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Abstract. Embedded systems must be cost-effective. This imposes strict requirements on
the resource consumption of their applications. It is therefore desirable to be able to de-
termine the resource consumption of applications as early as possible in their development.
Only then, a designer is able to guarantee that an application will fit on a target device.
In this paper we will present a method for predicting run-time resource consumption in
multi-task component-based systems based on a design of an application. In [5] we describe
a scenario based resource prediction technique and show that it can be applied to non-
pre-emptive non-processing resources, like memory. In this paper we extend this technique,
which enables us to handle pre-emptive processing resources and their scheduling policies.
Examples of this class of resources are CPU and network.

For component based software engineering the challenge is to express resource consumption
characteristics per component, and to combine them to do predictions over compositions of
components. To this end, we propose a model and tools, for combining individual resource
estimations of components. These composed resource estimations are then used in scenarios
(which model run-time behavior) to predict resource consumption.

1 Introduction

Our research was carried out in the context of the Robocop project!. The aim of Robocop is to
define an open, component-based framework for the middleware layer in high-volume embedded
appliances. The framework enables robust and reliable operation, upgrading, extension, and com-
ponent trading. The appliances targeted by Robocop are consumer devices such as mobile phones,
set-top boxes, dvd-players, and network gateways. These devices are resource (CPU, memory,
bandwidth, power, etc.) constrained and the applications they support typically have real-time
requirements. The component model used within Robocop will be introduced in section 2.

Resources in embedded systems are relatively expensive and (usually) cannot be extended
during the lifetime of the system. Consequently, an economical pressure exists to limit the amount
of resources, and applications have strong constraints on resource consumption. In contrast to the
fixed nature of available resources, software is subject to change. For example, new applications /
components can be added, or existing ones can be replaced or removed.

To make sure that a combination of applications fits on a particular target system, knowledge
about their resource consumption is required. Access to this information at design-time can help to
prevent resource conflicts at run-time. This helps to decrease development time and, consequently,
leads to a reduction of development costs.

However, the current techniques for addressing non-functional aspects of a system during the
early phases of software development are laborious. In this paper we describe a method for esti-
mating resource properties for component-based systems, using models of the behavior and the
resource consumption of individual components. Key features of our approach are that the predic-
tion method can be used in the early phases of application development, is intuitive, and requires
little effort.

! The project is funded in part by the European ITEA program. This is a joint project of various European
companies, together with private and public research institutes.
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Fig. 1. Robocop component model.

We consider applications that may consist of multiple tasks. Tasks define a logical flow of
control. Tasks may run across multiple components. We associate a behavior model with each
component. A behavior model of a task is obtained by composing the behavior models of individual
components. We associate a resource model with operations of components. Using these behavior
models for the tasks, the resource model for operations and a scheduling function we are able to
predict the resource consumption for the system.

We propose a scenario-based prediction method in order to avoid the combinatorial complexity
of full state-space analysis of systems, as is encountered by model-checking approaches [2]. In our
approach resource estimations are made for a set of scenario’s that represent plausible/critical
usages/executions of the system. Similar to the use of scenario’s in the evaluation of software
architectures [12], the validity of the results of our analysis method depends on the selection of
the scenario’s that are used.

The paper is structured as follows. In Section 2 we discuss the Robocop component model. In
Section 3 we make a classification of different resource types. In Section 4, we present the theory
for scenario based resource prediction. In Section 5 we show how to apply our method in practice,
by showing an example. Section 6 discusses related work and draws some conclusions.

2 The Robocop Component Model

The Robocop component model is inspired by COM [1], CORBA [13] and Koala [14]. A Robocop
component is a set of models. (see figure 1). Each model provides a particular type of information
about the component. Models may be in human-readable form (e.g. as documentation) or in binary
form. One of the models is the ‘executable model’, which contains the executable component. Other
examples of models are: the resource model, the functional model, the behavior model, and the
simulation model. The Robocop component model is open in the sense that new types of models
can be added.

A component offers functionality through a set of ‘services’. (see figure 1). Services are static
entities that are the Robocop equivalent of public classes in Object-Oriented programming lan-



guages. Services are instantiated at run-time. The resulting entity is called a ‘service instance’,
which is the Robocop equivalent of an object in OO programming languages.

A Robocop service may define several interfaces. We distinguish ‘provides’ interfaces and ‘re-
quires’ interfaces. The first defines the operations that are implemented by a service. The latter
defines the operations that a service needs from other services.

In Robocop, as well as in other component models, service interfaces and service implemen-
tations are separated to support ‘plug-compatibility’. This allows different services, implementing
the same interfaces, to be replaced. As a consequence, the actual implementations to which a
service is bound do not need to be known at the time of designing a service. This implies that
resource consumption cannot be completely determined for an operation, until an application de-
fines a specific binding of the requires interfaces of service instances to provides interfaces of a
service instance.

Within the Robocop component model tasks are not confined to services. Tasks may, but do
not need to, cross service boundaries. An example of a system built up out of multiple services
with tasks that run across service boundaries is given in figure 7.

3 Resource Categories

We model different types of resources in different manners. First of all we distinguish processing re-
sources and non-processing resources. Processing resources are resources that process elements; for
instance instructions (CPU), packets (Network) and audio samples (Sound card). Other resources
are classified as non-processing resources. An example of a non-processing resource is memory.
Secondly we distinguish pre-emptive resources and non-pre-emptive resources. Non-pre-emptive
resources are claimed by a consumer and can only be used again when they are not needed any
more by the specific consumer. The use of a pre-emptable resource may be interrupted before the
consumer has finished using the resource. Figure 2 illustrates that pre-emptive resources can be
used by multiple consumers at the same time and non-pre-emptive resources can only be used by
one consumer at any specific moment in time. Furthermore figure 2 shows that non-processing re-
sources are requested and released by a consumer and processing resources are requested and used
until processing is completed. Different types of resources require different type of specifications
mechanisms for the usage of the resource. Non pre-emptive resources have a claim mechanism. Pre-
emptive resources have a mechanism to indicate the desire to use them (hopefully the resource
manager will grant the wish). Non-processing resources have start-using:stop-using mechanism,
processing resources only have a start:using mechanism (it is free again when it has processed
all the data), there is no stop mechanism. However sometimes there is a notion of a deadline.
Table 1 describes how we specify the resource use for different resource types. In this specification
we assume resources are countable. The variables X and Y represent a amount of resources.

Processing [Non-processing

Pre-emptive Require: X|Require: X, Release: Y

Non-pre-emptive|Claim: X |Claim: X, Release: Y
Table 1. Resource Specification

4 Resource Prediction Method

We want to determine the resource usage of component-based systems during their execution.
This run-time resource use depends on the composition of the services that form a system and
the operations executed. In this section we describe an approach for predicting the resources that
a system uses for a specific scenario built out of multiple tasks. Tool support has been developed
for this approach in order to automate prediction of resource consumption.
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This section is structured as follows. In subsection 4.1 we discuss the specification of a ser-
vice. In subsection 4.2 we show how to determine the set of services needed by an application.
Subsection 4.3 shows how we obtain the resource consumption of a specific operation of a service.
In subsection 4.4 we discuss how to model resource consumption for call sequences. Finally we
consider the resource prediction per task in subsection 4.5 and per scenario in subsection 4.6.

4.1 Service specifications

Our approach considers composition of services. Each service has one or more provides interfaces
and zero or more requires interfaces. A provides interface lists the operations that the service offers
to other services. A requires interface lists the operations that a service needs in order to function.
For the purpose of resource prediction, the resources that are claimed and released are specified
per operation.

We propose service specifications to capture such information about services. A service speci-
fication contains the following information:

— provides interface: A list of interface names;

— requires interface: A list of interface names;

— Resource consumption: For each implemented operation, the resource usage is specified. The
specification of the resource consumption depends on the type of resource (See table 1);

— Behavior: For each implemented operation, the sequence of operations it uses.

Figure 3 contains an example service specification. It is a specification for service s; which
requires the interfaces Ir and I3 and provides the interface I;. Service s; implements the operation
f which uses operations g and h from interface I, and I3, respectively. Operation f requires 5000
cpu cycles, not counting the invocations of Iy.g and I3.h. Furthermore we can see that operation
f claims 100 bytes of memory and on return, releases 100 bytes.

The behavior section of the service specification defines that operation g from interface I, is
called zero or more times before operation h from interface I3, and that it is called a varying
number of times. How such a sequence of calls will be instantiated, in order to predict memory



service sl
requires I2
requires I3
provides I1 {
operation f
resource cpu
require 5000
resource memory
claim 100
release 100
behavior:
I2.g*;
13.h}

Fig. 3. An example service specification

consumption, will be discussed shortly. All resource consumption in our approach, is specified per
operation. Therefore, resources consumed during service instantiation and resources released at
service destruction are specified as part of constructor and destructor operations. The behavior
of an operation can be depicted as a message sequence chart (MSC) [11]. Observe that these are
partial message sequence charts, because indirect operation calls (for instance operations that are
called by I5.h in Figure 3) are not specified in the service specification.

The service specifications can be defined at design time, or can partly be generated from an
implementation. In the latter case, call graph extraction can be used to obtain the behavior and to
determine the requires interface. In case a service specification was defined at design-time, service
specification generation can serve to validate an implementation (i.e., to check whether the service
specification, extracted from the implementation, corresponds to the one defined at design-time)

4.2 Composition of services

As illustrated in Figure 3, services can only use operations from interfaces, not directly from
services. In other words, in our component model, a service cannot define a dependency upon a
specific service. At development- or run-time the decision is made which services to bind to each
required interface.

Two services that have the same provides interface may have different requires interfaces. As
a consequence, the behavior of an application is not known before all requires interfaces of its
services are bound. Hence, this behavior is needed for making estimations of the resource use.

To construct the behavior model of an application, we have to determine and bind the required
interfaces. Finding the required services works by transitively replacing required interfaces by
services. To describe this process of composition formally, we define a function C. Given a set of
required interfaces and service specifications, functions C yields a composition of needed services.
The input domain of C' is a set of interfaces. We take the output of C a set of service names. In
general the output of C' may contain more information about the bindings between the services.
Function C is defined inductively next. First we introduce some auxiliary notation:

s.provides = set of interfaces provided by s
s.requires = set of interfaces required by s
f-calls = ordered set of functions called by function f

C(ly,....,I))=C(I;)U...uC(I,) (1)
C(I) = sUC(I')for a service s (2)
where I € s.provides and I' = s.requires



If interfaces are provided by multiple services, the set of services might be ambiguous. In this case
there are (at least) the following options:

— The composition function C needs assistance to choose between appropriate candidate services.
Assistance can be in the form of user intervention (i.e., a person chooses among candidates),
in the form of composition constraints, or composition requirements (for instance, a decision
is made based on maximal performance, or minimal memory consumption requirements).

— The system generates all possible configurations. This can be used to compare their perfor-
mance in the next phase.

4.3 Per-operation resource prediction

The set of services established by C, is the basis from which we will be able to deduce the
behavior of specific scenarios can be constructed. Using this set we will determine the resource use
of called operations. To that end, we define a weight function w using ‘resource combinators’. This
function calculates consumption of a resource 7 of an operation f over a composition of services, by
accumulating the resource usage of f itself, and of the resource consumption of all the operations
that are called by f. This means that w will compose the behavior triggered by operation f (see
figure 4).

The definition of this function depends on the type of resource (see figure 2). Function w is
defined as:

w(f(s),r) = (a) where 3)
a = s.f.r.require and

r = pre-emptive and processing

w(f(s),r) = (a,b) where 4)
a = s.f.r.require and
b = s.f.r.release and

r = pre-emptive and —processing

w(f(s),r) = (a) where (5)
a = s.f.r.claim and
r = —pre-emptive and processing

w(f(s),r) = (a,b) where (6)
a = s.f.r.claim and
b = s.f.r.release and

r = —pre-emptive and —processing

w(f(sla"'asn)ar) =w(f(5i)aT) @ (7)
(w(fi(s1,-..,80\8:),7)
D ...
& w(fr(s1,--.,82\8:),7)
)

where s; provides f and

(fis--os fr) = si.f.calls

The following example illustrates how the functions C' and w compose the behavior triggered by
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operation f, following the example depicted in figure 4. The first step is establishing the set of
services that form the implementation for the implementation for the operation I1.f.

w(I1.f(C(I1)),r) = w(I1.f(s1, 52, 53),7)
Using this set we are able to compose the behavior of I1.f in 3 steps:

w(I1.f(s1,82,83),7) = w(Il.f(s1),7) @
(w(I2.9*(s2,83),7) ® w(I3.h(s2,83),7))
w(I2.9*(s2,83),7) = w(I2.g*(s2),7) @
(w(I3.i(s3),7))
w(I3.h(s2,83),7) = w(I3.h(s3),T)

Considering resource usage of the execution of two arbitrary operations o1 and oz, we distinguish
the following cases:

— 01 and 09 are executed sequentially: This means that first operation o; is executed and after o;
terminates, then o, is executed. An example of two operations that are executed sequentially
are I2.g and I3.h in the implementation of interface Il by service s1 (see figure 4).

— 09 is executed as part of the execution of 01: This means that first operation o0, is executed.
Before 0; terminates, as part of the behavior of 01, 05 is executed. An example of an operation
that is executed as part of another operation is 3.7, which is executed as part of the the
behavior of operation I2.g implemented by service s2 (see figure 4).

In these different cases we want to combine the resource usage of the operation executions
in different ways. In order to be able to combine the resource usage of operation executions
appropriately for each of the cases mentioned before, we introduce a resource combinator for each
case. The resource combinator @ is used to model resource usage of two sequentially executed
operations. The combinator @ is used to model resource usage as part of an operation. The
definitions of these combinators may be varied, in order to deal with different types of resources
or to measure resource usage in different ways. In [5] we considered memory usage and defined
these operators, combining claim and release tuples, as follows (see also figure 5):

(a,0)®(c,d) =(a—b+c,d)ifc>b
(a,b+d—c)ife<b
(a,b) @ (¢,d) = (a+ ¢, b+ d)

In section 5 we describe an example concerning cpu usage. In that example we will use the following
definitions for the resource combinators, combining cpu claims (see also figure 6):

adb=a+b
aQb=a+bd
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Now we combine the composition function C' and weight function w, to form the weight function
Wop, that calculates resource consumption that results from executing an operation of an interface.
It is defined as:

Wop(f(I),r) = w(f(C(I)),7) (8)

for interface I and operation f

This functions estimates the resource consumption of resource r of an operation call f from
interface I. The function first determines a set of services that (together) form an implementation
of f. Then, the weight function w is used to predict resource consumption of f and all operations
that are transitively invoked by f.

4.4 Modeling resource consumption for call sequences

Each operation call that is specified in a service behavior specification may be accompanied with
an iterator (‘¢’) to indicate that the operation may be called multiple times. For the purpose of
resource estimation, we represent an iterated operation call as a lambda expression:

fa=XN-olxf (9)

This lambda expression states that operation f is called I times, where 1 is variable. The weight
function for an iterated operator call can now also be defined as a lambda expression:

wN =1 x f(8)) =M =1 xw(f(s)) (10)
=w(f(s) ®-.. 0 w(f(s)h

Such lambda expressions are instantiated with concrete numbers, when resource consumption for
a complete scenario is predicted.



4.5 Per task resource prediction

As part of the resource prediction for a scenario we need to be able to predict resource consumption
for a sequence of operation calls. We introduce the notion of a task, which is a sequence of operation
calls. A task can be continuous or terminating, a continuous task corresponds to a repeating
sequence of operation calls and a terminating task corresponds to a finite sequence of operation
calls.

Using function W,, we are able to estimate resource consumption for individual operation calls,
we need to predict resource consumption of a task. To that end, we need to know what plausible
sequences of operation calls are. Such sequences (which we call task definitions), are determined
together with implementors of services. If iterated operations are called in a task definition, the
task definition becomes a lambda expression. Defining a task therefore consists of the following
two steps:

1. Defining a plausible sequence of operation calls;
2. Instantiating concrete numbers for the lambda expressions, if any.

Instantiating a lambda expression fixes the number of operation calls. Thus, instantiating a lambda
expression Al — [ x f with, say, 2 yields a sequence of two calls to f.

We can now define the weight function W; for a task, consisting of sequential operation calls.
This function computes for each task, e.g. a sequence of operations, the required resources.

Wi(I.f,r) = Wop(f(I),7) (11)
for interface I and operation f
Wt(g; h, T) = Wt(gar) D Wt(ha 'I‘) (12)

for sequences of operations g and h

4.6 Scenario-based resource prediction

In the Robocop component model, multiple components can work on different tasks that are
executed in parallel. A scenario is defined as a set of tasks. This set contains the tasks that are
executed in parallel, and for which the resource estimation needs to be made.

We can now define the weight function W for a scenario S and resource r, consisting of multiple
tasks. This function computes for each task the estimated resource consumption:

Ws({t},r) = Wi(t,r) (13)
Ws({t1,--stn},r) = Ws({t1},7) @ ... @ Ws({tn},r) (14)
W(S,r) =TS(Ws(S,r)) (15)

The function W introduces the functions Wy and T'S and a new resource combinator ®. This
resource combinator is used to combine resources that are consumed in parallel. The resources
can be combined only after we know what type of scheduling is used. Therefore the introduced
resource combinator ® is abstract. It is the task of the function TS to do the scheduling and
transform the expression in an expression which only contains concrete operators.

In the next section we will demonstrate the use of the weight functions w, Wop, Wt, Ws, and
W in an example.

5 Example

In this section we will discuss a small example to illustrate how the method works. We will present
a design of a media player build out of 9 components, a FileReader, a Decoder, a AudioDecoder,
a VideoDecoder, a AudioRenderer, a VideoRenderer and 3 Buffer components.
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The media player application has 4 tasks. A task (T'r) to do the reading from file, one (T'd)
to decode the video and audio data, one (T'a) to render audio and one (T') to render video. The
system described above is illustrated by figure 7. The service definitions can be found in figure 8.

In our example we consider a mediaplayer running multiple continuous tasks. We consider the
scenario illustrated in figure 7 and are interested in the resource cpu.

S ={Tr,Td,Ta,Tv}

r =cpuy
We want to predict the cpu usage of scenario S.

W (S, cpu) = TS(W,(S, cpu))
=TS(Ws({Tr,Td,Ta,Tv},cpu))
=TS(W(Tr,cpu) @ Wi(Td, cpu) @ We(Ta, cpu) @ Wi (Tv, cpu))

Now we are going to use the task definitions and the scheduling function. We consider Round
Robin scheduling. This means that if a task A requires 100 cycles for a loop and there are n
tasks, A will have performed a loop each n * 100 cycles. The tasks and the scheduling function

are defined as follows:

TS(A1®®An) = (Bl,...,Bn)
where Bz = Az *n

Tr = IFileReader.Read

Td = IDecode.Decode

Ta = I AudioRenderer.Render
Tv = IVideoRenderer.Render

These definitions enable us to evaluate W (.S, r) further. We now have the following intermediate
result:

W (S, cpu) = (W, (I FileReader.Read, cpu) 4,
Wop(IDecode.Decode, cpu) * 4,
Wop(I AudioRenderer.Render, cpu) * 4,
Wop(IVideoRenderer.Render, cpu) x 4)
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FileReader
requires IBuffer
provides IFileReader {
operation Read
resource cpu
require 1000
behavior
operation Read calls:
IBuffer.Put
}

AudioDecoder
requires IBuffer
provides IAudioDecoder{
operation Decode
resource cpu
require 5000
behavior

operation Decode calls:

IBuffer.Put*
}

Decoder

requires IBuffer
TAudioDecoder
IVideoDecoder

provides IDecoder({

operation Decode

resource cpu
require 100

behavior

operation Decode calls:
IBuffer.Get;
IAudioDecoder.Decode;
IVideoDecoder.Decode

}

AudioRenderer
requires IBuffer
provides IAudioRenderer{
operation Render
resource cpu
require 200
behavior

operation Decode calls:

IBuffer.Get
}

VideoDecoder
requires IBuffer
provides IVideoDecoder{
operation Decode
resource cpu
require 20000
behavior

operation Decode calls:

IBuffer.Put*

Buffer
provides IBuffer({
operation Put
resource cpu
require 50
behaviour
operation Put calls:
operation Get
resource cpu
require 50
behavior
operation Get calls:

VideoRenderer
provides IVideoRenderer({
operation Render
resource cpu
require 1200
behavior

operation Decode calls:

IBuffer.Get

Fig. 8. Service specifications
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We will now show how W,,(IDecode.Decode, cpu) is evaluated. This means a set of services
that implement IDecode.Decode will be generated, the behavior of all operations called for the
implementation of IDecode.Decode will be generated. We will use the following abbreviations
D = Decoder, Vd = VideoDecoder, Ad = AudioDecoder and B = Buf fer.

Wop(IDecode.Decode, cpu) = w(IDecode.Decode(C(IDecode.Decode)), cpu)
= w(IDecode.Decode(D,Vd, Ad, B), cpu)
= w(IDecode.Decode(D), cpu) @
w(IBuf fer.Get(Vd, Ad, B), cpu)

2
w(I AudioDecoder.Decode(V d, Ad, B), cpu)

S
w(IVideoDecoder.Decode(Vd, Ad, B), cpu)

To continue the example we show how w(IBuf fer.Get(Vd, Ad, B), cpu) evaluates in the next step.
w(IBuf fer.Get(Vd, Ad, B), cpu) = w(IBuf fer.Get(B), cpu)
=50
After we evaluate the other w functions we get the following result.

Wop(IDecode.Decode, cpu) = 100 @

50
®
(5000 @ (M = I x 50))
®
(20000 @ (Ak = k x 50))

Before we can continue evaluating this result we need to instantiate the two lambda expressions.
We assume decoding one data packet results in 10 packets for the audio buffer and 5 for the video
buffer. Therefore we instantiate the variable | representing the number of Puts in the audiobuffer
with 10 and the variable k representing the number of Puts in the videobuffer with 5.

The last thing we need for the evaluation of W,,(I Decode.Decode, cpu) is the definitions of the
resource combinators. During our calculations we use the following resource consumption operator
definitions:

adb=a+b
a@b=a+b
At this time we are able to evaluate W,,(I Decode.Decode, cpu) completely.

Wop(IDecode.Decode, cpu) = 25900

After evaluating the other W, functions we get the required cpu cycles required for the execution
of one loop for the individual tasks in scenario S:

W (S, cpu) = (1050 * 4, 25900 = 4, 250 x 4, 1250 * 4)

6 Concluding remarks

6.1 Discussion

Until now, we applied our prediction method only to a small application. However, within the
Robocop project, we have access to real-world applications. Therefore, we are at present applying
our method to industrial software systems of some of our partners. The experiments that we have
done thus far are very promising.

Our prediction technique has the following advantages:



13

— The method fits very well with current design approaches for reactive systems such as UML [8]
or [9] where the dynamics of systems are modeled using scenarioss. Hence, the effort needed
for modeling the resource use in addition to an existing specification is limited. Furthermore,
the modeling of scenarioss typically happens early in the development process. Hence, our
approach can be used to obtain feedback during the early stages of design.

— The method is compositional: results about the resource of a system can be computed based
on specifications that are provided for its constituent components.

— The method is general. It can be applied to different types of resources and for different types
of estimations. This is achieved by allowing different definitions of resource combinators.

The approach also has some limitations that need further research:

— We assume that consumption is constant per operation, whereas it typically depends on pa-
rameters passed to operations and previous actions. Extending the method in this respect is
future work;

— Our scenario-based approach depends on the ability to define realistic runs. This makes our
approach dependent on the quality of an architect;

— The model presented does not deal with synchronization between tasks.

6.2 Related work

The development of methods and techniques for the prediction of properties of component based
systems is a notoriously hard problem and has been the subject of recent OOPSLA and ICSE
workshops. A guideline for research projects in predictable assembly is proposed in [4].

An example approach that addresses the prediction of end-to-end latency is presented in [10].
Based on our experience, we can subscribe the statement of Hissam et. al. that it is necessary that
prediction and analysis technology are part of a component technology in order to enable reliable
assembly of component-based systems. However, there are many alternative ways in which the two
may be technically related across the different phases of the component life cycle.

Prior work of an predictable assembly approach for estimating static resource use (using a
Koala-like component model) is described in [7]. This builds on earlier work on prediction of static
memory consumption described in [6].

The area of software architecture evaluation is dominated by scenario-based approaches [3,12].
The disclaimer of these approaches is that the quality of their results depends on the representa-
tiveness of the scenarios chosen. The same disclaimer applies to the approach we propose in this
paper.

The main differences of our approach are that we use a formal model: our method addresses
dynamic instead of static resource consumption, supports resource consumption analysis in the
early phases of software development and prediction requires little effort.

6.3 Contributions

In a previous paper [5] we presented a first approach for predicting resource use of component-
based systems. This paper extends that approach such that it is able to deal with concurrent tasks
that share system resources. To support this, we extended our approach with a means of mapping
logical scenarios to tasks. Subsequently, these tasks are subject to system-wide resource schedul-
ing policies. We have shown how these global scheduling policies can be taken into account into
the component-based prediction technique. We conclude that for doing predictions for multitask
systems, it does not suffice to have only component-level information, but that also system-wide
resource sharing policies need to be taken into account.

In the previous paper we focused on memory-use. In this paper we focused on CPU-use. This led
to the need to classify resources into different categories (pre-emptive versus non-pre-emptive and
processing versus non-processing). For each category, different formulae are needed for combining
different types of resources.

We have illustrated our approach to a case study that is closely inspired by an actual industrial
system.
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