

Dynamic reconfiguration in distributed hard real-time systems

Citation for published version (APA):
Alstein, D. (1991). Dynamic reconfiguration in distributed hard real-time systems. (Computing science notes; Vol.
9101). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/ce80ccb2-67aa-4da5-9fc1-c47733b9f2f9

Dynamic Reconfiguration
in

Distributed Hard Real-Time Systems

by

Dick Alstein
91/01

April, 1991

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor.

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Dynamic Reconfiguration
.
In

Distributed Hard Real-Time Systems

Dick Alstein

January 23, 1991

Abstract
The paper focuses on the problem of dynamic workload reconfiguration in dis­

tributed systems_ After the failure of a node, the processes that were allocated to
that node must be redistributed among the remaining nodes. The main technique
considered is process redundancy.

After an overview of design issues and solving techniques, the relevant literature
is discussed. Proposals are given for the methods to be used in the DEDOS project,
with directions for further research.

1 Introduction

This paper is intended to offer starting points for the development of fault-tolerance con­
cepts and dynamic reconfiguration algorithms for the DEpendable Distributed Operating
System DEDaS. Dynamic reconfiguration allows a distributed system to continue service
after the occurrence of a failure, i.e. to achieve fault-tolerance.

Distributed computer systems are necessary in order to control a physically dispersed
environment. In addition, they offer the possibility to achieve real-time response by exploit­
ing true parallellism, transparency with respect to service usage and resource allocation, a
high level of fault-tolerance by exploiting redundancy, flexibility and extendability. A dis­
tributed system consists of a number of processing units (nodes), connected to each other
by a network of communication channels (links). Information is exchanged between the
nodes by passing messages. As opposed to parallel machines, the nodes in a distributed
system work asynchronously, and not necessarily on the same task. The workload is dis­
tributed among the nodes by a global scheduling algorithm. A local scheduling algorithm
is responsible for allocating the resources of one node to several, possibly concurrent, pro­
cesses.

During operation, it may happen that one or more nodes fail. In that case, we don't
want a total breakdown, but a continuation of service or a graceful degradation of perfor­
mance. That is, we want the system to continue working with the remaining nodes as well

1

as possible and complete the assigned work. The reorganization that is needed to achieve
this is called dynamic reconfiguration.

An event related to node failure is that of a node coming up, either as an addition to the
system or after it has been repaired. Though this is not a failure, and does not endanger
the proper functioning of the system, we would like to use the new node, for reasons of
efficiency and increased reliability. This requires a similar reorganization.

We can distinguish two kinds of reconfiguration:

Network reconfiguration is needed when a link or a node fails. Failure of a node implies
that the connected communication links are out of order. The network must be
checked for partitionings, its new topology determined, and new routing schemes
constructed.

Workload reconfiguration. Each failed node was executing a number of processes, which
must now be allocated to other nodes. Workload reconfiguration is also necesarry
when a single process fails, e.g. because of a fault in the execution environment.

This paper will concentrate on the problem of workload reconfiguration. Special attention
will be paid to the specific issues related to reconfiguration in hard real-time systems.

The rest of the paper is laid out as follows. The next section contains a general discus­
sion of some of the issues related to reconfiguration, and techniques for solving them. The
third section gives an overview of a number of relevant publications. After that, sugges­
tions are made which methods to use in the DEDOS project. The final section contains
concluding remarks and directions for further research.

2 Design issues and techniques

Phases. In order to achieve fault-tolerance by recovery the following phases are necessary:

• Error detection: Recognizing the activation of a fault. The reconfiguration procedure
is initiated by the detection of an error. (e.g. after a timeout in communication, a
'disagreement' in voting, or by special checking hardware.)

• Fault passivation and diagnosis: Isolation of the part of the system that is in error,
to prevent further propagation of the error throughout the system. This is followed
by a diagnosis to determine the location and nature of the fault.

• Fault treatment: System repair, followed by the restoration of a consistent system
state to make continued operation possible. The repair may be done either manually
(e.g. replacement or off-line reconfiguration) or automatically (e.g. on-line reconfigu­
ration). In this paper we concentrate on the latter.

Alternatively, diagnosis may be executed as a periodic check, instead of event-driven diag­
nOSIs.

2

The lowest level component of the system that the diagnosis can recognize as faulty is
called the unit of failure; the whole component is diagnosed as having failed, even if part
of it is still functioning correctly. The reconfiguration also has a certain 'granularity', the
unit of reconfiguration. This will have to be at least as big as the unit of failure, since
diagnosis information is used by the reconfiguration algorithm.

Failure types. Failures! can be classified by two characteristics: single/multiple and
independent/related. The first division is on the number of failures in a given time interval.
Multiple failures can have separate causes, in which case they are called independent, or
they can be related. In the latter case the failures result from the propagation of errors
through the system.

Failure mode. The designer has to make assumptions about the behaviour of a failed
node. He has a choice of fail-silent (no output after failing), exceptional (recognizably
indicating a failure), and byzantine (any output is possible) behaviour. This choice will
deeply affect the complexity of the reconfiguration procedure, as it must take care to use
only information from correctly working nodes.

The types and modes of failure and the combinations of failures that the reconfiguration
algorithm can handle are stated in the fault hypothesis. Failures outside the fault hypothesis
are called catastrophic, as they result in unpredictable system behaviour.

Fault-tolerance taxonomy. Basically, tolerance to failures is achieved by redundancy,
either in hardware or software. When using hardware redundancy, the network contains a
number of extra nodes. During normal operation, these nodes will remain idle. When the
failure of a node is detected, its workload is transferred to one of the extra nodes. This
technique, though simple, has important disadvantages:

• Low efficiency. The extra nodes are not to be used until needed as a replacement.

• Low speed. Time is needed to retrieve the data for the lost processes2 from stable
storage. If speed is crucial, this delay can be avoided by giving each node its pri­
vate 'shadow node', running the same processes. However, this will greatly increase
hardware costs.

• Low flexibility. If all nodes have the same hardware there is no problem, but if a
node is equipped with special hardware (e.g. sensors, actuators), then the replacement
node must have the same equipment.

lIn this paper we will use the fault/error/failure model from [Lapr85]. The division of failure types
given in that publication, however, is not used here.

2Confusion may arise on the meaning of the word process, as various definitions are used in the publi­
cations mentioned in section 3. For the general discussion in this section, we will define a process as the
unit of global scheduling, i.e. the process as a whole will be allocated to a node.

3

Therefore, the main technique we will consider for workload reconfiguration is software
redundancy in the form of process redundancy: creating more than one instance of a
process. A number of posibilities emerge:

• The new instances may be created at the same time as the original (standby), or only
after detection of a failure (single copy).

• In case of standby, the redundant processes may be idle (passive redundancy or 'cold'
standby), or run in parallel, receiving the same input (active redundancy or 'hot'
standby).

There is an intermediate method between passive and active redundancy (which
might be called 'tepid standby'). We have one active instance and a number of
passive ones. Instead of writing checkpoints of the active instance to stable storage
(which is relatively slow), they are sent to the passive instances, to update their state.
If the active instance is lost, we only need to replay the message history in order to
restore a correct state.

• In case of active redundancy, the outputs of the instances must be combined to
one. This can be done by a reduction in either 'time space' or 'value space'. In the
first case, the outputs overwrite each other; a result is stored until it is replaced by
one from an other instance. Reduction in value space can be done by selecting the
output of a single instance while discarding the rest, or by majority voting (n-modular
redundancy, NMR).

• When using majority voting, there is the option to use instances that are not com­
pletely identical, but have been developed separately. They are based on the same
specification, but ideally use different algorithms, in order to prevent failures caused
by software faults (n-version programming, NVP).

There is a tradeoff between the amount of resources taken by redundancy and the
number of measures necessary to restore a proper functioning in case of a failure. Passive
redundancy has an advantage over single copy in that the new instances are already allo­
cated and loaded, but at the cost of higher memory usage. With active redundancy, we
don't need to get the new instances into a consistent state, as they run in parallel. How­
ever, this does increase the workload under normal (i.e. failure-free) working conditions.
Voting increases tolerance to failures, but it takes time to collect the votes and calculate
the result.

All these possibilities are summarized in the figure below.

4

1
How many instances are present?

more than 1

no
Do all instances receive the input?

yes

reduction in
time space

How are the outputs combined?

reduction in
value space

choose 1
What kind of reduction?

majority vote

yes
Are the instances identical?

no

no redundancy
(single copy)

passive redundancy
(cold standby)

active redundancy
with overwrite
(hot standby)

active redundancy
with select

(hot standby)

NMR

NVP
(design diversity)

'\

fault
reco­
very

1

fault
compen­
sation

In the first two cases we talk about fault recovery: the occurrence of a failure leads to
an erroneous system state, and specific measures must be taken in order to transform it to
a correct one. System performance is degraded during these recovery actions. The other
cases are examples of fault compensation (or fault masking): failures have no influence on

5

system service, as long as they remain within the fault hypothesis. Fault compensation
decreases the effective performance under normal operating conditions.

State consistency. When fault recovery is used, the reconfiguration algorithm must not
only provide new instances to replace the processes on the failed node, it must also ensure
that they have a consistent initial state. Feasible methods for achieving this goal are:

• Forward recovery: Simply restart the processes affected by the failure. This method
is often convenient in simple process control systems where the correct system state
can be deduced from the environment, e.g. for control loops.

• Backward recovery: Read the latest checkpoint from stable storage, and replay the
message history since that moment. If no checkpointing is done, then the initial state
is used. Backward recovery is usually found in transaction processing systems, e.g.
database systems.

Redundancy level. Normally, when a process is invoked, it will specify the desired
redundancy level (the number of instances). When one or more instances are lost because
of node failure, the actual redundancy level decreases. The reconfiguration algorithm then
has a choice of:

• maintaining the redundancy level (by generating new instances).

• maintaining only a minimum level (coming into action when the number of instances
drops below a given minimum).

• taking no action at all.

This design decision depends upon the probability of a node failure, and on the required
level of fault-tolerance.

A more elaborate method of 'redundancy level control' is to let the operating system
decide on the generation of instances, based on process fault-tolerance level and current
workload.

Reallocation. In the case of no redundancy, or when the redundancy level is maintained,
new instances must be generated to replace lost ones. These replacement processes must
of course be allocated to correct (i.e. non-failed) nodes. This job is closely related to global
scheduling. The scheduler must ensure that duplicate instances are assigned to different
nodes.

In hard real-time systems, the scheduler must guarantee that deadlines are met. Node
failures will invalidate this guarantee, unless the time consumed by the reconfiguration
algorithm is taken into account. This, however, is often very difficult because of the
complexity of the scheduling problem.

6

Network partitioning. If a partitioning of the network is possible (i.e. included in
the fault hypothesis), special care should be taken when designing the reconfiguration
algorithm. When a failure has partitioned the network, each part may view the rest as
being out of order. Consequently, it will try to take over every task that was running. For
non-idempotent operations this leads to catastrophic situations in the environment.

A possible solution would be to continue operation only with the part that contains
more than half the original number of nodes, and execute a shutdown procedure on the
other parts. However, there may be no part of the required size.

Communication. The techniques discussed above pose some demands on the commu­
nication services of the system:

• When active redundancy is used, all instances must receive input messages. For
reasons of transparency, it is desirable that the sender does not need to know the
number of instances and their location. The communication layer should take care
of this.

In addition, the reduction of multiple outputs to a single one may be offered as a
system service .

• In order to be able to replay the message history, it must be logged on stable storage.
When replaying it, the processes that are being restored to their state before the
failure will also be generating output. The messages that had already been sent
before must be intercepted. This can be realized e.g. by message numbering.

Output consistency. When active redundancy is used, the multiple outputs must be
combined. To facilitate this, we require output consistency: all instances on correct nodes
must produce the same output messages, and in the same order. If the computation is
deterministic, then a sufficient condition for output consistency is input consistency: all
instances process the input messages in the same order. In practice, input consistency is
often provided by the communication system.

However, nondeterminsm may be introduced into the computation, either by the sched­
uler (e.g. receive-statements) or by the program itself (e.g. case-statements, random num­
ber generation). If nondeterministic constructs are allowed, then special synchronization
measures must be taken to ensure that all instances follow the same execution path.

3 Relevant literature

The relevant literature was scanned. Only four publications relating to workload reconfig­
uration were found. They are summarized below.

7

Distributed fault-tolerant real-time systems: The MARS approach [Kope89].
This article gives an overview of the architecture of the MARS system. Features to be
noted when looking at reconfiguration are:

• The use of fail-silent components. Fail-silent behaviour is guaranteed through the
addition of self-checking software and specially designed checking hardware to each
node (as long as the failure stays within the fault hypothesis). Upon detection of a
failure, all output is cut off.

• Process redundancy by using hot standby. MARS knows two kinds of output mes­
sages, and treats them differently. State messages (e.g. about the temperature or
pressure) simply overwrite each other (reduction in time space). With event mes­
sages (like the pressing of a button), the first one that arrives is accepted; subsequent
ones are discarded (reduction in value space with select). Because of the fail-silent
behaviour, any output that is received is correct. Consequently, voting does not
increase fault-tolerance.

Decentralized decision making for task reallocation in a hard real-time system
[Stan89]. As expressed in the title, the article presents a decentralized algorithm for the
reallocation of tasks3

. It was specifically designed for hard real-time systems, implying
that it considers deadlines and is aimed at making decisions fast. The algorithm is meant
to work in cooperation with a local scheduler, a global scheduler and a task dispatcher
that were presented in previous publications [Zhao87].

Tasks can run with both active and passive redundancy. When a task is invoked, it
specifies two replication factors, one for the number of active copies and one for passive
copies. For active copies, this redundancy level is kept above a minimum value (typically
the number of instances necessary for a valid vote on the outputs). The redundancy level
for passive copies is maintained.

The basic concept for reallocation is the buddy site. When a task is started, a list
of buddy sites is chosen. The list consists of nodes that can meet the tasks' resource
requirements. The length of the list (the reallocation factor) and the resource requirements
are specified by the task. If the original node fails, the first node in the list becomes
responsible for the execution of the task. If it cannot accommodate the task by itself, a
number of methods can be used to find another node:

• Bidding. A broadcast is sent, asking which node can take the task.

• Focused addressing. The task is sent directly to a node that is viewed as having a
low workload.

• Cancelling lower priority tasks.

3In this article, a task is defined as the non-preemptable unit of computation. Tasks are assumed to be
independent.

8

The order in which these methods are employed depends on policy and current system
state.

The paper concludes with a performance analysis based on a simulation program.

Reconfiguration procedure in a distributed multiprocessor system [Bari82].
This paper describes the reconfiguration algorithm of the MuTEAM prototype. After
detection of a failure and its diagnosis, reallocation of nonredundant processes is achieved
by means of choice messages. Each node decides which processes it can accommodate,
and makes this choice known to the other nodes by broadcasting a choice message. A
conflict arises if a process is claimed by two nodes at the same time. This is resolved by
assigning arbitrarily chosen priorities to the nodes. The node with the highest priority gets
the process.

Each node keeps an allocation table, containing an entry for each process that must be
reallocated. The choice messages fill this table. Filled entries can only be overwritten by
choice messages from a node with higher priority. When the table is full, the node waits
for a period equal to twice the maximum communication delay, to allow for the processing
of choice messages under way. Then it exits the algorithm. In this way, it is ensured that,
upon exit, the same reallocation information is present at each node.

A decentralized fault diagnosis algorithm was decribed in a previous article [Ciom81J.

The Delta-4 Extra Performance Architecture [Barr90j. In the Delta-4 system,
several process redundancy techniques are available to the applications programmer: ac­
tive redundancy, passive redundancy, and a new technique called the leader /follower model.
This is a form of hot standby that tries to combine the advantages of active and passive
redundancy. All instances are active, but only one, the leader, delivers its output. The out­
put messages from the other instances (the followers) are discarded by the communication
system. Program code is not required to be deterministic; if the leader reaches a point in
the computation where a decision is taken which affects determinism, it sends its decision
to the followers. To retain state consistency in case of preemption, the leader/follower
model also incorporates a preemption synchronization mechanism.

Output validation is not necessary, since the nodes in a Delta-4 system are fail-silent.
Each node consists of a host computer and a specialized communication processor, the
Network Attachment Controller (NAC). The NAC ensures the fail-silent behaviour.

4 Fault-tolerance models for DEDOS

The DEDOS project is currently in progress at the Eindhoven University of Technology.
It is aimed at the development of techniques and methods for the construction of a DE­
pendable Distributed Operating System, for use in hard real-time environments. For an
overview of the project, see [Stok91].

In this section, suggestions are made for the reconfiguration methods to be used in
the DEDOS project. Two versions are presented, differring in the complexity of measures

9

taken. Before looking at the differences and the characteristics that they have in common,
we list the assumptions underlying both versions.

• Processes are dependent.

• The nodes are connected by a broadcast network; there is a central communication
channel ('backbone') to which each node is connected by a single link. This implies
that when a link fails, the connected node is isolated from the rest of the network,
leading to a node failure.

• Reliable communication services are present.

• The fault hypothesis includes node and process failures, single and multiple failures,
and independent and related failures. Failures caused by software faults, other than
process or node crashes, are excluded.

• Nodes are assumed to have a fail-silent behaviour.

• All hard real-time (HRT) processes are periodic and known to the scheduler before
system startup. For simplicity, we assume that the nature of HRT processes is such
that forward recovery is possible.

Below, the characteristics shared by both versions are discussed.

• Process redundancy is a technique which takes a lot of processing resources, and
should be used only for critical processes. Therefore, only HRT processes run with
hot standby. The required redundancy level is specified by the process.

• Soft real-time (SRT) processes run as a single copy. After a failure, they are reallo­
cated and restarted.

• Loss of all remaining instances of an HRT process will lead to violation of the deadline,
and initiates an exception schedule (using forward recovery). SRT processes that were
running on a failed node will be aborted.

• In DEDOS, backward recovery will be used for objects of SRT processes if they are
declared recoverable by the programmer. To make an SRT process recoverable after
reallocation, all the objects it uses must be recoverable as well.

Because hot standby is used, HRT processes do not need backward recovery. If some
instances are lost, the remaining ones ensure a proper functioning. If all instances
are lost, forward recovery is preferred to reading checkpoints.

• For HRT, the unit of failure is the process.

10

In the DEDOS project, a choice has been made to perform the scheduling of HRT threads
statically (off-line). SRT threads will be scheduled on-line. Static scheduling allows one to
use scheduling methods that would be too time-consuming when used dynamically. Timely
execution can be guaranteed before system startup, provided that no failures outside the
fault hypothesis occur. However, the situation becomes complicated when we consider the
possibility of node failure. Unless the fault hypothesis is extremely simple, generating a
(partial) schedule to adjust to every type and moment of failure will be too expensive in
terms of calculation time and storage space. If we want to avoid this, there are basically
two possibilities:

1. Restrict the reconfiguration, so that no new HRT processes are generated. Thus, no
recalculation of the schedule is needed.

2. Use a second, faster method to generate the new schedule on-line.

Along these lines, two versions can be constructed:

Simple version. Characteristics:

• If an instance of an HRT process is lost, no new instance is generated (i.e. the
redundancy level is not maintained). The remaining instances ensure that the
work is completed.

• A node that is added to the system is used to take over the workload of a node
that has failed. However, at the moment a node comes up, there may be no
failed node (i.e. the system has not yet experienced a node failure). In that case,
the new node can only be used for SRT processes. In order to get a balanced
workload, SRT processes already allocated to other nodes may be migrated to
the new node.

• Diagnosis is performed periodically, in order to make it better schedulable. It
consists of simply updating state information, i.e. the involved process instances
are marked as lost, and no further fault diagnosis is done. The worst-case
execution time needed for diagnosis and subsequent reconfiguration is low, so
that it can be incorporated in the HRT schedule.

Because the redundancy level decreases in time, this version can only be of use if the
failure rate is low in comparison with the time that the system must be operational.

Elaborate version. Characteristics:

• The redundancy level is maintained, ensuring a constant level of tolerance to
node and process failures.

• A fast method for modifying the existing HRT schedule (or generating new
ones) must be devised. Because of this speed requirement, it will be heuristic
and sub-optimal.

11

• Diagnosis is event-driven, in order to adapt to the new situation fast. In addi­
tion, the diagnosis is more detailed than in the simple version and tries to locate
failures down to the lowest possible unit of failure.

A drawback of this version is the extra design effort, as it requires both an on-line
and an off-line scheduler. Furthermore, optimality of the schedule is lost at the first
failure. It remains to be seen whether an on-line scheduler can be designed that is
both fast enough and able to generate a feasible schedule.

As usual, we come up with an intermediate solution.

Mixed version. In this version, reconfiguration is done in two steps:

• For a quick response after failure detection, we will only update state information
and continue with the remaining instances of the HRT processes involved, like
in the simple version.

• At the same time, an SRT task is started, to calculate a new schedule, optimized
for use with the new configuration. When the new schedule is ready (and
provided no additional failures are detected in the mean time), the workload
is allocated anew. Thus, an upper bound for the initial response time can be
guaranteed, while eventual optimality of the schedule is retained if the failure
rate is low enough. The redundancy level is maintained in the new schedule.

• Diagnosis is event-driven, as in the elaborate version.

5 Conclusion

Since not much literature on fault-tolerance and dynamic reconfiguration is available, and
this area is becoming increasingly important, further research is justified. Especially the
following aspects require further investigation.

• The assumption that failed nodes have fail-silent behaviour is not quite realistic, but
it avoids design complications. In a later stadium, this assumption may be relaxed
towards exceptional behaviour. Byzantine failures remain excluded.

• Care must be taken to avoid unwanted effects of duplicate outputs from instances of
HRT processes. This can be done either by making sure that overwriting is harmless,
or by intercepting the messages in the communication layer. In any case, these
measures must be such that an instance need not be 'aware' of the existence of other
instances; it is allowed to generate output, and it is up to the operating system to
handle it correctly.

• When a new schedule has been calculated after a failure, complications may be
encountered. The switchover to the new schedule must be synchronized, e.g. to the
begin of a new period.

12

• As yet, no diagnosis algorithm has been developed for DEDOS. The diagnosis should
be decentralized, so that no single node can decide on the shutting off of other nodes
or processes.

• An on-line scheduler, both for SRT and HRT tasks in case of a node or process failure
is needed.

• The problems encountered when the network is partitioned, as described in section
2, have not yet been dealt with.

• It would be interesting to study the effects of nondeterminism on output consistency
(as mentioned in section 2), and to determine what synchronization measures would
be sufficient.

After elaboration of these issues the fault-tolerance models for DEDOS must be for­
malized. How this can be done is presently investigated by a related project4. Only then
the various algorithms can be designed and verified.

References

[Bari82] G. Barigazzi, A. Ciuffoletti, 1. Strigini, "Reconfiguration procedure in a dis­
tributed multiprocessor system", Proceedings of the 12th Fault-tolerant com­
puting symposium (FTCS-12), June 1982, pp. 73-80.

[Barr90] P.A. Barrett e.a., "The Delta-4 Extra Performance Architecture", Proceedings
of the 20th Fault-tolerant computing symposium (FTCS-20), June 1990, pp.
481-488.

[Ciom81] P. Ciompi, F. Grandoni, 1. Simoncini, "Distributed diagnosis in distributed
multiprocessor systems: the MuTEAM approach", Proceedings of the 11th
Fault-tolerant computing symposium (FTCS-ll), June 1981, pp. 25-29.

[Kope89] H. Kopetz e.a., "Distributed fault-tolerant real-time systems: The MARS ap­
proach", IEEE Micro, February 1989, pp. 25-40.

[Lapr85] J.C. Laprie, "Dependable computing and fault tolerance: concepts and termi­
nology", Proceedings of the 15th Fault-tolerant computing symposium (FTCS-
15), June 1985, pp. 2-11.

[Stan89] J.A. Stankovic, "Decentralized decision making for task reallocation in a hard
real-time system", IEEE Transactions on Computers, Vol. 38, No.3, March
1989, pp. 341-355.

4The Dutch STW project "Fault-Tolerance: Paradigms, Models, Logics, Construction" (grant number
NWI88.1517).

13

[Stok91] P.D.V. v.d. Stok e.a., "The dependable distributed operating system DEDOS",
to be published.

[Zha087] W. Zhao, K. Ramamritham, J.A. Stankovic, "Scheduling tasks with resource
requirements in hard real-time systems", IEEE Transactions on Software En­
gineering, Vol. 13, No.5, May 1987, pp. 564-577.

14

86/14 R Koymans

87/01 R Gerth

87/02 Simon J. Klaver
Chris P.M. Verberne

87/03 G.J. Houben
J.Paredaens

87/04 T.Verhoeff

87/05 RKuiper

87/06 RKoymans

87/07 R.Koymans

87/08 H.M.J.L. Schols

87/09 J. Kalisvaart
L.RA. Kessener
W.J.M. Lemmens
M.L.P. van Lierop
F.J. Peters
H.M.M. van de Wetering

87/10 T.Verhoeff

87/11 P.Lemmens

87/12 K.M. van Hee and
A.Lapinski

87/13 J.C.S.P. van der Woude

87/14 J. Hooman

87/15 C. Huizing
R Gerth
W.P. de Roever

87/16 H.M.M. ten Eikelder
J. C.P. Wilmont

87/17 K.M. van Hee
G.-J.Houben
J.L.G. Dietz

Specifying passing systems requires extending
temporal logic.

On the existence of sound and complete axiomati
zations of the monitor concept.

Federatieve Databases.

A formal approach to distributed information
systems.

Delay-insensitive codes - An overview.

Enforcing non-determinism via linear time temporal logic
specification.

Temporele logica specificatie van message
passing en real-time systemen (in Dutch).

Specifying message passing and real-time
systems with real-time temporal logic.

The maximum number of states after projection.

Language extensions to study structures for raster
graphics.

Three families of maximally nondeterministic
automata.

Eldorado ins and outs. Specifications of a data base manage­
ment toolkit according to the functional model.

OR and AI approaches to decision support systems.

Playing with patterns - searching for strings.

A compositional proof system for an occam-like
real-time language.

A compositional semantics for statecharts.

Normal forms for a class of formulas.

Modelling of discrete dynamic systems
framework and examples.

In this series appeared :

No. Author(s)

85/01 R.H. Mak

85/02 W.M.C.J. van OvelVeld

85/03 W.J.M. Lemmens

85/04 T. Verhoeff
H.M.L.J.Schols

86/01 R. Koymans

86/02 G.A. Bussing
K.M. van Hee
M. Voomoeve

86/03 Rob Hoogerwoord

86/04 G.J. Houben
J. Paredaens
KM. van Hee

86/05 J.L.G. Dietz
KM. van Hee

86/06 Tom Verhoeff

86/07 R. Gerth
L. Shira

86/08 R. Koymans
R.K Shyamasundar
W.P. de Roever
R. Gerth
S. Arun Kumar

86/09 C. Huizing
R. Gerth
W.P. de Roever

86/10 J. Hooman

86/11 W.P. de Roever

86/12 A. Boucher
R. Gerth

86/13 R. Gerth
W.P. de Roever

Title

The formal specification and derivation of CMOS-circuits.

On arithmetic operations with M-out-of-N-codes.

Use of a computer for evaluation of flow films.

Delay insensitive directed trace structures satisfy the foam
the foam rubber wrapper postulate.

Specifying message passing and real-time systems.

ELISA, A language for formal specification of
information systems.

Some reflections on the implementation of trace structures.

The partition of an information system in several
systems.

A framewolX for the conceptual modeling of
discrete dynamic systems.

Nondeterminism and divergence created by
concealment in CSP.

On proving communication closedness of distributed
layers.

Compositional semantics for real-time distributed
computing (Inf.&Control 1987).

Full abstraction of a real-time denotational
semantics for an OCCAM-like language.

A compositional proof theory for real-time
distributed message passing.

Questions to Robin Milner - A responder's
commentary (1FIP86).

A timed failures model for extended communicating
processes.

Proving monitors revisited: a first step towards
verifying object oriented systems (Fund. Informatica
IX-4).

87/18 C.W.A.M. van Overveld An integer algorithm for rendering curved
surfaces.

87/19 AJ.Seebregts Optimalisering van file allocatie in
gedistrlbueerde database system en.

87/20 G.J. Houben The Rl -Algebra: An extension of an algebra
J. Paredaens for nested relations.

87/21 R. Gerth Fully abstract denotational semantics for concurrent
M. Codish PROLOG.
Y. Lichtenstein
E. Shapiro

88/01 T. Verhoeff A Parallel Program That Generates the M6bius Sequence.

88/02 K.M. van Hee Executable SpeCification for Information Systems.
G.J. Houben
L.J. Somers
M. Voorhoeve

88/03 T. Verhoeff Settling a Question about Pythagorean Triples.

88/04 GJ. Houben The Nested Relational Algebra: A Tool to Handle
J.Paredaens Structured Information.
D.Tahon

88/05 K.M. van Hee Executable SpeCifications for Information Systems.
GJ. Houben
L.J. Somers
M. Voorhoeve

88/06 H.M.J .L. Scho1s Notes on Delay-Insensitive Communication.

88/07 C. Huizing Modelling Statecharts behaviour in a fully abstract
R. Gerth way.
W.P. de Roever

88/08 KM. van Hee A Formal model for System Specification.
GJ. Houben
LJ. Somers
M. V oorhoeve

88/09 AT.M. Aerts A Tuwrial for Data Modelling.
K.M. van Hee

88/10 J. C. Ebergen A Formal Approach to Designing Delay Insensitive Circuits.

88/11 G.J. Houben A graphical interface formalism: specifying nested
J .Paredaens relational databases.

88/12 AE. Eiben Abstract tbeory of planning.

88/13 A Bijlsma A unified approach to sequences, bags, and trees.

88/14 H.M.M. ten Eikelder Language tbeory of a lambda-calculus with
R.H. Mak recursive types.

88/15 R. Bos
C. Hemerik

88/16 C.Hemerik
J.P.Katoen

88/17 K.M. van Hee
G.J. Houben
L.J. Somers
M. Voorhoeve

88/18 K.M. van Hee
P.M.P. Rambags

88/19 D.K. Hammer
K.M. van Hee

88/20 K.M. van Hee
L. Somers
M.Voorhoeve

89/1 E.Zs.Lepoeter-Molnar

89/2 R.H. Male
P.Struik

89/3 H.M.M. Ten Eikelder
C. Hemerik

89/4 J.Zwiers
W.P. de Roever

89/5 Wei Chen
T.Verhoeff
J.T.Udding

89/6 T. V erhoeff

89n P.Struik

89/8 E.H.L.Aarts
A.E.Eiben
K.M. van Hee

89/9 K.M. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

89/12 A.T.M.Aerts
K.M. van Hee

An introduction to the category theoretic solution
of recursive domain equations.

Bottom-up tree acceptors.

Executable specifications for discrete event systems.

Discrete event systems: concepts and basic results.

Fasering en documentatie in software engineering.

EXSPECT, the functional part.

Reconstruction of a 3-D surface from its normal vectors.

A systolic design for dynamic programming.

Some category theoretical properties related to
a model for a polymorphic lambda-calculus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a paralell program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topology.

A new efficient implementation of CSP with output guards.

Algebraic specification and implementation of iofinite
processes.

A concise formal framework for data modeling.

90{16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

90{18 J.Coenen
E. v .d.Sluis
E.v.d.Velden

90{19 M.M. de Brouwer
P.A. C. Verlcoulen

90/20 M.Rem

90/21 K.M. van Hee
P.A.C. Verlcoulen

91/01 D. Alstein

91/02 R.P. Nederpelt
H.C.M. de Swart

91/03 J.P. Katoen
L.A.M. Schoenmakers

91/04 E. v.d. Sluis
A.F. v.d. Stappen

91/05 D. de Reus

91/06 K.M. van Hee

A fully abstract model for concurrent logic languages, p. 23.

On the asynchronous nature of communication in concurrent
logic languages: a fully abstract model based on sequences,
p.29.

Design and implementation aspects of remote procedure calls,
p. IS.

Two Case Studies in ExSpect, p. 24.

The Nature of Delay-Insensitive Computing, p.18.

Data, Process and Behaviour Modelling in an integrated
specification frameworlc, p. 37.

Dynamic Reconfiguration in Distributed Hard Real-Time
Systems, p. 14.

Implication. A survey of the different logical analyses of "if ... ,
then ... ", p. 26.

Parallel Programs for the Recognition of P-invariant Segments,
p. 16.

Performance Analysis of VLSI Programs, p. 31.

An Implementation Model for GOOD, p. 18.

SPECIFICATIEMETHODEN, een overzicht, p. 20.

89/13

89/14

89/15

89/16

89/17

90/1

90{2

90/3

90/4

90/5

90/6

90{7

90/8

90/9

90/10

90/11

90/12

90/13

90/14

90/15

A.T.M.Aerts
K.M. van Hee
M.W.H. Hesen

H.C.Haesen

J.S.C.P. van der Woude

A.T.M.Aerts
K.M. van Hee

MJ. van Diepen
K.M. van Hee

W.P.de Roever-H.Barringer
C.Courcoubetis-D.Gabbay
RGertb-B.Jonsson-A.Pnueli
M.Reed-J.Sifakis-J.Vytopil
P.Wolper

K.M. van Hee
P.M.P. Rambags

R Gertb

A. Peeters

J.A. Brzozowski
J.C. Ebergen

A.JJ.M. Marcelis

A.J.J.M. Marcelis

M.B. Josephs

A.T.M. Aerts
P.M.E. De Bra
K.M. van Hee

MJ. van Diepen
K.M. van Hee

P. America
F.S. de Boer

P.America
F.S. de Boer

K.R Apt
F.S. de Boer
E.R Olderog

F.S. de Boer

F.S. de Boer

A program generator for simulated annealing
problems.

ELDA, data manipulatie taal.

Optimal segmentations.

Towards a framework for comparing data models.

A formal semantics for Z and the link between
Z and the relational algebra.

Formal methods and tools for the development of
distributed and real time systems, pp. 17.

Dynamic process creation in ltigh-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate networks, p. 23.

Typed inference systems : a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. 15.

A formal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes 89/17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 110.

proving termination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent systems,
p. 17.

	Abstract
	1. Introduction
	2. Design issues and techniques
	3. Relevant literature
	4. Fault-tolerance models for DEDOS
	5. Conclusion
	References

