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The M/G/1 FIFO queue with several customer classes

Onno J. Boxma ∗† and Tetsuya Takine ‡

July 14, 2003

Abstract

In this note we present short derivations of the joint queue length distribution in the
M/G/1 queue with several classes of customers and FIFO service discipline.

Keywords: single server queue, several customer classes, FIFO, joint queue length distri-
bution.

1 Introduction

Takine [3] derives the joint queue length distribution in a class of FIFO single server queues
with multiple, possibly correlated, non-Poissonian arrival streams, where the service time
distributions of customers may be di�erent for di�erent streams. He observes (pp. 350-
351): "When the arrival streams follow independent Poisson processes, the joint probability
generating function of the stationary distribution of the number of customers from each stream
is given by a simple formula, which should be found somewhere, even though we could not �nd
it in the literature." The purpose of the present note is threefold: (i) point at an unpublished
report of Wallström [4] which contains that simple formula for the generating function (GF)
of the joint distribution of numbers of customers; (ii) present short and elementary proofs of
that formula; (iii) correct a minor error in [3] which results in a wrong expression for this GF,
thus properly documenting this basic result for a classical queue.

2 Model description

We consider a single server system with K customer classes, which are served without pri-
orities according to the FIFO discipline. Customers of class i arrive according to a Poisson
process with rate λi, and require a service time Bi with distribution Bi(·), having Laplace-
Stieltjes transform (LST) βi{·}, with mean EBi. The total arrival rate is λ :=

∑K
i=1 λi. All

arrival intervals and service times are independent. The tra�c load of class i is denoted by
ρi := λiEBi, and the total tra�c load by ρ :=

∑K
i=1 ρi. The common bu�er has in�nite

capacity. Hence ρ < 1 is a necessary and su�cient condition for the existence of steady-state
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distributions of performance measures like waiting times and queue lengths. Since the arrival
processes are Poissonian, all customer classes have the same waiting time distribution. De-
note the steady-state waiting time by W , the vector of the steady-state numbers of waiting

customers by (X1, . . . , XK) and the vector of the steady-state numbers of customers in the
system (including the one possibly in service) by (Y1, . . . , YK).

3 The queue length distribution

In the sequel, let L :=
∑K

i=1 λi(1 − zi) and |zj | ≤ 1, j = 1, . . . ,K. Wallström [4] proves the
following result:

Theorem 3.1.

E[zY1
1 . . . zYKK ] = (1− ρ)

∑K
i=1 λi(1− zi)βi{L}∑K
i=1 λi[βi{L} − zi]

. (3.1)

Wallström obtains this result by considering a busy period that starts with the service of a
class-i customer. He distinguishes successive generations in this busy period: generation 0 is
the �rst service time, and generation j consists of the service times of all customers arriving
during generation j−1. He conditions the queue length vector at some arbitrary time t during
the j-th generation of the busy period on the numbers of arrivals in the ( j − 1)-st generation,
and on the numbers of departures in the j-th generation prior to t. By deconditioning he
obtains (3.1) after a lengthy calculation.

Below we present two elementary proofs of the above theorem. Starting point in both
proofs is the observation that, if the total number X of waiting customers equals n, then
the vector (X1, . . . , XK) of waiting customers is multinomially distributed with parameters
(n, λ1

λ , . . . ,
λK
λ ) (a similar statement for the vector of total numbers of customers is not true

in general). Hence

E[zX1
1 . . . zXKK |X = n] = (

λ1

λ
z1 + · · ·+ λK

λ
zK)n = (1− L

λ
)n,

resulting in

E[zX1
1 . . . zXKK ] = E[(1− L

λ
)X ].

An application of the distributional form of Little's law [2] for the total number of waiting
customers in an M/G/1 queue, viz., E[zX ] = E[exp(−λ(1−z))W ], yields, in combination with
the Pollaczek-Khintchine formula for the LST of the waiting time distribution (cf. Cohen [1],
p. 255):

E[zX1
1 . . . zXKK ] = E[e−LW ] = (1− ρ)

L∑K
i=1 λi[βi{L} − zi]

. (3.2)

Proof 1. This proof is based on the concept of attained waiting time , viz., the time the customer
presently in service (if any) has already spent in the system. Denote by WA,i the steady-state
attained waiting time of a class-i customer in service. Since all waiting customers have arrived
during the attained waiting time, an argument similar to the one leading to (3.2) yields:

E[zY1
1 . . . zYKK ] = (1− ρ) +

K∑
i=1

ρiziE[e−LWA,i ]. (3.3)
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Observe that WA,i equals in distribution the sum of two independent terms: The steady-state
waiting time and the past part of the service of the class- i customer. Hence

E[zY1
1 . . . zYKK ] = (1− ρ) +

K∑
i=1

ρiziE[e−LW ]
1− βi(L)
LEBi

. (3.4)

The theorem follows after substitution of (3.2) in (3.4).

Proof 2. The following proof is based on relations between queue lengths and numbers of
waiting customers, at various epochs. Using (3.2) one may rewrite Theorem 3.1 as

E[zY1
1 . . . zYkK ] = E[zX1

1 . . . zXkK ]
∑K

i=1 λi(1− zi)βi{L}
L

. (3.5)

We sketch a direct proof of this formula. Indicating by ST (STi) the event that a service of
any class (of class-i) has just started, by D (Di) the event that a customer (of class i) has just
left, and by A (Ai) the event that an arrival (of class i) is about to take place, we can write:

E[zX1
1 . . . zXKK ] =(1) E[zX1

1 . . . zXKK |A] =(2) E[zX1
1 . . . zXKK |D]

=(3) E[zX1
1 . . . zXKK |ST ] =(4) E[zX1

1 . . . zXKK |STi]. (3.6)

(1) follows from PASTA. (2): Burke's level crossing argument holds for the total number of
waiting customers right before an arrival and right after a departure, and then once more
apply the multinomial argument for the vectors of numbers of waiting customers. (3) is trivial
when a departure coincides with a service start; and if there were no waiting customers after
a departure, then there are also no waiting customers right after the next service starts. (4)
follows from the facts that all waiting customers just after the start of a class- i service arrived
during the waiting time of the class-i customer and all customer classes have the same waiting
time distribution. Finally notice that E[zY1

1 . . . zYkK |Di] = βi{L}E[zX1
1 . . . zXkK |STi]. Multiplying

both sides of (3.5) by L, and applying PASTA (for an arbitrary customer or a class- i customer,
that does not matter) to the lefthand side, it remains to prove:

K∑
i=1

λi(1− zi)E[zY1
1 . . . zYkK |Ai] =

K∑
i=1

λi(1− zi)E[zY1
1 . . . zYkK |Di]. (3.7)

Ignoring terms in which indices jm become negative, this formula states that

K∑
i=1

λiP(Y1 = j1, . . . , Yi = ji, . . . , YK = jK |Ai)

−
K∑
i=1

λiP(Y1 = j1, . . . , Yi = ji − 1, . . . , YK = jK |Ai)

=
K∑
i=1

λiP(Y1 = j1, . . . , Yi = ji, . . . , YK = jK |Di)

−
K∑
i=1

λiP(Y1 = j1, . . . , Yi = ji − 1, . . . , YK = jK |Di),
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or

K∑
i=1

λiP(Y1 = j1, . . . , Yi = ji, . . . , YK = jK |Ai)

+
K∑
i=1

λiP(Y1 = j1, . . . , Yi = ji − 1, . . . , YK = jK |Di)

=
K∑
i=1

λiP(Y1 = j1, . . . , Yi = ji − 1, . . . , YK = jK |Ai)

+
K∑
i=1

λiP(Y1 = j1, . . . , Yi = ji, . . . , YK = jK |Di). (3.8)

Observe that this formula states a global balance equation for the state (j1, . . . , ji, . . . , jK),
equating rates to leave respectively enter that state.

Remark 3.1. Theorem 1 in [3] contains the same result as Theorem 3.1 for a much more
general multiclass model. When specializing this theorem to the case of independent Poisson
streams in Formula (21) of [3], a minor error occurs.

Remark 3.2. As observed by Wallström [4], classical M/G/1 results are obtained when one
chooses either zj = 1, ∀j 6= i, or zj = z, ∀j.
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