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Abstract 
The paper focuses on the problem of dynamic workload reconfiguration in dis­

tributed systems_ After the failure of a node, the processes that were allocated to 
that node must be redistributed among the remaining nodes. The main technique 
considered is process redundancy. 

After an overview of design issues and solving techniques, the relevant literature 
is discussed. Proposals are given for the methods to be used in the DEDOS project, 
with directions for further research. 

1 Introduction 

This paper is intended to offer starting points for the development of fault-tolerance con­
cepts and dynamic reconfiguration algorithms for the DEpendable Distributed Operating 
System DEDaS. Dynamic reconfiguration allows a distributed system to continue service 
after the occurrence of a failure, i.e. to achieve fault-tolerance. 

Distributed computer systems are necessary in order to control a physically dispersed 
environment. In addition, they offer the possibility to achieve real-time response by exploit­
ing true parallellism, transparency with respect to service usage and resource allocation, a 
high level of fault-tolerance by exploiting redundancy, flexibility and extendability. A dis­
tributed system consists of a number of processing units (nodes), connected to each other 
by a network of communication channels (links). Information is exchanged between the 
nodes by passing messages. As opposed to parallel machines, the nodes in a distributed 
system work asynchronously, and not necessarily on the same task. The workload is dis­
tributed among the nodes by a global scheduling algorithm. A local scheduling algorithm 
is responsible for allocating the resources of one node to several, possibly concurrent, pro­
cesses. 

During operation, it may happen that one or more nodes fail. In that case, we don't 
want a total breakdown, but a continuation of service or a graceful degradation of perfor­
mance. That is, we want the system to continue working with the remaining nodes as well 
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as possible and complete the assigned work. The reorganization that is needed to achieve 
this is called dynamic reconfiguration. 

An event related to node failure is that of a node coming up, either as an addition to the 
system or after it has been repaired. Though this is not a failure, and does not endanger 
the proper functioning of the system, we would like to use the new node, for reasons of 
efficiency and increased reliability. This requires a similar reorganization. 

We can distinguish two kinds of reconfiguration: 

Network reconfiguration is needed when a link or a node fails. Failure of a node implies 
that the connected communication links are out of order. The network must be 
checked for partitionings, its new topology determined, and new routing schemes 
constructed. 

Workload reconfiguration. Each failed node was executing a number of processes, which 
must now be allocated to other nodes. Workload reconfiguration is also necesarry 
when a single process fails, e.g. because of a fault in the execution environment. 

This paper will concentrate on the problem of workload reconfiguration. Special attention 
will be paid to the specific issues related to reconfiguration in hard real-time systems. 

The rest of the paper is laid out as follows. The next section contains a general discus­
sion of some of the issues related to reconfiguration, and techniques for solving them. The 
third section gives an overview of a number of relevant publications. After that, sugges­
tions are made which methods to use in the DEDOS project. The final section contains 
concluding remarks and directions for further research. 

2 Design issues and techniques 

Phases. In order to achieve fault-tolerance by recovery the following phases are necessary: 

• Error detection: Recognizing the activation of a fault. The reconfiguration procedure 
is initiated by the detection of an error. (e.g. after a timeout in communication, a 
'disagreement' in voting, or by special checking hardware.) 

• Fault passivation and diagnosis: Isolation of the part of the system that is in error, 
to prevent further propagation of the error throughout the system. This is followed 
by a diagnosis to determine the location and nature of the fault. 

• Fault treatment: System repair, followed by the restoration of a consistent system 
state to make continued operation possible. The repair may be done either manually 
(e.g. replacement or off-line reconfiguration) or automatically (e.g. on-line reconfigu­
ration). In this paper we concentrate on the latter. 

Alternatively, diagnosis may be executed as a periodic check, instead of event-driven diag­
nOSIs. 
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The lowest level component of the system that the diagnosis can recognize as faulty is 
called the unit of failure; the whole component is diagnosed as having failed, even if part 
of it is still functioning correctly. The reconfiguration also has a certain 'granularity', the 
unit of reconfiguration. This will have to be at least as big as the unit of failure, since 
diagnosis information is used by the reconfiguration algorithm. 

Failure types. Failures! can be classified by two characteristics: single/multiple and 
independent/related. The first division is on the number of failures in a given time interval. 
Multiple failures can have separate causes, in which case they are called independent, or 
they can be related. In the latter case the failures result from the propagation of errors 
through the system. 

Failure mode. The designer has to make assumptions about the behaviour of a failed 
node. He has a choice of fail-silent (no output after failing), exceptional (recognizably 
indicating a failure), and byzantine (any output is possible) behaviour. This choice will 
deeply affect the complexity of the reconfiguration procedure, as it must take care to use 
only information from correctly working nodes. 

The types and modes of failure and the combinations of failures that the reconfiguration 
algorithm can handle are stated in the fault hypothesis. Failures outside the fault hypothesis 
are called catastrophic, as they result in unpredictable system behaviour. 

Fault-tolerance taxonomy. Basically, tolerance to failures is achieved by redundancy, 
either in hardware or software. When using hardware redundancy, the network contains a 
number of extra nodes. During normal operation, these nodes will remain idle. When the 
failure of a node is detected, its workload is transferred to one of the extra nodes. This 
technique, though simple, has important disadvantages: 

• Low efficiency. The extra nodes are not to be used until needed as a replacement. 

• Low speed. Time is needed to retrieve the data for the lost processes2 from stable 
storage. If speed is crucial, this delay can be avoided by giving each node its pri­
vate 'shadow node', running the same processes. However, this will greatly increase 
hardware costs. 

• Low flexibility. If all nodes have the same hardware there is no problem, but if a 
node is equipped with special hardware (e.g. sensors, actuators), then the replacement 
node must have the same equipment. 

lIn this paper we will use the fault/error/failure model from [Lapr85]. The division of failure types 
given in that publication, however, is not used here. 

2Confusion may arise on the meaning of the word process, as various definitions are used in the publi­
cations mentioned in section 3. For the general discussion in this section, we will define a process as the 
unit of global scheduling, i.e. the process as a whole will be allocated to a node. 
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Therefore, the main technique we will consider for workload reconfiguration is software 
redundancy in the form of process redundancy: creating more than one instance of a 
process. A number of posibilities emerge: 

• The new instances may be created at the same time as the original (standby), or only 
after detection of a failure (single copy). 

• In case of standby, the redundant processes may be idle (passive redundancy or 'cold' 
standby), or run in parallel, receiving the same input (active redundancy or 'hot' 
standby). 

There is an intermediate method between passive and active redundancy (which 
might be called 'tepid standby'). We have one active instance and a number of 
passive ones. Instead of writing checkpoints of the active instance to stable storage 
(which is relatively slow), they are sent to the passive instances, to update their state. 
If the active instance is lost, we only need to replay the message history in order to 
restore a correct state. 

• In case of active redundancy, the outputs of the instances must be combined to 
one. This can be done by a reduction in either 'time space' or 'value space'. In the 
first case, the outputs overwrite each other; a result is stored until it is replaced by 
one from an other instance. Reduction in value space can be done by selecting the 
output of a single instance while discarding the rest, or by majority voting (n-modular 
redundancy, NMR). 

• When using majority voting, there is the option to use instances that are not com­
pletely identical, but have been developed separately. They are based on the same 
specification, but ideally use different algorithms, in order to prevent failures caused 
by software faults (n-version programming, NVP). 

There is a tradeoff between the amount of resources taken by redundancy and the 
number of measures necessary to restore a proper functioning in case of a failure. Passive 
redundancy has an advantage over single copy in that the new instances are already allo­
cated and loaded, but at the cost of higher memory usage. With active redundancy, we 
don't need to get the new instances into a consistent state, as they run in parallel. How­
ever, this does increase the workload under normal (i.e. failure-free) working conditions. 
Voting increases tolerance to failures, but it takes time to collect the votes and calculate 
the result. 

All these possibilities are summarized in the figure below. 
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1 
How many instances are present? 

more than 1 

no 
Do all instances receive the input? 

yes 

reduction in 
time space 

How are the outputs combined? 

reduction in 
value space 

choose 1 
What kind of reduction? 

majority vote 

yes 
Are the instances identical? 

no 

no redundancy 
(single copy) 

passive redundancy 
(cold standby) 

active redundancy 
with overwrite 
(hot standby) 

active redundancy 
with select 

(hot standby) 

NMR 

NVP 
(design diversity) 

'\ 

fault 
reco­
very 

1 

fault 
compen­
sation 

In the first two cases we talk about fault recovery: the occurrence of a failure leads to 
an erroneous system state, and specific measures must be taken in order to transform it to 
a correct one. System performance is degraded during these recovery actions. The other 
cases are examples of fault compensation (or fault masking): failures have no influence on 
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system service, as long as they remain within the fault hypothesis. Fault compensation 
decreases the effective performance under normal operating conditions. 

State consistency. When fault recovery is used, the reconfiguration algorithm must not 
only provide new instances to replace the processes on the failed node, it must also ensure 
that they have a consistent initial state. Feasible methods for achieving this goal are: 

• Forward recovery: Simply restart the processes affected by the failure. This method 
is often convenient in simple process control systems where the correct system state 
can be deduced from the environment, e.g. for control loops. 

• Backward recovery: Read the latest checkpoint from stable storage, and replay the 
message history since that moment. If no checkpointing is done, then the initial state 
is used. Backward recovery is usually found in transaction processing systems, e.g. 
database systems. 

Redundancy level. Normally, when a process is invoked, it will specify the desired 
redundancy level (the number of instances). When one or more instances are lost because 
of node failure, the actual redundancy level decreases. The reconfiguration algorithm then 
has a choice of: 

• maintaining the redundancy level (by generating new instances). 

• maintaining only a minimum level (coming into action when the number of instances 
drops below a given minimum). 

• taking no action at all. 

This design decision depends upon the probability of a node failure, and on the required 
level of fault-tolerance. 

A more elaborate method of 'redundancy level control' is to let the operating system 
decide on the generation of instances, based on process fault-tolerance level and current 
workload. 

Reallocation. In the case of no redundancy, or when the redundancy level is maintained, 
new instances must be generated to replace lost ones. These replacement processes must 
of course be allocated to correct (i.e. non-failed) nodes. This job is closely related to global 
scheduling. The scheduler must ensure that duplicate instances are assigned to different 
nodes. 

In hard real-time systems, the scheduler must guarantee that deadlines are met. Node 
failures will invalidate this guarantee, unless the time consumed by the reconfiguration 
algorithm is taken into account. This, however, is often very difficult because of the 
complexity of the scheduling problem. 
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Network partitioning. If a partitioning of the network is possible (i.e. included in 
the fault hypothesis), special care should be taken when designing the reconfiguration 
algorithm. When a failure has partitioned the network, each part may view the rest as 
being out of order. Consequently, it will try to take over every task that was running. For 
non-idempotent operations this leads to catastrophic situations in the environment. 

A possible solution would be to continue operation only with the part that contains 
more than half the original number of nodes, and execute a shutdown procedure on the 
other parts. However, there may be no part of the required size. 

Communication. The techniques discussed above pose some demands on the commu­
nication services of the system: 

• When active redundancy is used, all instances must receive input messages. For 
reasons of transparency, it is desirable that the sender does not need to know the 
number of instances and their location. The communication layer should take care 
of this. 

In addition, the reduction of multiple outputs to a single one may be offered as a 
system service . 

• In order to be able to replay the message history, it must be logged on stable storage. 
When replaying it, the processes that are being restored to their state before the 
failure will also be generating output. The messages that had already been sent 
before must be intercepted. This can be realized e.g. by message numbering. 

Output consistency. When active redundancy is used, the multiple outputs must be 
combined. To facilitate this, we require output consistency: all instances on correct nodes 
must produce the same output messages, and in the same order. If the computation is 
deterministic, then a sufficient condition for output consistency is input consistency: all 
instances process the input messages in the same order. In practice, input consistency is 
often provided by the communication system. 

However, nondeterminsm may be introduced into the computation, either by the sched­
uler (e.g. receive-statements) or by the program itself (e.g. case-statements, random num­
ber generation). If nondeterministic constructs are allowed, then special synchronization 
measures must be taken to ensure that all instances follow the same execution path. 

3 Relevant literature 

The relevant literature was scanned. Only four publications relating to workload reconfig­
uration were found. They are summarized below. 
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Distributed fault-tolerant real-time systems: The MARS approach [Kope89]. 
This article gives an overview of the architecture of the MARS system. Features to be 
noted when looking at reconfiguration are: 

• The use of fail-silent components. Fail-silent behaviour is guaranteed through the 
addition of self-checking software and specially designed checking hardware to each 
node (as long as the failure stays within the fault hypothesis). Upon detection of a 
failure, all output is cut off. 

• Process redundancy by using hot standby. MARS knows two kinds of output mes­
sages, and treats them differently. State messages (e.g. about the temperature or 
pressure) simply overwrite each other (reduction in time space). With event mes­
sages (like the pressing of a button), the first one that arrives is accepted; subsequent 
ones are discarded (reduction in value space with select). Because of the fail-silent 
behaviour, any output that is received is correct. Consequently, voting does not 
increase fault-tolerance. 

Decentralized decision making for task reallocation in a hard real-time system 
[Stan89]. As expressed in the title, the article presents a decentralized algorithm for the 
reallocation of tasks3

. It was specifically designed for hard real-time systems, implying 
that it considers deadlines and is aimed at making decisions fast. The algorithm is meant 
to work in cooperation with a local scheduler, a global scheduler and a task dispatcher 
that were presented in previous publications [Zhao87]. 

Tasks can run with both active and passive redundancy. When a task is invoked, it 
specifies two replication factors, one for the number of active copies and one for passive 
copies. For active copies, this redundancy level is kept above a minimum value (typically 
the number of instances necessary for a valid vote on the outputs). The redundancy level 
for passive copies is maintained. 

The basic concept for reallocation is the buddy site. When a task is started, a list 
of buddy sites is chosen. The list consists of nodes that can meet the tasks' resource 
requirements. The length of the list (the reallocation factor) and the resource requirements 
are specified by the task. If the original node fails, the first node in the list becomes 
responsible for the execution of the task. If it cannot accommodate the task by itself, a 
number of methods can be used to find another node: 

• Bidding. A broadcast is sent, asking which node can take the task. 

• Focused addressing. The task is sent directly to a node that is viewed as having a 
low workload. 

• Cancelling lower priority tasks. 

3In this article, a task is defined as the non-preemptable unit of computation. Tasks are assumed to be 
independent. 
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The order in which these methods are employed depends on policy and current system 
state. 

The paper concludes with a performance analysis based on a simulation program. 

Reconfiguration procedure in a distributed multiprocessor system [Bari82]. 
This paper describes the reconfiguration algorithm of the MuTEAM prototype. After 
detection of a failure and its diagnosis, reallocation of nonredundant processes is achieved 
by means of choice messages. Each node decides which processes it can accommodate, 
and makes this choice known to the other nodes by broadcasting a choice message. A 
conflict arises if a process is claimed by two nodes at the same time. This is resolved by 
assigning arbitrarily chosen priorities to the nodes. The node with the highest priority gets 
the process. 

Each node keeps an allocation table, containing an entry for each process that must be 
reallocated. The choice messages fill this table. Filled entries can only be overwritten by 
choice messages from a node with higher priority. When the table is full, the node waits 
for a period equal to twice the maximum communication delay, to allow for the processing 
of choice messages under way. Then it exits the algorithm. In this way, it is ensured that, 
upon exit, the same reallocation information is present at each node. 

A decentralized fault diagnosis algorithm was decribed in a previous article [Ciom81J. 

The Delta-4 Extra Performance Architecture [Barr90j. In the Delta-4 system, 
several process redundancy techniques are available to the applications programmer: ac­
tive redundancy, passive redundancy, and a new technique called the leader /follower model. 
This is a form of hot standby that tries to combine the advantages of active and passive 
redundancy. All instances are active, but only one, the leader, delivers its output. The out­
put messages from the other instances (the followers) are discarded by the communication 
system. Program code is not required to be deterministic; if the leader reaches a point in 
the computation where a decision is taken which affects determinism, it sends its decision 
to the followers. To retain state consistency in case of preemption, the leader/follower 
model also incorporates a preemption synchronization mechanism. 

Output validation is not necessary, since the nodes in a Delta-4 system are fail-silent. 
Each node consists of a host computer and a specialized communication processor, the 
Network Attachment Controller (NAC). The NAC ensures the fail-silent behaviour. 

4 Fault-tolerance models for DEDOS 

The DEDOS project is currently in progress at the Eindhoven University of Technology. 
It is aimed at the development of techniques and methods for the construction of a DE­
pendable Distributed Operating System, for use in hard real-time environments. For an 
overview of the project, see [Stok91]. 

In this section, suggestions are made for the reconfiguration methods to be used in 
the DEDOS project. Two versions are presented, differring in the complexity of measures 
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taken. Before looking at the differences and the characteristics that they have in common, 
we list the assumptions underlying both versions. 

• Processes are dependent. 

• The nodes are connected by a broadcast network; there is a central communication 
channel ('backbone') to which each node is connected by a single link. This implies 
that when a link fails, the connected node is isolated from the rest of the network, 
leading to a node failure. 

• Reliable communication services are present. 

• The fault hypothesis includes node and process failures, single and multiple failures, 
and independent and related failures. Failures caused by software faults, other than 
process or node crashes, are excluded. 

• Nodes are assumed to have a fail-silent behaviour. 

• All hard real-time (HRT) processes are periodic and known to the scheduler before 
system startup. For simplicity, we assume that the nature of HRT processes is such 
that forward recovery is possible. 

Below, the characteristics shared by both versions are discussed. 

• Process redundancy is a technique which takes a lot of processing resources, and 
should be used only for critical processes. Therefore, only HRT processes run with 
hot standby. The required redundancy level is specified by the process. 

• Soft real-time (SRT) processes run as a single copy. After a failure, they are reallo­
cated and restarted. 

• Loss of all remaining instances of an HRT process will lead to violation of the deadline, 
and initiates an exception schedule (using forward recovery). SRT processes that were 
running on a failed node will be aborted. 

• In DEDOS, backward recovery will be used for objects of SRT processes if they are 
declared recoverable by the programmer. To make an SRT process recoverable after 
reallocation, all the objects it uses must be recoverable as well. 

Because hot standby is used, HRT processes do not need backward recovery. If some 
instances are lost, the remaining ones ensure a proper functioning. If all instances 
are lost, forward recovery is preferred to reading checkpoints. 

• For HRT, the unit of failure is the process. 
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In the DEDOS project, a choice has been made to perform the scheduling of HRT threads 
statically (off-line). SRT threads will be scheduled on-line. Static scheduling allows one to 
use scheduling methods that would be too time-consuming when used dynamically. Timely 
execution can be guaranteed before system startup, provided that no failures outside the 
fault hypothesis occur. However, the situation becomes complicated when we consider the 
possibility of node failure. Unless the fault hypothesis is extremely simple, generating a 
(partial) schedule to adjust to every type and moment of failure will be too expensive in 
terms of calculation time and storage space. If we want to avoid this, there are basically 
two possibilities: 

1. Restrict the reconfiguration, so that no new HRT processes are generated. Thus, no 
recalculation of the schedule is needed. 

2. Use a second, faster method to generate the new schedule on-line. 

Along these lines, two versions can be constructed: 

Simple version. Characteristics: 

• If an instance of an HRT process is lost, no new instance is generated (i.e. the 
redundancy level is not maintained). The remaining instances ensure that the 
work is completed. 

• A node that is added to the system is used to take over the workload of a node 
that has failed. However, at the moment a node comes up, there may be no 
failed node (i.e. the system has not yet experienced a node failure). In that case, 
the new node can only be used for SRT processes. In order to get a balanced 
workload, SRT processes already allocated to other nodes may be migrated to 
the new node. 

• Diagnosis is performed periodically, in order to make it better schedulable. It 
consists of simply updating state information, i.e. the involved process instances 
are marked as lost, and no further fault diagnosis is done. The worst-case 
execution time needed for diagnosis and subsequent reconfiguration is low, so 
that it can be incorporated in the HRT schedule. 

Because the redundancy level decreases in time, this version can only be of use if the 
failure rate is low in comparison with the time that the system must be operational. 

Elaborate version. Characteristics: 

• The redundancy level is maintained, ensuring a constant level of tolerance to 
node and process failures. 

• A fast method for modifying the existing HRT schedule (or generating new 
ones) must be devised. Because of this speed requirement, it will be heuristic 
and sub-optimal. 
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• Diagnosis is event-driven, in order to adapt to the new situation fast. In addi­
tion, the diagnosis is more detailed than in the simple version and tries to locate 
failures down to the lowest possible unit of failure. 

A drawback of this version is the extra design effort, as it requires both an on-line 
and an off-line scheduler. Furthermore, optimality of the schedule is lost at the first 
failure. It remains to be seen whether an on-line scheduler can be designed that is 
both fast enough and able to generate a feasible schedule. 

As usual, we come up with an intermediate solution. 

Mixed version. In this version, reconfiguration is done in two steps: 

• For a quick response after failure detection, we will only update state information 
and continue with the remaining instances of the HRT processes involved, like 
in the simple version. 

• At the same time, an SRT task is started, to calculate a new schedule, optimized 
for use with the new configuration. When the new schedule is ready (and 
provided no additional failures are detected in the mean time), the workload 
is allocated anew. Thus, an upper bound for the initial response time can be 
guaranteed, while eventual optimality of the schedule is retained if the failure 
rate is low enough. The redundancy level is maintained in the new schedule. 

• Diagnosis is event-driven, as in the elaborate version. 

5 Conclusion 

Since not much literature on fault-tolerance and dynamic reconfiguration is available, and 
this area is becoming increasingly important, further research is justified. Especially the 
following aspects require further investigation. 

• The assumption that failed nodes have fail-silent behaviour is not quite realistic, but 
it avoids design complications. In a later stadium, this assumption may be relaxed 
towards exceptional behaviour. Byzantine failures remain excluded. 

• Care must be taken to avoid unwanted effects of duplicate outputs from instances of 
HRT processes. This can be done either by making sure that overwriting is harmless, 
or by intercepting the messages in the communication layer. In any case, these 
measures must be such that an instance need not be 'aware' of the existence of other 
instances; it is allowed to generate output, and it is up to the operating system to 
handle it correctly. 

• When a new schedule has been calculated after a failure, complications may be 
encountered. The switchover to the new schedule must be synchronized, e.g. to the 
begin of a new period. 
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• As yet, no diagnosis algorithm has been developed for DEDOS. The diagnosis should 
be decentralized, so that no single node can decide on the shutting off of other nodes 
or processes. 

• An on-line scheduler, both for SRT and HRT tasks in case of a node or process failure 
is needed. 

• The problems encountered when the network is partitioned, as described in section 
2, have not yet been dealt with. 

• It would be interesting to study the effects of nondeterminism on output consistency 
(as mentioned in section 2), and to determine what synchronization measures would 
be sufficient. 

After elaboration of these issues the fault-tolerance models for DEDOS must be for­
malized. How this can be done is presently investigated by a related project4. Only then 
the various algorithms can be designed and verified. 
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