{<e; * e | i=2, . n+l} where two "vertices" are adjacent
iff they have only_g] incommon, hence it is the complement of the
graph

(n times)



The friendship graph {<§4 i_gi>’ i=1,2, .. .8 vu {e
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gy * 20t

For the graph ¢ = ( {gq, e s .gﬂ} , E ), its linegraph is described

by

{ﬁgi + gj>] (i,3) € E} where two elements are adjacent iff they

have e, or ej in common.

LK = {<e; v el i45 4,=1,2,...6)

L(KB,B) = {{gi - gj;l i=1,2,3, j=4,5,6} .8
e 1 = = .
Eg i= Dg L/{z(SIEJ 0. esgs)] e; i},iglei 1}
ES contains 56 + 64 = 120 lines. If we take one vector along each

line we find a Grammatrix 2I + C. Since rank(2I + C) = 8§ and 21 + C

is

8
We have trace C = 0 = 112(-2) +L Ai s L A = 224

p.s.d. the following holds:

]12

spec(C) ={(~2) by e e e AS)-

, .
1" g

H
o]
-
[
[02]

2 1 5 1 8
trace C7 = 120(120~1-63) =& li + 1124 , L Ai = 828",
1

So with help of the inequality of Cauchy-Schwarz A, = . . = AB = 28.

This results in

Furthermore graphs in E

(C + 2I)(C - 281) =

3 have s 36 vertices, valency < 28 and regular

graphs have < 28 vertices with valency < 16.

Example: the Schlafli-graph is

{< e

ui i

ey * eJ>‘ 1,7 =1,2, . . .6, 143}y
8
1({; N -gi-_e-j)|i=1,2,..6, i=7,81.
is the set of lines orthogonal to a single line in E8. It has
lines.
is the line set orthogonal to a star in ES' It contains 36 lines.

refer to[ 9 Tto further details and proofs.



1.6, The theorem of Turan about the largest coclique in a graph;

an application to ¢oding theory.
1.6.,1. Theorem. (Turan, [34]). In a graph on v vertices and with e edges,

the size of the largest coclique is at least M, where
v E§ﬂ+l
M=mnin {me N | e [=lv —( )’nﬂ
m 2

Proof. Assume that for some m € N the graph does not contain a coclique

of more than m vertices. Let q := [v/ml. So v = q.m + 1, where

0 £ r < m. Divide the graph in a subgraph on m vertices, that contains

. _ 7

the largest coeclique, and a sub 0 é B] }ﬁ

graph on (g~1)m+r vertices. V7/1/77

Repeat thisproces on the latter OKlB m

. ///7 2

graph q — | times. Now each column )

in Bi contains at least one 1, since

the corresponding coclique is maxi-

mal (see diagram). So

ez (vvm) + (v=2m) + . . ., . . . . (v - qm) =
+1
= qu - (q2 Jm.
0

1.6.2. Theoram. In a graph on v vertices and with e edges, the size M of the

largest coclique is at least v2/(v + 2e) (%)

Proof. Consider the graphs in which the largest coclique contains
at most m vertices. Fix 0% r <m. For these graphs on gqm + ¢

vertices we prove that
e z v{v-m)/2m . L (xx)

Note that (x) &> (%),
We use induction to q. For q = 0 (%%) is trivial, because in that

case v < m holds, which means v{(v-m)/2m < 0.

Assume (**) holds for q. Divide the graph on v' (¢+*Dm + r

once as in 1.6.1. We immediately see

>
Z
e’ 2 v + v{v-m)/2m = v(v+m) /2m = 0 A B }rn
v/
(v'-m)v'/2m.
This can be done for any r,
0 r <m. ]

qm+r




1.

.6.3.

6.4,
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Remark. The graph with Ir g (J - I)q+1 o)
A =
-1
O l I .8 Q] )q
is an example for which in theorem 1.5.1. equality holds, for
[maxcocligue‘ =m and e = qv ~ (qzl)m.

For theorem 1.6.2. such a graph cannot be found for all v and m.

Application. (For more details see tlZ]).

Consider two transmitters that transmit

. . T
simultaneously along a single channel. 1 \\\\“\u
We are interested in block-codes such Channel
. . 0,1,2
that the receiver can read the infor-— T /////’ >
. . 2

mation that each transmitter has sent.

T1 T2 R
So we want codes

0 0 0

0 1 1

n n

¢ < {0,13", Dc {0,1}", with the i 0 1

1 1 2
proverty that for all c, ¢'€ C and
for all d, d'€¢ D the following holds:

c+d=c'+d" iff c=cl,d=d" ()
(here "+" is addition in Z).
Example. C = {00,11} . D= {01,10,11}.
Now choose C, and let all its words have length n.
. n
Lemma. If (*) holds and ¢, ¢' € C, ¢ # ¢' and if u < {0,1}
with u, = 1 ¢, = ci, then either ¢ @ uor c' & u in
D,but not both. { ® is addition mod 2).
Proof. We can easily verify that c + (c' @ u) = c' + (c 8 w.
0

Lemma. If not both d and d' are allowed in D, then there are

¢, ¢' € C and there is a u for which holds:
if u. =1 then e, = ¢! ,
i i i

such that

Proof. Let ¢, ¢' € C and ¢+ d=_c¢
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Without loss of generality we have

c=0. ... 0 R/ IS TR I P I
d=0. ... P B . .01 1

c+d=0. ... ..00. . 0 Tl L2, ca2

and c'= 0. . . 0. .01 . .10, .01, .11, Ll
d'=0......01..10..01..10..01... .1

define w=0, .. ...01..10..00..01..01......1

{1
1.6.5. Corollary. Define the graph GC = (VC’ EC> where VC _ ﬂO,]}n
{the vertices), and EC 1=
O | v {{c ® u, c' & ul}

1 - en!
ceC  c'eC\c} ~3'ui I=yc.=c;

(the edges). Now,a code D for which (x) holds is a

coclique in G

c and a coclique in G, is a suitable code D.

C

1.6.6. Theorem. Fix code C again, with C < {0,1}". Let
2 . .
. = 1 Y _ 2 .
Ai : Téw{(c, c¢') € C ’ dh(c,c ) il. dh is the Hamming

distance between two vectors, that is the number of
codrdinates with {ci - ci' # 0.

The maximum cardinality for D such that (%) holds is at

n;
=21 2 i a..2
a=] l
Apply 1.6.1. and 1.6.5. Then we get: the maximum cardinality of a

coclique is at least ol n .
//”?1 w el Ta, 27,
i=1 %

least
2" n _
(1+ lc|- 2 a2 )
. 1=1}

Proof. We knowf!VC] = 2",

Furthermore 1
<1 % % = 3 y ohd (e,eD-1

EC] -2 ceC’ c'eC E%- : ceC c'eC 2 dh
n .
=L pii-l 5T i =

i=] (c,e")eC ‘dh(c,c')=i

“1




- 29 =

Chapter 2.

Eigenvalue techniqueés in graph and design theory.

In this chapter we shall derive some results about eigenvalues of ma-
trices. We will also apply these results to graph theory (e.g. gene-
ralized quadrangles) and design theory (e.g. projective planes). the
matrices considered will be real 'and square of size n. If X € spec(A),
then the span of the eigenvectors of A for X is called EA(A).Suppose A

has n {not necessarily distinct) real eigenvalues; Then we shall denote

AI(A) pe kZ(A) 2 .. 2 Kn(A).

General references for this chapter are [13 1, [ 21 1,

2.1 Introduction.
these eigenvalues by
2.2, Some basic theorems.
2.2.1.

Theorem. Let A be a symmetric matrix.

(i) If X € spec(A), then A € R,

(i) If A, A, € spec(d), X, # Ayr X, € By a), x, € E, (A),

2 A

! i 2

2
then < X, X, > = 0,

(iii) There exists an orthonormal basis of eigenvectors of A.
(in other words: there exists an orthogonal matrix S with
STAS = diag(ll,..., An}, where A E - A, are the eigen-

values of A.)

Proof. (i) Let x be an eigenvector of A for . Then

KQTX = §TAX = XTAQ = ;TAX = A%Tx = ing = X;Tx. Therefore X € R.
(ii) X]< X, X, > =< Ax, X, > =< X5 Ax, > = 12< X, Xy >
1} # 12, hence < x,, x, > = 0.

(iii) This we prove by induction on n, the size of A.
If n = 0, there is nothing to prove. Suppose n> 0. A has at least one

eigenvalue Al' Let X, € Ek (A), < X, X > = 1. If S1 is the matrix with
L

first column X, and as other columns an orthonormal basis of < X, >,

then S, is orthogonal and

AI 0...0
0
o7 , (@) | ’ e -
1AS1 = : A(z) , where A is symmetric of size n .

0
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By the induction hypothesis, there exists an orthogonal matrix 82 with
A2
o
T, (2) :
52A 82 0 ln
10...0
If § = S1 . 82 , then § is orthogonal, and
kl
STAS = A
E d

2.2.2. Theorem. (Rayley's principle)

Proof.

uTAu

. . i 2
E - =0, i i
quality holds iff ¥, I(Aj Ai)aj 0, i.e. iff Aj > Ai méaj

Let A be a symmetric matrix of size n, and assume that ‘A has

eigenvalues AI(A) 2 ... 2 %n(A).

Let u],..., un be an orthonormal basis of eigenvectors of A,

u, € Exi(A)<A)’ i=1,..., n. Then:

uTAu
. < U Au
1) Ai(A} - uTu , for u € <« Upsere, U >, #0, 0<1s< nj

equality holds iff u is an eigenvector of A for Ai(A).

T
(ii) A u Au : i
i+l T for u €< u ,..., u, > = < u. R
uwu 1? UL - Zitl? > n

u#0, 05 i<n;

equality holds iff u is an eigenvector of A for A;+I(A).

u==:." a,u.. Then,
=1 7373
I a i, AL a
] ] . 1 3
= z = X,
L a? % a? 1
J ]

J:

i.e, iff .
1. 1 u € E)\i{A>(A)

((ii) can be seen replacing A by -A).



uTAu uTAu
2,2.3. C . = —_— = Mmin  e—
orollary AI max — ’ An min —z
u'u uu
Ay A
2.2.4, Theorem. If A = T is a symmetric matrix of size n,
Az Ay

AT] symmetric of size m, then

MMM:MWQZ%%QZ%W-

EEQEﬁ; uTAu uTAu u?Allu]
AI(A) = max —7 2 max = max ——— = Al(All)'

T u
uu u=Gy uu 1 uju,
(IH(A) < A (A;) can be proved in the same way by applying the above

to ~A andr—A}]). .

2,2.5. Corollary. Let S, be a n X m matrix such that STS = Im' Let A be a

1 171
symmetric matrix of size n. Define B := SfAS}. Then

M) 22 () 22 (B) 22 (A),

Proof. (Note that B is also symmetric). Let 82 1= (Xl""’ Xn~m)’ where

Kypeows X is an orthonormal basisof <Sl§ ( <S]> being the span of

the columns of S}). Then (S S2) satisfies STS = T and S is square;
1

T 1i
hence S =S . Also

B STAS
T 1772
STAS = T T

82AS1 SZASZ

T .
S"AS has the same spectrum as A. Therefore, theorem (2.2.4.) yields

AI(A) > AI(B) > Am(B) > xn(A)- o

2.2.6. Corollary. Let A be a symmetric matrix partitioned as follows

AI} . A]m
A = . ,
A .« .« A
ml ™m
such that Aii is square for i = 1,2, . . . . m,of size n..
Let bij be the average row sum of Aij’ for i,j =1, . . . m
Define the m x m matrix B := (bij)'

Then
AI(A) = AI(B) > xm(B) > xn(A).



Proof. Define — -
1 .. .1 0O . . 0 . .. .90
. . 1 . 1 .
T e e . 0...0 . . . .
8, =
1 . . . . . .
0...0 0. . .0 . 1 .. .1
L i — w) L. “V""'"J \___‘n/—-—d _
| b m
. ~ —}
D := diag(vn,, vn,, , yn ) and S _ :=S.D .
ren sTs o D ard’ -1 T ! ! w1 .5 2
Then 1Sy = D S}S]D ”: . 1ag(nl, Coe s =1, and 55, .
It is clear now that (S]A S])ij equals the sum of the entries of Aij'
Hence
B=0D zg?ASl , and therefore DBD . SfAS].

B has the same eigenvalues as DBD—I. Hence corollary 2.2.5. yields

;\I(A) > Z&I(B) 2 xm(B) z An(A). .

Using corollary 2.2.6 the following theorem in the graph theory
can easily be proved:
2.2.7. Theorem. Let G be a regular graph on n vertices of degree k,

containing a coclique of size c¢. Then

ek - xn(A))s -nxn(A),

wherexn(A) is the smallest eigenvalue of the adjacency
matrix A of G.

Proof. We can write A as

Ajg 22

The average row sum matrix of A, corresponding to this partition, is

0 k
B = ck {n—-2c)k
n-c¢ n-c
: . ke
with eigenvalues A](B) = k and AZ(B) = - -
Corollary 2.2.6 yields
ke
- —— > _(A).
n—-c n

hence, ok ~ X (A)) < -nx_(A).
. n n
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In- the following paragraph we shall give more applications of the

results obtained sofar.

2.3. Generalized Quadrangles.

2.3.1. Definition. A generalized quddrangle of order (s,t) is an incidence

structure with pointsand lines such that:

(i)  each line has s + 1 points,

(i1) each point is on t + 1 lines,

(i1i) two distinct lines meet in at most one point,
(iv) for any nonincident point - line pair x,1 there

is a unique line through x that meets 1.

We can easily see that the number of points in a generalized qua-
drangle of order (s,t) is (s + 1)(st + 1).

The point graph of a generalized quadrangle Q is the graph, whose
vertices are the points of Q, two points being adjacent, whenever
they are on a line of Q.

This graph is strongly regular with parameters

v= (s + 1)(st + 1} , k=s(t+ 1) |,

A= s -1 s pe= t+1 R
The complement of this graph has parameters

v=(s+ 1)(st + 1) |, k = szt ,

A o= sZt - st -5+t , u o= szt - st .

An account of the theory of generalized quadrangles can be found
in [23 3 ; {:34 ] .

2.3.2. Lemma. The smallest eigenvalue of the complement G of the point
graph of a generalized quadrangle of order (s,t) is -s.
Proof. Let A be the adjacency matrix of the graph G. Because G is
strongly regular, the following holds:
AJ = kJ and Az = kI + M + p(J -1~ 4.
Hence, A and J ean be diagonalized simultaneously, and therefore
02 + (U= k) + (u - AP =0 for the eigenvalues p # k of A.

This yields -s as the smallest eigenvalue of A.
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2,.3.3. Theorem. Let Q denote a generalized quadrangle of order {(s,t),
s > 1. Then t < sz.
Proof. Let G be a regular graph on n points of degree k, and assume
that G contains ¢wo disjoint cliques of size 1 and m, respectively,
such that no two points in different cliques are adjacent.

If A is the adjacency matrix of G, then we can write

I-1 0 Ay
A= g J;I A23
Afg Ay3 Ay

The average row sum matrix of A is in this case

1 -1 0 k—-14+1
B = 0 m - 1 k-m+ 1
1(k-1+1) m{k-m+1) ke 1(k~1+1) + m(k-m+1)
n—-1-m n~1-m n-1-m

It is easy to see that i (B) = k.

Call o := trace(B) — k = (1+m) (n-k+1) - 2(n-ml)
n—-1-m

= 2, (B) + A,(B).
and I _ (0=2K)1m - (n-k) (1+m) + n

B = det B ko
n-1-m

= kz(B)-A3(B)

Hence, Az(B), A3(B) are the roots of the equation x2 -ax + 8 = 0.
If we apply this on the complement of the point graph of Q with

n= (1 +s)(l+st) , k= s%t and smallest eigenvalue -s , we find
with corollary 2.2.6 that (--s)2 - a(-s) + B8 = 0,

This yields s = 1 or (1=1){(m-1) < s2.

Clearly, in a generalized quadrangle (s,t) the induced subgraph on
the configuration of two nonadjacent points X,y together with the

t + 1 points that are adjacent to both x and y is a K graph

2,t+]
(see chapter 1): so we can apply the above with 1 = 2 and m = t + 1.

Then we find that if s > 1, then t < sz.



2.3.4. Theorem.

Proof. The
v
k
The parame

v-
]

We can par

- graph of Q

matrix

It is easy

Hence AZ(B) = k1 -

KV(A) = -3

- 78 -

Assume that a generalized quadrangle Q of order (s,t)
contains a subguadrangle Q1 of order (s],tl).

Then s = 8
parameters of the complement of the point graph of § are

or s t., < 8,
171

“(s*+1)(st+1) s A= 32t - st-s+t ,
2
= s°t , p = st - st.

ters of the complement of the point graph of Q1 are

E--3 - - - +
(s,+1)(s1t1+1) , x] sity = st = s, +t ’
2 2
= Sltl N u] = Sltl - Sltl .

tition the adjacency matrix of the complement of the point

in such a way that we get the following average row sum
5 - kl k - k]
v Gek) k= 1)
v-v

1

to see that A](B) = k, Furthermore,

RI(B) + AZfB} = trace(B)= kl +k - v]<k*k1) .
v-v
1
M
v-v, (k-kl)'
Corollary 2.2.6. yields AZ(B) > AVKA)-
v
, and therefore k1 - 1 (k=k.) z _g.
v-v 1

This leads

Then 8 = s

1
to (s—sl)(szt+s—sslt]t-s t]) > 0.

or, because s > s, , st + s - ss . t.t-st >0

1 1 171 171

s = sl or s t. < s.

roduce a useful property of eigenvalues.

Therefore .

2.4, Interlacing of eigenvalues.
We mow int

2.4.1. Definition

. Suppose A and B are square real matrices of size n and m
{m € n), respectively, having only real eigenvalues.

If Ai(A) 2 Ai(B)a An—m+i(A)’ for all i =1, . , m,

then we say that the eigenvalues of B interlace the

eigenvalues of A.
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2.4.2, Theorem. Let A A

12 22

be a symmetric matrix of size n, A, , square of size m.

11
Then the eigenvalues of A11 interlace those of A.
Proof., Let V},..., ¥ be a orthonormal basis of eigenvectors of A]],

. T P .
and define v, = ( vil (0 gm& 0)), for all i =1,..., m.

Let Upseers un be an orthonormal basis of eigenvectors of A. For
i=1,..., m, select a .u ¢ (Kugpeev, u >0 <V 5, Vm?)\{O} .

(This is possible because dim(<ui,..., un?) =n-1+ 1, and

dim(<v1,..., vi>) = i, and therefore dim(<ui,..., U> N <V, vi>)2
Then u has the following structure: u = (T | 0...0), and
therefore we find with theorem 2.2.2. that o

u"Au G'TA”_‘G’_ .
)\i(A) 2 nTu = e > )‘i(AH)' (U e< G'],..., v > ).
If we do the same with -A and —A!] we find:
By = A A S Ay A = A g )
Hence, ki(A) > Ai(All) > An—m+i(A)’ for all i = 1,..., m.

(1

2,4.3. Coreollary.Let Sl be a2 n x m matrix such that STS1 = Im.

Let A be a symmetric matrix of size n and define
T
B := SIASI°
Then, the reigenvalues of B interlace the eigenvalues of A,

Proof. Define 82 and § as in the proof of corollary 2.2.5., and use

theorem 2.4.2.
d

2.4.4, Corollary. Let A be a symmetric matrix partitioned as follows:

All ot A1m

A= . . e e ,
A . .« A
ml i

and let B be the average row sum matrix of A.

Then the eigenvalues of B interlace those of A.
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Proof. Define S

1 D and Sl as in corollary 2.2.6.; then

pBD”! = sfasl .
With corollary 2.4.3. we find that the eigenvalues of B interlace
the eigenvalues of A.

0

The following shows an application to graph theory:

2.4.5. Theorem. (Cvetkovié bound).
Let G be a graph on n vertices with a coclique of size c.
Then ¢ doesn't exceed the number of nonnegative (or nonpositive)

eigenvalues of the adjacency matrix A of G.

Proof. A can be partitioned as follows:

chc A12
A= T
By By

Then with theorem 2.4.2. we find that

A (8) > A (0) =0 and A (&) < X, (0) = 0.

~c+t]
Hence, c cannot exceed the number of nonegative (or nonpositive)

eigenvalues of A.

0

2.5. Block designs.

2.5.1, Definition. A block design (balanced incomplete block design) with
parameters {(v,k;b,r,A) is a set X of v elements and a

collection of b~subsets of X, called blocks, such that,

1) each block has cardinality k,
2) each element of X occurs in exactly r blocks,
3) each pair of distinct elements of X occurs in exactly X

blocks.

In other words, a block design is a 2-(v,k,A) design.

A block design is called symmetric if v = b.

We want to apply the results obtained in the preceeding paragraphs to
block designs. But, because the incidence matrix of a block design is

usualy nonsymmetric, we need the following theorem:
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2.5.2. Theorem. Let MT and N be real m X m, matrices., Put

0 N
A= 1y o 3

then the following are equivalent:
(i)'A # 0. is an eigenvalue of A of multiplicity f;
(ii) = X # 0 is an eigenvalue of A of multiplicity f;
(iii) 22 # 0 is an eigenvalue of MN of multiplicity f;
(iv) 22 # 0 is an eigenvalue of NM of multiplicity f.

Proof. (i)e=a(ii). U
Let AU = AU, for some matrix U of rank f. Write U = [U;] and define

2 1 }

This implies AU =-AT. Since rank U = rank ﬁ, the first equivalence 1is

U
i =[;Ué], where Ui has m, rows for i = 1,2. Then NU, = AU, and MU, = AUZ.

proved.
(1i1)eP(iv).
Let MNU' = AzU', for some matrix U' of rank f, lz # 0. Then
NM(NU') = XZU', and rank NU' = rank U', since,
rank U' = rank A2U' = rank MNU' < rank NU' < rank U'.

This proves the second equivalence.

(1)Y™P(iii).
2 W 0 .
Because A = LO MN] , it follows that (i)==(iii).
If MNU' = AzU', U' of rank f, then

NU' ANU'] NU' NU!
A agtl T RzU' = Zt] and AT has also rank £. Hence {(iii)==»(i).

2.5,3. Theorem. Let N be the incidence matrix of size v x b of a block design
with parameters (v,k;b,r,A) (r = %E%—A).

Assume that

N1 N2
N = , where N_ is a v,x b, matrix.
N, N 1 1 1
3 74
Let r, be the average row sum of Nl’ and k] = vlrl the average
b

column sum of Nl' Then, !

- blk)(bk] - V]r).i (r - 2){v - Vl)(b - b,).

(vr

1 1



..32._

0 N
Proof, Consider the symmetric matrix A = [NT O] .
Because NNT = (r =2 )I + A, we find that the eigenvalues of NNT are
kr, of multiplicity 1, and (r =% ) of mu1t1p11c1ty v - 1. With theorem
2.5.2, we see that the elgenvalues of A are (rk)E and -(rk)é, each of
multiplicity 1, (r ~A )§ and = (r =X )é, each of multiplicity v - 1,

and 0 of multiplicity b - v. If we write

6 0 N] N2

0 0 N3 N 4

NNt 0 . .
A= % % , then the average row sum matrix of A is:

_Nz N4 c 0

0 0 r, r-r,

0 0 X T-X bl(k - kl) v}(r - rl)
B = kl k~kl G 0 s, where x = v =~ vy and y = b - b]

vy k-y 0 0
It is easy to see that A](B) = - l4(B) = (rk)%, and with

det(B) = rk(rl - x)(k1 - y) and trace(B) = 0, we also find that
1
A, (B) = -%\3(13) =((r1 - x)(k1 -yni.
Corollary 2.4.4., yields Az(B) j_AZ(A), and therefore

(r, - x)(k1 - y) < v - A . Hence

1

(vr, - b k) (bk, - v.r) < ({r -2 )(v - v, ){(}d - b,),
1 1 1 | 1 1 0
2.5.4, Corollary. If a block occurs s times in a block design, then
b
/V > s .

Proof. In this case we can write for the incidence matrix of the

block design:

J N
N = kxs 2 ,
0 N&
then, if we use theorem 2.5.3. with v, = k] = k and b] =1, =5, then

we find that b/v > s
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2.5.5. Corollary. A subplane of a projective plane of order n has order

m < vh.

Proof. A projective plane of order n is a symmetric 2—(n2+n+1, n+l,1)
design, with r =n + 1 and b = n°+ n + 1. Theorem 2.5.3. with

= m’+ m + 1 and ky=r,=m+ 1 yields m < v n. (equality holds
for Baer subplanes.)

bl= v

H

2.5.6. Corollary. If f is the number of fixed points of an automorfism of
a symmetric 2-(v,k, ) design, then
k-X.

[}

f <k +v/ n, where n

Proof. (Note that # fixed points = # fixed blocks.)

1

Let N] be the incidence matrix of the nonfixed points and the nonfixed
blocks. A nonfixed block cannnt contain more than ) fixed points (for,
if B is a nonfixed block and B' its image, then the points in ﬁ\B'

are nonfixed)., Therefore we can use theorem 2.5.3. with

V= b.=v - f, k1= r.> k= A=n, This yields f <k +v/ n.

1 1

r

2.6.  Tight -interlacing of eigenvalues.

2.6.1, Definition. Suppose A and B are square matrices of size n and m, respec-
tively (m <n), having only real eigenvalues, and assume that
the eigenvalues of B interlace the eigenvalues of A.
(Hence Ai(A) 2 Ai(B) > n—m+i(A)’ i=1,...,m)
If there exists an integer k, O0< k < m such that
Xi(A) = Ai(B)’ i ]9-"9k
kn_m+i(A) = Ai(B), i = k+l,..,m.
Then the interlacing is called tight.

Ap A

T
A Ay

2.6.2. Theorem. Suppose A = is a symmetric matrix of size n,

A}] square of size m. We know that the eigenvalues of All

interlace those of A{theorem 2.4.2.).

If the interlacing is tight, then Alé= 0.
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Proof. Let 1 be an integer with Ri(A) = ki(A]l), for i =1,..., 1

»

and let V],...,?g be an orthonormal basis of eigenvectors of Al]

We shall first prove the following by induction on 1:

v v

(x) v, =( OI) ,...Vl=( 01) are orthonormal eigenvectors of A for
the eigenvalues A}(A]]),...,k (All)'

1f 1 = 0, then there is nothing to prove. Suppose 1 > 0, We have

= — T
AI(A) AliA ) o= l . 1 levl.

Is . . .
Because viE < ViseresVyy >, and by the induction hypothesis
Viseeesvy_, are orthonormal eigenvectors of A for the eigenvalues
A (AY, .., (A), we find with theorem 2.2.2.(ii) that v, ¢ E .
1 1-1 A (8

1
This proves (x).

If the interlacing is tight, then there exists an interger 0 < k < m
with Ai(A) = Ai(All) for i = 1,...,k, 2 I L(A) = . (A ) for i=k+1,..,m.

If we apply (%) to AII and A with 1 = k and to A]] and ~-A with 1 = m - k,

we find that if v],...,FQ is an orthonormal basis .of eigenvectors of'All,
Lnd ~

v v
then v =( 01) seres Vo =( Om) are orthonormal eigenvectors of A,

o~ ~ \Y
IfFVv=( ViseresVy ) and V = ( ?I,...,vm ), then Vv =(O) and
AV = VD, where D is a diagonal matrix. Therefore AT v = 0, and because

12

¥ is nonsingular we find that A12 = 0

Corollary. Let S} be a nxm matrix such that SIS] = Im. Let A be
symmetric of size n. Define B = S?ASI. We know that the

eigenvalues of B and A interlace (corollary 2.4.3.).

If the interlacing is tight, then §,B = AS1

Proof. Define S, as in the proof of corollary 2.2.5.. Then

2
e T T .
I= (S], Sz)(SI, 82) = S]S + 8282 , and with theorem 2.6.2. we see

that Sg AS1 = 0 (see also the proof of corollary 2.2.5.). Therefore

T T
0 = SZSQAS1 = (1~ SISI )AS] = ASl - SIB'

Hence, AS] = S]B.
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2.6.4, Corollary. Let B be the average row sum matrix of

All""Alm

A= | . . A symmetric of size n.
A A
ml ™mm

We know that the eigenvalues of B interlace those of A
(corollary 2.4.4.). 1f the interlacing is tight, then
s 1, = 1,...,m has constant row and column sums.
-
1’ Sl’
If the interlacing of B and A is tight,

Proof. Use the proof of corollary 2.2.6. ( define S D the same

way). Then DBD“I = STASI
then the interlacing of DBD—1 and A is also tight. With corollary 2.6.3.

we obtain AS, = SIDBDal. This yields Agg = g}B .
Hence, the average row {and column) sums of the Aij are constant.
M
We now apply tight interlacing to graph and design theory:
1) In theorem 2.2.7. we see that the interlacing of the eigenvalues
of B and A (see the proof of theorem -2.2.7. ) is tight when the graph
contains a coclique of size ( —nkn(A))K(k - An(A)). In that case,
ocxc A12 0 .k

A= K N and B= 10 a) k(A :
12 22 n o

Alg has constant row and column sums, viz. “An(A) (corollary 2.6.4.).
Hence every vertex not in the coclique is adjacent to ~Xn(A) vertices
of the coclique.

If the considered graph is strongly regular (with n,k,A,u), then we
can construct a 2-((—nkn(A))/(k—xn(A)), ~An(A), u ) design as follows:

- the points are the vertices of the coclique; v =(—nkn(A)}K(k-Kn(A));

-~ let x be a vertex not in the coclique. Then all the vertices of the
coclique adjacent to x defime a block, With what is stated above we
see that each block contains —An(A) points. Furthermore, we can

easily see that each pair of distinct points occurs in u blocks.
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2) In theorem 2.5.3. we see that if equality holds, then
(rl - x)(k1 ~vy) =71 = A.(see the proof of the theorem).
Hence,
A (B) = A, (8, A2(B) = AZ(A), AB(B) = Anw}(A), AA(B) = An(A),
and this means that the interlacing is tight.
3) Consider a block design with a block that occurs s times(see corollary
2.5.4.). If b = vs, then equality holds in theorem 2.5.3. and with 2)
and corollary 2.6.4. we find that the column sums of N

2
k %:é—. We claim that the points of the repeated block and the blocks of

are constant, viz,

the original block design, the repeated block excluded, constitute a

2-(k,k %5%,%—5) design, for: the number of points is kj

each block has k,%gg points (viz, the rov sums of Nz); a pair of

distinct points occurs in A — s blocks.,

The next and final paragraph of this chapter is an example of interlacing

in projective geometry.

Consider the projective plane of order n, denoted by PG{(Z,n).

A polarity m of PG(2,n) is a permutation of order 2 of the points and

iii) p ¢ 131" « p , for all points p and lines 1.

Points p of PG(2,n) with p ¢ p1T are called absolute points: We denote

their number with a. Lines 1 in PG(2,n) with 1" ¢ 1 are called

absolute lines. It is easy to see that their number equals a.

2.7. Absolute points in PG(2,n).
lines of PG(2,n) such that:
i) pTr is a line for every point p,
11) 1" is a point for every line 1,
2.7.

. Theorem. a2 1, and if n is not a square, them a = n + 1.

Proof. We can write the incidence matrix of PG(2,n) as follows:

™ 1w
PI"""°Pn2+n+1
P
N = .
P
n2+n+l

N is symmetric, for: Pi € Pj€=%> Pi € Pi .
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Therefore N2 = NNT = nl + J. This leads to the following eigenvalues

for W:

n+ 1, of multiplicity 1; né , of multiplicity o} -(n)% , of multiplicity
B, o and B being integers witha + B = n2 + n.-Then

a=trace(N) =n + 1+ (a- B)néz 0 (nz 1). ‘

If a = 0, then n% is an integer and n% {n + 1). But this is not pos-
sible, Hence a 2 1,

}

If n is not a square, then n®’ is not an integer and thereforea =8 .
This yields a = n + 1.
{

Lemma. A nonabsolute line has an even number of nonabsolute points.

Consider a nonabsolute line 1 and let x be a nonabsolute point on 1.

1 ¢ 1, x /x and x¢ 1. Hence 1'¢ x and x" meets 1 in a peint v # x.
y is also nonabsolute, because: y <1 and y etxﬁ, and therefore xe¢ yW

and 1" € §‘, and this yields v ¢ yv(y is nonabsolute) and y" meets 1 in x.
This way, the set of the nonabsolute points on 1 is partitioned in pairs.

Hence 1 has an even number of nonabsolute points.

Theorem. Assume that n is odd.

Then a 2 n + 1, and if a = n + 1, then the set of the absolute

peints is an oval in PG(2,n).

Proof. Consider an absolute point x (a 2 1). n + | distinct lines meet

in x and exactly one of these is absolute, viz. & (if x¢ QT, y absolute,
then y € x and thus X,V € % and X,y € fT . This vields x = y). In other
words, n nonabsolute lines meet in x. Each of these nonabsolute lines
contains n + 1 (an even number) of points, and an even number of these
points is nonabsolute (lemma 2.7.%.). In other words, on each nonabsolute
line through x there is, x excludéd, an odd number of absolute points, so0

at least one. Hence a 2 n + | (x is absolute).
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If a = n + 1, then then the above yields that a nonabsolute line has
at most 2 absolute points. An absolute line has exactly one absolute
point. Hence, the set of the absolute points is an oval,
n
2.7.4. Theorem. Assume that n is even.
Then a> n+ 1, and if a = n + 1 , then the absolute points

lie on a line.

Proof. Consider a nonabsolute point x (if this is not possible, then
there is nothing to prove).

n + 1 lines meet in x, and on each line there is an odd number of points
(viz. n + 1), An absolute line contains exactly one absolute point.

A nonabsolute line contains an even number of nonabsolute points,
hence an odd number of absolute points, so at least one.

This means that every line through x has at least one absolute point.
x is nonabsolute; hence a> n + 1.

If a = n +.1, then the above yields that a line, that has a nonabso-
lute point, has exactly one absolute point. But this means that the
line through 2 absolute points only has absolute points.

Hence, the n + 1 absolute points lie on a line. 0

2,7.5. Theorem. Assume that n = m2.

Then a< m3 + 1, and if a = m3 + 1, then the absolute
points and -the nonabseolute lines constitute a

2*(m3+1, m+1, 1) design (a unital).

Proof. Consider the incidence matrix of PG(2,n) as in theorem

2.7.1., partitioned as follows:

laxa Nig
N -

T

Nio No9

a
lines. The average row sum matrix of N is:

I ‘2 being the (sub-)incidence matrix of the absolute points and

1 m

2 2
m a mee1- m a
4 2

m +m +1~-a m +m +l-a
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The eigenvalues of N are m2+l (multiplicity 1), m (multiplicity o),

-m (multiplicity B) (see 2.7.1.).

4 2

a + B8 =m +m , m2 + 1+ (@ - B)m = a.

Because a < m4+m2+1, we find 8 » O,
Hence, XI(N) = m2+] s A 4 (N) = -m.
m +m +1
We can easily see that the eigenvalues of B are

5 2
Aj(B) =+, A, (B) =1 - an

m 4m +l-a

Corollary 2.4.4. says that the eigenvalues of B interlace those of N,
This yields

I

[l
[

AZ(B) A (N} = -m.

m&+m2+1—a - m +m +1

This leads to as m3+1.

If a = m3+1, then AI(B)

RI(N) and AZ(B) = ) L9 N).
m+m +1

Hence, the interlacing is tight.

- Therefore, the column sums of le are constant and equal to m+l.
(corollary 2.6.4.),

This means that a nonabsolute line has m+! absolute points. Further-
more, the line through 2 absolute points is nonabsoclute.

Hence, the absolute points and teh nonabsolute lines constitute

a 2—(m3+1, m+l, 1) design.

(See also [18] p. 63-65)
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Chapter 3,

Association schemes.

Introduction,

3.2,

Association schemes first appeared in statistics. They were introduced
in combinatorial theory by Bose and Smimamoto as a generalization of
strongly regular graphs.

The theory of association schemes has proved to be useful in the
study of permutation groups and graphs. Ph. Delsarte applied
association schemes in coding theory and combinatorics.

This chapter contains an outline of part of the work of Delsarte.

We begin with the Bose~Mesner algebra of an association scheme in
section 3.2. together with some examples. The relations between its
two bases are deseribed in section 3.3., as well as the important

P- and Q-polynomial schemes.

To motivate the study of association schemes we continue with three
applications. These are a theorem about generalized hexagons, an
association scheme in PG(2,4) and regular two-graphs as association
schemes. Section 3.7. uses the setting of A-modules. In.3.8. we intro-
duce the distribution matrix D(x,y). It leads directly to the Mac~
Williams transform and it provides the link to the linear programming
method.

Section 3.9. contains a proof of the code-clique theorem and its

dual concerning designs.

Two appendices are added in which theorems, used in this chapter
about minimal idempotents and the A-module, are proved.

General references for this chapter are [81, [151].

Bose—Mesner algebra.

Consider the regular hexagon. On its six vertices three graphs can

be defined as stated in the pictures

(J XX >

II 11T
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Their adjacency matrices are respectively -b 1000 6
001000
1 5 2 4 3 _jooo0o100
AI =P + P, A2 =P + P , A3 = P” where P = 000010
0006001
100000
Since the three graphs together form a complete gréﬁh we have
Al + A2 + A3 =J~1
Relations between the Ai for i = 1,2,3 are
2 2 2
AI = 21 + A, s A2 = 2T + Az . AB =1
AiAZ = Al + 2A3 . A}A3 = AZ . A2A3 = A1

This expresses that the vector space <I, A], AZ, A3>R is an algebra
over R,

This example can be generalized in the following way:

Definition. An association scheme

«, {1, r],.,.rs})

consists of a set & together with a partition of the
set of 2~element subsets of X into s relations

T],... Ts’ satisfying the following conditions:

(i) TFor each w ¢ §, the number v, of g ¢ X with

{w,q} « I, depends only on i;
(ii) For each pair w, ' with {w, w'} € T the number

a?i of q ¢ X with {w,q} ¢ Fi and {w',q} ¢ Fj

depends only on i,j and k.

In other words, if we take the complete graph of X, we colour all edges
with the'colours” Fi, for i = 1,2,... s. Then the first condition
asserts that each graph Ti is regular; the second, that the number

of triangles with given colouring on a given base depends only on the

colouring and not on the base points.




- 42 -

k . .
The aij are called the intersection numbers.

It is clear that the following relations hold

D _Z v, =1 since all vertices have some relation to u.
1—8-0 k

2 ] 45 =y for each k, since the vertices that have
i=0

relation Ti to w' have also some relation to u

We now translate the defining conditions above in terms of the
40,1) adjacency matrices Ai of the colours r;. Since the graph on

2 is complete, we have
A, + A+ . ., .+ A =J - 1.
1 2 s
Condition (i) tramslates into
AT = v,J.
i i
By analysis of the matrix product it is seen that cendition (ii)
8
k
AA, = a, A,
1 J I(.;O lJAk

These formulae imply that the R-vector space

translates into

A=< =A, A o

0 1? R
is an algebra with respect to matrix multiplication. This so called
Bose-Mesner algebra of the association scheme is commutative. This

follows from 3) and

8 s S
k k T k T T T.T

AL = . LA = LA = .. = (A.A,)” = AA., = A.A..

AiAJ k§0313Ak kgoalek (kgoalek) (AlAJ) JAl R

3.2.2, Example. An association scheme with two colours (s = 2) consists

of a strongly regular graph I' and its complement. The numbers k, X, u

are defined by: -'. Q

In terms of the adjacency matrices A of I and B of the complement of T

this reads 2
AT =kJ , A" =%kI +3A+uB , J~-1=A4+ B,
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Example. In a distance regular graph any pair of vertices x, y
with distance k has a constant number of vertices z such that
dist(x,z) = 1 and dist(y,z) = j. This number a?j does not depend
on the choice of x and y. The adjacency matrix Ai of the relation
Iy (distance i in the graph) is a polynomial in A, of degree i ,
for 1 = ],...,s. The relations I, Tps o o« Ty constitute an

association scheme.

The regular hexagon provides an example of a distance regular graph

and 2
A = A , A2 = A] - 21 , ,A3 =

Example. A permutation group G on a finite set g is called gene-

D=

A?—]%A

rously transitive if

Va,BeQageG[dg=3’8g=°‘3

. 2 . .
The orbits on @ of such a group constitute an association scheme.

For instance, the symmetric group S, on four symbols contains the

4
subgroup

{m, a,26G,4, 1,3)(2,4), 1,4(2,3)} ,
called the Klein—group. This group is generously transitive on g :="

{1, 2, 3, 4}. The orbits in 92 are,

FO F] PZ 'y
(1,1) (1,2) (1,3) (1,4)
(2,2) (2,1) 3,1 (4,1)
(3,3) (3,4) (2,4) (2,3)
(4,4) (4,3) (4,2) (3,2)

Example. The Hamming scheme H(v,2) is defined as follows.

The set  consists of the vectors of the vector space F;. Two
vectors are in the relation Ri whenever their Hamming distance, the
number of codrdinates in which they differ, equals i. This defines

an association scheme with the parameters

v v
n=2 s v, = (i) ,
K vk e
ak - ( %(i4j+k)) %(i+j-k)) , 1if i+j+k is even
ij
0 , if i+j+k is odd.

Indeed, let w and w' have Hamming distance k. Without loss of
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generality we can take w = (0, 0,.., 0) and ' = (I, .,. 1,0, ... O)
k v~k

The number of vectors to be counted are those that have distance

‘1 to w and j to w'. So x contains i ones. Let a be the number of

ones at the first k coordinates of x and b the number of ones at

the last vk coordinates.

wh= (1, ... ..o ,0, 0. 0. .. 0)

x =(l, «..1,0,.0,1,..1,0..0
a k-a b v-k-b

Now it is clear that dist{(y',x) = k-a+b = j and a+b = i,

So a = }(k+i-j) and b = }(i+j-k).

The number of possible x is X\ fv-k Kk v-k )
()03 = (S ) (650

if i+j+k is even, and 0 otherwise.

3.2.6. Example. The Johnson scheme J{v,k) is defined as follows. The set
2 consists 6f the k-subsets of a v-set., Two k—-subsets are in the
relation Pi whenever their intersection has k -~ i elements. This

defines an association scheme with the parameters

n= () , v, =k

k 1 i 1

) .

J(v,k) may be viewed as the set of all words of weight k in H(v,2).
In this terminology the notion of a t-(v,k,)) design may be defined
as following. A subset X ¢ J{v,k) is a t—(v,k,\) design over the
v-set if for each z ¢ J(v,t) the number of blocks x ¢ X having

distance k-t to z is a constant, independent of z, called ).

3.3. Bases for the Bose-Mesner algebra.

The Bose-Mesner algebra of an association scheme

A =<A, =1, A

consists of commuting, hence simultaneously diagonalizable symmetric

matrices.
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Therefore 4 also has a basis of s+l orthogonal minimal idempotents

(see appendix):

Example. For s = 2, for a strongly regular graph with
spec(A) = (k], rf, s®) we have the idempotents

1

EO = ;J , of rank 1 |
_ 1 k-s

El = .IT:E (A sI + a J) s of rank f s
= _ k-r .

E2 = (r1 A+ = J) , of rank g .

By definition, the algebra 4 is closed with respect to matrix multi-
plication. Since the Ai are (0,1) matrices, the algebra 4 is also
closed with respect to Schur multiplication, that is, the entrywise

multiplication of matrices

AoB=C with c¢.. = a..b,..
1] 1] 1]
Hence
E.E. = 6, ,E, , A, o A, =3, A,
1] i1 i i ij7i
s s
k k
AA, = .. E. E. = b.. E
i3 kzoalJAk ’ i ° J EO ij "k

The coefficients b?j are nonnegative, since Ei o Ej is a principle
submatrix of Ei 8 Ej , the Kronecker product, hence positive semi-
definitg. Since the eigenvalues of E, 8 Ej are the numbers A(Ei)-A(Ej)
with A(Ei) and X(Ej) eégenvalues of Ei and Ej respectively,kand

A(Ei) e {0,1}, since Ei = Ei' An explicite expression for bij is
obtained by use of

: . T
Z entries M o N = trace MN™ ;

)

Z entries(E. o E, o E
i 3 k

k _
trace(Ei o Ej)Ek = bij trace(Ek) =

by e

where Hye is the multiplicity of the eigenvalue 1 of Ek.
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Expressing one basis into the other we define the coefficients

Pjp and qu; by

P -n]
Ak-’gp.}z. , E, =—
By multiplication the formulae

_ 1
AE; =Pl s Ep oA memguihA

are obtained. We define the diagonal matrices

I

A

v diag(vk) . for the valencies v

k- Pok

A diag(ui) s for the multiplicities H; = 4

H

oi

. 1 -
viz. . = trace(Ei) = trace(Ei o I) = trace(-;fqoil) =q;-

The character table P := [pikﬁ, and its inverse Q (from PG = nI = QP),
satisfy the following theorem .
T

Theorem. A <P = Q +A .
——— iy v

uipik = Py tr(Ei) = tr(AkEi)= Z entrles(Ei o Ak) =

1 . T
= G L entries(A) = qv = (@80,

{1
T 5
.3.3. ATy, ‘P o= = 8, ..
3.3.3 Corollarz P AU P n,Av , ZéouZkap21 nv, 8y
If i is a polynomial in P, of degree i, for i = 1,..,s then the

corollary implies that the P,i constitute a family of polynomials,
orthogonal with respect to the weight function M. This corresponds
to a P-polynomial association scheme.

Observing that

s
k
A, = . =p E
AIAJ kéoalek ’ AkEz Pz
imply s
P2iP2j =k§__03‘1jpzk

We give the following equivalent definitions for an association

scheme (9, <I, F], TZ’ . .FS>) to be P-polynomial:
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(i) P is a polynomial in P, of degree i, for i = 1,...,s ;

(ii) a%+; #0 fori=1,...,s~1 and
H

3 #O0only if |i - j|< ks i+ ]

-

(iii) T, is the (distance i) relation in the graph (Q,r,) for
i 1
i=1,2....,s.
]

v u Lo 2%k T Mk

If q,: is a polynomial in 9, of degree i, then the corollary implies
that the 9 constitute a family of polynomials, orthogonal with
respect to the weight function v, This corresponds to a Q-polynomial
association scheme.

Observing that

® ok }
E, oE, = z b, .E sy E. 0A = —=q A .
i J k&g 11k 1 z n ‘zi z

imply s
= bk
Ui%%5 = | L1 %
We give the following equivalent definitions for an association

scheme (g, {I, Tys Tpseree ps}) to be Q=polynomial:
(i) 4,5 is a polynomial in 4, of degree 1, for 1 = 1,...,8;
‘s i+ .
(ii) b; i #0 fori=1,...,s-1 and
k4
sz #0only if |i-j|<k<i+j.
For O-polynomial schemes no combinatorial interpretation is known
which would be the analogue of the condition (iii) above.

The preceding is illustrated in a few examples. More details and

further examples may be foundin the references.

Example., The Hamming scheme H(v,2) has

It is both P~ and Q-polynomial, with the same family of orthogonal

polynomials; viz, the Krawtchouk polynomials.

Example. The Johnson scheme J(v,k) has

_kV"k = (NN, V
vi = PO ey = OG0
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It is Q-polynomial with Hahn polynomials, and P-polynomial with
dual Hahn polynomials. The underlying group is the symmetric group

on v letters.

3.3.9. Example. Let @ denote the gset of the k-subspaces of the vector
space V(V,Fq). Two k-subspaces are in the relation Pi whenever
their intersection has dimension k-i. The resulting association scheme
is P- and Q-polynomial, with q-Hahn polynomials, under the group
GL(v,Fq).

3.3.10.Example. Polynomial schemes are provided by the action of the sum—
plectic, the orthogonal, and the unitary group, respectively, on
the set of the maximal totally isotropic subspaces (of dimension k,
say), two such subspaces being in the relation I‘i whenever their
intersection has dimension k-i.

3.3.11.Example. Polynomial schemes are provided by the Zm(zm'])

alternating bilinear forms on V(Zm,Fz), two forms being in the

relation Fi whenever their sum has rank 2i.

3.4. An inequality for generalized Heéxagons.

3.4.1. Definition. A generalized hexagon H of order (s,t) is an incidence

structure with points and lines, such that

(ij each line has s+] points,
(ii) each point is on t+! lines,
(iii) two distinct points are on at most one line,
(iv) for any non-incident point-line pair x,L there is a

unique path of length £ 2, between x and L.

From the definition it is immediately clear that the only possible

situations fo a point x and a line L are:

L B
/
—
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3.4.2. Theorem. The number of points v, of a generalized hexagon H of
order {s,t) equals

(s+1)(32t2+st+1) .

Proof, Take a line L with its s+l points X, for i = 1,.4..,8+1.

‘ Through each X, there are t lines
distinet from L, with each s points
different from ;. The total number
of points at distance ! to L there-

L g+1 fore is (s+1)st. Analogously we

,/, find st distinct points at distance
2 from L for any of the points at distance 1. So there are (s+l)stst -
points at distance 2 to L. Due to property (iv) of the generalized
hexagons these are all distinct and we have now found all points,
Hence the total number is
(s+1) + (s+1)st + (s+1)82t2 = (s+1)(52t2+st+}).
fl

We define an association scheme on the points of H as follows. Two
points are in relation rs for i = 0,1,2.3, if their distance equals
i. The adjacency matrix of r, is Ai' By u;e of the definition of

H one can find the intersection numbers a;. by straightforward
counting. The amount of work in computing these numbers can be

reduced by use of the equalities

3 3
Z a?. = v, , v, = v = (s+})(szt2+st+1) .
i=o 1 J j=0 7

k
The aij can be found in the following table which shows at once

that the association scheme is distance regular.

k k k k k k
k1 oay e, 359 a3 293 833
0 |s{(t+1)] O szt(t+1) 0 0 s3t2
1 s st st{s~1) 0 32t2 sztz(s—l)
2 i s—1 s(t2+t-1) st st{s=1)(t+1) st(szt*st~s+t)
3 0 t+1 (s-l)(t+1)2 (s—1)(t+1) (t+1)(52t—st-s+t) t(s—l)(82t~s+t)+T

(see [201, p. 53)
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3.4.3. Theorem. For a generalized hexagon of order (s,t) the
following holds :

t = 83 QT s =1,

Proof. Let A := A2 - (s-l)A] , then we find with the help of

A+ A+ Ay +1=1J and AJ = kJ (k=g (t+1) (st~s5+1)) :

(A + (32~s+1)1)(A -~ (t+1) (s+t-1)I) = s{t+1)(st-s+1)J

So spec{A) = ([s(t+])(st-s+l)]], [-(sz~s+1)]m, [(t+1) (s+e=1)1").

m n

spec(A + (32—s+1)1)= ([s(t+1) (st=s+1) + (82—s+1)]1, 0, A1)

where A = (t+1)(s+t=1) + (s2=s+1).
2 2
But trace (A + (8 -s+1)I) = (g¢"=s+1)v = k + n)

This yields 3 (52t2+st+3)

n=3:s
(sz+st+t2)

and rank (A + (Sz—s+l)1) =1+ n.

Now take a line L and consider all points x for which dist(x,L) = I.
We divide these points in s+1

classes (each point on L coincides

with one class). Each class is

divided again in t blocks (the

lines) that consist of s points.

We define B, to be the adjacency s | J-1

matrix of Pl (distance 1), if ‘ 0

only the points in a class are

considered.

st 0
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s 0
Analogously B, is the 1
adjacency matrix of FZ’ if 0
only the points in one class BZ =
are considered.
1
0

= @ - = - .
SoB =183 -1, , By=J ~-187J
Define B := B, = (s=1)B, + (s=s+D)T . = s°T__ - sI. g J
erine 5 3= B, s 1 5 s st st £ € g

I

spec(B) = ([82+St—S2]1, [Szjm, on)-

trace(B) st(sz—s+}) = gt + Szm.

il

This yields m = st = t and rank(B) = (st-t+l),

Al =1 & B

otl ; rank(A') = (s+1) (st-t+1).

Since A' is a principle submatrix of A the following holds :

rank(A') < rank(A),

2
3 (s t2+st+1Q

s +st+t

So (s+1)(st-t+1) £ 1 + g

which leads to t2(32~1)(t-s3) < 0. ]

Remark. If we define the points as "lines" and the lines as '"points”
we get an incidence structure that is again a generalized hexagon,
of order (t,s), as can be simply verified. But this means that

3.4.3. holds in this case too,

st
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An association scheme in PG(2,4).

3.5.1.

3.5.2.

(In this paragraph < , >p denotes the standard inner product in a

vectorspace over the field F).

Consider the projective plane PG(2,4). It has 21 points, which we
],....,121.
Furthermore, each point is on 5 lines and each line has 5 points.

For i = 1,...,21 we define the vector 1, « v(21, GF(2)) by

denote by PysecsssPyy s and 21 lines, which we denote by 1

a..

_.1J

]

Ioifpy el
= 1,...,21.

. ¢ i
0 if pj _ 1i

1. is the c¢haracteristic veéctor of the line 11.

Consider the code C generated by }4,...., }21 over GF(2).
C is a binary tinear code of length 21. We recall the following

definition:

Definition. Let X be a linear code of length n and dimension k over
the field F.
' i
The ‘dual c¢ode X: of X is defined as follows:

xt = {y € V(n,F) l \7;€X [sg,z?F = 01}.

It is easy to see that x' is a linear code of length

n and dimension n-k.

Theorem. The dimension of € is at most 11.

Proof. The extended code C of C consists of the vectors

—

c = (Cl"""CZZ)’ where ¢ = (Cl""'CZI) € C

and 29

lc, =0 (in GF(2)).
i=1 1
Clearly, C is a linear code, and has the same dimension as C.
Also T is generated by T&,....,Té] .
and o
%ii’lj> =0, i,j = 1,2,...,21.

Let ¢,e C and ¢, ¢ C. Then, we can urite
1

1

- 21
P Z c,.l. , &y = jzlczj}; cli’CZj e {0,1}.
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Hence

2 el hepli

L €385 L Loy = O
1 J=] 2

This yields C < (E)l.

Therefore, if k is the dimension of C, then k < 22-k

(C has length 22). Hence k < 11, and so

dim(C) = dim(C) < 11. ]

3.5.3. Lemma. Let x be a word of C of even weight w(x). Then

w(x) = 0 mod 4.

Proof. We can easily see that a word of even weight of C is
generated by an even number of lines. Inother words, the words of

C of even weight are generated by

34 := 14 + }2 . 22 =10+ 1, , . . ., 220 t= 14 + EZI

The following holds:
<hi, §i> =w(,) =8, i=1,2,...,20

= w(gi + Pj) = W(li+] + }j+1) = 0 mod 8

b.>_ + <b + 2<b.), b.,>
21 2§

B . * b, . > = <b. . . .
ecause <El Ej, 21 + Ej>R <§1, b.>p b.» bo>p R
we get <Ei’ Ej>R = 0 mod 4 i,j =1,2,...,10.
Now let d ¢ C have even weight. Then we can write
20
d = d.b, , d, ¢ {0,1}, and therefore
- h i
0 20
w(d) = «d, é?R,=_z ’Z didj <Bi’ Ej>R = 0 mod 4.
i=1 j=1 0

3.5.4. Theorem. The dimension of C is at most 10.

Proof. A hyperoval H in PG(2,4) consists of 6 points, such that each
line of PG(2,4) has 0 or 2 points of H. Let h be the characteristic

vector of H. Then h has weight 6, and with lemma 3.5.3. this yields
h ¢ C. '
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Also <h, 1,>. =0 i=1,2,..,21.

for |Hn 1i1 =0 or 2, and @22 = 0.

_ - 21
Let ¢ € C then c = c.l, and
- - =i
i=1
- 21 _
<o hrp o= ooy <l by =0
2 i=1 2
Hence E:e (C) and E:é C (h ¢C). fThis yields

dim(C) < dim((©)*), and therefore

dim{(C) = dim(C) = 10 (see also theorem 3.5.2.)

D
3.5.5. Theorem. The dimension of C is 10 and C has the following
weight distribution
welght 0 5 8 9 12 13 16 21

words 1 21 210 280 280 2190 21 1

Procf. We prove this theorem by simply counting:

1) 0 ¢ C, hence there is one word of weight O.

2y a line in PG(2,4) is a word of weight 5 in C. Hence the number

of words of weight 5 z 21,

3) A pair of lines in PG(2,4) is a word of weight 8 in C. Hence the
number of words of weight § = (2;} = 210.

4) A triple of lines in PG(2,4) that dom t go through the same point

is a word of weight 9:
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There are _%l;%%;ié = 1120 of such triples in PG{2,4). We will now

show that for every triple there are 3 other (distinct) triples that
lead to the codeword produced by that triple. Consider the triple above.
Select a point a, on 1_ not on 11,13 (there are 3 possibilities) and

2 2

let a3 be the intersection point of the lines a, Tl a, and 13. Let

c, i= (bl U 83) n 1, and let b, be the third point on 1, that is not

on 1] or 1,. Then the lines b] U b2 and 13 meet in a point b3 # a

that is not on 1] or 1

3° 3°

Call ¢y the third point on 1

easy to see that Cy = (c

Now assume that the lines (al y a

3 5 Then it is
- cz) n 13.

(c1 uc,u c3) meet in one point x. Then there are at least 6 distinct

lines that meet in x, viz.
(a1 U a, v 33), (bI ub, u b3), (c
and (x u C).

U b3) and

U c, U 63), (x v A), (xuyB)

2 1 2

But this 1s in contradiction with the fact that only 5 lines meet in x.

Hence (aI U a2 U 33), (bI u b, u b3),and (c] Uty c3) form a triangle

2
in PG(2,4) that leads to the same codeword as the original triangle.
There are in total 4 triangles that lead to that word (there are

3 choices for 32); hence

#F words of weight 9 2 ii%9-= 280,
21
5) (1,1,...,1) ¢ C for (1,...,1) = ) 1i
i=1"

(each point is on 5 lines).

Therefore the complement of every codeword is in the code. This yields
a lower bound on the number of words of weight 12, 13, 16 and 21.

We see that |C| = 1024, Theorem 3.5.4. says that |C| = 1024.

Hence |[C| = 1024 and therefore, C has dimension 10 and weight distri-

bution as above.

a

Consider the code D that consists of the words in C of even weight.
Clearly, D is a linear code and has dimension 9 (|D| = 512).

Define the following relations on D:
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let w,u' € D

{w, w'} ¢ I, :4&=pthe Hamming distance d, (w, w')e D between

w and w' is 16.

{w, w'} € Iy 1¢>d (w, o) = 8.

{_&i, w'} e I'3 :®dh(9-’ &;") = 12.

Without proof we state the following theorem:

3.5.6. Theorem. (D, {id, Fl, Fz, F3}) is a 3-class Q-polynomial

association scheme.

We will now determine the character table P. Let Al’ AZ’ A3 be the

(512 x 512)-matrices corresponding with Tys Tos P3, respectively,
and AO H 1512.

With the relations AOEi = piOEi i=0,1,2,3 and AkEO = pOkEO
k =0,1,2,3 it is easy to see that Pig = 1, 1i=20,1,2,3 and
Py = Vl = 21, Pgy = Vy = 210, Pgy = Vg T 280.

Furthermore we have the following relations:

3
() pp, 21{20 a4 5Pk z,i,i = 0,1,2,3
.3
Tk —_—
(o) A A = kéoaijAk i, =0,1,2,3

. . k
To solve the equations of (%), we have to determine the aij's.

. . . . k .,
The combinatorial interpretation of the aij's {(see 3.2.) is

il
<

Without loss of generality we can take w
Then:

1) Clearly, a?l =v, = 21, and a;I

find 2 vectors in V{(21,GF(2)) of weight 16 and Hamming distance

= 0 for, it is not possible to

16.
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2) Let w' have weight 8, x have weight 16 and assume that dh(gf,<§) = 16
then <w', x> = 4.
-The gomplement of x is a line 1 in PG(Z,4) and <w', 1> = 4,
w' is a pair of lines in PG(2,4), hence 1 is one of those lines,
and therefore there are 2 x's with the above properties. This
. 2
yields a,, = 2.

1
3) 3?1 = 0 for it is not possible to find 2 vectors of weight 12

and 16, respectively, with Hamming distance 16.

a0
12

5) It is easy to see that the following equality holds:

L}

4) 0 (trivial).

Vi1 T Vol

T 2102
Hence a12 = 51 = 20.

. . . k k
Similar techniques can be used to determine the other aij = aji'
With this and the equations (%), we find

1 21 210 280
po | 111 50 =40
15 2-38
1-3-6 8

I

(Note that Py = %(pil 21) (the scheme is P-polynomial)).

With PQ + nl we find that Q =

I

P.
Also, because Av dlag(pOk), Au = dlag(qoi) we find

>
H

>
i

0 0 0
I 0 0
0 210 ©
¢ 0 8
Hence the scheme is self-dual and P~ and Q-polynomial.

3.6. Regular Two—graphs as Association schemes.

Let A and B denote symmetric (0,1) matrices such that

A+B=J-1 and A - B has only two distinct eigenvalues.
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3.6.

l.

2.

Example. =n = 6, and - N
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Consider the 2n x 2n matrices

We claim that AO, Al’ A2, A3 determine a 3-class association scheme.

Before proving this, we consider the following examples:
Example. n = 4, and

A-B-=

0
1
1
1

—_— O =
—_ O - —
O - -

Clearly, A+ B =J - I, Also (A - B)2 + 3T - 2(A - B) =0, and
therefore (A - B + 3I)(A - B - I) = 0. Hence (A - B) has 2 eigenvalues

viz. =3 and +1. 4

Consider the 8 vertices of a cube in R3. | ‘

Al’ A2, A3 correspond to the relations

Fl, Fz, T3, respectively, where: 7

& two vertices are in relation T iff they are connected by a — line.
TZ: two vertices are in relation F2 iff they are not connected by
Q== OF & == == line.

F3: two vertices are in relation F3 iff they are connected by a—-— —1line.

0
1
1
1
|
1

Clearly, A+ B =J -1 and (A - B)2 = 5I. Hence, A - B has eigenvalues
A, are similar to those

1? A2’ 3
given in example 3.6.1., but on a icosahedron instead of a cube.

V5 and -v5. The relations corresponding to A
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We return to the general case stated above. Then
2 2
A+ B) = (J-1I)" =(n-2)J+I=(n2)(A+B) +Iin-1)I (%)

Also A - B has two eigenvalues, say p and o.
Then (A - B - pI)(A - B - ¢I) = 0, and this yields

A - B)2 = (p + o)(A - B) - pol. (%x%)

It is easy to see that (A + B)2 and (A - B)2 have the same diagonal.
Therefore (*) and (**x) yield
n- 1= -po.
With this we can write
A% + B2 + AB + BA = —(pg+1) (A + B) - pol ,  and

A2+B2—AB BA = (p+g) (A - B) - pol .

Hence,
2

sy 2a% + %)
2(AB + BA)

Now we can prove the following theorem:

+

=2pT = (1-p)(1-0)A - (1+p) (1+0)B
= (1-p) (1-0)B + (1+p) (1+0)A

3.6.3. Theorem. The matrices AO’ A], A2, A3 defined as above

determine a 3-class assoclatinn scheme.
Proof.
1) Clearly, AO + A1 + A2 + A3 =
2) We have to prove : 3

B k . k . .
AiAj kzéﬁjAk , for certain aij R, 1,3 0,1,2,3.

For i = 0 and 1 3 it is trivial. Furthermore

) ]

A? = Ag = A"+ B AB + BA and

' 2 2

AB + BA A+ B J
- -
AB + BA A2 + B2

A A =

172

A2 + B2 AB + BA
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With (¥*%x) we see that

2 2
Al = Az = —QGAO - %(l—p)(l-—U)A1 - %(1+p)(l+c)A2 and
= - - L (1 - -1
AIAZ 90A3 1 (1=p) (1 U)Az §(I+p)(1+G)A1.
k k ..
Because aij = aji 1,j,k =0,1,2,3, we have proved the theorem.

0

We are interested in the charactertable P of the association scheme. Let
u and vV be the multiplicities of the eigenvalues p and o of A - B.

(for u,v,p,o the following holds:

g+ v =n- and trace{A- B) =0 = pop + oV), Let x and vy be eigenvectors

of A - B for p and ¢ , respectively. Then it is easy to see that

X, _ /. X Xy _ X Xy X Xy oo g
M) = (D 8 (D =00, 8,00 = (D, 4500 = =)
Yy = ¢ ¥ ¥y = y Yy = e ¥ Yy = g ¥
AO ('Y) (“Y) s Al (,_y) 0(_y> s AZ(-y) 0(')7) s A3(_y) ("Y)

Hence this way we have found u + v =n simultaneous orthogonal
eigenvectors of AO, AI’ AZ’ A3. Also because (A + B)i= (J - 1)j =
= (n=-1)] we see that

Iy o d Iy o ey d Iy = (- 3 Iy = (3
B = () A = (D), A = D), A = ().

Hence j is also a simultaneous eigenvector of A, AI’ AZ’ A3.

. T.
Let z be a vector with 2z ] = 0. (we can choose n—! of these vectors
that are orthogonal). Then

zZ, _ (2 zy _ _,2 VI _ _ 2 Zy o (Zy .
8 =G a3 =0, a0 = -, a0 = D)

We now have yp+v+l+n-1 = 2n , simultaneous orthogonal eigenvectors

of AO, AI, A2, A3 , and they determine the 4 simultaneous eigenspaces

of AG’ AI’ Az, A3.Then,
1 n-1 n-1 1
_ 1 -1 11
P=1 p =g -l
1 g -0-1

Also év = diag(l,ﬁ~l,n~l,l) and &v = diag(l,n-1,u,v).
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The matrix A - B can be considered as the (~1,1) adjacency matrix
of a graph. Clearly, graphs that are switching equivalent with this

graph lead to the same association scheme, for the (-1,1) adjacency

matrices of graphs that are switching equivalent have the same eigenvalues

and multiplicities for further details see chapter 5.5.: "Two~graphs".

The 4-module V.

We now return to the theory of the association schemes.
For the set ( of cardinality n, let V denote the vector space of

dimension n which consists of all formal real combinations

X = z x{w)w , x(w) ¢ R.
wef

The space V is provided with the immner product

<K,y> = Z x(w) y(w)
wefl

Consider the basis { w | weR} of V. Let x(w) be the vector
representing x(w)w w.r.t. this basis. Then the matrices of the Bose-

Mesner algebra 4 of an association scheme on 2 act on V following

x(w) = b x(e")
Akﬁ {w,m'}erg—

and decompose V into the simultaneous eigenspaces Vi:
vV = \ ceen . = p.. V..
VO LNt . Vs ? Akvl plkvl

Let Hi : V>V denote the projection onto Vi’ then it is easy to

see that

<M,w, M.ow'> = <w, Tuou'> = E, (u,w').
1 1 1 1

(Note that E Es are the projections on the s+! simultaneocus

R
eigenspaces of A ,.., As)'

This leads to the following:
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1) 8, = {Kiw | we} has Gram and coordinate matrix Ei'

2) Q.. := {HiwigI%p)] wéR} has Grammatrix

(B, 0 E,) = [<lLuw, H,m'>2].
1 1 1 1

(we remind the reader that the 2~-tensor a# b has the com
ponents (g@? E)ij = aibj’ and that two 2-tensors have inner
product

<a® b, c® d> = <a,c> <b, d>)

3) @..:= {lLw #,w® T.0 | weR} has Grammatrix
111 1 1 1

(E. o E. 0 E,) = [<I.uw, H.m')SJ.
L 1 1 1 1

The orthogonal projection Qi of the orthonormal frame Q is spherical.

Indesd, take k = 0 in the equation

. O = . .
nEl Ak qklAk
Then we get
E, I = LI
nE. o quI
Hence
<Hiw, Him> = qoi/n , we ¢ , and therefore Qi is a subset

of a sphere.

In addition in[10] it is shown that 2; is a spherical 2-design in Vi’

and that it is a spherical 3-design iff b;i =0,
equivalently

JE. oE, o B, = 0.
1 1 1

(Let X be a subset of the unit sphere in Rd. X is a spherical t-design

if for 1 £k £t the sum of the values of any homogeneous harmonic

polynomial of degree k over the points of X is zero.)

1 . -
For {w, w'}e T, the equation nE, o A= q A reads

k

' - —
<Kimg Hi&} > n qki.

This is the addition formula in Vi’ in particular in the Q-polynomial

case when the G are polynomials in Ay of degree 1i.

The vectorspace V provides a setting for the subsets of the set Q.
For instance,
X = {w],....,wm}c Q= {wl’°""wn}’

is represented by thevector x = (Im, On_m)€ V. The cardinality of X,

of the intersection X N Y of two subsets, and the average valency a
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of I' restricted to X are expressed by

k
X[ = <=, x>, [Xn Y| = 5>,
a = %> Ak§> for k = 0,1,...,s.
<X, X>

For any x, y € V, we define the distribution matrix D(X,y)

to be either side of the following equality:

S s
. Theorem. Z’<x, y> Ak = Z‘<x, E.y> nEi
k0~ T i=0o” Y T
s k i
T
Proof. With A = 1__>:0pikEl . Q A and PQ
we see that: s s s
z <x, Aky> Ak = Z Z Z <x,E.ys E. pikpjk =
v, i=0jdok=0 — T I =/
Yk
s s s s E
= z z Z <x, E.ys E, 1quJ = Z <X,E.y> i
1=03j=0k=0 ] " i=0 "
1
. j 0

Putting x = y we obtain the inner distribution

s s
D(x,x) = J <X A% A = Z‘ <X EiXoop .
k=0" v i=0 7 . .
k i
The transition of the coefficients
X to : x, E.x
3 Ak—> _]J-i<'_’ i—>

is well-known as the Mac Williams transform. It's significance stems

from the nonnegativity of the inner product <x, Ei§>.
Multiplication of D(x,x) by Ei yields

. = . 0.
@ e Ladg s n s B

. 0 .
With a = (ao,a],....,as), a =1, the constraints

Q'az 0, a> 0, |X|

n
-+
8]
+

cese t+ A
1 s

provide a setting for application of the linear programming method. [15].

(For more details on the 4-module, see appendix 3.2),
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Cliques and codes.

3.8.

i.

Proof. n|X

Let R = {1,2,...,r} ¢ {1,2,...,5}. For an association scheme

(s, {TO, T, yrenes TS}) we define:

1
Xe¢ @ is an R-clique if its elements have only relations Tk with

ke R, that is, if <x, AkE? =0 for r <k g s.

Yc © is an R~code if its elements have no relatioms Pk with k¢ R,

that is if <y, Akz? =0 for 1 < k < r.

Theorem. For an R-clique X and an R-code Y we have

|x

1] < Jal

If equality holdsr, then [X n Y| = 1.

Y] = n <x, x> <y, y> =

n ) <x, A x> <y, Akg}ka n <D(x,x)y, y> =

2 k 2 L2 L2
n §;<§; Ei§> <Y Eiz>/ui 20 <X, EO§> <Y, EOZ} = <X, 1> <y, 1> F
5 :

Y| , hence

]

x|

-

|X

Y| <n=|q]

=-rlf<£’ j>j for all z).

note that < F.z> >0 and E_.z
(note x, B,z 0% i

If equality holds, then [X|{Y| = n , and we see above that

s
) <x, E.x> <y, E.y> / Hy = <X EO§> <y, Egy>

i=0
8
Hence -Z<§} Ei§> <Y, Eiz} = (),
i=1
This yields
Eix = 0 or Eiy = Q, for i1 = 1,2,..., s

and therefore

<§,%X>=<%§,%Z>=() for i = 1,2,... s.

s
Then (note that E:Ei = T)
i=0
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Dually, X ¢ @ is an R-design if <x, Ei§> = 0 , fori ¢ R, that is
if Ei§= 0 for i ¢ R, that is,

13
if Z aqg ., =0 , for 1i¢R.
k=0 k ki

3.8.2. Example. 1In J{(v,k) an R-design translates into a r—-(v,k,X) design.

3.8.3. Theorem. [X|-|Y] > |o| , for an R~design X and an (S\R)-design Y.
2 442 _ 2 . ) 2 ¢
Proofs. IX|“«1Y|" = n <X, hozi_zs <y, LO}? =n i_}:o <X, Ei§> <Y, Ei;-?x My
=0 | o<x, A <y, Ay>/vo2nex, x> <y, > o= alx]-[Y],
whigﬁﬁ%roves the assertion.
C
The vectors X, y ¢ RQ are called design-orthogonal if
<X, Ei_}? <y, Eiz> =0 for i=1,2,..., s.
If so then «<x, Eiz} =0 for i=1,..., 8 (see the proof of theorem

3.8.1.) Hence

D(x,y) = <x,

X,Y. B.y> nk =-11T<x’ j> <y, j> J.

0 —_
Therefore , for k = 0, 1,..., s we have

1 v D, 1 . .
- <X, AkX> = Z,_p_ﬂf_':?f’ EiX> = <x, Eoz> =—<x, j> <y, j> =
k i=0 Vi

1 .
;; <X, AOX> = <x, y> and this proves

3.8.4, Theorem. If x and y are design-orthogonal, then

D(x,y) = <x, y> J
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Appendix 3.1. Minimal idempotents.

5.3.1.1. Definition. Let F denote a commutative field. An algebra over F
is a set 4 on which an addition, multiplication and
scalar multiplication is defined, such that
(i) A is a ring with unit element e.

(ii) 4 1is a vectorspace over F of finite dimension.
(iii) (Qa)b = a(3b) = 3(ab) , l.a = a , for all

a,b ¢ 4, » ¢ T (1 is the unit element of F).

In this paragraph we will also assume that the ring multiplication
is commutative and that

az = 0= a=20 for all a ¢ 4,

For a more general treatment of the theory of associative algebras
see [257, Ch. V.

A.3.1.2, Examples.
1) A=C, F =R.
2) In the theory of the cyclic codes, the algebra
A = F[x1/(x"-1) , with F = GF(g), (q,n) = 1.

3) The Bose-Mesner algebra of an association scheme.

We will now investigate the structure of an algebra 4.

© First we recall the following definition:

A.3.1.3, Definition. An'idealB of 4 is a subring of 4, such that ab ¢ p
for all a ¢ 4 and b € B.

An ideal B # {0} of 4 is called minimal if for all
ideals B' of 4 with B' < B the following holds:

B' = {0} or B' =28
(0 is the unit element of the additive group of 4).

A.3.1.4. Theorem. An ideal B of 4 is a subspace of 4.

Proof. Clearly, a + b ¢ B for all a,b ¢ B. Also, if 3 ¢ F and
b ¢ B, then *b = X(eb) = (Xe)b ¢ B.
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A.3.1.5. Theorem. Let M] and Mb denote distinct minimal ideals of 4.
- e (1) _{1) (1) (1)
Then MM, = {0} (MM, := { Tm 'm, { o e s my ety })
i

Proof. Clearly, MM, is an ideal of A4 and M M,c Gy o My) -

Also (M] n ﬁ%) c M, and (M1 n Mé) # M,

1
(for M, M andﬂ4],p42 are minimal).

2

Hence

A

MM, < M and MM, # M-
Because

M] is minimal, this yields_M]Mé = {0}.
[l
A.3.1.6. Theorem. Let MO’ M],...., MS denote distinct minimal ideals of / .

Then the ideal M := Mb + M] + .. .+ Mg is a direct sum.

Proof, If O =m + ... +m form. ¢ M., i=20,...,s, then
— 0 s i 1

with theorem A.3.1.5. we see that

0 =0m, = m? for all 1 = 0,...,s.
i i

Therefore m, = 0 for all i = 0,..., s.

H v = M e e .
ence . MO o) M] & @ MS 0

Theorem A.3.1.6. implies that there is only a finite number of
minimal ideals in 4 (note that 4 has finite dimension).

Let M M

19 MS denote the minimal ideals of 4 Then:

1200

A.3.1.7. Theorem. If M = ﬂQ) Qﬁ41 B o o . @ Ms , then M = 4.

Proof. Select an m e Mi\{O} for all i = 0,1,....,s and let
m = mO + m] + .. .+ ms.
We define the linear mapping $ P ATM - by

¢m(a) := ma , for all a ¢ 2

Assume that A4 # M.

Then N :={a ¢ 4 ' ¢m(a) =0}#{0) Because J§ is an ideal of 4

(this is easy to see), we can find a minimal ideal Mi of 4 such that

Mi < N. But then 0 = ¢m(mi) = mi and therefore m, = 0. This is impossible

hence A4 = M.

O
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M. &M & ..... & M; and we can write

e i=0,1,...,s.

0 1 : s ’ i*® Mi

. . 2 .
(1) The ei's are idempotents (ei =e, , i= 0,1,...,s)

and are called the minimal idempotents of 4,

Also eiej =0 if i # j.

(ii) If a ¢ 4, then a = agta gt ... ta

ae, (i +0,1,...,8).

i

where a,
(iii) Mi is a field with unit element e; (i =0,1,...,s).
(iv) Let B be an ideal of 4. Then B is tha sum of a number
of Mi's and B contains a unique idempotent that generates
the ideal B. Also every idempotent of 4 is the sum of

a number of ei's.

Proof. Evident, with preceding theorems. 0
Theorem. The dimension of M, equals 1, for all i = 0,1,...,s ,
iff for all a ¢ 4 : 4 is the sum of the eigenspaces
of the linear mapping ¢, A > A
defined by
¢a(x) = ax , for all x ¢ 4 .
Proof,

1) &= Let i ¢ {0,1,...,s} and moe M-

Clearly an eigenspace of N is an ideal of 4. If

€12+ sE  are the eigenspacés of¢m for the eigenvalues x],...,xt,

~and 4 =

i
e]@ ces B E then

2 & a8 € ° My & M B oeeee B My -

0

With theorem A.3.1.8 (iv) we see that there must be a gj such

that M. c e,.
1 ]

Now

m, = m,.e = m,e, = e,) = XA
1 1 i1 qSm,C 1)

8.,
J 1

Hence My has dimension 1 fdr all i= 0,1,...,s.
2) =» Let a ¢ 4. Thus a = A.e. + ... + Ases and therefore

00

MO,...,MS are the eigenspaces of ¢a. Hence 4 is the sum of the

eigenspaces of the mapping ¢a'

o
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We now return to the association scheme case, so let A4 be the
Bose~Mesner algebra of an association scheme.

Consider again the linear mapping ¢,° A > 4. defined by

(X) := AX , for all X e A (A e A).

Then the mapping ¢ : 4 - ¢A:= {¢A | A € A} defined by

$(A) = ¢

A for all A € A, is an algebra isomorphism.

Therefore, A and ¢A (A € 4A) have the same minimal polynomial
(wo is the minimal polynomial of A if wo 0, wO(A) =0,

Yo is monic, and if ¢ # 0 and $(A) = 0, then degree(y) =2 degree(wd))-

Without proof we state the following theorem:

Theorem. Let M be a n x n matrix and Al,...,kp be distinet reals.
Then:
M is diagonalizable with distinct eigenvalues

k],...., kp iff the minimal polynomial of M is

P
wO(X) :=i£1(x~ki).

A is symmetric for all A ¢ 4, and therefore diagonalizable.

Then theorem A.3.1.10. and the fact that A and ¢A have the same mini-
mal polynomial yield:

@A is diagonalizable for all A € 4, and therefore 4 is the sum of the

eigenspaces of ¢A, for all A € A. Therefore, with theorem A.3.1.9.

we see that the minimal ideals of 4 have dimension i. Hence the minimal

idempotents of A constitute a basis of A (theorem A.3.1.8.(ii)).

3.2. The A-module,

Let A be a commutative algebra over F, as described in appendix 3.1.

with minimal ideals MO’ M],...., MS and minimal idempotents
€gs €psreves €5 e € Mi ' i=10,1,...,8.



A.3.2.1. Definition.

(1)
(2)
(3)
(4)
(5)

Properties (4) and (5) imply that the mapping fa :
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A vectorspace V over F of finite dimension is called

A-module if there exists a mapping ¢:4 xV

such that for all
following holds:

(a
(alaz)v =

lv + a2v

al(azv)

i + az)v = a

ev v

a(v1 + VZ) = av, + av

1 2
a(dv) = (Aa)v Alav).

ajs-

2

T

Ve

v, ¢(a,v) = av,

cAd , veVand A € F the

av

is a linear mapping of V into V (acd). The properties (1), (2), (5)

say that the mapping a - fa (ac4) is a homomorphism of algebras of

A into the algebra consisting of all linear maps of V into V.

A.3.2.2. Examples.

(1) 4 is a A-module.

(2) Every ide

al of A is a A-module.

(3) The standard A-module V of an association scheme as described in

paragraph 3.7. is a A-module.
A.3.2.3. Theorem. LetV be a 4-module and define Vi‘:= eiV for all 1 = 0,...,s.
Then
V = VO @ Vl@ & VS.
‘Proof.
(1) Let v ¢ V. Then v = ev = (e0 + .+ es)v = eyv * +eyv
and
e,v ¢ Vi’ i=0,1,...,s.
(2) Assume that O = v, + v, + L.+ Vg for certain v _¢ Vi'
. ‘ i
Let i « {0,1,...,s}. Then v, = e.w for a certain weV.
Hence, e,v, = e%w = e,w = v, and
ii i i i
e.v, = e.e.w=0w=0 for j # i.
J 1 J1
Therefore, for all 1 = 0,1,...,s
0 =e.. 0= ei(VO PV R H vs) =e,v., = v..
" Hence V=V, &V &.... 8V

0 1
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If dim M, =1 for a certain i ¢ {0,1,...,s}, then v, is an eigenspace
of fa for all a ¢ A, because if a ¢ 4 and v, € Vi’ then

f (v.) = av. = ae.v. = \v. , A e F:
a i i i'i i

Now consider the association scheme case with the standard A-module
V described in paragraph 3.7.. In appendix 3.1. we have seen that all

the Mi's have dimension 1, and therefore we see that V . VS are

R
the simultaneous eigenspaces of the matrices of the Bose-Mesner algebra
4 of the association scheme. If wy o= dim(Vi) i=20,1,..., s , we see

that w = dim(V,) = dim(E.V) = rank(E.) = trace(E.) = trace(E.ol)=
i i i i i

1
trace@; qoiI) =q;-
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Chapter 4.

Pseudo-cyclic Association Schemes.

General references are 3§ ,[221,[247,0251.

A theorem.

Let (@, {1id, F], eaees FS}) denote an s-class association scheme

on n = |Q| points, with valencies Vs Yy ocees Vo and multiplicities
s

1
Hgs s+es Moo and intersection numbers aij (i,j,k =0, ..., 8) and

character table P = [pik] {see chapter 3).

Definition. The association scheme ({1, {id, P], ey Ts}) is

called pseudo-cyclic if My S Mg T ees T ope

In chapter 3 we have seen that a strongly regular graph is a 2-class
association scheme. For example, the pentagon graph P(5) is strongly

regular with parameters n= 5, k = 2, A =0, y = 1 and spectrum

(2', 1-1=-82 1ews) B,

Therefore P(5) is a pseudo-cyclic association scheme, for By =Hg = 2.

Note also that vy =V, = 2.

Moreover, all conference graphs are pseudo-cyclic 2-class associa-

tion schemes with V=Y., since the parameters of a conference
graph P(q) are (q = pr, p prime and q = 1 mod 4)

n=gq,k=43(q@-1) ,x=4(qg~5 ,p=14q-1) .
The spectrum of P{q) is
L(a-1 Lta-1
(Cia - 01", creo O e svp PO,
Therefore M. = $a-1 =¥, and v, =k = Jg-1 =n-1-k=v,.

The fact that a certain association scheme has all valencies equal
does not always imply that it is pseudo-cyclic. For example

the triangular graph T(7) has parameters

] 14 .6
n=21, k=10, =5,u =4 and spectrum ( 10", (-2)" ", 37) .
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Hence, v, = v, = 10 and w o= 14 4 b, = 6.

. Theorem. The association scheme (Q,{ id, F],...., FS}) is
pseudo~cyclic if and only if there exists an integer

t such that

1) v, =V, = =V, = t
s
2) Ya,.,=t~-1 for all j = 1,2,...
i=0 *J
Proof. First, consider the following: we know that
—_— 8
8k C . i
(n P,iPsj = k%oaiijk (i,j,z = 0,1,...,8.)
Also if Q = [qij] , then PQ = QP = nI, and this yields
s s
(2) kZOpiquj = kZO Pridi = n6ij (i,j =0,1,..., s)

= = = E = E
Furthermore, Pok = Yk » Yok = Y 0 Pro 1 (because 1R AO "

and Uy = 1 (because (]/n)qkoAk = E0 o Ak = (1/D)Ak) for all
k= 0, 1,..., s.
With (Z)Sthis yields

s
(3) Z v, =n and zopik =0 for i = 1,2,...,s

(4) z Wy =n and 2 9ip = 0 for j = 1,2,...,s
k=0 k=0 J
(see chapter 3).

If we multiply (1) with a, and take the sum over i and z,

then we get:

s s s s s
z Z p_.p_.q._ = a,.p ;9. .
i20z20 21 z1 71z izo 220 KkZ0 112k 1z
With (2) this yields
s s s X
Jnp.. = ) ) n 8,; a;: » and therefore
z=Q %3 i=0 k=0 <+ 1J
s 5 .
(5) p .= Y a.. for all j = 0,1,...,s.
T
A = i =
" P =qQ AV (see chapter 3) yields “zpzj vjqu , or
P . q.
z z .
T iz = 0,1,..0,8

3
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If we substitute this in (5), we obtain

8 q: g .
jz _ 1 i .
(6) Z T T Zaij , for all 3 = 0,1,...,s.

v,
z=0 "z ] i=0

Now we can prove the theorem.

1) = 1f @, {id, T'yse
Mg = 1, By SHp S eeee = S t , for a certain integer t.
With (6) we see that

ces PS}) is pseudo-cyclic, then

S q:
iz
z a;j = v, Z Tf'
i=0 I 220 "z

If 7= 1,2,...,8 then (3) yields Z qu = -qjo = -]

i

IPULE )
Vj( +"'E’ quz .
z=]

and therefore

8 i ] t - 1

' = - ) = — io= 1,2,...,8.
1=0
This yields t | vj and therefore ¢t < vj for j = 1,2,...,s.
Also
| S ] s
st + = U, = v, = + V..
DA TS I
Hence j=0 1=0 i=1
V12V2= ,:VS=t
If we substitute this in (7) we obtain
s 3 .
Z a,. =t -1, for all j= 1,2,...,s.
. 1]
i=0
(ii) €= Assume that v, =V, = L=vo= t
s i .
and Z a,, =t -1 for j = 1,2,...,8.
1]

l=
For a certain integer t. Then (53) yields

8 T oal f=1,2 )
(8) ) Py~ ‘z a5 = t - 1 (G = 1,2,...,s
z=() 1=0) . ‘
» - Y —
Consider i v1 Vo ee s vs

SRJVIRST IR S
(1, t, t, vevu, £)Y P = (1, £, £, ..., L) 1 Py
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This equals n (1,0,0,...,0) for:
8
1 + st = Z v, =n ((3)) and
i=0

v, + C
J

i o~1tn

p .=v, + t(t-1-v,) =0 ((8)).
=1 Z2] 1 J

Q is the unique matrix such that QP = nI. Hence

(1,t,t,....,t) is the first row of Q. The first row of Q is also

(PU,....,US). Hence

2,
i
11 and Zaiz = 7.
. . 1=()
For P(q) : i ar. = % aiz = $(q=3).

iZo M 1=0

I

2
Remark. For T(7) : X a;l
i=0

Pgseudo-cyclic association schemes with 3 classes, on 28 vertices.

4,

2.

i

In this section we discuss a method to comstruct a 3-class association
scheme out of an existing one. Then we apply this method to the

so called Mathon-scheme. Finally, it is pointed out that this
pseudo-cyclic association scheme, together with Hollman's scheme,

the one formed out of the Mathon-scheme by the mentioned construction,

are the only pseudo-cyclic 3-class association schemes on 28 vertices.

.. A Construction.

Consider a 3~class association scheme (X, {I = FO’ Pl, Tys FB})
with a subset Y, consisting of four points a, b, ¢, d, such that
(i) For all x ¢ Y = {a,b,c,d} the relations (x,a), (x,b), (x,c)

and (x,d) are distinct:

~
T3 7\ F3
AN
[
(ii) All x ¢ X\Y have only two different relations to the points

of Y, say Ti and Tj and each relation appears exactly twice.
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For instance (x,a),(x,b) < Fi and (x,c),(x,d) € Fj,
x is said to be of type {i,jl}.
From (X,I') a new association scheme (¥X,A), with the same intersection

numbers can be constructed as following.

(1) For (x,v) ¢ (Y x ¥) u (Y x X\Y) we define
(x,y) € Ai@ (x,y) € T’i.

(ii) For (x,y) ¢ (X\\Y) x Y and x of type {i,j} we define
(X,}’) € &5_@ (X,y) € Tj‘
These definitions provide a new association scheme.

Proof, We will show that for (x,y) ¢ Ak

lAi(X) n Aj(Y)i = a?j’ where Ai(x) s= {z \ (x,2) € Ai}

Furthermore AZ(X) 1= Ai(x) ny and A;*(x) 1= Ai(x)\Y.

The proof is divided into three cases.

Case 1. Let x € Y and y € Y.

Then |4, GO n &, ()| = IMCREIOY #8770 0 AE*(y)I -
= 116 T |+l o o GO
O ERVOIIOR R AT
= Ir;Gonriml - ,&ﬁi = an.

Remark (+) can easily be seen by the inspection of

Case 2, Let x ¢ X\Y and vy e X\Y.

Then |8, (x) n Aj(y)l - IA;(x) n A;(y)] + ]A;*(x) n A§*<y>l=
* %
= [r{ (0 n F;(y)l + ]F;*(x) 0T W=
= 1,60 0 T =g
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Case 3. Let x ¢ X\Y and y e Y.
Without loss of generality we can assume that y = a. Let {k,1}
be the type of x and assume i ¢ {k,1}.

Define
V= {z ¢ r. () | {z} x Y n Pj} # 0

W:i={ze V]| (2,a) ¢ Tj}.

Since VnyY=¢g (i ¢ {k,1}) and (x,a) € T, the following holds

1

1
b, (x) 0 Aj(a) =W and |W| = |V| - ags-

.

Now define S := {(z,u) ¢ Fi(x) x Y ‘ z € Fj(u) o, N:=[S

If (x,u) ¢ I'. then the number of z ¢ S is

1

If (x,u) € Fk then the number of z ¢ S is a?j'
This gives us N = 23?. + Zag..
1] 1]

If z € V then two ¥ € Y satisfy (z,y) ¢ Pj.

So N=21]v].
This gives us 2al, + 245, = 2. V| = 2-|W| + 2al.
i] 1] 1]
or W| = |A.(x) n A. ()] = ak
i i ij°

The case i ¢ {k,1} is proved analogously.

The scheme of Mathon.

If a group G has a generously transitive action on a set {Q, i.e.
g . g _ :
b@,BeQEBgeG[u = B, B* = o] then the orbits of G on & x Q,

that is the sets {(ag,Bg)} g ¢ G} , form an association scheme (see 3.2.4.).
Now let O be a hyperoval in P = PG(2,8). The 73 lines of P are

divided in (lg) = 45 secants and 28 passants. €onsider the group of

linear transformations on V = (Fg), G1(3,8). The subgroup of GL(3,8)

that maps the hyperoval on itself.
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acts generously transitive on ¢, the set of passants. The so constructed
scheme has been described first by Mathon. Hollman has shown that we

can construct another assoclation scheme out of Mathon's scheme with

the method described at the beginning of this section.

More precisely,if we take the hyperoval

0 = {(1,0,0),(0,1,0),(t,%,1) | £e GF(®)}
then
¥ = {=,0,,0,,0,} ,
where © = (I,(:3,0L3}l s O] = (1,a5,a5)l
0; = (1,805, 0, = (1,1,D*
satisfies the conditions (i) and (ii) of 4.2.1. (@ is primitive

in GF(8) with o° = a+1).

Note that the four passants meet in ome point viz. (0,1,1).

Pseudo-cyclic 3-class association schemes.

In pseudo-cyclic association schemes all non-trivial multiplicities

are the same. For a 3-class scheme that means

2] = 3t+1 and u o=, =ug =t
This is equivalent to
3
k
v, = v, =v, =t and Z a,, = t-l.
17 V27 Vs Loy ik

To find the intersection numbers the following lemmas are needed !

4,2.2. Lemma.

3
r m m k ..
.a_., = < for all 1,3,1,m.
allatJ Zalkajl ) s ds s
=0 k=0
Proof 1. Since the Bose-Mesner algebra of an association scheme

is commutative and associative:
(AiAj)Al = (Ain)A1 = Aj(AiAl)

S0

k k :
= R E=3 .. A
(aiAj)AIOAm ( E aiJAk)AIOAm ( E alJAk l)OAm
k 8
= T %
( L aij( 2 aklAs))OAm
k s
=5 é aijakl(ASOAm>
k m

= O Fagadh



- 79 -

1 . (A, = (Z .a_,

and analogously zij(Al,fxl)oAm { : allatj)Am

T,
Proof 2. Take p and q such that (p,q) « Fm, o ]
and count the number of squares pqrs with
(q,1) « Ty (r,s) ¢ ry and (s,p) ¢ Fj. T
The anumber of s is g a?j. If (q,3) ¢ Ft
there are azl r's with (s,r) ¢ Pi' d r

. . t
So the total nuwber of different squares is afjail'
t
The number of r is Zka?k' If {(p,q) € Fk then the number of s
with (s,r) ¢ T, is a?..
i ij ok
So the number of squares is also I oa, a..,
K 1k 13
3
. m t m _k
That gives us al.a,. = ) av a... C
=0 ty il k=0 1k 13
i 1

4.2.3. Corollary. = for all 1,£ > 0 .

A
Jj1

Proof. Take m = 0 in 4.2.2. With agi = t the result follows.

4.2.4. Corollary. z aik = t-1}, if j > 0.
k .
Proof, Take 1= i =k in 4.2.3. then &), = af,.
root. , k %k
k 3
So t=1 = L a, = ¥ a’ .
Kk jk k kk
5 s
4.2.5. Lemma. a. = v, a, = v:-1 for all i and j.
k-Z-O L kzl fe b

Proof. Count the points that have relation j to a fixed point.

4.2.6. Theorem. The intersection matrices are

&

t=1=s5~1 s T 8 r t~-r-s

r t-r-s-1 s

i
- @
-t
)
50
w
o
)
o0
[4)]
LI
He b
Il
i

t-r—-s 8 T
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Proof. Let s := and r = a

1
a2

13°
From 4.2.5. we know ail = t-yr-5-1].
) 1 .. . - 1
Since[aii]ls symmetric 4y, = s and a, =
With 4.2.4.
al + a] + a] = t~] = t-y-s-1 + a1 + al
11 22 33 22
So a1 + a] = r+g (%)
22 33
With 4.2.5. s + 31122 + a;3 =t (*%)
r + 3;3 + aéB =t (k%% )
(*¥), (*¥%); (¥*%) lead to al = r . al = s  and
%2 1 33
2,4 = 8y, = L-TS

1 .
The matrices [a%.] and [%?.] can be found from |}..] with
ij ij ij
4.2.3., 4.2.4, and 4.2.5.
]
4,2.7. Theorem. For r and s and t holds

l+2(r+s)~3(r—s)2 = (1+3(r+s)-2t)2.

Proof. Application of lemma 4.2.2. in the case 1 =i = 2, j =1

gives S

So

2
r{t~r-s~1)+{(t-r-s-1)s+s5r = 32+r2+(t~r—s) or

']+2(r+s)~3(r—s)2 = {1+3(r+s~2t)2.

Equation 4.2.7. has integer solutions r, s, t iff

L2 + 27M2 = 4y has integer solutions.

Here L = 6t-2-9{(r+s) , M = r-s , V = 3t+1.

In the schemes on 28 vertices we have the unique solution
V=28, L=+2,M=+2 or without loss of generality
r=4, s =2, t =9,
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Thus the intersection matrices in our case are uniquely determined

, 224 ) 24 3 3 423
[a.]= 243 I}]= 422 [a..= 224
1 432 1 32 4 1] 342

The schemes of Mathon and Hollman are the only pseudo=gwclic

viz,

3-class association schemes on 28 vertices. This is partly the
result from the uniqueness of the intersection numbers. Hollmann has
shown that the two association schemes are the only ones with these

intersection numbers by detailed examination of substructures of the

scheme.

4.3, Pseudo~cyc¢lic Association schemes from PSL(2,q), q = Zm.

Let V(2,q), q = Zm, denote the vectorspace of dimension 2, over the

Galois field Fq. The projective special linear group PSL(2,q) is the
group of the permutations of the projective points of PG(l,q) (these
are the lines through the origin of V(2,q)) induced by the linear
maps of V{(2,q) into V(2,q) with determinant 1.

We recall the following definitions and lemmas from group theory.

4.3.1. Definitions. Let G denote a transformation group of a set A.
G is called k-transitive on A if for all
X5 Koy eeney Ko Vs Yoo evves Yy € A,
x, # X. cY A s s A= 12,0k, 14,

3 ]
there is a g « G such that

i
If this g is unique, then G is called sharply k-transitive

g(xi) =y, . for all 1 = 1,2,....,k.

on A.
If Xy Xyp eneey X € A, then the stabilizer
G of %X, ,00u., x_1s defined as
KiseeesX 17 m
n «
G, T {ge G| g(xi) =x,, is= 1,2,...,m}.
1 m
(Clearly, Gx « is a subgroup of G).

127 0%y
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4.3.2. Lemma. Let G be a finite group of permutations on a set A,

T an orbit of G, a ¢ T and Ga the stabilizer of a. Then

sl - Is,

.

T| .

4,3.3. Lemma. Let G be a permutation group on a set A, a ¢ A. Then
G is k~transitive on A iff G is transitive on A and
Ga is (k-1)-transitive on A\{a}.
4.3.4. Theorem. PSL(2,q) is sharply 3-transitive on the points of PG(l,q).
Proof. Let G := PSL(2,q) and let @ be the set of the points of PG(l,q).
1) Consider two elements x,y of o\{(1,0)s, <(0,1)>}

Then x = <(a,1)>, v = <(b,1)>, a,b ¢ Fq\{O}.

Consider the matrix

[ S |
a %bZ 0
A= 1
0 a’p ?
Clearly, A€ G and

<(1,0)>,<(0,1)>
1 i
<(a,A> = <(a%b2, a’b )> = <(b,1)>.

Hence, is transitive on Q\@{O,l)>,<(1,0)>}

G<(I,O)>,<(O,])>
Moreover, G<(],O)> 1s transitive on g\{<(1,0)>} for,
if i

B := 1 then B and

€ 1,005

<(1,0)B> = <€a%, a—%)> = <(a,l)>, for all a ¢ Fq\{O}.

With lemma 4.3.3. we see that G is 2-transitive
» <(1,0)>
on O\{1,0)>}.

2) 1f 0

i

then C ¢« G and <{(1,0)C>

1§

<(0,1)> , and therefore, G is
transitive on §. Then with 2) and lemma 4.3.3. we see that G

is 3~transitive on §.
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3) It is easy to see that the matrices of G that fix <(1,0)> and

[a 0] , a < F AL
0 q

~-1
a

<(0,1)> are of the form

a O

Also <{(1,1) L)E{4]> = <(a,a-])> = <(az,1)> = <{1,1)> iff a =1
2 .

(for a” =1lma = 1 in Fq s q = 2™,

Hence, the only matrix of G that fixes <(1,0)>, <(0,1)> and <(1,1)>

1s 12x2' |

Now let Xl’ X2’ x3 € V(2,q) , yl, yz, y3 € V(2,q) »

x: 7 Xj > ¥y # Yj iti,

then there are A € G and B € G such that

<X1A> = <y]B> = <(1,0)> , <x2A> = <yzB> = <(0,1)> .

<x3A> = <y3B> = <(1,1)> (Because G 1s 3-transitive on Q).

Hence, <xiAB—]> =<y i=1,2,3,

1f <xiD> =.<y;>, i=1,2,3, then A” DB fixes <(0,1)> , <(1,0)>
and <(1,1)> and therfore AﬁlDB =1 or D= AB—I. Hence, G is sharply
3-transitive on Q.

O
We want to use PSL(2,q) to define a pseudo —cyclic association scheme.
To do this, we consider another permutation group that is isomorphic
with PSL(2,q).
Let V(3,q) , q = 2™ , denote the 3-dimensional vectorspace over Fq
and let Q be the quadratic form Q(x) = xé+x]X2 s X = (XO’XI’XZ) e V(3,q).
¥he bilinear form corresponding to Q is \
(x,¥) = Q(x+y) - Q(x) - Qy) = X Y)TRyY = XY, * X, %,v ¢ V(3,q9)
Clearly, R := < (1,0,0)> is the radical of ( , ) (in other words
((1,0,0),y)
<% of PG(2,q) with Q(x) = 0 constitute an oval C in PG (2,q) and the

]

0 for all y ¢ V(3,q)). Also, the g+! projective points

projective lines through R are the tangents of C (hence, R is the

nucleus of C ).
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The projective orthogonal group P0O(3,q) is the group of the permutations

of PG(2,q) induced by the linear transformations A of V(3,q) with
Q(x) = Q(xA), for all x ¢« V(3,q) (hence, if A ¢ P0O(3,q), then
(x,y) = (%A, yA) holds for all x,y ¢ V(3,q)).

Let N := {<x> ¢ PG(2,q) | Q(x) # O}\jR}, 7 the set of the tangents
of C, 8§ the set of the secants of C and F the set of the passants
of C.

Clearly, <(1,0,0)A> = <(1,0,0)> for all A ¢ PO(3,q)

(((1,0,00A,5) = ((1,0,0),yA ") = 0 for all y € V(3,q))

and therefore {R} is an orbit of PO(3,q) on the points of PG(2,q).
We shall see that P0(3,q) has 3-.orbits on the points of PG(2,q),
viz. {R}, C and ¥, and PO(3,q) has 3 orbits on the lines of PG(2,q)
viz. 7, S and E. But first, consider the following:

Let A ¢ PO(3,q). Then A is a nonsingular 3 x 3 matrix such that
Q(x) = 0(xA) for all x ¢ V(3,q). Because

<{1,0,0)A> = <(1,0,0)> , A is of the form

ao 0 0
A= )a, b]] b]2 . Q(x) = Q(xA) yields
ay by by,
2 22 .2 2 2 2
Xgtx Xy = agxo+(al*h b )x +(apth, b dx k(b by by by )% X,

for all x € V(3,q).
Hence,

4 _ 1 _
)%, a, =(b,.b,,)"% det(bij) =1,

ag =1, a =(b b, 21°22

0 2
Apparently, the matrices of P0(3,q) are of the form

1 0 0

i, .
Y = = =1.
A a; by, b, |, a; =(by by i=1,2, det(bij)

3y byy by,

Then, with the map ¢ : PO(3,q) - PSL(2,q) ,

[ 1 0 0 . 5

¢ ( [-al by by ) = s

a, b21 b22 21 22
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it is clear that the groups PO( 3,q) and PSL(2,q) are isomorphic.
Furthermore, the permutation representation of PO(3,q) on C is iso-
morphic with the permutation representation of PSL(2,q) on PG(l,q),
for:

if T : C + PG(l,q) is the map H(<(x0,x],x2)>) 1= <(x],x2)>,

then <(x0,x1,x2)§AH= <(x I,x2)>H¢(A).

0¥
With theorem 4.3.4. this yields

4.,3.5. Theorem. PO(3,q) is sharply 3-transitive on the points of C, and
therefore also on the lines of T (for, a T ¢ T is of the

form R + <x>, <x> ¢ (),

4,3.6. Theorem. The action of P0O(3,q) on the points of PG(2,q) haé
3 orbits, viz. {R}, C and ¥.

Proof. 1) We have seen above that {R} is an orbit.

2) Clearly, C is an orbit, for <xA> ¢ C for all x ¢ C, ‘
A e PO(3,q) (0 = Q(x) = Q(xA)) and PO(3,q) is tramsitive on C
(4.3.5.).

3) If <x> ¢ ¥ and A ¢ PO(3,q) , then <xA> ¢ I
(QxA) = Q(x) # 0, and R 1is an orbit). To prove that P0O(3,q)
is transitive on ¥, it is sufficient to show that P0(3,q) is
transitive on N n T , for a T «.T , because each point of ¥
is on a line of T and PO(3,q) is tramsitive on T (4.3.5.).
So let T el , <x>, <y> ¢ ¥ n T. Let <a> := T n C
and select <d> ¢ C , <d> # <a>.

Define <b> 1= (<d>+<x>) n C and <c> := (<d>+<y>) n C .
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Because PO(3,q) is 3-transitive on C, there is a A ¢ PO(3,q) such that
<a>A =<a>, «d>A = <d>, <b>A = <c> 3 note that A is linear,
Then,

it

<x>hA = ((R + <a>) n (<b> + <d>))A = (R + <a>) N (<h>A + <d>A)

(R + <a>) n (<c> + <d>) = <y> .

fl

Hence PO(3,q) is transitive on ¥, and therefore ¥ is an orbit.

Because PG(2,q) = {R} u C u ¥, we have proved the theorem. 0

4.3.7. Theorem. The action of P0(3,q) on the lines of PG(2,q) has 3 orbits,
viz. 7, S and E. Also, PO(3,q) is generously transitive on

the lines of 7.

Proof. 1) Because C is an orbit of PO(3,q) on the points of PG(2,q),

it is easy to see that 7T is an orbit of PO(3,q) on the lines of PG(2,q).
2) § is also an orbit, for C is an orbit of P0O(3,q) on the points

of PG(2,q) and PO(3,q) is 2-transitive on C.

3) Because N is an orbit of PO(3,q) on the points of PG(2,q), and
because the lines of E only have points of ¥; it is clear that EA € £,
for all E€E .and A € PO(3,q). ’

For all <a> « N, we define the linear map Aa : V(3,q) » V(3,q)

* an =X+ ﬁ%%g%'a s
Then Aa € PO(3,q), for

for all x € V(3,q).

2
- (x,a) - (x,a) (x,a) -
Q(XAa) = Q(x + —Q—%a—) a) = Q(x) + ‘(;2—(;-)- Q(a} + -—Q—z-z-l-s (x,a) Q(X)a )

for all x € V{(3,q).
Also, because an = x 1if {(x,a) = 0, Aa fixes all the points of the
tangent R + <a> (note that (R,a) = (a,a) = 0. Note also that Aa # 1).

Moreover, Aa has order 2 for

2 (x,a) _ (x,a) (x,a) -
xA” = (x + —5%37 a)Aa = X + aca) a + a(a) a x

for all x € V(3,q).
Let <a> € W , <b> € (<a> + R) n N. Then b = a + 3(1,0,0) and
_ (x,a) _ (x,b) (x,a) _ _ A £
anAb = (x + -5%53 a)Ab = x + NIO) b + @ a xAb o » for

all x € V(3,q).
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Hence, if <a> = <b> , then AaAb = I, and if <a> # <b> , then

AaAb = AbAa = Ac , where c=a +-g§3}],0,0) = l“z(Q(b)a+Q(a)b),

<e> ¢ {<a> + R) n ¥.
With this we see that for every T e T the set
H(T) := {I} u {Aé | <a> | T u N}
is an elementary Abelian subgroup of PO(3,q) of order q = 2",
Also, the elements of H(T) fix all the points of T.

Now, let E. and E, be distinct lines of E. Then E, and E, meet in a

i 2 1 2
point <a> ¢ N. Let T := <a> + R (then T ¢ 7).

Clearly, if Ab ¢ H(T)\{I} and <b> # <a> , then Ab cannot fix E

(otherwise Ab = I). Therefore, H(T)El = {I,Aa}.
(H(Tﬂh is the H(T)-stabilizer of El). Then, with lemma 4.3.2. we
1

1

see that the H(T)~orbit that contains E, has length

1

Hence the H(T) orbit that contains E. consists of the q/2 lines of

i
E  through <a> (note that H(T) fixes <a>). Therefore, there is an
A ¢ H(T) < PO(3,q) such that E2 = EIA , and because A has order 2,
EzA = E_ . Hence P0O(3,q) is generously transitive on F and F is the

third (;nd last) orbit of PO(3,q) on the limes of PG(2,q}.

]
Now, consider the following:
Let Tgs Tpseeees T denote the orbits of the action of P0O(3,q)
To is the orbit {(EA, EA) | A ¢ PO(3,9)} ,
for a certain E ¢ E. Clearly, = {(E,E) | E ¢ F }, for PO(3,q)

on K x F, where
To
is transitive om 7.

Because PO(3,q) is generously transitive on £, (E,{TO, Tysecees rs})
is an association scheme (this we have seen in chapter 3. Note also

that Ty = id.).

4.3.8, Theorem. The association scheme (F, {id, Tisreces rs})

is pseudo-cyelic.
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Proof. We will show that VI mV, = . =y o= g+l and

S
_Z}aii =q , for all j = 1,....,n,
1= .

for the valencies and intersection numbers of the association scheme

(this is equivalent with the fact that the association scheme is

pseudo-cyclic (theorem 4.1.2.)).

1) Let E], E2 ¢ 7 and assume that {El, Ez)é I, (1 e {1,00a,81,
Then, lPO(ng}V |
v, = ' for:
|P0O(3,q) 1
Ey.E)

-

let A := {E€ F | (El’E> € ri}. It is clear that v, = |A

But A is also the PO(B,q)E orbit that contains EZ'
1

-Lemma 4.3.2. vields

|PO(3,q) E}’

|
EpsEy

v = IAI = IPO(B,q)
Because PO(3,q) is sharply 3-transitive on the gq+1 points of the oval
C, it is easy to see that PO(3,q) has order (q+1)q(q-1).

Also lemma 4.3.2. and the fact that P0O(3,q) is transitive on g

yield
BBSSL - i - =) < et
Vg
| ]
Hence, |[PO(3,q), | = (a+q(a=1)/ba(a=1) = 2(g+1).

1

Let <a> := E] n Ez. Then <a> ¢ N and the transitivity of PO(3,q)

on N yields
|PO(3,q9)| (q+1)q(g-1)

= = 7 .
[P0(3,9) | TS A = q
If T =R + <a> , then H(T) is a subgroup of PO(S,q)<a> and we
have seen that |H(T)] = q (see the proof of theorem 4.3.7.).
But then, H(T) = PO(B,q)<a>, and therefore,

PO(3,q) = (PO(3,q)__) = H(T) =H(M, = {1, A}.
ELE, <a>’E,E, E,»Ey E, a
Hence, jPO(B,q)E |
v, = ] = 2(q+1}/2 = g+1 for all 1 = 1,2,...,s.
|PO(3,q)

l
E,E,
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2) Let j ¢ {1,2,....,8}. Because agj = 0, we have to show that
s .
] a;. =gq
i=1 M
Select a E-¢ E. Clearly, the number of pajys (E', E") ¢ E x E such

. i
that (E,E') ¢ Ti , (E,E") ¢ I, and (E'zE") € Fj is Viajk , and

k
k P ik -

also Vs (i,j,k = 1,....,458). Thus ap = a..i (because v, vk),
for all i,j,k = 1,....,s, and in particular, 3y = aii (i,j = 1,...,8).
Hence, % i % j

a,, = a,, i = lyeaessS).

FETREt PPt » (3 s s

Let B, E, Ej ¢, E #E, , E #E, , E #E and
E1 n E2 = E2 n E3 = E1 n E3 = <a> . (<a> ¢ N).

E., E. are different,

All the relations (except the identity) betwwen E 92 Eq

1
for:
if (E],Ez) e T, and (El’EB) er, fora certain i € {l,...,8},
then there exists an A ¢ PO(3,q) such that EIA = E] and E2A = E3,
and thus,
<a>A = (E1 n EE)A = E1 n E3 = <a». But then,
A ¢ (PO(3,q)<a>)E = H(T)E {1, Aa} , where T = R + <a» ,

and this is not possible fér EzAa = E2 # E3. So, the relations

]

must be differemt. Now, consider 2 lines of F, say E, and E, that are

in relation Fj. We have seen above that a line E3 € E\{El,Ez} s

that has relation ri with E. and E2 (i e {1,...,8}) cannot go

1

through <a> :='El n E2. So, E3 1’

<b> # <a> # <c>. For the same reason a line _

= <b> + <c», <b> ¢ E
<e> € E2 ’
Eé>€E\ {El’Ez’E3} that has relation Fk with E] and E2 (k= 1,...,8),

camot meet E, in <b> or <c>, {otherwise two relations between

3
El’ EB’ E, or E E& would be the same, and that is impossible).

4 2> E3»
Then it is easy to see that
s s
* s Js ;I = 1
(*) iz]aij ig}aii q , for all j sesassSe
Let E € F. Then the number of pairs (E',E") ¢ F x £, E' # E",
E#E', E 4 E", such that relation(E,E') = relation(E,E"),

equals
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s
But this is also Z v, {v.-1),
1=1 1
Because VISV T .=V = q+!, this yields
8 s
5 gk
ji=1  i=] S _
With (%) this yields Z a;j =q for all j=1,....,s.
i=1

d
4.3.9. Remark. If we extend P0(3,q) with the field isomorphism
2
A (X ¢ F) that has order m, then we obtain a group, called
Pr0(3,q) of order m(q+1)q(q-1) that also fixes the oval C.
. 2 22 2
(if XX +X, 1%, 1x2) = 0).
Furthermore, the orbits of Py0(3,q) on F x ¥ are unions of orbits

= 0 then (xg)2+x = (x§+x

of PO(3,q) onZ:x E This way we obtain a newsassociation scheme. For

example, if q = 2‘/4 = 16, then we get a 3-class association scheme on
120 points with valencies v, = 17, v, = 2417 = 34 vy = 68 and
intersection numbers
a;j 1 2 3 agj 1 2 3 a?j 1 2 3

1 0 8 8 1 4 1 12 1 2 6 9

2 8 2 24 2 112 20 2 6 10 18

3 0 24 36 3 12 20 36 3 9 18 40

With these parameters, it is easy to see that if we take the first

and second class together we obtain a 2-class association scheme on

120 points or in other words, a strongly regular graph on 120 vertices.
If q = 2P » P prime, then the association scheme obtained with the orbits
of P£0(3,q) on £ x F is pseudo-cyclic with valencies {(g+1)p.

Appendix 4.1. The action of PSL(2,q) on PG(2,q), q = 2",

Let q := 2, 1In paragraph 4.3, we have seen that PSL(2,q) is isomorphic

with P0(3,q), and that the action of PO(3,q) on the lines of PG(2,q)
has 3 orbits. Hence, PSL(2,q) induces an action on PG(2,q), that has
3 orbits on the lines of PG(2,q). Another proof of this fact is as
follows:

Let V := V(2,q) and let S be the space of all symmetric linear maps

A : V’+~V, that is (with respect to any srthonormal basis) the space



A1,

A4 T,

-9]-

a b
of all symmetric matrices [b c] a,b,c ¢ Fq

(In fact, S = Sym(z)(v), the space of all symmetric 2-tensors
over V), Obviously, dim(S) = 3.

For any symmetric 2-tensors ¢ and ¢, with matrices ¢ and Y with

respect to an orthonormal basis {EJ’EQ} of V, the trace inner product

2
= ) B, Y,
@ 1= L8 ov,

is independent of the orthonormal basis {Ei’EQ} , and serves as an
inner product for S. Special elements of S are the projections.
For any a ¢ V\{0} the projections onto the subspace <a> is the
2-tensor a @{é , that is the symmetric idempotent linear map
having <a> as its image, that is the symmetric matrix

a2 a
1 i

a]az a

%2
2 for a = (a],az).
2
Lemma. If a, b, ¢ ¢ V are pairwise independent, then

a®a,b®b,c?®c are independent.

Proof. Without loss of generality we can take ¢ = 0a + Bb , aB # O.
Then,

i

c ® c

uzgg 8 §)V§ 82(E & E) + aB(E.@ b+ E'@-g).

Since a and b are independent vectors, the 3 summands on the right
hand side are independent symmetric 2Z~tensors.

So, a®a,b @b and c ® ¢ are also independent (28 # 0) .

Lemma. If a, b € V are independent,then D := [? é]

(DeS, a®a,b &b are independent.

Proof. Same as lemma A.4.1.1. In fact, for any independent

a, b €V, the 2-tensor a #b + b # a is a multiple of D.

The map ¢ : V +§ defined by _
V., G@ =282,

induces a map of the gq+! points of PG(I,Fq) onto the ¢+l points of

an oval in PG(,Z,Fq). This follows from lemma A.4.1.1.. From lemma

A.4.1.2, we infer that the nucleus of this oval is the projective

point <D>,



A.4.1.3,

AL, 1.4,
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PSL(2,q) induces an action on PG(2,q). Indeed,for o ¢ PSL(2,q)

define ¢ by linear extension of

\V{%VEE(QQ a) :=0(a) 8 o(a)]

Under this action, the nucleus <D> is fixed and the oval is fixed

setwise.

Lemma. PSL(2,q) has 3 orbits on the points of PG(2,q).

Proof. <D>is one orbit; the oval is one orbit.

Take any p # <D>outside the oval. Call
pl':= (oval) n (p u <D>), Py 1= (oval) n (p u pz) » for amy p, # P,
on the oval. Then

p=(<D>up,)n (p, Up,), sO
1 3 2

Pis» Pys Py determine p. Now, we have seen that PSL(2,q) acts
3-transitively on the points of PG(l,q) (theorem 4.3.4.), hence on
the points of the oval. Therefore, the points # <D> outside the oval

form an orbit.

O

Theorem. The action of PSL(2,q) on the lines of PG(2,q) has

3 orbits, viz. the q+! tangents, the 3q(q-1) passants

and the }q(g+1) secants of the oval.

Proof. The tangents are represented by <a & a> + <D> , and the

secants by <a & a> + <b & b>, where a ® a2 , b & b are on the oval.
Then, it is easy to see that the tangents and the secants each form
an orbit,

But so do the passants, since there are 3 orbits altogether. This
follows from the fact ([18] p. 21) that any group of automorphisms
of PG(2,q) has equally many orbits on points and on lines, since

the incidence matrix is nonsingular.

g
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"~ Chapter 5,

Few distance sets.

5.1, Spherical s-distance sets. (Ref., [161]).

Let X, of finite cardinality n, denote a subset of the unit .sphere

R o= {gerd| <, =1}
d” z b = %
in Euclidean Rd with inner product
<E N> =
g,n 51“1 + ...t Ednd .

Assume that the vectors of X admit only s inner products # 1, say

Bpsenaey O (s is called the degree of X).

In other words, the vectors of X admit s distances # 0. Then X is

called a spherical s-distance set.
5.1.1. Example, Consider the case s = 1. Projection of an orthonormal basis

. +
in R@ ! onto the hyperplane
X, + oiee. + el = o,
yields a set X of d+! vectors in Rd having
| S
d+1 d+1 " d+l

as their Gram matrix of inner products. Hence, the vectors of X

lie on a sphere and admit only one distance # 0. In other words, X

is a spherical one-distance set in Rd, called the regular simplex.
5.1.2. Example. Consider the case s = 2. In R2 the maximum n equals 5,

attained by the vertices of the regular pentagon. In R3 the maximum
n equals 6, attained by the vertices of the octahedron, but also by
any 6 of the 12 vertices of the icosahedron which do not contain an
antipodal pair (such sets have inner product + 5-%).

For general Ré, at least n = {d{(d+1) may be achieved, viz. the

d+1 . . o 2. - . . .
( 9 ) points with codrdinates (]2, Od ]) , which in Rd+1 lie on the
hyperplane
X, + X, I + Xy = 2.
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Theorem. (absolute bound).

. -
n < (diiil) + (dtﬁqz) s for the cardinality n of a

. .. . d
spherical s~distance set in R .

Proof. [26]  For each vector y ¢ X we define the function

d

(al, Gpseees, G are the admissable inner products # | in X,)

8
R = M (<y,B> -0 L e

These are n polynomials of degree < s in the variables 81,..., Ed,
restricted to Qd' The linear space of all such polynomials is
Pol(s), and has dimension
d+s—1 d+s-2
Cac1 )+ Ci2D (see 5.1.5.).

The polynomials Fy(é), y € X are linearly independent, for:

let
J ¢ F(8) 0,¢&c¢ f, for ¢, € R, v ¢ X.
Since yeX s
= & i -
Fy(X) %,y i=l(1 ai) for all x,y ¢ X,
we find S
cy iEl(l—ai) = 0 for all y ¢ X.

This yields e, = 0 for all y ¢ X (note that o, # 1).
Thus, the n polynomials Fy(g) ,» ¥ ¢ X, are linearly independent in

Pol(s). Therefore, n cannot exceed the dimension

d+g~1 d+s-2
CET F EE

of Pol(s). 0
Remark. 1If s = 1 then n € d+!. Equality holds for the regular simplex.

If s = 2, then n < }d(d+3). The only known cases for which

n = 3d(d+3) ‘are (n,d) = (5,2), (27,6), (275,22).

. Remark. The linear space Pol{(s) of the polynomials of degrees< s,

restricted to Qd is the direct sum of the linear spaces Hom(s) and

Hom(s~1), where Hom(s) is the space of the homogeneous polynomials

of degree s, restricted to Qd. (In other words, the span of the mono-

mials 0‘1 O‘d
3 % a, + + a, = s, restricted to Qd).

1 yesr ey v 1 e e d
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The dimension of Hom(s) is (d;f;]

Pol(s) is

), and therefore, the dimension of

d+s-1) + d+g~2

Can Caly )

The mod p bound.

5.2.

I.

In some cases we can obtain an upper bound, which is better than the
one given in 5.1.3. (For a more general approach see [77).

First we prove the following lemma:

Lemma. Let M denote a subset of R of finite, positive cardinality.

If ZM c pZM , for a certain prime p, then M = {0}.

Proof.  Assume that ZM < pZM for a certain prime P.
QM is a linear space over Q of finite dimension f. We select a basis
@1y €ysenns € in QM and denote every m ¢ QM by the unique vector
<q1’ Qyseees qf) with .
m = Z q.e. R q. ¢ Q.
If q; # 0, then we can write

a, o

9 =P jglpj

B..
11 '3 . Z
s where Po 18 prlnleg Qs B' - €

(Note that this factorization is unique).
For m ¢ (QM\{0} we define
= min' {a. . .
p{(m) min'{a, ] a4 # 0}

Since ZM c pZM, and therefore ZM = pZM, the following holds:

- min p{m) = min p(m)
mepZM\ {0} me ZM\ {0}
But also:
min p(m) = 1+ min plm) (%)
mepZM\ {0} me ZM\ {0}

It is easy to see that p(m+n) 2 min p(m), p(n) , and

therefore

min p(m) = min plm).

me ZM\ {0} me M\{0}
With (x), this yields

i

min  p(m) 1+ min p(m).

meM\{ 0} meM\{ 0}
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M has finite, positive cardinality, and therefore the above yields

= {0}
{1
5.2.2. Theorem. (mod p bound)

Let X ﬁ“ﬂd, of cardinality n, denote a spherical s-distance
. d . . .
set In R with admissable inner products TERREEL (#1).

Assume that for a certain integer k: kéi € Z, for all

i=1,..., s.
If p is a prime such that kai fkmodp ,1i=1,...,s,
then (d+s *1) (d+s -2
3
where s, is the cardinality of the set {kai mod p | i=1,...,s}.
Proof.- Let {kui mod p | i =1,...,8} = {8!,...., BS }

P
Define for each vector y « X the function:

S
e= P -

These Fy(g), y ¢ X are n polynomials in Pol(sp). They are linearly

independent, for:

let Z
mF () 20 ,&£¢0,, form_ e¢R, ye X.
d
yex yvy y

Since sp

Fy(Y) = .07 (k<y,y> - ;) # 0mod p ,
and

s

Fy(X) = ig? (k<y,x> = Bi) z0modp, x4y,
we find

mex(x) = - Z m Fy(x) e pIM , % € X.

y#x
Because Fx(x) # Omod p, x ¢ X, we obtain moe pIM, x ¢ X.
Hence, M ¢ pZM, and so ZM < pZM.
The lemma 5.2.1, yields M = {0}.

Hence, the n polynomials Fy(g), y ¢ X are linearly independent in

Pol(sp). Therefore, n cannot exceed the dimension

(‘d‘l-s —]) (d+s —2) of Pol(sp).
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5.2.3. Example. Let X be a set of binary d-vectors with weight 7 and with

5.3.

admissable inner products {(#7) 0,2,4,6. Then X is a sperical
four-distance set in Rd.

With theorem 5.1.3. we obtain (1/24)(d+7)(d+2)(d+1) as an upperbound
for the cardinality n of X. But, if we use theorem 5.2.2. with k=]

and p=2 we have s =1, and this yields d a-1
i ns (00 (G = e

Until now we have only spoken of spherical few-distance sets in

. .ood
Rd. But what about general few-distance sets in R ?

. . d . . .
Let X denote a s~distance set in R with admissable distances (#0)
Gpoeenes Q. If we use the same techniques as for spherical
s-distance sets, in other words, if we define the polynomials

F (g) := ; a -guz - az) € X
v . i=1 y i s ¥ ]

which are linearly independent, we only get

< (4¥s d+s-1
Xl < OO+ 7D,

. . . odt]
the same bound as for spherical s—distance sets in R~ .

But it is possible to choose (d+3—}) polynomials fi with the property

that the set

{Fy \ y € X} u {f, | 1=1,...,( 4

remains independent, and therefore find

Ix] = (7% . ref: [5].

Equiangular lines.

Equiangular lines in Rd are lines through 0 in Rd that admit only
one angle # 0.
Note that a set of equiangular lines in'Rd is a one~distance set in

(d-1)~dimensional elliptic geometry.
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We will nowstate an absolute bound for the cardinality of such a set
(in 5.4. we will give an interesting example of a set of equiangular
lines, and in 5.5. we will investigate the ralation between equian-

gular line sets and other combinatorial structures).See also [287.

Theorem. (absolute bound)
n £ 4d(d+1), for the cardinality n of a set of equiangular

. . d
lines in R .

Proof. First, note that the linear space of the symmetric 2-tensors

in Rd has dimension 1d(d+1). Recall that the 2-tensor (a & b) has
components {a & E)ij = aibj ;3 2, b e Rd and that two 2-tensors have

inner product

@gb, ced
<a'd a, b @b

<a,c> <b,d> , hence

<a,b>’ ()

Let L, of finite cardinality n, denote a set of equiangular linpes
in RY with admissable angle (#0) ¢.

We select a unit vector along each line and denote the set of those
n vectors with X.

The Gram—matrix of the vectors of X is In + Cn cos(d),
where C =

With property (%), it follows that the Gram matrix of the vectors

2§_gx,x€XiS

In + (Jn - In) c052(¢),

. .. . . 2 2
which has only positive eigenvalues (A1=31n (¢)+n cos (¢),
B .2
A2 I Xn = gin” (¢)).
Therefore, the n vectors x g x , X ¢ X are linearly independent
in the linear space of the symmetric 2-tensors in Rd, of

dimension {(d+1)d. Hence, n < }d(d+1). 0

Remark. This theorem can alsc be derived with the proof of 5.1.3.,
viz. the vectors of X admit 2 inmner products # 1 (cos(¢) and -cos(¢)).

The polynomials Fy(&) are in this case
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Fy(ﬁ) = éy,€>2 - cos%(@) = <y,€>2 - <€,€>cosz(¢), Ee Q4.

Hence, the Fy(g) are n independent polynomials in Hom(2) of

dimension 1d(d+1) , and therefore n £ id(d+1).

Sets of equiangular lines in Rd with angle arccos(1/3).

Let Xd denote a set of equiangular lines in Rd with admissable

- angle arccos(1/3). We are interested in the maximum cardinality

of Xd, which we denote by v1/3(d).

We claim that
d = 3 4 5 6 7 8 ... .15 d > 16

VI/B(d) = 4 6 10 16 28 28 . .. . 28 2(d-1) .

Proof. The problem is to find a maximum set X of unit vectors in

Rd with admissable inmner products(#1) 1/3 and -1/3 ().

1) d = 3. We can always find 3 vectors in R3 with the above pro-

perty, say p,, Pys Py (<Bi’£i> =1, for i = 1,2,3).
There are 2 non-equivalent cases:

(i) {Ei,gj> = ~1/3 for all i # j

(ii) ‘Bi’25> = 1/3 for all i # j.

All other possibilities lead to a set of lines produced by (i) or
(ii).

Important is the fact that Pys Bys Py must be independent in R3.
Therefore. all other vectors p with property (%) can be written as

R = &Py * Gypy * gDy

Then we find that case (i) vields one additional vector,viz.
2=-P; " Py~ P3- Case (ii) does not produce any additional vectors.

Hence, v1/3(3) = 4, A maximum set is:

! |7 e ]

| 1
NN D Rl NS D Tl R IS PR I

(V%)

-1 -1 ! 1
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2) To prove the cases d > 4, we first investigate the structure of
maximum vector sets X in Rd with <p,p> = 1, p ¢ X. and other admis~-
sable inner products 1/3 and -1/3.

First, note that it is always possible to select 3 vectors of length 1
and mutual inner products -1/3 (if not, then the Gram matrix may

be put in the form (2/3)I + (1/2)J, and this yields < d vectors).

Call these vectors Pys Pys Ps- The vector ~P;"P,7Ps must also

p, =
be in X, for, X is maximal (i.e. the set igatetrahedraily;closed).
So, X must contain 4 vectors (a maximum set) Pys Pys P3s Py of length
!, mutual inner products -1/3, that lie in R”, Other elements of
X must lie outside R3. Therefore, we have to look for vectors X ¢ Rd

outside R3 with

<X,x> =1, <X,p;> = (]/3)€i » €= +1,1i=1,2,3,4.
' Blf22f23+24 = 0 yields e]+€2+e3+e4 = 0. Hence, there are 3 non-
equivalent possibilities for the ei's , viz,
(1) €y = €, = 1, €, = €3 = -1
(ii) e =e;=-1 , e, =¢, = |
(11]_) E] =€2..=e1 s €3=€4= 1

. d 3
We can write x = h + ¢ where h ¢ R3 , CeR , and c | R,

Then <Ef£i> = (1/3)8i and therefore there are 3 possibilities for E}_
(1) h, 1

11 =1l¢. -
(ii) h, i _4ﬁ~2.23f24)
(ii1) hy =i(
In other words, the elements of X\{EJ’EQ’BS’EA} can be written as
Byrey » Byre, » hgtey where cj,cp.c5 4 R
{hi+c | hi+e e X} (i =1,2,3) is called a pillar. h; is the socle
of the pillar.

The question is: how can we "fill" the pillars?

Case 1 : one pillar.

Assume that the first pillar is filled (or the second or the third),
"and that the other two are empty. Let Y be the set of the vectors

h. + ¢ in the pillar.

=1 =
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The Grammatrix G of the vectors of Y is G = I + (1J3)A,
0

where A = .
+1 -

Because the vectors of Y can be written as Bq + c, we can also say
that G = (1/3)J + C , where C is the Gram matrix of the c's
(note that {E],E]> = 1/3). This yields

2 01
3 :
0/-1

Hence, for 2 different vectors h, + c and h + c¢' in the same pillar,

1 i
c and c¢' have angle 90° or 180°. The c's lie in (d-3)~dimensional
space and therefore there are at most 2(d-3) vectors c with the

above property. Hence, if one pillar is full and the other two empty,

then the full pillar contains 2(d-3) vectors.

Case 2 ; two pillars, three pillars.

Consider the first pillar with a vector El + Y and the second

ith + e + ¢ verey C
w s vectors 22 < ] s EQ S where Ly » S
is an orthogonal s-set L R” (hence, 0 £ s £ d-3).

The Gram matrix of the vectors h, + ¢,  , h, + ¢

1 gy 0 by P

i ]
in the pillars is

0+ ..... +1
G =1+ %— £l
+1 J -1
- 8§ 8
11
But al —
ut also 1 0 0...0
1 0
¢ 31 J e
. s
O —

where C is the Gram matrix of {note §21,§’> = 0),.

2

Clygsnn C
=0? g
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This yields

._.
1 +
[l
.
.
.
+
Nojame

|+

2
€=3

P B A [

T+

el

C is a Gram matrix and therefore det(C) = O.

Henc, 1‘%((j1)2 o, + (il)z) = ] - ls » 0. This yields s < 4.
Because a pillar can only be filled with elements_hi + ¢ where

the c's form a double-orthogonal set (angles 90° and 1800),

we can state:

If more than one pillar is filled, each pillar can not contain more
than 8 véctors. Thus, if we £fill more than one pillar, we obtain

at most 4 + 3+8 = 28 vectors with property (%).

Now we can continue with the proof.

3) d = 4, If we £fill ome pillar, we get: v1/3(4) 24+ 2 = 6.

Assume that in the first pillar we have a vector h. + ¢, and in the

1

second a vector EQ + Cye The Gram-matrix of < and <, is:
o | 1
C=3

C has rank 2. But because C1» &y € R and 1 R7, C must have rank < !.

Hence, we can only fill one pillar. This yields V1/3(4) = 6.

4) d = 5. If we fill one pillar we get: v1/3(5) > 4+ 4= 8.

Assume that one pillar (the first) contains one vectorlgl + ¢, and

another (the second) contains two vectors h, + ¢, and h, + Eé

with <EQ,Ef>

5 0. The Grammatrix of the E'S 15

, which has rank 3.

Polem  Rie
[—
O b

i+ 1+

But the c's are in R5 and L Rs, and therefore C must have rank £ 2.
Hence, if we fill all three pillars, we can put at most 2 vectors
in each pillar.

This yields v ,,(5) £ 4 + 3.2 = 10.

1/3
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Now comsider the (-1,1) adjacency matrix C of the Petersen-graph:

A5 J-21

C = where. A_ =

J-21 —A5

P+ 4+ 1O

PO+ 4+

O+
-

+ + O i
+ O +

C satisfies C2 = 9T and CJ = 3J.

Hence, C has smallest eigenvalue =3 of multiplicity 5 , and
largest eigenvalue 3 of multiplicity 5.

If we use theorem 5.5.1. in the next paragraph, we find that C
leads to a set of 10 lines in RS with angle arccos(1/3).

This vields V}/B(S) = 10,

5) d = 6. In the same way as for d = 5, we can show that
v1/3(6) S 4 + 3.4 = 16 (each pillar can not contain more than
4 vectors).

. . . 6
Consider now the following vectors in R :

]

OO -0

-
— D e - (OO
— e DO

Change in each vector the ones in each of the following combinations:

HAEINE RS

This way we get 16 vectors in R6 with cos(a) = +(1/3) .

Hence, (6) = 16,

MV

6) d = 7. If we £fill one pillar, we get v1/3(7) <4+ 2(7-3) =12,

If we £ill all three pillars, we get V1j3(7) £ 4 + 3-8 = 28,
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Consider the incidence matrix of the Fano plane:

11010007
01101 ]
00110 ? 8 If we change in each of the rows of F
F= 0001101 . the ones in each of the following
1000110 . .
0100011 combinations:
1010001 | ] T -

11 SO 5 T TR N A S I B

1 ~1 -1 i

we obtain 28 vectors in R’ with cos(a) = +(1/3).

Hence, (7) = 28.

MVE!

7) d =8, 9,...., 15, If we £fill one pillar we obtain less (or no
more, (d=15)) than 28 vectors. Therefore v (7) = 8) = .....

(15) = 28.

1/3 V173

cens T V1f3

8) d 2 16, If we fill one pillar we obtain more than 28 vectors.

Therefore, v1/3(d) = 4 + 2(d-3} = 2(d-1). D
5.5.  Two-graphs. (Ref: [30], [331).
2.5.1. Theorem. There is a I-1 correspondence between sets of equiangular

lines and switching classes of graphs.

Proof.

1) Consider a switching class § of graphs on n points. Let C be the
{-1,1) adjacency matrix of such a graph, with smallest eigenvalue
-5 of multiplicity n~d. Then I + (1/s)C is positive semidefinite
of rank d. Therefore, I + (1/s)C is the Gram matrix of n vectors
in Rd of length 1, and with inner products t(l/s). Hence, these
n vectors determine n equiangular lines in Rd with angle arccos(!/s).
Switching w.r.t. a vertex of the considered graph is equivalent
to changing the direction of the unit vector on the corresponding
line. Therefore, all the graphs of S yield the same set of equi-
angular lines.

2) Consider a set X of n equiangular lines spanning Rd. Select a unit
vector along each line. We may write the Gram matrix of these vectors
as I + C cos(d), where C is the (-1,1) adjacency matrix of a graph

on n points, ® the angle between the lines.
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If we choose another set of unit vectors that also preduces X,
then the Gram matrix of these vectars can be put in the form
I + C'cos(a), where C' = DCD, D = diag(+1). Hence, the graphs

of C and C' are switching equivalent.

O

5.5.2. Definition. A two-graph (2,A) is a set 9 and a collection & of triples

in @, such that every 4-subset of f contains an even
number of triples of A.

If there exists an integer k, such that every pair in @
occurs in k triples of A, then we call the two-graph

(2,A) regular.

: . . , . od
Let @, of cardinality n, denote a set of equiangular lines in R
with angle O < ¢ < 7/2. We select along each line a vector and define
the following graph on those n vectors:

2 vectors are adjacent iff the angle between the vectors is obtuse.

A triple of lines in Q is called good if we can choose 3 vectors
along the lines, one along each line, such that all three angles are

obtuse.

e.g.

A triple of lines in © is called bad if we can choose 3 vectors
along the lines, one along each line, such that all three angles are
acute.

Observe that a triple of lines is either good or bad, and that there
is no third possibility.

To be more precise, consider a good triple of lines in &, If we
choose any three vectors along the lines (one along each line),

then the graph of these vectors is
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If the triple is bad, then the graph is

d////‘\\\\\ .
o or - ‘ .

For the vertices a and b (a # b) of a graph, we define the following:

[abl := 1 if ab is a nonedge,

[abl = -1 if ab is an edge.

The following can be easily verified:

a triple of lines in Q is good iff for the vertices a,b,c of the
corresponding graph [abl[ac}[bc] = -1 holds, and it is bad

iff [abllbellac] = 1.

Call [abel := [abllacllbel.

We claim that every 4-subset X of { contains an even number of good

triples.

Proof. Consider the graph corresponding with X on 4 vertices a,b,c,d.

The triples are abc, abd, acd, bed. [abel[abdllacd][bed] = 1, holds
because every [xyl, x,y = a,b,c,d ; x # vy occurs exactly twice in the

product., Hence,the number of good triples in X is even.

B

Example., The 6 diagonals of the icosahedron make up 20 triples.

Among these, 10 are bad. Every diagonal accurs in five bad triples,

every pair of diagonals in two bad triples.

, . . d .
We have shown above that a set of equiangular lines in R is a
two-graph,
Likewise, the converse holds (this we state without proof).

Hence, we can formulate the conclusions of this paragraph as follows:

5.5.3. Theorem. Two-graphs, switching classes of graph, and sets of

dependent equiangular lines are equivalent structures.
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Chapter 6.

Some problems from combinatorial geometry.

In this chapter we will deal with some problems of the Hungarian
mathematician Paul Erdds, in the area of combinatorial geometry.
First we will discuss sets of points with angles that are smaller

than /2 and n/3 + y , respectively, where y is small. (see [14] and

Secondly we examine sets of points in which each triangle is isosceles,
the so called isosceles sets, first introduced by L.M. Kelly. These

will turn out to be closely related to two-distance sets (see[ 41).

Paul Erdos conjectured many years ago that in d-dimensional R-space
the maximum number of points £(d), with all angles not larger than

. . . . d
/2 equals Zd and is realized by the d-dimensional hypercube {0,1},

that is {x ¢ g4 | X, € {0,1}, i = 1,2,..,d}. A simple proof for this

If also no right angles are allowed, one can easily see that £(2) = 3,

Croft proved £(3) = 5 and we will show the following result by

6.1 Introduction.
(191 ).

6.2. Sets of points with 1o obtuse angles,
conjecture was given by L. Danzer and B. Grumbaum [141],
Erdos and Furedi.

6.2.1,

Theorem.[19], The maximum number of points in Rd that provide only

sharp angles is larger than (1.15)d , for large d.

Proof. Consider the collection of vertices from the d-cube {O,I}d.

For any vertex a we define A := {i | a, = 1}. The triangle (a,b,c)
has a right angle in ¢ iff

(AnB cCc (AUB (*) ¢

Since (a,b,c) right in ¢ means <a-c,b-c> = 0 which is

equivalent to

‘/ysisd L a, =c; or bi =c, 1l .
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So

if ¢, = 1 then T¥(a.
i i

0 then ﬁ{ai

=0) M Cc AUB «

i ,
= 1) : AnBeccC,

fl
1]

if c. .
i i

We see now that the combinations (0,0,1) and (1,1,0) for (ai’bi’ci>

make the triangle (a,b,c) acute in c.

s ! 2 . .
Now choose 2m points a ,...., a ™ at random. That implies

prob(ai = Q) = prob(ag = 1) = },
It is clear now that
prob((a,b,c satisfy (*)) = Ggﬁd.
So
B(# (a,b,¢) with (+)) = 2m(zm-1) (2m-2) D,

We are now looking for an m which satisfies E(..) £ m. This results
in the inequality
2m(2m—1)(2m—2)(£0d Sm,
This inequality holds if
3,3.d 2 .48
8m (Z) <1 or ms= Q;S‘) .

We know now that we can find 2m points with at most m right triangles.
If we remove one point from all those triangles, there are still m
points left and no right triangles.
So

2 ,d-8 d . .

f(d) z2m= ( =) > (1.15) for sufficiently large d.

3 0

Remark. Some of the counting in this proof can be done much better.

However, it was not our intention to get the best possible result,

but only to show that the maximal number of points is exponential in d.

The method used in the proof of 6.2.1. can be used to solve the problem
of finding an upperbound of the maximum cardinality of sets in R
with the property that all 3-subsets determine "near'-equiangular

triangles. We need the following lemma.
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6.2.2. Lemma. Let X = {1,2,...,d}. b@é{ﬁ 1} there exists a collection
b 4

F = {FI’FZ""°} of subsets Fi from X, with lFil =k

such that
D JF; n P cek o 1#]

2
2) IF | > (1+ 0.4 e
Proof. Take Fi's with | Fi n Fj§ <ek. Assume that we have found n:

Fls Fopevennns, F o

Define ¢_ := 6 c X el =, 31 lc a F.| > kel
As long as the cardinality of G does not exceed {i} we can find an Fn+1'

For any i the number of G's with le n Fi! > ke,

is at most

k d~ke
() Gy -
F. rest
H 1 Iy i
) - N e
ke k~k ¢
It now follows
< k d-ke
16, 1 = 06 G -

So in the end at least
d
n=()/ k,, dke
k //(kg)(k—ke)'
Choose now k = {de. We find with Stirling's formula

(n = nne—nV2ﬂh) that
2
IFl =n 2 (1 + 0.4 ¢ )d. 1

6.2.3. Theorem.[19 ] The maximum cardinality of a set in Rd with the property
that all its 3-subsets determine angles smaller than =/3 + v,
where v 1s a small real, is higher than

a+ 304
Proof. The k-subsets of a d-set as used in lemma 6.2.2. can be consi-
dered as vertices x of the d-cube, lying in the hyperplane
d

L ox. =k
i=1 1



If we take three vertices x,v,z out of F then

<y=X,z=x> 2 k—2€§ .
<y-x,y-x> < (2% ,
<z-x,z-x> < (2K

k-2ek _
7K 2

Thus cos(Lyxz) = - €.

Since cos(n/3 +y) = } - %f3 v we find g ﬂ“gy.
So
f(d) = (1 + 0.4 az)d = (1 + 8/15 Y?‘)d > (1 + %Yz)d.

6.3. Isosceles point sets in Rd.

. . d . . . .
An 1sosceles set in R is a collection X of points, such that any triple
among them determines an isosceles triangle. The terminology that we

use is the following :

(i) Let X = {x],xz,...,xv}, then the affine hull aff(X) is defined
as

aff(X) = 1 §Z]aixi | = a, = 11,

We assume that aff(X) = Rd,

(i1) For any subset X, < X, dim(Xl) is the dimension of aff(X]).

1

(iii) A(X) represents the set of distances between points of X.

(iv) For a € A(X) let Xa be the graph defined on the set X, with

two points joined by an edge iff their distance equals a.

(v) Finally X is called decomposable if X can be partitioned into

X, and X, with FXZI > 1, such that each point of X, has the

same distance to all points of X, this distance may be dif-

2’

ferent for distinct points of Xl’ though.

6.3.1, Lemma. TIf X is decomposable, and (X], Xz) is a decomposition for X,
then

dim(Xl) + dim(Xz) £ dim(X)
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Proof. Let P be the orthogonal projection on aff(Xz). Then for

| € X1 . le is the center of a sphere in aff(Xz), containing

Since Xz spans aff(Xz), P maps X

any x

X onte a single point., Therefore

2° 1
the flats aff(X]) and aff(Xz) are orthogonal and the result follows.

0]

6.3.2. Theorem. If X is -indecomposable then it is a two-distance set.

Proof, First we examine the case that there is some distance a for
which'Xa is disconnected. Then we look at the case where there is
some a for which Xa has diameter larger than two. Finally we consider

the case that Xa has diameter two for each a ¢ A(X).

Case 1. Suppose there is an a ¢ A(X) such that Xa is disconnected,
then X is decomposable, for let X2 be a component of Xa having more
than one point. From the isosceles property it now follows that any

point not in X, has the same distance to all points in X

2

Case 2. Now suppose Xa is comnected for all a ¢ A(X) and let b be

9"

a distance such that there are two points, u and v, at distance three
in Xb' Let a be the Euclidean distance between u and v, We claim that
X is a two~distance set.

Let U be the set of points in X that are closer to u than to v in the
graph Xb and let V = X U. For any z in U there is a (u,z) path
entirely in U. So by the isosceles property v and z have distance a.
Similarly u has Eutlidean distance a to any point in V. Now take

z, €U and 2z, €V and let P, be a shortest (z],u) path,P, a shortest

1 2 1 2

(zz,v) path, If z, is adjacent to z, in Xb’ they have distance b.

If z is not adjacent to any point in P, then they have distance a

by the isosceles property. Similarly if222 is not adjacent to any
point of P,. Now if both points T v

do have a neighbour on the z, 2,
other path it is clear from the

picture that the following

holds : u v

db(vazl) < db(v,zz} < db(u’z } < db(u’zl) b4

where db(x,y) is the "distance" of x and v in Xb.

Phis is a contradiction.
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Now for any further distance c¢ the graph Xc cannot be connected,
since U and V are only joined by distances a and b.

Therefore X is a two-distance set.

Case 3. Suppose now that Xa is connected for every distance a,
and has diameter 2. Suppose there are three distances. Call them
a, b and c. We will construct an infinite subset of X, thus obtaining

a contradiction.

Let z be an arbitrary point in X and a, a point at distance a from z.

1

In X there is a point b} having distance b to both z and a for the

diameter of X is 2. Similarly we can find a point c, having distance

]

¢ to both z and bl' Since 3, is part of the triangle c]a]b] s

c’la1 is either c or b, but since it is also a side of the triangle

c,a,z it is either a or ¢, and therefore it has to be c. Now let a,

be a point at distance a from both ¢, and z and define bz, c2, 33, . e

in the way indicated above, we will ;how that at each step at the
construction of the infinite set the last comnstructed point has the
same distance to all previous constructed points. Suppose the last
point we added was a,, we assume that our induction assumption holds
for all points preceding s i.e. if dj is a point of the sequence,

where d = a, b or ¢ and j < k, then dj has distance d to all points

preceding dj' By definition a, has distance a to z and Crmy”
C i i - . » i -
omparing the triangles zakbJ and ck—lakbj we see that aka is a
Similarly, comparing the triangles zakcj and bj+lakcj {where

‘3] < . T . .

] k} we conclude that akcj is a. Finally the triangles bk_]akaJ

and Ck—lakaj force a, a, to be a. Since every point has a different

kj .
distance to its predecessors all points we obtain in this way are new,
therefore we constructed an infinite subset of X, a contradiction.

Therefore X is a two~distance set.

]

Remark. Cases 2 and 3 can be considered as the proof of the following
pure graph-theoretic theorem:

Let R (the complete graph on n vertices) be edge—coloured with k
colours, such that every triangle has at most two colours, and for each

colour, the induced graph on that colour is connected. Then k = 2.



6.3.3. Theorem.[4 ]. Let X be an isosceles set in Ré, then
card(X) < 1(d+1)(d+2) .

Equality implies that X is a two-distance set, or a

spherical two-distance set together with its center.

Proof. The proof is by induction, If d = 1 then 3 is the maximum
cardinality and X is a spherical set together with it's center.

For d = 2 Kelly proved that the maximum is 6, realized by the
centered regular pentagon.

Now let d > 2. If X is a two-distance set then we have the required
inequality (see 5.2. ).Now suppose X is decomposable, (XI’XZ)

being a decomposition.

Case 1. dim X] # 0. Since lel > 1 we have 0 ¢ dim(Xl) < d.

Let d] = dim(XI), then by induction we have

%] = 3(d,+1)(d,+2) + $(d=d +1)(d=d;+2) < §(d* D) (d+2).

Case 2. dim(XI) = 0. In this case X, is a single point and therefore

X2 is spherical, If X2

say X, = (XE,XE). But now (XI U X‘,X;) is a decomposition of X as

1
is not a two-distance set it is decomposable

in case 1, This finishes the proof.
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