EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Synchronous sequence charts in action

Citation for published version (APA):
Feijs, L. M. G. (1995). Synchronous sequence charts in action. (Computing science reports; Vol. 9525).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/01ba47d3-ca59-483b-95a7-c32eaa68dba4

Eindhoven University of Technology
Department of Mathematics and Computing Science

Synchronous Sequence Charts In Action
by

Loe Feijs
95/25

ISSN 0926-4515

All rights reserved
editors: prof.dr. J.C.M. Bacten
prof.dr. M. Rem

Computing Science Report 95/25
Eindhoven, August 1995

Synchronous Sequence Charts In Action

Loe Feijs
Philips Research Laboratories Eindhoven,

Eindhoven University of Technology

August 15, 1995

Abstract

We identify a number of styles for using Interworkings (synchronous
sequence charts), together with their roles in the context of the OS5I
reference model. We employ the well-known ABP (alternating bit
protocol) to see how Interworkings can and cannot be used. This ex-
periment shows that the charts are attractive from an intuitive point
of view, but when used in their purest form, lack sufficient expressive
power. Some of the distinctions in style can be interpreted as distinct
approaches to adding expressive power.

Categories and Subject Descriptors: C.2.4 [Computer communication net-
works]: Distributed systems — distributed applications; D.2.10, D3.2 [Software
Engineering|: Design — methodologies, representation; Language classifications
— very high-level languages; ¥.3.1., F.4.3 [Logics and meanings of programsj:
Specifying and verifving and reasoning about programs — specification techniques;
Formal languages — algebraic language theory; H.4.3 [Information systems ap-
plications]: Comumunications applications — Electronic mail.

1 Introduction and motivation

Message Sequence Charts (MSCs) [1] and Interworkings (IWs) [2] are graph-
ical languages for the description of the interaction between entities. Inter-
workings are in many aspects similar to MSCs; the main difference is that TWs
describe synchronous communication, whereas MSCs consider asynchronous
communication. We use the term ‘sequence charts’ to cover both MSCs and
IWs. Sequence charts are frequently used for the specification, design and
testing of communication systems. It has been shown in [2] that Interwork-
ings can be given a formal semantics in terms of the algebra of communicating
processes (ACP) [3]. The ITU (the International Telecommunication Union)
1s developing a standard for MSCs, based on a formal semantics in ACP too
(Annex B of Z.120, [4], accepted in April 1995; see also [5]). Sequence charts
are frequently used as parts of {or in combination with) Object-Oriented
methods, for example Fusion [6], where they are called ‘scenarios’.

In our view, the general understanding of the methodological issues re-
lated to sequence charts is still in an early phase. The state of affairs is

summarised in [7], where it is noted that the CCITT (ITU) standards Z.100
and Z.120 recommend diagramming techniques and formal languages but do
not recommend any methodology of the analytical process. Moreover, it is
noted that an MSC specifies only a sample of a particular interaction, not a
protocol.

MSCs are more general, but also more complex than Interworkings. For
this report we shall restrict ourselves to Interworkings, because we feel we
are in an early phase of the development of the methodology, and therefore
we like to start with the simplest formalism first. Syntactically, Interwork-
ing diagrams can always be viewed as MSCs too (but not the other way
round)}, since synchronous communication demands that the order of arrival
is the same as the order of transmission, whereas in the asynchronous MSCs
messages can cross each other during transmission.

2 Aims and survey

The aims of this report are twofold:

¢ to identify the various styles in which Interworkings can be used;

o to identify the various views of a system described by Interworkings.

The fact that there are various styles is related to the fact that one Inter-
working is only a part of one trace of a system’s execution. In general one
needs many Interworkings, hut of course one wants to avoid writing very
many (or infinitely many) Interworkings. This is a problem which can be
approached in various ways, which we call ‘styles’.

The fact that there are various views is related to the fact that it makes
a difference whether one wants to describe a service, or a protocol, or just a
protocol entity. Different architectural aspects give rise to different ‘views’ on
a system. The architectural aspects will be discussed using the OSI reference
model, which provides us with concepts such as services and layers [8].

We address these two aims together because in general the style used
depends on the view under consideration. For our study of styles and views
we employ the well-known ABP (Alternating Bit Protocol), which we will
place in an OSI context.

This report is organised as follows. Section 3 briefly introduces Inter-
workings. Section 4 introduces the ABP. Section 5 surveys the various views
and styles which will be studied in the subsequent sections. Section 6 gives
a service-oriented view. Section 7 gives a protocol entity-oriented view. Sec-
tion 8 gives a layer-oriented view. Section 9 gives a peer-to-peer view. Sec-
tion 10 gives a site-oriented view. Section 11 analyses these distinct views
and their relationships. Section 12 discusses the results.

We assume that the reader is familiar with the main operators of ACP: +
for alternative choice and - for sequential composition. For more information
concerning ACP we refer to [3]. We'shall use these operators in Sections 4
and 9 to describe example protocols formally. We will also use them in
Sections 6, 7, and 8 to compose sequence chart fragments.

Q]

3 Interworkings

An example of an Interworking is given in Figure 1. The vertical lines named
ENV1, DISPATCHER and ENV2 represent processes and the horizontal ar-
rows labelled message_l, message.2, etc. represent communication actions
between the processes. As shown in [2], Interworkings can be given a formal

ENV1 [pisearcier | [evv2 |

message_1
message_2

overflow
message_2

message 2

Figure 1: FExample Interworking iwy with three processes.

semantics in terms of ACP. Roughly speaking, the vertical ordering of events
in the diagram i1s interpreted by using the *-" operator of ACP for sequential
composition. If we abbreviate message_l by m;, message.2 by m,, overflow
by o, DISPATCHER by d, ENV1 by ey, ENV2 by e; we find that for the
diagram iw of Figure 1

liwe] = c(ez, d,m1) - c(er, d,ma) - c(d, €2, 0) - c(e1, d, my) - c(d, eq, m2)

Here we will not consider additional language features of Interworkings, such
as internal actions. For this example the semantics seems trivial, but in
Interworkings with more processes, a subtle point arises in the sense that one
Interworking may contain a number of alternative behaviours (in the ACP
interpretation this means that a + appears), which are however equivalent
in a certain sense. There is not one total ordering of all the events along a
kind of global time line; instead, the Interworking specifies how each process
has its own ordering. For an example and a brief explanation of this point
we refer to Section 10. We consider the availability of this formal semantics
as a strong point of the Interworking formalism. We believe that results of
the investigations of Sections 6 to 11 may be of help in making better use of
this strong point.

4 The alternating bit protocol

We will adopt the details of the ABP as formally described and analysed using
Process Algebra as given in [9]. Rather than starting with its description in
Process Algebra we will place the protocol in a context by starting from
the OSI concepts, identifying the relevant services and layers first. This is
the subject of Section 4.1. Next, we will give an informal description of the
working of the protocol (Section 4.2). After that, we will give the formal
details in Process Algebra (Section 4.3).

4.1 Architectural issues

The typical positioning of a protocol in a layered open-system architecture
(see e.g. [8]) is shown in Figure 2.

Application] =-g==~~--4F-- Application 2

' 1 I2 ARP layer service

ABP

1
’ 3 5 4 6 Clannel services
— II ‘\
forward channel / \
reverse channel

Figure 2: Positioning of the ABP in a layered architecture

The OSI model proposes a total of 7 layers; here we will focus on three
layers, one of which is called the ABP layer. The function of this layer is
to transmit data packets without damage from site 1 to site 2. To do so it
uses the service of the underlying layer, which is here assumed to consist of
two unreliable channels, one for each direction. There is a layer above the
ABP layer, which we called the Application layer, which uses the services
offered by the ABP layer. Services are made available at certain points only,
the so-called Service Access Points (SAPs), shown in Figure 2 as black dots.
For example, at site 1 there is one SAP for requesting the transmission of a
data packet (SAP 1) and at site 2 there is a SAP for receiving the indication
of a transferred data packet (SAP 2). The SAPs are numbered from 1 to
6. Both the ABP layer and the Application layer consist of two ‘protocol
entities’ (processes), one at each site. The channel service has two SAPs at
each side: one for the forward channel and one for the reverse channel. Note
the dashed horizontal line, which represents a ‘peer-to-peer’ communication
channel. This is an abstraction from the true communication channel, which
of course does not exist within one layer but passes through the services of
the layer below.

In an algebraic setting, as in [9], it is customary, or even necessary, to use
short symbols, like 3| and ry for send and receive at sites 1 and 2, respectively.
We start from an OSI-style of naming the various service primitives involved.
The ABP service consists of one service element, which is data transfer. In
real protocol services there are also other service elements, which are related
to e.g. connection management, medium access management, etc. There are
two service primitives, called request and indication.

Service | Service element | Primitive | Parameters l

Data transfer | ABP-DATA request User data
indication | User data

The channel service also comprises one service element. The primitives
are almost the same, except for the fact that there is a new data element,
not 1n the User data: ce, for channel error. There is one data transfer service
for each of the two channels.

| Service I Service element] Primitive l Parameters |

Data transfer | C-DATA request, User data
indication | User data U {ce}

4.2 Informal description

First let us describe the service offered by the ABP. The ABP will repeatedly
accept a data packet from the application at site 1 and transfer it to site 2
where it can be received. The contents of the data packet is not modified, nor
is any data packet delivered twice or more times. No data packets are lost
and the order of the data packets is preserved. There will be no ‘spontaneous’
packets.

Next let us describe the protocol implementing this service. The two
channels are unreliable, but at least they give a warning when the data are
corrupted. The warnings are coded by a special value called ‘ce’, for channel
error. The forward channel is used to transfer the application’s data packets
together with an additional toggle bit. The sender begins with the value 0
for the toggle bit and then expects an acknowledgement from the receiver.
An acknowledgement consists of a toggle bit which is echoed by the receiver
and which is conveyed by the C-DATA service of the reverse channel. If
the acknowledgement is corrupted, the sender retransmits his data package
together with the unchanged bit value. Also if the acknowledgement contains
the wrong bit value, the sender retransmits his data package together with
the unchanged bit value. But as soon as the right acknowledgement arrives,
the sender is ready to accept the next data package from the application,
which will be handled in a similar way, but with a reversed value for the
toggle bit.

4.3 Formal description

A formal description of the protocol can be found in [9]. In the formal
description, which will be summarised below, processes are named S for
sender, R for rveceiver, K for forward channel and L for the reverse channel;
together they form a process called ABP. Figure 3 shows the place of these
processes. :

The formalisation is given in ACP. The service is viewed as a single process
ABP satisfying the equation

ABP = > r(d)-s:(d) - ABP
deld

Figure 3: Positioning of the formal processes.

where D is the set of data values, that is, application layer packets. As usual
in ACP, summation (+ and Z) denotes a choice among a set of alternatives,
whereas ‘-’ denotes sequential composition. The atomic steps such as r;(d)
and sz(d) denote receiving d at SAP 1 and sending d at SAP 2, respectively
(in ACP, SAPs are usually called ‘ports’). We use the convention that a step
s; done by some sending process cotresponds to an r; done by a receiving
process. In ACP this is usually formalised using a so-called communica-
tion function, whose definition we leave implicit here (and similarly for the
encapsulation).

The service as offered hy the forward channel, viewed as a process K, is
given by the equations

K = Y n(f) K’
FeDxB
K = (7 s4(ce)+ 7 354(f)) K

As usual in ACP, 7 is a ‘silent step’, used here to model the fact that the

channel itself will internally decide whether an error occurs, which is s4{ce),

or a correct transfer, described as s4(f). D x B is the set of pairs consisting

of a data package d € D and a bit b € B, where B = {0,1}. And of course

the reverse channel, viewed as a process L, satisfies analogous equations.
The sender process S is given by the four equations

S = RM
RM = 5 r(d) SF
deD

SF® = s3(db) - RA®
RA® = (rg{1 —b) + r5(ce)) - SF® + r5(b) - RM*™

where we simply write db for the pair consisting of data d and bit b. The
auxiliary term RM® models the sender when Reading a Message in the state
where toggle bit b is to be used next. Similarly, SF? is the sender Sending
a Frame with data d and bit 5. And RA% is when it is trying to Receive an
Acknowledgement for ¢ and b.

Finally the receiver process 2 is also given by four equations.

R = RF
RF* = (Z ra(d(1 = b)) + ra(ce)) - 54 4 Z ra(db) - Sh
del deD
SA* = s4(b)- RF'7
SM™ = s,(d)- SA®

The auxiliary term RI® models the sender when Receiving a Frame when b is
the correct bit value. Similarly, SA® is the receiver Sending an Acknowledge-
ment for received bit b. And SM™ is the receiver when Sending a Message
with data d and bit b to its application.

The following table summarises the relation between the process identi-
flers used in ACP and the model of Figure 2.

[Process | States | Eutity | Comment
ABP - ABP 1 4+ ABP 2 + channels | ABP service
S RAP,SF RA® | ABP 1 sender
R RF®, SA% SA® | ABP 2 receiver
N K71 forward channel -

L Lk reverse channel -

The following table sumimarises the relation between the send and receive
actions used in ACP and the service primitives mentioned in Section 4.1.

I Action l Service primitive From To J
51 ABP-DATA request Application 1 ABP 1
89 ABP-DATA indication j ABP 2 Application 2
83 C-DATA request ABP 1 forward channel
34 C-DATA .indication forward channel | ABP 2
85 C-DATA indication reverse channel | ABP 1
$g C-DATA .request ABP 2 reverse channel

5 The ABP in Interworkings

In their purest form, Interworkings refer to concrete messages, by which we
mean that each message with its actual parameters is shown explicitly. This
is sufficient for giving examples of system runs and for representing traces
obtained from running the system or a simulation of the system. But one will
often want to go beyond this use, to arrive at a more or less complete system
specification. But in general, one process or set of processes can exhibit an
infinite number ol different behaviours. This means that the Interworking
langnage must be implicitly or explicitly extended, either by adopting new
syntactic constructs, or by adopting a suitable view on the semantics of a
set of Interworkings. We call Interworkings thus used generic Interworkings.
There are various approaches to generic Interworkings, leading to distinct
styles, for which we propose names as {ollows:

o the operator style (compose Interworkings using operators),

e the inductive style (use Interworkings plus an induction principle),

-1

e the bounded style (give all Interworkings with < N messages),
¢ the negative style (give Interworkings which should not happen).

The operator style, the inductive style and the bounded style will be first
explained in Section G (one subsection for each style). The explanation of
the negative style is postponed to Section 9.

There are also important differences with respect to the view of the system
one wants to describe. We distinguish the following views:

e service descriptions (e.g. describing the entire service ABP),

e entity descriptions (e.g. describing the process ABP 1),

e layer descriptions (describing interaction patterns within one layer),

e peer-to-peer descriptions {describing communication along the dashed
lines in Figure 2),

e site descriptions {e.g. describing site 1).

Section 6 gives a service-oriented view (in three different styles). Section 7
gives a protocol entity-oriented view (in three different styles). Section 8 gives
a layer-oriented view (in three different styles). Section 9 gives a peer-to-peer
view and Section 10 gives a site-oriented view,

6 Service descriptions

6.1 Operator style

We use the Kleene star * to denote unbounded repetition (zero or more
times). We can treat the data d inside an Interworking as a formal pa-
rameter, bound hy a ¥ construct to denote that for each data value there
is an alternative behaviour. In this way we capture an infinity of distinct
behaviours in a single expression. The ABP service specification is

(> iw-s-opb-1(d))*

delser data
where iw-s-oph-1 is given by Figure 4 below (oph = OPerator Based). Here
it 1s understood from the architecture that ‘request’ refers to the primitive
ABP-DATA request and that ‘indication’ refers to ABP-DATA. indication.

Here we do not address the precise nature of the 3~ and + operators used; a
proper treatment requires Mauw’s delayed choice operator [10].

| Application 1 l ABP (Application 2 l

request(d)

indication(d)

Figure 4: Interworking iw-s-opb-1(d).

Of course it is not hard to invent other syntatic means for the repetition
operator. We could for example mark a certain vertical position in the di-
agram with a label (sometimes called ‘condition’) and then postulate that
the second occurrence of that label means that there is an option for looping
back to the position of the first occurrence. This is shown in Figure 5. If so
desired one could use a special arrow or a ‘GOTO’ as well.

Application 1 ABP Application 2

4 BEGIN

request{d)

indication(d}

C BEGIN >
[[l

Figure 5: Interworking for ABP service using looping.

The forward channel service specification is

(> iw-scopb-2a(d) 4+ iw-s-oph-2b(d))*

d€User data

where iw-s-oph-2a(d), which describes the intended behaviour, and iw-s-opb-
2b(d), which describes the behaviour in case of a channel error, are given
by Figures 6 and 7 below. Here it is understood from the architecture that
‘request’ refers to the primitive ‘C-DATA request’ and that ‘indication’ refers
to the primitive ‘C-DATA .indication’.

, ABP 1 } forward channel ABP2 I

request{d)

indication{d)

Figure 6: Interworking iw-s-opb-2a(d).

ABP1 forward channel l I ABP2

request(d)

indication{ce)

Figure 7: Interworking iw-s-opb-2b(d).

The reverse channel service specification is similar to the forward channel
service spectfication, and has therefore been omitted.

6.2 Inductive style

Next, let us avoid the operators which are used to compose the Interwork-
ings into a description covering all service behaviours. Instead, we will use

9

more Interworkings, each describing one scenario. We still parameterise the
Interworkings over the data values (d, di, da, etc.), but apart from that,
each Interworking corresponds to one behaviour. We will begin with the
ABP service. After that we shall see that the forward channel presents
an additional complication. The number of traces of the ABP service is
M,en|User datal, because the trace has countably infinitely many request-
indication pairs, each of which can have one of |User data| different data
values. So if |User data] = 1 (User data is a singleton), there is only one
trace (but this is a reduced kind of service). If User data is a countable set,
there are uncountably infinitely many traces. For example, if User data = IN
there exists a trace which contains request(3), indication(3), request(1), in-
dication(1), request(4), indication(4) and so on, successively transferring all
digits of .

Even if we allow ourselves to parameterise over dq, ds, ds, etc., we still
cannot cast the behaviour into one Interworking because an Interworking is
a finite diagram in the sense that it has only a finite number of arrows. We
can solve this by adding a key-word ‘etc.” at the end of the Interworking and
we postulate that this shall only be used if there is an obvious pattern in
the arrows shown, from which it is clear how to produce any desired number
of additional arrows. In Figure 8 below for example, it is obvious that the
first four arrows that should come at the place of the ‘etc.’ are request(d4),
indication(d4), request(d5), indication{d5). This means that we assume that
there is some induction principle, which is not of a mathematical nature, but
which, from a practical point of view, may exist when the writers and readers
of the Interworkings are able and willing to understand each other.

Application 1 , ABP Application 2

requesi{dl)

indication{d1}
requesi{d2)

indication{d2)
request{d3)

indication(d3)

etc.
Figure 8: Interworking tw-s-ind-1(dy,ds,d3,...) (0 times ce).

If IND is the operator which extends a given finite diagram to an infinite
trace according to the assumed induction principle, then we can define that
Figure 8 represents the set of behaviours in

{IND(iw-s-ind-1)(dy, da, ds, .. .}|d1,da, d5, ... € User data}

or, using sum notation, the alternatives of
ZZZ IN I\V-S-illd-l)(dl,dg,dg,.)
d] dg {{3

The forward channel allows a greater variety in behaviours because it has
both desired and undesired behaviours, Figure 9 gives the desued behaviour.
Of course this ‘request’ is ‘C-DATA.request’.

10

ABP | I forward charnel ABP2

request{dl)

indication(d1)
request{d2)

indication(d2)
request{dd)

indication{d3}

elc.

Figure 9: Interworking iw-s-ind-2a(d;, da, ds, . ..) (0 ce).

Next we will present a set of Interworkings which model the behaviours
in which there is precisely one occurrence of a channel error. This error may
occur during the first transmission, or during the second transmission, or
during the third transmission and so on.

These are shown in Figures 10, 11 and 12, respectively. But these are
only the first three of an infinite sequence and therefore we add the key-word
‘etc.’ at the caption of the last of these figures (i.e. Figure 12), together with
a clue about the applicable induction principle.

ABP 1 forward channel ABP2]

request(d}

indication(ce)
requesi(d?)

indication(d2)
request{d3)

indication{d3)
request(d4)

indication{d4)

elc.

Figure 10: Interworking iw-s-ind-2b(d,, dz, ds, ...) (1 ce).

Next we could continue to present the Interworkings with two channel
errors. If the first ce occurs for d1, then there is an infinity of positions for
the second ce. In general, the first ce occurs for some d; and the second
for some d;. This is a two-dimensional space since we can choose both ¢
and j from IN (except for + = 7), but there is a construction due to Cantor
which tells us that there are ways of enumerating these possibilities: first all
cornbinations with ¢+ + 7 = 2, then the combinations with i + j = 3 and so
on. We could give some more Interworkings, but in view of space limitations
we will conclude this process now by giving one diagram, together with the
‘etc.” which tells us that we need all combinations with two ce. And finally we
conclude this by the key-word etc. which tells us that after the combinations
with one and two occurrences of ce, we get those with 3, 4, 5, 6 and so on.

It depends now on the precise nature of the channel whether this is an
adequate specification of the channel. If we want to fix the channel as in Sec-
tion 4.3, we are not finished yet, because for example the channel behaviour

11

ARBP 1 i I forward channel ABP2

request{dl)

indication{d1)
request(d2)

indication{ce)
request{d3)

indication(d3)
request{dd}

indication(d4})
request(d5)

indication(d5)

etc.

Figure 11: Interworking iw-s-ind-2c(dq,dy, da, . ..) (1 ce).

ABP 1 | forward channel ABP2

request(d1)

indication{d1)
requesi{d?)

indication{d2)
request(d3)

indication{ce)
request{dd)

indication(d4)
request{ds)

indication(ds5)
request(d6)

indication(d6)

elc.

Figure 12: Interworking iw-s-ind-2d(dy,d;,ds,...), etc. (all combinations
with one ce).

which gives its first ce after 3 requests, the second after 1 subsequent request,
the next after 4 more requests, following the digits of =, has not yet been
included. If we want that too, we could write etc., with the intention that all
combinations, including those with an infinite number of occurrences of ce,
are included. So apart from the parameterisation over the User data, there
are |IR| behaviours. These cannot be enumerated.

As a matter of fact, there is an alternative way of capturing this set of
IIR| behaviours, whicl is to defline that the forward channel has the set of
behaviours in

{IND(iw-s-ind-2a)(dy, da, da, . .)|ds, da, ds, ... € User data U {ce}}

(using the same Figure 9) or using sum notation, the alternatives of

>3- IND(iw-s-ind-2a)(dy, d2, 3, . . .)

dl z’l‘g d3

where it is however understood that the dy, d;, ds, ... now range over
User data U {ce}. Despite the simplicity of the latter alternative way, this

12

ABP 1 l l forward channel ABP2

request{d1}

indication(ce)
request(d2)

indication(ce)
requesi({d3)

indication{d3}
requesi{dd)

indication{d4}
request{dS)

indication(d5)

etc.

Figure 13: Interworking iw-s-ind-2e(dy, dy, da, . . .), etc. (all combinations with
2 ce), ete (all numbers of ce).

does not seem the typical way in which Interworkings are used: it seems to be
more natural to single out the ‘ce’ case because in the ABP implementation
there are entirely different scenarios for the normal case and the ‘ce’ case.

The reverse channel service specification is similar to the forward channel
service specification, and has therefore been omitted.

6.3 Bounded style

Instead of using operators or induction principles to capture an infinite set
of behaviours, one can also adopt the viewpoint that the description is sat-
isfactory if all behaviours with N communication actions are adequately de-
scribed. This viewpoint is defendable when using Interworkings for designing
tests or simulation runs, where it is impossible to test an infinite set of be-
haviours anyhow (if we know bounds on the number of states of the finite
state machines we can indicate an N which is really adequate).

For the ABDP service we need one diagram for each N. For NV = 2 this is
already given as iw-s-opb-1(d} (Figure 4). For N = 6 this is already given
as iw-s-ind-1(dq, dy, d3) (Figure 8). 1t is understood that each diagram is
implicitly quantified over its data variables, so if we say that for N = 2
the ABP is given as iw-s-opb-1(d) this means that its behaviours are the
alternatives of 3 1w-s-oph-1(d).

For the forward channel we will restrict ourselves to even N, because the
diagrams with odd N are unique extensions of those for N —1. Let NDN(N)
be the number of diagrams needed for a given number of communications
(N € N).

For N = 0 there is only one trivial diagram, so NDN(0} = 1.

For N = 2 we need two diagrams, viz. the diagrams obtained by taking the
first two arrows only in iw-s-ind-2a(d;) and iw-s-ind-2b(d;). So NDN(2) = 2.

For N = 4 we need {our diagrams, viz. the diagrams obtained by taking
the first four arrows only in iw-s-ind-2a(dy, dz), iw-s-ind-2b(dy, dy), iw-s-ind-
2c(d;,dz) and iw-s-ind-2e(d,, dy). So NDN(4) = 4.

13

For N = 6 we nced eight diagrams, wence NDN(6) = 8. In general,
NDN(N) = 22 50 the number of diagrams grows exponentially with the
number of communications covered.

As a matter of fact, there is no fundamental distinction between the
inductive style and the bounded style. The inductive style usually requires
some nested induction principles, but one could always add a statement ‘etc’
to a bounded description for a length NV, implying that the reader is supposed
to have grasped the idea and is able to give the diagrams for N + 1, N 4+ 2
and so on (at least, in principle). In that sense it is an induction on N. In
this report we shall employ the sections on ‘bounded style’ to have a closer
look at the growth of NDN as a function of NV,

7 Entity descriptions

7.1 Operator style
The ABP 1 entity (i.e. the sender process) is described by

S (iwa(d) - (iwa(d) + iws(d))” - iwa{d))

d€User clata

Yo (iws(d) - (iws(d) + iwr(d))" - iws(d))

dEUser data

*

where iw; ... 1wy are given by Figures 14 to 21. Let us here ignore the problem
that formally this only yields the Interworkings with two complete cycles, one
for bit 0, and one for bit 1 (and not the incomplete ones). It is understood
that here for example d0 is the concatenation of the user data value d with
the bit value 0. It is possible to push the usage of formal parameters one step
further, treating the toggle-bits in a generic way too; this could reduce the
number of auxiliary Interworkings by a factor of two, but in the presentation
given here we choose to treat the toggle bits as concrete values.

The Interworking diagrams should be interpreted as descriptions of the
behaviour of the sender process (ABP 1) under the assumption that the
environment (Application 1, both chanunels) behaved as in the Interworking.
In particular, these diagrams are not supposed to give any information about
the possible behaviours of that environment. The fact that in general this
statement makes a difference becomes apparent when we treat the receiver
(ABP 2) along the same lines.

Application 1 ABP) l Eorward channe} VETSE channc]
requesi(d)
request{d0)

Figure 14: Interworking for ABP 1 (iwy).

The above description refers to eight auxiliary Interworkings; each of these
Interworkings describes a particular ‘phase’ of the entity being modelled.
Actually, we see that these are only small fragments of scenarios; we seem

14

Application | ABP } Eorward channel Evme channel

indication(1)

request(dd)

Figure 15: Interworking for ABP 1 (iwy).

Application 1 ‘ AlP1 l Enrward channcil Eversc channel |

indication(ce)

request{dd}

Figure 16: Interworking for ABP 1 (iwg).

to be {ab)using Interworkings to describe the individual transitions of the
process. So 1wy is one transition, iw, is one transition and so on. Such
transitions are often modelled in SDL, which is an umportant state-oriented
language for describing processes, see e.g. [11]. This is shown in Figure 22,
which combines the transitions of 1wy, 1ws, 1wz and 1wy into a single transition
diagram.

If we were to duplicate this (replacing Os by 1s and conversely) we find
the full SDL description of the sender. The full SDL description has not
been included in order to save space. We conclude that when using the
operator-based style for Interworkings, and adopting state transition diagram
constructs by way of ‘operators’ one essentially arrives at SDL (although
it must be noted that Interworkings have synchronous communication and
SDL has asynchronous communication). Note that parallel branching can be
viewed as a representation of the operator + and looping as a representation
of the operator *.

We will now turn our attention to the receiver. The ABP 2 entity (i.e. the
receiver process) 1s described by an operator-hased expression which refers
to six auxiliary Interworkings.

({ Z (iwe(d) +iwy(d)))”

deUser data

Z iws(d)

deUser data

{ Z (iwg(d) + iws(d)))"

d&User data

iwg(d
> ())

d€User data

where we ought to give 6 Interworkings iwy ...1wg (restarting the numbering
scheme), but here we do not show the diagrams.

Application 1 AP Eorward channe} Everse channel

indication(0)

Figure 17: Interworking for ABP 1 (iwy).

15

l Applications 1 ABP 1 , orward channel verse channel

request(d)

request(dl)

Figure 18: Interworking for ABP 1 (iws).

ABP1 I [orward channe] verse channel

indication{0)

Application 1

request(d1)

Figure 19: Interworking for ABP 1 (iwg).

These diagrams describe the behaviour of the receiver process (ABP 2)
under the assumption that the environment {Application 2, both channels)
behaves as in the given Interworking. Note that the receiver madelled in this
way is prepared for acting upon reception of a C-DATA .indication(d1) as its
very first input, in which case the receiver will return C-DATA.request(1).
Of course this will not happen when the given implementation of ABP 1 and
the given forward channel are used, but the fact that it doesn’t happen is a
property of the combined system of ABP 1, ABP 2 and the channels, not of
the receiver’s algorithm, which is described in isolation here.

7.2 Inductive style

We are again going to avoid the operators. We will describe the ABP 1
process. There is an uncountable number of traces. The first Interworking
given shows the behaviour of ABP 1 when no channel errors occur. The
diagram editor used did not allow for subscripts, so from now on we have
variables d, d1, d2, etc. and it is understood that in this section for example
(d1,0) is the concatenation of the user data value d1 with the bit value 0.

As before, we will define that Figure 23 represents the set of behaviours
given by its instances, d1, d2, d3 ranging over all user data.

Next we need an infinite set of Interworkings to describe how the ABP
1 process copes with one channel error and with one wrong bit value, which
could occur at the first transmission (Interworkings iw-p-ind-2a and iw-p-
ind-2b in Figures 24 and 25), the second transmission (figure omitted), etc.

In the same way we need Interworkings to describe how the ABP 1 process
copes with two channel errors etc. ete.

Actually, we should have given considerably more Interworkings (at least
20 or so) before ending with the statements etc., etc. and etc., but we have

Application 1 ABP 1 I Eorward channel Eveme channel

indication{ce)

request(dl)

Figure 20: Interworking for ABP 1 (iw5).

16

Application 1

ARP 1

Eorward channel

indication(1)

Evasc channel l

Figure 21: Interworking for ABP 1 (iws).

from Application 1

request(d}

request{d0)

to forward channel

(from reverse

channel) indication(1)

reguest(d0}

awaiting

(from reverse
channel)

1w forward channel

indicati

request

awaiting 0

on(ce)

{d0)

{from reverse
channel}

1o forward channel

indication(0)

Figure 22: Alternative SDL view of Interworkings tw, to 2wy for ABP 1.

omitted them here.

The other processes can be done in the same way.

7.3 Bounded style

Let NDN(N) be the number ol diagrams needed for a given number of com-
munications (N € IN). We will present this for the sender, ABP 1.

For N = 0,1,2 there is only one diagram, so NDN(0) = NDN(1) =

NDN(2) = 1.

For N = 3 there are 3 diagrams, and since the ABP 1 process will react in

Application 1

request{d])

AP 1 l

request(d2)

request(d1,0)

Eorward channel

indication(0)

Eeversc channel

request(dl)

requesi(d2,1)

indication(1)

request{¢3,0}

indication(0)

Figure 23: Interworking iw-p-ind-1{d;, dz, ds,...) (0 times ce).

17

Application 1 ABP1 Eorward charmel Everse charmel |

request(dl)
request{d1,0}
indication{ce)
request(dl,0)
indication(3)
request(d2)
request(d2,1)
indication(l)
request(d3)
request{d3,0)
indication(0)

Figure 24: Interworking iw-p-ind-2a(dy, dz, da, ...} ete. (all combinations with
one ce).

| Application 1 z ABP 1 orward channel verse channel

request{dl)
requesi{d] ,0)
indication(])
requesi(d1,0)
indication{0)
requesi(d2}
request(dz,1)
indication(1)
pe—
request{dd)
request{d3.()
indication{0)

Figure 25: Interworking iw-p-ind-2b(dy, da, ds, . . .) ete. (all combinations with
one wrong bit value).

a deterministic way upon the third communication, we find that NDN(3) =
NDN(4) = 3. The corresponding Interworkings are the length 3 (4 resp.)
prefixes of the Interworkings in Figures 23, 24 and 25.

In general, the Interworkings of ABP 1 are prefixes of the unfolding of
the SDL diagram of Figure 22. A part of this unfolded tree is shown in Fig-
ure 26. The nodes labelled B are derived from the states labelled ‘BEGIN’
and ‘AGAIN’, whereas the nodes labelled W are derived from the wait states
‘awaiting 0 and ‘awaiting 1°. There are also intermediate nodes, correspond-
ing to the intermediate states between a send and the subsequent receive
action. From this diagram we can conclude that the number of Interwork-
ings of a length N is described by the following equations (for N > 0):

B(N) = W(N-1)
W(N) = I(N-1)
I(N) = B(N-1)+2W(N~1)
with initial values given by B3(0) = 1 and W(0) = 1(0) = 0. Please read B(N)
as the number of BEGIN or AGAIN nodes at level N and similarly W(N) as

the number of waiting nodes and I(/N) as the number of intermediate nodes.

Therefore NDN(N) = B(N) + W(N) + I{N). For the first 10 even values

18

(B)= T0 (B)
T2
50 Il Co
T4
T @ @
T6 CW) (W) (B)
T (YW AW
T8 wwiww! “{eyww! ww! Y A5V (w)
+ wwl wwl (T B)
j-10 Ww

Figure 26: Unfolding the process graph of ABP 1.

of N we have calculated the number of Interworking diagrams needed, as
shown in the following table. Please compare the table with Figure 26 and
note that for example a horizontal line at depth 6 goes through 9 branches
of the tree (four W nodes, one B node and four I nodes), or, in other words,
W(6)=4, B(6)=1and I{G) =4; so NDN(6) =4+1+4+4=09.

| N [214]6] s10] 12] 14] 16] 18] 20]
[NDN(N) [1[3]9]25]67]177]465] 1219 | 3193 | 8361 |

The recurrence relations for B, W and [can be solved, yielding a closed form
for NDN(N). First we eliminate B and I, finding W, = 2W,,_2 + W, _3 for
n > 2. Applying the 4-step procedure of [12] pp. 323-326 we get a closed form
for the generating function W(z) = 3, W, =™ which is #2/(1—-22*—2?). From
this we obtain W, = (35 — 1147 — (55V5+ $)¢% + (—1)" and NDN(N) =
(1 — 3VB)gY + (1 + 1V5)g) — (—1)™. Here constants ¢; and ¢, are given
by ¢, =3+ %\/5 (the golden ratio} and ¢, = % - %\/5 Taking approximate
values for the constants involved, we see that

NDN(N) & 0.553 x (1.618)" + 1.447 x (=0.618)Y — (—1)V

The number of diagrams grows exponentially with the number of communi-
cations covered. Roughly speaking, cach decision to take one more commu-
nication action into account (increasing N by one) amounts to a growth of
the number of diagrams needed by a factor of 1.618.

In view of the above analysis, the bounded style cannot seriously be con-
sidered as a useful specification technique, but the calculation of the number
of Interworkings needed is still relevant because it shows how many test runs
would be needed to test an implementation of ABP 1 when aiming at ex-
haustive testing of all traces up to a given length.

8 Layer descriptions

A layer description is a description in which all processes involved in one
layer of the protocol are shown in each diagram. For the ABP protocol this

19

means that there are six process lines. The advantage of these descriptions
is that they contain much information and that they can help the reader to
obtain an overview of wlal happens during a complex sequence of events.
But precisely because of the fact that nothing is left out, the diagrams tend
to be large in the sense that they contain many process lines and many
interactions.

8.1 Operator style

For the entity descriptions it was already clear that the operator style be-
comes unattractive when each individual linear fragment must be represented
by a named Interworking, in particular if there are many such fragments. If
we cast the general interaction pattern of the ABP into this form, we get an
operator-hased expression as follows:

(Z iwq{dq)

dy€User data
- (iwg - (1wg + iwy) - 1ws(dq))*
- hwg(dy)
- (iwr(dy) - (ws(dy) + iwg) - iwye)*
S 1wy

Z i\\"lg(dg)

dz €User data

- (iwyg - (1w + 1wgs) - iwge(dz))

- twyr(dy)

- (iwyg - (iwge{da) + 1wgg) - 1way)*

. i\\’g-z

)*

This expression refers to 22 auxiliary Interworkings, but of course with extra
parameterisation we will need fewer. In view of space limitations, we will not
show these 22 Interworkings. Let us sketch the idea behind this expression
however: iw; described a request(d;) from Application 1 to ABP 1, which is
followed by a request(d;) from ABP 1 to the forward channel. The repetition
of (iwy - (iwz 4+ iwy) - 1ws(dy)) describes the sequence of events caused by the
ABP 2 repeated request(1) answers, which are repeated until a 0-bit in iwy is
received. The second repetition describes the attempts of ABP 1 to receive
the 0-bit returned by ABP 2. Aflter that we arrive at iwy;...iwyy which
describe the second phase ol the protocol. Tlie second phase is similar to the
first phase, except for the fact that 0s and ls are interchanged (this is the
obvious opportunity for extra parameterisation).

Note that some of the {ragments do not depend on the data values (d; or
dz) because they only convey ‘ce’ values or toggle bits.

Although the SDI. notation is useful for entity descriptions, as shown in
Section 7.1 {see Figure 22), the SDL notation as such can hardly be used
when a second or third (vertical) process line must also be represented. Each
communication action is not just an input or an output of the main process,
but it always counects the lines of two processes. Yet, if we allow repetition

20

operators mside the diagrams, we are able to bring all fragments together in
one diagram. Of course one can use loops or labels and GOTO constructs,
just like we did in FFigure 5, to achieve more or less the same effect. In
Figure 27 we show the first half of this diagram. If we were to add another
copy of it, replacing all Os by 1s, all 1s by 0s, and replacing d, by d,, we
would get one diagram, such that all possible behaviours would be obtained
by running through this diagram one or more times.

[Applicalion 1 I L ABP1 | h’urwa.rd chanﬂ L'cvcrsc channel] [ABP2 I I Application 2]
request(d!)
requesi(dl,0)
indication{ce)
request(l)
indication(1)

—
indication(ce) — +

request(dl 0)

indication(d1,0)

indication(d1)
request(0)
indication(ce)
request{d1,0)
indication(d1,0)
——
+ ~a indication{ce)
request(0)

indication{0)

Figure 27: Operator-based layer description of the first protocol phase.

8.2 Inductive style

In the inductive style, each Interworking presents one trace. To capture the
entire behaviour, one diagram is not sufficient, but an infinite number of
diagrams is needed. Only a finite number of them is given, together with
hints (the ‘induction principle’) on how to proceed and generate as many of
them as desired.

We are not going to show all of them, only three. The first Interworking,
given in Figure 28, shows the interaction when no channel errors occur. The
additional dashed lines and dots will be used in Section 8.3 only; the reader
can ignore them [or the time being.

As before, we define that Figure 28 represents the set of behaviours given
by its instances dl, d2, d3 ranging over all the user data. It is understood
that the pattern of the first twelve messages (involving d; and dz) is repeated,
but for other data values (ds, d,, etc.).

21

l Applicau'oi' L ABP1 | Erward channell L’cverse channcl] | ABP2 J [@Iicaﬁon 2 l

N g) e s B R e R 1
request(d],0)
@r-------mmm ot - - dication(dl;0} - === - -7 === - - -p--e---—— - - -2
R e bbbty R b bbbl de bbb bty bbbl b b - - tindicationfdt) - | @
request{0)

PR e s bialainietaiaiaiatiaiiel [== Sndicatm@0y = = = -—--=======spo--mmemmmee oo ®

L e s e R e B e it -1
request(d2,1)

®t------ e - - - mtication(dX 1y - - -~~~ "~ ------f---- - - - -2

I e il e et LR S + - - -~indicationtd2)y - @

request(1)

I e i it [~ - -indication(ly — - {~-=~---"------~f-----------—1 o

.----rcqueslfrﬁ)*--‘ _______________________________________ =1
requesi(d3,0)

eic.

Figure 28: Interworking iw-i-ind-1(d1, da,ds,...) (0 times ce).

Next we need an infinite set of Interworkings to describe how the ABP 1
process copes with one channel error, which could occur at the first (forward)
transmission {Interworking iw-i-ind-2a in Figure 29) or the reverse transmis-
sion (iw-i-ind-2b in Figure 30). [t could also occur at the second forward or
reverse transmission (figure omitted), etc.

In the same way we need Interworkings to describe the interaction with
two channel errors ete. etc.

Actually, we should have given considerably more Interworkings before
ending with the statements etc., elc. and etc., but we have omitted them
here.

8.3 Bounded style

Let NDN{/N) be the number of diagrams needed for a given number of com-
munications. In this section we will calculate this number for the layer di-
agrams containing all the processes. In general, the Interworkings of ABP
1 are prefixes of the unfolding of the diagram of Figure 27. There are only
two branching points in the first phase of the protocol. We shall draw these
as shaded circles in two versions (dark and light shading, numbers 2 and 3,
respectively). We have already included such shaded circles in Figures 28
to 30. In addition, it is convenient to label two additional states which may
arise during execution of the protocol: the black state (number 1), which is
the initial phase, and the white state, which occurs after the reception of a
wrong toggle bit {number 4). The second phase of the protocol follows the
same pattern as the first phase, only the Os and 1s have been interchanged,
which of course does not matter for the number of Interworkings involved.
The resulting state transition diagram is shown in Figure 31. This figure
also shows a partial unfolding of the diagram, from which we can easily
obtain the number of diagrams for N = 1 to 9. From this diagram we can

[}
[Rv]

[Application1 | [ABP1 | forwardchannel] feversechamnei| | ABP2 | [Application2 |

L2 e oo iU) e ittt sl fedintietly et tdieiefieleielaiel dededed bbbtk b 1
request(d1,0)
L e e b F - - indication(eey = - === - =" =-----f--- --—----—1 -2
requesi{l)
@r--------moo ot - - mdication(f)~ -~ - ------------ F--------—---1 -3
Op----=-=====ur R o1 s, A Mttt bbbl it bty -4
@r--------mm e - - indication(d1;0) - |- ----~-------f------------+ -2
O il I et It bt - - - indication(dh) - { @
request(0}
P e - - indication(@)~ = - 4= -~ ==--===-=-f~----=-——-—= -4 @
o Lt e Rl d bk e e B e kb -1
request(d2,1)
L e R r - - —indicationfd2 Ay {-------------f------------1 -2
R i I i S - - - indication(d2} - - { @
requesi{i)
e b i [=~ cindicationtly =~ J= - === =T --- oo p---- oo - oo ooy 9
L i oG Rty it itelied Sttty hiaieitieietlaieitd Sttty -1
request(d3,0) ’
ctc.

Figure 29: Interworking iw-i-ind-2a(dy, dz, ds, .. .)

conclude that the number of Interworkings of a length N > 0 is described by
the following equations:

B(N) = D(N-1)
D(N) = B(N=2)+W(N-1)
L(N) = D(N-2)
W(N) = 2L(N—1)

I(N) = B(N-1)+D(N—1)

The initial values are given by B(0) = 1, B(N) = 6 for N < 0, D(N) =
L(N)y = W(N) = I(N) =0 for N < 0. Please read B(N) as the number
of black nodes at level N, D(N) the darkly shaded, L(N) the lightly shaded
nodes, W{N) as the number of white nodes and I(N) as the number of

intermediate nodes.

Clearly, NDN(N) = B(N)+ D(N)+ L(N) + W(N) + I(N). For the
first ten even values of N we have calculated the number of Interworking
diagrams needed, as shown in the following table:

[N [2T4{6[s8]t0]12]14[16] 18] 20]
[NDN(N) 1]2[4]7714[24]47]82]156]279 |

2
1

When comparing this table with the tabel of Section 7.3, one may not con-
clude that the growth of NDN was more problematic in Section 7.3 than it
is here. The main difference is that in Section 7.3 about half of the messages
were omitted: the behaviour of process ABP 1 involves 6 messages when

23

l Application] ’ I ARBP1 | E)rward channell cherse channel | | ABP2 I li\ppl icmiom
L i e U e i e e B g I e R e -1
request(d],0)
@r-------mmm e F = = indication{(d1;0) = = == - - == "=---f---=s-—--—— 1 -2
e B il (et Sl S e el el - - indication(d1) - - | @
request(0)
P e it [~ - Cindicationfey - q[= === - - --Ts---fp---me-o———— o ®
request{d],0)
el S [~ = indication(d1;0) ~ -~ - - —-=------f-~-----—---— &)
e it el ittt ---rgmesty - - - -f---- - ------ TO
e e e ittt - - -indication(Qy - - q4---~--------- F====-—====== 9
L R it o Ll 73 e R bl dh b ki il b e ikl -1
request(d2,1}
®r----—-------—-------------p - - -indication@d2, 1y - - -~ ~------~fe---—-—-~==--4 -2
| Bl ittt Rt ottt it r - - indication(d2y - ~ { @
request(l)
PR R b it - - indication{ly - - ===~ -- - === - - -fe-—----— oo o
it ity e B e IR EEEEEE -1
request(d3,0)
cic.

Figure 30: Interworking iw-i-ind-2l(d;, da, da, .. .) etc. (all combinations with
one ce).

going through two protocol phases without errors, whereas the same layer
description shows all 12 messages involved.

The number ol diagrams grows exponentially with the number of com-
munications covered. For N=40, for example, there are 119618 diagrams.

9 Peer-to-peer descriptions

These descriptions are concerned with the communications performed by
one process and its direct partners or an interaction pattern involving many
partners. But they are more abstract than the descriptions given so far.
They describe so-cailed ‘virtual communications’; i.e. communication actions
which do not exist as such, but which are obtained by omitting the underlying
service, as though the peer protocol entities were to communicate directly,
without a mediator. We will give an example first, and will supply the
details later (see Figure 32). In order to demonstrate this idea of peer-to-peer
description we need to introduce another protocol than the ABP (peer-to-
peer does not work well when the underlying medium is not perfect).

The example is an extremely simplified transfer protocol (see for exam-
ple [13] Section 7.4 for a more comprehensive example of a file transfer pro-
tocol). To be able to present this example, we will extend the architecture of
Figure 2. We put an FTP layer between the application layer and the ABP
layer, as shown in Figure 33. The function of the new layer is to break long
messages into shorter ones and to reassemble them again at the receiving
site. So its service is to transler long strings S from site 1 to site 2. To be

24

Figure 31: Unfolding the graph of the protocol layer description.

lApplication 1 FIP 1 I l FIP2 I lApplication 2 l

requesi(”hotelbotel™)

data("hotel”)

data("botel™)

data("™)

indication{" hotelbotel™)

Figure 32: Peer-to-peer Interworking for string So = "hotelbotel".

able to do so it requires the service of the underlying layer (the ABP layer),
which provides a reliable channel in one direction. The extended architecture
will also be used in Section 10.

The following table summarises the relation between the send and re-
ceive actions used in ACP and the usual ‘request’ and ‘indication’ service
primitives. The indices in sy, $; etc. refer to the service access points in

Figure 33.

] Action | Service primitive ” From | To H
81 ABP-DATA request FTP 1 ABP 1
S ABP-DATA indication || ABP 2 FTP 2
St FTP-DATA request Application 1 | FTP 1
Sg FTP-DATA indication | FTP 2 Application 2

The protocol works by splitting the given (non-empty) string S into short
substrings of a length L, [or some L > 0. When the transfer is ready, an
empty string is sent. When the number of characters in the original string
is not a multiple of £, the remaining characters are sent as one short string.
This 1s illustrated in Iligure 32 for L = 5 and string "hotelbotel" The
sender process i is given by the following two equations:

[\]
ot

site 1

Application 1

—t—

Apptication 2

+s

layer service

FIP1 [~ 1-=-"ft-"" FTP 2
‘ 1 ’ 2 P layer service
AP | ABP2

3 5 +4 *6 ‘Channel services
Fi \
— 7 \
d channel / \ /

forwar
N
\,_/ reverse channel
Figure 33: Adding an FTP layer in the architecture

Fl = Z '7";'(.5.) . Fl(.‘i')
[5i>0
Fi(8) = il|S| = L then s((S[0..L — 1]) - FA(S[L..|S| —1])
else if || = 0 then (e} Fy
else 5;(5) - Fy

where ¢ is the empty string and where we write S[m..n] to indicate the
substring of S which begins at index position m and ends at position n
(inclusive). We start counting index positions at 0. We write |S| for the
length of § and we write cat(.51, 5;) for the concatenation of strings Sy and
S3. The receiver process Iy is given by the following two equations (there is
a deliberate mistake in it, to which we shall return later):

= Fye)
Fa(S) = ryle)-s3(8) - Fy + Z ra(d) - Fa(cat(S,d))
|d|>0

The two processes are supposed to communicate by send (s;) and receive (r;)
messages; it is understood that an s;{d) action of F} arrives as an ry(d) action
at Fy. In the peer-to-peer descriptions we have one primitive only, shown as
‘data’, which is a kind of combination of a request and an indication (or ss
and s, which is the same).

We will return 1o the methodology of Interworkings. As before, we can
distinguish the operator style, the inductive style, the bounded style and the
negative style. We shall not elaborate on the differences between the first
three of these styles here, since the problems are similar to those studied for
the ABP (but simpler because the protocol has no internal non-determinism).
Essentially, the operator, inductive and bounded styles amount to giving a
sufficient number of diagrams like Figure 32, but for other initial strings 5.

26

We shall use the file transfer protocol to illustrate the negative style later in
this section.

Let us take a closer look at Iigure 32 and the abstraction step involved
in arriving at this figure. The diagram of Figure 32 is an abstraction of the
diagram of Figure 34 (apart from the fact that the applications are omitted
in Figure 34).

I71P 1] ABP FIP2 l

request(“hotel™)

indication("hotel")

request{ "botcl")

indication("botel")

request(™) "

indication("")

Figure 34: Interworking without peer-to-peer abstraction.

For each pair of communication actions in Figure 32 there is precisely
one communication action in Figure 34. More precisely, a pair consisting
of a message request(d) from FTP 1 to ABP immediately followed by an
indication(d) from ABP to I'TP 2 is translated into a single communication
action of the form data(d) which goes from FTP 1 to FTP 2.

Please note that the peer-to-peer descriptions can only be given as an In-
terworking because by the end of each communication action it has already
been determined which process will initiate the next communication. This is
typical of master-slave protocols or token-passing protocols. In general, how-
ever, both applications can initiate a communication action. If for example
we assume that F'TP 2 can send a spontaneous ‘disconnect’ to FTP 1, we get
for example the scenario of Figure 35. 5o, we could be forced to use MSCs
instead of Interworkings. If the underlying service can loose messages, we

data("hotel™)

Figure 35: Peer-to-peer description with simultaneous initiatives.

have an additional problem, calling for arrows which begin at the sender’s
process line, but end hallway (or are dashed, or otherwise distinguished so
as to indicate the error). For example, if the underlying service (unlike the
ABP) sometimes looses its messages, the scenario of Figure 36 may occur.
As promised, we shall now explain the negative style. The negative style is
to draw one or more diagrams for traces which should not occur. Consider for
example Figure 37 (assume S; = "hoteldebotel" and L = 5). We included
put a deliberate flaw i the formulation of the protocol. The given algorithm

o
-1

FIP 1 FTP 2

conneet(3)

ack

Figure 36: Peer-to-peer description when the service can loose a message.

|App|icati0n 1 I FIP 1 I FTP2 Application 2 I

request("hoteldebotel ")

data("hotel")

data("debot™)

data("el")

receiver still

request(hello") waits for data("™)

data("hecllo™)

data("™)

indication("hoteldebotelhello™)

Figure 37: Interworking demonstrating error (Sp = "hoteldebotel”, L = 5).

for Fy only sends the empty string if the length of So 1s a multiple of L.
Figure 37 demonstrates the error: the empty string is not sent and therefore
the receiver does not see the end of the first string. This use of Interworkings
occurs frequently: to illustrate an error, which is repaired subsequently. In
this case the error is easily repaired by changing the definition of the sender
process £ as follows:

Fyo=) ra(S) - Fu(S)
F(S) = lfblb| =0 then s1(¢) - Fy
else if |5} > L then s;(S[0..L —1}) - Fi(S[L..|S| - 1])
else $1(5) - Fi(e)

In Figure 38 a scenario is shown for the repaired protocol, using the same
string which went wrong before.

10 Site descriptions

In this section we shall use the extended architecture presented in Figure 33.
This is because when there are three layers only, the difference between entity
descriptions and site descriptions vanishes. A site description shows all the
interactions which occur at one site. So a site description of site 1 contains
all the communications which occur at ports 1, 3, 5, 7, whereas a description
of site 2 contains those of ports 2, 4, 6, 8. This is for example useful when
one person or team is in charge of analysing or designing all protocol entities

28

[Application 1 | [mrl Application 2

request(hoteldcbotel™)

data({"hotel"}

data("debot")

data("el™)

data("™)

indication("hoteldebotel”)

request(“hello")

data("hello™)

data("")

indication("hello”)

Figure 38: Interworking demonstrating bug-fix.

of one site. This 1s also the kind of description of course obtained when all
events occurring at one site are logged, which can be done locally, unlike
for example a layer description, which requires some distributed logging.
In practice, site descriptions arc usful when the subdivision of the protocol
design into layvers 1s still to be analysed. Once there is a clear layering, the
diagrams are less useful.

For example, let us ask the question: “what exactly happens at site 1
when the application invokes request(*hotelbotel") and the reverse channel
fails to deliver a correct data value for its first request?” This is shown in
Figure 39. Figure 40 shows the corresponding sequence of events at site 2.
It is possible to simplily this diagram one step further, by combining the
forward channel and the reverse channel into one environment process, but
we shall not explore that option heve.

| Application 1 l FTP 1 I ARP1 | [foTward channel] Ireverse channel I

request("hotelbotel™)
request("hotel")
request("hotel",0}
indicalion(ce)
request(" hotel",0)
indication(()
requesti(“botel™)
request{"botel”,1)
indication{1)
requese(””)
request("",0)
indication{Q)

Figure 39: Site description for site 1.

reverse channel] l;orward channel l l ABP 2 l r FTP2 l lApplication 2]

indication("hotel”,0)

indication("hotel”)

request(0)

indication({"hotel”, ()

requesy(()

indication("botel",1)

indication("botel™)

request(1)

uu

indication("",0)

indication("™)

indication("hotelbotel")

request(()

Figure 40: Site description for site 2.

As before, we can distinguish the following styles:

the operator style,

the inductive st¥le,

the bounded style,

the negative style.

We shall not elaborate on the differences between these styles here, since
the problems are similar to those studied for the ABP (but more complex
because we are looking at many processes at the same time). Although
one could try to achieve a certain completeness (for example by using the
inductive style) with respect to the specification of the protocol entities ABP
1 and FTP 1 from ihe site 1 descriptions, this is not a good idea. It is already
hard to arrive at a complete description when specifying ABP 1 or FTP 1
in isolation. Trying to combine the descriptions implies specifying a more
complex system (2 processes in parallel). These diagrams are of course not
suitable for specifying a service, because a service is a distributed concept,
which in general cannot be explained from the point of view of one site only.

Figure 40 presents a good opportunity for discussing the phenomenon
of equivalent diagrams. The last two messages of Figure 40 do not share a
process line. If we interchange two adjacent communication actions which
share no process line, then we get another diagram (putting request(0) before
indication(*hotelbotel"}) which can be considered equivalent to the given
diagram. Conversely, one could define that each diagram represents the entire
equivalence class of traces. This idea is the essence of the approach of Mauw,
Winter and Van Wijk, who define an ACP term (containing the + operator)
as the semantics of a given diagram (see e.g. [2]).

30

11 Relating the views

We shall relate the various views by defining an impractical, but theoret-
ically interesting view, which is the view in which all actions of all the
processes are shown, without the omission of any processes and without
service-abstraction or peer-to-peer abstraction. The processes and connec-
tions involved are shown in Figure 41.

Figure 41: The complete view

We can obtain the vartous views through the omission of certain processes,
possibly combined with an abstraction step. A number of views are shown
in Figure 42. The processes which are not involved in a particular view are
shaded. Ports which are not juvolved have been omitted from the figure.
The oval indicates the area of interest.

layer view site view enlity view layer view layer view
(service abstraction) (peer-to-peer abstraction)

Figure 42: Views obtained by omitling processes and through abstraction.

The main characterisation of the views is based on the main decomposi-
tion structures visible in the architecture as presented in Figure 33: decom-
position into layers and distribution over sites. By restricting a view to the
mntersection of a laver and a site we see only a single entity, which for the
simple protocols studied means that we see only a single process. Therefore,
these are the three main views:

¢ layer descriptions,
¢ site descriptions,

e entity descriptions .

31

For the layer descriptions there are two ways of abstracting away from partic-
ular details, either by combining a number of processes into a single service,
or by cutting out the service processes of the next layer down. Therefore we
regard the following views as more abstract variants of the layer descriptions:

e service descriptions,

o peer-to-peer descriptions.

The layer descriptions for the ABP layer were presented in Section 8. We did
not present the layer descriptions for the F'T'P layer, but they could be made
if so desired. A few site descriptions for site 1 and site 2 were presented in
Section 10. The entity descriptions for the ABP 1 entity were presented in
Section 7. We did not present the entity descriptions for the ABP 2 process,
but they could be made if so desired (the same holds for FTP 1 and FTP
2). The service descriptions for the ABP service were presented in Section 6.
We did not present the service descriptions for the F'TP service, but they
too could be made if so desired. The peer-to-peer descriptions for the FTP
layer were presented in Section 9. There is no peer-to-peer description for
the ABP service, because the mechanism of peer-to-peer abstraction is not
directly applicable to an unreliable service.

It is interesting to analyse the way in which some of the descriptions can
be obtained from other descriptions. This 1s shown 1n Figure 43.

omit processes
complele
view otnit pracesses + short circuit

combine processes and omit intermals

take subset of behaviours

Y i i

FTP layer view F1'P laycr view
(peer-10-peer abstraction)

I L — I

ABP service view ARP | cntity view FTP 1 entity view ABP 2 entity view FTP 2 entity view

I { oy L - I r_r lJI I [1
ABP service specification ABP 1 entity specification FTP 1 entity specification ABP 2 entity specification FTP 2 entity specification

Figure 43: Relations hetween the various descriptions.
At the top of this figure we put the description of the complete view; we

assume that this is a description containing all traces which may occur in
putting all eight processes (Application 1, FTP 1, ABP 1, forward channel,

32

reverse channel, ABP 2, I'TP 2 and Application 2) in parallel. Of course
this is an infinite set which includes infinite traces, but here we assume
that we can succeed in making a finite description of this set, using the
operator style, the inductive style, the bounded style, the negative style, or
any combination of these. Let us use the term ‘view’ for such an infinite
set of traces (hehaviours). The second and the third rows in Figure 43 are
obtained by applying three different kinds of forgetful and/or abstraction
mappings, as indicated. For example, the ‘site 1 view’ is the set obtained
from the ‘complete view’ by removing three processes (ABP 2, FTP 2 and
Application 2) from each Interworking.

The views in the lowest row in Figure 43 are each related to one other
view by means of a subsetting relation. This is because the specification of
an entity (or service) concerns all possible behaviours and may hence include
behaviours whicli do not occur when the entity is put in the specific context
of the other entities of the ABP and the FTP protocols. For example the
ABP service specification must include the behaviour where two successive
empty strings are to be transmitted (request(e)), each of which must of course
be delivered at site 2 (as an indication(e)). But when used for the particular
FTP protocol described in Section 9, this behaviour cannot occur.

The various relations between the distinct views and specifications can
be used as a basis [or obtaining an understanding of the roles of the distinct
checking options, as proposed by Mauw, Reniers, Winter and Van Wijk (see
e.g. [2], and [15]). One important kind of check is called ‘merge-consistency’.
This consistency amounts to checking whether two given Interworkings can
be derived [rom one (unknown) common Interworking by deleting one or
more processes. This can be used for example to see if a given Interworking
belonging to the ‘ABP layer view’ and a given Interworking belonging to the
‘site 1 view’ are merge-consistent with each other. Merge-consistency can be
checked by a tool that attempts to combine the two given Interworkings into
a single Interworking containing the union of the processes of the individual
Interworkings. Of course it is not so that any Interworking of the ABP layer
view is merge-consistent with any Interworking of the site 1 view.

A second kind of check is related to the concept of ‘refinement’. One
Interworking is said to be a relinement of another Interworking if the latter is
obtained from the former by unifving a number of process-lines, turning them
into one process-line and possibly also deleting internal actions (messages
which go return to the unified process). This can be used for example to see
whether a given Interworking which is supposed to belong to the ‘ABP service
view’ can be refined to a given Interworking which is claimed to belong to
the ‘ABP layer view’,

12 Discussion

Our analysis of the various styles (operator style, inductive style, bounded
style and negative style) show that Interworkings in their purest form, when
considered as a specification formalism, lack sufficient expressive power. Even

33

in the case of a small and well-known protocol like the ABP, it turns out that
all attempts to arrive at a reasonable coverage of the set of allowed behaviours
by means of a sufficiently large number of Interworkings, are problematic.
For example, we discovered that the number of Interworkings needed for one
process grows exponentially as a function of the number of messages shown
in each Interworking,

The use of generic Interworkings, where expressive power is added by
means of induction principles or operators, allows for a variety of solutions,
roughly falling into two categories:

e add composition mechanisms as a separate language level to the In-
terworking language. This was illustrated by our inductive notation
using etc. and gtc. and by our use of ¥, + and X. It is essentially the
approach followed for MSCs in the GEODE toolset. In the context of
the ITU MSCs such high-level constructs are called ‘road-maps’. The
Interworking merge and Interworking sequencing of [2] and [15] also
belong to this category.

o extend the Interworking language itself, embedding choice and repe-
tition into the diagrams. We showed this in Figure 5 and Figure 27.
The representation of choices or if-then-elses is the hardest problem
of this category: they must be put into the two-dimensional structure
of the diagrams. See for example [14], where the concept of condition
is extended to form both guards and labels to indicate the ‘then’ and
the ‘else’ part of an il-tlien-else construct. Also see [14] for sub-MSCs,
providing a subroutine mechanism.

So, when trying to use Interworkings as a specification language, some choices
have to be made. [or other purposes the situation 1s easier: when analysing
and explaining a limited number of interesting cases such as test runs, simu-
lation runs, debug sessions, ctc., Interworkings and MSCs are already useful
in their pure form.

Our analysis of the various views provided insight into the applicabil-
ity of Interworkings in the context of the OSI model. The OSI layering
and distribution concepts give rise to a number of distinct views, for which
we proposcd names, viz. layer descriptions, site descriptions, entity descrip-
tions, service descriptions and peer-to-peer descriptions. We showed several
examples and made the relations between these views explicit in an informal
setting. We claim that this understanding and classification of views is nec-
essary and is complementary with respect to the emerging formal semantics
of Interworkings and MSCs and the formal definitions of merge-consistency
and refinement. The formal definitions cannot really be exploited if we have
no clear view of why merging and refinement are needed in practice. On the
other hand, the informal analysis given here can be made precise (but not
in the scope of this report) using formal notions of merge-consistency and
refinement. Although the definitions of the views are based on observations
made during industrial protocol design projects (e.g. we saw site views being
written in practice), the work reported here is a fully self-contained rational
reconstruction of how Interworkings can and cannot be used in practice.

34

13 Acknowledgements

The author wishes to thank Ron Koymans, Yat Man Lau, Sjouke Mauw and
Michel Reniers for their help and cooperation with respect to the subject of
this report.

References

[1] E. Rudolph, P. Graubmann, J. Grabowski. Towards an SDL design
methodology using sequence chart segments. In: Q. Feergemand and R.
Reed (Eds.), SDL'91, evolving methods, Elsevier Science Publishers, pp.
237-252 (1991).

[2] S. Mauw, M. Van Wijk, T. Winter. A formal semantics of synchronous
Interworkings. In: O. Fargemand and A. Sarma, (Eds.), SDL’93 using
objects, Elsevier Science Publishers pp. 167-178 (1993).

[3] J.C.M. Baeten, W.P. Weijland. Process algebra. Cambridge University
Press, Cambridge tracts in theoretical computer science 18 (1990).

[4}] TTU-TS. Draft Recommendation Z.120 Annex B: Algebraic semantics of
Message Sequence Charts, ITU-TS, Geneva (1994).

[5] S. Mauw, M.A. Reniers. An alyebraic semantics of basic message se-
quence charts. The Computer Journal 37(4), pp. 269-277 (1994).

[6] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes,
P. Jeremaes. Qbject-oriented development, the Fusion method, Prentice-

Hall (1994).

[7] 1. Ryant. The correctly analysed system which behaves incorrectly. ACM
SE notes, 20(2), pp. 58-61 (1995).

(8] J. Henshal, S. Shaw. OST explained, Ellis Horwood Limited (1988).

[9] F.W. Vaandrager. Two simple protocols, in: J.C.M. Baeten, Applica-
tions of process algebra, Cambridge University Press, Cambridge tracts
in theoretical computer science 17 (1990).

[10] J.C.M. Baeten and S. Mauw. Delayed choice: an operator for joining
Message Sequence Charts, in: Formal Description Techniques VII, D.
Hogrefe and S. Leue (Eds.), Chapman & Hall (1995).

[11] ITU-TS. Recommendalion Z.100: SDL, ITU-TS, Geneva (1994).

(12] R.L. Graham, D.E. Knuth, O. Patashnik. Concrete mathematics,
Addison-Wesley (1990).

[13] G.J. Holzmanu. Design and validation of computer protocols. Prentice
Hall International (1991).

[14] @Gystein Haugen. MSC siructural concepts. Discussion paper, March
1994.

[15] S. Mauw, M.A. Reniers. Empty Inlerworkings and refinement, seman-
tics of interworkings vevised. Proceedings of ACP95, Eindhoven (1995),
also as Computing Science Report 95/12; Eindhoven University of Tech-
nology {1995).

36

Computing Science Reports

In this series appeared:

93/01

93/02
93/03
93/04

93/05

93/06
93107
93/08

93009

93/10

93111

93/12

93/13
93/14

93/15

93/16

93/17

93718

93/19
93720

93/21

9322
93/23
93/24
93125

93126
9327
93/28

93129
93130

R. van Geldrop

T. Verhoeff
T. Verhoeff
E.H.L. Aaris
JHM. Korst
P.J. Zwietering

J.C.M. Baeten
C. Verhoef

J.P. Velkkamp
P.D. Moerland
J. Verhoosel

K.M. van Hee
K.M. van Hee
K.M. van Hee
K.M. van Hee

K.M. van Hee

J.CM. Bacten
J.A. Bergstra

J.C.M. Baeten
J.A. Bergsira
R.N. Bel

H. Schepers
J. Hooman

D. Alsiein
P. van der Swok

C. Verhoef

G-J. Houben
E.S. de Boer
M. Codish

D. Dams

G, Filé

M. Bruynooghe
E. Poll

E. de Kogel

E.Poll and Paula Seven

H. Schepers and R. Gerth

W.M.P. van der Aalst
T. Kloks and D. Kratsch

F. Kamareddine and
R. Nederpelt

R. Post and P. De Bra

I. Deogun
T. Kloks

. Kratsch
H. Miiller

Department of Mathematics and Computing Science
Eindhoven University of Technology

Deriving the Aho-Corasick algorithms: a case study into the synergy of program-
ming methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quickson for linked lists, p. 8.

Deterministic and randomized local search, p. 78.

A congruence theorem for structured operaticnal
semantics with predicates, p. 18,

On the unavoidability of metastable behaviour, p. 29
Exercises in Multiprogramming, p. 97

A Formal Deterministic Scheduling Model for Hard Real-Time Executions in
DEDOS, p. 32.

Sysiems Engineering: s Formal Approach
Pant I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Pant II: Frameworks, p. 44, .

Systems Engineering: a Formal Approach
Part III: Modeling Methods, p. 101.

Systerns Engineering: a Formal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: 2 Formal Approach Parnt V: Specification Language, p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p- 19

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Programming, p. 15.

Freeness Analysis for Logic Programs - And Correctness, p. 24

A Typechecker for Bijective Pure Type Systems, p. 28.
Relational Algebra and Equational Proofs, p. 23.
Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real-Time Distributed Systems,
p. 3L

Multi-dimensional Petri nets, p. 25.
Finding all minimal separators of a graph, p. 11.

A Semantics for a fine A-calculus with de Bruijn indices,
p- 45.

GOLD, a Graph Orniented Language for Dalabases, p. 42.

On Vertex Ranking for Permutation and Other Graphs,
p- 11

93131 W. Korver Derivation of delay insensitive and speed independent CMOS circuits, using
directed commands and production rule sets, p. 40,

93132 H. ten Eikelder and On the Correctness of some Algorithms to generate Finite
H. van Geldrop Automata for Regular Expressions, p. 17.
93133 L. Loyens and J. Moonen ILIAS, a sequential language for parallel matrix computations, p. 20.
93134 J.C.M. Baeten and Real Time Process Algebra with Infinitesimals, p.39.
JA. Bergstra
93735 W. Ferrer and Abstract Reduction and Topology, p. 28.
P. Severi
93136 J.C.M. Baeten and Non Interleaving Process Algebra, p. 17.
J.A. Bergstra
93137 1. Brunckreef Design and Analysis of
J-P. Katoen Dynamic Leader Election Protocols
R. Koymans in Broadcast Networks, p. 73.
S. Mauw
93738 C. Verhoef A generul conservative extension theorem in process algebra, p. 17.
93/39 W.P.M. Nuijien Job Shop Scheduling by Conswraint Satisfaction, p. 22.
E.H.L. Aans
D.A.A. van Erp Taalman Kip
K.M. van Hee
93/40 P.D.V, van der Stok A Hierarchical Membership Protocol for Synchronous
M.MM.P.I. Claessen Distributed Systems, p. 43.
D. Alstein
93741 A. Bijlsma Temporal operators viewed as predicate transformers, p. 11.
93/42 P.M.P. Rambags Automatic Verification of Regular Protocols in P/T Nets, p. 23.
93/43 B.W. Walson A taxomomy of finite automata construction algorithms, p. 87.
93/44 B.W. Watson A taxonomy of finite automata minimization algorithms, p. 23.
93/45 E.J. Luit A precise clock synchronization protocol,p.
JM.M. Manin
93/46 T. Kloks Treewidth and Patwidth of Cocomparability graphs of
D. Kraisch Bounded Dimension, p. 14.
1. Spinrad
93/47 W. v.d. Aalst Browsing Semantics in the "Tower” Model, p. 19.
P. De Bra
G.J. Houben
Y. Komatzky
93/48 R. Gerth Vernifying Sequentially Consistent Memory using Interface
Refinement, p. 20.
9401 P. America The object-oriented paradigm, p. 28.
M. van der Kammen
R.P. Nederpelt
0O.5. van Roosmalen
H.C.M. de Swan
94/02 F. Kamareddine Canonical typing and IT-conversion, p. 51.
R.P. Nederpeh
94/03 L.B. Hartman Application of Marcov Decision Processe 1o Search
KM, van Hee Problems, p. 21.
94104 J.C.M. Baeten Graph Isomorphism Models for Non Interleaving Process
J.A. Bergstra Algebra, p. 18,
94/05 P. Zhou Formal Specification and Compositional Verification of
J. Hooman an Atomic Broadcast Protocol, p. 22.
94/06 T. Basten Time and the Order of Abstract Events in Distnbuted
T. Kuonz Computations, p. 29,
J. Black
M. Coffin
D. Taylor
04/07 §1}3 ,ikpr. Logic Programming and Negation: A Survey, p. 62.
. Bol
94/08 0.8, van Roosmalen A Hierarchical Diagrammatic Representation of Class Structure, p. 22.
94/09 J.C.M. Baeten Process Algebra with Panial Choice, p. 16.

I.A, Bergstra

94/10
9411

94/12

94/13

94/14

94/15

94/16

9417

94/18

94/19

94720

94121

94722

94123

94124

9425

94726

94727
94728

94725

94/30

94131

94/32

94/33

94134

94135

94136

94/37

94138

T. verhoeff
I. Peleska

C. Huizing
C. Petersohn
T. Kloks

D. Kratsch
H. Miiller

R. Seljée

W, Peremans
R.JM. Vaessens
E.H.L. Aarts
JK. Lenstra

R.C. Backhouse
H. Doombos

S. Mauw
M.A. Reniers

F. Kamareddine
R. Nederpelt

B.W. Watson
R. Bleo

F. Kamareddine
R. Nederpelt

B.W. Watson
B.W. Watson

S. Mauw and M.A. Reniers
D. Dams

0. Grumberg

R. Genh

T. Kloks

R.R. Hoogerwoord

S. Mauw and H. Mulder

C.W.AM. van Overveld
M. Verhoeven

J. Hooman
L.C.M. Baeten
JLA. Bergsira
Gh. Stefanescu

B.W. Watson
R.E. Watson

1.J. Vereijken
T. Laan

R. Bloo

F. Kamareddine
R. Nederpelt

J.C.M. Baeten
S. Mauw

F. Kamareddine
R. Nederpelt

T. Basten
R. Bol
M. Voorhoeve

A. Bijlsma
C.S. Scholten

The testing Paradigm Applied to Network Structure. p. 31,
A Comparison of Ward & Mellor's Transformation
Schema with State- & Activitychans, p. 30.

Dominces, p. 14.

A New Method for Integrity Constraint checking in Deductive Databases, p. 34.
Ups and Downs of Type Theory, p. 9.
Job Shop Scheduling by Local Search, p. 21.

Mathematical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message

Sequence Charts, p. 9.

Refining Reduction in the Lambda Calculus, p. 15.

The performance of single-keyword and muliiple-keyword paniem matching
algorithms, p. 46.

Beyond f-Reduction in Church's A—, p. 22.

An introduction to the Fire engine: A C++ toolkit for Finite automata and Regular
Expressions.

The design and implementation of the FIRE engine:
A C++ 1oolkit for Finite autornata and regular Expressions.

An algebraic semantics of Message Sequence Chans, p. 43.
Abstract Interpretation of Reactive Systems:

Abstractions Preserving YCTL*, 3CTL* and CTL*, p. 28.
K,-free and W,-free graphs, p. 10.

On the foundations of functional programming: a programmer's point of view, p.
54,

Regularity of BPA-Systems is Decidable, p. 14.

Stars or Siripes: a comparative study of finite and
transfinite techniques for surface modelling, p. 20.

Correctness of Real Time Systems by Construction, p. 22.
Process Algebra with Feedback, p. 22.

A Boyer-Moore type algorithm for regular expression
pattern matching, p. 22.

Fischer's Protocol in Timed Process Algebra, p, 38.

A formalization of the Ramified Type Theory, p.40.
The Barendregt Cube with Definitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. 15.

Canonical typing and IT-conversion in the Barendregt
Cube, p. 19.

Simulating and Analyzing Railway Interlockings in
ExSpect, p. 30.

Point-free substitution, p. 10,

94139

94/40
94/41

94/42

94/43

94/44

94/45
9446

94/47

94/48

94/49

94/50

94/51

94/52

94/53

95/01

95/02

95/03

95104
95/05
95/06

95/07

95/08

95/09

95/10

A. Blokhuis
T. Kloks

D. Alstein

T. Kloks
D. Kratsch

1. Engelfriet
1J. Vereijken

R.C. Backhouse
M. Bijsterveld

E. Brinksma 1. Davies
R. Genh S. Graf
W, Jansgsen B. Jonsson
S. Katz G. Lowe
M. Poel A. Pnueli
C. Rump J. Zwiers

G.J. Houben

R. Bloo
F. Kamarcddine
R. Nederpelt

R. Bloo
F. Kamareddine
R. Nederpelt

Mathematics of Program
Construction Group

J.C.M. Baeten
J.A. Bergstra

H. Geuvers

T. Kloks
D. Kratsch
H. Miiller

W. Penczek
R. Kniper

R. Genth
R. Kuiper
D. Peled
W. Penczek

J.J. Lukkien

M. Bezem
R. Bot
I.F. Groote

J.C.M. Baeten
C. Verhoef

J. Hidders

P. Severi

T.W.M. Vossen
M.G.A. Verhoeven
H.M.M. ten Eikelder
E.H.L. Aans
G.AM. de Bruyn
0.S. van Roosmalen
R. Bloo

J.C.M. Baeten
I.A. Bergstra

R.C. Backhouse
R. Verhoeven
0. Weber

On the equivalence covering number of splitgraphs, p. 4.
Distributed Consensus and Hard Real-Time Systems, p. 34.
Computing a perfect edge without vertex elimination
ordering of a chordal bipartite graph, p. 6.

Concalenation of Graphs, p. 7.

Category Theory as Coherently Constructive Lattice
Theory: An Illustration, p. 35.

Verifying Sequentially Consistent Memory, p. 160

Tutorial voor de ExSpect-bibliotheek voor "Administratieve Logistiek”, p. 43.

The A-cube with classes of terms modulo conversion,
p. 16.

On IT-conversion in Type Theory, p. 12.

Fixed-Point Calculus, p. 11.

Process Algebra with Propositional Signals, p. 25.
A short and flexible proof of Strong Normalazation
for the Calculus of Constructions, p. 27.

Listing simplicial vertices and recognizing
diamond-free graphs, p. 4.

Traces and Logic, p. 81

A Panial Order Approach to

Branching Time Logic Model Checking, p. 20.

The Construction of a small CommunicationLibrary, p.16.

Formalizing Process Algebraic Verifications in the Calculus
of Constructions, p.49.

Concrele process algebra, p. 134,

An Jsotopic Invariant for Planar Drawings of Connected Planar Graphs, p. 9.
A Type Inference Algorithm for Pure Type Systems, p.20,
A Quantitative Analysis of Iterated Local Search, p.23.

Drawing Execution Graphs by Parsing, p. 10.

Preservation of Strong Normalisation for Explicit Substitution, p. 12,

Discrete Time Process Algebra, p. 20

Math[pad;: A System for On-Line Prepararation of Mathematical
Documents, p. 15

27

95/11
9512

95/13
95/14

95/15

95/16
95117
95/18

95/19
95120
9521
9522

95/23
95124

R. Seljée
S. Mauw and M. Reniets

B.W. Watson and G. Zwaan

A. Ponse, C. Verhoef,
S.F.M. Vlijmen (eds.)

P. Niebert and W. Penczek

D. Dams, 0. Grumberg, R. Gerth
8. Mauw and E.A. van der Meulen
F. Kamareddine and T. Laan

J.C.M. Baeten and J.A. Bergstra
F. van Raamsdonk and P. Severi
A. van Deursen

B. Amold, A. v. Deursen, M. Res

W.M.P. van der Aalst

F.P.M. Dignum, W.P.M. Nuijten,
L.M.A. Janssen

Deductive Database Systems and integrity constraint checking, p. 36.

Empty Interworkings and Refinement
Semantics of Interworkings Revised, p. 19.

A taxonomy of sublinear multiple keyword pattem matching algorithms, p. 26.
De proceedings: ACF95, p.

On the Connection of Partial Order Logics and Partial Order Reduction Methods,

p- 12
Absiract Interpretation of Reactive Systems: Preservation of CTL*, p. 27.
Specification of tools for Message Sequence Chans, p. 36,

A Reflection on Russell's Ramified Types and Kripke's Hierarchy of Truths,
p. 14

Discrete Time Process Algebra with Abstraction, p. 15.
On Nomnalisation, p. 33.
Axiomatizing Early and Late Input by Variable Elimination, p. 44.

An Algebraic Specification of a Language for Describing Financial Products,
p-11.

Petri net based scheduling, p. 20.
Solving a Time Tabling Problem by Constraint Satisfaction, p. 14.

	Abstract
	1. Introduction and motivation
	2. Aims and survey
	3. Interworkings
	4. The alternating bit protocol
	4.1 Architectural issues
	4.2 Informal description
	4.3 Formal description
	5. The ABP in Interworkings
	6. Service descriptions
	6.1 Operator style
	6.2 Inductive style
	6.3 Bounded style
	7. Entity descriptions
	7.1 Operator style
	7.2 Inductive style
	7.3 Bounded style
	8. Layer descriptions
	8.1 Operator style
	8.2 Inductive style
	8.3 Bounded style
	9. Peer-to-peer descriptions
	10. Site descriptions
	11. Relating the views
	12. Discussion
	13. Acknowledgements
	References

