

Synchronous sequence charts in action

Citation for published version (APA):
Feijs, L. M. G. (1995). Synchronous sequence charts in action. (Computing science reports; Vol. 9525).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/01ba47d3-ca59-483b-95a7-c32eaa68dba4

ISSN 0926-4515

All rights reserved

Eindhoven University of Technology
Department of Mathematics and Computing Science

Synchronous Sequence Charts In Action

by

Loe Feijs

editors: prof. dr. I.C.M. Baeten
prof. dr. M. Rem

Computing Science Report 95{25
Eindhoven, August 1995

95{25

Synchronous Sequence Charts In Action

Loe Feijs
Philips Research Labomtories Eindhoven,

Eindhoven Univel'sity of Technology

August 15, 1995

Abstract

We identify a number of styles for using Interworkings (synchronous
sequence charts), together with their roles in the context of the OS1
reference model. \Ve employ the well-known ABP (alternating bit
protocol) to see how Interworkings can and cannot be used. This ex
periment shows that the charts are attractive from an intuitive point
of view, but when used in their purest form, lack sufficient expressive
power. Some of the distinctions in style can be interpreted as distinct
approaches to adding expressive power.

Categories and Subject Descriptors: C.2A [Computer communication net
worksJ: Distributed systems - distributed applications; D.2.1O, D3.2 [Software
EngineeringJ: Design - methodologies, representation; Language classifications
- very high-level languages; F .3.1., FA.3 [Logics and meanings of programsJ:
Specifying and verifying and reasoning about programs - specification techniques;
Formallangua.ges - algebraic language theory; HA.3 [Information systems ap
plications]: Communica.tions applications - Electronic mail.

1 Introduction and motivation

Message Sequence Charts (MSCs) [lJ and Interworkings (IWs) [2J are graph
ical languages for the description of the interaction between entities. Inter
workings are in many aspect.s similar to IVISCs; the main difference is that IWs
describe synchronous communication, whereas MSCs consider asynchronous
communication. \\'e use the term 'sequence charts' to cover both MSCs and
IWs. Sequence charts are frequently used for the specification, design and
testing of communication systems. It has been shown in [2J that Interwork
ings can be given a formal semantics in terms of the algebra of communicating
processes (ACP) [3J. The ITU (the Int.ernational Telecommunication Union)
is developing a standard for lvISCs, based on a formal semantics in ACP too
(Annex B of Z.120, [4], accepted in April 1995; see also [5]). Sequence charts
are frequently used as parts of (or in combination with) Object-Oriented
methods, for example Fusion [6], where they are called 'scenarios'.

In our view, the general understanding of the methodological issues re
lated to sequence cha.rts is still in an early phase. The state of affairs is

1

summarised in [7], where it. is not.ed that the CCITT (ITU) standards Z.100
and Z.120 recommend diagramming techniques and formal languages but. do
not recommend any methodology of the analytical process. Moreover, it is
noted that an MSC specifies only a sample of a particular interaction, not a
protocol.

MSCs are more general, but also more complex than Interworkings. For
this report we shall restrict ourselves to Interworkings, because we feel we
are in an early phase of the development of the methodology, and therefore
we like to start with the simplest formalism first. Syntactically, Interwork
ing diagrams can always be viewed as MSCs too (but not the other way
round), since synchronous communication demands that the order of arrival
is the same as the order of transmission, whereas in the asynchronous MSCs
messages can cross each other during transmission.

2 Aims and survey

The aims of this report are twofold:

• to identify the various styles in which Interworkings can be used;

• to identify the various views of a system described by Interworkings.

The fact that there are various styles is related to the fact that one Inter
working is only a part of one trace of a system's execution. In general one
needs many Interworkings, but of course one wants to avoid writing very
many (or infinitely many) Interworkings. This is a problem which can be
approached in various ways, which we caIl 'styles'.

The fact that there are various views is related to the fact that it makes
a difference whether one want.s to describe a service, or a protocol, or just a
protocol entity. Different architectural aspects give rise to different 'views' on
a system. The architectural aspects will be discussed using the OSI reference
model, which provides us with concepts such as services and layers [8].

We address these two aims together because in general the style used
depends on the view under consideration. For our study of styles and views
we employ the well-known ABP (Alternating Bit Protocol), which we will
place in an OSI context.

This report is organised as follows. Section 3 briefly introduces Inter
workings. Section il introduces the ABP. Section 5 surveys the various views
and styles which will be studied in the subsequent sections. Section 6 gives
a service-oriented view. Sect,ion 7 gives a protocol entity-oriented view. Sec
tion 8 gives a layer-oriented view. Section 9 gives a peer-to-peer view. Sec
tion 10 gives a site-oriented view. Section 11 analyses these distinct views
and their relationships. Section 12 discusses the results.

We assume that the reader is familiar with the main operators of ACP: +
for alternative choice and· for sequential composition. For more information
concerning ACP we refer to [:3]. We shall use these operators in Sections 4
and 9 to describe example protocols formally. VVe will also use them in
Sections 6, 7, a,nel S to compose sequence chart fragments.

2

3 Interworkings

An example of an Interworking is given in Figure 1. The vertical lines named
ENVl, DISPATCHER and ENV2 represent processes and the horizontal ar
rows labelled message_I, message_2, etc. represent communication actions
between the processes. As shown in [2], Interworkings can be given a formal

E:>''VI r DlSPATCHERl ENV2 I

~ ... ,
mcsnge 2

overflow

nJessage_2

~ ... 2

Figure 1: Example Interworking iwo with three processes.

semantics in terms of ACP. Roughly speaking, the vertical ordering of events
in the diagram is interpreted by using the '.' operator of ACP for sequential
composition. If we abbreviat.e l1lessage_l by m" l1lessage_2 by m2, overflow
by 0, DISPATCHER by el, ENVI by el, ENV2 by e2 we find that for the
diagram iwo of Figure 1

Here we will not consider additional language features of Interworkings, such
as internal actions. For this example the semantics seems trivial, but in
Interworkings with more processes, a subtle point arises in the sense that one
Interworking may contain a number of alternative behaviours (in the ACP
interpretation this means that a. + appears), which are however equivalent
in a certain sense. There is not one total ordering of all the events along a
kind of global time Jiue; instead, the InterlVorking specifies how each process
has its own ordering. For an example and a brief explanation of this point
we refer to Section 10. \Ve consider the availability of this formal semantics
as a strong point of the Interworking formalism. We believe that results of
the investigations of Sections 6 to 11 may be of help in making better use of
this strong point.

4 The alternating bit protocol

\Ne will adopt the details of the ABP as formally described and analysed using
Process Algebra as given in [9]. Rather than starting with its description in
Process Algebra we will place the protocol in a context by starting from
the OSI concepts, identifying the relevant services and layers first. This is
the subject of Section 4.1. Next, we will give an informal description of the
working of the protocol (Section 4.2). After that, we will give the formal
details in Process Algebra (Section 4.3).

3

4.1 Architectural issues

The typical positioning of a protocol
(see e.g. [8]) is shown in Figure 2.

site I

forward channel

m a layered open-system architectnre

site 2

reverse channel

Figure 2: Positioning of the ABP in a layered architecture

The OSI model proposes i1, total of 7 layers; here we will focus on three
layers, one of which is called the ABP layer. The function of this layer is
to transmit data packets without damage from site 1 to site 2. To do so it
uses the service of the underlying layer, which is here assumed to consist of
two unreliable channels, one for each direction. There is a layer above the
ABP layer, which we called the Application layer, which uses the services
offered by the ABP layer. Services are made available at certain points only,
the so-called Service Access Points (SAPs), shown in Figure 2 as black dots.
For example, at site 1 there is one SAP for requesting the transmission of a
data packet (SAP 1) and at site 2 there is a SAP for receiving the indication
of a transferred data packet. (SAP 2). The SAPs are numbered from 1 to
6. Both the ABP layer and the Application layer consist of two 'protocol
entities' (processes), one at each site. The channel service has two SAPs at
each side: one for the forward channel and one for the reverse channel. Note
the dashed horizontal line, which represents a 'peer-to-peer' communication
channel. This is an ahstraction from the true communication channel, which
of course does not exist within one layer but passes through the services of
the layer below.

In an algebra.ic setting~ as in [9], it is cllstolnary, or even necessary, to use
short symbols, like", j and "2 for send and receive at sites 1 and 2, respectively.
We start from an OSI-style of naming the various service primitives involved.
The ABP service consists of one service element, which is data transfer. In
real protocol services there are also other service elements, which are related
to e.g. connection management, medium access management, etc. There are
two service primitives, called request and indication.

4

Service Service element I Primitive Parameters I
Data, transfer ABP-DATA request User data

indication User data

The channel service also comprises one service element. The primitives
are almost the same, except for the fact that there is a new data element,
not in the User data: ce, for channel error. There is one data transfer service
for each of the two channels.

I Service I Service element I Primitive Parameters

Data transfer C-DATA request User data
indication User data U ice}

4.2 Informal description

First let us describe the service offered by the ABP. The ABP will repeatedly
accept a data packet from the application at site 1 and transfer it to site 2
where it can be received. The contents of the data packet is not modified, nor
is any data packet delivered twice or more times. No data packets are lost
and the order of the data packets is preserved. There will be no 'spontaneous'
packets.

Next'let us describe the protocol implementing this service. The two
channels are unreliable, but at least they give a warning when the data are
corrupted. The warnings aTe coded by a special value called 'ce', for channel
error. The forward channel is used to transfer the application's data packets
together with an additional toggle bit. The sender begins with the value 0
for the toggle bit and then expects a,n acknowledgement from the receiver.
An acknowledgement consists of a toggle bit which is echoed by the receiver
and which is conveyed by the C-DATA service of the reverse channel. If
the acknowledgement is corrupted, the sender retransmits his data package
together with the unchanged bit value. Also if the acknowledgement contains
the wrong bit value, the sender retransmits his data package together with
the unchanged bit value. But as soon as the right acknowledgement arrives,
the sender is ready to accept the next data package from the application,
which will be handled in a similar way, but with a reversed value for the
toggle bit.

4.3 Formal description

A formal description of the protocol can be found in [9]. In the formal
description, which will be summarised below, processes are named S for
sender, R for receiver, K for forward channel and L for the reverse channel;
together they form a process called A BF. Figure 3 shows the place of these
processes.

The formalisation is given in ACr. The service is viewed as a single process
ABP satisfying the equation

AJ3P = 2:= rl (el) . sz(d) . ABP I
dED

5

[J I J
12

AB' T T

I s I I R I

" " " " I K
L

Figure :3: Positioning of the formal processes.

where D is the set of data. values, that is, application layer packets. As usual
in ACP, summation (+ and 2:::) denotes a choice among a set of alternatives,
whereas '.' denotes sequential composition. The atomic steps such as rl(d)
and s2(d) denote receiving d at SAP 1 and sending d at SAP 2, respectively
(in ACP, SAPs are usually called 'ports'). We use the convention that a step
Si done by some sending process corresponds to an ri done by a receiving
process. In A CP t.his is usually formalised using a so-called communica
tion function, whose definition we leave implicit here (and similarly for t.he
encapsulation).

The service as offered by t.he forward channel, viewed as a process K, is
given by the equations

]{ 2::: r3(.f)·]{J
JEDxB

= (T' s4(ce) + T' 84(1))' J(

As usual in ACP, T is a 'silent. step', used here to model the fact that the
channel itself will internally decide whether an error occurs, which is 84(eel,
or a correct transfer, described as s«t). D x B is the set of pairs consisting
of a data package d E D and a bit bE B, where B = {O, I}. And of course
the reverse channel, viewed as a process L, satisfies analogous equations.

The sender process S is gi ven by t.he four equations

S RMJ

2::: 1'1 (d) . SFlb

dED
83(db) . RAdb
(l's(1- b) + rs(ee))· srb + l's(b)· RMI

-
b

where we simply write db for the pair consisting of data d and bit b. The
auxiliary term RMb rnoc!els the sender when Reading a Message in the state
where toggle bit b is to be used next. Similarly, srb is the sender Sending
a Frame with data d and bit b. And !lAdb is when it is trying to Receive an
Acknowledgement for d and b.

Finally the receiver process R is also given by four equations.

6

= RFU R
RP = (L "4(d(1 - b)) + ".(ce))· SA I- b + L '·4(db). 5Mb

dED

= S6(b) . RFI
-

b

= s2(d)·SAb

The auxiliary term RE" models the sender when Receiving a Frame when b is
the correct bit value. Similarly, SAb is the receiver Sending an Acknowledge
ment for received bit b. And SArIb is the receiver when Sending a Message
with data d and bit h to its application.

The following table sUl11ma.rises the relation between the process identi
fiers used in A CP a.nd the model of Figure 2.

I Process I States II Entity Comment

ABP - ABP 1 + ABP 2 + channels ABP service
S RAl, SFib, RAdb ABP 1 sender

R RP SAb SMdb , , ABP 2 recelver
]{]{f forward channel -
L Lb reverse cha.nnel -

The following t.able sLlm1l1Mises t.he relation between the send and receive
actions L1sed in ACP amI the service primitives mentioned in Section 4.1.

I Action I Service primitive II From I To

51 ABP-DATA.rcquest Application 1 ABP 1

82 A BP-DATA .indication ABP 2 Application 2
83 C-DATA.request ABP 1 forward channel
84 C-DATA .indication forward channel ABP 2
8s C-DATA .indication reverse channel ABP 1
86 C-DATA.request ABP 2 reverse channel

5 The ABP in Interworkings

In their purest form, Interworkings refer to concrete messa.ges, by which we
mean that each message with its actual pa.rameters is shown explicitly. This
is sufficient for giving examples of system runs and for representing traces
obtained from running the system or a simulation of the system. But one will
often want to go beyond this LIse, to arrive at a more or less complete system
specification. But in generaJ, one process or set of processes can exhibit an
infinite number of different. behaviours. This means that the Interworking
language must. be implicitly or explicitly extended, either by adopting new
synt.actic constructs, or by adopting a suit.able view on t.he semantics of a
set of Interworkings. vVe call Int.envorkings thus used genel·ic Interworkings.
There are various approaches to generic Interworkings, leading to distinct
styles, for which we propose names as follows:

• the operator style (compose Interworkings using operators),

• the inductive st.yle (usc Tnterworkings plus an induction principle),

7

• the bounded style (give all Interworkings with < N messages),

• the negative style (give Interworkings which should not happen).

The operator style, the inductive style and the bounded style will be first
explained in Section 6 (one subsection for each style). The explanation of
the negative style is postponed to Section 9.

There are also important differences with respect to the view of the system
one wants to describe. We distinguish the following views:

• service descriptions (e.g. describing the entire service ABP),

• entity descriptions (e.g. describing the process ABP 1),

• layer descriptions (describing interaction patterns within one layer),

• peer-to-peer descriptions (describing communication along the dashed
lines in Figure 2),

• site descriptions (e.g. describing site 1).

Section 6 gives a service-oriented view (in three different styles). Section 7
gives a protocol entity-oriented view (in three different styles). Section 8 gives
a la.yer-oriented view (in three different styles). Section 9 gives a peer-to-peer
view and Section 10 gives a site-oriented view.

6 Service descriptions

6.1 Operator style

\I./e use the Klcene star * to denote unbounded repetition (zero or more
times). \I./e can treat the data. d inside an Interworking as a forma.l pa
rameter, bound by a :E construct to denote that for each data value there

is a.n a.lternative behaviour. In this way we capture an infinity of distinct
behaviours in a. single expression. The ABP service specification is

2: iw-s-opb-l (d))"
dE User dat,a

where iw-s-opb-l is given by Figure 4 below (opb = OPerator Based). Here
it is understood from t.he architecture that 'request' refers to the primitive
ABP-DATA.request. and that 'indication' refers to ABP-DATA.indication.
Here we do not address the precise nature of the ~ and + operators used; a
proper treatment requires Manw's delayed choice operator [10J.

I Application I \ I ABP I \ Application 2 I
requested)

indication(d)

Figure 4: Int.envorking iw-s-opb-l(d).

8

Of course it is not hard to invent other syntatic means for the repetition
operator. vVe could for example mark a certain vertical position in the di
agram with a label (somet.imes called 'condition') and then postulate that
the second occurrence of that label means that there is an option for looping
back to the position of the first occurrence. This is shown in Figure 5. If so
desired one could use a. special arrow or a 'GOTO' as well.

I Application 1 I I ABP I I Application 2 I

<- BEGIN

rcqucsl(d)

indication(d)

<- BEGIN

I I I

Figure 5: Interworking for ABP service using looping.

The forward channel service specification is

(iw-s-opb-2a(d) + iw-s-opb-2b(d))*
dE User dat.a

where iw-s-opb-2a(d), which describes the intended behaviour, and iw-s-opb-
2b(d), which describes the behaviour in case of a channel error, are given
by Figures 6 ami 7 below. Here it is understood from the architecture that
'request' refers to the primitive 'C-DATA.request' and that 'indication' refers
to the primitive 'C-DATA.indication'.

I All? 1 I I forward channel I I ABP2 I
rcquest(d)

indication(d)

Figure 6: Intenvorking iw-s-opb-2a(d).

I All!'l I I forward channel I I ABP2 I

rcqucSl(d)
indication(ce)

Figure 7: Interworking iw-s-opb-2b(d).

The reverse channel service specification is similar to the forward channel
service specification, ami has t.herefore been omitted.

6.2 Inductive style

Next, let us avoid the operators which are used to compose the Interwork
ings into a description covering all service behaviours. Instead, we will use

9

more Interworkings, each describing one scenario. We still parameterise the
Interworkings over the data values (d, d l , d2 , etc.), but apart from that,
each Interworking corresponds to one behaviour. vVe will begin with the
ABP service. After t.hat we shall see that the forward channel presents
an additional complication. The number of traces of the ABP service is
IInENIUser dat.al, because the trace has countably infinitely many request
indication pa.irs, each of which can have one of IUser datal different data
values. So if IUser dat.al = 1 (User data is a singleton), there is only one
trace (but this is a reduced kind of service). If User data is a countable set,
there are uncotlntably infinitely many traces. For example, if User data = IN
there exists a trace which contains request(3), indication(3), request(l), in
dication(l), request.(4), indication(4) and so on, successively transferring all
digits of 71'.

Even if we allow ourselves to parameterise over dl , d2 , d3 , etc., we still
ca.nnot cast the behaviour int.o one Interworking because an Interworking is
a finite diagram in t.he sense that it has only a finite number of arrows. We
ca.n solve this by adding a key-word 'etc.' at the end of the Interworking and
we postulate that this shall only be used if there is an obvious pattern in
the arrows shown, from which it is clear how to produce any desired number
of additional arrolVs. In Figme 8 below for example, it is obvious that the
first four arrows that should come at the place of the 'etc.' are request(d4),
indication(d4), request(d.5), indication(d.5). This means that we assume that
there is some induction principle, which is not of a. mathematical natme, but
which, from a. practical point of view, may exist when the writers and readers
of the Interworkings are able and willing to understand each other.

I Application 1 I I ABP I I Application 2 I
requcst(dl)

indicalion(dl)

requcst(d2)

indication(d2)

rcquest(d3)

indication(d3)

etc.

Figure 8: Interworking iw-s-ind-l(dl ,d2,d3 , ...) (0 times ce).

If IND is the operator which extends a given finite diagram to an infinite
trace according to the assumed induction principle, then we can define that
Figme 8 represent.s t.he set. of beha.vioUl's in

{INDCiw-s-ind-l)(dj,d2,d3,.·.lld"d2,d3,'" E User data}

or, using sum notat.ion, the alternat.ives of

L L L'" IND(iw-s-ind-l)(dl , d2 , d3 , •••)

d1 d') d3

The forward channel allows a greater variety in behaviours because it has
both desired and undesired beha.viours. Figure 9 gives the desired behaviour.
Of course this 'request' is 'C-DATA.request'.

10

I ABPI I I forward channel I I ABP2 I
request(dl)

indication(d 1)

request(d2)

indication(d2)

request(d3)

indication(d3)

etc.

Figure 9: Intenvorking iw-s-ind-2a(d1 , d2 , d3 , •••) (0 ce).

Next we will present a set of Int.erworkings which model the behaviours
in which there is precisely one occurrence of a channel error. This error may
occur during the first tra.nsmission, or eluring the second transmission, or
during the third tra,nsmission and so on.

These are shown in Figures 10, 11 and 12, respectively. But these are
only the first three of an infinite sequence ane! therefore we ae!e! the key-wore!
'etc.' at the caption of the last of these figures (i.e. Figure 12), together with
a clue about the applicable induction principle.

r ABP I I rforward channel I I ABP2 I
request(dl)

indication(ce)

request(d2)

indication(d2)

request(d3)

indication(d3)

rcqucst(d4)

indication(d4)

ele.

Figure 10: lnterworking iw-s-ind-2b(d1 , d2 , d3 , •.•) (1 ce).

Next we coulc! continue to present the Interworkings with two channel
errors. If the first ce occurs for dl, then there is an infinity of positions for
the second ceo In general, t.he first ce occurs for some eli ane! the secone!
for some d j . This is a two-dimensional space since we can choose both i
ane! j from IN (except for i = j), but there is a construction due to Cantor
which tells us that there are ways of enumerating these possibilities: first all
combinations with i + j = 2, then the combinations with i + j = 3 ane! so
on. We coule! give sOllle more Interworkings, but in view of space limitations
we will conclude this process noW by giving one e!iagram, together with the
'etc.' which tells us t.hat we need all combinations with two ceo And finally we
conclude this by the key-word etc. which tells us that after the combinations
with one and t.wo occurrences of ce, we get those with 3, 4, 5, 6 and so on.

It depends now on the precise na.ture of the channel whether this is an
adequate specification of t.he channel. If we wa.nt to fix the channel as in Sec
tion 4.3, we are not finished yet, because for example the channel behaviour

11

r- ABP 1 1 rforward channel 1 I ABP2 I
request(d I)

indication(d 1)

rcquesl(d2)

indication(ce)

request(d3)

indication(d3)

rcqucst(d4)

indication(d4)

requesl(d5)

indication(d5)

etc.

Figure 11: Interworking iw-s-ind-2c(d1 , d2 , d3 , .••) (1 ce).

r AllPl l r forward channel l I ABP2 l
request(d 1)

indication(d 1)

rcqucst(d2)

indication(d2)

request(d3)

indicatian(ce)

rcqucsl(d4)

indication(d4)

requcsl(d5)

indication(d5)

rcquest(d6)
indication(d6)

etc.

Figure 12: Int.erworking iw-s-ind-2d(ell, dZ1 d3) ...), etc. (all combinations
with one ce).

which gives its first ce aftcr :3 requests, the second after 1 subsequent request,
the next after 4 more requests, following the digits of 7r, has not yet been
included. If we want that t.oo, we could write etc., with the intention that all
combinations, including those with an infinite number of occurrences of ce,
are included. So apart. from the parameterisation over the User data, there
are !JRI behaviolll's. These cannot be enumerated.

As a matter of fact, therc is an alternative way of capturing this set of
PRI beha.viours, which is to define that. the forwa.rd channel ha.s the set of
behaviours in

{IND(iw-s-ind-2a)(dl,d2,d3, ... lldr,d2,d3, ... E User data U {ce}}

(using the same Figure 9) 01' using sum notation, the alternatives of

L L L'" IND(ill'-s-ind-2a)(d1 , d2 , d3 , .••)

d1 d'l d3

where it is hOll'ever understood that the d1 , d2 , d3 , •.. now range over
User data U {ce}. Despite t.he simplicity of the latter alternative way, this

12

I ABP' I I forward channel I I ABP2 I
request(dl)

indication(ce)

rcquest(d2)

indication(ce)

requcst(d3)

indication(d3)

rcquest(d4)

indication(d4)

request(d5)

indication(d5)

etc.

Figure 13: Interworking iw-s-ind-2e(d" d2 , d3 , •• •), etc. (all combinations with
2 ce), etc (all numbers of ce).

does not seem the typica.l wa.y in which Interworkings are used: it seems to be
more natural to single out the 'ce' case because in the ABP implementation
there are entirely different scenarios for the normal case and the 'ce'case.

The reverse channel service specification is similar to the forward channel
service specification, and has therefore been omitted.

6.3 Bounded style

Instead of using operators or induction principles to capture an infinite set
of behaviours, one can also adopt the viewpoint that the description is sat
isfadory if all beha.viours with N communication adions are adequately de
scribed. This viewpoint. is defendable when using Interworkings for designing
tests or sill1ulation rUllS, where it is ilnpossible to test an infinite set of be
haviours anyhow (if we know bounds on the number of states of the finite
state machines we can indicate an N which is really adequate).

For the ABP service we need oue diagram for each N. For N = 2 this is
already given as iw-s-opb-l(d) (Figure 4). For N = 6 this is alrea.c1y given
as iw-s-ind-l(d"d"d:l l (Figure 8). It is understood that each diagram is
implicitly quantified over it.s dat.a variables, so if we say that for N = 2
the ABP is given as iw-s-opb-l(d) this means that its behaviours are the
alternatives of LJ i w-s-opb-l (d).

For the forward channel we will restrict ourselves to even N, because the
diagrams with odd N are unique extensions of those for N -1. Let NDN(N)
be the number of diagrams needed for a given number of communications
(N E IN).

For N = 0 there is ouly one trivial dia.gram, so NDN(O) = 1.
For N = 2 we need two diagrams, viz. t.he diagrams obtained by taking the

first two arrows only in iw-s-ind-2a(d,) and iw-s-ind-2b(d'). So NDN(2) = 2.
For N = 4 we need four diagl'i\ms, viz. t.he diagrams obtained by taking

the first four arrows only in iw-s-incl-2a(d"d,), iIV-s-ind-2b(d"d2), iw-s-ind-
2c(d"d2) and iw-s-ind-2e(d j ,d2). So NDN(4) = 4.

For N = 6 we need eight diagrams, wence NDN(6) = S. In general,
NDN(N) = 2N / 2 , so the number of diagrams grows exponentially with the
number of communications covered.

As a matter of fad, there is no fundamental distinction between the
inductive style and the hounded st.yle. The inductive style usually requires
some nested induction principles, but one could always add a statement 'etc'
to a bounded description for a length N, implying that the reader is supposed
to have grasped the idea a.nd is a.ble to give the diagrams for N + 1, N + 2
and so on (at least, ill principle). In that sense it is an induction on N. In
this report we shall employ the sections on 'bounded style' to have a closer
look at the growth of NDN as a function of N.

7 Entity descriptions

7.1 Operator style

The ABP 1 entity (i.e. t.he sender process) is described by

(
L (iw1(d)· (iw2(d) + iW3(d))*· iW4(d)))*

. dEuI=data(ill's(d). (iw6(d) + iW7(d))* . iW8(d))
JEUser data

where iW1 ... ill's are given by Figures 14 to 21. Let us here ignore the problem
that forma.!ly this only yields t.he Tnterll'orkings with two complete cycles, one
for bit 0, and one for bit 1 (and not. the incomplete ones). It is understood
that here for example dO is the concatenation of the user data value d with
the bit value O. It is possible to push the usage of formal parameters one step
further, treating the toggle-bits in a, generic way too; this could reduce the

number of auxilia,ry Interworkings by a factor of two, but in the presentation
given here we choose to treat the toggle bits as concrete values.

The Interworking diagrams should be interpreted as descriptions of the
behaviour of the sender process (ABP 1) under the assumption that the
environment (Application 1, both channels) behaved as in the Interworking.
In particular, these diagrams are not supposed to give any information about
the possible behaviours of t.hat, environment. The fact that in genera.! this
stat.ement ma.kes a difference becomes appa.rent when we treat the receiver
(ABP 2) along the same lines.

I Application 1 I I ABP 1 I Yorward channell

requcst(d)
rcqllest(dO)

Figure 14: Tnterworking for ABP 1 (iw1).

The above dc,cription refers to eight. auxiliary Interworkings; each of these
Interworkings describes a particula.r 'phase' of the entit.y being modelled.
Actually, we see t.hat these arc only small fragments of scenarios; we seem

14

I AllP 1 forward channel fe·=< """""I
indication(l)

request(dO)

Figure l:j: Interworking for ABP 1 (iw2)'

Application 1 I ABP 1 I Jorward channel ~verse channel I
indication(ce)

rcqucst(dO)

Figure Hi: Interworking for ABP 1 (iw3).

to be (ab)using Interworkings to describe the individual transitions of the
process. So iWl is one transition, iW2 is one transition and so on. Such
transitions are often modelled in SDL, which is an important state-oriented
language for describing processes, see e.g. [ll]. This is shown in Figure 22,
which combines the transitions of iWl, iW2, iW3 and iW4 into a single transition
diagram.

If we were to duplicate this (replacing Os by 1s and conversely) we find
the full SOL description of the sender. The full SOL description has not
been included in order to save space. \\le conclude that when using the
operator-based style for Interll'orkings, and adopting state transition diagram
constructs by way of 'operators' one essentially arrives at SOL (although
it must be noted that. Interworkings have synchronous communication and
SOL has asynchronous communication). Note that parallel branching can be
viewed as a representation of the operator + and looping as a representation
of the operator'.

\\le will now turn our attention to the receiver. The ABP 2 entity (i.e. the
receiver process) is described by an operator-based expression which refers
to six auxiliary Interworkings.

(*

dEUscr data

L iIV3(d)
rlEUser data

L (iw.,(d) + iW5(d)))*
dE User data

L iWG(d)
dE User data

where we ought. to give 6 lnterll'orkings iWl ... iWG (restarting the numbering
scheme), but here we do not sholl' the diagrams.

I AIIP' I forward channel ~vc:rse channell

indication(O)

Figllre 17: Intenvorking for ABP 1 (iW4)'

).5

! Application 1 I ! ABP I I rorward channel!

requested)
rcquest(d I)

Figme 1S: Interworking for ABP 1 (iws).

I AI1PI J rorward channell ~verse channell
indication(O)

request(dl)

Figure 19: Interworking for ABP 1 (iw6).

These diagrams describe the behaviour of the receiver process (ABP 2)
under the assumption t.hat. the environment (Application 2, both channels)
behaves as in the given Illlerworking. Not.e that the receiver modelled in this
way is prepared for acting upon recept.ion of a C-DATA.indication(d1) as its
very first input, in which case the receiver will return C-DATA.request(l).
Of course this will not. happen when the given implementation of ABP 1 and
the given forwa.rd channel a.re used, but the fact that it doesn't happen is a
property of the combined system of ABP 1, ABP 2 and the channels, not of
the receiver's algorithm, which is described in isolation here.

7.2 Inductive style

We are again going t.o avoid the operators. We will describe the ABP 1
process. There is an uncountable number of traces. The first Interworking
given shows the behaviour of A13P 1 when no channel errors occur. The
diagram editor used did not allow for subscripts, so fron1 now on we have

variables d, d1, d2, etc. and it is understood that. in this section for example
(d1,0) is the concat.enation of the useI' data value ell with the bit value O.

As before, we will define t.hat Figure 2:3 represents the set of behaviours
given by its instances, elJ, d2, (/:3 ranging over a.ll user data.

Next we need an infinit.e set of Illterworkings to describe how the ABP
1 process copes with one channel error and with one wrong bit value, which
could occur at the first transmission (Interworkings iw-p-ind-2a and iw-p
ind-2b in Figures 24 and 25), the second transmission (figure omitted), etc.

In the same way we need Interworkings to describe how the ABP 1 process
copes with two channel errors etc. et.c.

Actua.lIy, we should ha.ve given considerably more Interworkings (at least
20 or so) before ending wit.h the statements et.c., etc. and etc., but we ha.ve

I AHPl J [orward channell ~verse channell
indication(ce)

request(dl)

Figure 20: Interworking for ABP 1 (iW7).

16

I ABP I I ~verse channell

indication(l)

Figure 21: Interworking for ABP 1 (iwg).

(from reverse
channel)

from Application I

to forward channel

(from reverse
channel)

L---,-----'
(from reverse

channel)
L..--,-----'

to forward channel to forward channel

Figure 22: Alternativc SDL vicw of Interworkings iw] to iW4 for ABP 1.

omitted them hcre.
The other processes can be done in the same way.

7.3 Bounded style

Let NDN(N) be the number of diagrams needed for a given number of com
munications (N E 1\1). We will present this for the sender, ABP l.

For N = 0,1,2 t.here is 01110' one diagram, so NDN(O) = NDN(1) =
NDN(2) = 1.

For N = 3 there !l.re :3 diagrams, and since the ABP 1 process will react in

[Application I J I ABP 1 I forward channell ~everse channell

requested I)
rcqucS1(dl,O)

indication(O)

rcqucsl(dZ)

request(d2.1)

indication(l)

request(d3)

requcsL(d3,O)
indication(O)

Figure 2:3: Interworking iw-p-ind-l(d l , d2 , d3 , •.•) (0 times ce).

17

I Application I J I ABP J J ~orward channell ~ven;e channell

request(dJ)
request(dJ,O)

indication(ce)

request(dJ,O)

indication(O)

request(d2)

request(d2,J)

indication(l)

request(d3)

request(d3,O)

indication(O)

Figure 24: Interworking iw-p-ind-2a(d1 , d2 , d3 , .••) etc. (all combinations with
one ce).

I Application J J I ARPI J ~orward channell fe·.,.., """,,,] I
request(dl)

request(dJ,O)
indication(J)

requcst(dl,O)

indication{O)

rcquest(d2)

requcst(d2,1)

indication(l)

request(d3)

requc:st{d3,O)

indication(O)

Figure 25: Intcrworking iw-p-ind-2b((h, d2 , d3 , ..•) etc. (all combinations with
one wrong bit va.lue).

a detenninistic wa.y upon t.he third COIlll11Unication, we find that NDN(3) =
NON(4) = 3. The corresponding Intenvorkings are the length 3 (4 resp.)
prefixes of (;he Interworkings in Figures 2:3, 24 and 25.

In general, t.he Interworkings of ABP 1 are prefixes of the unfolding of
the SOL diagram of Figure 22. A part of this unfolded tree is shown in Fig
ure 26. The nodes lahelled n are derived from the states labelled 'BEGIN'
and' AGAIN', whereas the nodes labelled \V are derived from the wait states
'awaiting 0' amI 'awaiting 1'. There are also intermediate nodes, correspond
ing to the intermediate states bet.ween a send and the subsequent receive
action. From this diagram we call conclude that the number of Interwork
ings of a lengt.h N is described by the following equat.ions (for N > 0):

E(N)
W(N)

I(N)

W(N - 1)

I(N-l)

E(N - 1) + 2W(N - 1)

with initial values given by JJ(O) = 1 and W(O) = 1(0) = O. Please read E(N)
as the number of BEGIN or AGAIN nodes at level N and similarly W(N) as
the number of wait.ing nodes and I(N) as the number of intermediate nodes.
Therefore NON(N) = 13(N) + WIN) + [(N). For the first 10 even values

18

o

2

4

6

8

10

Figure 26: Unfolding the process graph of ABP 1.

of N we have calculated the number of Interworking diagrams needed, as
shown in the following table. Please compare the table with Figure 26 and
note that for example a. horizonta.l line at depth 6 goes through 9 branches
of the tree (four \\1 nodes, one B node and four I nodes), or, in other words,
W(6) = 4, E(6) = 1 and 1(6) = 4; so NDN(6) = 4 + 1 + 4 = 9.

I N II 2 I 4 I 6 I SilO I 12 I 14 I 16 I 18 I 20 I
I NDN(N) III I :3 I 9 I 25 I 67 1177 I 465 11219 I 3193 I 8361 I

The recurrence relations for E, HI and 1 can be solved, yielding a closed form
for NDN(N). First we eliminate E and I, finding Wn = 2Wn _ 2 + Wn- 3 for
n > 2. Applying the 4-step procedure of [12] pp. 323-326 we get a closed form
for the generating function HI(z) = L:n Wnzn which is Z2 /(1- 2Z2 - Z3). From
this we obtain Wn = (;3ov5 - ~)<p;' - (1

3
0 v5 + ~)<P2 + (_I)n and NDN(N) =

(1 - iV5)<pi' + (1 + ~ v5)<p~ - (_I)N. Here constants <P, and <P2 are given

by <P, = ~ + ~ v5 (the golden ratio) and <P2 = ~ - ~ v5. Taking approximate
values for the constant.s involved, we see that

NDN(N) ~ 0.55:3 x (1.6IS)N + 1.447 x (-O.618)N - (_I)N

The number of diagrams grows exponentially with the number of communi
cations covered. Roughly speaking, each decision to take one more commu
nication action into account. (increasing N by one) amounts to a growth of
the number of diagrams needed by a factor of 1.618.

In view of t.he above ana.lysis, the bounded style cannot seriously be con
sidered as a useful specification t.echnique, but t.he calculation of the number
of Interworkings needed is st.ill relevant because it shows how many test runs
would be needed to test. all implementa.tion of ABP 1 when aiming at ex
haustive testing of a.ll traces up to a given length.

8 Layer descriptions

A layer description is a description in which all processes involved in one
layer of the protocol arc shown in each diagram. For the ABP protocol this

19

means that there are six process lines. The advantage of these descriptions
is that they contain much information and that they can help the reader to
obtain an overview of what happens during a complex sequence of events.
But precisely because of the fact that nothing is left out, the diagrams tend
to be large in the sense that they contain many process lines and many
interactions.

8.1 Operator style

For the entity descriptions it was already clear that the operator style be
comes unattractive when each individual linear fragment must be represented
by a named Interworking, in particular if there are many such fragments. If
we cast the general interaction pattern of the ABP into this form, we get an
operator-based expression as follows:

(
d} EUser data

· (iw2 . (ill') + iW'I)' iW.,(dd)*
· iW6(dd
· (iw,(dd . (iws(dJ) + iW9) . iwlO)*
· 1W11

L iWI2(d2)
d2 EUser data

· (iW13' (iW14 + iW15) . iW!6(d2))*
· iWl,(d2)
· (iWI8' (iWI9(d2) + iW20) . iW21)*
· 1W22

This expression refers to 22 auxiliary Interworkings, but of course with extra
parameterisation we will need fewer. In view of space limitations, we will not
show these 22 Tnt.erworkings. Let us sketch the idea behind this expression
however: iWl described a. request(dtJ from Applicat.ion 1 to ABP 1, which is
followed by a request(dl) from ABP 1 to the forward channel. The repetition
of (iw2' (iW3 + iw,tl· iws(dl)) describes t.he sequence of events caused by the
ABP 2 repeated request(l) answers, which are repeated until a O-bit in iW7 is
received. The second repetition describes the attempts of ABP 1 to receive
the O-bit returned by ABP 2. Aft.er that we arrive at iWll" .iW22 which
describe the second phase of t.he protocol. The second phase is similar to the
first phase, except for the fact that as and Is are interchanged (this is the
obvious opport.unity for extra. paramet.erisation).

Not.e t.hat. SOIlIC of the fragments do not depend on the dat.a values (dl or
d2) because they only convey 'ce' values or toggle bits.

Although the SDL notation is useful for entity descriptions, as shown in
Section 7.1 (see Figure 22), the SDL notation as such can hardly be used
when a second or third (vertical) process line must also be represented. Each
communication action is not just, a.n input or an output of the main process,
but it always connects the lines of two processes. Yet, if we allow repetition

20

operators inside the diagrams, we are able to bring all fragments together in
one diagram. or course one can use loops or labels and GOTO constructs,
just like we did in Figure 5, to achieve more or less the same effect. In
Figure 27 we show the first half of this diagram. If we were to add another
copy of it, replacing all Os by Is, all Is by Os, and replacing d, by d2 , we
would get one diagram, such that all possible behaviours would be obtained
by running through t.1,is diagram one or more times.

I Application 1 I I AllPl I forward channell reverse channel I I ABP2 I I Application 2 I

request(dl)

request(dl,O)

indication(ce)

request(l)

indication(1) ---indication(cc) +
requcst(dl,Q)

indication(dl,O)

ind ication(d 1)

requesteD)

indication(ce)

rcquesl(dl,O)

+-..........
indicalion(dl,O)

indicruion(ce)

requesteD)

indication(O)

Figure 27: Operator" based layer deseri ption of the first protocol phase.

8.2 Inductive style

In the inductive style, each Int.erworking presents one trace. To capture the
entire behaviour, one dia.gram is not sufficient, but an infinite number of
diagrams is needed. Only a finite number of them is given, together with
hints (the 'induction principle') on hOI\" to proceed and generate as many of
them as desired.

We are not going t.o show all of them, only three. The first Interworking,
given in Figure 28, shows t.he interact.ion when no channel errors occur. The
additional dashed lines and dot.s will be used in Section 8.3 only; the reader
can ignore them for the time being.

As before, we define that Fignre 28 represents the set of behaviours given
by its instances dl, d2, d:3 ranging over all the user data. It is understood
that the pattern of the first t.welve messages (involving d, and d2) is repeated,
but for other data values (d3 , d", etc.).

21

•

•

I Application 1 I I An!'1 I rorward channell

• -- -req=t(dir--- - - - - - - - - - ---

rcqucst(dl,O)

~everse channel I I ABP2 I I Application 2 I

------------- ------------ - 1

• -- - -- ---- - -- - - - - - - - - - - - --- -- im:licittiolT(dl;O) - ---- -- --- - - - - - - - - - ----- -- - 2
~~==~~~------~

1 - -- ---- -- -- -- - - - - - - - - -- - -- --- -- - - - - - - - - --- --- --- - - - -- ;ndicarion(d1,...- •

2- -------------------------- ---irrdiam~~-- -
~------~~~~~

• -- -req=t(d1r -- - - - - - - - - - - - ---

requcsl(d2, 1)

request(O)

------------ .
------------ - 1

• - - ---- ----- - - - - - - - - - --- -- - - indicutiolT(d2;l-:)- -- --- --- -- - - - - -- - ------ -- - 2
~~==~~+---------~

1- --------------------------

request(l)

2 - - - - -- ----- -- - - - - - - - - - - --- -- -indiCBti~t17 - - - --- --- --- --
~--------+--===~~

• - - - reqlJe51{d3r - -- - - - - - - - - -- ---

rcqucst(d3,O)

etc.

- - -indication(d2,... - •

------------ .
------------ - 1

Figure 28: Interworking iw-i-ind-l(dl ,d2,d3 , ...) (0 times ce).

Next we need an infinit.e set. of Int.erworkings to describe how the ABP 1
process copes with one channel error, which could occur at the first (forward)
transmission (Interworking iw-i-ind-2a in Figure 29) or the reverse transmis
sion (iw-i-ind-2b in Figure :30). It could a.!so occur at the second forward or
reverse transmission (figure omit.t.ed), etc.

In the same way we Heed Int.erworkings to describe the interaction with
two channel errors dc. et.c.

Actua.lly, we should have given considerably more Interworkings before
ending with the statement.s etc., et.c. and etc., but we have omitted them
here.

8.3 Bounded style

Let NDN(N) be the number of diagrams needed for a given number of com
munications. In t.his sedion we will calculate t.his number for the layer di
agrams containing all t.he processes. In general, the Interworkings of ABP
1 are prefixes of t.he unfolding of the diagram of Figure 27. There are only
two bra.nching points in t.he fi [5t phase of the protocol. We shall draw these
as shaded circles in two versions (dark and light shading, numbers 2 and 3,
respectively). We have alrea.dy included such shaded circles in Figures 28
to 30. In addit.ion, it is convenient to label two additional states which may
arise during execut.ion of the prot.ocol: t.he black state (number 1), which is
the initia.! phase, and t.he whit.e state, which occurs after the reception of a
wrong toggle bit (number '1). The second phase of the protocol follows the
same pattern as t.he first. phase, only the Os and Is have been interchanged,
which of course docs not. maUer for the number of Interworkings involved.

The result.ing sta.te transit.ion dia.gram is shown in Figure 31. This figure
also shows a partial unfolding of the diagram, from which we can easily
obt.ain the number of diagrams for 1V = 1 to 9. From this diagram we can

22

• ---TeqC'C'!;t~)----------------- ------------ ------------- ------------ - 1

requcst(dl,O)

• - - ---- - - - -- -- - - - - - - - - - - - -- -- indit:lIlion(ce} - - --- - -- --- - - - - - - - - ----- --- - 2
~==~2-1_------~

request(l)

e ----- -- --- -- ------------- - --mdit:lI1ion(l-)- - - -- --- --- -- - - - - - - --- ----- - - 3
~------1_~~~~

G ------------ ---retjm:slCdt;6)--- ------------ ------------- ------------ - 4

• -- - ---- - -- -- - - - - - - - - - -- - -- -- indit:ation(dl-;a, - - --- - -- --- - - - - - - - ------- - - 2
~~==~~+---------~ }- -------------------------- ------------ ------------- ---md~mromd~- •

request(O)

2 - - - ----- -- ---- - - - - - - - - - --- - - - mdit:atiorr(6)-- - --- --- --- - - -
~--------+-~==~~

• - - -TeqlJ"e"Sttti2r -- - - - - - - - - - - - ---

requcst(d2,1)

------------ .
------------ - 1

• ------------ ------------- ----indicarionCd2,ir ------------- ------------ - 2

1 - - - ----- -- --- - - - - - - - - - - - -- - -- --- - -- - - - - --- --- - --- - -- - - indicatiorr(~-- •

2 - - - - - -- -- -- - -- - - - - - - - - - - - - - ---;«dicati<mrl} -

• --~"~d~----------------- -----------
rcqucst(d3,O)

etc.

request(1)

------------ .
------------ - I

Figure 20: [nterworking iw-i-ind-2a(d" d2 , d3 , ••.)

conclude that. the number of Int.erworkings of a length N > 0 is described by
the following equations:

B(N)

D(N)

E(N)

WIN)

1 (N)

D(N-l)

- B(N - 2) + WIN - 1)
DUl' - 2)

2L(N-l)

B(N -1) + D(N - 1)

The initial values are given by B(O) = 1, B(N) = 0 for N < 0, D(N) =
L(N) = W(N) = liN) = 0 for N ::; O. Please read B(N) as the number
of black nodes at level IV, D(N) the darkly shaded, L(N) the lightly shaded
nodes, WIN) as the number of white nodes and liN) as the number of
intermediate nodes.

Clearly, NDN(N) = B(N) + D(N) + L(N) + W(N) + I(N). For the
first ten even values of N we have calculated the number of Interworking
diagrams needed, as shown in the following table:

IN II 2 I 4 I 6 I 8 110 112 114 116 I 18 I 20 I
I N D N (N) II 1 I 2 I ·1 I 7 I 14 I 24 I 47 I 82 I 156 I 279 I

When comparing this table wit.h the tahel of Section 7.:3, one may not con
clude that the growth of NDN was more problematic in Section 7.3 than it
is here. The main difference is t.hat in Section 7.3 about half of the messages
were omitted: t.he behaviour of process ABP 1 involves 6 messages when

j Application 1 j I AIlI" I [orward channell ~verse channel I I ABP2 I I Application 2 I

• - - - TeqUC'St(di)- -- - - - - -- - - - - --- - - --- --- - - - - - -- --- ------ - - - - - - -- ------ - 1

requested] ,0)

• - - -- ----- -- - - - - - - - - - -- - -- -- indication(dl_;O) - ---- - -- --- - - - -- - - -- -- --- - - 2
r-----~~+_--------~

1 - - - ----- -- -- - - - - - - - - - - --- - - - --- - - - - - - - - --- ----- -- - - - - -indicatiorr(dl)-- •

request(O)

2 - -- - -- -- - -- --- - - - - - - - - -- - -- -- -mdicationece)- - - --- --- --- - -
~--------+--===~~

------------ .
rcqucst(dl,O)

3- -------------I=--=--=-7-,,--::.-"'-~-"7~--indicmiorr(dl_;O)- ------------- ------------ e
~~==~2-+_--------~

4- -------------------------- - - - n:questto) - - - - ------------ 0

------------ .
------------ - 1

2- ------------ ------------- ---mdi~tionto)-- -------------
~------~-===~~

• - - -TeqUC'SL(d2)-- -- - - - - - - - - - - --

requcst(d2,l}

• - - - ----- -- -- - - - - - - - - -- - -- -- indication(d2,1)- - ---- --- -- - - - - -- - --- --- -- - 2
~~==~~+---------~

1 - - - -- -- ----- -- - - - - - - - - - - - - - - -- - - - - - - - - - -- --- - ---- - - - - - indicatiorr(d2)-- •

request(l)

2 - - - --- -- -- - -- - - - - - - - - - - - -- - - - -;ndicationtl) - - - --- --- --- - -
~--------+--===~~

• --;re~c~d~-----------------
requcst(d3,O)

ole.

------------ .
------------ - 1

Figure 30: Int.erworking iw-i-ind-2b(dl , dz, d3 , ••.) et.c. (all combinat.ions wit.h
one ce).

going through two protocol phases wit,hout errors, whereas the same layer
description shows all 12 rnessages involved.

The number of diagrarns grows exponentially with the number of com
munications covered. For N=40, for example, there are 119618 diagrams.

9 Peer-to-peer descriptions

These descriptions are concerned with the communications performed by
one process and its direct, part.ners or an interaction pattern involving many
partners. But they are more abstract than t.he descriptions given so far.
They describe so-called 'virtual communications', i.e. communication actions
which do not exist as such, but which are obtained by omitting the underlying
service, as though the peer protocol entities were to communicate directly,
without a mediator. We will give an example first, and will supply the
details later (see Figure :32). In order to demonstrate this idea of peer-to-peer
description we need t.o introduce another protocol than the ABP (peer-to
peer does not work well when the underlying medium is not perfect).

The example is an extremely simplified transfer protocol (see for exam
ple [13] Section 7.4 for a rllore comprehensive example of a file transfer pro
tocol). To be able to present, this example, we will extend the architecture of
Figure 2. We put an FTP layer between the application layer and the ABP
layer, as shown in Figure :3:3. The function of the new layer is to break long
messages into shorter olles and to reassemble them again at the receiving
site. So its service is to trallsfer long strings 5 from site 1 to site 2. To be

o

2

4

6

8

Figure :31: Unfolding the gra.ph of the protocol layer description.

IAPplication 1 I I FIl'l I I FfP2 I jApplication 2 I
req ucs 1(" hotel bo tel ")

dataChole1")

data{"botcl")

dataC')
indication("hotelbotel")

Figure 32: Peer-to-peer Interworking for string 50 = "hotelbotel".

able to do so it requires the service of the underlying layer (the ABP layer),
which provides a reliable channel in one direction. The extended architecture
will also be used in Section 10.

The following table summarises the relation between the send and re
ceive actions used in ACP and the usual 'request' and 'indication' service
primitives. Tlte indices in 81, S2 etc. refer to the service access points in
Figure 33.

I Action I Service primitive ~ II From To

81 ABP-DATA.l'equest FTP 1 ABP 1 .

82 ABP-DATA. indication ABP 2 FTP 2
87 FTP-DATA.request Application 1 FTP 1
88 FTP-DATA.indication FTP 2 Application 2

The protocol works by split.ting t.he given (non-empty) string 5 into short
substrings of a length L, for some L > O. \\Then the transfer is ready, an
empty string is sent. \Vhen the number of characters in the original string
is not a multiple of L, tlte remaining characters are sent as one short string.
This is illustrated in Figure :32 for L = 5 and string "hotelbotel" The
sender process F1 is given by the following two equations:

18 yer sen-ice

P layer sen-ice

ABP2

4 6

forward channel

reverse channel

Figure :3:3: Adding an FTP layer in the architecture

" (S') l' (';) L '1', '- . '1 '-

ISI>O
if 181 :2: L then 81(S[0 .. L - 1]) . Fl(8[L .. ISI-l])

else if 181 = 0 then 81(E)' Fl
elses,(S)·F1

where E is the empty string and where we write S[m. .. n] to indicate the
substring of S which begins at. index position In and ends at position n
(inclnsive). We start, connting index positions at O. We write lSI for the
length of S and we write cat,(SI, 8 2) for the concatenation of strings S, and
S2. The receiver process F2 is given by the following two equations (there is
a delibera.te mistake in it, to which we shall return later):

= F2(c)
1",(t) . 88(8)· F2 + L r2(d) . F,(cat(S, d))

Idl>o

The two processes are supposed to communicate by send (sr) and receive (r2)
messages; it is understood that an 8,(11) action of F, arrives as an '2(d) action
at F2• In the peer-to-peer descriptions we have one primitive only, shown as
'da.ta', which is a kind of combination of a request and an indication (or 88

and S7, which is the same).
vVe will rct.urll 1.0 t.he met.hodology of Interworkings. As before, we can

distinguish the opera.tor style, the inductive style, the bounded style and the
negative style. We shall not elaborate on the differences between the first
three of these styles here, since the problems are similar to those studied for
the ABP (but simpler becanse the protocol has no internal non-determinism).
Essentially, the operator, inductive and bounded styles amount to giving a
sufficient number of diagra.ms like Figure :32, but for other initial strings S.

26

We shall usc the file tril.J1sfcr protocol to illustrate the negative style later in
this section.

Let us take a closer look at Figure 32 and the abstraction step involved
in arriving at this figure. The diagram of Figure 32 is an abstraction of the
diagram of Figure 34 (a.part from the fact that the applications are omitted
in Figure 34).

I rTP 1 I I ABP I I FTP2 I
rcqucst("hotc!")

indication(" hotel")

rcquesL("bolcl")
indication("botel It)

request("")
indication("")

Figure :34: lnterworking without peer-to-peer abstraction.

For each pair of cOllllllunication actions in Figure 32 there is precisely
one COlllHlunication action in Figure :34. l'vlore precisely, a pair consisting
of a message request(el) [rom FTP 1 to ABP immediately followed by an
indication(d) from ABP to FTP 2 is translated into a single communication
action of the form datal d) which goes from FTP 1 to FTP 2.

Please note that the peer-to-peer descriptions can only be given as an In
terworking because by the end of each communication action it has already
been determined which process will initiate the next communication. This is
typical of master-slave protocols or token-passing protocols. In general, how
ever, both applications can init.iilte a communication action. If for example
we assume that FTP 2 can send a spontaneous 'disconnect' to FTP 1, we get
for example the scenario of Figure :35 .. So, we could be forced to use MSCs
instead of Intcrworkings. If the underlying service can loose messages, we

FTPI FfP2

data{"hotcl")

disconnect

Figure 3.5: Peer-to-peer description with simultaneous initiatives.

have an additional problem, calling for arrows which begin at the sender's
process line, but end hil!rwilY (or are dashed, or otherwise distinguished so
as to indicate the error). For example, if the underlying service (unlike the
AI3P) sometimes looses it.s messages, the scenario of Figure 36 may occur.

As promised, we shall now explain t.he negative style. The negative style is
to draw one or more diagrarns for t.races which should not occu". Consider for
example Figure :37 (assume So 0= "hoteldebotel" and L 0= 5). We included
put a deliberat.e flaw ill the formulation of the protocol. The given algorithm

27

I FTP 1 I I FTP2 I
conncct(3)

<- - - - - - - 7'V"'- - _____ ---=ac"'k--1

Figure 36: Peer-to-pcer description when the service can loose a message.

I Application 1 I I FTPI I L FfP2 J IApplication 2 I
requcst("hotcldcbotcl ")

data("hotcl")

d.taCdebof")

dataCer')

receiver still

request("hcllo") waits for data("")
data("hclIo")

d.t·C·)
indication ("hoteldcbotelhello ")

Figure 37: Int.erworking demonstrating error (So == "hoteldebotel", L == 5).

for FI only sends the empty string if the length of So is a multiple of L.
Figure 37 demonstrates the error: the empty string is not sent and therefore
the receiver does not see the end of the first string. This use of Interworkings
occurs frequently: to illustrate an error, which is repaired subsequently. In
this case the error is ea.sily repaired by changing the definition of the sender
process FI as follows:

2:>7(5) . FI (S)
S

if 151 == 0 then sl(e). FI
else if lSI:::: L then 31(5[0 .. L - 1]) . FI (S[L .. 151- 1])

else sl(5) . FI(E)

In Figure 38 a scenario is shown for the repa.ired protocol, using the same
string which went wrong before.

10 Site descriptions

In this section we shall Itse the ext.ended architecture presented in Figure 33.
This is because when there are three layers only, the difference between entity
descriptions and site descript.ions vanishes. A site description shows all the
interactions which occur at one site. So a sit.e description of site 1 contains
all the communications which occur at ports 1, :3, .5,7, whereas a description
of site 2 contains t.hose of ports 2, 4, 6, 8. This is for example useful when
one person or team is ill charge of analysing or designing all protocol entities

28

jApplication I I I Fll'l I I FfP2 I lApplication 2

request("hotcldcbotcl")
data("hotel")

data('dcbot")

data('cl")

dam(''')
indication("hoteldebotel")

request("hcllo")
data(,'hcUo")

dalaC")
indication("hello")

Figure as: Interworking demonstrating bug-fix.

of one site. This is also the kind of description of course obtained when all
events occurring at one site are logged, which can be done locally, unlike
for example a layer descript.ion, which requires some distributed logging.
In practice, sit.e descriptions arc lIsflll when the subdivision of the protocol
design into layers is still to be analysed. Once there is a clear layering, the
diagrams are less useru I.

For example, let. us ask the question: "what exactly happens at site 1
when the applicat.ion invokes request("hotelbotel") and the reverse channel
fa.ils to deliver a. correct data, value for its first request?" This is shown in
Figure a9. Figure 40 shows the corresponding sequence of events at site 2.
It is possible t.o simplify this diagram one step further, by combining the
forward channel a,nd the reverse chamlCl into one environment process, but
we shall not explore that opt,ion here.

I

I Application 1 I I FTP I I I AIlPI I ~orward channel I !reverse channel I

request(" hotclbotcl ")

rcquest("hotcl")

rcquest("hotel",O)

indication(ce)

rcquest(" hotel" ,0)

indication(O)

rcqucst("botcl")

rcqucst("botel".1)

indication(l)

rcqucst(,"')

Tcquest("",O)

indication(O)

Figure :39: Site description for site 1.

29

! reverse channel I jrorward channel I I ABP2 I I FTP2 I !Application 2 !

indicalionC"hotel" ,D)

indication("hotcl")

requesteD)

indication("hotel" ,0)

requestCD)

indic31ionCbotel",l)

indication("botel")

rcqucst(1)

indication("" ,D)

indication(,,")

indicationC"hotelbotel")

rcqucst(O)

Figmc 40: Site description for site 2.

As before, we call distinguish the following styles:

• the operator style,

• the inductive style,

• the bounded sty Ie,

• the negative style.

We shall not ebborate on t.he d i rferences between these styles here, since
the problems are similar to those studied for the ABP (but more complex
because we are looking at many processes at the same time). Although
one could try to achieve a. certa.in completeness (for example by using the
inductive style) with respect. to the specification of the protocol entities ABP
1 and FTP 1 from t.he sit.e 1 descriptions, this is not a good idea. It is already
hard to arrive at. a complet.e description when specifying ABP 1 or FTP 1
in isolation. Trying to combine the descriptions implies specifying a more
complex system (2 processes in parallel). These diagrams are of course not
suitable for specifying a service, because a service is a distributed concept,
which in general cannot be explained from the point of view of one site only.

Figure 40 presents a good opportunity for discussing the phenomenon
of equivalent diagrams. The last two messages of Figure 40 do not share a
process line. If we int.erchange two adjacent communication actions which
share no process line, thell we get another diagram (putting request(O) before
indication("hotelbotel")) which can be considered equivalent to the given
diagram. Conversely, olle could define tha.t each diagram represents the entire
equivalence class of traces. This idea. is the essence of the approach of Mauw,
Winter and Van \Vijk, who derille an ACP term (containing the + operator)
as the semantics of a given diagram (see e.g. [2]).

:30

11 Relating the views

We shall relate the various views by defining an impractical, but theoret
ically interesting view, which is the view in which all actions of all the
processes are shown, without the omission of any processes and without
service-abstraction or peer-to-peer abstraction. The processes and connec
tions involved are showll ill Figure 41.

Figure 41: The complete view

\TVe can obtain the various views through the omission of certain processes,
possibly combined with an ahstraction step. A number of views are shown
in Figure 42. The processes which are not involved in a particular view are
shaded. Ports which are not involved have been omitted from the figure.
The oval indicates (,he area of interest .

••

layer view site view entityvicw

••

Jayerview
(service abstraction)

-
layer view

(peer-to-peer abstraction)

Figure 42: Views obtained by omiUing processes and through abstraction.

The main characterisa.tion of the views is ba.sed on the main decomposi
tion structures visible in the archit.ecture as presented in Figure 33: decom
position into layers a.nd distribut.ion over sites. By restricting a view to the
intersection of a. layer and a site we see only a single entity, which for the
simple protocols studied mea.ns t.hat we see only a single process. Therefore,
these are the three main views:

• layer descriptions,

• site descript.ions,

• entity descriptions.

For the layer descriptions there are two ways of abstracting away from partic
ular details, either by combining a l1l1mber of processes into a single service,
or by cutting out the service processes of the next layer down. Therefore we
regard the following views as more abstract variants of the layer descriptions:

• service descriptions,

• peer-to-peer descriptions.

The layer descript.ions for the AI3P layer were presented in Section 8. We did
not present the layer descriptions for the FTP layer, but they could be made
if so desired. A few sit.e descriptions for site 1 and site 2 were presented in
Section 10. The entity descriptions for the ABP 1 entity were presented in
Section 7. We did not present the entity descriptions for the ABP 2 process,
but they could be made if so desired (the same holds for FTP 1 and FTP
2). The service descriptions for the ABP service were presented in Section 6.
We did not present the service descriptions for the FTP service, but they
too could be made if so desired. The peer-to-peer descriptions for the FTP
layer were presented in Section 9. There is no peer-to-peer description for
the ABP service, because the mechanism of peer-to-peer abstraction is not
directly applicable to an unreliable service.

It is interesting to analyse t.he way in which some of the descriptions can
be obtained from other descriptions. This is shown in Figure 43.

In-u~ Iff m J rmu ~ m-H
Fl'P layer view f.1'P layer view BP layct view site 1 view
(peet.to-peet abstraction)

omit processes

omit processes + short circuit

combine processes and omit internals
•

take subset of behaviours
•

site 2 ... iew

I rn ~ I mr ~ 1m ~ I 1m ~ I m~
ABP~'''rw ABPl~'~r~ FfPl~"r"'w ABP2,",''j'''W FfP2~'T"W

I iT-r ~ um:J lm::J [:mrJ L::II
ABP service specification AHP 1 entity specification vrp I entity s~cification ABP 2 emily specification FrP 2 entity specification

Figure 4:3: Relations between the various descriptions.

At the top of this figure we put the description of the complete view; we
assume that this is a description conta.ining all traces which may occur in
putting all eight processes (Application 1, FTP 1, ABP 1, forward channel,

:32

reverse channel, ABP 2, FT1' 2 and Application 2) in parallel. Of course
this is an infinite set which includes infinite traces, but here we assume
that we ca.n succeed in making a finite description of this set, using the
operator style, the inductive style, the bounded style, the negative style, or
any combination of these. Let us use the term 'view' for such an infinite
set of traces (behaviours). The seco'nd and the third rows in Figure 43 are
obtained by applying three different kinds of forgetful and/or abstraction
mappings, as indicated. For example, the 'site 1 view' is the set obtained
from the 'complete view' by removing three processes (AB1' 2, FT1' 2 and
Application 2) from each Interworking.

The views in the lowest row in Figure 43 are each related to one other
view by mea.ns of a. subsetting relation. This is because the specification of
an entity (or service) concerns all possible behaviours and may hence include
behaviours which do not occur when the entity is put in the specific context
of the other entities of the ABP and the FT1' protocols. For example the
AB1' service specification must include the behaviour where two successive
empty strings are to be transmitted (request(E)), each of which must of course
be delivered at site 2 (as an indication(E)). But when used for the particular
FT1' protocol described in Section 9, this behaviour cannot occur.

The various relat,ions between the dist.inct views and specifications can
be used as a basis for obtaining an understanding of the roles of the distinct
checking options, as proposed by IVlauw, Reniers, Winter and Van Wijk (see
e.g. [2], and [15]). One important kind of check is called 'merge-consistency'.
This consistency amounts to checking whether two given Interworkings can
be derived from oue (unknown) common Interworking by deleting one or
more processes. This can be used for example to see if a given Interworking
belonging to the 'AIlP layer view' a.nd a. given Interworking belonging to the
'site 1 view' are merge-consistent with each other. Merge-consistency can be
checked by a tool that attempt.s t.o combine t.he two given Interworkings into
a single Intenvorking conta.ining t.he union of the processes of the individual
Interworkings. Of comse it is not so that any Interworking of the AB1' layer
view is merge-consistent with any [ntenvorking of the site 1 view.

A second kind of check is related to the concept of 'refinement'. One
Interworking is said t.o be a refinement of another Interworking if the latter is
obtained from the former by unifying a nUl1lber of process-lines, turning them
into one process-line and possibly also deleting internal actions (messages
which go return t,o the unified process). This can be used for example to see
whether a given Int.erworkillg which is supposed to belong to the' ABP service
view' can be refined to a given InterlVorking which is claimed to belong to
the 'AIl1' layer view'.

12 Discussion

Our analysis of the varions styles (operator style, inductive style, bounded
style and negative style) show that. Interworkings in their purest form, when
considered as a specification formalism, lack sufficient expressive power. Even

in the case of a sl1la.!l and well-known protocol like the ABP, it turns out that
all attempts to arrive at a reasonahle coverage of the set of allowed behaviours
by means of a sufficiently large number of Interworkings, are problematic.
For example, we discovered that the number of Interworkings needed for one
process grows exponentially as a function of the number of messages shown
in each Interworking.

The use of generic Interworkings, where expressive power is added by
means of induction principles or operators, allows for a variety of solutions,
roughly fa.!ling int.o two categories:

• add composi tion mechanisms as a separate language level to the In
terworking language. This was illustrated by our inductive notation
using etc. and dc. a.nd by our use of *, + a.nd E. It is essentially the
approach followed for IVISCs in the GEODE toolset. In the context of
the ITU JVISCs such high-level constructs are called 'road-maps'. The
Interworking merge and Interworking sequencing of [2] and [15] also
belong to this category .

• extend the Int.erworking language itself, embedding choice and repe
tition into the diagrarns. \~Te showed this in Figure 5 and Figure 27.
The represcnt.at.ioll of choiccs or if-then-elses is the hardest problem
of this cat.egory: they must be put into the t.wo-climensional structure
of the diagrams. See for example [14], where the concept of condition
is extended t.o form both guards and labels to indicate the 'then' and
the 'else' part. of an if-then-else construct. Also see [14] for sub-MSCs,
providing a. subroutine mechanism.

So, when trying t.o use Interworkings as a specification language, some choices
have to be made. For other purposes the situation is easier: when analysing
and explaining a. lirnitcd l1urnbel' of interesting cases such as test runs, SilTIU

lation runs, debug sessions, et.c., lnterworkings and MSCs are already useful
in their pure form.

Our analysis of the various views provided insight into the applicabil
ity of Interworkings in the context of the OS1 model. The OSI layering
and distribution concepts give rise to a number of distinct views, for which
we proposed names, viz. layer descriptions, site descriptions, entity descrip
tions, service descript.ions and peer-to-peer descriptions. We showed several
examples and made t.he relations between these views explicit in an informal
setting. vVe claim t.hat. this understanding and classification of views is nec
essary and is complementary wit.h respect to the emerging formal semantics
of Interworkings and l'vISCs amI t.he formal definitions of merge-consistency
and refinement. The formal definit.ions cannot really be exploited if we have
no clear view of why Illerging and refinement are needed in practice. On the
other hand, the informal ana.!ysis given here can be made precise (but not
in the scope of this report) using formal notions of merge-consistency and
refinement. AIt.hough the clefinitions of the views are based on observations
made during industrial protocol design projects (e.g. we saw site views being
written in practice), l.he work reported here is a fully self-contained rational
reconstruction of how Interworkings can and cannot be used in practice.

34

13 Acknowledgements

The author wishes to t.hank Ron Koymans, Yat Man Lau, Sjouke Mauw and
Michel Reniers for their help and cooperation with respect to the subject of
this report.

References

[1] E. Rudolph, P. Graubmann, J. Grabowski. Towards an SDL design
methodology 'Ilsing sequence chart segments. In: O. F<ergemand and R.
Reed (Eds.), SDL'!Jl, evolving methods, Elsevier Science Publishers, pp.
237-252 (I!J01).

[2] S. Mauw, IV!. Van Wijk, T. Winter. A formal semantics of synchronous
Intenvol-king.>. In: O. F<ergemand and A. Sarma, (Eds.), SDL'93 using
objects, Elsevier Science Publishers pp. 167-178 (1993).

[3] J.C.M. Baeten, W.P. Weijland. Process algebra. Cambridge University
Press, Cambridge tracts in theoretical computer science 18 (1990).

[4] ITU-TS. Drojl Recommendation Z.120 Annex B: Algebraic semantics of
Message Sequence Chm·t.>, ITU-TS, Geneva (1994).

[5] S. Mamv, lV!.A. Reniers. All. algebraic semantics of basic message se
quence char/so The Computer Journal 37(4), pp. 269-277 (1994).

[6] D. Colcllla.n, P. Arnold, S. Bodolf, C. Dollin, H. Gilchrist, F. Hayes,
P. Jerema.es. Object-oricn/.cd development., the Fusion method, Prentice
Hall (1994).

[7] 1. Ryant. The cO''I'ec/.!y analysed sysle'rn which behaves incorrectly. ACM
SE notes, 20(2), pp .. 58-(;1 (1995).

[8] J. Henshal, S. Shaw. OS! e~:pl(lined, Ellis Horwood Limited (1988).

[9] F.\V. Vaandrager. Two simple pro/.ocols, in: J.C.M. Baeten, Applica
tions of process algebra., Cambridge University Press, Cambridge tracts
in theoretical computer science 17 (lOgO).

[10] J.C.IV!. Baeten and S. Maull'. Delayed choice: an opemto,' for joining
Message Sequence Chll:r/s, ill: Formal Description Techniques VII, D.
Hogrefe and S. Leue (Eds.), Chapman & Hall (1995).

[ll] ITU-TS. ReCOJ)lllJendalion Z.100: SDL, ITU-TS, Geneva (1994).

[12] R.L. Graham, D.E. I\nuth, O. Patashnik. Conc,-ete mathematics,
AddisOll-Wesley (1990).

[13] G.J. Holzmann. Design and validation of computer protocols. Prentice
Hall International (1991).

35

[14J 0ystein Haugen. MSC: 8l/'u.ci-lIrlll concepts. Discussion paper, March
1994.

[15J S. Mamv, ?vI.A. Renicrs. Empt.y lnlenvol'kings and -refinement, seman
tics of interworkingsrevised. Proceedings of ACP95, Eindhoven (1995),
also as Compnting Science Report 95/12, Eindhoven University of Tech
nology (199.5).

:36

Computing Science Reports

In this series appeared:

93/01

93/02

93/03

93/04

93/05

93/06

93/07

93/08

93/09

93/10

93/11

93/12

93/13

93/14

93/15

93/16

93/17

93/18

93/19

93/20

93/21

93/22

93/23

93/24

93/25

93/26

93127

93/28

93/29

93/30

R. van Geldrop

T. Verhoeff

T. Verhoeff

E.H.L Aarts
J.H.M. Korst
P.I. Zwietering

I.C.M. Baeten
C. Verhoef

J.P. Vellkamp

P.D. Moerland

J. Verhoosel

K.M. van Hee

K.M. van Hee

K.M. van Hee

KM. van Hee

K.M. van Hee

I.C.M. Baeten
I.A. Bergstra

J.C.M. Baeten
lA. Bergstra
R.N. Bol

H. Schepers
J. Hooman

D. Alstein
P. van der Stok

C. Verhoef

G-l Houben

F.S. de Boer

M. Codish
D. Dams
G. File
M. Bruynooghe

E. Poll

E. de Kogel

E. Poll and Paula Severi

H. Schepers and R. Gerth

W.M.P. van der Aalst

T. lOoks and D. Kratsch

F. Kamareddine and
R. Nederpelt

R. Post and P. De Bra

I. Deogun
T. lOoks
D. Kratsch
H. Muller

Department of Mathematics and Computing Science
Eindhoven University of Technology

Deriving the Aho-Corasick algorithms: a case study into the synergy of program
ming methods, p. 36.

A continuous version of the Prisoner's Dilenuna. p. 17

Quicklon for linked lists, p. 8.

Detenninistic and randomized local search. p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Fonnal Detenninistic Scheduling Model for Hard Real-Time Executions in
DEIlOS, p. 32.

SYltems Enaineerina: a PannI! Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Fonna! Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Fonna! Approach
Part m: Modeling Methods, p. 101.

Systems Engineering: a Fonnal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Fonnal Approach Part V; Specification Language, p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theoty for
Fault Tolerant Distributed Systems. p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p.19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Progranuning, p. 15.

Freeness Analysis for Logic Programs - And Correctness, p. 24

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real-Time Distributed Systems,
p.31.

Multi-dimensionaI Petri nets, p. 25.

Finding all minimal separators of a graph, p. 11.

A Semantics for a fine A -calculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Pennutation and Other Graphs.
p. 11.

93131 W. KOrver

93/32 H. ten Eikelder and
H. van Geldrop

93/33 L Loyens and 1. Moonen

93/34 I.C.M Baeten. and
I.A. Bergstra

93/35 W. Ferrer and
P. Severi

93/36 J.C.M. Baeten and
I,A. Bergstra

93137 I. Brunckrccf
I·P. Katoen
R. Koymans
S.Mauw

93/38 C.Verhoef

93/39 W.P M. Nuijten
E.H.L Aarts
D.A.A. van EIp Taalman Kip
K.M. van Hee

93/40 P.D.V. van cler Stok:
M.M.M.P J. Oaessen
D. Alstein

93/41 A. Bij1sma

93/42 P.M.P. Rambags

93/43 B.W. Watson

93/44 B.W. Watson

93/45 E.I. Luit
I.M.M. Martin

93/46 T. Kloks
D. Kratsch
1. Spinrad

93/47 W. v.d. Aalst
P. De Bra
G.1. Houben
Y. Komatzky

93/48 R. Gerth

94,'Ill P. America
M. van der Kammen
R.P. Nedetpelt
O.S. van Roosmalen
R.C.M. de Swart

94/02 F. Kamareddine
R.P. Nedetpelt

94/03 LB. Hartman
K.M. van Hee

94/04 J.C.M. Baeten
I.A. Bergstra

94/05 P. Zhou
J. Hooman

94/06 T. Basten
T. Kunz
1. Black
M. Coffm
D. Taylor

94/fY/ K.R. Apt
R. Bol

94/08 O.S. van Roosmalen

94/09 r.c.M. Baeten
I.A. Bergstra

Derivation of delay insensitive and speed independent CMOS J::iI'Quill, usina
directed commands and production rule seLS, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

ILIAS, a sequential language for parallel matrix computations. p. 20.

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology. p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for Synchronoos
Distributed Systems, p. 43.

Temporal operators viewed as predicate tranlfonnen. p. 11.

Automatic Verification of Regular Protocols in PIT Nets, p. 23.

A taxomomy of [mite automata construction algorithms, p. 87.

A taxonomy of [mite automata minimization algorithms, p. 23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Botmded Dimension, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refmement, p. 20.

The object-oriented paradigm, p. 28.

Canonical typing and II-conversion, p. 51.

Application of Marcov Decision Processe to Search
Problem •• p. 21.

Graph Isomorphism Models for Non Interleaving Process
Alge""'. p. 18.

Fonnal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62.

A Hierarchical Diagrammatic Representation of Class Structure, p. 22.

Process Algebra with Partial Choice, p. 16.

94/10 T. vemoeff

94/11 1. Peleska
C. Huizing
C. Petersohn

94/12 T. KIoks
D. Kratsch
H. Miiller

94/13 R. Selje.

94/14 W. Peremans

94/15 RJ.M. Vaessens
E.H.L Am,
J .K. Lenstra

94/16 R.C. Backhouse
H. Doornbos

94117 S.Mauw
M.A. Reniers

94/18 F. Kamareddine
R. Nederpelt

94/19 B.W. Watson

94120 R. B100
F. Kamareddine
R. Nederpelt

94f2I B.W. Watson

94122 B.W. Watson

94/23 S. Mauw and M.A. Reniers

94124 D. Darns
O. Grumberg
R. Genh

94/25 T. KIoks

94/26 R.R. Hoogerwoord

94/27 S. Mauw and H. Mulder

94128 C.W.A.M. van Overve1d
M. Verhoeven

94129 J. Hooman

94/30 I.C.M. Baeten
lA. Bergslra
Gh. ~efanescu

94/31 B.W. Watsoo
R.E. Watsoo

94/32 JJ. Vereijken

94/33 T.Laan

94/34 R. Bloo
F. Kamareddine
R. Nederpelt

94/35 J.C.M. Baeten
S.Mauw

94/36 F. Kamareddlne
R. Nederpelt

94/31 T. Basten
R. Bol
M. Voomoeve

94/38 A. Bijlsma
C.S. Scholten

The telting Paradigm Applied to Network Structure. p. 31.

A Comparison of Ward & Mellor's Transfonnation
Schema with State- & ActivitychaJts, p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in Deductive Databases, p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Seheduling by Local Search, p. 21.

Mathematical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence amns, p. 9.

Refining Reduction in the Lambda Calculus, p. IS.

The perfonnance of single-keyword and multiple-keyword pattern matching
algorithms, p. 46.

Beyond p-Reduction in Church's A---+, p. 22.

An introduction to the Fire engine: A C++ toolkit for Finite automata and Regular
Expressions.

The design and implementation of the FIRE engine:
A C++ toolkit for Fmite automata and regular Expressions.

An algebraic semantics of Message Sequence Charts, p. 43.

Abstract Interpretation of Reactive Systems:
Abstractions Preserving 'VCfL·. 3CfL· and CIL., p. 28.

K1,.J-free and W,,-free graphs, p. 10.

On the foundations of functional programming: a programmer's point of view, p.
54.

Regularity of BPA-Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of fmite and
transfmite techniques for surface modelling, p. 20.

Correctness of Real Time Systems by Construction, p. 22.

Process Algebra with Feedback, p. 22.

A Boyer-Moore type algorithm for regular expression
pattern matching, p. 22.

Fischer's Protocol in Tuned Process Algebra, p. 38.

A fonnalization of the Ramified Type Theory, p.40.

The Barendregt Cube with Definitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. 15.

Canonical typing and II-conversion in the Barendregt
Cube, p. 19.

Simulating and Analyzing Railway Interlockings in
ExSpect, p. 30.

Point-free substitution, p. 10.

94/39 A. Blokhuis
T. Kloks

94/4IJ D. Alstein

94/41 T. KIoks
D. Kratsch

94/42 1. Enge1friet
JJ. Vereijken

94/43 Re. Backhouse
M. Bijsterveld

94/44 E. Brinksma 1. Davies
R. Gerth S. Grar
W. Janssen B. Jonsson
S. Katz G.Lowe
M. Poe! A. Pnueli
C. Rwnp J. Zwiers

94/45 G.I. Hooben

94/46 R. 8100
F. Kamarcddine
R. Nederpelt

94/47 R. 8100
F. Kamareddine
R. Nederpelt

94/48 Mathematics of Program
Construction Group

94/49 I.C.M. Baeten
J .A. Bergstra

94/50 H. Geuvers

94151 T. KIoks
D. Kratsch
H. Miiller

94/52 W. Penczek
R. Kuiper

94/53 R. Gerth
R. Kuiper
D. Peled
W. Penczek

95/01 JJ. Lukkien

95/02 M. Bezem
R. Bol
J.F. Groote

95/03 I.C.M. Baeten
C. Verhoef

95/04 J. Hidders

95/05 P. Severi

95/06 T.W.M. Vossen
M.G.A. Verhoeven
H.MM. ten Eikelder
E.H.L Aarts

95/07 G.A.M. de Bruyn
O.S. van Roosmalen

95/08 R. Bloo

95/09 I.C.M. Baeten
lA. Bergstra

95/10 R.C. Backhouse
R. Verhoeven
O.Weber

On the equivalence covering number of splilgraphs, p. 4.

Distributed Consensus and Hard Real-Time Systems, p. 34.

Computing a perfect edge without vertex elimination
ordering of a chordal bipartite graph. p. 6.

Concatenation of Graphs, p. 7.

Category Theory as Coherently Constructive Lattice
Theory: An illustration, p. 35.

Verifying Sequentially Consistent Memory, p. 160

Tutorial voor de ExSpect-bibliotheek voor "Administratieve Logistiek", p. 43.

The A -cube with classes of tenns modulo conversion,
p.16.

On II-conversion in Type Theory, p. 12.

Fixed-Point Calculus, p. 11.

Process Algebra with Propositional Signals, p. 25.

A short and flexible proof of Strong Nonnalazation
for the Calculus of Constructions, p. Z7.

Listing simplicial vertices and recognizing
diamond-free graphs, p. 4.

Traces and Logic. p. 81

A Panial Order Approach to
Branching Time Logic Model Checking, p. 20.

The Construction of a small COOlmWlicationLibrary, p.16.

Fonnalizing Process Algebraic Verifications in the Calculus
of Constructions, p.49.

Concrete process algebra, p. 134.

An Isotopic Invariant for Planar Drawings of Connected Planar Graphs, p. 9.

A Type Inference Algorithm for Pure Type Systems, p.20.

A Quantitative Analysis of Iterated Local Search, p.23.

Drawing Execution Graphs by Parsing, p. to.

Preservation of Strong Nonnalisation for Explicit Substitution. p. 12.

Discrete Tune Process Algebra, p. 20

Mathlpad: A System for On-Line Prepararation of Mathematical
Dowments, p. 15

95/11 R. Seljee

95/12 S. Mauw and M. Reniers

95/13 B.W. Watson and G. Zwaan

95/14 A. POIlIe, C. Verhoef.
S.F.M. Vlijrnen (eds.)

95/15 P. Niebert and W. Penczek

95/16 D. Dams, O. Grumberg, R. Gerth

95/11 S. Mauw and E.A. van der Meulen

95/18 F. Kamareddine and T. Laan

95/19 I.C.M. Baeten and I.A. Bergstra

95(20 F. van Raamsdonk and P. Severi

95(21 A. van Deunen

95(22 B. Arnold, A. v. DeuTsen, M. Res

95(23 W.M.P. van der Aalst

95(24 F.P.M. Dignum. W.P.M. Nuijten.
LM.A. Janssen

Deductive Database Systems and integrity constraint checking, p. 36.

Empty Interworkings and Refinement
Semantics of Interworkings Revised. p. 19.

A taxonomy of sublinear multiple keyword pattern matching algorithms, p. 26.

Dc pnucdingl: ACP'9S. p.

On the Connection of Partial Order Logics and Partial Order Reduction Methods,
p. 12.

Abstract InteJpretation of Reactive Systems: Preservation of CfL·, p. 27.

Specification of tools for Mcssage Sequence Charts, p. 36.

A Reflection 00 Russell's Ramified Types and Kripke's Hierarchy of Truths,
p.14.

Discrete Time Process Algebra with Abstraction, p. 15.

Dn Nonnalisation, p. 33.

Axiomatizing Early and Late Input by Variable Elimination, p. 44.

An Algebraic Specification of a Language for Describing Financial Products,
p.l1.

Petri net based scheduling, p. 20.

Solving a Time Tabling Problem by Constraint Satisfaction, p. 14.

	Abstract
	1. Introduction and motivation
	2. Aims and survey
	3. Interworkings
	4. The alternating bit protocol
	4.1 Architectural issues
	4.2 Informal description
	4.3 Formal description
	5. The ABP in Interworkings
	6. Service descriptions
	6.1 Operator style
	6.2 Inductive style
	6.3 Bounded style
	7. Entity descriptions
	7.1 Operator style
	7.2 Inductive style
	7.3 Bounded style
	8. Layer descriptions
	8.1 Operator style
	8.2 Inductive style
	8.3 Bounded style
	9. Peer-to-peer descriptions
	10. Site descriptions
	11. Relating the views
	12. Discussion
	13. Acknowledgements
	References

