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Abstract

Process behavior is often described in terms of structural operational
semantics. For a wide class of such rules, viz. those adhering to the
GSOS format or to the tagh-format, it is possible to obtain automat-
ically a finite axiomatization that characterizes strong bisimulation.
Here we go a bit further and show for this format how to obtain canoni-
cal representatives of bisimulation equivalence classes under a condition
of well-foundedness. This we do by constructing the initial algebra in
the variety of semi-lattices over the axiomatization of a system.

1 Introduction

Structured operational semantics has become the predominant method of
describing the operational semantics of process languages in terms of transi-
tion systems. Starting from the founding work of Bloom, Istrael and Meyer
on GSOS in [9] and important contributions of De Simone [12] and Groote
and Vaandrager [15], various other formats have been studied each with
their respective merits, including the property of bisimulation being a con-
gruence. Here, we mention: ntyft/ntyxt [14], panth [26], tree-rules [13], the
work in [25], and the tagh-format of [5].

In [1], Aceto, Bloom and Vaandrager provide a method of generating
a sound and complete axiomatization of strong bisimulation for transition
system specification in the GSOS-format. Recently, in [5] this result has
been slightly generalized in the setting of the tagh-format in order to deal
with explicit termination. In this paper we focus on the question of decid-
ing the bisimilarity of terms with respect to some given transition system



specification. In general, this problem is known to be unsolvable (cf. [9]).
However, under certain linearity and well-foundedness conditions on the
transition rules a decision procedure can be given. More specifically, we
address the following problem: Given a transition system specification over
a signature Σ and rules confirming to the GSOS or tagh format, determine
whether two ground terms in T (Σ) are bisimilar without constructing a
bisimulation itself.

For rules in GSOS-format and tagh-format the resulting transition sys-
tem is finitely branching and computable. Moreover, as shown in [1, 5], a
head normalization property allows one to trade an arbitrary operation in
favour of the basic operations of nondeterministic choice and action prefix-
ing. Together with well-foundedness of the underlying transition relation
this induces an elimination theorem, stating that any term can be reduced
to an equivalent basic term in a basic process algebra.

In [18] a description of the free algebra for a basic process language was
presented. Here we adapt their result by dealing with action prefixing in-
stead of sequential composition and incorporating the dagger-construction
of [1] and explicit termination as in [4]. In a similar manner as in [18] we
provide a technique for the construction of the initial algebra. The construc-
tion takes place in the variety V†,ε defined by E†,ε, the equational theory for
bisimulation for the basic process language. The free V†,ε-algebra is given
by set-theoretic means as a universe set with suitably defined operations,
and an epimorphism is defined that maps each term of the signature of V†,ε
to its canonical unique representative in the free V†,ε-algebra. Combining
this with the results of [1] and [5] we arrive at a procedure for determining
whether any two terms with operations defined by a well-founded transition
system specification in GSOS-format or tagh format are bisimilar or not,
simply comparing their image in the initial algebra.

2 Preliminaries

2.1 Tagh-systems

We assume acquaintance with an SOS system as a pair SS = (ΣS , RS) of a
finite signature ΣS and a finite set RS of rules. For further details see for
instance [23, 2, 7].

The SOS system that we will use as basic in this paper is the sys-
tem S†,ε = (Σ†,ε, R†,ε). Here, the signature Σ†,ε is given by Σ†,ε = {+, δ, ε}∪
{a(.)| a ∈ Act} ∪ {†B(.)| B ⊆ Act}, where + is a binary operation, δ and
ε are constants, there is one unary operation for each action a ∈ Act, and
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also one unary operation †B for each subset of Act. We use the notation
ax or a.x for a(x) and x †B for †B(x). The set of rules R†,ε consists of the
following.

ax
a→ x (1)

x
a→ x′

x + y
a→ x′

,
y

a→ y′

x + y
a→ y′

(2)

x
a→ x′

x †B
a→ x′

(a /∈ B) (3)

ε ↓, x ↓
(x + y) ↓ ,

y ↓
(x + y) ↓ (4)

x ↓
x †B ↓ (5)

The above is in fact the system for the basic process language from [5] with
nondeterministic choice +, a prefixing operation for every action a in the set
of actions Act, a unary one-step restriction, or initial-blocking, operation †B
for every subset of actions, an explicit termination constant ε, and a deadlock
constant δ which has no transitions (cf. [4]). The symbol ↓ is used for postfix
notation of the termination predicate, meaning that a term can terminate
immediately.

Definition 2.1 Let SS = (ΣS , RS) be an SOS system with termination. A
binary relation R on T (ΣS) is a bisimulation if for all x, y ∈ T (ΣS) such
that R(x, y) the following conditions are met

1. if x
a→ x′ then there exists y′ such that y

a→ y′ and R(x′, y′);

2. if y
a→ y′ then there exists x′ such that x

a→ x′ and R(x′, y′);

3. x ↓ iff y ↓, i.e. x can terminate if and only if y can.

Two terms x and y are bisimilar (notation x ∼S y) if there exists a bisimu-
lation relation R such that R(x, y).

A familiar result states that bisimulation can be captured equationally, i.e.
two terms can be proved to be equal using the equations exactly when the
two terms are bisimilar (see [20, 21]).
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Theorem 2.2 The equational theory given by the axioms

x + y = y + x (6)
(x + y) + z = x + (y + z) (7)

x + x = x (8)
x + δ = x (9)

(x + y) †B = x †B + y †B (10)
(a.x) †B = a.x, a /∈ B (11)
(a.x) †B = δ, a ∈ B (12)

δ †B = δ (13)
ε †B = ε (14)

is sound and complete with respect to bisimulation for S†,ε. ¤

We will apply the algebraic results, that are presented in the sequel, to a
subclass of SOS-systems that are characterized by the format of their rules.
Here, we focus on the tagh-format of [5] that extends the well-known GSOS-
format of [9] with termination.

Definition 2.3

1. A tagh transition rule for an n-ary operation f is a deduction rule of
the format

{xi
aip→ yip| i ∈ I, p ∈ Pi} {xj

b
6→ | j ∈ J, b ∈ Bj} {xk ↓| k ∈ K}

f(x1, . . . , xn) a→ C[xm, yip]

where I, J,K ⊆ {1, . . . , n}, for i ∈ I, Pi a nonempty finite index set,
for j ∈ J, Bj a finite set of actions, and, for m ∈ {1, . . . , n}, i ∈ I, p ∈
Pi, xm, yip are pairwise distinct variables, that are the only variables
that may occur in the context C[xm, yip].
The arguments xi, i ∈ I are called active, while the xj , j ∈ J are called
negative.

2. A tagh termination rule for an n-ary operation f is a deduction rule
of the format

{xk ↓ | k ∈ K}
f(x1, . . . , xn) ↓

where x1, . . . , xn are pairwise distinct variables and K ⊆ {1, . . . , n}.
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A tagh-system is SOS system where all the rules for all the operations, except
those of Σ†,ε, are tagh rules.

Since the tagh-format is an instance of the panth-format, by a general result
of [26] we have the following lemma.

Lemma 2.4 Bisimulation is a congruence for every tagh-system. ¤

The main result of [5], exploiting similar techniques of [1] for GSOS-systems,
is a procedure to automatically obtain for a tagh-system a sound and com-
plete system of equations that characterize bisimulation.

Theorem 2.5 There exists a procedure to obtain for any tagh-system ST ,
a disjoint extension S′T and an equational theory E′

T such that E′
T is head-

normalizing, sound and complete with respect to strong bisimulation. ¤

2.2 Free algebras and SOS systems

In this subsection we present basic notions from universal algebra and discuss
the connection to our problem of finding a system of representatives of terms
modulo bisimulation. For more details on free algebras see, for instance, [11,
22, 24].

An algebra is a pair A = (A; Σ) where A is a carrier set and Σ is a sig-
nature, or a set of basic operations. A variety V is a class of algebras of the
same type (i.e., over the same signature) that is closed under homomorphic
images, subalgebras and direct products. By Birkhoff’s variety theorem, ev-
ery variety is an equational class, meaning that it consists of all the algebras
that are models of a certain equational theory. Hence we usually think of a
variety as a class of algebras defined by identities.

Definition 2.6 Let V be a variety. A free algebra in V with base set X is
an algebra F = (F ; Σ) such that

• F belongs to V.

• The set X ⊆ F generates F .

• For every algebra A = (A,Σ) ∈ V, any mapping from X to A can be
extended to a homomorphism from F to A, i.e. F satisfies the universal
mapping property.

An initial algebra in V is the free algebra with an empty base.
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Let Σ be a signature. Let V0 denote the variety over Σ that has no defining
identities, i.e. V0 contains all the algebras of type Σ. The free algebra in V0

with base X is the algebra of Σ-terms built over the base X. This is also
called the absolutely free algebra with base X of type Σ, further on denoted
by T (ΣX). In case of the initial algebra in V0 we write T (Σ), it exists if and
only if the signature contains constants.

For later reference we include here a classical characterization of free
algebras in a given variety.

Theorem 2.7 Let V be a variety of algebras of type Σ. Let EV denote the
underlaying equational theory and =V the equality in EV . Then the free
algebra in V with base X (up to isomorphism) is T (ΣX)/ =V . ¤

In a free algebra of a given variety only the identities of the whole variety
hold and nothing else, hence it is free of any other laws. In an absolutely free
algebra no laws hold, all the terms are distinct elements of the absolutely free
algebra. For an example of a free algebra consider the variety of semigroups
i.e. all algebras with a single binary operation that satisfies the associative
law. The free semigroup with base X is isomorphic with X+, all words over
the alphabet X with the operation of concatenation. Every group can also
be considered a member of this variety but, as more laws hold, is not free
in the variety of semigroups.

Having an algorithmic construction of free algebras, with a countable base,
in a variety V is known as solving the word problem for free algebras in
V, and is equivalent to the decision problem of the equational theory of V.
Namely, it gives a procedure to decide whether two given terms in signature
Σ (over a countable set of variables) are equal modulo identities of V.

There are various ways of constructing free algebras in a given variety
and they vary from rather specific constructions for certain varieties (e.g. [24,
22, 17, 18, 19]) to more general constructions (for example [10, 3]). Roughly
speaking, in the sense of Definition 2.6, there are two main approaches. The
first consists of constructing a carrier set that consists of a certain kind of
objects, defining operations on it of type Σ and proving that the conditions
of Definition 2.6 are met. The second is by obtaining, via reduction, a
system of representatives for =V , i.e. by constructing F as a subset of T (ΣX)
containing exactly one element for each =V -congruence class. Note that the
first and the second construction could be linked together if we construct
the isomorphism between the object F obtained with the first construction
and T (ΣX)/ =V or construct the corresponding epimorphism from T (ΣX)
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onto F. We follow this later approach when constructing the free algebras
in Section 3.

By now we have mentioned the main ingredients used in this paper. Through-
out the paper we will use the following notation:

SS – an SOS system
ΣS – the signature of SS

T (ΣS) – the set of ground terms over a signature ΣS

∼S – bisimulation w.r.t. SS

AS – the algebra T (ΣS)/ ∼S

ES – equational theory for bisimulation w.r.t. SS

=S – equality w.r.t. ES

VS – the variety defined by ES

FX
S – the free algebra in VS with base X

FS – the initial algebra in VS

According to the convention above, the equational theory E†,ε consists of
the identities of Theorem 2.2, i.e. the laws (6) up to (14).

Next we introduce several subsystems of S†,ε that will be used in the sequel.
The simplest one is SF (with F referring to FINTREE as coined in [1]),
with signature ΣF = {+, δ} ∪ {a(.)| a ∈ Act} and rules (1) and (2). The
system SF,ε with signature ΣF,ε = {+, δ, ε}∪{a(.)| a ∈ Act} and rules (1),(2)
and (4) is an extension of SF with explicit termination. What remains of
S†,ε without termination is the system S† with signature Σ† = Σ†,ε \{ε} and
rules (1), (2) and (3).

Note that EF consists of the identities (6) thru (9); EF,ε has the same
identities, while E† has the identities (6) thru (13). For systems that do not
include termination the definition of bisimulation is restricted to the first
two conditions of Definition 2.1 as usual.

Since E†,ε is a disjoint extension of EF,ε we have the following fact.

Lemma 2.8 For x, y ∈ T (ΣF,ε) it holds that x =†,ε y iff x =F,ε y ¤

The following lemma explains the connection between free algebras and the
issue of finding canonical representatives for bisimulation equivalence classes.

Lemma 2.9 Let SS be an SOS system with signature ΣS such that bisimu-
lation ∼S is a congruence. Assume that ES is a sound and complete equa-
tional theory for SS. Let VS be the variety induced by ES. Then the initial
VS-algebra FS is isomorphic to AS, i.e. to T (ΣS)/ ∼S.
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Proof Since ES is sound and complete for ∼S , we have that x ∼S y ⇔
x =S y for any x, y ∈ T (ΣS). Hence ∼S is in fact the congruence generated
by the defining identities of VS and FS

∼= T (ΣS)/ ∼S . ¤

Thus, under the conditions of Lemma 2.9, the problem of obtaining canonical
representatives for bisimulation is equivalent to the problem of constructing
the initial algebra in the corresponding variety.

3 Free V†,ε algebras

In this section we focus on the construction of the free algebra with a given
base in the variety V†,ε induced by the laws of Theorem 2.2. By Lemma 2.9
above this amounts to constructing the quotient algebra A†,ε.

First, we focus on the representation of AF,ε for which we borrow some
ideas from [18]. The construction of [18] of a free algebra for BPA, as it is
called in [6], is a construction of the first kind explained above. However,
following our basic observation, this can easily be turned into a construction
of the second kind, by defining a suitable epimorphism.

As mentioned before, VF,ε denotes the variety defined by the identities
of EF,ε in the signature ΣF,ε. Note that, in view of the laws of EF,ε, any
VF,ε-algebra is a semi-lattice with respect to +, with unit δ. We shall use
the description of a free semi-lattice with unit for the free objects in VF,ε.

Let, for the moment, X be some given set such that X ∩P(X) = ∅. Put
SL(X) = {∅}∪X ∪P≥2(X). We define an operation ∗ on SL(X) as follows:

∅ ∗ z = z ∗ ∅ = z
x ∗ x′ = {x, x′}, x 6= x′

x ∗ x = x
y ∗ y′ = y ∪ y′

y ∗ x = x ∗ y = {x} ∪ y

where x, x′ ∈ X, y, y′ ∈ P≥2(X), z ∈ SL(X).
Note that the operation ∗ is essentially the familiar union of sets, only

each singleton is replaced by the element itself. This is done since we want
X ⊆ SL(X) to hold, as the SL-operator will be applied recursively in the
sequel. Also note that the operation ∗ is well-defined since we assumed
X ∩ P(X) = ∅.

Lemma 3.1 The structure (SL(X), ∗) is the free semi-lattice with unit ∅
and base X.
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Proof We prove that SL(X) belongs to the variety of semi-lattices with
a unit, that it is generated by X and that it has the universal mapping
property.

Let y ∈ P≥2(X). Then y = {x1, . . . , xk} ⊆ X, for some k ≥ 2. Thus,
y = x1 ∗ {x2, . . . , xk} if k > 2 and y = x1 ∗ x2 if k = 2. This implies that
P≥2(X) is generated by X.

From the definition of ∗ it is obvious that SL(X) is a semi-lattice. Let
(S, ◦) be any semi-lattice with unit 0, and f : X → S any map. We extend
f to a homomorphism f∗ : SL(X) → S as follows:

f∗(∅) = 0
f∗(x) = f(x) for x ∈ X
f∗(y) = f∗(x1) ◦ · · · ◦ f∗(xk) for y = {x1, . . . , xk} ∈ P≥2(X)

It is, using the definition of ∗, straightforwardly checked that f∗ is indeed a
homomorphism. From this the universal mapping property follows. ¤

For the construction of our free algebras we need to introduce yet another
operator.

wDefine Σp = ΣF,ε − {+, δ, ε}, i.e. Σp is the signature consisting of pre-
fixing operations only. For practical reasons we shall denote the absolutely
free algebra with base X over this signature by X. Clearly X is the set of
all Σp terms built from X.

Using the operators SL(·) and (·) we construct the universe FX
F,ε of the

free VF,ε-algebra with base X. We define a sequence of sets Fi, i ≥ 0 by

F0 = X ∪ {ε, ∅}
Fi+1 = SL(Fi \ P(Fi))

and we put FX
F,ε =

⋃
i≥0 Fi. Note that all the sets Fi \ P(Fi) are eligible as

argument of SL, since (Fi \ P(Fi)) ∩ P(Fi \ P(Fi)) = ∅. Also observe that
Fi ∩ P1(Fi) = ∅, so we can write Fi \ P(Fi) instead of Fi \ ({∅} ∪ P≥2(Fi)).

The next lemma collects some properties that are needed later.

Lemma 3.2

(i) The set Fi \ P(Fi) does not contain sets as its elements, for i ≥ 0, if
X does not.

(ii) For i ≥ 0, if an element x of Fi+1 is a set, then x ⊆ Fi \ P(Fi).
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(iii) Fi \ P(Fi) ⊆ Fi+1 \ P(Fi+1) for i ≥ 0.

(iv) Fi ⊆ Fi+1 for i ≥ 0.

Proof

(i) Clearly, F0 \P(F0) does not contain sets. Let x ∈ Fi \P(Fi), for i ≥ 1.
Then x ∈ Fi and either x ∈ SL(Fi−1 \ P(Fi−1)) \ SL(Fi−1 \ P(Fi−1))
in which case x is not a set, or x ∈ SL(Fi−1 \ P(Fi−1)). In the
later case there are two more possibilities. The first case is that x ∈
Fi−1 \ P(Fi−1) and by the inductive hypothesis x is not a set. The
second case is x = {x1, . . . , xk}, k ≥ 2, x1, . . . , xk ∈ Fi−1 \ P(Fi−1)
which implies x1, . . . , xk ∈ Fi, i.e. x ∈ P(Fi) which is a contradiction.

(ii) Let x ∈ Fi+1 be a set, for i ≥ 0. Then x ∈ SL(Fi \ P(Fi)) and by (i)
we have that x /∈ Fi \ P(Fi), i.e. x ⊆ Fi \ P(Fi).

(iii) By construction we have Fi \ P(Fi) ⊆ Fi+1. In addition, by (i) if
x ∈ Fi \ P(Fi) then x is not a set, hence x /∈ P(Fi+1).

(iv) This is a consequence of (iii) and the definition of the sets Fi.
¤

From the lemma we obtain as a corollary the following.

Corollary 3.3 The sequence (SL(Fi \ P(Fi))| i ≥ 0) is a chain of semi-
lattices, the sequence (Fi| i ≥ 0) is a chain of algebras of type Σp and
FX

F,ε =
⋃

i≥0 Fi =
⋃

i≥0 SL(Fi \ P(Fi)). ¤

Thus FX
F,ε inherits interpretations for + and prefixing operations from the Fi’s.

Additionally, we can take ∅ is an interpretation for δ. Therefore FX
F,ε can be

turned into a ΣF,ε-algebra, FX
F,ε, in a natural way.

Note that the elements of FX
F,ε have the form a1a2 . . . anx where x is

either ε or ∅, or x = {x1, . . . , xk} for some x1, . . . , xk ∈ FX
F,ε which are not

sets. The length of a1a2 . . . anx is the number n of unary prefix operations
that appear as top operations in this element, and the depth of a1a2 . . . anx
is the number of pairs of braces appearing in x (0 for x = ε or x = ∅). In
this informal way we have defined two functions, length and depth, that map
elements of FX

F,ε to natural numbers.

By now we have the ingredients for our first result.
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Theorem 3.4 FX
F,ε is a free VF,ε-algebra with base X.

Proof The proof goes by induction on length and depth. First of all FX
F,ε ∈

VF,ε, since by construction it is easy to see that the + operation satisfies
the laws of a semi-lattice with unit ∅. Next we check that X generates FX

F,ε.
Clearly, X generates F0. If x = ax′ ∈ FX

F,ε \ F0 then by length-induction x′

is generated by X and so is x. Finally if x = {x1, . . . , xk} then by depth-
induction all the xi’s are generated by X and so is x = x1 + · · · + xk. Let
(F, ΣF,ε) be any other VF,ε-algebra and f : X → F be any mapping. Then
we can extend f to a homomorphism f ′ : FX

F,ε → F by putting f ′(ε) =
ε, f ′(∅) = δ, f ′(ax) = af ′(x), f ′({x1, . . . , xn}) = f ′(x1) + · · · + f ′(xn).
An easy inductive argument on length and depth shows that f ′ is indeed a
well-defined homomorphism as desired. ¤

For the remainder of this section we work with an empty base, so X = ∅.
We define the mapping eF : T (ΣF,ε) → FF,ε by

eF (ε) = ε
eF (δ) = ∅
eF (ax′) = a.eF (x′)
eF (x′ + x′′) = eF (x′) + eF (x′′)

where the + in the righthand side is the + of FF,ε. Clearly eF is an
epimorphism, so FF,ε = eF (T (ΣF,ε)). From the general theory we have
T (ΣF,ε)/ker(eF ) ∼= FF,ε, hence two terms in T (ΣF,ε) are equivalent modulo
the identities of VF,ε exactly when they have the same image under eF , i.e.
for all x, y ∈ T (ΣF,ε) we have that

x =F,ε y ⇐⇒ eF (x) = eF (y) (15)

Therefore the set {eF (x) | x ∈ T (ΣF,ε)} constitutes a system of representa-
tives of equivalence modulo EF,ε.

So far we have constructed the free VF,ε-algebra and we have shown how
to obtain canonical representatives of congruence classes of T (ΣF,ε). Next
we extend the above construction for V†,ε. Note that the identities given in
Theorem 2.5 for the unary one-step restriction operations allow for elimina-
tion of these operations. In order to make this explicit we define mappings
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eB : T (ΣF,ε) → T (ΣF,ε), for each subset B ⊆ Act, by

eB(ε) = ε
eB(δ) = δ

eB(x′ + x′′) = eB(x′) + eB(x′′)
eB(ax) = δ if a ∈ B
eB(ax) = ax if a /∈ B

and a mapping e† : T (Σ†,ε) → T (ΣF,ε) by e†(x) = x if x ∈ T (ΣF,ε) and

e†(ax) = ae†(x)
e†(x′ + x′′) = e†(x′) + e†(x′′)

e†(x †B) = eB(e†(x))

otherwise. An inductive argument shows that the mappings e† and eB, for
B ⊆ Act are well-defined. Moreover, e† is surjective, since for x ∈ T (ΣF,ε)
we have x = e†(x), and respects, by definition, all the operations of ΣF,ε.
Additionally we have the following.

Lemma 3.5 For any x ∈ T (ΣF,ε) it holds that x † B =†,ε eB(x) and for
any x ∈ T (Σ†,ε) we have x =†,ε e†(x). For any x, y ∈ T (ΣF,ε) it holds that
x =F,ε y =⇒ eB(x) =F,ε eB(y).

Proof By a simple inductive argument on the structure of ΣF,ε-terms it
follows that x † B =†,ε eB(x) for all x ∈ T (ΣF,ε). Then, once again by
induction but now on the structure of Σ†,ε terms, we get that x =†,ε e†(x)
for all x ∈ T (Σ†,ε). If for two ΣF,ε-terms x, y and B ⊆ Act it holds that
x =F,ε y, then, as S†,ε is a disjoint extension of SF,ε, it also holds that
x =†,ε y. Hence x † B =†,ε y † B and, by the above, eB(x) =†,ε eB(y). But,
since eB(x), eB(y) are ΣF,ε-terms as well, we obtain eB(x) =F,ε eB(y) by
another appeal to the disjointness of the extension of S†,ε over SF,ε. ¤

The lemma above states that any Σ†,ε-term x can be reduced to a ΣF,ε-
term, viz. e†(x). There are two reasons underlying the well-definedness of
the mappings e† and eB and the proof of Lemma 3.5. The first is known
as a head-normalization property. Namely for each Σ†,ε-term x there either
exist Σ†,ε-terms x1, x

′, and an action a1 such that x = a1x1 +x′, or x = ε, or
x = δ. Moreover, the transition relation is finitely branching for S†,ε. The
second reason is that the rules for †B-operations are well-founded, i.e. no
infinite sequence of rewritings is possible. We will exploit this observation
below, when generalizing the above result.
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So far we have that T (Σ†,ε)
e†−→ T (ΣF,ε)

eF−→ FF,ε, and both e† and eF

are surjective mappings that respect the operations of ΣF,ε. Hence eF ◦ e† is
itself surjective, i.e. (eF ◦ e†)(T (Σ†,ε)) = FF,ε, and it respects the operations
of ΣF,ε. Moreover, the following holds.

Lemma 3.6 For all x, y ∈ T (Σ†,ε) it holds that x =†,ε y ⇐⇒ (eF ◦e†)(x) =
(eF ◦ e†)(y).

Proof Let x, y ∈ T (Σ†,ε). Then we have that x =†,ε y iff e†(x) =†,ε e†(y),
by Lemma 3.5, iff e†(x) =F,ε e†(y), by Lemma 2.8, iff eF (e†(x)) = eF (e†(y)),
by equation (15). ¤

Next we extend the signature of FF,ε by adding the one-step restriction
operations. We put, for x ∈ FF,ε, x †B = (eF ◦ e†)(x0 †B) if x0 ∈ T (Σ†,ε) is
such that (eF ◦ e†)(x0) = x and B ⊆ Act. We check that this indeed defines
operations (·) †B on FF,ε.

Lemma 3.7 The operations (·) †B on FF,ε are well-defined.

Proof Pick x ∈ FF,ε. Let x′, x′′ ∈ T (Σ†,ε) be such that eF (e†(x′)) = x
and eF (e†(x′′)) = x. Hence eF (e†(x′)) = eF (e†(x′′) and, by equation (15),
e†(x′) =F,ε e†(x′′). Therefore, by one of the properties of Lemma 3.5, we
obtain eB(e†(x′)) =F,ε eB(e†(x′′)). This is, by the definition of e†, equivalent
to e†(x′ †B) =F,ε e†(x′′ †B). Using equation (15) we conclude that eF (e†(x′ †
B)) = eF (e†(x′′ †B)), which was to be shown. ¤

Let F†,ε denote the algebra obtained by extending FF,ε to a Σ†,ε-algebra
using the operations (·) †B as given above.

Theorem 3.8 The algebra F†,ε is the initial algebra in the variety V†,ε.

Proof As stated before eF ◦ e† is an epimorphism from T (Σ†,ε) onto F†,ε
such that, by Lemma 3.6, ker(eF ◦ e†) is equal to =†,ε. Hence F†,ε ∼=
T (Σ†,ε)/ker(eF ◦ e†) = T (Σ†,ε)/ =†,ε and the statement follows by Theo-
rem 2.7. ¤

The next consequence is of special interest to us as a characterization of
bisimulation.

Corollary 3.9 For any x, y ∈ T (Σ†,ε) it holds that x ∼†,ε y ⇔ (eF ◦e†)(x) =
(eF ◦ e†)(y).
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Proof Immediate from Theorem 3.8 and the results of Section 2. ¤

Thus the set {(eF ◦ e†)(x) | x ∈ T (Σ†,ε)} is a system of representatives for
bisimulation equivalence for S†,ε. Hence, we have some canonical representa-
tives which are not terms. Such can be achieved by introducing an ordering
on terms, but there is no need for doing so; there is already a procedure for
determining whether two terms have the same canonical representative. It
should also be noted that the application of the mappings eF and e† can be
done mechanically. This is in fact the term rewriting mechanism underlaying
the equational theory.

4 More free algebras

In the previous section we discussed the construction of the initial VF,ε-
algebra eF (T (ΣF,ε)) as well as the construction of the initial V†,ε-algebra
eF (e†(T (Σ†,ε))). We can do the same for other operations defined by SOS
rules. In fact, the procedure applies well for an SOS system in tagh-format
under some mild conditions.

The two essential elements for the argumentation above are a head-
normalization property and a well-foundedness criterion. Head-normalization
is free for SOS system S in tagh-format; it always holds in an equivalent
extension S′ of S. Thus, for tagh-systems that can be shown to be well-
founded we can construct a mapping e : T (ΣS′) → T (Σ†,ε) as before. From
this an initial algebra and a system of representatives can be constructed.

Definition 4.1 Let SS be an SOS system with signature ΣS. A term x ∈
T (ΣS) is well-founded if there is no infinite sequence of SS-transitions start-
ing in x, i.e. there does not exist an infinite sequence of terms (xi| i ≥ 0) and
an infinite sequence of actions (ai| i ≥ 0) such that x = x0 and xi

ai→S xi+1

for i ≥ 0. The SOS system SS is well-founded if all terms in T (ΣS) are
well-founded.

Unfortunately well-foundedness of SOS rules is undecidable in general. But
as shown in [1], it is decidable via syntactical well-foundedness for a rather
wide class of GSOS rules. Since termination does not at all affect well-
foundedness of rules, the same holds for tagh-format rules.

A tagh system is called linear if each variable occurs at most once in
the target (C[xm, yip]) and for each active argument i, at most one of the
following holds: xi occurs in the target; at most one of yip does. For linear
tagh-systems well-foundedness is indeed decidable, in fact it is equivalent to
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the problem of determining whether a linear system of diophantine equations
has a solution in the set of natural numbers.

When all the rules that extend S†,ε are well founded, then together with
head-normalization property, by Noetherian induction ([11, 16]), it follows
that a counterpart of Lemma 3.6 holds for all extra operations of the tagh-
system ES′ .

More concretely, since there are no infinite transitions and there is no
infinite branching, we can define a function ”maximal number of transitions
in a row possible”, mntp, that maps any term x ∈ T (ΣS′) to a natural
number mntp(x) which is the number of transitions in a maximal transition
sequence starting from x. Then by induction on mntp of terms from the
head-normalization property it follows that for any SS′ term x there is an
S†,ε term y such that x is bisimilar to y i.e. x =S′ y in AS′ .

Thus, in the same manner as before, we can define a surjective map-
ping e which respects the Σ†,ε operations and e(x) =S′ x for x ∈ T (ΣS′).

This way we get that T (ΣS′)
e→ T (Σ†,ε)

eF ◦e†→ F†,ε. Subsequently, we extend
the signature of F†,ε to the signature ΣS′ thus obtaining the algebra FS′

with universe FS′ = F†,ε. Namely, if f is an n-ary operation in ΣS′ and
e(x1), . . . , e(xn) ∈ F†,ε then we put f(e(x1), . . . , e(xn)) = e(f(x1, . . . , xn))
where f(x1, . . . , xn) in the right hand side denotes an existing term in
T (ΣS′).

In the exactly same way as before one can prove the following.

Lemma 4.2 For all x, y ∈ T (ΣS′) it holds x =S′ y ⇔ (eF ◦ e† ◦ e)(x) =
(eF ◦ e† ◦ e)(y). ¤

The lemma is the main ingredient of the next theorem.

Theorem 4.3 The structure FS′ is the initial algebra in the variety VS′.
¤

From the theorem, in turn, it follows that

Corollary 4.4 For any x, y ∈ T (ΣS), terms in the original signature, it
holds that x ∼S y ⇔ (eF ◦ e† ◦ e)(x) = (eF ◦ e† ◦ e)(y). ¤

So, we start of from a transition system specification S in tagh-format. By
exploiting the result from [1, 5] we obtain a disjoint extension S′ of which the
accompanying equational theory ES′ is sound and complete for bisimulation
with respect to S′. The theory developed in the present paper, enables us
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to construct the initial VS′ algebra via a suitable epimorphism. Via this
mapping we are given a system of canonical representatives for bisimulation
for the starting tagh system S. Thus, in the end, the problem whether
two S-terms x, y are bisimilar can be answered: they are if eF (e†(e(x))) =
eF (e†(e(y))).
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