
 

On Hankel invariant distribution spaces

Citation for published version (APA):
Eijndhoven, van, S. J. L. (1982). On Hankel invariant distribution spaces. (EUT report. WSK, Dept. of
Mathematics and Computing Science; Vol. 82-WSK-01). Technische Hogeschool Eindhoven.

Document status and date:
Published: 01/01/1982

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/4c7ef203-d3cc-446b-8b76-57b13f439ae3


TECHNISCHE HOGESCHOOL EINDHOVEN EINDHOVEN UNIVERSITY OF TECHNOLOGY. 

NEDERLAND THE NETHERLANDS 

ONDERAFDELING DER WISKUNDE DEPARTMENT OF MATHEMATICS 

EN INFORMATICA AND COMPUTING SCIENCE 

On Hankel invariant distribution spaces 

by 

S.J.L. van Eijndhoven 

EUT-Report 82-WSK-O] 

January 1982 



ON HANKEL INVARIANT DISTRIBUTION SPACES 

by 

S.J.L. van Eijndhoven 

This research was made possible by a grant from the Netherlands Organization 

for the Advancement of Pure Research. 



- i -

Contents 

Abstract 

Introduction 

The Hankel transform 

Hankel invariant test function spaces and generalized 

function spaces 

Analytic characterization of the elements in ~(X,log AB) 

Analytic characterization of the elements in Sx A 
, B 

Analytic characterization of the elements in ~(X,AB) 

Some linear operators in Sx A 
, B 

Appendix 

Acknowledgement 

Literature 

Page 

2 

5 

lJ 

14 

24 

34 

36 

41 

43 

44 



- ] -

Abstract 

Three Hankel invariant test function spaces and the associated generalized 

function spaces are introduced. The elements of the respective test function 

spaces are described both in functional analytic and in classical analytic 

terms. It is proved that one of the test function spaces equals the space H~ 

of Zemanian. Finally, some continuous linear mapping in the introduced spaces 

are discussed. 

A.M.S. Subject Classification 46F12, 46F05 46FIO. 
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Introduction 

Formally the Hankel transform of order v is defined by 

(0.1) (lHVf ) (x) == f f(y)..;xy -\, (xy)dy 

o 
x > 0 . 

Here J is the Bessel function of the first kind and of order v. In this v 

paper we consider the case v € :R , \l > -1. 

Hankel transforms find their applications amongst others in the discussion 

of problems posed in spherical coordinates. The Fourier transform Ff of f 

which is a function of r only, 

(0.2) 

can be expressed in terms of a Hankel transform. In the two-dimensional case 

this can be seen as follows: Introduce plane polar coordinates (r,,) in the 

(x l ,x2)-plane and (p,a) in the (~)'~2)-plane. Then xl~l + x2~2'" rpcos(cp - a), 

and 

(0.3) 

because 

(0.4) 

21t 

(IF f)(p) "" 21lt f rdr J fer) et rp cos(1P - a)dql 

o 0 

= f r f (r) J 0 (r<p ) dr 

o 
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Similarly in the n-dimensional (n ~ 2) case we have 

(0 .5) ~n-] f In J p (IF f) (p) == r fer) In-l (rp)dr • 

o 

In the appendix to this paper the notion of the Hankel transform is adapted 

in such a way that the Fourier transform of a spherically symmetric function 

is just an adapted Hankel transform. 

The starting point of our discussion will be the equality 

00 

(0 .6) e-x/ 2 xa./2 L(a.)(x) == (_On f J (VXY)e-y/ 2 ya./2 L(a)(y)dy 
n 2 a. n 

a 

where x > 0, a. > -1, and where L(a) is the n-th generalized Laquerre poly
n 

nomial of order a.. (For definitions and properties of special functions which 

occur in this paper we refer to [MaS]) The Hankel transform H is regarded 
a. 

as a linear operator in the Hilbert space L2(B+,dr). We show that we can 

extend lila. to the whole of L
2

(B+,dr). It becomes a unitary operator in this 

way. Further we apply the two theories of generalized functions as given in 

[G] and [E] to construct three test function spaces for each lH • The Hankel 
a 

transform:m acts continuously and bijectivelyon these three spaces (in 
a 

fact, infinitely many Hankel invariant test function spaces can be construc-

ted). As Ii direet consequence of the theories in [G] and IE], lH can be a. 

extended to a continuous bijection on the dual spaces, i.e. the spaces of 

generalized functions, of the mentioned test function spaces. 

The distribution theories in [G] and [E) are functional analytic theories. 

Therefore we show that the Hankel transform can be looked upon as a unitary 

operator in the Hilbert space L
2

(B+,dr). In this way some results can be 



- 4 -

proved easily. The price we pay is L2-convergence of the integrals. In 

section 2 we introduce three function spaces and the associated generalized 

function spaces. We characterize them by functional analytic means. The 

introduced spaces are Hankel invariant. Sections 3, 4 and 5 are devoted to 

the development of a classical analytic description of the elements in our 

three test function spaces. In the last section ~e discuss some continuous 

linear mappings in one of these spaces. 

Besides the usual aspects of distribution theory: the definition of the test 

function space, the definition of the generalized function space and the 

pairing, in [G] and [El we also find a detailed characterization of continuous 

linear mappings on these spaces, the introduction of four topological tensor 

product spaces and four Kernel theorems. Since the Hankel invariant test func-

tion space H , given by Zemanian in [Z] equals one of our test function spaces, 
~ 

all results of [G] and [E] carryover to this space. 



- 5 -

§ 1 The Hankel Transform 

Throughout the whole paper we take a € ~ t a > -I, fixed. 

The following equality holds 

( 1.1) -x/2 a/2 1(a) () (_On f 
e x n x =~ 

o 

(see [MOS], p 244). Here J is a Bessel function of the first kind and of 
a 

order a (see [MOS], p 66) and 

(I .2) 1(a) (x) 
n 

x· n 
-a e ( d) ( ...,x n+a) = x ::T - ex n. dx 

the n-th generalized 1aquerre polynomial of type a. Equality (1.1) can be 

rewritten into 

( 1.3) 

00 

A~a)(X) == (_I)n f A~a)(y) vxyJa(xy)dy 

o 
2 

where A (a) (x) = xa+~ e -x /21 (a) (x2) • 
n n 

x > 0 , 

With the aid of the orthogonality relations of the generalized 1aquerre 

polynomials (see [MOS], p 241), we derive 

(1.4) f A (a) (y) A (a) (y)dy == i r (n+a+ 1) 
n m r(n+l) °nm n,m € :N u {OJ • 

o 

In the sequel 

The functions 

( 1.5) A a 

denotes the normalized function A~a) • 

are eigenfunctions of the operator 
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and their respective eigenvalues are 4n + 2, n € E u {O}. The operator 

Aa is positive and self-adjoint in L
2

«0,00» and its eigenfunctions L!a) 

establish a complete orthonormal basis in L
2
«0,00». For brevity we shall 

denote the Hilbert space L2«0,00» by X, in the sequel. 

It is obvious that 

co 

( 1.6) 

° 
On X we define the Hankel transform lH as follows 

a 

( I . 7) Defini tion 

:rn f 
a 

Here (.,.) denotes the inner product of X. 

f € X . 

x > ° . 

Clearly,:rn is a unitary and self-adjoint operator on X. Since 
a 

ili L (a) (_I)n L (a) we even can write 
ann ' 

( 1.8) ili ... -iexp(hiA). 
a a 

(a) (a) 
Iff is in the dense linear span of the L(a),s 

n ' 
so f € <L] ,L2 ,0">, 

then 

(1. 9) 

00 

(ilia f)(x) == f fey) VXY J a (xy)dy 

o 
x > ° . 

The latter assertion is a corollary of formula (1.6) and Definition (1.7). 

Here we want to prove that the classical Hankel integral transform has some-

thing to do with the Hankel transform:rn that we defined on X. 
a 



The integral 

()O 

J fey) VXy J a (xy)dy 

o 
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exists for all x > 0 if the function y + (ya+! + 1)£(y) is absolutely 

integrable a over (0,00). To see this, observe that J (xy) is O(y ) whenever 
a 

y '" 0, and O(y-i) whenever y + 00. 

(1.10) Theorem 

Let f € X be such that y + (ya+! + 1)£(y) is absolutely integrable over ]R+. 

Then 

00 

F(x) =: 
J 

fey) VXY J (xy)dy = (JR f)(x) a a 
o 

for almost every x > O. (So JR f has a continuous representant.) 
a 

Proof 

S· h L(a) L(a) • d • X h' ( ) 1nce t e span < I ' 2 , ••• > 1S ense 1n ,t ere eX1sts a sequence ~n 

in this span such that ~ + f in X. Take + =, - f and ~ = (E ~ ) - F. n n n nan 
So 

~n (x)... J + n (y) VXY J a (xy)dy 

o 

Let 6 > O. We proceed as follows 

o 
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00 2 co co __ 

&: f e-
6y 

dy ( f 7n (V) fiVJa(YV)dV)( f 7n (U) ViUJa(YU)dU) = 
o 0 0 

(1.11) 

"" 00 co 

= f J VUV7n (U)7n (V) ( f ye-
6y2 

Ja(yv) Ja(YU)dY) • 

o 0 0 

In the next part of the proof we use the equalities 

00 

I t2 2 2 
1 (at) 1 (St) e-Y tdt = ~ y- 1 e-(a +S )/4y J (aSIZy) • 
v v v 

o 

where Re v > -1 and Re y > O. (see [MOS], p 93) 

So (I. II) equals 

(1 .12) 

With the aid of Schwartz' inequality it follows that (1.12) is smaller than 

Further 

co 2 "" 2 
J U e -u /25 du ( f v e -v /26 Ies (iuv/6) Ia (iUV/6)dV) == 

o 0 

"" 2 2 
= 6 f u e-u /26 (eu /46 J

a
(u2/46»dU 

o 

= 26 2 f e- t Ja(t)dt == 262 2-~ (2! + l)a • 

o 
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Now we have proved the following inequality 

~ ~ 

"1
0

>0 f e-O/ l~n(Y)12dy:s 2-3/ 4(2' + J)a/2 J l+n(u)1
2

du • 

o 0 

So +n + 0 in X imlies ~n + 0 in X and F = lBa f. 

As a corollary of Theorem (1.10) we derive 

(1.13) Theorem 

Let f E X. Then for all x > 0 

i.e. 

Oll f) (x) = 
a 

l.i.m. 

o 

co R 

R I f(y) 'Ii:;:; la (xy)dy , 

f I (lB
a 

f)(x) - f fey) VXY 1 a (xy)dy 1
2
dx + 0 as R +.., • 

o 

Proof 

We take f E X as follows 
n 

f (x) = {O 
n f(x) 

Then 

o 

if x > n 
, n E IN. 

if O<x:Sn 

o 

So x ~ (xa+! + 1)£ (x) is absolutely integrable (a > -I!) for all n E IN. 
n 
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Further more f ... f in X. Following Theorem (1.10), this implies 
n 

II m f - 11 f 112 == 
a a n 

== J I (~ f)(x) 
o 

n 

f fey) VXY] a (xy)dy 12
dx ... 0 as n·~'" co 

o 

Note that the sequence (n) can be replaced by any sequence (R ) with R ... 00. 0 n n 
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§2 Hankel invariant test function spaces and generalized function spaces 

As already noted, the operator A introduced in section 1, is positive and 
a. 

self-adjoint in X. Therefore the space SX,Aa. is well-defined by [G] and so 

are the spaces T(X,log A ) and T(X,A ) by [E]. Uere we shall give a short 
a. a 

functional analytic characterization of these spaces. Spaces of this kind 

are studied in great detail in the cited papers [G] and [E]. 

(2.]) Characterization 

(a) f ESA0+33 :f:a X, a 'r>0 gEX 

-TA a 
e g 

or .. 3
T

>0 : (f,L~a» == O(e-nT
) 

(b) f E 
-k 

T(X,log Aa) 0+ "kElN3gEX : f = Aa g 

or .. "kElN : (f,L~a» - O(n-
k

) 

(c) f E 

These three spaces are our test function spaces. The space Sx,A
a 

is a complete 

topological vector space, the spaces T(X,Aa) and 'r(X,log Aa) are Frechet spaces. 

Since A;l is a Hilbert-Schmidt operator each of these spaces is nuclear (for 

details see [G], ch I, and [El, ch.I). The Hankel transform 1H is well-defined a 

on these spaces. We have 

(2.2) Theorem 

mu is a continuous bijection of Sx A onto itself. The same assertion holds 
, a 

true for the spaces T(X,log Aa) and T(X,Aa.). 
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Proof 

The proof is almost trivial. If for f € X, (f,L(a» satisfies the order estimate 
n 

(2.].a), then (lH f,L (a» = (_I)n(f,L(a» satisfies the same estimate. Thus 
ann 

m is a continuous injection on Sx A • Further, ~ is surjective because a . , a 

Ea(Eaf) = f. The proofs for the other spaces run similarly. 0 

The spaces of generalized functions related to the introduced test function 

spaces are denoted by Tx,Aa' o(X,log Aa} and a(X,Aa ). For an extensive inves

tigation of this kind of spaces see [G], ch II, and [E], ch II. Here we give 

a short characterization. (With < • , • >, we denote the respective pairings 

between the test function spaces and generalized function spaces) 

(2.3) Characterization 

a} F E T ~ V 
x,Aa t>O 

As a corollary of Theorem (2.2) we have 

(2.4) Corollary 

The Hankel transform E can be extended to the spaces of generalized functions 
a 

TX A ' cr(X,log A ) and a(X,A ). The extended Hankel transform, also denoted by , a a a 

ilia is a continuous bijection on each of these spaces. 

Proof 

We shall prove the assertion for the space Tx,Aa* 

If F E Tx A ' then F can be expanded with respect to the basis (L~U», 
, a 
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where the series converges in TX A • Now define 
, a 

(2.5) 

~ ~ 

Then Ha extends Ha to T X A • Ha is a linear, inj ec ti ve mapping from 
t a 

T into itself. Since Ha 2F = F for all F € Tx A t it is also surjective. x,Aa , IX 

The continuity follows from [G], ch IV. Note that for all g € Sand 
X,Aa 

<l\s g,Ha F> = <g,F> o 
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§3 Analytic characterization of the elements in ,(X,log Aa) 

Let f € ,(X,log Aa). Then f can be written as 

(3.1) 
co 

f = ~ (f L(a»L(a) 
L.. 'n n ' n=O 

where (f L (a» = O(n-k) for all k € :N. We define the function g on (O,eo) by , n 

(3.2) J x > 0 • 

Then g satisfies 

(3.3) 

with 

(3.4) r(a) (x) 
n 

and ( • , .) the inner product in the Hilbert space X J 
a a 

(3.5) 

So (g r(a» = (f,L(a». The functions rea) establish an orthonormal basis 
J nan n 

in Xa and they are the eigenfunctions of the self-adjoint operator Aa in Xa ' 

(3.6) 
_d2 2a+l d 2 
------+x -2a di x dx 

with respective eigenvalues 4n + 2, n € :N. We have g € T(Xa,log Aa). We derive 



- 15 -

for 6 > -1, fixed, (see [MOS] p, 248) 

(3.7) 

with y =: max(B,6/2 - -i) on every finite interval [o,wl, w > O. Since 

g E .(Xa,log Aa), thus (g.r~a» = O(n-k) for all k E lN, we have for all x ~ 0, 

(3.8) g(x) 

. f 2 S' T k' • Thus g can be extended to a functlon 0 x on lR. 0 g 18 even. a 1ng 1nto 

account the normalization factors (see (1.4» we derive the following recurrence 

relations from [MOS], p 241, 

(3.9) x2r(a) (x) = -/(n + a + 1) (n + 1) rCa») (x) + (2n + I + a) rea) (x) 
n n+ n 

and 

(3.10) -In + a + 1 r(a+l){x) 
n 

rnr~~; 1) (x) 

d (a+l) _ (a) 
where D = dx ' L_l = 0 ,L_l ~ 0 and n = 0,1,2, •••• 

With the aid of [E], ch IV, we observe that the linear mapping 
2 ~ ~ 

Q : -r(Xa,log Aa) -+ -r(Xa,log Aa) given by 

(3.11) 2 2 (Q f)(x) = x f(x) x ~ 0 



(3.12) 
I 

Rf(x) = - f' (x) x 
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x :?: 0 , 

are continuous. So for each r,s E :N u {OJ we have 

(3.13) 

Especially for k = 0 it follows that there exists tEE and c > 0 such that 

for all f E T(Xa,log Aa), 

(3.14) 

Let i,j E ::tl u {a}. With the aid of (3.7) and (3.10) it is obvious that there 

exists ~(j) > 0 such that 

(3.15) 

and therefore also 

(3.16) 

(3.17) sup I (Qi R
j 

f )(x) I s 
O:;;:;xs] 

where c depends on i,j, only. 
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By (3.17) we have 

(3.18) 

) 

( J I (Qi Rjf)(x) 12 X2a
+

1dX)i :::; dllA:lflia 

o 

for some d > 0 and for every f € T(Xa,log Aa ). 

Further more for every f € T(Xa,log Aa) 

m ~ 

J I (Qi Rjf)(x) 12 x2a+1 dx:::; f I(Q2i+j ~f)(x) 12 x2a+1 dx 

I 

So by (3.14) there exist k2 € m and d' > 0 such that 

(3. J 9) ( (I (Qi ~f)(x)12 x 2a+! dx)1 S d' II A!211a 

1 

Combining the results (3.18) and (3.19) we obtain 

(3.20) Lemma 

For each i,j € 1N u {OJ there exist k € m and d > 0 such that 

Because of Lemma (3.20) there is no problem in defining the following semi

norms on T(Xa,log Aa) 

(3.21) 
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(a) Obviously, the seminorms q .. are continuous in the strong topology of 
1J 

7 ~ .(Xa,log na), Le. the topology generated by the seminorms f -+ IIAafll, 

k E IN u {OJ. 

The operator Aa can be written as 

(3.22) 722 
Aa = -RQ R - laB + Q - 2a 

Because of formula (3.22) and the commutation relation 

(3.23) 

it can be shown that there exist constants c .. > 0 such that 
1J 

(3.24) 
k 2k,2k (a) 

IIAaflia s I c .. q .. (f) 
• • ) 1 1.J 1J 1,J'I= , 

With the aid of the inequalities (3.20) and (3.24) we derive that the strong 

topology of T(Xa,log Aa) is the same as the topology generated by the seminorms 

(a) 
qij • 

Next we want to prove that we can take the supremum norm in stead of II • II a 

in the definition of the q~~)IS. So let i,j € IN u {Ol, and let 
1J 

f E dXa , log Aa ). Then following (3.17) there exist d > 0 and k) € :N such 

that 

(3.25) sup I (Qi RjfXx) I 
Osxsl 
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Furthermore, by Sobolev's embedding theorem there exists L > 0 sueh that 

co 

(3.26) sup 1 (Qi Rjf) (x) 1 ~ L < J < I (Qi R
j 
f)(x) 12 + 

1 
x:::: I 

:=; L ( f I <Qi+l Rj f)(x) 12 + I (Q2 R i ~f)(x) 12x 2a+1 
dX)! 

] 

Combining (3.25) and (3.26) and inserting Lemma (3.20) we find 

(3.27) Lemma 

For each i, j € ::N there exis t d > 0 and k € ::N such that 

(3.28) 

II Qi R j
£ II.., • sup I (Qi ~£)(x) I S dllA~flla 

x::::O 

Then we can prove 

(3.29) ~ 

The topology generated by the seminorms pij) is the same as the strong topo

logy of T(Xa,log Ao)' 

Proof 

(0) 
The seminorms q .. , i,j € ::N u {OJ are continuous with respect to the seminorms 

~J 
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p~~), i,j € E u {O}. This can be seen as follows: 
1J 

Let i,j € E u {O}, and let f E ,(Xn,log An)' Then 

eo 

(q~~) (£»2 = IIQi Rjf 112 ... J IQi Rjf(x) 1
2

x 2n+1 dx S 
1)· n 

o 

where h E ~ is taken so 1arge that -1 < (n - h) S 0, and where 
QO 

J 
x2(a-h)+1 

c = 2 2 2 dx. Now the assertion follows by invoking Lemma 3.27 and 
o (1 +x ) 

the result (3.24). 0 

Qoinl back to our original space ,(X,log An) we have 

(3.30) Theorem 

Define the seminorms y~~) on ,(X,log An) by 
1J 

y ~~) (f) =: 
1) 

sup 
:lQ:0 

(n) Then the topology generated by the seminorms y.. , i ,j E E u {OJ is equiva-
1J 

lent to the strong topology of ,(X,log An)' 

Proof 

We have the equivalence 

With the aid of Lemma (3.29) the assertion immediately follows. o 
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(3.31) Theorem 

Each element f € .(X,log Aa) can be written as 

a+! 2 f(x) = x ~(x) x > 0 

with ~ € S, Schwartz' space of functions of rapid decrease. 

Proof 

Let f € .(X,log Aa ). Then g, defined by 

x ~ 0 

is in '(Xa,log Aa). Thus g can be extended to a function of x2 on lR. So there 

exists a function h on [O,~) such that 

X E lR • 

For all i,j E IN we have 

(3.32) 
2' 1 • 2 

sup I (x 1. (x - D ) J h) (x ) I < co • 

xElR.. x 

With the new variable ~ = x2 we derive from (3.32) 

sup I (E;i D~ h)(E;) I < "" 
E;~O 

i,j = 0,1,2, •••• 

Since in ~ = 0 all derivatives on the right of h exist, there can be construc-

ted an infinitely differentiable function of bounded support h] with 

(D:h 1) (0) == (D: h) (+0) (Borel's theorem). 
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Def ine <p on lR by 

<p(x) 
{ h(x) 

hI (x) 

x :2: 0 

x < 0 

x > 0 

From Theorem (3.30) it follows that f E X is in ~(X,log Aa) if and only if 

Y~~)(f) is finite for all i,j - 0,1,2, •••. Compairing this result with the 
l.J 

definition of the space H in [Z] we get as a corollary 
II 

(3.33) Corollary 

o 

The test function space Hll in [Z], p 129, equals the space T(X,log ~). Further

more, the strong topologies of the spaces Hll and T(X,log ~) coincide. 

We can yet give another characterization of the elements in the space 

(3.34) Theorem 

f E T(X,log Aa) if and only if the even extension of x ~ x-(a+i)f(x) belongs 

to Schwartz' space S. 

Proof 

(a+H2 .. ) Let f E T(X,log Aa). Then there exists IP € S such that f(x) - x .. qJ(~), 

x > O. It is obvious that x ~ <p(x2) E S. 

-) Let g denote the even extension of x ~ x-(a+i)f(x). Then by assumption 

g E S, thus g(2k+l)(O) = 0 for k. 0,1, •••. 

Define h on [0,00) by 

h(x) = g(Vx) x ~ 0 . 
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Then h is indefinitely differentiable on (O,m) and for all k € E, 

2 x 4 2 
hex) == g(O) + g (0) 2!" + g (0) :! + ••. + 

(2k) xk k 
g (0) (2k)! + O(x) 

in a right neighbourhood of O. Therefore all derivatives on the right exist 

in x == 0 and h(k) is continuous on the right in x = O. Similar to the proof 

of Theorem (3.31) we can show that there exists, € S with hex) == ,(x) for 

a+1 2 x 2 O. We have f(x) == x 2,(X). SO by Theorem (3.31) the result follows. 0 

In [L], Lee characterizes the elements in H in the same way as we have done 
II 

in Theorem (3.34), but he adds the condition: 

'The Taylor expansions of f near the origin is of the form 

Clearly this extra condition is not necessary. The counter example 

a+t -Ixl XHo-x e 

which Lee gives to show necessity, is wrong, because x~ e- Ixl j S. 

For completeness we note that S - T(L
2

(lR) ,log H) with 

d 2 
H: - -- + x + I 

dx2 

(see [E]). 
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§4 Analytic characterization of the elements in Sx A 
, a 

We start with the following equality 

(4.1) I e-(4n+2) t L (a)(x) L (a) (y) = 
n=O n n 

e -Zat(xy) I [ coshZt 2 2] -.. _ 
= sinn-Zl exp -i sinh 2t (x + y ) 1a (xy/sin h 2t) • 

Here 1 is the modified Bessel function of the first kind and of order a. a 

Formula (4.1) can be derived from [MOS], p. 242, by a straight forward com-

putation, and it gives an expression for the Hilbert-Schmidt kernel of 

e -tAa, t > 0, in L
2

('lR+ x m+). 

The function Ia can be written as 

1 2) OF] (a + 1, 4 Z 

where OF1 is the hypergeometric function (see [MOS], p. 62) 

"" \' r (a+1) 
OF} (a + l,w) = m~Om:r(a+m+l) 

m 
w W € C. 

So Ia can be considered analytic on the region -. < argz <~. In the following 

lemma the growth properties of IL (a)(z)1 for fixed z and large n are described. 
n 

(4.2) 1emma 

VZEC , 3K>036>O 
larg(z)I<1T 

Proof 

We have L (a) (z) 
n 

(2r(n+l) \~ a+~ _~z2 1(a) ( 2) w1'th 
\r (n+a+] ») zen z , 
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L (a) (z2) -_ ~ (_I )m(n+a)~. S d • f • L (a) ( 2) L _. a we are rea y 1 we can est1mate z 
n m=O n-m m. n 

for fixed z. 

Let z e:e. We estimate 

( nn-m+a) - r (n+a+ I) 1 S; (n + [a] + 1 )m+[a]+2 I 
r(n-m+l) • r(m+a+l) • mr . 

So 

1) 
[a]+2 ~ (2yn+[a]+1 I z I) 2m 

::; (n + [(I] + L (2m) ! 
IIl"'O 

,. (n + [a] + ])[a]+2 cosh (2yn+[a]+) Izl) . 

So I L (a) (z2) I ::; K e yvn for well-chosen K,y > O. From this the assertion follows. 0 n 

(4.3) Corollary 

For each t > 0, the series 

(4.4) I 
n==O 

co 

e -(4n+2) t L (a) (z) L (a) (w) 
n n 

converges uniformly on compacta in c2 , and 

co 

(4.5) I e -(4n+2) t L (a) (z) L (a) (w) = 
n=O n n 

e-2at(zw)~ cosh it 2 2 (zw \ 
sinh- 2t exp(-! sinh 2t (z + w » la sinh2t/ 
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Proof 

Follows from Lemma (4.2) and the analytic properties of 1a and the L!a),s. 0 

Since L(a) (i) = L(a)(z) from (4.5) we derive the equality n n 

(4.6) ~ -(4n+2)tI L(a) ( . )1 2 
lex + 1y = 

n=O n 

~tA(l . 
Now let g E X. Then for f = e g we der1ve 

e -2at [cosb4t 2 2]( 2 2 l (x2 2 \)! ~ II gil (sinh4t)lexp -j sinli4t (x -y) (x +y) fa sinn-f} 

where z = x + iy. 

Since there exists a constant Kt > 0 such that for all z € C 

-a-~( Izl (lzl2 ))i 2 (4.7) Izl sinh qt: 1a sinh4t ~ Kt expOlzl Isinh 4t) 

we get for all z = x + iy 

(4.8) I (X + iy)-(a+Df(x + iy) I s; K Ilgllexp 1 (J-~OSh ~t x2 + cO~h4t':J y2) 
t ~ S1nb 4t un b 4t 

"" K 1 exp(-i sinh 2t 2 + i cosh 2t 2) 
t coshdlt x sinh h y . 
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Moreover, we can write 

Jco [-2a t ( ) ~ [ h 2 2 2] ( ) 
fez) = g(y) e sinh ~1 exp -l ~~:n=t~ (z + y) 1a si:ltt dy. 

o 

It is obvious that z ~ z-(a+~)f(z) is an even, entirely analytic function. 

We have proved 

(4.9) ~ 

tA Let w € X and t > O. Put f = e- aw• Then 

(i) z ~ z-(a+!)f(z) is an even entirely analytic function. 

(ii) There are A, 0 < A < 1 and B, B > 1, only dependirtg on t and there is 

C > 0 such that 

for all z - x + iy in t. 

We want to show the converse of the above lemma. So let f be a function satis-

fying (4.9.i) and (4.9.ii) for some fixed A, Band C. We define the even, enti-

rely analytic function g by 

(4.10) Z to e . 

Then we may wri te 

g = L 
n-O 

(g r(a» rea) 
, nan 

where 

(4.11) rea) = ('2r(n+1))! e-ix2 L(a) (x2) 
n r(n+a+l) n 
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and ( • , .) denotes the inner product in the Hilbert space Xa ' 

+ 2a+l . -(a) 
Xa = L2(lR ,x dx). The funct10ns Ln establish an orthonormal basis in 

Xa and they are the eigenfunctions of the positive self-adjoint operator 

Aa in Xa ' 

(4.12) 
.... d2 2 2a+l d 
Ani --+x ---

'" dx2 x dx 

with respective eigenvalues 4n + 2a + 2 (cf section 3). 

We shall show that g € S .... It is obvious that g € S A implies 
Xa,Aa" Xa , a 

f € Sx A • , a 

The function g is even and entirely analytic, and g satisfies the estimate 

Ig(x + iy)1 :s; CeXp(-lAx
2 

+ ~By2). From [B],Theorem 10.t, we can derive 
co 

that there is t > 0 only depending on A and B, such that g" I a 42 with 
O n 11 

n= 
an = O(e-nt). Here 42n are the even Hermite functions; we have 

So g == I (_I)n 2-i anI~-D, i.e. g E e-tA-~(X_i)' Note that 
n=O 

'" d
2 

2 + A_I = H ==: - - + x and X == X == L2 (lR ,dx). 
"2 dx2 -~ 

In section 3 we gave the following recurrence relations 

(4.13) n .. 0,],2, ••• 

(!) _ d 
where L_l = 0, and D == dx • Further, the generalized Laguerre polynomials 

L(-!) and L(!) satisfy the recurrence relations 
n n 

n == 0,1,2, •.•• 
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This implies with the aid of (4.11) 

r(n ~ (r(n+l) r(m+l12»)lr(-n 
n ,. m~O r(n+312) r(m+l) m • 

With the result (4.13) 

n (r(n+l) r(m+1 / 2»)1 r(-I) n-l ( fen) 
.. -m!o Vii+T r(n+372) r(m+l) m - m!o vn dn.+15 

Or equivalently 

(4.14) r(m+I»)i r(-i) 
r(m+1) m • 

The matrix of x-ID is given by 

r (.HI »i 
r(!+l) 0 s ! S k -

(4.15) 

! .. k 

where ~,k = 0,1,2, •••• 

It is obvious that the operator Aa ,. H + Sa' where H ,. _D
2 + x2 and 

Sa = -(2a + 1)(x-1D) is densely defined in X, because its domain con.tains 

. ~(-i) -(-I) 
the I1near span <LO ,L 1 ' ••• > • 

The next step is to estimate the norm of the operators 

e T H (Aa) n e -t H 

for t > 0, 0 < T < t and n ,. 0,1,2, •.•. 
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We proceed therefore as follows. Let 0 < T < t, and n € E. 

THAn -t H 
e A e == a 

where we take :s "" t - T. So 

(4.16) 

By easy computation it follows that 

(4.17.i) 
-J.sH 

II Hen·. lin ~ nne -n s -n s: n! s -n • 

Further, we have for r > 0 

where III • III denotes the Hilbert-Schmidt norm of X ~ x. 

We estimate as follows 

III e r H (H-1Sa ) e-rH 1I12 = I I (erH (H-1S
a

) e-rHr~-n ,r~-~»12 
k,R,=O 
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By (4.15) it follows that there exists e > 0 such that 

So the latter expression is smaller than 

co co 

Vii. e -8r (k-l ) e 2 1 I == 
1=0 (41+1)2 k=l 

co 00 

e I ) 

I vk+I e-8rk ::; = 
t=O (41+1)2 kaO 

00 

Vi OD OD go 

Vii.e -8rk) ::; C( l l -8rk r 1 r :s; 
(41+1)2 

e + 
(4£+1) 2 £=0 k=O 1=0 k==O 

2 4 6C ' ::; C' (- + -) < -r 2 - 2 
r r 

as r ::; 1. 

We can estimate the other factor in the product (4.16) 

(4.17.ii) 
n (1s+·r) H 
II (II e n II) ::; 

j=l 

::; ~ (1 + ( ,6e' 1 )!)::; ~ [(l2s~.f) in] 
j=l (.J.. S+ T) j=l 

n 

1 n 2n: n -n n-n = (12C') -, s ::; K s 
n. 

where we assume that 0 < t ::; I. 

Combining the results (4.17.i) and (4.17.ii) we derive: 

There exists a constant D only depending on t - T such that for all n € E 

(4.18) 
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We define the operator e r Aa by 

We proved that for all t > 0 and all T, 0 < T < t, there is rO > 0 so 
... 

that e T H erAa e -tH is a bounded operator on X for all r € E. with I rl ~ r
O

' 

and the series 

(l<) n 
\' r 
l. -.-

n-O n. 
, 

converges absolutely and uniformly. 

-tH Going back to the function g, which is an element of the space e (X), we have 

shown that there exist T > 0 and: r > 0 such that 

... 
rA By [B], Theorem 6.3 this implies that the function e ag is entire and satis-

fies the estimate 

-
I (e rAa g)(x + iy)] ~ 

for some AI' BI , C] > 0, and all x,y € E.. In particular this implies that 

.... ... 
S · -r Aa ( r Aa ) • . . -r Aa ( ) 1nce g = e e g, the latter assert10n Lmpl1es that f € eX. 
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We have proved (cf Lamma (4.9»: 

(4.19) Theorem 

f € S if and only if X,Aa. 

(i) z ~ z-(a.+~)f(z) is entirely analytic and eyen. 

(ii) There are positive constants A, B, C such that 

or equivalently: 

f € S if and only if 
x,Aa. 

the function z ~ z-(a.+~)f(z) belongs to the Gelfand-Shilov 

space st and is even. 

We note that Si = SL
2

(IR),H (see [G]). The latter space is intensively 

investigated by De Bruijn in [B]. 
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§5 Analytic characterization of the elements in T(X,Aa) 

F • . d h f . 1 S(a) or conven1ence we 1ntro uce t e unct10n c asses A,B 

(5. I) Definition 

f E Sea) if and only if 
A,B 

(i) z ~ z-(a+i)f(z) is entirely analytic and even. 

(ii) I z -(a+!) £(z) I ~ C exp(-i Ax2 + ! By2), x,y € JR, for some 

C > 0, and z = x + iy. 

By Lemma 4.9 and careful rereading of the arguments which lead to Theorem 4.19 

the following inclusions can be derived 

(5.2) 

where t,t' > 0 depend on the choice of A, 0 < A < 1 and B > 1. 

Since 

(5.3) T(X,A ) "" n 
a 

e -tAa (X) 

t>O 

(see [El), it follows that 

(5.4) T(x,Aa ),. n 
O<A< 1, 

B>1 

In other words 

(5.5) Theorem 

f E T{X,A ) if and only if a 

Sea) 
A,B • 

(i) z ~ z-(a+i)f(z) is an even, entirely analytic function. 
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(ii) For each A, 0 < A < ] and each B > ] there exists C > 0 such 

that for all x,y E lR 

In [E], ch VIII, the space T(L
2 

(lR) ,H) is characterized with the positive self

adjoint ope~ator 

d 2 H=--+x • 
dx2 

As a corollary of Theorem 5.5 we have 

(5.6) Corollary 

f E T(X,Aa) * g z ~ z-(a+!)f(z) E T(L
2

(E),H) and g is even. 
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, a 
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and TX A . 
, a 

In this section we shall consider some linear operators in the spaces Sx A 
, a 

and Tx A • In a similar way we can discuss this subject for the other two 

• a 
pairs of spaces. 

In §3 the following recurrence relations were given 

(6.1) = -V(n+l)(n+a+1) Ln(a+») + (2n + 1 + a) L (a) - VU(n+a) L (a) 
n n-l 

for n E IN u {O}, where L~~) :: O. The operator Q2 (see (3.8» is positive and 

self-adjoint in X. With some easy calculations it can be seen that 

(6.2) 

Following tG], ch IV, Q2 maps Sx A contnuously into itself. Since Q2 is self
, a 

adjoint it can be extended to a continuous linear mapping on Tx A • We shall 
, a 

denote the extended mapping by Q2, as well. 

(6.3) Theorem 

For every Z E t, larg(z)I < ~, the generalized function o(a), 
z 

(6.4) 
OQ 

L 
n=O 

L (a) (z) L (a) 
n n 

is in Tx A • , a 

Proof 

Let z E (, larg(z)I < ~. By Lemma (4.2) there is y > 0 and K > 0 such that 
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Therefore for all t > 0 

i.e. by Characterization 2.3 the assertion follows. 

We denote the pairing in Sx A x Tx A by <.,.>. It is easily seen that 
, a ' a 

for all f € Sx A we have 
, a 

(6.5) 

where t > 0 is taken sufficiently small. (For the precise definition of 

<.,.> see [G], ch 111) 

(6.6) Corollary 

For all Z E C, larg zl < ~ we have 

Proof 

Let z € C, larg zl < ~. Then by (6.5) for all f e Sx A 
, a 

We have the following relation 

(6.7) JH Q2JH ." B 
a a a 

= _ d
2 

+ a
2_! 

dx2 x2 

o 

o 
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(a) 
So the generalized eigenfunctions ez of Ba in TX A are formally given by 

, a 

It is well-known that 

So we derive from (6.8) and (6.9) 

(6.10) e (a) (x) = c VXZ] (xlt) 
z z a larg zl < 1t 

for some Cz € t. We have Cz = ], because 

and 

L (a) (z) 
n 

00 

L!a) (z) = (_1)n f L!a) (x) ViZ]a (xz)dx • 

o 

x > 0 

Consider the following recurrence relations, satisfied by the Laguerre poly-

nomials. ([MOS], p. 24].) 

(6.11.a) xL a+ I (x) = (n + a + 1) L (a) (x) - (n + 1) L (a) (x)· 
n n n+l x > 0 t 

(6.11.b) x > 0 t 

where we take L~~+l) _ O. 
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From (6.II.a) we derive 

2 
x(xa+1 e -x /2 L (a+l) (x2» 

n 

2 
Ii -x /2 ( 2 L(a+l)( 2» .. x e x x-

n 

and taking into account the normalization factors of (1.4). 

(6.12.a) xL (a+ I) (x) .. Vn+a+ 1 L (a) (x) - Vn+ 1 L (a)] (x) 
n n n+ x > 0 . 

Similarly tram (6.11.b) 

(6.12.b) x L (a) (x) ... Vn+a L (a+t) (x) - Vn L (a+l) (x) 
n n n-l x > 0 • 

When Q denotes multiplication by x, it can be shown with the aid of (6.12.a) 

and (6.J2.b) that 

(6.13.a) V 3 : II e l' AaQ e -tAa+ I II < 0:> 

t>O ,>0 • 

(6.13.b) 

Following [G], ch IV, Q maps Sx A continuously into Sx A 
, a+ I ' a 

continuously into Sx A • Since Q is self-adjoint in X, the 
, a+1 

and also Sx A 
, a 

linear mapping Q 

into can be extended to a continuous linear mapping Q, say, from TX A 
, a+l 

T X A and from T X A 
, a ' a 

into Tx A • 
• a+l 

In [S], p. 310, the following relations are given 
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(6.14.b) lEI Q lEI - -p* • a+l a a 

with 

(6.15) , 

From the results of section 2 it follows that P 1 is a continuous linear a+ 

mapping from S x,Aa+1 
into Sx A ' which can be extended to a continuous linear 

, a 
A * . . l' mapping from TX A into TX A • nd also that -p 1S a cont1nuOU8 1near 

, a+l ' a a 

mapping from Sx A into Sx A which can be extended to a continuous linear 
, a ' a+l 

mapping from Tx A into Tx,A
a

+
t

' , a 

Finally we remark that from the theory in [G], ch IV it follows that the opera-

o 
tor Q maps Sx A 

, a 
d 

continuously into Sx A and the operator dx maps Sx A 
, a+o ' a 

continuously into Sx A . The operators can be extended to continuous linear 
, a-I 

mappings from TX A into TX A resp. Tx A into T A 
, a ' a+6 ' a X, a-I 
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Appendix 

We shall adapt the notion: Hankel transform, in order to make it useful for 

manipulations with spherical coordinates. 

For every a ;:: 0 an operator 11 Q is introduced on the Hilbert space a,p 

L2«O,00),x$dx) in such a way that 11 0 = E • We start the discussion with 
a, a 

equali ty (I. 1 ) 

()() 

(a.l) (_1)n f ya e-
y2

/2 L (a)(y2)] (xy)ydy 
n a 

Following the orthogonality relations (1.4) we have 

()() 

(a.2) J x2a e _x
2 

L (a) (x2) L (a) '(x2)x dx = ! r(n+a+1) 
n m r(n+1) °nm 

o 

or equivalently 

(a.3) 

= I r (n+a+J) 0 
r(n+l) nm 

So with the aid of (a.1) we derive 

(a.4) 

00 

= (_I)n f ya-Ie+~ e-y2/2 (xy)-!e+! ]a(xy)ldy 

o 
Now define 

(a.5) L(a,e)(x) =: (2r(n+l»)! a-!e+! -lx
2

L (a) (2) 0 
n r(n+a+ 1) x e n x , x > • 
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The L~a,a),s establish an orthonormal basis in the Hilbert space L2«O,~),xedx) 

and they are the eigenfunctions of the self-adjoint operator 

(a.6) 
2 2 2 A __ ~ _!~ + a -4~B-J) 

a,S dx2 x dx x 
2 + x 

When we define the operator 11 in L2«O,~);gBdk) formally by a,e 

00 

(a.7) (ma.Sf)(x) == J (xy)-~S+~Ja(XY) f(y)ldy , 

o 

it follows from (a.4) that 

(a.8) 

Take XB -: L2«O,oo),xBdX). Then the test function spaces T(Xe,log Aa,e)' 

Sx A and T(XQ,A Q) are well defined and so are the generalized function 
S' a,S ~ a,~ 

spaces a(XS,log A e)' Tx A ' 
a, e' a,e 

results of the previous sections 

a(XS,Aa,a). Without proof we assert that all 

for the Hankel transform m hold in an adapted 
a 

form for the adapted Hankel transforms m Q' a,,,,, 

If we take a = ! n-l and S = n-l with n E IN, n ~ 2, then 

00 

(a.9) f 
-in+l n-I 

(lI!n-J ,n-l f) (p) '" (rp) J!n-l (rp) fer) r dr. 
o 

Thus the adapted Hankel transform m1 1 Ifof f is equal to its Fourier 
~n- ,n-

transform, where f is a function of r 

2 2 
r - (Xl + x2 + ••• 

only. 
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