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An M/G/1 queueing modelwith gated random order of servieRonald RietmanPhilips Researh LaboratoriesProf. Holstlaan 4NL-5656 AA EindhovenThe Netherlandse-mail: ronald.rietman�philips.omJaques ResingEindhoven University of TehnologyP.O. Box 513, 5600 MB Eindhoven, The Netherlandse-mail: j.a..resing�tue.nlAbstratWe analyse an M=G=1 queueing model with gated random order of servie. In thisservie disipline there are a waiting room, in whih arriving ustomers are olleted,and a servie queue. Eah time the servie queue beomes empty, all ustomers in thewaiting room are put instantaneously and in random order into the servie queue. Theservie times of ustomers are generally distributed with �nite mean. We give two di�er-ent derivations of various steady-state probabilities and of the bivariate Laplae{Stieltjestransforms of the joint distribution of the sojourn times in the waiting room and theservie queue. The �rst derivation is based on a three-dimensional Markov model, wherethe random variables are the number of ustomers in the waiting room and in the serviequeue and the residual servie time of the ustomer in servie. The seond derivationfollows the line of reasoning of Avi-Itzhak and Hal�n [4℄, is shorter and more elegant, butless straightforward than the �rst derivation.1 The modelIn this paper we onsider an M=G=1 queueing model with a gated random order of serviedisipline. In this servie disipline ustomers are �rst gathered in an unordered waiting roombefore they are put in random order in an ordered servie queue at the moments that thislatter queue beomes empty. Figure 1 shows a piture of the queueing system.The model is motivated by a situation enountered in multi-aess ommuniation inable networks. Cable networks are urrently being upgraded to support bidiretional datatransport. The system is thus extended with an \upstream" hannel to omplement the\downstream" hannel that is already present. This upstream hannel is shared among manystations so that ontention resolution is essential for data transport. An eÆient way to arryout the upstream data transport is via a request-grant mehanism. Stations request dataslots in ontention with other stations via ontention trees. After a suessful request, datatransfer follows in reserved slots, not in ontention with other stations.1
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Figure 1: An M=G=1 queue with waiting room W and servie queue Q.There are two versions of the ontention resolution mehanism via ontention trees: thefree aess variant and the bloked aess variant (see Mathys and Flajolet [7℄). Essentialfeatures of the bloked aess variant are� requests ompeting in the same tree leave the tree in random order;� new requests arriving when a tree is in progress have to wait until the urrent tree isresolved before they an be part of a tree itself.Exatly these two features lead us to the study of the queueing model with a gated random or-der of servie disipline. Here, ustomers in the servie queue represent the requests urrentlyompeting in the tree. Customers in the waiting room represent the requests waiting untilthe urrent tree is resolved. Reently, motivated by the same appliation, a mahine-repairmodel with gated random order of servie disipline at the repair faility has been studied byBoxma, Denteneer and Resing [6℄.A queueing model with two stages of waiting has been studied by Ali and Neuts [3℄ (seealso Boxma and Cohen [5℄ for a related model). Essential di�erenes between the models in[3, 5℄ and our model are that� in [3, 5℄ the transfer of ustomers from the waiting room to the servie queue takes somerandom transfer time T > 0, while in our model this transfer time is equal to 0;� the feature that ustomers, after transfer, are put in a random order in the servie queueis not aptured in the models in [3, 5℄.Gated M=G=1 queues are also studied in Avi-Itzhak and Hal�n [4℄. Although the authors'main interest in [4℄ is in the gated proessor sharing ase, they also disuss the gated FCFS,gated LCFS and gated random order of servie ase. In Setion 4 of this paper we extensivelyome bak to the approah used and the results obtained in [4℄.For the M=G=1 queue with gated random order of servie, we are partiularly interestedin the joint stationary distribution of the sojourn times of a ustomer in the waiting roomand the servie queue. In order to �nd this distribution, we �rst study the three-dimensionalMarkov proess desribing the number of ustomers in the waiting room, the number ofustomers in the servie queue and the residual servie time of the ustomer in servie.The arrival proess of the ustomers at the waiting room is assumed to be a Poissonproess with intensity �. The servie times of the ustomers are independently drawn froma distribution B(t), for whih we assume B(0) = 0 , i.e., servie times are stritly positive,and the �rst moment �1 = R10 tdB(t) is �nite. The Laplae{Stieltjes transform of the servie2



time distribution is denoted by�(s) = Z 10 e�st dB(t): (1)In the sequel we assume that � := ��1 < 1 so that a steady state exists. As mentionedbefore, we are partiularly interested in the joint distribution of the times S1 and S2 anarbitrary ustomer spends in steady state in the waiting room and in the servie queue,respetively. We shall prove the following theorem:Theorem 1 (Joint distribution of the sojourn times). The steady-state joint sojourntime distributionF (x; y) = Pr(S1 � x; S2 � y);has a bivariate Laplae{Stieltjes transform�(u; v) = Z 10� Z 10 e�uxe�vy dy dxF (x; y)that is given by�(u; v) = (1� �)�(v)"1 + �u(1� �(v)) Z 1�(v) 1X̀=1(g`(�)� g`(� � u=�)) d�# ;where g` is the `-fold iterate of the funtion g(�) = �(�� ��), so g1(�) = g(�) and g`+1(�) =g(g`(�)) for ` � 1.The remainder of this paper is organized as follows. In Setion 2 we study the jointsteady-state distribution P (k; n;x) of the number of ustomers, k,in the waiting room, thenumber of ustomers, n, in the servie queue, and the residual workload, x, of the ustomer inservie. From this result we derive the joint steady-state distribution �(k; n) of the number ofustomers in the waiting room and servie queue, and Ptot(k;x), the steady-state distributionof the number of ustomers in the waiting room and the total workload of the ustomers inthe servie queue. We also study the joint steady-state distribution �s(k; n) of the number ofustomers in the waiting room and servie queue immediately after a ustomer has ompletedhis servie, and we observe that �s(k; n) 6= �(k; n). In Setion 3 we use the result for Ptot(k;x)to alulate �(u; v) and prove Theorem 1. We also ompare the results for the LST �(u; v) inthe model with gated random order of servie with the results in the model with gated FCFSand gated LCFS servie disipline. Furthermore we give the Laplae{Stieltjes transforms�1(u) and �2(v) of the marginal distributions for the times spent in the waiting room and inthe servie queue, respetively. After these straightforward alulations, we present a moreelegant derivation of the main results in Setion 4, using a deomposition of the busy periodsbased on gate openings and generations, like in Avi-Itzhak and Hal�n [4℄. Finally, in Setion 5we evaluate our results in ase the servie time distribution is exponential.2 Number of ustomers and workloadIn order to desribe the system we use the onept of workload : the workload of a ustomerat a ertain instant of time is de�ned as the amount of time the server still needs to spend on3



serving that ustomer. For ustomers who have not yet reeived servie, the workload equalstheir servie time; for the ustomer who is in servie the workload equals the residual servietime, i.e., the servie time minus the time already spent in servie.The state of the system an be desribed by a non-negative integer-valued random variableX1, denoting the number of ustomers in the waiting room, a non-negative integer-valued ran-dom variableX2, denoting the number of ustomers in the servie queue, and the non-negativereal-valued random variable W , denoting the workload of the ustomer who is urrently re-eiving servie. If the servie queue is empty, i.e., X2 = 0 then also X1 = 0, sine it is assumedthat ustomers are transferred instantaneously from the waiting room to the servie queuewhen the servie queue is emptied. We also de�ne Wtot as the total workload of the serviequeue. When X2 > 0, Wtot is the sum of X2 � 1 omplete servie times and W . LetP (0; 0; t) = Pr(X1 = 0;X2 = 0 at time t) (2)and, for k � 0 and n � 1,P (k; n;x; t) = Pr(X1 = k;X2 = n;W � x at time t) (3)and their steady-state valuesP (0; 0) = limt!1P (0; 0; t); (4)P (k; n;x) = limt!1P (k; n;x; t): (5)We de�ne, for �1 < �; � < 1, the generating funtionsQ(�; �;x) = 1Xk=0 1Xn=1 �k�n�1P (k; n;x) (6)and the Laplae{Stieltjes transformq(�; �; s) = Z 10 e�sx dQ(�; �;x): (7)Of partiular interest is �(k; n), the steady-state probability distribution of X1 and X2:�(0; 0) = P (0; 0) and �(k; n) = limx!1P (k; n;x): (8)We denote the generating funtion of the �(k; n) by Q(�; �):Q(�; �) = 1Xk=0 1Xn=1 �k�n�1�(k; n) = limx!1Q(�; �;x): (9)Remark that in the de�nitions of the generating funtions Q(�; �;x) and Q(�; �) we omit theprobabilities P (0; 0) and �(0; 0) and we have powers �n�1 instead of the usual �n. Clearly,�(0; 0) = 1� �; (10)beause the average amount of work that enters the system per unit of time equals � and theserver works at rate 1, i.e., one unit of workload per unit time, when the system is not empty.The other probabilities follow from the following theorem.4



Theorem 2 (The funtion q(�; �; s)). The funtion q(�; �; s), de�ned by (7), is given byq(�; �; s) = �(1� �)(�(s)� g(�))(�(1� �)� s)(g(�) � �) "1� � + 1X̀=1 (g`(�)� g`(�))# :Here g` is the `-fold iteration of the funtion g, as de�ned in Theorem 1.Proof: First, we relate P (k; n;x; t +�) to P (k; n;x; t) by onsidering what an happen inthe interval (t; t+�). Inluding only terms of no higher order than �, at most one arrival inan interval (t; t+�) needs to be onsidered. It follows thatP (k; n;x; t +�) = (1� ��)[P (k; n;x+�; t)� P (k; n;�; t)+ P (k; n+ 1;�; t)B(x)℄+ ��[P (k � 1; n;x+�; t)� P (k � 1; n;�; t)℄+ o(�); k � 1; n � 1; (11)P (0; n;x; t +�) = (1� ��)[P (0; n;x+�; t)� P (0; n;�; t)+ (P (0; n+ 1;�; t) + P (n; 1;�; t))B(x)℄+ o(�); n � 2; (12)P (0; 1;x; t +�) = (1� ��)[P (0; 1;x +�; t)� P (0; 1;�; t)+ (P (0; 2;�; t) + P (1; 1;�; t))B(x)℄+ ��P (0; 0; t)B(x) + o(�); (13)P (0; 0; t +�) = (1� ��)[P (0; 0; t) + P (0; 1;�; t)℄ + o(�): (14)Taking the limits �! 0 and t!1 and using P (0; 0) = �(0; 0) = 1� �, it follows thatP (k; n; 0) = 0; k � 0; n � 1; (15)P 0(k; n;x)� P 0(k; n; 0) + P 0(k; n+ 1; 0)B(x)� �P (k; n;x) + �P (k � 1; n;x) = 0; k � 1; n � 1; (16)P 0(0; n;x) � P 0(0; n; 0) + [P 0(0; n+ 1; 0) + P 0(n; 1; 0)℄B(x)� �P (0; n;x) = 0; n � 2; (17)P 0(0; 1;x) � P 0(0; 1; 0) + [�(1� �) + P 0(0; 2; 0) + P 0(1; 1; 0)℄B(x)� �P (0; 1;x) = 0; (18)P 0(0; 1; 0) = �(1� �): (19)Here the prime denotes di�erentiation with respet to the third variable. In terms of thefuntion Q(�; �;x), de�ned in (6), the relations (15){(19) implyQ(�; �; 0) = 0 (20)and Q0(�; �;x) � �(1� �)Q(�; �;x) = A(�; �;x); (21)whereA(�; �;x) = Q0(�; �; 0)� B(x)��(1� �)(1� 1� ) + 1� (Q0(�; �; 0) +Q0(�; 0; 0) �Q0(�; 0; 0))� : (22)5



The di�erential equation (21) for Q(�; �;x) with initial ondition (20) is easily solved:Q(�; �;x) = e�(1��)x Z x0 A(�; �; y)e��(1��)y dy: (23)Sine Q(�; �;1) = Q(�; �) must be �nite for �1 < �; � < 1,Z 10 A(�; �; y)e��(1��)y dy = 0: (24)With partial integration and using (1) it follows thatZ 10 B(y)e��(1��)y dy = g(�)�(1� �) ; (25)where g(�) = �(�� ��) as de�ned in Theorem 1, so (24) gives�1� g(�)� �Q0(�; �; 0) = g(�)�(1 � �)�1� 1��+ g(�)� (Q0(�; 0; 0) �Q0(�; 0; 0)): (26)Finiteness of Q0(�; �; 0) at � = g(�) implies thatQ0(�; 0; 0) = Q0(g(�); 0; 0) � �(1� �)(1� g(�)): (27)Iterating this equation L times we getQ0(�; 0; 0) = Q0(gL(�); 0; 0) � �(1� �) LX̀=1(1� g`(�)); (28)where g` is the `-fold iterate of g, as de�ned in Theorem 1. The funtion g is inreasingon (�1; 1℄ and has a �xed point (for whih g(�) = �) at � = 1, sine �(0) = 1. Sineg0(1) = � < 1, this �xed point is stable and its domain of attration inludes the interval(�1; 1℄. As ex � 1 + x for all real x,g(�) = Z 10 e�(����)x dB(x) � Z 10 (1� (�� ��)x) dB(x) = 1� �(1 � �); (29)so for � � 10 � 1� g(�) � �(1� �) and 0 � 1� g`(�) � �`(1� �): (30)Hene, for � < 1, lim`!1 g`(�) = 1 and P1̀=0(1� g`(�)) onverges. It then follows from (28)for L!1 that for � < 1Q0(�; 0; 0) = Q0(1; 0; 0) � �(1� �) 1X̀=1(1� g`(�)) (31)and making use of Q0(0; 0; 0) = P 0(0; 1; 0) = �(1� �), see (19), it follows thatQ0(�; 0; 0) = �(1� �)(1 +G(�)); (32)6



where G(�) is de�ned asG(�) = 1X̀=1(g`(�)� g`(0)): (33)Equation (26) now givesQ0(�; �; 0) = �(1� �)g(�)g(�)� � [1� � +G(�)�G(�)℄: (34)so that A(�; �;x) is found, and using (24) we haveQ(�; �;x) = e�(1��)x Z x0 A(�; �; y)e��(1��)y dy= �e�(1��)x Z 1x A(�; �; y)e��(1��)y dy: (35)It is onvenient to work with the LST of Q(�; �;x), as de�ned in (7):q(�; �; s) = Z 10 e�sx dQ(�; �;x)= Z 10 e�sxA(�; �;x) dx� Z 10 e�sx�(1� �)e�(1��)x Z 1x A(�; �; y)e��(1��)y dy dx= Z 10 e�sxA(�; �;x) dx� �(1� �)Z 10 A(�; �; y)e��(1��)y Z y0 e(�(1��)�s)x dxdy= � s�(1� �)� s Z 10 A(�; �;x)e�sx dx; (36)where in the last step (24) was used. Using (22) and (34) we �ndq(�; �; s) = 1�(1� �)� s"�(s)h�(1� �)(1 � 1� )+ 1� (Q0(�; �; 0) +Q0(�; 0; 0) �Q0(�; 0; 0))i �Q0(�; �; 0)#= �(1� �)(�(s)� g(�))(�(1� �)� s)(g(�) � �) [1� � +G(�) �G(�)℄: (37)This ompletes the proof of Theorem 2.Sine Q(�; �; 0) = 0, we haveQ(�; �) = limx!1Q(�; �;x) = Z 10 dQ(�; �;x) = q(�; �; 0); (38)by de�nition of q(�; �; s), so a diret orollary from Theorem 2 isCorollary 3 (The funtion Q(�; �)). The funtion Q(�; �), de�ned in (9), is given byQ(�; �) = (1� �)(1� g(�))(1� �)(g(�) � �) [1� � +G(�)�G(�)℄ :7



Next we will study the steady-state joint probability distribution of the oupany of thewaiting room and the total workload of the servie queue,Ptot(k;x) = Pr(X1 = k;Wtot � x); (39)with transformqtot(�; s) = E ��X1e�sWtot� = 1Xk=0 Z 10� �ke�sx dPtot(k;x): (40)Observe that Wtot = 0 if X2 = 0 and thatWtot =W + X2�1Xi=1 Yi (41)if X2 � 1, where the Yi are i.i.d. with distribution B(�). Thereforeqtot(�; s) = 1Xk=0 Z 10� �ke�sx dPtot(k;x)= (1� �)+ 1Xk=0 1Xn=1Z 10 Z 10 � � � Z 10 �ke�s(y1+���+yn�1+x) dB(y1) � � � dB(yn�1) dP (k; n;x)= 1� �+ q(�; �(s); s): (42)Using the result (37) and noting that �(s) = g(1� s=�) and that G(g(z)) = G(z) + 1� g(z),we haveCorollary 4 (The funtion qtot(�; s)). The joint transform of the number of ustomersin the waiting room and the total workload in the servie queue is given byqtot(�; s) = E ��X1e�sWtot� = (1� �)"1 + ��� �� � s 1X̀=1 (g`(1� s=�)� g`(�))# : (43)Finally, we onsider �s(k; n), the steady-state probability that immediately after the ser-vie ompletion of a ustomer the waiting room and the servie queue ontain k and nustomers, respetively. Clearly, due to the PASTA property we have�a(k; n) = �(k; n); (44)where �a(k; n) is the steady-state probability that just before the arrival of a ustomer X1 = kand X2 = n. Furthermore, a simple and well-known one-dimensional level-rossing argumentshows that �s(0; 0) = �a(0; 0) (45)mXn=1�s(m� n; n) = mXn=1�a(m� n; n); m � 1; (46)However, there is no reason why the individual probabilities �s(k; n) should be equal to�a(k; n) and hene to �(k; n). In fat, it turns out that these probabilities are indeed di�erent.This is expressed in the following theorem. 8



Theorem 5 (Joint distribution of ustomers right after servie ompletion). Let thesteady-state probability that X1 = k and X2 = n immediately after a ustomer has ompletedhis servie and has left the system be denoted by �s(k; n), then�s(0; 0) = 1� �;Qs(�; �) = 1Xk=0 1Xn=1 �k�n�1�s(k; n) = 1� �g(�) � � h1� g(�) + 1X̀=1(g`(�)� g`(�))i:Proof: From the PASTA property and the level-rossing argument we have �s(0; 0) =�(0; 0) = 1 � �. Let Am denote the probability that m new ustomers arrive during oneservie time, thenAm = Z 10 e��x (�x)mm! dB(x); (47)and so1Xm=0Amzm = �(�� �z) = g(z): (48)The probabilities �s(k; n) satisfy the following equations whih relate the probabilities a-ording to what happens during the servie time of one ustomer:�s(k; n) = kXm=0Ak�m�s(m;n+ 1); k � 1; n � 1 (49)�s(0; n) = A0�s(0; n+ 1) +An�s(0; 0) + nXm=0An�m�s(m; 1); n � 1 (50)�s(0; 0) = A0�s(0; 1) +A0�s(0; 0): (51)Equations (49)-(51) imply that�1� g(�)� �Qs(�; �) = �g(�)� Qs(�; 0) + g(�)� Qs(�; 0) � 1� g(�)� �s(0; 0): (52)This equation is similar to (26), the equation for Q0(�; �; 0), and it is solved in exatly thesame way. Regularity of Qs(�; �) at � = g(�) implies thatQs(�; 0) = g2(�)g(�) Qs(g(�); 0) � 1� g2(�)g(�) �s(0; 0); (53)and iterating this equation givesQs(�; 0) = 1g(�)Qs(1; 0) � 1g(�) 1X̀=2(1� g`(�))�s(0; 0): (54)Substituting Qs(0; 0) = �s(0; 1) = �s(0; 0)(1 � g(0))=g(0), whih follows from (51), givesQs(1; 0) = �s(0; 0) 1X̀=1(1� g`(0)) (55)9



and hene, with �s(0; 0) = �(0; 0) = 1� �,Qs(�; 0) = 1� �g(�) [1� g(�) +G(�)℄ (56)and (52) impliesQs(�; �) = 1� �g(�)� � [1� g(�) +G(�)�G(�)℄ : (57)This ompletes the proof of Theorem 5.Note that Qs(�; �) = Q(�; �), onsistent with the level rossing argument.3 Sojourn timesBeause of the PASTA property, just before the arrival of a new ustomer the variables(X1;Wtot) are distributed aording to the funtions Ptot(k;x). If the total workload of theservie queue is Wtot = x at the moment a ustomer enters, that ustomer has to wait xtime units until he is transferred from the waiting room to the servie queue, together withthe other ustomers in the waiting room. These other ustomers fall into two ategories,those that were already present in the waiting room when our given ustomer entered andthose that entered in the x time units after the arrival of our given ustomer. If the numbersof ustomers in these groups are k and r, respetively, the number of ustomers that aretransferred to the servie queue equals k + r+ 1. The probability that r ustomers enter thesystem in a time interval of length x is e��x(�x)r=r!. Sine the order in whih the k + r + 1ustomers end up in the servie queue is random, our given ustomer is number ` in line,where ` = 1; 2; : : : ; k+ r+1, with probability (k+ r+1)�1 independent of `. If he is number` in line, he spends ` randomly drawn servie times in the servie queue until his servie isompleted.Combining all this, the LST of the joint probability distribution F (x; y) of S1, the time austomer spends in the waiting room, and S2, the time he subsequently spends in the serviequeue is given by�(u; v) = E(e�uS1e�vS2) = Z 10� Z 10 e�ux�vydydxF (x; y)= (1� �)�(v)+ 1Xk=0 Z 10 e�(u+�)x 1Xr=0 (�x)rr! 1k + r + 1 k+r+1X̀=1 (�(v))` dPtot(k;x) (58)We an now perform the summation over `, giving (1� (�(v))k+r+1)�(v)=(1��(v)), and use1� zk+r+1k + r + 1 = Z 1z �k+r d� (59)for z = �(v). Now the sum over r an be done and omparison with (42) gives�(u; v) = �(v)1� �(v) Z 1�(v)E ��X1e�(u+����)Wtot� d�: (60)10



We now use Corollary 4 with s = u+ �� �� and obtain�(u; v) = (1� �)�(v)"1 + �u(1� �(v)) Z 1�(v) 1X̀=1(g`(�)� g`(� � u=�)) d�# : (61)This proves Theorem 1.When we take the limit v ! 0 we obtain the LST of the marginal distribution F1(x) =Pr(S1 � x):�1(u) = �(u; 0) = (1� �)"1 + �u 1X̀=1(1� g`(1� u=�))# (62)and when we take the limit u ! 0 we obtain the LST of the marginal distribution F2(x) =Pr(S2 � x):�2(v) = �(0; v) = (1� �)�(v)"1 + �1� �(v) Z 1�(v) 1X̀=1 1�g 0̀ (�) d�#= (1� �)�(v)"1 + 11� �(v) 1X̀=1(1� g`(�(v)))# : (63)Note that the expressions for �1(u) and �2(v) are remarkably similar:�2(v) = �(v)�1(�� ��(v)): (64)To understand this similarity it may help to ompare the gated random order of serviedisipline to two other servie disiplines, gated �rst ome �rst served (GFCFS) and gatedlast ome �rst served (GLCFS). These servie disiplines have the same gate mehanism asbefore, but now the servie order in the servie queue is the same as (for GFCFS) or the reverseof (for GLCFS) the order of arrival in the waiting room. Note that the results of Setion 2 onnumber of ustomers and workload remain valid for GFCFS and GLCFS. Furthermore, forboth servie disiplines the transform �(u; v) an be obtained by minor modi�ations of (58).For GFCFS, the ustomer we onsider is always number k + 1 in line in the servie queue,irrespetive of r, so the summation over ` in (58) must be replaed by a single term (�(v))k+1.This gives�GFCFS(u; v) = �(v)E(�(v)X1e�uWtot)= (1� �)�(v)"1 + ��� ��(v) � u 1X̀=1 (g`(1� u=�)� g`(�(v)))# : (65)For GLCFS, the ustomer we onsider is always number r + 1 in line in the servie queue,irrespetive of k. This means that we must replae the summation over ` by the single term(�(v))r+1, so that�GLCFS(u; v) = �(v)E(e�(u+����(v))Wtot )= (1� �)�(v)"1 + ��� ��(v) + u 1X̀=1(1� g`(�(v) � u=�))# : (66)11



Note that the marginal distributions for the three servie disiplines are equal:�GFCFS(u; 0) = �GLCFS(u; 0) = �1(u); (67)�GFCFS(0; v) = �GLCFS(0; v) = �2(v): (68)That �1(u) and �2(v) are the same for the three servie disiplines an be understood withoutalulations: suppose that an outside observer is wathing the system. This observer annotdistinguish between di�erent ustomers, he an only reord a set of entrane times, a set ofgate opening times, and a set of servie ompletion times. Then there is no way this observeran determine whether the servie disipline is GROS, GFCFS or GLCFS, but this observeran determine the marginal distributions �1(u) from the observed distribution of entranetimes and subsequent gate opening times and he an determine �2(v) from the observeddistribution of gate opening times and subsequent servie ompletion times. So �1(u) and�2(v) don't depend on whether the servie disipline is GROS, GFCFS or GLCFS.Equation (64) an most easily be explained by looking at the gated LCFS queue. Here,the waiting time of a ustomer in the servie queue (exluding his own servie time) is givenby the amount of work arriving during his sojourn time in the waiting room. The LST of thisamount of work is given by �1(�� ��(v)).We �nish this setion by noting that there is a relation between �GFCFS(u; v) and theprobabilities �s(k; n).Theorem 6 (Relation between �GFCFS and Qs). The following holds1� �+ �Qs(�; �) = �GFCFS(�� ��; �� ��)+ �GFCFS(�; �� ��)� �GFCFS(�; �� ��):Proof: For the model with GFCFS servie disipline, let An;k denote the probability that nustomers enter during the tagged ustomer's sojourn time in the waiting room, and that kustomers enter during his sojourn time in the servie queue. Then, in analogy with (48), itholds that1Xn=0 1Xk=0 �n�kAn;k = �GFCFS(�� ��; �� ��): (69)If n > 0, there are k ustomers in the waiting room and n ustomers in the servie queue whenthe tagged ustomer leaves the system. If n = 0, the gate opens when the tagged ustomerhad reeived servie, so there are 0 ustomers in the waiting room and k ustomers in theservie queue when the tagged ustomer leaves the system. This implies that�s(0; n) = An;0 +A0;n; n > 0; (70)�s(k; n) = An;k; k > 0; n > 0; (71)�s(0; 0) = A0;0: (72)Multiplying the above equation with �k�n, summing over k and n, and making use of (69)the theorem follows.
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4 Gate openings and generations: an embedded Markov hainIn the previous setions we analysed the M=G=1 queue with gated random order of servieusing a state desription, in whih the ustomers in both the waiting room and the serviequeue are inluded. In [4℄ Avi-Itzhak and Hal�n analysed the gated M=G=1 queue usingan essentially one-dimensional approah: they onsider the number of ustomers that passthrough the gate when the servie queue empties and furthermore onsider the length of thetime intervals between suessive gate openings. Although they fous on the proessor sharingservie disipline, they also present some results for the random order of servie disipline. Inthis setion we briey review their method and show how this one-dimensional model an beused to derive the LST of the sojourn times distribution �(u; v) and the generating funtionsQ(�; �) and Qs(�; �).The key ingredient of the analysis in [4℄ is the deomposition of the busy period in gener-ations. The zeroth generation onsists of one ustomer who enters in an idle system and whostarts the busy period; the �rst generation onsists of those ustomers who enter the wait-ing room while the ustomer in the zeroth generation is being served; the seond generationonsists of those ustomers who enter the waiting room while the �rst generation is in theservie queue, and so on: the j + 1st generation onsists of all ustomers who enter duringthe servie time of the jth generation. A busy period ends when the servie queue is emptiedand there are no ustomers in the waiting room.If we denote the number of ustomers in the jth generation by Nj and the total servietime of that generation by Tj, it holds thatPr[N0 = 1℄ = 1; (73)Pr[Nj+1 = n℄ = Z 10 (�t)nn! e��t dPr[Tj � t℄ for j � 0; (74)and thatPr[Tj � t℄ = 1Xn=0Pr[Nj = n℄Bn�(t): (75)It follows that the generating funtion for the number of ustomers in the jth generation is1Xn=0 zn Pr[Nj = n℄ = gj(z) (76)and that the LST of the servie time for the jth generation is given byZ 10 e�st dPr[Tj � t℄ = gj(�(s)) = gj+1(1� s=�); (77)where the funtions gj are as de�ned in Theorem 1. This gives a nie interpretation of thefuntions gj . Together with the LST for the idle time distributionZ 10 e�st dPr[Tidle � t℄ = ��+ s; (78)13



they haraterize the intervals between suessive gate openings and the number of ustomerspassing through the gate. In partiular, the expeted number of ustomers in a jth generationis E(Nj) = �j ; (79)the expeted duration of the servie time of a jth generation isE(Tj) = ��1�j+1; (80)and the expeted duration of an idle period isE(Tidle) = ��1 (81)4.1 Derivation of �(u; v)The probability that a randomly piked ustomer belongs to a jth generation isE(Nj)P1k=0E(Nk) = (1� �)�j : (82)If j = 0, the ustomer goes diretly to the servie queue, this ontributes (1 � �)�(v) to�(u; v). When j � 1, the ustomer enters the waiting room during the servie time of thepreeding j � 1st generation. The probability that that servie time lies in [t; t + dt) is(t=E(Tj�1))dPr[Tj�1 � t℄, and the sojourn time in the waiting room is uniformly distributedover (0; t). The probability that the partiular jth generation to whih the hosen ustomerbelongs has m ustomers equals the probability that m � 1 additional ustomers enter thesystem, i.e., (�t)m�1e��t=(m�1)!. When the m ustomers from this jth generation are servedin the servie queue, the hosen ustomer will be number ` in line with probability 1=m, andthen that ustomer will spend ` servie times in the servie queue.Combining the above, it follows that the ontribution of the jth generation with j � 1 to�(u; v) is(1� �)�j Z 10 1t Z t0 e�ux dx 1Xm=1 (�t)m�1(m� 1)! e��t 1m mX̀=1 �(v)` �t�j dPr[Tj�1 � t℄: (83)Writing1m mX̀=1 �(v)` = �(v)1� �(v) Z 1�(v) �m�1 d�; (84)performing the sum over m and the integral over x, making use of (77) and �nally summingover the generations j, we �nd �(u; v) as in Theorem 1. If, instead of using (77) to do theintegral over t, we do the integral over �, we �nd an alternative expression for �(u; v) that forv = u redues to Equation (60) of [4℄ (note that there is an error in that formula: the fatort in the integrand should be t�1).
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4.2 Derivation of �s(k; n)Just like in the alulation of �(u; v) we pik a random ustomer. With probability (1� �)�jthat ustomer belongs to a jth generation and the probability that that generation had mustomers ismPr[Nj = m℄E(Nj) = ��jmPr[Nj = m℄: (85)We now onsider the state of the system when the hosen ustomer has ompleted servie.When that ustomer is not the last of his generation, i.e., if he is number ` = 1; 2; : : : ;m� 1,eah of whih happens with probability 1=m, there are m� ` ustomers in the servie queuewhen he leaves the system and the number of ustomers in the waiting room equals thenumber of utomers that entered during ` omplete servie times. If, on the other hand,our hosen ustomer is the last of his generation, whih happens with probability 1=m, allustomers that entered during the m omplete servie times are transferred to the serviequeue when our ustomer ompletes servie. It follows that�s(k; n) = 1Xj=1(1� �) 1Xm=n+1Pr[Nj = m℄Z 10 (�x)kk! e��x dB(m�n)�(x) for k > 0 (86)�s(0; n) = 1Xj=1(1� �) 1Xm=n+1Pr[Nj = m℄Z 10 e��x dB(m�n)�(x)+ 1Xj=0(1� �) 1Xm=1Pr[Nj = m℄Z 10 (�x)nn! e��x dBm�(x) for n > 0 (87)�s(0; 0) = 1Xj=0(1� �) 1Xm=1Pr[Nj = m℄Z 10 e��x dBm�(x): (88)Making use of (76), theorem 5 follows after straightforward alulations.4.3 Derivation of �(k; n)In order to alulate the steady-state probabilities �(k; n), we pik a random point in time.The probability that it lies in an idle interval isE(Tidle)E(Tidle) +P1k=0E(Tk) = (1� �) (89)and the probability that it lies in an interval in whih a jth generation is in servie isE(Tj)E(Tidle) +P1k=0E(Tk) = (1� �)�j+1: (90)The system is idle if and only if it is in state (0; 0), so�(0; 0) = 1� �: (91)If the random point lies in generation j, the probability that that partiular generation hasm ustomers is mPr[Nj = m℄=E(Nj), and the probability that the random point lies in the15



servie interval of the `th of these ustomers (so that `�1 ustomers have already been servedand have left the system) is Pr[Nj = m℄=E(Nj), for ` = 1; 2; : : : ;m. The probability that theservie time of this partiular ustomer lies in [t; t+ dt) is (t=E(B))dB(t). The hosen pointin time will be uniformly distributed over this servie time, so the time x that the partiularustomer has already spent in servie is also uniformly distributed over [0; t℄. The total timethe server has already spent on the ustomers of this jth generation is the sum of x and `� 1omplete servie times. The ustomers that arrived during this period are in the waitingroom. It now follows that �(k; n) for n > 0 is given by1Xj=0(1��)�j+1 1Xm=n Z 10 Z 10 Z t0 (�(x+ y))kt k! e��(x+y) dxdB(m�n)�(y) tPr[Nj = m℄E(B)E(Nj) dB(t): (92)The generating funtion Q(�; �) is obtained by straightforward manipulations: summing overk, performing the integrals over x and y, interhanging the summations over m and n, andmaking use of (76). After these manipulations we obtain the result of Corollary 3.5 Exponential servie timesWhen the servie time distribution is exponential, i.e., B(t) = 1 � e��t, the expressions forQ(�; �) and �(u; v) beome partiularly simple. We �rst look at the number of ustomers andworkload. When we substitute�(s) = ��+ s (93)so thatg(�) = 11 + �(1� �) ; with � = �=�; (94)into (37) we �nd thatq(�; �; s) = q(�; �; 0) �� + s: (95)This impliesP (k; n;x) = �(k; n)(1 � e��x); (96)whih reets, of ourse, the memoryless property of the exponential distribution. The resid-ual workload of the ustomer in servie has the same exponential distribution as his totalworkload. We now turn to the probabilities �(k; n). Using G(g(�)) = G(�) + 1 � g(�) theexpression for Q(�; �) as derived in Corollary 3 an be written in the formQ(�; �) = (1� �)(1� g(�))1� � �1 + G(g(�)) �G(�)g(�) � � � : (97)By iterating the funtion g from (94) it is easy to verify thatg`(z) = 1� �` � z�(1 � �`�1)1� �`+1 � z�(1� �`) : (98)16



Then we haveg`+1(�)� g`(�)g(�)� � = �`(1� �)2(1 + �� ��)(1� �`+2 � ��(1� �`+1))(1 � �`+1 � ��(1 � �`)) ; (99)so Q(�; �) = 1X̀=0 �`+1(1� �)3(1� �`+2 � ��(1� �`+1))(1 � �`+1 � ��(1 � �`)) : (100)The series expansion in � and � is now straightforward. The probability �(k; n) is the oeÆ-ient of �k�n�1 (k � 0, n � 1) in that series expansion. The result is�(k; n) = 1X̀=0 C` (s`+1)k (s`)n�1 ; (101)where s` = �(1� �`)1� �`+1 ; (102)C` = �`+1(1� �)3(1� �`+2)(1 � �`+1) : (103)Note that the ` = 0 term in (101) ontributes only for n = 1, beause s0 = 0. We derivedthe `sum of produts' form (101) for the M=M=1 ase in [8℄ using a ompensation method fortwo-dimensional Markov hains originally developed by Adan [1℄ (see also Adan, Wessels andZijm [2℄). In that preprint we also studied the large k + n behaviour of �(k; n).Finally, we turn to the LST of the sojourn times distribution. The integral over � in (61)an be done analytially and after a little algebra we obtain�(u; v) = (1� �) ��+ v � �2uv 1X̀=0 C`s`+1 ln�1� uvs`+1(u+ �(1� s`))(v + �(1� s`+1))� : (104)6 ConlusionWe have studied the steady-state behaviour of the M=G=1 queue with GROS, GFCFS andGLCFS servie disiplines using two di�erent approahes. The �rst approah makes use ofthe balane equations for P (k; n;x), the seond approah fouses on the properties of the timeintervals between suessive gate openings and of the number of ustomers that pass throughthe gate at the gate openings. The latter approah is more elegant, but quite subtle, andareful reasoning is required to derive the results that follow straightforwardly in the formerapproah.Referenes[1℄ Adan, I.J.B.F. (1991) A ompensation approah for queueing problems, Ph.D. thesis,Eindhoven University of Tehnology. 17
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