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Chapter 1 

Introduction 
 

The electro-encephalogram, or EEG, reflects the electrical activity that is 
associated with processes in the brain [1]. These brain processes involve the 
activation or inhibition of neurons in the brain in order to relay relevant 
information to specialized parts of the brain or to other parts of the body. 
Associated with these activations and inhibitions are several mechanisms that 
involve the transport of electrically charged elements in the vicinity of the 
neurons. Because electrical activity of the brain is propagated throughout the 
body by means of volume conduction [2], it can be recorded non-invasively on 
the scalp of a person. The variations in electrical potential on the scalp, due to 
the brain activity, are referred to as the EEG.  

The EEG has proven to be a valuable tool that can assist in studying the 
functioning of the brain. Over the past decades, it has been shown that the 
EEG contains relevant information for diagnosing several neural disorders [3-
6], and that the EEG can be used as a means of communication, as in brain 
computer interfaces, BCIs [7].  

Unfortunately, there are other sources of electrical activity within the human 
body, like muscles and eyes, whose electrical activity is also detected, on top of 
the EEG [8-11]. A raw EEG will thus contain electrical fluctuations caused by 
actual brain activity and electrical disturbances called artifacts.  

1.1 Artifacts 

Because the brain is always active, the EEG is an ongoing, continuous signal 
that is never completely silent. Similarly, artifacts will always occur because, 
like the brain, some other biological sources of electrical activity are never fully 
silent, e.g., eyes, heart and muscles. As a result, artifacts and EEG will always 
be recorded simultaneously and EEG research should therefore always 
consider signal validation, i.e., how well we measure what we want to measure 
[12].  

In the upper part of Figure 1.1 it is illustrated how electrical activity of the 
brain and electrical activity of the eye is conducted to a position on the scalp. 
On the right a stylized impression of a corresponding EEG recording is shown.  

When the EEG is being recorded, one would like to record exclusively the 
electrical activity of the brain. Unfortunately (from a recording point of view) it 
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is not possible to temporarily ‘shut down’ either the electrical activity of the 
brain or the electrical activity of the eyes during an experiment, as is illustrated 
by the crossed arrow going left. For this reason, other methods have been, and 
are being, developed to separate these electrical activities, as is illustrated by 
the arrow going right. 

 

 
Figure 1.1: Upper part: Illustration of volume conduction of electrical activity through 

the head, together with an impression of the raw EEG.  
Lower part: Shutting down either of the causes (eyes and brain) of the electrical activity 
is not possible. Therefore, alternative solutions are needed to estimate the separate effects 

that brain and eye activity have on the EEG. 

 

For many EEG-based applications, artifacts can be a great nuisance in the 
process of extracting valuable information from the raw EEG, and therefore 
considerable effort has been spent on the removal of artifacts. One difficulty in 
artifact removal is the initial detection of artifacts. Some artifacts may have 
similar or smaller amplitude as the EEG itself, which can make them difficult 
to detect.  

Among the possible sources of EEG artifacts, it is common to distinguish 
between non-biological sources and biological sources. The non-biological 
sources include amplifiers, power lines, electrode pops, and movement. The 
biological sources are electrically active tissues or cells in the body, other than 
the neurons of the brain. By carefully controlling the setup in which the EEG 
is recorded, the impact of the non-biological sources, as well as the impact of 
some of the biological sources, can be greatly reduced, e.g., by providing a 
comfortable chair during experiments or by providing a chin-support to reduce 
head movements. Unfortunately, this often involves compromising on issues 
like the freedom of movement of the person whose EEG is recorded.  
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The impact of some other biological sources, e.g., the heart, cannot be reduced 
by changing the recording setup. Among these sources are also the eyes. 
Because the eyes are located close to the brain, the electrical effects associated 
with eye movements and blinking are usually the major artifacts in an EEG 
recording. Especially for these artifacts of ocular origin, artifact removal 
methods are thus essential. 

Currently, ever more attention is given to EEG-based applications which 
require that artifacts are very accurately removed prior to EEG analysis. For 
such applications, like single-trial based neuroscience research or brain-
computer interfaces, the tolerance to artifacts is small and the need for accurate 
ocular artifact removal is large.  

In response to this need, this thesis provides a detailed overview and 
comparison of existing ocular artifact removal methods and their accuracies, 
and develops a new method with unprecedented accuracy. 

1.2 Artifact removal 

Artifact removal is either done by artifact rejection or by artifact correction. 
Rejection implies that segments of data that contain significant artifacts are 
removed and excluded from further analysis. Correction implies that these 
segments are inspected more carefully and that the influence of the artifact is 
estimated and subtracted from the data. Note here that artifact detection is an 
element of both rejection and correction. For rejection, one needs to detect 
artifacts prior to being able to reject segments of data. For correction, it is 
equally important to determine which segments of the data require correction. 
Additionally, once the artifact is estimated and removed from the data, artifact 
detection is required to determine whether or not the estimate was accurate. 

1.2.1 Artifact rejection 

Assuming accurate artifact detection, rejection can ensure that all significant 
artifacts are removed from the data. Because artifact rejection is easy to 
implement, is intuitively simple, and often is sufficiently effective, it currently is 
the most frequently used method for handling artifacts [13].  

However, for some EEG studies rejection cannot be used because the exclusion 
of parts of the data is unacceptable. If the relevant information in the EEG is 
limited to a very small period of time, rejection of this period because of a 
coinciding artifact is not acceptable. In BCIs for example, ultimately one would 
like to control a computer by a single thought. If the electrical activity related 
to this thought is obscured in the data by an artifact, rejecting the segment of 
data would delete all essential information. Furthermore, if artifacts occur very 
frequently, rejection may be impractical because as a result of rejection either 
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only a small amount of data remains, or the duration of an experiment is 
significantly increased in order to obtain enough usable data. 

In fact, because some artifact sources, like the eyes, are never electrically silent, 
artifacts can never fully be avoided and rejection always involves the 
(subjective) selection of a threshold value regarding which artifacts are rejected 
and which are ignored. 

1.2.2 Artifact correction 

When correcting for artifacts, an ideal correction method will remove the 
artifact and leave the EEG unaffected. In principle, artifact correction can be 
used for all EEG-based studies, including the ones in which artifact rejection is 
unacceptable or impractical. 

In this thesis, the subject of correction of ocular artifacts, for which a large 
number of correction methods has been developed, will be studied in detail, and 
several frequently used correction methods will be evaluated. In Section 1.3 a 
brief summary on the biophysical origin of the EEG is given, which will briefly 
explain why the recording of artifacts is unavoidable and why especially the 
ocular artifact is observed so often, and is so prominent in EEG recordings. A 
more elaborate overview on this can be found in [14]. 

Often, an electro-oculogram, EOG, is recorded simultaneously to the EEG. 
The EOG reflects the electrical potential as recorded on the skin very close to 
the eyes. It is frequently used to detect eye movements, blinks and gaze 
direction, but also to detect and correct ocular artifacts in the EEG. 

In the following sections, existing ocular artifact correction methods will be 
discussed. The majority of these methods can be classified as either an EOG-
based correction method or a components-based method. 

The EOG-based correction methods scale EOG recordings in order to estimate 
ocular artifacts in the EEG.  

In general, eye movements and blinks cause fluctuations in EOG recordings 
that are of significantly higher amplitude than the fluctuations they cause in 
EEG recordings. Scaling and subtraction of the EOG from the EEG is 
therefore frequently used in an attempt to remove the low amplitude 
fluctuations from the EEG. A criticism against the use of the EOG-based 
correction methods is the fact that EOGs will also contain artifacts and that 
they may be affected by brain activity. Traditionally, the fact that an EEG 
recording contains ocular artifacts has been named ‘backward propagation’ 
because the ocular electrical activity is conducted to the back of the head where 
the EEG is recorded. The term ‘forward propagation’ is used to indicate the 
opposite, i.e., cerebral electrical activity being conducted to the front of the 
head where the EOG is recorded. When the EOG is scaled and subtracted from 
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the EEG, artifacts and cerebral activity in the EOG may corrupt a corrected 
EEG. 

The components-based correction methods are an alternative solution to the 
correction of ocular artifacts. These methods do not (necessarily) require 
recording of the EOG and also their accuracy is not (implicitly) affected by 
forward propagation. Under the assumption that ocular electrical activity and 
cerebral electrical activity are either uncorrelated or independent, components-
based methods convert simultaneously recorded EEGs at different scalp 
positions into a set of components in which the relation between components is 
specified in terms of statistical dependence or correlation. Some of the 
components that are obtained this way turn out to reflect ocular electrical 
activity. By eliminating these components and then reconstructing the original 
signals, the artifact is removed from the recording. Currently, it is still not 
clear which statistical assumption results in the most accurate ocular 
components, and validating whether the ocular components are indeed only 
affected by ocular electrical activity or whether they contain cerebral activity is 
difficult.  

Thus, both the EOG and the ocular components can be affected by electrical 
activity of the brain. Whereas some studies regarding ocular artifact correction 
accuracy argue in favor of EOG-based correction methods, [15;16], other 
studies indicate the opposite [17]. 

No ocular artifact correction method existed until recently that estimates 
ocular artifacts based on observations other than electrophysiological signals. 
The detection of eye movements and blinks is not restricted to measurement of 
the EOG but can also be done by camera observation, or by using magnetic 
coils. In this thesis, a new approach to the correction of ocular artifacts is 
proposed that is fundamentally different to correction by EOG-based and 
components-based methods. By using a non-electrophysiological method to 
detect eye movements and blinks, the difficulty of forward propagation and 
artifacts in the EOG can be by-passed which can in principle result in a better 
correction of ocular artifacts. The concept behind the use of the eye tracker is 
illustrated in Figure 1.2. 
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Figure 1.2: Illustration of the eye tracker solution to the correction of ocular artifacts in 
the EEG, with an impression of signal morphology on the right. The eye tracker only 

records ocular information, which can be converted to an accurate estimate for the 
ocular artifact. Combined with the electrode recording which contained both EEG and 

artifact, an accurate estimate of the EEG is derived. 

 

With an eye tracker, eye movements and blinks can be monitored, as is 
discussed in Appendix A. This monitoring is expected to yield valuable 
information which can be used to estimate and correct the artifacts. In the 
following chapters it is shown that the suggested correction method 
consistently estimates the ocular artifact more accurately than other methods. 
A difficulty related to ocular artifact correction concerns the validation that 
correction has indeed removed the ocular artifact and has not affected the EEG. 
Because it is impossible to record the electrical activity exclusively related to 
cerebral activity, exact validation of the corrected data is impossible. So, 
considering that accurate correction is required for modern EEG applications 
like BCIs, and considering that exact correction validation on experimental 
data is impossible, a different way to validate correction methods should be 
used. In Chapter 2 of this thesis, a model for simultaneous simulation of 
cerebral and ocular activity is presented. The model can assist in validating 
correction methods because, contrary to the situation for EEG recordings, such 
a model enables comparing corrected data to purely cerebral activity.  

 

The remainder of Chapter 1 will first briefly summarize the origin of 
electrophysiological signals in general and the EEG and the EOG in particular. 
Then, Section 1.5 will elaborate on several frequently used EOG-based and 
components-based correction methods and Section 1.6 will indicate how the 
accuracies of different corrections methods can be compared and evaluated. 
Finally Section 1.7 will preview the other chapters of this thesis. 
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1.3 Biophysiological origin of the EEG and the EOG 

Biopotentials are electrical signals produced by living tissues. A number of 
cells, tissues and organs are capable of generating these electric signals. 
Because the body which surrounds these sources of electricity conducts these 
signals, their occurrence can be recorded anywhere in or on the body in the 
form of biopotentials. A wide range of medical applications use non-invasive 
recordings of these biopotentials to provide information on the processes in the 
body. Perhaps the best known application is the use of cardiac electrical activity 
in the electrocardiogram, ECG, to detect heart rate and heart rate variability. 

For an adequate interpretation of the electrical activity of a specific part of the 
body, e.g., the brain or a specific muscle, it is required that this part’s electrical 
activity is recorded with minimal interferences. Such interferences can be 
caused by external noise sources, by amplifiers or by sources of electrical 
activity in the body other than the desired source. When recording electrical 
activity of the brain in the EEG, all sources of electrical activity other than the 
cerebral sources are considered to be sources of interference, which deteriorate 
signal quality. Depending on the source of interest, a source’s electrical activity 
may be either relevant or artifactual. Whereas cardiac electrical activity is 
relevant in the ECG, it is a cardiac artifact in the EEG.  

The main way to focus on electrical activity of a specific source, with as little 
interference as possible, is to record the electrical potential on a place on the 
skin near the location of that source. If no other electrical sources are near to 
the recording site, the electric potential will generally be an adequate 
representation of the desired source’s electrical activity. Unfortunately, if two 
electrical sources are close to each other or if an interference source is stronger 
than the desired source, the recorded signal will clearly reflect both sources. In 
the human head, the main electrically active sources are the neurons in the 
brain and the eyes.  

When the electrical potential is recorded on the scalp, the potential changes 
due to brain activity are hard to detect because the electric signals of neurons 
are attenuated when they pass the skull, which has low electrical conductivity. 
Changes in electrical activity that are detectable on the scalp should therefore 
originate from sufficiently strong electrical activity in the cortex. This implies 
that the electrical activity of a single neuron is nearly impossible to detect on 
the scalp. Only combined effects of groups of synchronously activated neurons 
can be detected.  Moreover, cerebral electrical activity should be of sufficiently 
long duration in order to be recordable by the EEG equipment. Action-
potentials of neurons do not last sufficiently long to be detectable in scalp EEG 
recordings. Typically, only synaptic electrical activity at the connections 
between neurons has a long duration that is sufficiently long for scalp EEG 
recording [18]. Thus, on the scalp, only the electrical effects of groups of 
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parallel oriented, synchronously active neurons is sufficiently large to be 
detected [19].  

Potential changes due to the eyes are caused by a difference in electrical charge 
between the cornea and the retina [14]. Electrically active cells on the retina 
keep a charge-difference intact, causing the cornea to be positively charged 
with respect to the retina. When referring to both the positively and the 
negatively charged parts of the eye, the term ‘corneo-retinal dipole’ is 
commonly used. The cells on the retina are sensitive to stimulation by light 
and therefore the difference in potential as measured across the eye also 
depends on the environment. When the eye is briefly stimulated by a bright 
flash, the (change in) electrical activity of the retina is recorded in the electro-
retinogram, ERG. However, under controlled and stable lighting conditions, 
the difference in electrical charge between cornea and retina is fairly stable. 
When the eyes do not move and blinking does not occur, the stable retinal 
activity does will not cause any fluctuations in the EEG and the EOG.  

Eye movements change gaze direction, and therefore cause the position of the 
cornea and the retina with respect to the rest of the head to change. This 
affects the ocular electrical potential. During blinking, the eyelid moves over 
the cornea and, as suggested in [20], ‘short-circuits’ the EOG electrode to the 
positively charged cornea. The changes in electrical potential due to eye 
movements and blinking are both clearly visible in the EOG.  However, there 
is also an interaction between the causes of ocular artifacts that were just 
described. During blinks small eye movements occur [21], and during eye 
movements, especially vertical eye movements, small eyelid movements occur 
[22]. The electrical fluctuation in the EOG that is caused by small eyelid 
movement during vertical eye movements is known as the rider artifact [20]. 

In Figure 1.3, the effects of blinks and eye movements on an EEG and an EOG 
are illustrated. The upper two plots illustrate 1 s of simultaneously recorded 
EEG and EOG during which no significant eye movements or blinks occur. 
The middle two plots show the effect of two brief eye movements, at 
approximately 0.3 s and 0.9 s. Note that the change in amplitude that is caused 
by the movement is more prominent in the right plot because the EOG is 
recorded closer to the eyes. The lower two plots illustrate the effect of a blink, 
starting after approximately 0.2 s. Again the amplitude change is more 
prominent in the right plot.  
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Figure 1.3: Illustration of the effects of eye movements and blinks in the EEG 
recording and in the raw EOG. All y-axis scalings are in μV. 

 

The history of the EOG, as a way to detect eye movements, was described 
already in [23]. Currently the EOG is still often used to determine ocular 
orientation and gaze direction. 

In the data segments of Figure 1.3, it can be seen that the artifacts have large 
amplitude compared to the cerebral activity, even when detected by an EEG 
electrode positioned not too close to the eyes. Furthermore, Figure 1.3 shows 
that changes in electrical potential that are caused by eye movements differ 
from the changes caused by blinking.  

The frequency range of the cerebral activity, visible mainly in the upper two 
plots, also appears to differ from the frequency range of the ocular artifacts. It 
is well known that when different biopotentials are recorded on the surface of 
the body, they may span different, sometimes partially overlapping, frequency 
ranges, and that they may have different amplitudes. Table 1.1 summarizes 
some general properties of biopotentials. These properties relate to recordings 
on the surface of the body, closest to the biopotentials own particular electrical 
source, e.g., the electro-myogram, EMG, is recorded directly above skeletal 
muscle. When the brain is briefly stimulated e.g., by a bright flash, a loud click, 
or a small electrical shock, the detected response of the brain to such a stimulus 
is called an evoked potential, EP. Because the characteristics of such evoked 
potentials differ from the characteristics of EEG as recorded when no specific 
actions are performed during the recording, often called background EEG, the 
evoked potentials are mentioned separately in Table 1.1 . 
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Table 1.1: Characteristic properties of bio-electric signals [24] 

Signal Amplitude range Frequency range (Hz) 

EEG 2 μV–100 μV 0.5-100 

EEG  (EP) 0.1 μV–20 μV 1-3000 

EOG 10 μV–5 mV 0-100 

EMG 50 μV–5 mV 2-500 

ECG 1 mV–10 mV 0.05-100 

 

The EEG clearly has the lowest amplitude out of all these signals, making it 
difficult to detect. Furthermore, the frequency range of the EEG overlaps with 
the frequency range of other biopotentials and hence of artifacts, also making 
detection in the frequency domain difficult [25]. 

1.4 Recording the EEG 

The most common standardization of EEG-electrode positioning is the 10-20 
system [26].  

The electrode positions in this system are based on relative distances with 
respect to landmark points on the scalp. The midline of the head is defined as 
the line running over the scalp that connects the nasion and the inion. At 20% 
of the distance between these points, electrode positions are defined. A similar 
segmentation, but with 10% distances, is defined for positioning the electrodes 
away from the midline. Extensions to this 10-20 system, which allow for a 
denser electrode positioning, are the 10-10 system [27] and the 10-5 system 
[28]. In Figure 1.4, a typical recording setup is shown in which EEG 
electrodes are positioned according to the 10-20 system, and six additional 
EOG electrodes are positioned around the eyes. 
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Figure 1.4: Frequently used electrode positioning. EEG electrodes are placed according 
to the 10-20 system, and are held in position using a special head-cap. EOG electrodes 

are placed around the eyes. 

 

To record one electro-physiological signal, at least two electrodes are required, 
because the electrical activity picked up by one electrode, needs to be 
referenced against the activity that is recorded at a reference position [19]. 
The choice of this reference position is very important because only the 
difference in electric potential between the two electrodes is defined. The 
reference electrode is often positioned on a part of the scalp that has almost no 
electrical activity and thus is far away from brain, eyes and muscles. An 
electrode attached to the earlobe or the mastoid can be used for this. To focus 
on local differences in electrical activity, the reference electrode can instead be 
placed close to the other electrode. Frequently used references include 
averaged reference and common reference. In average referencing, the 
electrical activity as picked up by a specific electrode is referenced against the 
average electrical activity of multiple simultaneously recorded electrodes, 
including that specific electrode. For common referencing, all electrodes are 
referenced to the same specific electrode, e.g., a single mastoid electrode or a 
specific electrode positioned at Cz.  A closely related common reference is the 
linked mastoid reference. For this reference, two electrodes attached to both 
mastoids are connected, which forces the electrical potential at both mastoids 
to be the same. Theoretically such a link between electrodes has been found to 
affect the potential distribution over the whole scalp [19], but in practice such 
effects on potential distribution were proven to be negligibly small [29-31]. 
The averaged mastoids reference is an alternative to the linked mastoids 
reference that does not physically link to mastoid electrodes, but ‘digitally 
links’ them using signal averaging.  

Because the effect of the choice of reference on EEG recordings is beyond the 
scope of this thesis, all EEG recordings and simulations will be referenced to 
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averaged mastoids as this is a frequently used reference with little electrical 
activity. Note however that if the EEG is recorded using any common 
reference, including averaged mastoids, the recorded signals can be re-
referenced afterwards to any other reference position or to average reference. 
An elaborate discussion on the optimal location of a reference electrode is given 
in [32].   

Most of the power in the frequency spectrum of an EEG is restricted to 
frequencies of up to 50 Hz. When recording an EEG, the frequency spectrum 
of the recorded signal should be considered prior to digitization. To detect 
relevant brain activity while avoiding aliasing, a low pass filter is often applied 
with a cut off frequency around 50Hz. The sampling frequency of the EEG 
should then be at least 100 Hz. Suggestions have been made to record the EEG 
at much higher frequencies [33]. For certain types of EEG recordings, this is 
already common practice as the frequency spectrum of evoked potentials can 
contain frequency components up to some kHz. The DC value of an EEG 
recording depends on many things, including the impedances of the signal- and 
the reference electrode. These impedances are not indicative of brain activity 
and therefore the DC of EEG recordings is usually removed prior to further 
signal processing. 

1.4.1 Trial-based EEG 

EEG-based experiments are used in a wide range of studies, both clinical and 
fundamental. Studies include the diagnosis of sleep disorders and attention 
deficiency disorders, the detection of epileptic seizures, and the cortical 
mapping of the brain and the search for neuronal connections within the brain.  

In some of these studies, special ‘events’ are presented to a participant during 
the recording. Examples of such events are clicks, flashes or electric shocks 
that stimulate respectively the auditory, the visual and the sensory part of the 
brain. Usually, a sequence of multiple, often similar, events occurs during one 
recording session. Often, however, a visual inspection of the raw EEG does not 
reveal fluctuations that are clearly caused by the event. On first sight the raw 
EEG of studies with events may thus appear similar to the raw EEG of studies 
without events. This is because the major contributor to the electrical 
fluctuations in the raw EEG is the ongoing brain activity which is not related 
to any specific stimuli. The part of the raw EEG that is caused by this ongoing 
brain activity is commonly referred to as the background EEG. 

To inspect more thoroughly whether or not an event causes detectable 
fluctuations in the raw EEG, a common technique is to average over multiple 
segments of the raw EEG. These segments (or trials) are extracted from the 
raw EEG in such a way that they are aligned with respect to the event, which 
is usually done by selecting segments that start (and end) at fixed intervals 
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prior to (and after) the event occurrences.  As a result of this segmentation, 
each single event will occur in only one trial.  

When averaging over multiple trials, it is generally assumed that each separate 
trial contains two different sorts of electrical fluctuations. The first sort is the 
electrical fluctuation which is the result of the stimulus. The second sort is the 
electrical fluctuation which is the result of other brain activity. Usually, only 
the stimulus-related electrical fluctuations are considered to be relevant when 
analyzing the brain response to a stimulus. If multiple trials are averaged, it is 
often assumed that the stimulus-related brain activity is deterministic and 
fluctuations of exactly the same shape and amplitude can be seen in the EEG 
each time a stimulus is presented. The other electrical fluctuation which is 
recorded in each trial is, by definition, not related to the event. If the averaged 
trial shows electrical fluctuations that do not decrease in amplitude if more 
trials are used for averaging, then this is evidence that the event does indeed 
cause detectable fluctuations in the raw EEG. Clearly, such fluctuations are 
best detectable in the raw EEG that is recorded closest to the region of the 
cortex that processes the event. The exact shape of the waveform that can be 
seen in the averaged trial varies with event properties. To illustrate this, a brief 
example is used.  

If a participant hears a series of identical clicks, a common assumption is that 
these clicks result in trials with identical click-related brain responses and 
EEG waveforms. Averaging over all trials would result in an estimate of the 
click-related brain response. If instead, a series of identical clicks with different 
loudness was heard, it is expected that the click-related brain response of this 
second series would differ from the first series simply because the brain is 
processing different stimuli. When a series of clicks is heard in which one 
single click differs in loudness from all other clicks, the ‘deviant’ click has a 
different click-related brain response. However, this difference is not only 
caused by the different click loudness, but also by the fact that the participant 
will notice that this click is deviant. As a result, the brain response and the 
corresponding EEG waveform for the deviant click are not only expected to 
differ from the responses for clicks of other loudness, but are also expected to 
differ from the brain responses corresponding to a series of such deviant clicks1. 
The difference between the waveform that corresponds to the deviant response 
and the averaged waveform for a series of such deviant responses is usually 
attributed to the mental process of recognizing deviancies.  

                                           
 
1 Note that this example overlooks the fact that even in a series of identical clicks, the brain response may differ 

between consecutive clicks [142]. Like the deviant click in the example, a click which follows a click of equal 
loudness may also trigger a mental process of recognition, now detecting that the click was identical.  
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The click-related waveforms will thus contain a component that is determined 
exclusively by event-properties, e.g., click loudness. These components are 
usually called evoked potentials, or EPs. Furthermore, waveforms may contain 
an additional component that is caused exclusively by an internal event, e.g., 
the recognition that a click was different from previous clicks. These latter 
components are called event related potentials, or ERPs. 

Table 1.1 indicated that the amplitude of evoked potentials is low compared to 
the amplitude of background EEG. This low amplitude is what makes 
detection of EPs (and ERPs) in the raw EEG difficult.  

Differences in shape, amplitude and timing of EPs and of ERPs are known to 
exist between different trials, and methods to compensate for these differences 
in the trial-averaging process have been developed. However, ultimately each 
event produces a unique event-related potential, and averaging over multiple 
events will not fully succeed in extracting the exact EEG response to this 
unique event. Extracting the event-related potential that results from a unique 
event should thus be performed on a single-trial basis.  

Making a distinction between what is an event-related potential and what is 
background EEG in a single trial is a difficult and highly challenging problem, 
even without ocular artifacts. Therefore, it is crucial that any ocular artifact 
that coincides with the event-related potential is accurately removed.  

1.5 Correction methods 

A great number of ocular artifact correction methods have been described in 
literature. 

As a yardstick to see how often correction methods were used in EEG-based 
research, a scan of all articles which appeared in Clinical Neurophysiology over 
a 22 month period, from January 2005 to October 2006, was performed. 
Articles which relate to detection of evoked potential, EPs, or event-related 
potential, ERPs, were marked because in principle these require accurate 
artifact removal [34]. For these marked articles, 73 in total, it was checked 
whether or not ocular artifacts are mentioned, whether data with artifacts is 
corrected or rejected and when appropriate, which correction method is used. 
Results of this scan are shown in the left pie-chart in Table 1.2. The right pie-
chart indicates which correction methods were used in case artifact correction 
was applied.  
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Table 1.2: Two pie charts showing how frequently some ocular artifact handling 
techniques are used. Data are obtained from all EP/ERP related articles in “Clinical 
Neurophysiology” over a 22 month period from January 2005 to October 2006. Left: 

distinction between correction/rejection. Right: Distinction of methods within the 
correction slice of the left plot. The abbreviations for these methods and their algorithms 

are explained in Section 1.5.3 and Section 1.5.4. 

 
 

From this brief scan, the first somewhat striking result is that despite the 
attention that ocular artifact correction has received in literature, artifact 
rejection is still often preferred. This can, most likely, be explained by the fact 
that rejection is the most straightforward way to handle ocular artifacts. If this 
way of handling artifacts provides the accuracy that an author considers 
sufficient, and if the consequences of losing data and trials are acceptable, then 
artifact removal is often used. A second result is that amongst the studies that 
do correct for artifacts, older methods like multiple linear regression, MLR, 
and the Gratton method [35], GRAT, are more popular than younger methods 
like Principal Components Analysis [36], PCA, and Independent Components 
Analysis [37], ICA.  On the one hand this may indicate that researchers are 
reluctant to replace familiar correction methods for new ones, but on the other 
hand this may also indicate that no new correction method has managed to 
fully convince the general users of its added value. A third overall result from 
this scan clearly is that no one correction method exists, either young or old, 
that satisfies all general users. 

Sections 1.5.3 and 1.5.4 will explain the principles behind the correction 
methods that are found in this scan, and stress what their key distinctions are. 
Apart from the methods observed in the scan, two more correction methods 
will also be discussed. These two additional correction methods both consider 
and use the time structure that is observed in EEG recordings, whereas the 
methods from the scan do not (specifically) consider this structure. 
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1.5.1 Calibration  

Some ocular artifact correction methods can only be used if the experiment is 
preceded by a calibration period. During this period, the EEG (and the EOG) is 
recorded, and eye movements and blinks occur.  

Many of the correction methods that require a calibration period also require 
that during this calibration period, eye movements are made in a 
predetermined fashion. This can easily be achieved by having a subject focus at 
different points on a screen that is placed in front of him. Similarly, a subject 
can be instructed to blink frequently and regularly. 

From the ocular artifacts that are observed during the calibration period, the 
effects of blinks and eye movements on the EEG are estimated. Under the 
assumption that these effects are identical during the calibration and during the 
subsequent experiments, the data of experiments can be corrected for artifacts. 

The requirement of a correction method that a calibration period precedes the 
experimental protocol has the advantages that 

• after calibration, the experimental data can, in principle, be corrected 
online and in real-time, 

• the influence of background EEG on artifact correction can be reduced 
by aligning identical eye movements and averaging them in a way 
similar to the alignment of trials as described in Section 1.4.1, and 

• the experiment-related brain activity does not occur during the 
calibration period and therefore also cannot affect ocular artifact 
correction, 

but also has the disadvantages that 

• it limits the possible studies for which the method can be used, as such a 
calibration period is for example hard to include in sleep studies, 

• the ocular artifacts that are the result of compulsory eye movements and 
blinks may differ in amplitude and morphology from the voluntary 
ocular artifacts that are observed during experiments, 

• the correction method can only be used on data with the required 
calibration period, whereas many (previously recorded) data may not 
contain such a calibration period. 

Other correction methods do not require such a calibration period, and still 
others can be used either with or without calibration period  

1.5.2 Modeling the raw EEG 

The raw EEG, ( )r t , at time instant t is modeled as a combination of ocular and 
cerebral sources. The ‘mixing’ of ocular and cerebral activity is linear because 
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the electrical field due to two electrical charges is merely the sum of the two 
separate electrical fields. Because the total number of neurons in the brain is 
very large, the part of ( )r t  which is caused by cerebral activity (combined over 
all neurons) is commonly modeled by one term, ( )c t . As a result ( )r t  is modeled 
as 

 
1

( )= ( ) ( ),
K

k k
k

r t t c tγ ε
=

⋅ +∑  (1.1) 

with K the number of ocular artifact sources and kγ  determining the 
contribution of the k th ocular source to ( )r t . 

The K parameters γ are denoted in (1.1) as time-invariant. However, 
physiological factors can change the conductive properties of human tissues, 
e.g., body temperature changes and sweating. Changes in these physiological 
factors are mainly only slowly varying during EEG recordings and are 
therefore generally assumed piecewise constant. This implies that the 
parameters γ  can be considered constant for a limited period of time. The 
length of this period varies, however, greatly between different studies. When 
estimating the parameters γ , an alternative to the assumption of piecewise 
constant parameters is adaptive parameter tracking in which changes in 
parameter value can be estimated adaptively, and changes over time are 
tracked. Such will be used in this thesis. 

Often, as in (1.1), it is assumed that measurement noise is very small and can be 
neglected. To meet this assumption, adequate EEG recording equipment is 
used, with peak-to-peak noise for low frequencies (coinciding with the EEG 
frequency content) below 1 μV.   

1.5.3 EOG-based correction Methods 

Many of the existing correction methods, especially the older ones, use one or 
more EOG recordings in combination with regression as a reference on what 
part of ( )r t  to remove [38;39]. Such methods will be referred to as EOG-based 
correction methods. Key differences between these correction methods relate to 
the EOG electrode positioning and to assumptions regarding the spectrum of 
the EEG. The block diagram in Figure 1.5 illustrates this and highlights some 
of the main differences.  
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Figure 1.5: Block diagram illustrating key issues for EOG-based correction methods. 

 

Regarding electrode positioning, several studies have examined how, and how 
many, EOGs should be recorded to get an optimal ocular artifact correction 
[39]. It was shown analytically [40] that using three EOG recordings is 
optimal to get an accurate estimate of the ocular artifact. Under the assumption 
that the source of ocular artifacts can be modeled as a dipole, [40] shows that 
three EOG recordings are needed to capture all degrees of freedom for dipole 
rotation. The assumption that dipole strength remains constant does not 
reduce this number of EOGs, because each EOG is only an adequate measure 
for changes in dipole orientation and not a direct measure for dipole 
orientation. In contrast to this analytic result, many of the current EOG-based 
correction methods only use two EOG recordings, as this appears to be 
sufficient for many applications. EOGs are commonly displayed as the 
difference in electrical potential between two electrodes that are both close to 
the eyes. This means that the reference electrode, as discussed in Section 1.4, 
for an EOG usually is close to the other electrode. By using this electrode 
positioning, the effect of the eye movement is accentuated because eye 
movements cause changes in electrical potential that are of opposite polarity on 
both sides of the eye. Furthermore, small artifacts in the EOG may be reduced 
if these artifacts are recorded on both electrodes. Recordings with both 
electrodes close to each other are commonly referred to as bi-polar, whereas 
recordings with a distant reference electrode are referred to as mono-polar. As 
a result of the bi-polar EOG recordings, two EOG electrodes are required to 
monitor one EOG recording. The difference in potential between two 
electrodes that are positioned above and below one eye is commonly referred to 
as the vertical EOG, VEOG. In the VEOG, blinking and vertical eye 
movements are very prominent. Perpendicular to the imaginary line that 
connects the two VEOG electrodes is a line that connects two other EOG 
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electrodes, positioned next to the eyes. The difference in potential between 
these electrodes is referred to as the horizontal EOG, HEOG. Contrary to the 
VEOG, the HEOG is hardly affected by blinking and vertical eye movements, 
but prominently shows horizontal eye movements. Accurate EOG electrode 
placement is essential for acquiring accurate HEOG and VEOG recordings, as 
is discussed in [41]. 

Recording of the HEOG and the VEOG thus provides two essentially 
orthogonal representations of eye movements. If a third EOG is added, it 
should contain extra information that is lacking in the HEOG and the VEOG. 
The radial EOG, REOG, is suggested for this in [40] and is implemented in 
[42]. The REOG can be obtained as the average of the EOG recorded above 
and below the eye and in principle, as suggested in [42], records the difference 
in potential along a third line that is perpendicular to both the VEOG and the 
HEOG lines. The key motivation behind this is that two electrodes which are 
placed perpendicular to the plane of horizontal dipole rotation are affected 
differently by vertical and radial changes in dipole orientation. A change in 
vertical orientation will cause potential changes of opposite polarities on both 
electrodes and is therefore highlighted in the VEOG and eliminated in the 
REOG. A change in radial orientation will cause potential changes of equal 
polarity on both electrodes and will therefore be highlighted in the REOG and 
eliminated in the VEOG. Whether or not this third EOG is essential for 
correction is discussed in [43]. It has been suggested that the REOG should be 
used for “follow-up” correction.  After correction using HEOG and VEOG, the 
resulting EEG is almost clean of artifacts. The follow-up correction uses the 
REOG to correct the HEOG-VEOG corrected signal again [42].  

The negative effect that forward propagation, as introduced in Section 1.2.2, 
allegedly has on correction accuracy is often used as a motivation for using 
other, non EOG-based, correction methods. However, a study that (for the first 
time) attempts to quantitatively estimate these negative effects, [44], claims 
that although such effects are detectable, they do not substantially affect 
correction accuracy and that these effects thus do not make an argument 
against using EOG-based correction methods.  

The study in [44] assumes that only a single region of the cortex is involved 
in processing a specific stimulus. This region is subsequently considered to be 
the sole source of electrical activity in the forward propagation. The negative 
effect that forward propagation has on EOG-based correction is estimated 
based on the ratio between forward and backward propagation that is 
estimated for this region of the cortex. However, often it will not be true that 
only a single region of the cortex is activated by a stimulus. For many 
fundamental studies it is a priori unknown which and how many regions of the 
cortex will respond to a stimulus, and therefore the effects of 
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forward/backward propagation when using EOG-based correction methods 
are hard to predict. If two different regions in the cortex, e.g. one located 
frontally and a second one occipitally, respond to the same stimulus, both 
activities are time-locked to the same stimulus, but their EEGs are not 
necessarily of similar shape, duration and amplitude. When considering the 
effect of EOG-based correction for the occipital site, the ratio between forward 
and backward propagation as determined in [44] does not consider forward 
propagation of the frontal cerebral sources.  

In general, the frontal cortex will be always active during EEG recordings and 
will contribute to the background EEG. Fortunately, it is often irrelevant 
whether or not the background EEG as recorded at an (occipital) electrode 
reflects only ongoing electrical activity of neurons close to this electrode or 
whether the background EEG is disturbed by ongoing electrical activity of 
more distant neurons whose activity is easily propagated to the EOG.  

1.5.3.1 Multiple Linear Regression (MLR) 
Regression intends to quantify the relation between one signal ( )y t  and 
another signal ( )x t . The time series corresponding to these signals can be 
written as (Tx1) vectors y  andx . The residual part of y , i.e. the part which 
cannot be explained by the relation with x , is denoted as a noise vector n , 
which is assumed to be zero mean, white, of normal distribution, and 
independent of x . 

For linear regression, the structure of the relation is assumed to be 
 ,y x nα= ⋅ +  (1.2) 
in which α  is the ‘propagation factor’ that expresses which fraction of ( )x t  is 
detected in (or propagates to) ( )y t . 

The goal of regression is to estimate an optimal value for α , denoted as α̂ , 
given the measurements for both x  and y  over a period [1,2,..., ]t T= .  

In multiple linear regression, MLR, the vector y  depends on the value of 
multiple, e.g., three, other vectors, 1 2 3, , ,x x x  and on noise n , as is illustrated in 
Figure 1.6.  
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Figure 1.6: Schematic representation of the assumptions of MLR. The recorded signal 

( )y t is a linear superposition of several reference signals ( )x t , each with its own 
propagation factor α . The difference between ( )y t  and this linear combination is a 

stochastic, white noise signal ( )n t . 

 

This leads to 
 y X nα= ⋅ + , (1.3) 
with 1 2 3[ , , ]X x x x=  and 1 2 3[ , , ]Tα α α α= . MLR provides an estimate α̂  for α  in 
the manner shown in Appendix B1. 

The similarity between (1.1) and (1.3) is obvious and MLR can be used for 
artifact correction. An additional subscript i is used to denote a specific 
electrode. Using îkγ  as an estimate for ikγ  in (1.1), an estimate of ( )ic t  is defined 
as  

 
1

ˆ ˆ( ) ( ) - ( ).
K

MLR
i i ik k

k

c t r t tγ ε
=

= ⋅∑  (1.4) 

For ( )k tε , it is common to use the raw EOG. The number of EOGs, K, that is 
used in (1.4), affects the accuracy of the estimation and should be selected with 
care [39], as discussed above.  

Some of the assumptions for optimal performance of MLR are not completely 
valid. The most significant violation of assumptions is that in ( )ic t , consecutive 
samples clearly are correlated, whereas MLR models cerebral electrical activity 
as white noise. Also, EOG electrodes do not only record ocular activity but also 
record some electrical activity of the brain due to forward propagation, which 
will be (erroneously) subtracted from ( )ir t . Furthermore, because the brain is 
involved in controlling the movement of the eyes, there will be some 
correlation between ( )k tε  and ( )ic t  which is overlooked by regression. Despite 
these violations, MLR is a frequently used correction method, mainly because 
of simplicity. Moreover, the consequences for correction accuracy of these 
violations are often tolerable. 

1.5.3.2 Regression with an auto-regressive error signal (RARE) 
Typically an EEG is a time series in which rhythmical patterns are sometimes 
visible when the brain is at rest, and in which consecutive samples are 
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correlated. With the MLR method, this time structure in the EEG is ignored 
and the cerebral signal, ( )ic t , is assumed to be a white, random process.  

The regression with auto regressive error signal (RARE) correction assumes a 
structure of the relation between y  and x  that is closely related to (1.2), but 
extends the structure of noise vector n . Each new element of vector n  is 
modeled as a combination of the D past elements of n  and some noise ( )tη , 

 
 1

( ) ( - ) ( ) .
D

n t n t tτ
τ

μ τ η
=

= ⋅ +∑  (1.5) 

The time series of signal ( )tη can also be represented as a (Tx1) vector η . Here, 
η  is zero mean, white, of normal distribution, and independent of x . The 
scaling parameters τμ  determine the auto correlations between elements of 
vector n , as illustrated in Figure 1.7. 
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Figure 1.7: Schematic representation of the assumptions of RARE. Except for the noise 

assumptions this figure is similar to MLR and Figure 1.6. RARE assumes that the 
noise at time t is a scaled linear combination of its own past values and some stochastic, 

white noise η(t). Scaling factors are labeled μ, and the total number of relevant past 
values is labeled D.   

 
As defined in (1.5), n  has an auto-regressive structure, hence the name 
regression with auto regressive error, RARE. 

The similarity between (1.1) and (1.3) suggests that the EOG can be used to 
correct the raw EEG. The cerebral electrical activity ( )ic t  is now modeled as an 
auto-correlated process. For this process all parameters iγ  and τμ  have to be 
estimated. By minimizing Tη η , the parameters ˆτμ  and îγ  are optimized. Note 
that this reflects the difference with MLR where Tn n  is minimized. 

The estimated cerebral electrical activity using RARE is given by 
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which appears similar to (1.4), but differs because îkγ  is estimated differently as 
described above. 

In literature, the EEG is often described as an autoregressive process, but there 
is some controversy about the order of autocorrelation, D [45-47]. When 
compared to MLR one would expect that RARE will remove ocular artifacts 
more accurately because of the detailed structure that is used to model the 
EEG. For simulated data, a direct comparison of MLR and RARE in [48] 
suggests that RARE indeed corrects more accurately. However, when the same 
study evaluated correction on experimental data, a visual inspection of the 
corrected data suggested that MLR was more accurate. Finally, no conclusive 
results were drawn as to which method was more accurate, as this turned out 
to depend greatly on the data at hand and on whether or not the EEG 
contained brief periods with deterministic signals like ERPs.   

1.5.3.3 The Gratton method (GRAT) 
The Gratton method, GRAT, was introduced in 1983 [35] as a method to 
correct offline for ocular artifacts in trial-based EEG data.  

For such data, GRAT does not require a calibration period yet it provides a 
way to copy some of the advantages of using a calibration period, as discussed 
in Section 1.5.1  

The most important new feature of GRAT is that prior to estimating the 
propagation of EOG to EEG it removes any deterministic experiment-related 
brain activity, EPs or ERPs, from both EEG and EOG. By doing so, it reduces 
the possibility that this activity affects the estimation of propagation factors. 
This is done on the trials that are recorded during the experiment. 

Also, GRAT separates trials that contain blink artifacts from trials that do not. 
Because the biophysiological cause of blink artifacts differs from the cause of 
eye movement artifacts, as was discussed in Section 1.3, GRAT determines 
different propagation factors for the blink artifacts and for eye movement 
artifacts. Later in an extension to the original method, the method was slightly 
altered [38] to use different propagation factors for horizontal and vertical eye 
movement artifacts as well. Averaged propagation factors are estimated based 
on all relevant trials e.g., all trials with blink artifacts for the blink propagation 
factor. This has the advantage that the influence of background EEG on the 
estimation of the propagation factors is reduced. The blinks in the 
experimental data are detected based on a pattern recognition algorithm.   

Although the above-mentioned features have made GRAT one of the most 
frequently used correction methods for trial-based EEG data, GRAT also has a 
serious limitation. Because GRAT relies on averaging trials (in order to 
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remove ERPs and EPs) prior to determining the propagation factors, its 
performance depends on the number of trials that contain these EPs and ERPs. 
For single-trial experiments and for experiments with only few identical trials, 
the GRAT method is thus less suitable. More information on GRAT can be 
found in [49] and [50]. 

1.5.4 Components-based correction Methods 

Components-based correction methods exploit the information contained in 
many electrode recordings simultaneously in order to get an estimate of the 
ocular artifact. These electrode recordings include multiple EEG recordings 
and sometimes also EOG recordings. Components analysis techniques are 
powerful mathematical tools for the purpose of multivariate data analyses.  

Basically, components analysis merely transforms data and provides an 
alternative way of representing data, as will first be explained. Further on, it 
will be shown how this alternative representation can be used to remove 
artifacts from EEG recordings. 

 
Each electrode records a signal ( )iy t , with [1,..., ]i N= , over a period 

[1,2,..., ]t T= . These recordings are combined in vectors 1,.., Ny y  of size (Tx1), 
and these vectors are (again) combined in a matrix Y  of size (TxN).  

Components analysis assumes that the data in ( )iy t  are linear mixtures of 
several components ( )iz t , with mixing coefficients w, 
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 (1.7) 

After combining the different mixing coefficients in a mixing matrix W , and 
combining components in a matrix Z  (TxN), (1.7) changes to  

 .T TY W Z= ⋅  (1.8) 
The alternative representation of the data matrix Y as provided by components 
analysis is thus contained in the two matrices W  and Z . Equation (1.8) can be 
used to get 

 -1 ,T TZ W Y= ⋅  (1.9) 
provided that matrix W  is invertible. Appendix B2 explains how orthogonal 
components and an invertible matrix W  can be obtained. 

In Figure 1.8, an illustration of equation (1.9) is shown. The left box illustrates 
matrix Y  in which the single electrode recordings ( )iy t  define the column 
contents. Following the arrows in the upper part of Figure 1.8, this matrix is 
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transposed, multiplied by -1W , and transposed again, leading to matrix Z  in 
which separate components define the column contents.  

 

TYY ZTZ

1y 2y ...y Ny

1z 2z ...z Nz
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1W − TY

 
Figure 1.8: Schematic representation of components analysis. 

Recorded signals 1,.., Ny y  are grouped in Y  and converted to their component matrix 
Z  by the inverse of matrix W .  

 
A priori W  is unknown and should be estimated. Once W  is estimated, Z  is 
obtained from (1.9). For the estimation of W , it is necessary to apply certain 
restrictions to matrices Z  and/or W . Otherwise the number of possible 
solutions is infinite, and even the trivial conversion with ( ) ( ) Z Y W I= ∧ = , 
with I  the (NxN) identity matrix, is a possible solution to (1.8).  

The way in which Z  and W  are restricted, leads to different solutions. 
Therefore, the different ways to restrict Z  and W  are considered to be 
different components analysis techniques. In the next subsections some of these 
restrictions will be specified, but first it will be explained how components 
analysis can be used to correct EEG recordings. 

 
The restrictions imposed on matrices Z  and W  usually reflect a property of the 
ocular artifact and/or of the EEG itself. As a result, some of the components 

1 2, ,..., Nz z z  resemble the artifact and some resemble the EEG. When 
components analysis is used for artifact removal, the components that resemble 
ocular artifacts should be removed from the data. For this purpose a new 
mixing matrix #W  is used which is equal to W , with the exception that the 
mixing coefficients in #W  are set to zero for the components that resemble an 

artifact. The matrix Ĉ  that is obtained using #W  along the lines of (1.8), 
contains N vectors  1ĉ ,  2ĉ ,..,  ̂Nc  that estimate the cerebral electrical activity 
recorded at the N different electrodes, as shown in Figure 1.9.  
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Figure 1.9: Schematic representation of signal reconstruction with artifact removal. 
Compared to Figure 1.8, the matrix W  is now changed prior to reconstructing the 

signal. By changing W  to #W  based on the components that resemble artifacts, these 

artifacts can be removed from the original data, and therefore Ĉ  differs from Y .  

 

Obviously, the ocular artifact at each electrode can be estimated as 

 ˆ ˆ- ,E Y C=  (1.10) 

with Ê  (TxN) containing the vectors  1ê ,  2ê ,…,  ̂Ne  that estimate the ocular 
artifact at each electrode position. To return from Z  to Y  without removing 
any artifacts, matrix #W  should be equal to matrix W . 

A drawback of using components-based correction is that the components in Z  
are derived based on purely mathematical recipes, and that as a result objective 
verification whether these components only reflect the artifact is not possible. 
Usually either a visual inspection of Z , or determining the cross correlation 
between components and the EOG, is used to identify components with ocular 
artifacts. 

1.5.4.1 Principal Components Analysis 
In Principal Components Analysis, PCA [36], the main restriction for 
estimating matrices W  and Z  is that different components are orthogonal, 
resulting in the requirement  
 { }  ( ) ( ) 0     [1 : ] , [1 : ].i j iE z t z t t T i j N≠⋅ = ∀ = =  (1.11) 

As a result, TZ Z  is an (NxN) diagonal matrix.  

Subscripts will be added to matrices, e.g., PCAW , to indicate the specific 
components analysis method (here PCA) that is used to derive it. Further on, 
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more subscripts will be defined. The transformation of data matrix Y  into 
component space PCAZ  by means of matrix PCAW  is described in more detail in 
Appendix B2.   

1.5.4.2 Sphering 
The PCA transformation described in the previous section and Appendix B2 
results in matrices PCAW  and PCAZ . The components in PCAZ  are orthogonal 
and a common standardization step, called sphering, is frequently used in 
literature to scale them in order to obtain orthonormal components.  
For this standardization, a scaling matrix A  is used whose elements are 
(indirectly) derived from matrix PCAZ , as is derived in Appendix B3. The 
matrix 

2PCAW  that results in orthonormal components is defined as  

 ( )2

11 .PCA PCAW AW
−−=  (1.12) 

1.5.4.3 Second Order Blind Identification 
The motivation behind applying RARE instead of MLR is that in ( )ic t  
consecutive samples are correlated. When using PCA, such temporal 
correlation is ignored2, just as for MLR.  

Second order blind identification, SOBI, is a components analysis technique 
that, like PCA, extracts uncorrelated sources, but also like RARE assumes 
some temporal correlation in the EEG [51]. The SOBI mixing matrix will be 
referred to as SW , and the SOBI-component space as SZ . 

Like PCA, SOBI assumes that the components in SZ  are uncorrelated between 
different electrodes, as in (1.11). Moreover, SOBI also states that components 
should be uncorrelated when different moments in time are considered, as  
 { }  ( ) ( ) 0,     i j iE z t z t τ≠⋅ + =  (1.13) 
with [1 : ]t T tτ ∈ − −  indicating the specific delay between the components.  

This extra statement only holds for correlations between different components.  
SOBI does allow correlation in time within one component, as 
 { }  ( ) ( ) ( ),i i iE z t z t τ ρ τ⋅ + =  (1.14) 
where ( )iρ τ  is used to indicate the auto-covariance of the i th component at 
delay τ .  
SOBI estimates one matrix SW , in accordance with (1.13), based on 
minimization of the sum of   ( ) ( )i iz t z t τ≠⋅ +  for multiple delays and for multiple 

                                           
 
2 Note from Appendix B2 that 

1 TY Y
T

 and 
1 TZ Z
T

 will not change if matrix Y  is randomly permutated 

over its rows 
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electrodes. A way to iteratively estimate this minimum, and find the matrix SW  
is given in [51]. 

To allow for faster computations or for specific time structures in the 
component-space, often not all possible values for τ  are included when 
determining the set of matrices for which the sum of off diagonal elements is 
minimized. The matrix SW  depends on the selected delays τ  [52]. 

1.5.4.4 Independent Components Analysis 
Independent Components Analysis, ICA, originated in 1991 [37] and was used 
to minimize statistical information between components. Whereas PCA 
assumes that components that underlie a recorded signal have to be 
uncorrelated, ICA assumes the components to be independent. Independence is 
a much stricter statistical requirement than uncorrelatedness. 
Probability theory can be used to define independence. N vectors 1z , 2z ,.., Nz  
are independent if 
 1 2 1 2prob( , ,.., ) prob( ) prob( ) ... prob( ).N Nz z z z z z= ⋅ ⋅ ⋅  (1.15) 
To illustrate the difference between PCA and ICA, a simple example in an N=2 
subspace is used, following the illustration as given in [53].  
By way of illustration, two signals 1y  and 2y  are simulated as a linear 
combination of two underlying source signals  1s  and  2s , combined in a matrix 
S . These source signals are stochastic and are randomly drawn from a uniform 
distribution. 
The mixing process is defined by mixing matrix V , with  

 

,

0.75 0.23

0.44 0.80

T TY V S

V

= ⋅

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎣ ⎦

 

Both ICA and PCA estimate the mixing matrix and transform 1y  and 2y  into a 
component subspace. Ideally, 1W V− ⋅  should result in a diagonal matrix 
because each component should reflect a single source signal. If the mixing 
process is known, as it is for simulated mixing, the accuracy of finding the 
components can be determined by an inspection of the off-diagonal elements of 
this matrix [54]. These off-diagonal elements indicate whether the 
components are mixtures of multiple source signals or not.  For experimentally 
recorded signals, the matrix is V  unknown and this way of correction 
validation cannot be used.  

After performing a PCA, the estimated components are uncorrelated and have 
equal variance due to the sphering operation. After performing an ICA, the 
estimated components are independent. Figure 1.10 illustrates this. Note that 
for the example in this plot, the extracted principal components are denoted 
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PC1 and PC2 instead of  1z  and  2z , and the extracted independent components 
are denoted IC1 and IC2,  to differentiate between PCA and ICA. 
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Figure 1.10: Two-Dimensional illustration of the difference between PCA and ICA. 

Two signals 1y and 2y  are decomposed into a principal components subspace (upper 
right) and an independent components subspace (lower right). 

 

The scatter plot on the left shows the simulated data. The upper right scatter 
plot shows the component space after PCA. In this scatter plot the expected 
value of PC2, clearly depends on the value of PC1. The lower right scatter plot 
shows the component space after ICA, in which this dependence has 
disappeared. 

 
Many ICA methods and SOBI, do not use Y  as a starting point. They first 
apply PCA and sphering as in Section 1.5.4.2 to obtain 

2PCAZ . 

For ICA there is no direct calculation of a matrix ICAW  that results in 
independent components as there is for PCAW  and the principal components. 
ICA methods require a measure of statistical dependence between signals and 
then maximize the independence. Numerous papers on how to implement ICA, 
what measure to select and how to maximize it, have appeared during the past 
two decades, including [54-69], as well as numerous papers that focus on 
applying ICA to biopotentials such as the EEG, [67;70-79]. Comparisons and 
links between ICA methods are given in [80]. 

One measure of independence that is used in several ICA methods is 
Gaussianity. If two Gaussian signals have zero covariance, this implies that 
they are independent. A way to find independent components is to maximize 
the non-Gaussianity of the components in ICAZ . The fourth-order cumulant of 
a signal [81], closely related to its kurtosis, is known to reflect a signal’s non-
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Gaussianity. The information contained in fourth-order cumulants of a set of 
signals is exploited by the joint approximate diagonalization of Eigen-matrices, 
JADE, method [59]. The fourth-order cumulants of (sphered) EEG data are 
stored in set of matrices and then a matrix JADEW  that jointly optimizes 
independence is determined. 

1.5.5 Other ocular artifact correction methods and surveys 

Some interesting other methods will be mentioned briefly in this section. These 
will not be used in the remainder of this thesis. Most of the methods in this 
section are seldom used for ocular artifact correction. 

• Wavelet-based artifact correction has more recently been introduced for 
correcting ocular artifacts [82-84]. One survey of ocular artifact 
correction techniques already covers this type of correction and labels it 
as “superior to existing techniques” [85]. However, this statement is 
based mainly on the assumptions that underlie the method instead of on 
experimental or simulated results, and more thorough evaluation is 
needed. 

• Auto-regressive moving average modeling of the EEG, [86]. This 
method is basically an extension to RARE in which the assumed EEG 
structure is auto-regressive moving average.  

• Dipole modeling for correction, [87;88]. These methods estimate dipole 
properties, i.e., location, orientation and/or strength, in a volume 
conductor based on the recorded EEG signals. Dipole modeling 
correction methods are mainly used for source localization studies. 

• Adaptive band-pass filtering, [89;90]. 
• Neural network-based correction, [91;92]. 
• Correction based on third-order cumulants, [93]. 
 

Several reviews include a comparison of correction methods based on the 
assumptions underlying them [85;94;95]. Other reviews, such as those in the 
following section, use a more quantitative comparison.  

1.6 Validation of correction, use of models 

To validate if and to what extent correction methods are successful in 
removing ocular artifacts, performance measures are needed. One frequently 
used performance measure is related to the mean squared error between ĉ  and 
c [16;39;48;96;97]. Intuitively such a measure appears appropriate because it is 
directly related to c, the clean EEG. Similarly, a squared error performance 
measure is also used in the frequency domain, based on spectral power in 
recorded and in clean frequency bands [16;97]. For the components-based 
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methods it is also possible to use a similar squared error between the estimated 
components and the sources that were used for simulation [98]. However, in 
an experimentally recorded EEG, ( )c t  is unknown. The squared error 
performance measure is therefore unsuited for use with experimental data and 
can only be applied to simulated data in which ( )c t  is known. Accordingly, 
validation on experimental data is often restricted to a visual inspection of (̂ )c t  
and/or (̂ )e t . Comparisons between correction methods, reviews and surveys 
can be found in many studies, including [8;13;15;16;22;38;39;43;48;50;85;94;96-
100]. 

Imagine two different correction methods applied to the same raw EEG, and 
resulting in two different corrected EEGs. If neither of the corrected EEGs 
still contains high-amplitude artifacts, it is easy to conclude that both methods 
succeeded in removing the high amplitude artifacts, but it is difficult or 
impossible to tell which of the corrected EEG is best. Without knowing c, this 
question cannot be conclusively answered, and therefore, to by-pass this 
difficulty, models can be used that simulate raw EEG. As opposed to 
experimental data, for simulated data the EEG, i.e. ( )c t , is known and can be 
used to determine which correction method is more accurate, even for low-
amplitude artifacts.  

Modeling of an EEG begins with finding a suitable simplification of the sources 
of electrical activity and of the human head that conducts the electrical activity. 

For the human head, a variety of simplifications have been used in the past. In a 
very basic form, the head can be modeled as a sphere with conductive 
properties that is surrounded by non-conductive air. This simplification 
overlooks several important issues, including the fact that a head consists of 
multiple sorts of biological tissues, with different conductivities. A slightly 
more elaborate model of the head is the concentric spheres model, which can 
represent different tissues, but lacks realistic morphology of these tissues. By 
implementing such a model, [40] showed that three EOGs are theoretically 
required to fully estimate ocular artifacts due to rotations of the corneo-retinal 
dipole. Imaging techniques, like MRI, can provide additional data on the 
morphologies of tissues and the resulting images of the head can be used for 
modeling the head as a number of compartments (tissues), with different 
morphologies and different conductive properties [101].  

A simplification of the sources of electrical brain activity that can be used in 
combination with the head models is the current dipole. Dipoles are simplified 
representations of localized neuronal activity in the brain as is explained in 
[19]. Other simplifications of the neuronal sources include the use of multiple 
dipoles of quadrupoles, and of dipole layers to model the electrically active 
areas in the brain. Dipoles are frequently used for modeling localized neuronal 
activity, such as the activity involved in the generation of ERPs.  
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When simplifications for both the head and sources are chosen, a mathematical 
tool is required that calculates electrical potential on the simplified head as a 
result of the simplified sources. Two common tools for this are the Boundary 
Element Method, BEM, and the Finite Element Method, FEM. Both these 
methods divide the volume into elements. The electrical potentials on the head 
can be derived from potentials in/on these elements. The main difference 
between these two methods is that the FEM divides the complete head into 
elements, whereas the BEM only divides the boundaries between tissues into 
elements. An advantage of the BEM is that it is computationally less 
demanding, whereas an advantage of FEM is that anisotropic properties of 
tissues are easier to model. Once the simplifications of head and sources, and a 
mathematical tool are selected, an EEG can be simulated at any position of the 
modeled head. 

A drawback of using models and simulated data for the purpose of validating 
correction methods is that a model is never fully accurate in its approximation 
of reality. Certain parts of reality are excluded in a model because they seem to 
be of lesser importance. The consequences of the omission of such parts cannot 
be studied with the same model, and interpretation of simulated results should 
consider the limitations of the model. Especially when using models for 
validation, it is essential to know whether inaccurate correction is either due to 
flaws of a correction method or due to flaws of the modeling assumptions, as 
was argued in [50]. An alternative to the use of models is to use 
experimentally recorded data and manipulate this in such a way that flaws of 
artifact correction methods are accentuated. Possible schemes of this type are 
given in [50] and [13]. The first scheme, in [50], requires recordings in 
which eye movements and blinks are intentionally made by the participants, 
whereas the second [13] does not require intentionally made eye movements 
and blinks. In Chapter 5, a validation on experimental data is used which is 
essentially similar to the scheme in [13].   

 

1.7 Preview of thesis contributions 

From the past sections and the existing literature on ocular artifacts it becomes 
clear that gaze direction and eyelid movement are key sources of ocular 
artifacts.  

Several issues concerning ocular artifact correction, e.g. the forward/backward 
propagation issue, the number of EOG recordings, and the statistical 
assumptions regarding component extraction, are still widely debated. What is 
proposed in this thesis is to go beyond these issues and develop an ocular 
artifact correction method that is different from existing methods, and 
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fundamentally more accurate. To this end, a reference on gaze direction and 
eyelid movement will be used that does not involve recording biopotentials, but 
rather tracks the eye with a camera. This extra reference provides clean 
information on the occurrences and morphologies of any ocular artifacts that is 
highly valuable for accurate artifact correction. 

In Chapter 2, a model of the human head is introduced that can simultaneously 
simulate brain- and ocular electrical activity. The model will be used to 
objectively determine how well a selection of eye movement artifact correction 
methods succeed in correcting simulated eye movement artifacts. Because the 
performance of correction methods may depend on the number of 
simultaneously recorded EEGs/EOGs, the correction methods in this chapter 
will correct several sets of data with different numbers of electrodes and 
different electrode positioning. Chapter 3 introduces the use of eye tracker 
recordings as a reference signal in a new adaptive correction method for eye 
movement artifacts. With the model of Chapter 2, datasets are again simulated, 
and it is shown that the new correction method consistently outperforms 
existing correction methods on this simulated data. A key feature of the new 
correction method is the parameterization of the relation between ocular 
artifact and pupil position as recorded by and eye tracker. The structure of this 
relation is derived from experimental recordings and turns out be adequately 
represented by a second-order equation. The fine-tuning of the parameters that 
are involved in this relation is made adaptive, which has the advantages that 
parameter value changes can be tracked, and that initialization of parameters 
does not require additional prior knowledge regarding volume conduction 
properties. 

Chapter 4 extends the functionality of the new correction method. By 
monitoring eyelid position and adding eyelid movement effects to the relation 
between artifact and pupil positions, the new correction method is altered in a 
way that allows it to correct for both blink and eye movement artifacts. 
Because most eye trackers do not estimate eyelid position (yet), it is shown how 
the use of an EOG electrode can provide an adequate alternative. 

The resulting eye tracker-based correction method, dubbed EYE, is then 
applied to simulated data, and its correction accuracy is compared against that 
of several other methods. EYE proves to be superior to both the EOG-based 
and the components-based correction methods on these simulated datasets. 
Chapter 5 stresses that correction method accuracy should not only be derived 
from simulated data. An experiment is set up that is expected to generate low- 
amplitude ERPs, located mostly at frontal electrode positions. For this type of 
data, it is essential that ocular artifacts are adequately removed. A yardstick for 
the accuracy of the correction methods is derived based on the power of 
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background EEG. Accuracy, as estimated by this yardstick, turns out to 
comply very well with accuracy as found on the simulated data in Chapter 4.  

In summary, the key contributions of this thesis are the development of a 
realistic model that assists in the validation of ocular artifact correction 
methods, the introduction of a highly powerful new approach to ocular artifact 
correction based on the use of an eye tracker, and the validation of this new 
method on experimental data.  

 

Several chapters of this thesis have appeared as journal publications over the 
past years, including  

• Chapter 2 as [102], and  
• Chapter 3 as [103].  

 



 

 

 

Chapter 2 

A model-based objective evaluation of eye 
movement correction in EEG recordings 

  

2.1 Abstract 

We present a method to quantitatively and objectively compare algorithms for 
correction of eye movement artifacts in a simulated ongoing EEG. A realistic 
model of the human head is used, together with eye tracker data, to generate a 
data set in which potentials of ocular and cerebral origin are simulated. This 
approach bypasses the common problem of brain-potential contaminated EOG, 
when monitoring or simulating eye movements. The data are simulated for five 
different EEG electrode configurations combined with four different EOG 
electrode configurations. In order to objectively compare correction 
performance for six algorithms, listed in Table 2.3, the signal to noise ratio of 
the EEG before and after artifact correction is determined. A score indicating 
correction performance is derived, and for each EEG configuration the optimal 
correction algorithm and the optimal number of EOG electrodes are 
determined. In general, the Second Order Blind Identification, SOBI, 
correction algorithm in combination with 6 EOG electrodes performs best for 
all EEG configurations evaluated on the simulated data.  

2.2 Introduction 

This chapter introduces a method to objectively assess the performance of eye 
movement artifact correction algorithms used in electroencephalographic 
(EEG) measurements. The EEG is a recording of potential changes on the 
scalp caused by brain activity. It is often used in clinical situations, for instance 
to diagnose sleep disorders or epilepsy, because it reveals important 
information about a person’s mental condition. The EEG can be distorted by 
numerous other sources of electrical activity, called artifact sources. Before the 
information in the EEG can be retrieved, however, any artifacts should be 
removed. Eye movement artifacts can have a large disturbing effect on EEG 
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recordings because the eyes are located close to the brain. The front of the eye 
(cornea) is positively charged with respect to the back (retina), and thus the eye 
can be seen as a dipole [104]. Rotation of this dipole, caused by eye 
movements, changes the electric field in the tissues surrounding the eye. This 
change in electric field will be picked up by EEG electrodes as a change in 
electric potential. The magnitude of this potential change can be as much as ten 
times the change due to brain activity at frontal electrodes. Eye blinking also 
causes artifacts. When the eyelid is moved during blinking, the electric field 
surrounding the ocular dipole changes and the EEG electrodes record blink 
artifacts. In this chapter blinks will not be examined because the model that is 
needed to simulate the blink artifact is different from the model for eye 
movement artifacts. The blink model would be an extension of the model 
presented here. The data we recorded for this study did contain blink artifacts 
but for performance validation we only selected intervals without blinks. 

An EEG electrode is positioned near some part of the brain and mainly, but not 
exclusively, records cerebral signals. The EEG electrode also records some 
ocular signals. Likewise, an electro-oculographic (EOG) electrode is positioned 
close to the eyes and mainly, but not exclusively, records ocular signals. It also 
records small cerebral signals. This ‘double signal’ recorded at every electrode, 
called cross-over, is the main reason why artifact correction is so difficult. An 
electrode, positioned anywhere on the scalp, will record a signal ( )r t  that is a 
combination of a brain-related potential ( )c t , an artifact-related potential ( )e t  
and electrode-noise ( )n t  that is assumed here to have a white spectrum.  

Since the volume conduction in biological tissues can be considered 
instantaneous [105], the summation of ( )e t , ( )c t  and ( )n t  is also instantaneous. 

Because it is not possible to ‘turn off’ either the ocular sources or the cerebral 
sources it is not possible to record either ( )c t  or ( )e t  alone. The eye movement 
artifact thus has to be removed from the combined recording by means of 
signal processing. This has led to the development of several correction 
algorithms. A description of the differences between these algorithms can be 
found in reviews [8;38;98;106]. Which of these algorithms performs best is 
difficult to determine because ‘clean’ ( )c t  and ( )e t  signals are not available. 
Once the recorded signal is corrected optimally, the corrected EEG, (̂ )c t , 
should be the same as ( )c t . But ( )c t  cannot be measured, so there is no 
performance measure that can validate the results of a correction algorithm 
applied on real data. Several papers have therefore made a comparison between 
some of the algorithms based on data simulated by (randomly) mixing 
simulated sources. Recently EOG-based algorithms, the Principal Components 
Analysis (PCA) algorithm and the Independent Components Analysis (ICA) 
algorithm were evaluated in [16]. Results of that study showed that PCA and 
EOG-based methods are favored over ICA methods.  
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By using the conductivity properties of the human head and eye tracker data to 
simulate ocular movements we are able to simulate ocular movement related 
artifacts, ( )e t S, in the EEG. These artifacts will be superimposed on the 
simulated, artifact-free, EEG, ( )c t S. The use of the eye tracker gives the unique 
opportunity to have a very realistic eye movement in our simulations. 
Moreover the eye tracker does not pick up any brain related potentials and 
therefore is very useful to simulate clean ( )e t S data. Since we are now able to 
simulate ( )e t S and ( )c t S separately and without artifacts, we can use them as 
references when evaluating how well a correction algorithm has removed eye 
movement artifacts. The simulations in this chapter make use of the boundary 
element method (BEM) [107]. The BEM can be used to numerically estimate 
the electrical potential at different positions on the scalp. For this, the head is 
assumed to be a conductor that can be modeled as compartments with constant, 
isotropic conductivity. The different conductivities of tissues in the head can be 
modeled by assigning a different conductivity value, σ, to each tissue. Brain 
activity and ocular activity can be modeled separately. The method we propose 
can be used to evaluate objectively which algorithm performs best in a specific 
electrode configuration. We use a signal to noise ratio (SNR) measure to 
determine the performance of the algorithms for various EEG and electro-
oculographic (EOG) electrode configurations. On real data, the correction 
performance might deviate from the results shown here for simulated data. Any 
possible deviancies are due to features from reality that were omitted in the 
model and thus refining the model can minimize this deviance, but at the cost 
of more complexity.  

2.3 Simulations 

A requirement in choosing a simulation model for this study is that the model 
should be able to simulate separately ( )c t S and ( )e t S. Also electrode-noise, ( )n t S, 
should be simulated. A model should thus simulate the cerebral and ocular 
sources and also the transfer from source to electrode resulting in ( )c t S and 
( )e t S. As mentioned before, ( )c t S and ( )e t S originate from electrically active 

tissues inside the head, either brain or eye. In the model such a structure is 
called a ‘source-dipole’. Each source-dipole has a specific location, determined 
by the position in the head, and a specific activity determined by the electrical 
activity it generates. For the calculation of the potential at the electrode 
positions the BEM, as described in [107], is implemented in MATLAB 6.5. 
The BEM, often used in biopotential studies [108], calculates the potential at 
any position in an arbitrarily shaped volume. If there are multiple electrical 
source-dipoles in that volume, the calculated potential is affected by all the 
source-dipoles. In Figure 2.1 details are shown of our model to simulate the 
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( )c t S, ( )e t S and ( )n t S. The blocks in Figure 2.1 will be explained in this 
paragraph. 

 

 
Figure 2.1: Model used to simulate ( )e t S and ( )c t S. Input of the model is eye tracker 
data. Other important parameters are: EEG spectrum, volume specification (mesh), 

electrodes positions and conductivities. The upper part of the figure models the dipole 
properties, the lower part models the volume. These are combined in the BEM to 

simulate the output ( )c t S, ( )n t S and ( )e t S. 

 

The lower part of Figure 2.1 illustrates the steps needed to obtain a mesh of 
the boundaries between different tissues in the head. Such a mesh is required as 
an input for the BEM. For this mesh we simplify the head to 4 different tissues: 
scalp, skull, brain and eye. Conductivity values of these tissues are taken from 
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literature, with σ= 0.3, 0.04, 0.25 and 1.0 (Ω-1m-1) respectively [109;110]. 
Points that specify the boundaries between these tissues are imported from the 
“ASA 3.0.0.7. Signal & Source” software package [111]. By linking these 
points systematically, a closed triangular mesh is generated. For the mesh 
generation, points are grouped in transversal slices according to their 
coordinates. Each point is clustered with the nearest clockwise point in that 
group, and with the nearest points from the groups both below and above the 
transversal slice of the group. The resulting cluster contains two triangles that 
are part of the triangular mesh. On the top and the bottom of the head, one 
point is added to assure the full triangular mesh represents a closed surface. 
The number of points, listed in Table 2.1, determines the complexity of this 
mesh.  

 

Table 2.1: Number of points on the boundaries between tissues used in this study 

Boundary Number of points 

Skull-Brain 860 

Scalp-Skull 616 

Air-Scalp 510 

Scalp-Eye 151 

 

The boundary between scalp and eye is not obtained from ASA, because no eye 
boundaries are described in this package. This boundary is added by sampling a 
sphere, with a radius equal to an eye, and positioning these samples in the 
other meshes. This eye positioning is done based on an MR cross-section of a 
head. Landmark points are marked in this image and angles and (relative) 
distances between the eyes and these landmark points are determined and 
subsequently used to position the eyes in the model. It should be noted here 
that in the mesh, the eye compartments are fully enclosed by the scalp 
compartment. Although this is only a rough approximation of the tissue 
structures surrounding the eyes, it was chosen because detailed information on 
compartment shapes around the eyes was, as mentioned above, not available 
and because this simplification facilitates calculations. The whole triangular 
mesh of the head is shown in one of the boxes of Figure 2.1. The next step adds 
electrode positions to this mesh. The positions, as specified in e.g. the 10-5 
system [28], are based on relative distances between landmark points on the 
scalp (nasion and inion). To map the electrode positions we use a spherical 
template with nasion and inion on opposite sides and with a radius equal to the 
mean radius of the outer boundary of the head. According to the 10-5 system 
specifications we place one marker for each position on the spherical template. 
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Because the outer boundary of the head is not spherical, not all of the markers 
on the template are on the triangular mesh. The last step in defining the 
electrode positions is thus to project these “off mesh” markers onto the nearest 
triangle of the mesh. 

The upper part of Figure 2.1 illustrates the simulation of electric dipoles inside 
the mesh. These dipoles simulate electric activity in the head. Each dipole has 
its own specific location, orientation and intensity. In this study the dipoles 
were of two types. The first type simulated the ocular activity. Each eye has a 
fixed location, so the dipole modeling this eye is also fixed. If illumination is 
constant, the potential difference between the front and the back of the eye is 
also constant [112]. Therefore the intensity of the dipole is also chosen 
constant. We use an eye tracker system to monitor eye movements and use the 
eye tracker data to model orientation of the ocular dipole. The use of eye 
tracker data for simulating dipole rotations ensures that the trajectory of the 
simulated eye movements is realistic. Even during fixation, the eyes may 
slightly move, and change the electrical potential at the electrode position. 
Moreover, during tracking of an object that moves at constant velocity, the eye 
may not always move equally smooth [113]. In the simulations one ocular 
dipole is used for each eye. The second type of dipole simulates the brain 
activity. Electrical brain activity originates from all synaptic connections 
between the neurons in the brain, approximately 1011. Representing each 
neuron or each synaptic connection by a dipole is impossible, so we model large 
groups of neurons as one ‘equivalent dipole’. One group would model 
approximately 1010 neurons. Because the EEG signal originates mainly from 
pyramidal neurons in the cortex, each equivalent dipole is randomly positioned 
in the outer 20% of the brain tissue. In this study the positions of these 
equivalent dipoles are fixed, but their orientations and intensities vary. 
Whereas one pyramidal cell has a fixed position and orientation, the combined 
average orientation and position of a group of pyramidal cells may vary, given 
that not all cells are innervated simultaneously. For simplicity, the model uses 
a varying orientation but a fixed position. The number of equivalent dipoles 
needed to simulate EEG recordings depends on the required simulation 
accuracy. In our simulations we want the average absolute potential to be equal 
for all electrode positions because this is also observed in EEG recordings. 
With a small number of dipoles (e.g. 2) the electrodes close to the source-
dipoles record a much stronger EEG signal than other electrodes further away. 
Increasing the number of dipoles smoothes these differences. For this study 10 
equivalent dipoles are used. The frequency spectrum of an EEG is not white, 
but consists of characteristic frequency bands containing most of the EEG 
power spectrum. These bands range from 0 to 30 Hz. The EEG spectrum is 
assumed to be unrelated to the direction of the ocular dipole [114]. For each 
participant we recorded the EEG at Cz position during a period of no eye 
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movement. This was verified in the simultaneously recorded EOG and eye 
tracker data. In this period 25 blocks of 512 samples are selected, Fourier 
transformed, and averaged. The resulting average spectrum of the EEG is 
stored and used in the model to simulate EEG signals for the specific 
participant.  

The locations of the simulated brain dipoles are chosen randomly as described 
earlier in this section. The orientation and intensity of each dipole need to be 
chosen in a way that the resulting ( )c t S resembles ( )c t  in spectrum shape. The 
orientation of a single neuron in the brain does not change, nor does the 
direction of the electric current generated by the neuron. However, a large 
group of neurons, which we represent by one equivalent dipole, will have a 
mean current-direction that changes with time. Therefore the orientation of 
the simulated brain dipole should vary in time. To simulate this property the 
brain-dipole is split in three orthogonal vectors, each of them having a time-
varying length. This varying length is simulated by passing a white noise 
through a filter with the spectral shape as in the stored spectrum for this 
participant. Combining the three vectors results in a brain dipole that has a 
time varying orientation and intensity. The simulated ( )c t S resembles ( )c t  in 
spectral shape at any electrode position.  

An EEG electrode configuration is often selected based on the aim of the study 
and/or on the hardware available. The number of electrodes used in recordings 
has increased in the last decades, resulting in new standards for electrode 
positioning. The first real standard was introduced with the 10-20 system 
[26], later the 10-10 [27] and the 10-5 system filled the need for a standard 
that could be used with a larger number of electrodes. The performance of an 
artifact correction algorithm might depend on the EEG configuration. 
Therefore we determine the performance of correction algorithms for 5 
different configurations, including the 10-20, 10-10, and 10-5 systems, as 
shown in Table 2.2. 
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Table 2.2: Electrode configurations 

EEG 
configuration 

EEG electrodes 

1 Cz 

2 Midline: 
Nz, Fpz, AFpz, AFz, AFFz, Fz, FFCz, FCz, 
FCCz, Cz, CCPz, CPz, CPPz, Pz, PPOz, 
POz, POOz, Oz, OIz, Iz.    

3 10-20 system (21 electrodes) 

4 10-10 system (85 electrodes) 

5 10-5 system (340 electrodes) 

EOG 
configuration 

EOG electrodes 

2 Outer canthi left (EO5) and right (EO6) eyes 

4 Above (EO2) and below (EO4) the right eye, 
+ EO5 + EO6 

6 Above (EO1) and below (EO3) the left eye, + 
EO2 +EO4 + EO5 + EO6 

8 Inner canthi left (EO7) and right (EO8) eyes 
+EO(1-6) 

 

For each of the EEG configurations the number of EOG electrodes can be 
varied. Usually an even number of EOG electrodes is used and pairs of two 
electrodes are combined in horizontal- and vertical EOG (H-EOG, V-EOG). 
We combine 2, 4, 6 or 8 EOG electrodes with each of the EEG configurations.  
Which EOG electrodes are added is also shown in Table 2.2. 

At every EOG electrode position, an EOG is recorded with respect to the same 
common reference as used for the EEG recordings. Such EOG recordings are 
commonly referred to as monopolar. For some algorithms, it is common to use 
bipolar EOG recordings measuring the difference between the two monopolar 
recordings known as the V-EOG or H-EOG. For the algorithms that require 
bipolar recordings V-EOG or H-EOG was calculated from the electrodes in 
that EOG configuration, e.g. V-EOG=EO1-EO3. Other algorithms do not 
have this convention and use monopolar recordings. Simulations only contain 
even numbers of EOG electrodes because of the bipolar measurement used in 
some algorithms.  
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To determine the intensities of the equivalent dipoles and the ocular dipoles, 
we use the ratio between ( )c t  and ( )e t  in experimental data. This ratio indicates 
how large the ocular artifact is with respect to the artifact-free EEG. The ratio, 
determined by dividing the mean of ( )c t  over the mean of ( )e t  for a fixed time 
period, is different for every electrode position because the amplitude of ( )e t  
decreases as the distance to the eyes increases. We determined the ratio at the 
Fpz position for all participants and use the average ratio of 1:3 in our 
simulations to scale the intensities of the dipoles in a way that the ratio 
between ( )c t S and ( )e t S is also 1:3 at Fpz. Finally, ( )r t S should have the same 
maximum amplitude as ( )r t  and therefore we scale all intensities in a way that 
the resulting ( )r t S has a maximum amplitude of 150 μV at Fpz position. A 
small part of this 150 μV is due to ( )n t S which is set to have a maximum 
amplitude of 1 μV. 

2.4 Data acquisition 

EEG, EOG and eye tracker measurements are gathered from 9 participants 
aged 19-21, 5 male and 4 female. The participants perform a task involving fast 
eye movements. During this task, a dot appears in the middle of the upper edge 
of a 19-inch monitor.  After 1.33 s the dot disappears and immediately 
reappears in the middle of the next counterclockwise edge of the screen. The 
participant is asked to keep his eyes on the moving dot. An eye tracking system 
is positioned directly below the monitor and records the position of the 
participants left eye. It uses an infrared light and from the light reflected by the 
eye the position of the center of the pupil is determined. EEG measurements 
are performed with 21 EEG electrodes positioned according to the 10-20 
system. Another 6 electrodes are used to record the EOG. They are positioned 
above and below both eyes, left of the left eye and right of the right eye. 
Recordings for all electrodes are offline referenced to averaged mastoids. EEG 
and EOG are recorded at 256 Hz using the BioSemi ActiveTwo system with 
sintered Ag/AgCl electrodes using a low pass filter of 67 Hz. Eye tracker data 
are recorded at 50 Hz using the SensoMotoric Instruments RED eye tracker 
with an angle resolution better than 0.1 degree. The eye tracker data are up-
sampled from 50 to 256 Hz afterwards because the EEG is simulated at 256 
Hz, illustrated by the upward arrow in Figure 2.1. During the task, the 
participant sits comfortably in front of a monitor at 0.8 m distance with the 
head supported and eyes in line with the center of the screen.   
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2.5 Validation of correction 

With this model any artifact correction algorithm can be tested on the 
simulated data. In the lower half of Figure 2.2 the corrected EEG, (̂ )c t S, can be 
compared to the ( )c t S to validate the correction procedure.  

 

 
Figure 2.2: Diagram illustrating the nomenclature of different data types. Part of the 

figure is taken from www.biosemi.com, with permission of BioSemi. 

 

Unfortunately this is not possible for the upper half of Figure 2.2 because there 
is no knowledge of ( )c t . To quantify the resemblance between (̂ )c t S and ( )c t S a 
correction performance measure is defined. Because we are looking for the 
overall correction, our performance measure treats all frequencies in the signal 
equal. Other performance measures, as in [16], can stress on specific properties 
of the EEG by emphasizing e.g. evoked potentials or alpha rhythms. This can 
be done by removing all frequencies not belonging to the alpha band for both 
( )c t S and (̂ )c t S, and compare the resulting band-limited signals. There are 

important factors like the number of electrodes and the configuration of 
electrodes that can have a significant effect on an algorithms performance. In 
this study we determine which algorithm performs best for a specific electrode 
configuration.  

For the performance measure we use the signal-to-noise ratio (SNR) of both 
( )r t S and (̂ )c t S. Prior to SNR calculation the mean of ( )c t S and ( )r t S is 

subtracted, because in EEG recordings the DC component is also removed. We 
define rSNR  as: 
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The noise in ( )r t S is given by ( )r t S - ( )c t S and thus contains both ( )e t S and ( )n t S.  

For (̂ )c t S we also define cSNR  as: 
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We have to assume here that the signal part in the SNR does not change due to 
correction. After correction this numerator still has the same mean amplitude 
and shape as before and thus still is equal to ( )c t S. None of the correction 
algorithms that are used in this chapter (intentionally) change the amplitude of 
( )c t S, therefore this assumption appears valid.  An effective correction 

algorithm will reduce the noise and will have cSNR > rSNR and have a high 
value for cSNR . The gain in SNR, g, is a good indicator of the algorithm’s 
performance,   

 .c
r

SNR
g
SNR

=  (2.3) 

This g-value can be calculated for each electrode. With N electrodes, this 
results in N g-values. cSNR , rSNR  and g are not evenly distributed over the N 
electrode positions on the scalp. To obtain an overall score for each correction 
algorithm the γ-values are averaged and converted to a dB scale, 
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The resulting score G is an indicator for the performance of a correction 
algorithm. G (in dB) is positive if the SNR has improved. It has a negative 
value if the SNR has decreased and is zero only if the SNR has not changed. An 
alternative definition for G could use a weighting function to give more weight 
to those electrodes that contain the largest artifacts. In this alternative 
situation, electrodes with only small eye movement artifacts, e.g. the occipital 
electrodes, have only a very small contribution in determining G. This 
alternative has some advantages over the definition we use. The alternative G 
would enable us to determine a G that is mainly based on those electrodes 
where correction is most needed. The main disadvantage is that if a correction 
algorithm would increase SNR at frontal sites and decrease SNR at occipital 
sites this will stay unnoticed in the alternative G score, and the corrected EEG 
will contain artifacts introduced by the correction algorithm. This is the main 
reason why we did not use the alternative G.   

2.6 Evaluated algorithms 

In principle any correction algorithm can be evaluated by the score outlined in 
this chapter. Over the last decades many algorithms have been proposed. 
Independent Components Analysis (ICA) algorithms appear in recent articles 
on artifact rejection [16;73]. FastICA, [115], (FICA) is an efficient 
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implementation of ICA, Joint Approximate Diagonalization of Eigen matrices 
(JADE) [59] was among the first ICA algorithms to be developed. The main 
difference between EOG-based algorithms on the one hand, and PCA and ICA 
algorithms on the other is that the EOG-based methods do not use the data of 
EEG electrodes simultaneously but perform correction for 1 EEG electrode at 
a time, whereas the PCA and ICA methods use data from all EEG and EOG 
electrodes simultaneously to perform the correction. This might be an 
advantage of the PCA and ICA methods.  

In this study a selection of six algorithms, shown in Table 2.3, is evaluated. 

 

Table 2.3: The six algorithms evaluated in this chapter 

Abbreviation Description Reference 

MLR Multiple Linear Regression [116] 

RARE EOG-based algorithm 
using regression with an 
autoregressive structure to 
model the EEG 

[46] 

PCA Principal Components 
Analysis 

[117] 

SOBI Second Order Blind 
Identification, a components 
analysis technique that 
exploits autocorrelation the 
components. 

[51] 

JADE Joint approximate 
decomposition of Eigen 
matrices. One of the first 
ICA algorithms. 

[59] 

FICA FastICA, an efficient ICA 
algorithm. 

[118] 

 

Detection of ocular components for the PCA, SOBI, JADE and FICA 
algorithm is achieved based on cross correlation between components and 
EOG signals. If the cross correlation between an extracted component and one 
of the recorded EOG signals exceeds a threshold value, the component is 
marked as an ocular component and is removed. The threshold value was 
optimized in a pilot measurement and set to 0.7. The RARE and the SOBI 
algorithm require a choice of parameters. For RARE this is the order of the 
AR-model used to model the EEG, set to 4 following [46]. For the SOBI 
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algorithm a number of time lags need to be chosen. The components retrieved 
by the SOBI algorithm are not correlated with each other. The autocorrelation 
of each component is calculated at the time lags chosen, the SOBI algorithm 
maximizes the sum of these autocorrelations. In this study we use lags of 0, 1, 
2, 3, 5, 10, and 20 samples at 256 Hz. These lags were found to yield good 
corrections in a pilot study. It should be noted that the components-based 
algorithms probably have a different performance when two EOG electrodes 
are used with one positioned above the eye and one beside the eye. In addition 
odd numbers of EOG electrodes could be used with the components-based 
algorithms.  
ICA algorithms require more electrodes than there are expected sources 
(dipoles) and require roughly more time points than the square of the number 
of electrodes. In order to comply with the latter requirement, the time window 
of 10 s. used in this study is insufficient. Either this window should be 
increased, or the sample frequency of the EEG should be increased. This would 
lead to very large datasets containing over 105 samples for every EEG 
electrode and the use of such large sets is computationally undesirable for most 
of the algorithms. It should therefore be noted that for the dataset simulated in 
this study, with only 2560 time samples, the ICA algorithms do not perform 
optimally for the two largest EEG electrode configurations. Increasing the 
window size will probably increase their performance, but at the expense of 
larger computational effort. Even though the simulated dataset was too small 
for the ICA algorithms, they still succeeded in removing part of the artifact, 
resulting in a positive G. Therefore, the results of applying ICA for correction 
of the larger electrode configurations will still be mentioned in the results of 
this study. 

2.7 Results  
In Figure 2.3 an example of the measured ( )r t  is shown. To illustrate that this 
data resembles simulated EEG data, ( )r t S, ( )c t S, and ( )e t S are also displayed. 
The left column shows a 10 s window (window length = 2560 samples) of the 
data, the right column shows the amplitude spectrum after applying a Hanning 
window. The difference in variability between ( )r t  and ( )r t S is caused by the 
error in the ratio ( )c t S/ ( )e t  S. This ratio was set to 1:3 for the Fpz position, as 
discussed in Section 2.3. For other positions the simulated ratio can deviate 
from the ratio for experimental data because the simulation uses only a limited 
number of dipoles. 
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Figure 2.3: From top to bottom: measured EEG, simulated measured EEG, simulated 
artifact, and simulated true EEG for the F7 position. Left column shows 10 seconds of 
data (2560 samples) with y-axis in μV, right column shows the amplitude spectrum. 

 

Data segments of 10 seconds (2560 samples) are corrected by all 6 methods and 
for all 5 electrode configurations. G scores are calculated for each participant 
for all EEG and EOG configurations and subsequently averaged over the 9 
participants. The results are shown in Figure 2.4. 
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Figure 2.4: Performances. The 5 graphs each show the score for one of the EEG 

configurations. The x-axis of these graphs indicates the number of EOG electrodes that 
was combined with the EEG configuration. For all 20 possible electrode 

configurations (5*4) the performance grade G in dB is plotted for the 6 algorithms. 

 

This figure shows the following results:  

• All performance values are positive or 0. This implies that all correction 
algorithms improve the SNR for all configurations studied. 

• The best performing algorithms increase the SNR by approximately 25 
to 35 dB. 

• The differences between the various algorithms are large. FICA and 
JADE deviate most from the other algorithms. 

• When four EOG electrodes are applied, PCA and SOBI have much 
better correction performance than when using only two EOG 
electrodes. 

• Adding more electrodes (EEG or EOG) in general improves the 
correction of the components-based algorithms. 

• For increasing number of EOG electrodes, MLR has a decreasing 
performance, whereas the other algorithms have an increasing 
performance. 
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• For almost every EEG configuration the SOBI algorithm shows the best 
correction. 

• The highest level of performance for 4 out of 5 EEG configurations is 
obtained by applying the SOBI algorithm using 6 EOG electrodes. 
Averaged over the 5 EEG configurations the SNR improvement is 29.0 
dB, with a standard deviation of 4.3 dB.  

• In most EEG configurations however, the results of applying MLR with 
only 2 EOG electrodes are close to SOBI’s performance, with an average 
SNR improvement of 28.1 dB and with a standard deviation of 3.6 dB. 

To illustrate the results, we also apply the correction algorithms to the EEG 
data that was recorded during an experiment. The corrected EEG is shown in 
Figure 2.5. 

 

 
Figure 2.5: Results of the algorithms applied to experimental data of one participant. 

On the upper left is the measured EEG at Fp2 position. The other graphs in the left 
column show the EEG after applying the six correction algorithms. In the right column 
the rejected part of the EEG is shown for each corresponding method. All y-axes show 

potential (μV). 
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2.8 Discussion 

First of all, it should be mentioned that the use of an eye tracker in this 
performance evaluation does not imply that all future EEG studies require eye 
tracker recordings. Once an algorithm is validated with the use of an eye 
tracker and appears to perform adequately, it can be applied to correct EEG 
data, without using eye tracker recordings. The recordings of the eye tracker 
were only used in this study to provide “clean” input data for the model 
simulations. Compared to other evaluations that use EOG or extracted 
components to model EOG artifacts, the eye tracker approach has the 
important advantage that there is no brain related disturbance in the simulated 
eye movement. Using the ‘Boundary Element Method’ we are able to simulate 
recordings for different EEG electrodes configurations that are often used.  

The results for the ICA algorithms, JADE and FICA, are rather disappointing, 
which is in agreement with a recent study in which the FICA algorithm was 
used [16]. The most probable reason for this is that components were 
extracted that were not (entirely) of ocular origin. These components have a 
correlation of more than 0.7 with one of the EOG signals, but were very noisy. 
Removing them probably attenuates the EOG artifact, but introduces strong 
noise into (̂ )c t S. A component selection by visual inspection, as in [16], did not 
yield better results. However, results might improve by using a larger window 
and thus more samples for correction. When performing an MLR, the first 
EOG signals will remove most of the eye movement artifact, which explains 
the good performance of the MLR algorithm with only two EOG electrodes. If 
more EOG signals are used in MLR, they will effectively start to remove actual 
EEG information. Remarkably, the performance for four EOG electrodes is 
worse than when using only two EOG electrodes. This is not intuitive since 
the first two EOG electrodes do not have information on vertical eye 
movements, present in ( )r t S. A possible explanation for this result is that the 
EOG electrodes in the model are not positioned exactly in line with the eyes. 
This might be due to the mesh used in this study. For the PCA and SOBI 
algorithms the increase in performance with increasing number of electrodes 
was expected because these algorithms make use of the information in all 
electrodes. Applying more than 6 EOG electrodes does not increase the 
performance any further. Our data acquisition is performed using the 10-20 
system with 6 EOG electrodes, thus corresponding to the middle graph in 
Figure 2.4. In Figure 2.5 we can visually verify that the part of the signal 
removed by the SOBI algorithm shows most resemblance with the eye 
movement artifact in the experimental data. SOBI is the only algorithm that 
clearly removes a signal that changes every 1.33 s. This is the time the dot in 
our experiment stayed at the same position.  
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In Figure 2.5, JADE did not remove any artifact. However, this example of 
JADE correction is based only on results for one subject, and on real data. In 
Figure 2.4, results for nine simulated signals are averaged. In some of these 
nine signals JADE also did not remove any artifact, in others some artifact was 
removed. Averaged results are shown in Figure 2.4.  The PCA, MLR, RARE, 
and FICA algorithms remove most of the artifact, but not as much as SOBI.  

The results shown are limited to eye movements. For blinks, the model should 
be more detailed around the eyes. The movement of the eyelid could have a 
very large influence on the conductivity properties of the model near the eyes 
because tissues here have very different conductivities. Movement of the eyelid 
thus would not directly influence the eye-dipole itself but rather the model 
surrounding the dipole. Other studies [104] state that the location of the 
dipole causing the eye-blink artifacts is different from the location of the eye 
movement dipole. However since here a 3-shell head model was used, the exact 
tissue structure around the eyes was not modeled and no sliding eyelid could 
be simulated. The absence of these characteristics in the model might cause a 
shifted dipole location when performing source localization for eye blinks. 

Some of the parameters that are described in Section 2.3, and that are used in 
the model to simulate the data, are obtained from experiments. These include 
the number of dipoles, the EEG spectrum shape, the amplitude ratio between 
( )c t  and ( )e t  of 1:3, and the amplitude of the electrode-noise ( )n t . Small 

fluctuations in the number of dipoles and the spectral shape will have almost no 
effect on the calculated SNR improvement. The potential distribution over the 
scalp was already smoothed, and adding more brain dipoles will not change 
this distribution significantly. The EEG spectrum shape is averaged over 25 
measurements. However, the ratio between ( )c t  and ( )e t , and the amplitude of 

( )n t  can have impact on the calculated SNR improvement. Changing the ratio 
to 1:1 would reduce the need for a correction algorithm because it reduces the 
artifact. This implies that detecting the artifact is more difficult and the SNR 
improvement will probably decrease. On the other hand, changing the ratio to 
1:5 will increase the need for a correction algorithm. Artifact detection will be 
easier now and the SNR improvement might be higher. But it is not likely that 
the SNR of the corrected signal is higher because that would imply that very 
strong artifacts would yield the cleanest results after correction. If there is 
more electrode-noise, ( )n t , in the measurement, both the SNR prior to 
correction and after correction will decrease. The magnitude of ( )n t  is 
determined by e.g. the placement of the electrode.   

The score G, defined in Section 2.5, is used to determine which correction 
algorithm performs well. It does not indicate whether the correction 
algorithms perform well enough. The definition on what is well enough is very 
subjective and depends on the specific application of the EEG recording. 
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Moreover, G indicates an increase in SNR whereas the statement of what is 
well enough should be based on the SNR after correction. The cSNR  would be 
more suitable for this. The aim of this chapter is to evaluate and compare 
correction algorithms based on their ability to remove eye movement artifacts 
and not to determine the (subjective) threshold of what cSNR  is well enough. 
Therefore G is defined not only by the cSNR  after correction, but also by the 

rSNR prior to correction. 

Our simulations might be improved by using a more sophisticated BEM 
implementation to reduce simulation error and give a better resemblance 
between ( )r t and ( )r t S. Another improvement to the simulations might be the 
use of a more detailed mesh of the head, including e.g. details about the eye 
sockets in the skull [119]. Both improvements will increase complexity. Our 
main goal was to evaluate the algorithms, not to simulate EEGs as realistic as 
possible and therefore these improvements were not made. Without the 
improvements, the simulated EEG might deviate from raw EEG on some 
properties. However, the properties that are of most importance for our 
evaluation are simulated, like the instantaneous way in which the conduction 
through the head takes place and the different origin of ocular and cerebral 
signals.  

2.9 Conclusion 

We present a method to evaluate algorithms that correct eye movement 
artifacts in simulated EEG recordings. The method is based on eye movement 
data recorded by an eye tracker, ensuring that the eye movement recordings 
are uncontaminated by brain activity. The data for the evaluation are simulated 
using a realistic model of the head, based on the boundary element method. 
Correction results from six algorithms are evaluated. As a measure of 
performance, we compare the signal to noise ratio before and after applying 
each correction algorithm. All algorithms reduce the artifact for all electrode 
configurations. MLR performs best when only two EOG electrodes are used. 
We recommend using 6 EOG electrodes and performing a SOBI artifact 
correction.  In practice however, calculations with the SOBI algorithm are 
computationally demanding, especially with the 10-5 system. If faster solutions 
are required, the use of the MLR algorithm with 1 H-EOG is recommended. 
Comparing our results with [16] we see that in both studies MLR and PCA 
perform better than FICA. However the SOBI method, not included in [16], 
performs even better. This indicates that PCA with autocorrelated 
components, as applied in SOBI, is also a good candidate for correction. 

Other correction algorithms, not mentioned in this chapter, can also be 
evaluated by the method presented here. Given the assumptions stated in this 
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chapter, it is shown that the proposed method can be used to determine how 
well an algorithm performs and which correction algorithm can be used best 
for any specific EEG/EOG electrode configuration.  

 



 

 

 

Chapter 3 

Using an eye tracker for accurate eye 
movement artifact correction 

  

3.1 Abstract 

We present a new method to correct eye movement artifacts in EEG data. By 
using an eye tracker, whose data cannot be corrupted by any 
electrophysiological signals, an accurate method for correction is developed. 
The eye tracker data is used in a Kalman filter to estimate which part of the 
EEG is of ocular origin. The main assumptions for optimal correction are 
summed and their validity is proven. The eye tracker-based correction method 
is objectively evaluated on simulated data of four different types of eye 
movements and visually evaluated on experimental data. Results are compared 
to three established correction methods: Multiple Linear Regression, Principal 
Components Analysis and Second Order Blind Identification. A comparison of 
signal to noise ratio after correction by these methods is given in Table 3.2 and 
shows that our method is consistently superior to the other three methods, 
often by a large margin. The use of a reference signal without 
electrophysiological influences, as provided by an eye tracker, is essential to 
achieve optimal eye movement artifact removal.  

3.2 Introduction 

To correct the electroencephalogram (EEG) for eye movement and blink 
artifacts, many correction methods have been developed over the past years 
[8;38;98;106]. Especially in research areas where the EEG signals of interest 
have very low amplitudes and are of short duration, as for single trial 
experiments, it is important that the correction method removes as much of the 
artifact as possible. Often, like in habituation studies or in studies involving 
children or ADHD subjects, it is not possible or undesired to repeat the 
experiment numerous times if artifacts occur. Furthermore, the electrical 
activity of brain processes that mainly occur in the frontal lobe is difficult to 
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detect because frontal electrode positions can contain eye movement artifacts of 
large amplitude. 

Both brain activity and eye movements cause electric currents through the 
brain. Therefore the raw EEG signal is a combination of ocular and brain 
related components. After a recorded signal is corrected for ocular artifacts it is 
difficult to judge if, and to what extent, correction was successful because the 
brain and ocular components are not separately known. For this reason, it is 
also not yet possible to objectively determine the quality of existing correction 
methods, and hence their adequacy for challenging applications like those 
mentioned above.  

In order to develop a standard against which existing methods can be 
compared, it is necessary to have a method that, in principle, can achieve 
optimal correction. The goal of the study in this chapter is to develop such a 
method and use it to objectively determine the quality of correction of existing 
methods.  

All existing correction methods are, to our knowledge, purely based on 
electrical potential recordings. If either the ocular or the brain component in 
the EEG can be reconstructed without the other, it is possible to extract both 
components from the mixture and objectively determine the quality and 
adequacy of correction methods. The ocular component is caused by a 
difference in potential between the front and the back of the eye, known as the 
corneo-retinal dipole [104]. Eye movements change the orientation of this 
dipole and thus, via volume conduction through the head, also change the 
magnitude of the ocular component. Eye blinks and smaller eyelid movements 
also cause changes in potential at the electrode positions, which can result in 
artifacts with amplitudes of up to 300 μV. The origin of the change in potential 
as caused by blinks is different from eye movement potential changes. Blinks 
briefly change the shape of the volume that surrounds the corneo-retinal 
dipole. As a result, the attenuation of blink artifacts from frontal to occipital 
electrodes is different from the attenuation of eye movement artifacts. 
Moreover, the specific influences of eye movements or eyelid movement on the 
EEG are difficult to discern. Many studies have demonstrated that there is an 
accompanying eye movement during a blink and, similarly, during most eye 
movements there is an accompanying eyelid movement [21;120;121]. 
Modeling these two artifacts requires two different approaches. In this chapter 
the focus is on both simulated and recorded eye movement artifacts. By 
omitting the effects of blinks and eyelid movement during eye movements in 
our simulations, a considerable simplification is made. A correction method 
that claims to correct for both blinks and for eye movements should however 
be able to correct the data presented here as well, because the eyelid position is 
fixed in our simulations.  
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We propose to record the orientation of the eye by an eye tracker in order to 
provide information on the ocular artifact that does not contain any cerebral 
component. As a measure that represents the orientation of the dipole, the eye 
tracker records the horizontal and vertical position of the pupil, denoted by 

1( )p t  and 2( )p t  respectively. These positions, combined in a vector 
[ ]1 2( ) ( ), ( ) Tp t p t p t= , are indicative of the ocular orientation.  

In Figure 3.1 is illustrated that a raw EEG, ( )r t , contains potentials of both 
cerebral, ( )c t , and ocular e ( ( )p t ) origins, with e for eye.  The potential e ( ( )p t ) 
is determined by the ocular orientation and by the conductive properties of the 
head and is assumed to be a function of ( )p t . The separation of the components 
in ( )r t  is illustrated in the lower part of Figure 3.1.  

 

 
Figure 3.1:  Use of an eye tracker as a basis for eye movement artifact correction. The 

enclosed shape in this figure represents the human part of the setup. Solid arrows 
indicate potentials. 

 
Because changes in ( )p t  have instantaneous effects on electric potential, due to 
volume conduction through the head [105], vector ( )p t  can be converted to an 
estimate of e ( ( )p t ), denoted by ê ( ( )p t ). For this conversion it is necessary that 
the conductive properties of the head are parameterized in a way that allows 
for the calculation of ê ( ( )p t ) based on the vector ( )p t . By subtracting ê ( ( )p t ) 
from ( )r t , an estimate for the cerebral component can also be obtained, denoted 
as ĉ (t).  
The relation between ( )p t  and e ( ( )p t ) is unknown and depends, among other 
things, on physical properties of the subject, like the diameter of the head and 
exact morphology of the skull, brain and other biological tissues. Obviously, 
the relation also depends on non-subject-related properties, like electrode 
placement and the luminance over the retina.  



66  Chapter 3   
 

 

In this chapter it is assumed, and verified, that e ( ( )p t ) is a first or second order 
function of ( )p t . Other parameters that may affect e ( ( )p t ) are a priori unknown 
as they represent the physical- and non-subject-related properties discussed 
above, and must be estimated based on experimental data. For accurate artifact 
removal it is essential that this estimation is accurate. The motivation behind 
the use of (at most) second order parameterization is that e ( ( )p t ) is expected to 
have only one extremum. This extremum is expected to occur if the orientation 
of the ocular dipole is oriented towards the electrode, which corresponds to a 
specific value of ( )p t . Moving the dipole away from this orientation, and hence 
changing pupil position, is expected to results in a smooth change in potential. 

Traditionally, as shown in (1.2), artifact correction also combines several 
unknown elements in one parameter or a vector ( )tα  of parameters. The main 
difference with the current approach is that parameter estimation now focuses 
exclusively on the relation between pupil position and raw EEG. 
The vector ( )tα  is usually estimated non-adaptively, either during a calibration 
session, or directly on the data of interest, and leading to estimate vector ˆ( )tα . 
Non-adaptive methods estimate a constant α̂ , over a period of time. 
Fluctuations of ( )tα  in time will result in sub-optimal correction as a 
fluctuation of only one percent can cause new artifacts of several μV.   

This can be overcome in two ways. Firstly, the length of the recording can be 
reduced to decrease fluctuations of ( )tα  within this recording. Examples of 
such are recordings during which α̂  is recalibrated at fixed times, or 
components analysis over an epoch of only a few seconds. The effects of a 
shorter epoch on accuracy of EOG-based and components-based methods is 
studied e.g. in [16]. In [16] it was found that small parameter fluctuations are 
less problematic for EOG-based methods. Furthermore correction over a 60 s 
epoch was significantly worse than correction over a 1 s epoch, which supports 
the idea that ( )tα  does fluctuate. A difficulty with this approach is that after 
correction the epochs need to be concatenated and jumps may occur. Secondly, 
by using parameter adaptation to track ( )tα , it is possible to adapt to parameter 
fluctuations and have an accurate ˆ( )tα  throughout a recording of any duration. 
This results in a smooth corrected signal that does not suffer from re-attaching 
problems. Given these advantages, adaptive parameter estimation is used. The 
parameters that describe how e ( ( )p t ) depends on ( )p t  are thus obtained 
adaptively by a feedback-loop in which ĉ (t) is used as a basis for adaptation. 
Adaptation is indicated in Figure 3.1 by the dashed gray arrow.  

For the method to work, it is necessary that three requirements are met.  

1. Changes in ocular orientation have instantaneous effects on electric 
potential.  
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2. Ocular orientation is statistically independent of brain activity, as 
reflected in the EEG. 

3. The relation between ( )p t  and e ( ( )p t ) is adequately parameterized by 1st 
and 2nd order combinations of ( )p t , i.e. higher-order terms are negligible.  

Assuming that these requirements are met, we will demonstrate that optimal 
correction can, in principle, be achieved, such that no ocular artifact remains. 
Requirement one, i.e. instantaneous conduction, has been analytically verified 
in literature [105]. Requirement two, statistical independency, is probably 
never completely true. However, in practice this dependence tends to be 
negligible, as demonstrated in [114]. Section 3.3 will introduce and validate 
the parameterization scheme, associated with the third requirement, in more 
detail. 

In Section 3.4 a Kalman filter is tailored to our parameter estimation. The 
Kalman filter is designed to estimate changes in a system in which some prior 
knowledge on noise and system structure is available. Kalman filters are 
frequently embedded in control systems because they can be used for real-time 
operations and because it is essential that system parameters are estimated 
accurately in order to control the system. The filter minimizes the mean 
squared error of the parameters in a given system. Since the structure of the 
system is known, as explained in Section 3.3, such a Kalman filter will be used. 
Because filtering and parameter estimation is possible online as well as offline, 
making brain-computer interfaces and direct neurofeedback possible. The 
trade-off between speed of filter adaptation and estimation variance is 
explained. It is described how the basic Kalman filter can be tuned to the 
requirements of eye movement correction. A clear tutorial on Kalman filtering, 
including examples and program code is given by [122]. 
In Section 3.5 simulated data are used, in which e ( ( )p t ) and ( )c t  are known and 
combined in order to simulate ( )r t . By comparing these to ê ( ( )p t ) and (̂ )c t  it 
will be shown that the new method separates the components accurately. 
These comparisons are made for various types of eye movement to illustrate 
that the method still performs very well, even in EEG signals with large eye 
movement artifacts. An important question to be answered is how these results 
compare to results of existing techniques. Results will be compared objectively 
to the Multiple Linear Regression (MLR), Second Order Blind Identification 
(SOBI) and Principal Components Analysis (PCA) methods. As a yardstick, a 
signal to noise ratio, SNR, is defined. 

Next in Section 3.6, the eye tracker method is applied to experimental data. 
The estimated potential (̂ )c t  is displayed for different types of eye movement. 
As there is no reference on the exact ocular artifact in this case, a qualitative 
discussion on these results is provided, in lieu of an objective evaluation. 



68  Chapter 3   
 

 

3.3 Second order structure 

The correction method is based on the three key requirements listed in the 
introduction. The third assumption, on the relation between ( )p t  and e ( ( )p t ), 
will be investigated here in more detail. 
An experiment is performed in which ( )p t  is changed in a regulated way. A 
participant is seated in front of a monitor, at a distance of 65 cm, the eyes 
horizontally aligned with the center of the monitor screen. The participant is 
asked to track a moving dot with his eyes, and instructed not to move his head. 
The dot appears for 0.5 seconds on 225 (15 x 15) different positions on the 
monitor, starting at the upper left position, going stepwise towards the upper 
right, then dropping one line and going stepwise back to the left side. This 
pattern continues until the bottom right corner is reached. EEG is recorded at 
512 Hz. Electrodes are placed according to the 10/20 system [26]. A similar 
test is performed in a simulated environment, using a model of the head as 
described in Chapter 2. In this simulated environment, there are no cerebral 
potentials and the exact relation between ( )p t  and e ( ( )p t ) can be computed. For 
the experimental data, all samples recorded while the dot was at one position 
are averaged for each dot position.  

Results for both the experimental and the simulated situation are shown in 
Figure 3.2. Because ocular artifacts are most profound frontally, the displayed 
results belong to Fz and Fp1 electrode positions. One of these, Fz, is on the 
midline, showing symmetry between left-right ocular orientations. For each 
electrode position, three plots are shown. The left one illustrates e ( ( )p t ), and 
the two right ones show cross-sections of this plot where either the horizontal 
or the vertical pupil position is fixed, resulting in 1 2( )e p p  and 2 1( )e p p . 
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Figure 3.2: Potentials 1 2( , )e p p , 1 2( )e p p , and 2 1( )e p p  for experimental and simulated 

data. For each combination of 1p  and 2p , the potential 1 2( , )e p p  is determined and 
displayed in the image on the left of each of the four subplots. In each plot of 1 2( , )e p p , 
the values for 1p  and 2p  where the cross-sections  1 2( )e p p , and 2 1( )e p p  are made are 

indicated. 

 
Note in Figure 3.2 that e ( ( )p t ) is arbitrarily scaled. Also note that 1p  and 2p  
range from -0.22 to 0.22. This actually represents the position of a dot on the 
monitor screen, with 1p = 2p =0 at the center of the screen. To convert this 
position on the screen to ( )p t  would require a minor extra transformation. 
However, proving that the relation between orientation and potential can be 
estimated from the data is identical to proving that this holds for the position 
of the dot. Furthermore, for small angles, the relation between position on the 
screen and ( )p t can be assumed to be linear [14]. 

Clearly visible in Figure 3.2 is the well organized structure of 1 2( , )e p p . Vertical 
movements have a greater impact on the value of e ( ( )p t ) than horizontal 
movements for these electrode positions. Most cross-sections show a 1st order 
dependence. Obviously the plots for simulated data show less variance than 
plots for experimental data because the simulated ones do not contain any 
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cerebral component. In the experimental data 2 1( )e p p , has greater variance 
than 1 2( )e p p . This is due to the time between consecutive samples. The way 
the experiment is set up, 1 2( )e p p  is recorded within 15*0.5 seconds, whereas 

2 1( )e p p  is recorded in (15)2*0.5 seconds. As the recording takes more time, it is 
more difficult not to move the head and thus the variance of the recording will 
increase. Another important explanation for this variance is baseline 
fluctuation during the recording, e.g. due to electrode drifts. These fluctuations 
are typically of low frequency and are hard to distinguish from changes in 

2( )p t , which occur once every 7.5 seconds in this experiment. In recordings 
with high amplitude drifts 2 1( )e p p  can be completely obscured by these drifts, 
and even 1 2( )e p p  can be affected. The results shown in Figure 3.2 are based on 
data in which baseline fluctuations were visually not detectable. 
The only cross-section showing a 2nd order dependence is 1 2( )e p p  for the Fz 
position. As this position is on the midline, the distances to both the eyes are 
equal. Therefore the effects of negative or positive deflection of 1( )p t are 
identical, causing an optimum at 1p =0. 

For other electrode positions, not shown in Figure 3.2, 1 2( )e p p  and 2 1( )e p p  
also appear to be (at most) quadratic functions. We infer that e ( ( )p t ) may be 
approximated by a 2nd order function. The structure of such a function is given 
by3 
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or, more compactly, by 

 ( ( )) ( ( )) ( ),Te p t p t tφ= Ψ ⋅  (3.2) 
with ( ( ))p tΨ = 2

1 2 2[1, ( ), ( ),..., ( ) ]Tp t p t p t  and ( )tφ = 1 2 6[ ( ), ( ),..., ( )]Tt t tφ φ φ . 

The six parameters φ 1(t), φ 2(t),….φ 6(t) in (3.1) together determine the 
‘MODEL CONDUCTION’ block in Figure 3.1. A procedure to estimate these 
six parameters is described in the following section.  
In (3.1) it can be seen that the impact of φ 1(t) does not depend on ( )p t , making 
it strange that this parameter is involved in estimating an ocular artifact. 
Parameter φ 1(t) however is important in removing baseline fluctuations from 
( )r t . These fluctuations may change ( )r t  and are independent of ( )p t . By 

including this parameter φ 1(t) in vector ( )tφ , e ( ( )p t ) can be estimated while 

                                           
 
3   The compact notation ( )( )e p t  is used throughout this thesis. This notation can be replaced by  ( ),( )e p t t  

to stress time-dependency of  ( )tφ  in adaptive parameter estimation. 
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correcting for baseline fluctuations. The impact of φ 1(t) can be compared to 
that of a high pass filter. Section 3.4.3 will explain how φ 1(t) is tuned to track 
these fluctuations. 

3.4 Implementing a Kalman filter 

A Kalman filter is capable of estimating the state of a system, even when the 
exact structure of the modeled system is unknown. The relation between ( )p t  
and e ( ( )p t ) may be considered as such a system because the structure for this 
relation is known from Section 3.3 while the influence of physical parameters 
on the system, as given in vector ( )tφ , is unknown.  

3.4.1 Basics of the Kalman filter 

A Kalman filter estimates ( )tφ  in a system that can be described by  

 ( ) ( 1) ( ),t t w tφ φ= Φ ⋅ − +  (3.3) 
with matrix Φ  representing the expected changes in ( )tφ  over time and ( )w t  
representing fluctuations in ( )tφ  that are white, with normal distribution, and 
independent of ( )c t . The notation ( 1)tφ −  is used to indicate the value of ( )tφ  at 
the previous sample.  
Vector ( )tφ  represents the state of all unknown parameters that influence the 
relation between ( )p t  and e ( ( )p t ). As in most applications of the Kalman filter, 

( )tφ  cannot be measured and therefore can only be obtained indirectly by 
recording ( )r t , as seen in 

 ( ) ( )  ( ( )) ( ) ( ( )) ( ).Tr t c t e p t c t p t tφ= + = + Ψ ⋅  (3.4) 

Because ( )tφ  is unknown, it can only be approximated by an estimate (̂ )tφ . The 
Kalman filter in effect is a set of equations that iteratively minimizes ( )tΠ , 
defined as the a posteriori estimate error covariance.  

 ( )( )ˆ ˆ( ) ( ) - ( ) ( ) - ( )
T

t E t t t tφ φ φ φ⎡ ⎤Π = ⎢ ⎥⎣ ⎦
 (3.5) 

By minimizing ( )tΠ  a statistically optimal (̂ )tφ , with respect to any quadratic 
function of estimation error, is obtained. At each moment in time, the filter 
thus estimates a new optimal value (̂ )tφ  based on (̂ 1)tφ −  and ( )r t . With this 

estimate (̂ )tφ , the ocular component can be removed from ( )r t .  

In a system in which the exact system structure is known, in which all noise 
characteristics are known, and in which an infinitely long adaptation period is 
allowed, the Kalman filter will achieve perfect separation between artifact and 
signal. In practice the allowed adaptation time is limited and the noise 
characteristics are often not known exactly known. How this influences the 
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filter properties is explained in Section 3.4.2. In this chapter, the system is 
influenced by a noisy signal ( )c t . Given only a limited amount of data, the 
Kalman filter returns the best possible estimate for (̂ )tφ . 

The full Kalman filter equations are listed in equations (3.6)-(3.10). 

 -( ) ( - 1) Tt t QΠ = Φ ⋅ Π ⋅ Φ +  (3.6) 

 -ˆ ˆ( ) ( - 1)t tφ φ= Φ ⋅  (3.7) 
 - - -1( ) ( ) ( ( ) )Tt t t Rκ = Π ⋅ Ψ ⋅ Ψ ⋅ Π ⋅ Ψ +  (3.8) 

 ( )- -ˆ ˆ ˆ( ) ( ) ( ) ( ) - ( )Tt t t r t tφ φ κ φ= + ⋅ Ψ ⋅  (3.9) 

 ( ) -( ) - ( ) ( ),Tt I t tκΠ = ⋅ Ψ ⋅ Π  (3.10) 
with ( )tκ  being the Kalman gain, -( )tΠ  the a priori estimate error covariance, I  
the identity matrix, Q  the assumed covariances of (t)w , and R the assumed 

variance of ( )c t . Given the assumed values for Φ , Q , R and the estimate 

(̂ 1)tφ − , equations (3.6)-(3.10) can be used to estimate (̂ )tφ . More details and a 
derivation of these equations are given in [123]. 

3.4.2 Adaptation time versus estimation accuracy 

The matrix Q  and scalar R are not defined by the Kalman equations, but by the 

dynamic properties of the system that is being modeled. They may be set based 
on prior knowledge on the dynamics or based on specific desires for the filter 
performance as will be explained in this section. In a Kalman filter, the time 
required for stabilization of (̂ )tφ  is influenced by both the choice of Q  and the 

choice of R. In (3.8) it can be seen that decreasing R, indicating the assumption 
of lower amplitude background EEG, increases the value of the elements in 
gain ( )tκ . Substitution of (3.6) in (3.8) reveals that a decrease in the values of 
the Q  has the opposite effect and decreases the value of the elements in gain 

( )tκ . The gain ( )tκ  is, according to (3.9), related to the magnitude of changes in 
(̂ )tφ . It is therefore clear that changes in gain ( )tκ  affect the time required for 

parameter stabilization and parameter adaptation.  

After sufficient iterations, (̂ )tφ  will stabilize. The Kalman gain ( )tκ will still 

depend on R and therefore the fluctuations of (̂ )tφ  after stabilization also 
depend on R. These fluctuations influence the variance in ê ( ( )p t ). A similar 
reasoning applies for Q . The choices of Q  and R are always the result of a 

trade-off between adaptation time and estimation accuracy.  
It is important that ê ( ( )p t )- e ( ( )p t ) is small compared to the signal of interest, 
( )s t . Because ê ( ( )p t )- e ( ( )p t ) represents the part of ( )r t  that is not of cerebral 

origin, it will be referred to as noise This noise should not be confused with 
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what is known as ‘electrode noise’, an extra additive component to signal ( )r t  
that is caused by the recording equipment. What ( )s t  is, depends on the specific 
EEG study that is being performed. Clearly, when the signal of interest is ( )c t , 
more noise can be tolerated than when the signal of interest is only a small 
component of ( )c t  as is the case in e.g. evoked potential, EP, studies. By using a 
signal to noise ratio defined as 
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the performance of the correction can be objectively determined. In (3.11) t1 
represents the start of the period over which SNR is calculated and T 
represents the duration of this period. For ongoing EEG studies t1 will be the 
start of the measurement and T the length of the measurement. For EP 
studies, SNR can be determined for each separate stimulus, with t1 the stimulus 
time and T the (expected) duration of the stimulus response. For (3.11) it is 
required that e ( ( )p t ) and ( )s t  are known. Therefore SNR can only be 
determined for simulated data. As ê ( ( )p t ) depends on the choices for Q  and R, 

it is clear that SNR also depends on these choices.  

An optimal correction can be achieved after an infinitely long adaptation, 
assuming that the vector ( )tφ  stays constant and that the spectrum of ( )c t  is 
white. However in practice, the level of correction is restricted by the duration 
of the measurement, the frequency content of the EEG, and by the requirement 
that small changes in ( )tφ  should be tracked. The physical processes that 
change ( )tφ  are slowly varying and can be considered constant for several 
minutes, e.g. temperature and sweating. Changes in vector ( )tφ  can also be due 
to e.g. electrode movement or small head movements. These will cause faster 
and greater changes in ( )tφ . By instructing the participant not to move during 
the recording, these changes can be decreased. It will however still be 
necessary to track the remaining changes like baseline fluctuations. Typically 
these only contain very low frequencies, below 0.1 Hz. In the recordings that 
are used in this chapter, baseline fluctuation is detected visually. The maximum 
fluctuation frequency is app. 0.03 Hz. Therefore, in this study, it is required 
that changes in ( )tφ  can be tracked within 30 seconds. This value is fast enough 
to track changes in ( )tφ . A calibration period of 30 seconds should precede each 
experiment. Note that changes due to fast head movements cannot be tracked 
in this manner.  
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3.4.3 Tuning the Kalman filter 

In (3.3), Φ  reflects how ( )tφ  may change. Such a change can for instance be 
caused by to changes in the amount of light at the retina, by sweating, or by 
electrode movements and drifts. Since there is no prior knowledge on what 
changes to expect, Φ  is set to the identity matrix I . Alternatively, setting Φ  

equal to 0.99*I  can be used to keep (̂ )tφ  from unbounded growth, although no 
extreme values were seen with Φ =I . The expected variance of ( )c t  is given in 
R. The basic Kalman filter assumes ( )c t  to be white whereas in reality, ( )c t  is 
known to be colored as the frequency content of the EEG is generally below 50 
Hz. For now we will assume ( )c t  to be white and use the basic Kalman filter. 
As the average variance of an EEG recorded with eyes open is approximately 
144 μV2 , as determined experimentally, R is set to this value. It is known that 
choosing Q  is generally more difficult. As we typically do not have the ability 

to observe ( )tφ  directly, it is also difficult to estimate the variances of these 
parameters. Because of this difficulty, the structure of Q  is simplified by 

assuming that the fluctuations in the parameters in ( )tφ  are not correlated with 
each other. This implies that all off-diagonal entries in Q  are zero. The 

diagonal entries of Q  indicate the variances of the six parameters in ( )tφ . They 

are set to track changes in a limited amount of time. As changes that influence 
conductance are expected to affect all parameters simultaneously, all diagonal 
entries should be set to obtain a similar tracking time of 30 seconds for the 
corresponding parameter. If the data is not rich enough it is not possible to 
estimate and thus track some of the parameters. If for instance there are no eye 
movements, only φ 1(t) can be estimated. For the Kalman filter the tracking 
time is determined by ( ( ))p tΨ , R and Q . The first two are fixed, and thus 

tracking time is set to 30 seconds by setting Q . In Figure 3.3 it is illustrated 

how the tracking time for φ 3(t) depends on the third diagonal element of Q , 

denoted as 2
3Xσ . 
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Figure 3.3: Influence of 2

3Xσ on tracking time. Each subplot is initialized at 100 
(μV/m). Results are obtained using simulated data with random eye movements. 

 

Because larger values for 2
3Xσ  result in larger estimation variance, 2

3Xσ  is set 
to the smallest possible value that stabilizes ( )tφ  within 30 seconds; 2

3Xσ = 
0.005. This is repeated for all six diagonal entries of Q , resulting in 

diag( )Q =[0.001,0.005,0.005,0.6,0.6,0.6]T . Stabilization of ( )tφ  is typically 

determined by the slowest tracking parameter in ( )tφ . Setting 2
Xσ  for each 

element separately will lead to equal stabilization within 30 seconds and will 
result in minimal estimation variance for a given tracking speed. The risk of 
adaptive parameter estimation is that brain activity that correlates in time with 
eye movements is being removed as well. Although it is impossible to eliminate 
this risk completely, we note that such brain activities are usually reflected in 
brief evoked potentials, whereas the change in ocular orientation as caused by 
eye movements lasts much longer. The parameter tracking, with an adaptation 
speed of 30 s will hardly be modified by the correlation between brain activity 
and the change in ( )p t . In [114] the influence of ocular orientation on brain 
activity is found to be negligible. 

3.5 Simulated data, accuracy of the new method compared 
to existing methods 

The most important feature for any ocular artifact removal method is its 
performance on experimental data. Objective classification of removal 
performance based on this type of data is however very difficult or even 
impossible. A way to estimate this performance is to use simulated data. In 
order to obtain meaningful results it is important that the simulation model is a 
good representation of reality.  
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3.5.1 Simulated data 

We simulate EEG data using a Boundary-Element-Method, BEM, based model 
of the human head. Brain activity is simulated in this model by rotating a fixed 
number of brain-dipoles with fixed dipole strength, and fixed position. This 
results in ( )c t  with most of its signal power below 30 Hz, and having an 
exponential decay of power with increasing frequency. The exact properties of 
these dipoles, the model of the head, and properties of the dipoles used to 
simulate eye movements and EEG are described in detail in Chapter 2. The 
main advantages of this model lie in the ability to simulate separately, but 
realistically, the sources that are generating e ( ( )p t ) and ( )c t  using dipole 
modeling. A minor drawback is the inaccuracy in the modeling of the skull. 
Whereas a skull has holes behind the eyes, the model only simulates a closed-
surface skull. This may lead to an inaccurate representation of scalp 
topography of the ocular artifact. However, the topography of the ocular 
artifact is not used (explicitly) in the correction method presented here. Recall 
that spatial information on the topography of ocular artifacts is not used as 
only a single EEG recording is required. Inaccuracies in ocular artifact 
topography are therefore expected not to influence ocular artifact removal for 
the correction method that we propose. EEG is simulated at all positions of the 
10-20 system. Because the properties that determine conduction remain 
constant during the whole simulation, ( )tφ  is constant.  

Next to the brain activity and eye movement artifact, electrode noise is also 
simulated, as described in Section 2.3. Each electrode has some intrinsic noise 
which we simulated to be normally distributed, with zero mean and a standard 
deviation of 1 μV. This is similar to electrode noise levels as determined for the 
active electrodes we used in our experiments. Since this electrode noise is small 
compared to the simulated brain activity, small changes in standard deviation 
are not expected to result in significant changes in correction performance.  
Additional to EEG data, eye tracker data ( )p t  also needs to be simulated. 
Clearly ( )p t will depend on the eye movement that is simulated. To simulate 
eye movements, the ocular dipoles, implemented in the BEM model, are 
oriented towards a dot that moves over a screen positioned 0.8 meters in front 
of the simulated head. As the dot moves, the ocular dipoles rotate, and an eye 
movement is simulated. The center of the screen is horizontally aligned with 
the eyes and is 45 45⋅ cm2. An eye tracker positioned near the screen and 
directed to the head records ( )p t . The vector ( )p t  will resemble the data on the 
movement of the dot. Therefore, the moving dot data are converted to simulate 
( )p t . For the conversion, the 2D position in cm is converted linearly to ( )p t . 

In this chapter, four different types of data sets are simulated. Each of these 
sets can be characterized by a specific sort of eye movement. This is done 
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because any information on ( )tφ  needs to be derived from the data. If the data 
for instance only contains one steady ocular orientation, it is not possible to 
accurately estimate all parameters in ( )tφ . By using different sets, we can 
evaluate how well the correction methods perform for these situations.  

The types of eye movement that are simulated in the different data sets are 
listed in Table 3.1. These types are chosen because they represent relevant eye 
movements that can occur during experiments.  

 

Table 3.1: Simulated eye movements types and their descriptions 

Type Name Constraints 

1 Random eye movement 1( )p t ∈N(0,σ=dm/4),  2( )p t ∈N(0,σ = dm /4) 

2 No eye movement 1( )p t = 2( )p t  =0 

3 Deterministic eye 
movement 

1( )p t = dm *sin(ω*t),  2( )p t = dm *cos(ω *t) 

4 Saccade eye movement 1( )p t ∈{- dm, 0 , dm } ,  2( )p t ∈{- dm, 0 , dm } 

 

For random eye movements, the eyes are on average directed towards the 
center of the screen. Because the frequency of eye movements is physically 
limited, e.g. it is only possible to focus on approximately three different spots 
within one second, positions 1( )p t and 2( )p t are simulated by applying a low pass 
filter, with a cut off frequency at 3 Hz, to a random, white noise signal. The 
second type is less realistic, but illustrates what happens if there is no eye 
movement at all. In this case, an ocular artifact correction method should only 
remove a DC offset. The third type simulates a dot-tracking task where the dot 
makes a smooth circular movement over the screen. The fourth type simulates 
a dot-tracking task where the dot jumps once every two seconds from one 
point of the screen to another. 
In Table 3.1, dm is the maximum amplitude of vector ( )p t  with respect to the 
center of the monitor screen (dm =0.225 meter), ω represents the angular 
frequency of the deterministic eye movement in rad/s, and N(0,σ= dm /4) 
indicates a normal-distribution around zero with a standard deviation of  dm /4. 
Note that the samples did not exceed dm in our simulations. Samples for type 
the saccade movement are drawn from{- dm, 0 , dm }, with equal probability for 
the three entries.  
The amplitudes of ( )c t  and e ( ( )p t ) can be scaled in the simulation by increasing 
the strength of the sources. This way both potentials are scaled to realistic 
values. For each electrode position, the amplitude of e ( ( )p t ) is scaled to an 
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experimentally determined appropriate value for the amplitude of ocular 
artifacts. Note that the value for Q , which was set in Section 3.4.3, was already 

based on these realistic values. 

For each type, 40 seconds of data are simulated at a rate of 256 Hz. The first 30 
seconds are used for parameter initialization. The last 10 seconds are used to 
evaluate the correction method. 
The signal of interest in this case is ( )c t . The SNR provides a good indication 
of how well the correction method succeeds in removing the ocular artifact. In 
the following sections, results are shown for the Fp1 position. This position is 
very close to the eyes and therefore contains the largest ocular artifact. Thus 
results for this position can be considered as ‘worst case’ results. 

3.5.2 Comparison with other methods 

It is important to see how these results relate to those of existing techniques 
because this can verify whether the extra effort of including an eye tracker in 
an experimental setup does improve ocular artifact removal. Three existing 
ocular artifact removal methods will be discussed. 

MLR: Multiple Linear Regression [116]: 
Bipolar recordings of the electro-oculogram (EOG) are scaled and subtracted 
from the EEG. The number of EOG channels that results in the best correction 
is still under debate. In the evaluation of correction methods, the best result of 
using either two, four, six or eight EOG electrodes, and hence one, two, three, 
or four bipolar EOG recordings, is displayed. Bipolar EOG recordings have the 
advantage that brain activity that is recorded by both electrodes is greatly 
reduced in the EOG and the bipolar EOG is thus relatively clean when 
compared to a common reference EOG. However, brain activity originating 
close to the eyes will still be visible in a bipolar EOG. Often a calibration 
period precedes the data that should be corrected. The MLR parameters are 
calculated over this period and subsequently fixed and used to correct the data 
of interest. Here, in all but one of the simulated eye movement types, the eye 
movements cover a wide range, similar to a range that would have been used 
during calibration. Adding a calibration period would therefore not enhance 
performance. The results shown here may be viewed as correcting calibration 
data with coefficients found on the same calibration data. Because many eye 
movements are made during each type, the coefficients will be accurate. Only 
the type 1 movement is likely to improve significantly when a calibration trial 
is added. 

PCA: Principal Components Analysis [117]: 
All raw EEG, and EOG, channels are projected onto a new set of orthogonal 
base vectors in an attempt to decorrelate brain and ocular activity. The vectors 
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that resemble the EOG channels are removed and the remaining vectors are 
used to construct a cleaned EEG. 

SOBI: Second Order Blind Identification [51]: 
Components analysis technique similar to PCA, but with the ability to exploit 
autocorrelation in brain activity and autocorrelation in ocular activity. In 
[100;124] it is shown that SOBI can be tuned very accurately for the purpose 
of extracting small components arising from the primary somatosensory 
cortex. Next to this, SOBI is capable of removing ocular artifacts and other 
artifacts, making it an easy to use and versatile algorithm. For the SOBI 
method a number of time lags need to be chosen. The components retrieved by 
SOBI are uncorrelated with each other. The correlations between all 
components are calculated at these specific time lags. The SOBI algorithm 
minimizes the sum of all calculated correlations, excluding all autocorrelations. 
Unfortunately the study as to which lags should be used to optimize SOBI 
performance is currently limited to extracting primary somatosensory cortex 
signals [124]. The optimal setting of lags depends on spectral properties of the 
signals that need to be separated and is therefore likely to be different here. In 
this chapter, the lags of 1, 2, 3, 5, 10, and 20 samples at 256 Hz are used. These 
lags are equal to those used in Chapter 1, where SOBI was found to be the best 
performing correction algorithm. The SOBI method may however improve if 
the optimization of the selected lags for ocular artifacts is studied in more 
detail.  

These three methods are selected because Chapter 2, as well as other studies 
[16], has demonstrated these methods’ adequacy for ocular artifact correction.  

In order to make a fair comparison between the methods, it is important that 
the effective amount of data available to all methods is equal. The eye tracker 
method requires a 30 second parameter tracking period prior to the 10 s we use 
for evaluation. Even though this is merely a parameter initialization 
comparable to calibrating EOG-based approaches, this period provides the eye 
tracker method with extra information that should also be available to the 
other methods. In order to make a fair comparison, the other methods should 
thus estimate ê ( ( )p t ) based on a similar amount of data. The eye tracker 
method uses an adaptive filter. In principle, the data of the past 30 seconds is 
weighted exponentially, with the highest wait to the most recent sample, when 
estimating (̂ )tφ . 

Because the other algorithms use datasets of fixed length and apply the same 
weight to each sample, the length of these datasets, wT ,  should be matched to 
the amount of data in the exponentially weighted 30 seconds. This relation is 
given by 
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Stabilization of (̂ )tφ  occurs within three times the decay constant, wτ , of this 
equation. Since this corresponds to 30 seconds, wτ = 10 seconds, and from 
(3.12) wT = 20.5 seconds. 

For a 40 second data-segment this means that in order to have matching 
amounts of data, the eye tracker method starts calibrating at the start of the 
segment whereas the other methods should operate on the last 20.5 seconds of 
the segment. Finally, the last 10 seconds are used to evaluate the correction 
methods. 

As discussed in the introduction, most correction methods assume a stationary 
relation between eye movement and recorded artifact as well as a stationary 
relation between cerebral activity and raw EEG. In order to comply with this 
assumption, epochs of short duration are often used. Increasing the epoch 
duration for such methods, to compensate for the parameter tracking period, 
might actually be a disadvantage. Because in the simulated data  all parameters 
in φ are constant the assumption of stationarity is not violated, so there is no 
need to use shorter epoch duration and (additional) difficulties when re-
attaching different epochs are avoided.  

3.5.3 Results 

All four data-types were corrected by the eye tracker-based method and also by 
the three other ocular artifact removal methods, the SNR calculated for all 
methods are shown in Table 3.2. The results are averaged over 20 simulations 
to decrease the influence of the randomness of ( )c t  on the results. 

 

Table 3.2: Performances of different ocular artifact removal methods for different types 
of simulated eye movements. Performance calculated over 10 seconds is expressed as 

SNR. Results are averaged over 18 simulated sets 

  Eye 
tracker 

MLR PCA SOBI 

Type  SNR (dB) SNR (dB) SNR (dB) SNR (dB) 

1 Random 15.5 3.1 2.5 7.9 

2 None 21.1 0.1 2.5 18.3 

3 Deterministic 17.3 5.5 0.8 15.6 

4 Saccade 10.3 5.4 1.2 9.9 
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3.5.4 Discussion 

The eye tracker method consistently outperforms the three other methods, 
often by a large margin. In any of the four types of eye movement, the eye 
tracker method results in an average SNR of over 10 dB. This indicates that 
power of the remaining artifact after correction is approximately 10 times 
smaller than the power of the estimated (̂ )c t . The best SNR is obtained for type 
2. For this type the optimal correction would be to remove only DC because 
the eyes did not move during simulation. However, prior to applying any 
correction method, the DC is already removed by subtracting the mean of the 
signal because this is common procedure with most EEG recordings. 
Therefore type 2 illustrates how the correction methods affect SNR if no 
correction is needed. Without correction the SNR in this case is infinitely large 
since there is no noise. All correction methods slightly distort (̂ )c t  because all 
SNR values in Table 3.2 are finite. The other three methods result in a lower 
SNR than the proposed eye tracker method. For the MLR method this is 
probably caused by the presence of a small cerebral component in the recorded 
EOG, due to volume conduction. For all eye movement types, the optimal 
MLR correction was achieved when two bipolar EOG recordings, and hence 
four EOG electrodes were used. The PCA and SOBI identify several different 
components the data of type 2 movement, but they lack the clean reference 
signal of an eye tracker. Therefore the EOG channels are used to determine 
which of the components are ocular and these channels will not show the eye 
movement as clear as ( )p t . For type 3 and 4 the SNR of the SOBI method is 
close to the SNR of the eye tracker method. The SOBI method exploits 
deterministic time structures that are hidden in the data, and it is therefore not 
surprising that under these circumstances SOBI achieves an SNR of 15.6 dB 
and 9.9 dB respectively. The use of ( )p t  in the eye tracker method does 
however perform slightly better. Indicating that the extra data that is available 
due to the use of the eye tracker, provides important extra knowledge on the 
ocular artifact. The PCA and the MLR methods are consistently outperformed 
by the SOBI and by the eye tracker methods. For PCA this is probably because 
PCA does not use the temporal information of ( )r t , whereas SOBI does [51]. 
MLR has the risk of overcorrecting and removing brain activity from the EEG. 
As discussed, EEG registrations often contain baseline fluctuations due to e.g. 
electrode drifts. The eye tracker method is tuned to track these fluctuations. 
Even though in this simulated data there are no fluctuations in parameters, the 
performance of the eye tracker method is still better than the other methods. If 
the data would have contained baseline fluctuations, the eye tracker method 
would have removed them with essentially no impact on SNR. Because these 
fluctuations are mostly not correlated for different electrodes, both SOBI and 
PCA would not remove them and therefore the SNR shown for these methods 
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in Table 3.2 would decrease. The results in Table 3.2 are based on 20 simulated 
datasets. The deviation of single experiment results around this average are 
small and thus indicate reliable correction. For the type 1 movement e.g., only 
one simulation deviated by 1.8 dB (having an SNR of 13.7 dB), all other 
simulations deviated by less than 1.1 dB. 

For the eye tracker method a one channel EEG recording is sufficient to obtain 
the results that are shown in this chapter. The extra requirement for this 
method is that an eye tracker is added to the experimental setup. For the SOBI 
and PCA method, no eye tracker is required, but EOG electrodes need to be 
included in the measurement as well as a larger number (21) of EEG channels 
to obtain the results presented here.  

3.6 Experimental data, using the new method for 
correction. 

EEG, EOG and eye tracker measurements are collected from 9 participants 
aged 19-21, 5 male and 4 female. The participants performed a task involving 
eye movements. During this task, a (moving) dot appears on a 19-inch monitor. 
Like with the simulated data, there are different types of eye movements, 
corresponding to types 2-4 from Table 3.1. The participant is asked to keep his 
eyes on the moving dot. An eye tracking system is positioned directly below 
the monitor and records the position of the participants left eye. It uses an 
infrared light and from the light reflected by the eye, the position of the center 
of the pupil is determined. EEG measurements are performed with 21 EEG 
electrodes positioned according to the 10-20 system. Another 6 electrodes are 
used to record the EOG. They are positioned above and below both eyes, left of 
the left eye and right of the right eye. Recordings for all electrodes are offline 
referenced to averaged mastoids. EEG and EOG are recorded at 256 Hz using 
the BioSemi ActiveTwo system with sintered Ag/AgCl electrodes using a 
lowpass filter with a cut-off of 67 Hz. Eye tracker data are recorded at 50 Hz 
using the SensoMotoric Instruments RED eye tracker with an angle resolution 
better than 0.1 degree. The eye tracker data are up-sampled from 50 to 256 Hz 
afterwards and synchronized with the EEG recording. During the task, the 
participant sits comfortably in front of a monitor at 0.8 m distance with the 
head supported and eyes are horizontally aligned with the center of the screen.   

3.6.1 Results 

With experimental data it is not possible to calculate the SNR because ( )c t  is 
unknown. For this reason, the estimated EEG, (̂ )c t , is presented as a result of 
correction. The segment that is shown corresponds to the 10 seconds 
immediately after the 30 second initialization period. Because SNR cannot be 
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determined, it is not possible to objectively prove the accuracy of these 
corrections. Results, again shown for the Fp1 position, are illustrated in Figure 
3.4 for the eye tracker and the SOBI method as these performed best on 
simulated data.  

 

 
Figure 3.4: Experimental data for three different types of eye movement in the first row 

of each subfigure, recorded at Fp1. The estimated (̂ )c t  corrected by the eye tracker 
method and the SOBI method are in respectively the second and third row of each 

subfigure. For saccadic eye movements, ( )p t is also displayed. Note the different scales of 
the y-axis (μV), which are used to show the full range of ( )r t  while also showing some 

detail in the corrected data. 
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The matrix Q  is set to make sure that all parameters in ( )tφ  stabilize within 30 

seconds.  

3.6.2 Discussion 

When (̂ )c t  is observed for these three situations using the eye tracker method, 
the only remarkable disturbance that is still clearly visible in (̂ )c t  is in the 
saccade data. Here there remain some small disturbances directly after the 
onset of each saccade. The disturbance is also visible after SOBI correction, and 
therefore it is unlikely that this disturbance is caused by the correction method 
itself. The disturbances are probably caused by what is known as the rider-
artifact [22]. This artifact is often seen with saccadic eye movements and is 
caused by slight changes in the positions of the eyelid that occur when saccadic 
eye movements are made. Because the eye tracker did not monitor eyelid 
movement, this type of artifact could not be removed by the eye tracker 
method. The artifact is mostly seen with vertical eye movements. When the 
SOBI results are compared to the eye tracker results it appears that the eye 
tracker method is better in removing the baseline drifts from the data. These 
drifts can be uncorrelated between electrodes, and because SOBI relies on 
inter-electrode correlations to detect artifacts, the SOBI method will not 
correct them as well as the eye tracker method. It should be noted that for 
consistency with the simulated data, the MLR method uses only two bipolar 
EOG recordings. This corresponds to the optimal setting found on simulated 
data. On experimental data it can be argued that a third recording is required 
to compensate for blinks and small eyelid movements. However, adding a third 
EOG recording increases the risk of overcorrection and removing brain related 
activity from the EEG. 

3.7 Discussion & conclusions 

As eye movement artifacts are often seen in EEG recordings, correction for 
these artifacts is frequently needed to get a clear indication of the electrical 
activity of the brain. For the purpose of correction, it is desirable to have an 
indicator of which eye movements were made during the recording. Often the 
EOG is used for this purpose, however in this chapter we introduce the use of 
an eye tracker to monitor eye movements. This has the advantage that the data 
recorded by the eye tracker cannot be corrupted by any electrophysiological 
signals. Using the eye tracker data as a reference for correction thus is 
potentially very powerful. Nevertheless two issues related to the eye tracker 
should be addressed.  Firstly, the eye tracker used in the experiments, is not 
able to distinguish between small head movements and eye movements. It only 
represents the position of the pupil in a fixed frame. Although this implied for 
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our experiments that the participants had to be specifically instructed not to 
move their head, in the future the use of a head mounted eye tracker can avoid 
this constraint. During the experiments the position of the head was 
continuously observed and no large movements were seen. Secondly, the eye 
tracker is not capable of detecting pupil position while the eyes are closed 
during blinks or during periods of prolonged eye closure. For prolonged 
closure periods, like during sleep, this implies that the eye tracker-based 
method cannot be used. For blinks it implies that the pupil position information 
will be briefly interrupted causing a gap in the pupil information. Although in 
the current study such gaps were not present by selecting segments without 
blinks, in most data they will occur. For such a brief period it seems fair to halt 
adaptation, and continue once the pupil position can be recorded again. The 
properties that determine the parameters in ( )tφ  are expected not to change 
significantly in these brief periods. 

By using both simulated and experimental data, it is determined how the 
orientation of the eye, ( )p t  recorded by the eye tracker, influences the EEG 
signal, ( )r t , that is recorded at an electrode. This relation, described in (3.1), is 
at most of second-order.  
Knowing the order of the relation between ( )p t  and ( )r t , a Kalman filter is used 
for obtaining the parameters that specify the exact relation for each electrode 
position. The Kalman filter is an adaptive filter that can estimate these 
parameters and track their changes in a limited period of time. In Section 3.4.3 
a tracking time of 30 seconds was selected, after which the estimated 
parameters should have stabilized.  

To gain insight in how well this new correction method performs, it is applied 
to both simulated and experimental data. The same data are also corrected by 
three established correction methods, which have been previously reported to 
result in accurate ocular artifact removal. Different types of eye movements are 
analyzed because the morphology of ( )p t  is likely to influence the performance 
of some correction methods.  

On simulated data, the eye tracker method performs very well. When the 
method is tuned optimally for this data, the SNR after correction is over 10 dB 
for all types of eye movements. When compared to the other three methods, 
only the SOBI method shows similar results for one eye movement type.  
It should be noted that low frequency components in ( )c t  also cause slow 
changes in ( )r t . These will affect φ 1(t) and therefore influence ê ( ( )p t ). This has 
a negative effect on the correction. The estimate ê ( ( )p t ) is correlated to ( )c t , 
while e ( ( )p t ) is independent of ( )c t . After stabilization, the difference ( )u t = ( )c t  
- (̂ )c t  is not white noise but ( )u t  may display considerable fluctuations. These 
fluctuations are proportional to fluctuations in ( )c t  because of the small 
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cerebral influence on ê ( ( )p t ). The amplitude of these fluctuations depends on 
the first diagonal element of matrix Q , denoted as 2

1Xσ . Larger 2
1Xσ will lead to 

higher amplitude fluctuations in ( )u t . For the tracking time used in this study 
the amplitude of these fluctuations is found to be negligible. When the new 
method is applied e.g. to data containing a lot of blinks, it is desirable to have a 
much shorter tracking time after each blink. If a shorter tracking time is 
required, the fluctuations in ( )u t  need to be considered. For now, a Kalman 
filter that assumes that ( )c t  is of white spectrum already outperforms the other 
methods, even though in simulations and reality this spectrum is not white. 
The assumption of matrix Q  being diagonal is, as mentioned in Section 3.4.3 a 

simplification of reality. This assumption is necessary because the true 
interactions between parameters are very difficult, if not impossible, to assess. 
Therefore a choice needs to be made on how to implement matrix Q . By using 

the simplest scenario, of Q  being a diagonal matrix, adequate correction is 

already achieved, although there is still room for improvement. 

On experimental data results for the different correction methods also look 
convincing. When inspected visually, the (̂ )c t  that is estimated by the eye 
tracker method appears to be a clean EEG signal that does not show obvious 
ocular influences any more. The only exception to this is a small change in 
potential that is seen for saccadic eye movements. This change is probably 
caused by a rider-artifact that starts simultaneously with the start of some 
saccades. As this artifact is known to be caused by movement of the eyelid, it 
cannot be removed by the new correction method. The results for the SOBI 
method appear to contain small baseline fluctuations that are not corrected for. 
It should be noted here that components-based methods are often praised for 1: 
their ease of use, 2: their ability to remove eye movement artifacts as well as 
blink artifacts and 3: their ability to extract small specific brain activities, like 
EPs, in trial-based studies accurately. In this chapter, the two components-
based methods are outperformed by the eye tracker-based method. 
Nevertheless, this chapter does not distinct in any way on how well any 
correction method will be successful in extracting small EP signals. The vector 

( )tφ  can be affected by properties, like retinal luminance, that influence the 
relation between the corneo-retinal dipole and recorded signal. Some of these 
properties will not affect the relation between a brain activity dipole and the 
recorded signal, and hence the fluctuations in these relations parameters will be 
different. Deciding which method is best at detecting EPs requires a different 
study, and could be combined with an ocular artifact removal method. 

For the eye tracker method a one channel EEG recording is sufficient to obtain 
the results that are shown. The extra requirement for this method is that an 
eye tracker is added to the experimental setup. For the SOBI method, no eye 
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tracker is required, but EOG electrodes need to be included in the 
measurement as well as a larger number of EEG channels to obtain the results 
presented here.  

Currently the applications for which this method can be used are greatly 
limited by the inability to correct blink artifacts. In order to increase the 
variety of applications the new method can be used for, a more advanced eye 
tracker which also monitors movement of the eyelid can be used. Such an eye 
tracker may also be used for the removal of blink artifacts. The use of a head-
mounted eye tracker can eliminate the strict need to avoid any head 
movements during the recording. Some head-mounted eye trackers can be 
worn like glasses and do not interfere with electrode caps.   An extra problem 
that will arise concerns pupil position detection during a blink and during 
periods of prolonged eyelid closure. The SOBI method and the PCA method 
are based on correlation between different electrode positions. Because these 
two methods do succeed in removing part of the ocular artifact, this correlation 
does contain information that is relevant for determining which part of ( )r t  is 
caused by eye movement. The eye tracker method is not yet able to use this 
extra information because it is based on a one channel recording. The method 
can, however, be extended and improved to deal with multiple electrodes and 
the covariances between the different ( )r t  for these electrodes. In summary, if 
eye movement artifacts need to be accurately removed from EEG signals, 
especially for demanding applications such as single trial-based experiments, 
the use of an eye tracker during experiments is essential. 
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Chapter 4 

The use of an eye tracker with EEG allows for 
improved ocular artifact removal 

 

4.1 Abstract 

An electro-encephalogram, EEG, often contains artifacts that should be 
removed prior to interpreting the EEG. Ocular artifact correction methods use 
multi-electrode recordings to determine which part of the experimental data is 
relevant and which part is artifactuous. In this chapter we show that by 
monitoring ocular movements with an eye tracker, an extra source of 
potentially useful information is available that can be exploited to get a more 
accurate ocular artifact correction. This does require the use of extra 
equipment, but can by-pass known difficulties such as the forward/backward 
propagation issue because an eye tracker cannot pick up cerebral activity. By 
recording horizontal pupil position, vertical pupil position, and eyelid position, 
an eye tracker provides all information that is relevant for ocular artifact 
correction. With a Kalman filter, this information is converted to an estimate of 
the ocular artifacts in the EEG. To evaluate the accuracy of this estimate, both 
simulated and experimental data are used and the new method is compared 
against six well known correction methods. The new correction method is 
found to be highly robust over a wide range of simulated ocular artifacts, 
including both blinking and eye movement. The simulations show that it 
consistently outperforms the other correction methods. For this comparison 
two objective signal-to-noise based performance standards are defined and 
used. On experimental data the new method also appears to be superior to the 
other methods.  

4.2 Introduction 

The focus of this work is on correcting ocular artifacts from the electro-
encephalogram (EEG). The EEG is important for the field of cognitive 
neuroscience, in clinical practice as well as in experimental work. Even with 
the important developments in brain scanning techniques of the last decade, 
EEG recordings can be expected to remain important for a good number of 
years to come. A strong advantage for many applications is its excellent 
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temporal resolution (milliseconds). EEG recordings are easy to use, and can be 
employed in the clinic as well as in non-medical laboratories. Researchers may 
focus on different aspects of EEG recordings; the continuous background EEG 
can be analyzed, for instance into frequency components for sleep recordings, 
but analyses may also proceed event-based, so that brain potential components 
related to cognitive events can be extracted. In addition, analyses are possible 
online as well as offline, making brain-computer interfaces and neurofeedback 
possible.  

Artifacts in the EEG may arise, for instance, from body movements or 
laboratory equipment, and can usually be avoided by restricting freedom of 
movement during the measurement, and by electrical shielding, respectively. 
Other artifacts may have a biological origin. For instance, the electrical activity 
of muscles from the neck or face may be picked up by electrodes placed on the 
head.  Jaw muscle activity frequently picked up by EEG electrodes placed over 
the temporal bone is notorious in this respect. The most obvious example of 
such activity for anyone who has ever witnessed an EEG recording is 
undoubtedly the electrical activity of the eyes, which is volume-conducted to 
nearly the whole scalp, grossly distorting the recording. 

The question of how to handle ocular artifacts in EEG recordings depends 
largely on the application under study, and the methods of analyses that are 
going to be employed. In clinical screening for epilepsy, for example, simple 
rejection of epochs containing artifacts may suffice; there is enough remaining 
data available that can be analyzed. For most experimental work focused on 
cognition, however, rejection of epochs with artifacts is not appropriate for 
several reasons. First, rejection may lead to a selection bias because of a 
correlation between eye movements and cognition. Furthermore, rejection 
leads to loss of data. Researchers often try to compensate for this by 
instructing participants to keep their eyes still, thus introducing a secondary 
task that may interfere with the task under study. Finally, in rejection 
procedures there is a risk that artifacts with low amplitude relative to the 
background EEG are not removed. In sum, rejection of ocular artifacts is 
troublesome in many cases, and some correction of the artifacts might be more 
appropriate. Unfortunately, there does not seem to be much agreement in the 
field on which correction method to use, and under which circumstances or for 
which application a certain correction method is deemed to perform 
sufficiently. This becomes apparent from the relatively high number of reviews 
on ocular artifact correction methods that have appeared in the literature over 
the years, each stressing that no general consensus has been reached, 
e.g.,[8;38;39;49;85]. 

Early correction methods, inspired by [125], worked by estimating the ocular 
artifact from the electro-oculogram (EOG), and then somehow subtracting the 
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artifact from the EEG recording. We shall refer to these methods as EOG-
based correction methods. Justification of the EOG-based methods is based on 
the biophysical properties of the ocular artifacts, which arise from the potential 
difference between the back (retina) and front (cornea) of the eye, which can be 
modeled by a rotating dipole of fixed strength [40]. Recording some extra 
EOG electrodes (recommendations on the optimal number differed somewhat) 
used to be a problem, but does not require much extra effort anymore and can 
be realized easily nowadays. The EOG-based methods often use regression 
techniques to estimate the ocular artifact based on the correlation between the 
EOG and the EEG, and then subtract that estimate from the EEG, electrode 
by electrode.  The methods mainly differ in how the estimate is obtained. Some 
methods used a straightforward regression procedure [126;127], others 
incorporated autocorrelation in the estimate [46], and still others treated 
saccades and blinks separately [35;128]. The latter procedure was justified 
because the eye movement artifact and the blink artifact have a different 
biophysical origin, that is, rotation of the eyeball and closure of the eyelid, 
respectively. The need for separate scaling factors (regression weights) for 
saccades and blinks has also been debated though [43;106]. 

The advantages of EOG-based regressive procedures for ocular artifact 
correction are their ease of use, the possibility that they could be applied in 
real-time as well as offline, and on event-based as well as continuous data. 
EOG-based procedures have a serious drawback, however, which is known as 
the forward propagation problem. Not only does the electrical ocular activity 
propagate backward to the scalp where it is picked up by the EEG electrodes, 
but the reverse is also true; brain activity propagates forward and is picked up 
by the EOG electrodes. Because the very same EOG is used for computing the 
scaling factors (regression weights) for the correction, there is a risk that brain 
activity might be unjustly removed from the EEG. Especially, the removal of a 
part of the task-related EEG is undesirable for task-related brain-activity as 
observed in event-based experiments because such task-related brain-activity 
typically has very low amplitude. The importance of this problem likely 
depends on the brain regions from which this activity originates, and could be 
significant for tasks activating frontal brain regions, where the ocular artifacts 
are greatest, and relatively minor for perceptual tasks involving primarily 
posterior brain areas. In [44], the negative effects of this problem to artifact 
correction were studied. When assuming that all brain activity at the moment 
the ocular artifact occurs is localized in a single location in the brain, [44] 
finds the effects caused by the EOG-based correction to be detectable but 
nevertheless preferable to any of the available alternatives. However, because it 
is not known in advance which brain areas are active in a given task – these 
brain areas are the very object of the research – EOG-based methods suffer 
from a possibly serious flaw in this respect. Just how serious this flaw is, 
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especially when tasks elicits task-related brain-activity in multiple brain 
regions simultaneously, is unknown. 

Two solutions have been proposed to deal with this problem. First, separate 
‘calibration’ measurements have been proposed to avoid contamination of the 
EOG by task-related brain activity, e.g., [46]. Before the start of each 
experiment or task block, the participants are asked to produce eye movements, 
and these separate measurements are used to calculate the scaling factors. 
Although this effectively avoids task-related activity when calculating the 
scaling factors, it is also uncertain to what extent the ocular artifacts in the 
calibration measurement are identical to those in the actual recording. Another 
procedure was proposed for event-based experiments, in which selected 
segments of data around the event of interest are usually averaged together. 
[35] proposed to subtract the event-related average from each single-event 
epoch prior to calculating the scaling factors. This also effectively removes the 
(average) task-related activity, but has two disadvantages; it is only useful for 
event-based experiments, and it can only be used after the full experiment has 
been completed. It is thus unsuitable for real-time work such as brain-computer 
interfaces, and for much clinical work, such as sleep recordings, which are not 
event-based. 

An entirely different solution to the problem of correcting ocular artifacts is 
provided by the components-based methods. These multivariate methods take 
advantage of the fact that the ocular artifact does not affect all brain regions 
equally. They use the recordings at multiple electrodes to identify ‘components’ 
that represent brain activity on the one hand, and artifacts (ocular or 
otherwise) on the other. In the field of ocular artifact correction, these methods 
separate brain and ocular components that are either uncorrelated, as in 
Principal Components Analysis (PCA, e.g., [129]), or independent, as in 
Independent Components Analysis (ICA, e.g., [130]). Physiological as opposed 
to statistical approaches have also been proposed [87]. Components-based 
methods do not suffer from the forward propagation issue that plagues EOG-
based procedures, and can even be used without recording the EOG. They 
therefore do not require separate calibration measurements. However, they do 
suffer from two important disadvantages. First, they require a full segment of 
data for analysis, making real-time application in brain/computer interface or 
neurofeedback difficult if not impossible. Secondly, although they do not suffer 
from the forward propagation problem, they have still been found to be 
susceptible to overcorrection, in which part of the relevant signal is removed 
together with the artifact [16]. 

It thus seems that there remain a number of important problems to overcome. 
In Chapter 3 we attempted to launch an entirely new point of view to this 
discussion by proposing a tracker-based method. We reasoned that, contrary to 
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EOG electrodes used in the EOG-based methods, an eye tracker can provide 
information on ocular artifacts that is unaffected by brain activity, thus 
avoiding the forward propagation problem. Recall that the main disadvantage 
of the EOG-based methods was the forward propagation problem and the 
resulting overcorrection of the brain activity, but otherwise EOG-based 
methods have the advantage, compared to components-based methods, that 
they can be applied in real time, and on continuous as well as event-based data. 
We reasoned that by using an eye tracker we could keep these advantages 
while getting rid of the major disadvantage. In [131], it was shown that an eye 
movement video tracking system provides an estimate of eyeball rotations and 
hence of eye movements that is more accurate than the estimate provided by 
EOG. 

The approach of using an eye tracker to estimate eye movements by means of a 
Kalman filter in Chapter 3 was shown to permit accurate removal of eye 
movement artifacts, yet retains the advantages of the EOG-based methods.  

The main deficiency of the tracker-based method in Chapter 3 is that it will 
only correct for eye movements, and not for blinks. This deficiency comes from 
the fact that an eye tracker records the horizontal and vertical position of the 
eye by focusing on the pupil. This way, an eye tracker monitors eye movements 
but not blinks. We expect, however, that this problem can be overcome by 
future technological advances. Eye trackers may evolve to easy-to-use and 
easy-to-wear devices that are integrated with a pair of glasses, which do not 
limit the freedom of the participant’s or patient’s movement and are capable of 
monitoring both pupil- and eyelid- movements. Easy-to-wear devices have 
already been used successfully for detecting, separately, movements of the eye 
[131] and of the eyelid [132], so our expectations in this regard are not 
unrealistic. 

The purpose of the present study is  

1. to extend the functionality of the tracker-based method , and  
2. to obtain an objective quantification of the success of the tracker-based 

method on simulated data, and verify this on experimental data. 
To address the first point, we take from literature the relation between eyelid 
position and blink artifact and incorporate this in the relation that was used by 
the existing tracker-based method. Because our eye tracker cannot detect 
eyelid position, we suggest an alternative approach to estimating eyelid 
position based on a single EOG recording and a blink-template. To address the 
second point, we constructed simulated data based on realistic models, broadly 
covering common EEG measurements. We also included simulations with very 
high numbers of blinks and eye movements, representing the most challenging 
situations. These data sets were subjected to the tracker-based method, and 
compared to six commonly used correction methods. We defined and used two 
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separable objective performance measures, based on signal-to-noise ratio, and 
will show that the tracker-based method outperforms the other methods used 
in this study, often by a large margin. During a blink, the eyelid covers the 
pupil, and pupil position information becomes temporarily unavailable. It is 
known that during these brief periods small eye movements occur, which cause 
artifacts in the EEG. In our simulations, the eyes are therefore allowed to move 
while a blink occurs. For our tracker-based correction method we do not have 
information regarding eye movements during a blink and we therefore have to 
impose the assumption that the eye does not move during these periods. One of 
the defined performance measures focuses specifically on these brief periods 
and can indicate the impact of this lack of information. 

In order to exclude the possibility that these conclusions were reached based 
on peculiarities of our simulated data, or of our performance measures, we also 
applied all methods to three experimental data sets. Of course, objective 
quantitative comparisons are not possible in that case, but visual inspection of 
recorded waveforms before and after correction, confirmed the robustness of 
the tracker-based method.  

4.3 Methods 

Previously, in Chapter 3, we specifically selected periods of the EEG in which 
no blink artifacts occurred. During these periods, an eye tracker recorded the 
horizontal and vertical position of the pupil, respectively denoted as 1( )p t  
and 2( )p t , and these recordings were used to correct the raw EEG for eye 
movement artifacts. In this study it is proposed to detect eyelid position, 3( )p t ,  
in combination with 1( )p t  and 2( )p t . Because movements of the eyelid are the 
main cause of blinking artifacts, as was suggested in [120], it is expected that 
incorporating knowledge on eyelid position in an artifact correction method 
will improve the accuracy of correction significantly.   

We propose using the position vector T
1 2 3( )=[ ( ), ( ), ( )]p t p t p t p t  as a basis for 

estimating the ocular artifacts that are seen in the raw EEG. This EEG, ( )r t , 
contains a cerebral component, ( )c t , and an eye related component, e ( ( )p t ). 
Both components are related to changes in electric fields inside the head and 
because electric fields are additive,  
 ( )= ( )+ ( ( )).r t c t e p t  (4.1) 

As demonstrated in Chapter 3, during periods without blinks the relation 
between 1 2,( )e p p  and 1( )p t  and 2( )p t  may be approximated by 
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The parameters 1φ ,  2φ , .. are unknown and depend, among other things, on 
physical properties of the subject like the diameter of the head and exact 
morphology of the skull, brain and other biological tissues. Obviously, 
parameters 1φ ,  2φ , ... also depend on non-subject-related properties, like 
electrode placement. Because of slow variations in some of these properties, the 
parameters 1φ ,  2φ , ... are slowly time-varying.    The estimates of these 
parameters are denoted by 1  2, ,..ˆ ˆφ φ .  

In this study we define both 1( )p t  and 2( )p t  in a way that they are zero if the 
eye is oriented towards the center of a screen placed in front of the subject. 
Furthermore 1( )p t  and 2( )p t  are expressed in m and reflect the change in 
orientation point on this screen. For eyelid position, we will use 3( )p t =1 if the 
eyelid is fully opened and 3( )p t =0 if fully closed, with a linear scale in between.  

4.3.1 Modeling and detecting blink artifacts in the EEG 

The eyelid position 3( )p t  is of no influence in (4.2) because there, 3( )p t  is 
assumed constant. When 3( )p t  does vary, and a blink artifact is detected, 
equation (4.2) should be extended. If 3( )p t  is measured simultaneously with 
( )r t , as in [21] and [20], it is found that 3( )p t  and ( )r t  are highly correlated 

and that there appears to be a linear relation. Therefore, in (4.3) an extra term 
is added to (4.2) in order to include the blink artifacts in the modeled relation.  
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with ˆ ( )( )e p t  an estimate for ( )( )e p t . Equivalently 

 T ˆ(̂ ( )) ( ( )) ( ),e p t p t tφ= Ψ ⋅  (4.4) 

with ( ( ))p tΨ = 1 2 3[1, ( ), ( ),..., ( )]Tp t p t p t  and T
1 2 7

ˆ ˆ ˆ ˆ( ) [ ( ),  ( ),... ( )]t t t tφ φ φ φ= .  

Given the relation in (4.4) it is possible to determine (̂ ( ))e p t , given ( )p t .  
The effects of other eyelid related terms, like 1 3( ) ( )p t p t , are briefly mentioned in 
[21] where eye movements were performed either with opened eyelids or with 
closed eyelids. No significant differences in eye movement artifacts were found 
related to the eyelids being opened or closed and therefore the terms 1 3( ) ( )p t p t  
and 2 3( ) ( )p t p t  are not used in (4.3). 

In the Appendix in Section 4.6, we briefly discuss whether ( )p t  can be seen as 
an accurate estimate of the gaze direction and eyelid position.  

Unfortunately, eye trackers are commonly designed to track the eye pupil and 
not to track the eyelid, even though this is not difficult in principle. 
Determining 3( )p t  is not possible in most eye trackers, including the one at our 
disposal.  
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For this reason, we now revert to an alternative way to detect eyelid position, 
based on an electro-oculogram (EOG). Future advances in the versatility of eye 
trackers may, however, turn this alternative obsolete.  

4.3.1.1  Estimating eyelid position from the electro-oculogram 
The linear relation between e ( ( )p t ) and 3( )p t , suggested in [21], implies that 
instead of using the eye tracker, eyelid position may also be estimated from the 
electro-oculogram (EOG). This provides a practical alternative for altering the 
eye tracker software, or for purchasing a different eye tracker. Although 
currently such an alternative way to detect eyelid position is very useful, the 
use of an EOG for estimation of eyelid position has two disadvantages 
compared to the use of an eye tracker for the same purpose, as will be described 
below.  

1. Eye movements are (nearly) always accompanied by small eyelid 
movements [22]. For the artifact correction method that we propose in 
Section 4.3.1, a separate detection of eye movements and of eyelid 
movements is required. With an eye tracker, detecting both these 
movements separately yet simultaneously is, in principle, not difficult. 
Making this distinction based on an EOG is less straightforward because 
only the combined effects of the eye- and eyelid-movement are reflected 
in the EOG. For this reason, we have to define in our method that the 
EOG-based estimate of eyelid position only changes during the brief 
periods that blinking occurs. By doing this, we choose to ignore the 
smaller eyelid movements that occur during eye movements.  

2. EOG electrodes record some cerebral activity together with the ocular 
activity. Especially for situations with little or no eye movements, this 
results in a correlation between ( )c t  and the EOG recordings. This 
correlation can lead to overcorrection, causing part of the cerebral 
activity to be removed from ( )r t .  

It will be shown that despite these disadvantages, the proposed method still is 
superior to the other methods that are evaluated in this study. 

By placing the EOG electrode directly above the eyebrow, the change in 
potential due to the eyelid movement is picked up. Because the EOG electrode 
is close to the eye compared to EEG electrodes and is further from the cerebral 
cortex, it records blink artifacts and eye movement artifacts with high 
amplitude and with less influences of cerebral activity.  

Because of the difference in shape and often also amplitude between blink 
artifacts and eye movement artifacts, it is not difficult to detect each separate 
blink artifact. The number of blinks, B, in a recording is obtained by applying a 
threshold value to the potential as recorded by the EOG electrode. The number 
of times this threshold is crossed is divided by two to obtain B. Changes in 
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eyelid position are smooth and consist of an upward and a downward 
movement during each blink. In order to estimate the eyelid position from the 
EOG recording, we propose to approximate each blink artifact as an 
asymmetric peak which resembles the typical shape of a blink artifact. Note 
that we assume that the recorded blink artifact in the EOG and the estimate for 
eyelid position are of similar morphology, this assumption follows from [21] 
and [20].  

On experimental data, the correction accuracy will be affected by our choice for 
the asymmetric peak function. For this reason a function was chosen that 
resembles the basic shape of an averaged blink artifact, yet retains the 
flexibility to be tuned to a single blink artifact using a limited number of 
parameters. A suitable asymmetric peak is given by 
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an example of such an asymmetric peak is illustrated in Figure 4.1. 

 

 
Figure 4.1: Illustration of an asymmetric peak function (with 1 4bξ = , 2 0.09bξ = , 

3 0.03bξ = , and 4 1.9bξ = ). 

 

Parameter b is the specific index of each blink, assuming a total of B blinks in 

the entire recording, 
^

( )b tΓ  represents the estimated part of ( ( ))e p t , and thus of 
( )r t , that is caused exclusively by the bth blink artifact. Parameter 1

bξ  
represents the estimated amplitude of the blink artifact, 4

bξ  the estimated time 
of maximum blink artifact amplitude, and 2

bξ  and 3
bξ  together estimate the 

duration of the blink and the differences in speed between upward and 
downward movement of the eyelid. For each blink artifact these four 
parameters may be determined by minimizing the squared difference between 

( )r t  and 
^

( )b tΓ  throughout the duration of the blink artifact.  

By assuming (4.5) for each blink artifact, the EOG-based eyelid position is 
approximated by 
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The corresponding estimate for the position vector will be denoted as 
T

1 2 3ˆ ˆ( ) [ ( ), ( ), ( )]p t p t p t p t= . By using an asymmetric peak template for each blink 
artifact, as given in (4.5), we reduce the possibility of cerebral activity in 3̂( )p t  
influencing correction.  

Related to the first disadvantage of using an EOG, as discussed at the 
beginning of this section, it is worth mentioning that even though small eyelid 
movements are ignored in our EOG-based estimate of eyelid position, it is 
possible that these movements are automatically compensated during artifact 
correction by adaptation of the parameters in (̂ )tφ  that relate to the pupil 
position. Such automatic compensation may occur if the small eyelid movement 
is typical for the specific eye movement that occurs simultaneous to it. 
Whether or not such an adjustment occurs, should become apparent when the 
correction method is applied to real data, where the eyelids do move during eye 
movement [22]. Failure to compensate would inevitably lead to artifacts 
remaining after correction.  

On simulated data, introduced further on in Section 4.4.1, the choice for the 
asymmetric peak function to estimate eyelid position becomes arbitrary because 
the same asymmetric peak function is used to simulate the eyelid movements 
and therefore to simulate the blink artifacts. Many other functions could have 
been used for the simulated data, provided that estimated eyelid position and 
simulated artifact share similar morphology as is suggested in [21] and [20].  

Again, the use of an eye tracker with embedded tracking of eyelid position 
would totally overcome the difficulties that are addressed in this subsection. 

4.3.2 Parameter estimation and correction performance 

By using a Kalman filter [123], an estimate (̂ )tφ  is obtained.  

4.3.2.1 Parameter estimation using a Kalman filter 
Vector ( )tφ  may change over time as described by  

 ( ) ( - 1) ( ),t t w tφ φ= Φ ⋅ +  (4.7) 
with matrix Φ  representing the expected changes in ( )tφ  over time and ( )w t  
representing fluctuations in ( )tφ  that are assumed to be white and of normal 
distribution, independent of ( )c t . The notation ( - 1)tφ is used to indicate the 
value of ( )tφ  at the previous sampling instant. In this study ( )tφ  represents the 
state of all parameters that influence the relation between ( )p t and e ( ( )p t ). 
Unfortunately, ( )tφ  cannot be measured and therefore can only be obtained 
indirectly by recording ( )r t , as seen by combining (4.1) and (4.4) to  

 T( ) ( )  ( ( )) ( ) ( ( )) ( ).r t c t e p t c t p t tφ= + = + Ψ ⋅  (4.8) 
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Because of this, ( )tφ  can only be approximated by an estimate (̂ )tφ . The Kalman 

filter provides such an approximation by minimizing ( )2ˆ( ) - ( )t tφ φ . Details on 

the derivation of the Kalman filter can be found in [123]. Here it suffices to 
point out that minimization requires prior knowledge on the variances of ( )c t  
and ( )tφ . 

In the filter it is required to estimate a priori the variances of ( )c t  and ( )tφ  in 
order to determine which one of them is more likely to cause changes to ( )r t . 
Based on these a priori estimates, (̂ )tφ  is estimated. The variance of ( )c t  is 
determined by selecting a segment of ( )r t  in which careful visual inspection 
reveals no ocular artifacts. For such a segment the variance, indicated as R, is 
determined. The vector ( )tφ  is related to numerous processes and physical 
properties, and therefore its variances, indicated as 2

X
σ , cannot be estimated as 

easily as R. For now it is assumed that all parameters in ( )tφ  are mutually 
uncorrelated and slowly time-varying. These slow variations could e.g. be due 
to temperature changes. Matrix 2

X
σ  is therefore a diagonal matrix with the 

variances of the parameters in ( )tφ , indicated as 
1 2

2 2, ,...X Xσ σ  , on its diagonal. 

The matrix 2
X

σ  influences two properties of the Kalman filter. Firstly, a 

Kalman filter automatically changes the rate at which the parameters in (̂ )tφ are 
adapted based on the variance in the data. Thus, the adaptation speed depends 
on the variances defined in 2

X
σ  and R. Secondly, if there is much variance in 

( )tφ , the estimate (̂ )tφ  will be allowed to vary accordingly, resulting in less 
accurate estimation. These two properties are related in a way that if accuracy 
increases, the adaptation speed decreases and vice versa. This implies that 
finding the optimal filter settings requires making a trade off between 
adaptation speed and estimation accuracy. The primary goal of ocular artifact 
removal is to remove the ocular artifact as accurately as possible, and this 
would require slow adaptation. Because the processes that cause changes in 

( )tφ  are slowly varying, the adaptation-speed should be high enough to still 
track these variations. 

Typically temperature may be assumed constant for several minutes. But since 
not all processes that influence ( )tφ  are specified, and some of these may change 
somewhat faster, it is assumed that ( )tφ  is constant over a period of 30 seconds. 
Variations in the strength of the ocular dipole e.g., due to changing 
illumination of the retina, can cause such more rapid changes in ( )tφ . This 

implies that if (̂ )tφ  can track changes in ( )tφ  within 30 seconds, a sufficiently 
fast and maximally accurate parameter tracking is achieved. This tracking time 
of 30 s is used for all parameters in (̂ )tφ . Note however that 7̂( )tφ  will only 
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adapt during a blink. The effective tracking time during this 30 second period 
is thus smaller for 7̂( )tφ . With an average blink duration of approximately 270 
ms [133], and an average blink frequency, Fb, of 15 blinks/min the effective 
tracking time for 7̂( )tφ  is only 2.03 s. The value for 

7

2
Xσ  is set, based on this 

average blink frequency, in the way that 7̂( )tφ  tracks changes in 30 s.  

4.3.2.2 Performance measures 
In order to have an objective evaluation as to how clean the corrected signal 
(̂ )c t  is, two signal to noise ratio measures are defined that compare (̂ )c t  to ( )c t , 

or equivalently (̂ )e t  to ( )e t . For periods without blink artifacts, the first 
measure, SNR1, is defined according to Chapter 3 as  
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with T the duration of the recording, and t1 the start of the recording. The 
signal of interest is denoted ( )s t . What ( )s t  is, depends on the application. 
Clearly, when the signal of interest is ( )c t , more estimation noise can be 
tolerated than when the signal of interest is a small component of ( )c t  as is the 
case in e.g. event-related potential (ERP) studies. In this study, performance 
measure SNR1 is used to evaluate the correction, regardless of whether or not 
the data set contains blink artifacts.  

Because blink artifacts can occur in the data, and are corrected with a relatively 
short adaptation time, special attention is paid to evaluation of the accuracy of 
removing blink artifacts. Therefore a second measure, SNR2, is based only on 
periods where 3( )p t  is close to zero. Because the onsets and the endings of blink 
artifacts in an EOG recording are not strictly defined both in reality and in 
equation (4.5), we define a subset SBA as containing only those time instants 
with 3̂( )p t > TB , { }3̂( )BA TS t p t B= > . Parameter TB  is a threshold value that is 
set at 0.5 % of the maximum blink amplitude. In effect this implies that we 
ignore blink effects that are smaller than 2 μV in the EOG channel. For SNR2 
we define 

 
( )

2

2
2

( ) d  

= .

ˆ ˆ( ( )) - ( ( )) d

BA

BA

S

S

s t t

SNR

e p t e p t t

∫

∫
 (4.10) 

The measure SNR2 hence only reflects periods that are relatively hard to 
correct. These periods contain blink artifacts and may contain eye movement 
artifacts as well. The sequence of samples that contribute to SNR2 is not 
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necessarily continuous because the samples may be interrupted by blink artifact 
free periods. Moreover, blink artifacts in general have durations of less than a 
second.  

The periods with blink artifact influence both SNR1 and SNR2, and therefore 
there is some interaction between SNR1 and SNR2. A possible way to reduce 
this interaction would be to exclude periods with blink artifact from (4.9). This 
would reduce interaction but not eliminate it, because blink artifacts will 
influence the length of the periods that contribute to SNR1. Moreover, after a 
period with a blink artifact, ( )2ˆ ˆ( ( )) - ( ( ))e p t e p t  is expected to have increased 

slightly because of the relatively short effective tracking time of 7̂( )tφ . 
Therefore it seems appropriate to have one overall measure SNR1 and one 
specifically aiming at quantifying blink artifact suppression.  

As an illustration of SNR1 values that are required in practice, we will briefly 
consider an ERP potential called the mismatch negativity, MMN, which 
provides a physiological measure of sensory information being processed by the 
brain [134]. The MMN is the electrical response of the brain, as measured on 
the scalp, which is related to a stimulus that is deviant from other stimuli. 
Although MMN can be determined for different types of deviations, e.g., 
stimulus duration or frequency, in general the MMN potential starts 100 ms 
after the stimulus and lasts 150 ms. During this brief period, it has a maximum 
amplitude of approximately only 2 μV. Adequate ocular artifact removal is 
essential during these periods, since the presence of normal cerebral activity 
already makes MMN detection a challenging task. Additional artifacts should 
therefore be eliminated. For simplicity we assume a constant MMN potential of 
0.5 μV and of 150 ms duration. To adequately detect this MMN, the remaining 
ocular artifacts during this period should be several times smaller in amplitude, 
which would require an SNR1 of approximately 10 dB.  

4.3.3 Existing correction methods 

Most of the early correction methods are EOG-based [38]. They use one or 
more EOG recordings as a reference on what part of ( )r t  to remove.  Later, 
components-based correction methods like Principal Components Analysis 
(PCA) and Independent Components Analysis (ICA) have been suggested 
[98]. These methods decompose a multivariate signal into underlying 
components which are assumed to have some statistical property. This 
statistical property is usually either mutual independence, or mutual 
uncorrelatedness. By selecting the components that resemble ocular artifacts 
and eliminating these in the process of reconstructing the multivariate signal 
out of the components, artifacts are removed. 

Since [38], several EOG-based methods have been newly introduced or 
revised. The main reasons for these changes related to the questions of whether 
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or not blink artifacts and eye movement artifacts need to be corrected with 
different regression coefficients, whether or not forward propagation, i.e. the 
presence of cerebral potentials in the EOG, is indeed an important issue with 
related to these correction methods, and which and how many EOG recordings 
should be used in the process of correction. From the fact that some of the 
latest of these correction methods still differ in their answers to these 
questions, we can conclude that consensus has still not been reached. For 
example, the RAAA method [42], stresses that the blink artifact for most 
electrode positions requires a different way of correction compared to the eye 
movement artifact. To this end, three bipolar, orthogonal, EOGs are used. 
Furthermore, RAAA assumes that consequences of forward propagation are 
marginal [44]. By contrast, the correction that is suggested in [128] uses the 
same propagation factor for blink artifacts and eye movement artifacts, and it 
avoids using a third EOG in order to reduce the possible negative effects due to 
forward propagation.  

Comparisons between EOG-based methods and the components-based 
methods are scarce. Components-based methods are versatile and can correct 
simultaneously for a variety of artifact types, not exclusively ocular artifacts 
like the EOG-based methods. 

As mentioned in [128], it still is unclear whether or not (parts of) cerebral 
signals are unjustly removed when using the components-based correction 
methods. Some studies, e.g., [82], suggest that the underlying components 
which these methods extract can contain fluctuations related to cerebral 
activity. As a result, their performance could deteriorate significantly. 

The eye tracker method presented in this chapter has the advantage that its 
reference signal on ocular artifacts is not influenced by any other biological 
signals, in particular by cerebral activity. The direct reference measurement is 
expected to be better than the use of ‘underlying components’, because it is 
obtained directly from the eye, while components are obtained indirectly 
through a possibly inaccurate mathematical recipe.  

To gain insight in the performance of the eye tracker-based method compared 
to some of the existing methods, this study will have multiple correction 
methods correct the same data sets. For comparison, six methods are selected 
either because they performed well in other comparisons, including [16;48] 
and Chapter 3, or because they are frequently used today. These methods are 
listed in Table 4.1 together with some of their characteristics. 
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Table 4.1: Overview of evaluated methods and some of their properties 

Full name Abbr. Reference Component- 

 / 

EOG-based 

Minimal number of 
electrodes 
(EEG/EOG) 

Eye tracker-
based 
correction  

EYE   1/0# 

Multiple Linear 
Regression 

MLR [116] EOG 1/1o 

Regression 
with 
AutoRegressive 
Error 

RARE [46] EOG 1/1o 

Principal 
Components 
Analysis 

PCA [117] Component 1/0* 

Second Order 
Blind 
Identification 

SOBI [51] Component 1/0* 

Fast ICA FICA [115] 

 

Component 1/0* 

Joint 
Approximate 
Diagonalization 
of Eigen values 

JADE [59] Component 1/0* 

# : The current implementation requires 1 EOG electrode, this can be 
reduced by using an eye tracker that detects eyelid movements.  

o : 1 EOG electrodes assumes a monopolar reference but often, as in this 
study, a bipolar reference with at least 2 EOG electrodes is used.  
* : Minimal requirement is 2 electrodes, EEG, EOG or mixed. However, 
for accurate results these methods require more electrodes. 

 

The MLR correction method can be implemented using either a single EOG, 
using two EOGs which makes the method identical to the correction method of 
[127] as used in [50], or with three EOGs. In our results, all three 
implementations are considered and the highest SNR using either one, two or 
three EOGs is automatically selected and used for comparison against other 
correction methods.  
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For the components-based algorithms it is not a priori known which 
underlying components will be detected. If detected, components that are 
related to ocular artifacts should be removed. This can be done either manually 
or automatically. For an objective evaluation of these methods, an automatic 
detection is preferred.  In this study, if the normalized cross-correlation 
between a component and one of the recorded EOG signals exceeds a threshold 
value, the component is marked as ocular and is removed. The threshold value 
was optimized and set to 0.5. The RARE and SOBI algorithms require a choice 
of parameters. For RARE this is the order of the AR-model used to model the 
EEG, set to 4 following [46]. For the SOBI algorithm a number of time lags 
needs to be chosen. The correlation of each component with respect to all other 
components and to the component itself is calculated at the specified time lags. 
The SOBI algorithm minimizes the sum of these correlations for different 
components. In this study we use lags of 1, 2, 3, 5, 10, and 20 samples at 256 
Hz. These lags were found to yield good corrections in a pilot study, as well as  
in Chapter 3. An optimal selection of these lags requires a separate detailed 
study as was done for the extraction of primary somatosensory cortex signals 
[52]. Such an extensive extra study is, however, beyond the scope of this 
chapter, and therefore it cannot be concluded that the number of lags and the 
choice of lags we use is optimal.  

Considering the large number of existing correction methods, it is obvious that 
not all correction methods can be included in our evaluation. We will briefly 
discuss what we consider to be the two most significant omitted methods.  

The Gratton method [35] is frequently used for correction of ocular artifacts 
in event-based experiments. It can however not be used for the correction of 
continuous EEG recordings as are considered in this study. The RAAA 
method [42] was indicated as the most accurate correction method in a recent 
comparison between four methods on event-based experiments  [50], 
including the aforementioned Gratton method. This RAAA method requires 
the careful alignment of artifacts in a set of calibration trials to estimate 
propagation factors for three EOG recordings. The experimental data that is 
used in our study (discussed in one of the following sections) has been recorded 
prior to the publication of the methods comparison in [50]. We therefore did 
not include such calibration sessions in our experimental protocol, and hence 
we are not able to show the correction results of the RAAA method on the 
experimentally recorded data of this study. Because a method should ultimately 
be validated on experimental data rather than simulated data, we feel that 
quantitative comparisons between the performances of different methods on 
simulated data always need to be supplemented and backed by correction 
results on experimental data. The inability to provide such backing for the 
RAAA method is the key reason why we chose to exclude this method from the 
simulated data section as well. 
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4.4 Evaluation 

The performance measures defined by (4.9) and (4.10) can only be calculated if 
( )e t  and ( )s t  are known. In practice these signals are never known, because that 

would eliminate the need for artifact removal. The objective evaluation of the 
different methods can thus only be performed for simulated data sets in which 
( )e t  and ( )s t  are known.  

An argument against the use of simulated data was given in [50]. Because any 
model that simulates EEG data and artifacts is based on certain assumptions, it 
was claimed that poor correction results on simulated data can be attributed 
either to bad correction methods or to erroneous assumptions in data 
modeling.  

In principle this argument is correct. Nevertheless, it does not disqualify the 
use of modeled data. It merely calls for an adequate and detailed description of 
the assumptions underlying the modeled data. By providing this, the validity of 
the assumptions can be addressed and, if necessary, debated. Because the 
possibility that certain assumptions in modeled data are erroneous, or 
simplified too much, always exists, we feel that comparisons on simulated data 
should always be interpreted in combination with correction results on 
experimental data. The correction results on experimental data provide a 
‘sanity check’ that can guard, and warn, for erroneous modeling assumptions. 

The important advantage of using simulated data clearly is the fact that both 
( )s t  and ( )e t  are exactly known, and that an objective, quantitative evaluation of 

the corrected data is possible. For experimental data, it remains impossible to 
exactly quantify how well the EEG is preserved during the removal of ocular 
artifacts. Existing correction validation measures for experimental data, such 
as those suggested in [50], focus on features within the EEG that are related 
to the eye movement. They are not (negatively) affected by correction methods 
which corrupt the background EEG, which is a considerable disadvantage 
because many correction methods are at risk of removing part of the 
background EEG in the process of removing artifacts.  

4.4.1 Simulations 

We simulate EEG, EOG and eye tracker data using a Boundary-Element-
Method, BEM, based model of the human head. The exact model is described 
in more detail in Chapter 2 and 3, and defines the simulation of ( )c t  and eye 
movement artifacts. This model simulates separately, but realistically, the 
sources that generate e ( ( )p t ) and ( )c t  and reflects the main biophysical 
properties of EEG generation and conductance. The EEG is simulated at all 
positions of the 10-20 system. Because properties that determine conduction 
remain constant during the simulation, the simulated vector ( )tφ  is  constant.  



106  Chapter 4   
 

 

4.4.1.1 Simulating the eye movement artifact 
The eye movement artifact is simulated by rotating two of the dipoles in the 
head model, as described in Chapter 2. Several types of eye movement are 
simulated ranging from no eye movement to very fast and unpredictable eye 
movement. In Table 4.2 the different eye movement artifacts are listed and 
described. 

 

Table 4.2: Simulated eye movements types and their descriptions 

 
In Table 4.2, dm is the maximum amplitude of 1( )p t  and 2( )p t with respect to the 
center of the monitor screen (dm =0.225 m), ω represents the angular frequency 
of the deterministic eye movement in rad/s, and N(0,σ= dm /4) indicates a 
normal distribution around zero with a standard deviation of dm/4. None of the 
samples drawn from this distribution exceeded dm in our simulations. Samples 
for saccadic eye movements are drawn from{- dm, 0 , dm }, with equal probability 
for the three entries.  

For random eye movements, the eyes are on average directed towards the 
center of the screen. Because the frequency of eye movements is physically 
limited, e.g. it is only possible to focus on approximately three different spots 
within one second, positions 1( )p t  and 2( )p t  are simulated by applying a low 
pass filter, with a cut off frequency at 3 Hz, to a random, white noise signal. In 
the simulations without eye movement artifact, correction should only remove 
a DC offset. The deterministic eye movement simulates a dot-tracking task 
where the dot makes a smooth circular movement over the screen. The 
saccadic eye movement simulates a dot-tracking task where the dot jumps once 
every two seconds from one point of the screen to another. For the variance of  
( )c t , as described in Section 4.3.2.1, we find R to be 144 μV2, averaged over 

nine subjects. 

Type Name Constraints 

Random Random eye movement 1( )p t ∈N(0,σ =dm/4),  

2( )p t ∈N(0,σ = dm /4) 

No No eye movement 1( )p t = 2( )p t  =0 

Deterministic Deterministic eye 
movement 

1( )p t =  dm *sin(ω*t),  

2( )p t =  dm *cos( ω*t ) 

Saccadic Saccade eye movement 1( )p t ∈{-  dm , 0 ,  dm } ,  

2( )p t ∈{-  dm , 0 ,  dm } 
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The amplitudes of ( )c t  and e ( ( )p t ) can be scaled in the simulation by increasing 
the strength of the neural sources in the model. This way potential is scaled to 
realistic values, with the amplitude of the eye movement artifact scaled to 
experimentally determined values for each specific electrode position.  

4.4.1.2 Simulating the blink artifact 
The scalp topography of the blink artifact may be different from the scalp 
topography of the eye movement artifact. The eye movement artifact is caused 
by a rotation of an electrical source in a steady volume conductor, whereas the 
blink artifact is caused by a slight change in conductive properties of the 
volume because of the eyelid movement. Implementing a volume conductor of 
time varying shape in the BEM is complicated, and therefore the blink artifact 
is simulated in a different way. To obtain the scalp topography of blink 
artifacts, an experiment is performed in which the EEG is recorded at several 
electrode positions, referenced to averaged ears. During this experiment the 
participant performs no task. After two minutes, the recording is stopped and 
all blinks in the recording are detected from the EOG electrode above the right 
eye. For all detected blinks, the time of maximum blink amplitude is selected. 
The simultaneously recorded amplitudes at all other electrodes at these times 
are selected and averaged. In Figure 4.2 these averages and their standard 
deviations are shown together with the averaged amplitude of 24 samples 
drawn randomly from the same data set. Note that the blink-locked average is 
consistently higher than the random average. This indicates that the blinks can 
be seen at all electrode positions with the same polarity. The only exceptions to 
this are two EOG electrodes placed below the eyes, indicated by D (down). The 
two EOG electrodes above the eyes, indicated by U (up), record the largest 
amplitudes. The L and R symbols indicate left and right respectively. 
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Figure 4.2: Amplitude at the time of maximum blink amplitude (solid) and at 

randomly selected times (dashed) for several electrode positions, averaged over 24 
blinks. 

 

Each simulated data set should represent a different subject with different blink 
properties. Therefore equation (4.5) is fitted on the blinks recorded from 9 
different participants. For all of these participants, the mean parameter values 

1 2 3 4, , ,ξ ξ ξ ξ  describing the blink artifact, and their standard deviation, are 
derived. Note that these parameters represent the blink artifact at the EOGLU 
electrode. For every simulated data set, the mean values for 1 2 3 4, , ,ξ ξ ξ ξ  and 
their standard deviations, belonging to a randomly selected participant, are 
used to simulate blink artifacts of varying shape duration and amplitude. The 
blink frequency Fb at which blinks occur is typically around 0.25 blinks/s for 
humans. In this study Fb will be set to 0.1, 0.25, 0.5, and 1 blinks/s to evaluate 
also low and high frequent blink data.  By using the differences in blink 
amplitude for different electrode positions, as illustrated in Figure 4.2, the 
blink artifact sequence is scaled and simulated at all desired electrode positions. 
This way, no explicit assumption on differences between blink artifact scalp 
topography and eye movement artifact scalp topography is made, as both are 
based on experimental data. Note that from experimental data it is known that 
voluntary blinks can have a different duration and shape compared to 
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involuntary blinks [133]. This is not simulated in this study. All blinks made 
in our experimental datasets are voluntary. 

4.4.2 Combining Simulations 

For each type of eye movement artifact of Table 4.2, 60 seconds of data are 
simulated at a rate of 256 Hz. The first 30 seconds are used for parameter 
initialization. The last 30 seconds are used to evaluate the correction method. 
The blink artifact is also simulated for 60 seconds and added to the simulated 
eye movement artifact data. The scalp topography of the blink artifact is 
different from the topography of the eye movement artifact. 

Note that especially for low Fb values, it is possible that there are fewer than 
two blinks in the first 30 seconds of simulated data, and parameter 7̂( )tφ will not 
have converged once performance evaluation starts. In practice, this will not 
cause any problems, because the participant can be instructed to blink. For the 
simulated data, this problem will be overcome by adding an extra 60 s of 
simulated data to the 30 s of initial parameter stabilization time. This does not 
influence performance since the tracking time remains 30 s, but it does greatly 
reduce the chance of non-converged 7̂( )tφ  during the performance evaluation. 

The measure SNR1 is calculated over the last 30 s of the measurement, and 
SNR2 is calculated over those periods during the last 30 s where a blink artifact 
occurs. The signal of interest in this case is ( )c t . In the following section, 
results are shown for the Fp1 position. This position is close to the eyes and 
the EEGs recorded here contain large ocular artifacts. The results for this 
position can be considered as ‘worst case’ results. 

4.5 Results, discussion & conclusions 

4.5.1 simulated data 

Figure 4.3 shows respectively the mean SNR1 and SNR2 values for the 
different sorts of simulated eye movement and blink frequencies. The results 
shown in this figure are averaged each over 20 simulated data sets.  In all our 
performance evaluations the desired signal component ( )s t  is equal to ( )c t  
because we want to remove ocular activity from ( )r t  and detect all cerebral 
activity.  
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Figure 4.3: Performances SNR1 and SNR2 for simulated data sets, calculated at Fp1. 
Each of the four different eye movement artifact types, as described in Table 4.2, is a 

subfigure. On the x-axis the blinking frequency is indicated. 

 

Note that the amount of data from which we determine the average SNR1 and 
SNR2 values are different. For Fb=0.1, measure SNR2 is calculated using 
approximately only 3 % of the data that is used for SNR1. We validated that 
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this amount of data is sufficient for getting an adequate estimate by comparing 
results to a value of SNR2 calculated for simulations over a prolonged period 
(only for the deterministic eye movement artifact at Fb=0.1, the resulting 
simulated dataset was 900 s). 

 In Figure 4.3 it can be seen that: 

• SNR1 decreases when Fb increases. This is true for almost every sort of 
simulated eye movement artifact and correction method and shows that 
an increasing number of ocular artifacts decreases the quality of 
correction. If a correction is not perfect, each blink can leave a small 
residual artifact after correction. Higher Fb indicates more blinks and 
thus lower SNR1. 

•  SNR1 is higher than SNR2, which was expected because SNR2 in 
general represents the most challenging data with both blink artifact and 
eye movement artifact. 

• SNR1 and SNR2 are highest when no eye movement artifact was 
simulated. In this situation it was only necessary to remove blink artifact 
and thus, similar to the first remark, a decreasing number of ocular 
artifacts increases the quality of correction. 

• Most of the SNR1 and SNR2 values are above 0 dB, indicating that the 
power of the signal is greater than the power of the remaining noise. 

• For all  simulated data sets the EYE method has the highest SNR1 of all 
evaluated correction methods, indicating that the EYE method is very 
robust and consistently superior compared to the other methods in this 
study. Also for the more challenging data considered for SNR2, the EYE 
method is superior to all other evaluated methods. Only once, for a 
deterministic eye movement artifact with an Fb of 0.1 blinks/s, is the 
SNR2 of the EYE method slightly exceeded by the SNR2 of the SOBI 
method.  

• With the EYE method, a SNR1 value of at least 10 dB is achieved, 
regardless of the type of eye movement and the blink frequency. This 
implies that if this method is applied after (or during) EEG experiments, 
the power of the remaining signal will be at least 10 times higher than 
the power of the remaining noise.  

• In a standard situation, with the random eye movement artifact and an 
Fb of 0.25, the EYE method has the highest SNR1 and SNR2. For that 
situation the MLR method performs second best. 

• The MLR method is the only method that performs worse when there is 
no eye movement artifact, which is in accordance with Chapter 3. This is 
probably caused by an overcorrection. Cerebral signals of low amplitude, 
as can be present in EOG electrodes, are subtracted from the EEG 
electrode that is being corrected. 
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• The SOBI method has comparatively low SNR1 and SNR2 values for the 
higher values of Fb. For low values of Fb, the SNR values increase and 
are close to MLR and EYE values. In a previous study with Fb = 0, in 
Chapter 3, it was found that SOBI correction results in SNR values that 
are close to results for EYE correction. This is also to be expected when 
extrapolating the results shown in Figure 4.3. 

• The RARE method has surprisingly low SNR values. The reason for this 
is a combination of blinks, DC adjustment and non-adaptive correction. 
When blinks occur as ‘spikes’ in the data set and the mean of the data is 
set to zero, the resulting data will not have an average of zero during 
non-blinking periods. This average value will be different for all 
electrodes, including the EOG electrodes. When parameter calibration is 
performed, the parameters will not converge to a value that represents 
ocular artifact in the EEG, but to a value that corrects this offset. 
Therefore the RARE method should not be used for correcting data that 
contains blinks or the RARE method should be altered to estimate 
different parameters for blinking and non-blinking periods. 

For these simulated data sets, the EYE method is concluded to be highly 
robust and the best choice for correction. Results for other electrode positions 
also showed a similar ranking between the different methods, with the EYE 
method again performing best. 

4.5.2 Experimental data  

EEG, EOG and eye tracker measurements are collected from 9 participants 
aged 19-21, 5 male and 4 female. The participants perform different tasks 
involving eye movements. These tasks correspond to eye the random, the 
deterministic and the saccadic eye movement artifacts of Table 4.2. The 
participant is asked to keep his eyes on a dot that appears on a 19-inch monitor. 
An eye tracking system is positioned directly below the monitor and records 
the position of the pupil of the participants left eye. It uses infrared light and 
from the light reflected by the eye, the position of the center of the pupil is 
determined. EEG measurements are performed with 21 EEG electrodes 
positioned according to the 10-20 system. In lieu of the possibility to detect 
eyelid position with the eye tracker, another 6 electrodes are used to record the 
EOG. These are positioned above and below both eyes, left of the left eye and 
right of the right eye. Recordings for all electrodes are referenced offline to 
averaged mastoids. The EEG and the EOG are recorded at 256 Hz using the 
BioSemi ActiveTwo system with sintered Ag/AgCl electrodes using a lowpass 
filter with a cut-off frequency of 67 Hz. Eye tracker data are recorded at 50 Hz 
using the SensoMotoric Instruments RED eye tracker with an angle resolution 
better than 0.1 degree. The eye tracker data are up-sampled from 50 to 256 Hz 
afterwards and synchronized with the EEG recording. We chose to up-sample 
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the eye-tracker data, as would be possible with a more advanced eye tracker, 
rather than down-sample the EEG because down-sampling would remove part 
of the important EEG frequency spectrum. The latest eye trackers are already 
capable of sampling at rates of over 1 kHz. Up-sampling is obviously inferior to 
using a higher sampling rate; up-sampling does not restore the missing part of 
the eye movements’ frequency spectrum. Especially for saccadic eye 
movements, this can cause inaccuracies because the high frequencies that are 
associated with the saccades are overlooked [131]. Note however that this 
should be considered merely as a practical limitation, and not a fundamental 
limitation. During the task, the participant sits comfortably in front of a 
monitor at 0.8 m distance with the head supported and eyes horizontally 
aligned with the center of the screen. The subject is instructed to avoid 
blinking if possible because experimental data was intended primarily for use in 
Chapter 2. Despite the instruction, there are still several blinks in all 
recordings. For experimental data, (4.9) and (4.10) cannot be determined. 
Therefore Figure 4.4 shows the signals ( )r t , ˆ (̂ )( )e p t  and (̂ )c t  for different 
correction methods and eye movement artifacts. 

 
Random 

 



114  Chapter 4   
 

 

 
Deterministic 

 
Saccadic 

 

Figure 4.4: Experimental data for three different types of eye movement artifact, 
recorded at Fp1. In the first row of each subfigure, the EEG ( )r t is shown. The 
estimated components (̂ )c t  and ˆ ˆ ( )( )e p t  are in respectively the first and second 

column of the other rows.  Scalings of both axes are identical for each subfigure in 
a column. The y-axis indicates voltage (μV). 
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In Figure 4.4, a basic visual inspection does not detect ocular artifacts, after 
correction by the EYE method. For some of the other correction methods, 
there clearly remains some ocular artifact after correction, whereas for other 
ones the ocular artifact also appears to be removed completely. 
From the remaining estimate for the cerebral electrical activity, (̂ )c t , the 
distinction between the performances of the methods that do appear to remove 
the ocular artifact completely cannot be made. Strikingly, some of the 
correction methods appear to remove not only the ocular artifact, but also part 
of ( )c t . Especially the components-based methods appear to have a much 
smaller signal (̂ )c t  after correction. Purely based on the experimental data it is 
not possible to verify whether the components-based methods remove too 
much, or whether the EYE method removes too little of the ocular artifact. 
However, for ICA-based methods it is demonstrated in [16], that correction 
can result in a spectral distortion of the estimated cerebral electrical activity 
which will remove part of the cerebral electrical activity. In Chapter 2, it was 
also demonstrated that ICA-based correction methods can remove part of the 
cerebral electrical activity. This is obviously unacceptable, because it eliminates 
the possibility of recording the full electrical activity of the brain and possibly 
important information might be deleted. The MLR method does not appear to 
correct well for the saccadic eye movement artifact. This data showed a 
considerable electrode drift in the Fp1 recording, which cannot be compensated 
for by the EOG reference. A possible solution to this is high pass filtering of 
( )r t , but for a fair comparison between different methods such filtering should 

either be applied to all correction methods, or to none.  
It should be noted here that the displayed results are on data without periods of 
prolonged eyelid closure. For these periods the method using an EOG 
electrode is not capable of detecting a clear 3( )p t  because (4.5) is not valid for 
prolonged closure periods. When 3( )p t , determined by an eye tracker, is used 
instead of 3̂( )p t , estimating the blink artifact using (4.5) is no longer required, 
and periods of prolonged eyelid closure can be corrected. Furthermore, for the 
saccadic eye movement artifact data, both horizontal and vertical eye 
movements are included. The method is shown in Figure 4.4 to remove the eye 
movement artifact accurately.  
This result on saccadic data suggests that the consequences of the up-sampling 
of eye tracker data from 50 Hz to 256 Hz are only minor, even for the saccadic 
data. For some vertical eye movement artifacts however, there is a small 
remaining artifact at the moment of each the saccadic movement. Although this 
could be caused by the insufficiently high sampling rate of the eye tracker, 
there is a also a second explanation for this artifact, known as the rider artifact 
[22]. Rider artifacts occur during vertical eye movements and are caused by 
small coinciding movements of the eyelid. This small eyelid movement is not 
present in 3̂( )p t  because 3̂( )p t  is based only on blinking periods, as shown in 
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(4.6), and therefore cannot be corrected based on the 3̂( )p t  reference. Because 
we only detect the artifact for vertical saccades, the rider artifact appears to be 
a more plausible cause of the artifact than the sampling issue. Recording 1( )p t  
and 2( )p t  at higher sampling rates can clarify this issue.  
Although with the current implementation the prolonged eyelid closure 
periods and the rider artifacts thus cannot be corrected, this is merely a matter 
of implementation. If a future eye tracker is capable of detecting 3( )p t , these 
two issues will be resolved. 
One remaining drawback of using an eye tracker, even if all suggestions 
regarding the use of different equipment are implemented, would be that the 
eye tracker cannot detect the pupil position while the eyelid is down. For the 
brief period that pupil position is ‘missing’ during a blink, the consequence of 
this is probably not too large because accompanying eye movements and their 
effects are in general small. More seriously, this disqualifies the use of an eye-
tracker for EEG recordings that are taken while the eyes remain closed. An 
alternative could be the use of magnetic coils for the detection of eye 
movements and eyelid movements as discussed in [131], but this would 
require very different equipment.   

4.5.3 Conclusions 

In Section 4.3 a new eye tracker-based method for the correction of ocular 
artifacts in EEG recordings is introduced. This method uses a Kalman filter for 
the estimation of the ocular artifact. The method is evaluated on simulated data 
and is shown to improve simulated ocular artifact correction when compared to 
six well known existing methods.  

In order to quantify the performance of different correction methods and 
compare them, two different SNR-based measures are defined in (4.9) and 
(4.10). The first, SNR1, quantifies the correction of the entire simulated data set 
and the second, SNR2 , focuses on those segments containing simulated blink 
artifacts. The current implementation is shown to result in an average SNR1 
and SNR2 of at least 9 dB. This implies that the power of the corrected signal is 
at least eight times the power of the remaining noise.  The simulated data sets 
contain a wide range of eye movements and blink frequencies. For almost all of 
these data sets, 16 out of 20, the correction results for the new method are 
better than any of the other evaluated algorithms. The only method that has a 
higher SNR2 value for one of the simulated data sets is the SOBI method. The 
SNR values for the EYE method in this data set, are just slightly lower.  

The standard Kalman filter used here is based on the assumption that 
component ( )c t  is white. In reality, ( )c t  represents the cerebral component of 
( )r t . The spectrum of ( )c t  hence has a band pass nature with frequencies 

between approximately 0.5 and 30 Hz. Accordingly, the noise is not white and 
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the Kalman filter considered here is not optimal. Implementing whitening 
filters prior to the Kalman filter can in the future improve correction results 
even further. 

By using an advanced eye tracker for the detection of eyelid position, as 
discussed earlier, a signal that is clean of all brain-, or muscle-, electrical 
activity can be recorded. Using such a signal instead of the EOG electrode that 
is used in this study is likely to further improve correction performance. Also, 
this will have the advantage that some minor artifacts, like the rider artifact 
that is mentioned in Section 4.5.2, can be corrected. 

On experimental data, the correction method appears to adequately remove the 
ocular artifact. Considering the simplicity of the MLR method, this method 
performs remarkably well, which might explain why basic regression is still 
often used for correction.  

4.6 Appendix  

In Section 4.3.1 we proposed to use an eye tracker to record the position of the 
pupil and the eyelid. In the subsequently following sections, it was assumed 
that the recorded positions are accurate registrations of the true positions. This 
assumption overlooks possible inaccuracies of eye-tracker recordings. 

• Random Disturbances. Noise in the video image of the eye tracker may 
affect the recorded position. 

• Systematic Disturbances. By assuming that the positions as detected by 
the eye tracker are accurate measures of gaze direction and eyelid 
position, a systematic error is made. The assumption ignores that an eye 
is (approximately) spherical and the eye tracker only detects a two 
dimensional projection of this.  

• Quantization Disturbances. All recorded positions are quantized because 
the eye tracker has a limited spatial resolution.  

• Head movements. Movements of the head can be compensated by the 
Kalman filter which will adjust vector (̂ )tφ . During the period that vector 

(̂ )tφ  is adapted, correction errors may occur. 
The random noise mainly concerns image quality in the eye tracker recording. 
Each pixel in this image may record some noise. In the process of determining 
the pupil position from a video image, a threshold is set manually in order to 
separate pixels that belong to the pupil from other pixels. After this, all pupil 
pixels are weighted equally when determining the pupil position. Because the 
distinction between pupil pixels and other pixels is generally very clear, effects 
of image noise are probably negligible.  
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When the eye is looking directly towards the eye tracker, a change in gaze 
direction will yield the largest change in pupil position. If the eye looks away 
from the eye tracker, an equally large change in gaze direction will cause 
(slightly) smaller changes in pupil position, as is illustrated in Figure 4.5.  
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Figure 4.5: Illustration of eye tracker recording inaccuracies. Our method assumes a 

linear relation between recorded pupil position and gaze direction. The left plot 
illustrates that within a limited range of gaze directions (asterisks), this assumption 

holds. Additional errors due to quantization of the pupil position within this range are 
small, as illustrated in the right plot. 

 

Pupil position alone is thus not optimal for determining the gaze direction of 
the eye. In [135], it is demonstrated how additional light sources and 
reflections of these sources on the cornea can be used for a more accurate 
detection of gaze direction. When the range of eye movements is restricted, as 
it is in our experiments and simulations, the range of possible gaze directions is 
limited, as indicated by the asterisks in Figure 4.5. The relation between pupil 
position and gaze direction is approximately linear over this range.  

Quantization noise is inevitable when pupil position is digitally recorded 
because pupil position accuracy is limited by eye tracker resolution and by the 
distance between eye tracker and eye. As a result of this, only a fixed number of 
possible values for pupil position and eyelid position exist, as illustrated in 
Figure 4.5. Taking into account that the eye tracker we used is claimed to have 
a spatial resolution <0.1o for tracking, the error due to quantization is very 
small, as can be seen in Figure 4.5.  

Because the participant’s chin and forehead were supported during the 
measurements, effects due to head movements are probably negligible. 
Although head movements were not monitored during our study, literature 
[136] suggests that head movements under similar circumstances are smaller 
than 80 μm when measured over a one minute period.  



 

 

 

Chapter 5 

Evaluating correction methods on challenging 
experimental data 

 

 

5.1 Abstract 

Numerous ocular artifact correction methods exist. They aim to remove the 
electrical activity associated with eye- and eyelid movement from the electro-
encephalogram. A previous comparison of such methods, based on simulated 
datasets, ranked a selection of these methods in terms of their correction 
accuracy. As simulated data is limited by model restrictions, this chapter aims 
to use experimentally recorded data and determine an accuracy ranking based 
on real data. An experiment is set up that is expected to generate low- 
amplitude ERPs, located mostly at frontal electrode positions. For this type of 
data, it is essential that ocular artifacts are adequately removed. Next the 
recorded ERPs are categorized based on whether or not they contain ocular 
artifacts, and the stimulus related activity is removed. A yardstick for the 
accuracy of the correction methods is derived based on the power of 
background EEG as recorded during each trial. Accuracy, as estimated by this 
yardstick, complies very well with the accuracy as found on the simulated data.  

5.2 Introduction 

The electro-encephalogram (EEG) is a valuable tool for analyzing cerebral 
activity and for studying the brain’s response to stimuli. An important problem 
in the analysis of the EEG is the presence of ocular artifacts, caused by eye 
movement and blinking [8;16;38].  

In Chapter 3 and Chapter 4, we introduced a correction method, dubbed EYE, 
which uses an eye tracker to monitor features that are closely linked to the 
timing and amplitude of ocular artifacts. EYE uses gaze direction and eyelid 
position, estimated from eye tracker recordings or alternatively from the 
electro-oculogram (EOG), to obtain an estimate of the ocular artifact and to 
correct the EEG. On simulated data, we showed objectively that EYE leads to 
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improved ocular artifact correction when compared to other commonly used 
correction methods. 

The purpose of the present chapter is to evaluate the success of the EYE 
method on real experimental data. Evaluating the performance of methods 
solely with simulated data is insufficient for full, comprehensive testing of these 
methods [50]. Aspects that are not simulated, because a study might 
erroneously assume that they are merely of minor impact, could be overlooked 
and lead to a false evaluation of the methods. Although some of this criticism 
against simulated data can, to some extent, be put aside by continuously 
improving the models that simulate the data, the obvious challenge is to 
evaluate EYE’s correction accuracy on experimental data.  

Two issues are important in evaluating artifact correction methods in 
experimental data: the choice of the experimental task, and the choice of the 
measure for evaluating the performance of the correction method.  

As to the first issue, we used the stop-signal task [137] for experimental 
manipulation. In this task, participants are focused on task execution. They are 
not instructed to produce artifacts intentionally. This is an important point in 
that it has been shown that properties of ocular artifacts can depend on 
whether or not artifacts occur intentionally or unintentionally [21]. For 
instance, the shape of a blinking artifact as seen during a series of intentional 
blinks differs from the shape of an unintentional blinking artifact. Furthermore, 
the stop-signal task has a high need for accurate correction because the 
cerebral activity of interest is mainly detectable on frontal electrodes, where 
the ocular artifact is also relatively large [138]. In addition, the effects 
observed in this task are usually of small amplitude, making the need for 
accurate correction even higher. In summary, using the stop-signal task for 
evaluating the correction methods provides us with a strong test of these 
methods. 

With respect to the second issue, it should be noted that evaluation of 
correction methods on experimental data is often limited to a visual check of 
the corrected EEG, e.g. as is done in chapters 3 and 4, as well as in [74]. To 
reduce subjectivity of evaluations, we want to use a more objective and 
quantitative measure. Selecting this measure is difficult because the reference 
one would like to use, e.g., comparing the corrected EEG to the real artifact-
free EEG, is impossible.  

One way to obtain such a measure is to compare the power of corrected EEG 
to the power of an artifact-free EEG segment [13]. Because ocular artifacts 
increase the power of raw EEGs, high power, with respect to the power of 
artifact-free EEG, thus indicates that ocular artifacts occur. This assumes that 
the power of artifact-free EEG does not change significantly during a 
measurement.  



Evaluating correction methods on challenging experimental data 121 
 

 

A power-based measure of correction accuracy does not require intentional eye 
movements and blinks, and thus can easily be applied to data obtained with the 
stop-signal task. In addition it can, to some extent, indicate how well the EEG 
is preserved during correction. In this chapter, the power of 2 s segments of 
EEG will be compared to the power of 2 s segments of artifact-free EEG. A 2 s 
segment will be referred to as a trial.  

All trials are categorized according to the amount of ocular artifact they 
contain. We use both the EOG and an eye tracker for categorization. A trial is 
categorized as OA0 when both EOG and eye tracker indicate that a trial of 
EEG is without significant ocular artifacts. When a trial contains at least one 
blink according to both the EOG and the eye tracker, it is categorized as OA+. 
All other trials, containing significant eye movements but no blinks, are 
categorized as OA-.  

The stop-signal task results in experimental data that contain event-related 
potentials (ERPs). These ERPs reflect the brain’s response to the stimuli. 
ERPs may vary in amplitude, latency and waveform [139], even when they are 
elicited by identical stimuli. To ensure a fair comparison of the power in 
segments, these ERPs will be estimated and removed prior to calculating 
power spectra of the background EEG. After ERP removal, we determine the 
power of all trials in each category prior to and following ocular artifact 
correction. Of special interest are the OA0 trials which, after ERP removal but 
prior to correction, should only contain background EEG. This makes the 
power of these OA0 trials a suitable estimate for the power of artifact-free EEG.  

After correction, all three categories of trials should only contain background 
EEG. It is therefore expected that a successful ocular artifact correction 
method will reduce the power of all corrected trials to the level of the 
uncorrected OA0 trials. By comparing the power of all corrected trials to 
uncorrected OA0 trials, combining the results for the three trial categories, and 
averaging over multiple subjects to reduce the influence of inter-subject 
variability, one overall yardstick for the accuracy of correction is obtained. The 
details on this yardstick are given in Section 5.4. 

In Section 5.5 the EYE correction as well as several other frequently used 
ocular artifact correction methods will correct the same raw EEG. These other 
methods include both components-based methods and EOG-based methods. 
Illustrations, highlighting raw and corrected EEG, of data with ocular artifacts 
will be shown and discussed. By determining correction accuracies for all these 
methods, and comparing these against each other, a comparison of correction 
accuracy on experimental data is obtained. It is expected that, in line with 
results on simulated data, the new EYE method will outperform existing 
correction methods because this method is the only method that makes use of 
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the extra eye tracker information. Section 5.6 briefly summarizes and presents 
a general conclusion. 

5.3 Stop-signal tasks & ocular artifact correction methods 

5.3.1 Stop-signal tasks 

A choice-reaction task is frequently used as a basis for a stop-signal task. In a 
choice-reaction task, a subject receives one of two possible GO-stimuli and has 
to respond by pressing one of two corresponding buttons on a keyboard. 
Typically, the time between stimulus and response in such tasks is around 300 
ms. In stop-signal tasks, a STOP-stimulus is occasionally presented to the 
subject in between GO-stimulus and response. In our experiments, 30 % of all 
GO-stimuli were followed by a STOP-stimulus. If a STOP-stimulus occurs, the 
subject should try to inhibit responding. In general, inhibition is fairly easy if 
the STOP-stimulus is presented briefly after the GO-stimulus, and as a result 
no button will be pressed. When the STOP-stimulus is delayed more with 
respect to the GO-stimulus and occurs close to the response, inhibition fails. 
For stop-signal tasks a theoretical model was proposed in 1984 [140]. This 
model assumes that the GO-stimulus and the STOP-stimulus initiate two 
independent processes. The first process to be completed determines whether 
or not a response occurs. 

EEG recordings during stop-signal tasks focus on two scalp regions [141]. 
Firstly, recordings at C3 and C4 position, according to the 10/20 system, are 
used to detect motor preparation. The C3 and C4 positions are located directly 
above the left and right motor cortices of the brain. Secondly, recordings at Fz, 
F3 and F4 position can show a negative peak known as N200 that is believed to 
be associated with the inhibition of the response. These frontal electrodes are 
close to the cortex area where the STOP-stimulus is believed to be processed. 
Further interpretation of the physical background of this signal is beyond the 
scope of this study. It is the signal recorded at Fz, F3 and F4 that this chapter 
will focus on. Typical N200 amplitudes are very low and ocular artifacts are 
very prominent here because the frontal electrode positions are close to the 
eyes. Removal of ocular artifacts prior to other signal processing is thus 
essential. 

 

In our experiments, nine healthy participants, aging from 24 to 37 (average 
28.2, SD. 3.7), with normal or corrected to normal vision participated. 

During the experiment, stimuli appear at the center of a 17 inch computer 
display for 1000 ms. The GO-stimulus is a green arrow that appears at the 
center of a monitor screen and points either to the left or to the right, with 
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equal probability. The respond buttons for left and right are ‘z’ and ’/’ 
respectively on a standard QWERTY keyboard. For 30 % of the GO-stimuli, 
the arrow turns red shortly after appearing. This is the STOP-stimulus that 
triggers the inhibition of the response. The occurrence of a STOP-stimulus is 
randomized, and the timing of the STOP-stimulus with respect to the GO-
stimulus is controlled stepwise to achieve an inhibition rate of 50 %. The stop 
stimulus delay, SSD, represents the time interval between the appearance of the 
GO-stimulus and the STOP-stimulus. Initially, the SSD is set to 200 ms but 
after each correct inhibition 50 ms is added to this, whereas after each 
unsuccessful inhibition 50 ms is subtracted. An inter-stimulus interval, varying 
randomly from 1500 to 2000 ms, separates consecutive GO-stimuli. During 
this interval, a fixation marker appears at the center of the screen. 

A total of 1210 GO-stimuli are presented to each participant, 395 of which are 
followed by a STOP-stimulus. By using a variable SSD as described above, 50% 
of these 395 stimuli should be inhibited successfully. Participants are asked to 
react as fast as possible and thus not to anticipate on a STOP-stimulus that 
might appear. They are told that their primary focus should be on reacting fast 
and that, as a result of this, not all inhibitions will be successful.  

During the task, the participant sits comfortably in front of a monitor at 0.8 m 
distance with the head supported and eyes horizontally aligned with the center 
of the screen. EEG recordings are performed with 21 EEG electrodes 
positioned according to the 10-20 system [26]. Another 6 electrodes are used 
to record the EOG. These are positioned above and below both eyes, left of the 
left eye and right of the right eye. Recordings for all electrodes are referenced 
to the right mastoid. EEG and EOG are recorded at 256 Hz. An eye tracking 
system is positioned directly below the monitor to record the gaze direction of 
the participants left eye. The eye tracker uses an infrared light and from the 
light reflected by the eye, the position of the center of the pupil is determined 
and tracked throughout the experiment. Eye tracker data are recorded at 50 Hz 
using the SensoMotoric Instruments RED eye tracker. After the experiment, 
the eye tracker data are up-sampled from 50 to 256 Hz and synchronized to the 
EEG recording. 

5.3.2 Ocular artifact correction methods 

Over the past decades many ocular artifact correction methods for electro-
encephalography have been developed, and several excellent overviews have 
been published, e.g. [8;38;43;85;94]. Next to this, considerable effort was spent 
on getting to understand the biophysical cause of the ocular artifact [21;40]. 
Currently, the ocular artifacts are believed to be caused by the corneo-retinal 
dipole which represents a steady difference in electrical potential when 
measured over the eye. Eye movements rotate this dipole, whereas blinks move 



124  Chapter 5   
 

 

the eyelid over the cornea and affect the shape of the electric field that 
surrounds the dipole.  

In Chapter 3 and Chapter 4 it is shown for simulated data that accurate ocular 
artifact correction can be achieved by exploiting useful information on eyelid 
position and ocular movements, as obtained by an eye tracker. This 
information has the advantage that, as opposed to using EOG electrodes to 
monitor eye movements, it cannot be corrupted by cerebral activity. Therefore 
EYE does not have to consider the traditionally difficult issue of propagation of 
cerebral activity into the EOG. This new correction method will be tested and 
evaluated on the EEG as recorded during the stop-signal task. 

The same raw data will also be corrected by seven other methods. None of 
these other methods use additional eye-tracker recordings, which is both an 
advantage, as less hardware is required, and a disadvantage, as potentially 
valuable information is ignored. The added value of using an eye-tracker 
should therefore be derived from improved correction accuracy, to warrant the 
use of extra hardware in experiments where accuracy is essential. 
We will not go into details about the seven correction methods and restrict to 
mentioning the main assumptions that underlie each method. Details can be 
found in the references given with each method. 

 

FastICA [64], FICA, is an Independent Components Analysis, ICA, based 
correction method that assumes that the recorded signal is composed of 
underlying components which are mutually independent. FICA defines 
independence based on fourth order cumulants, and is perhaps most widely 
used of all current ICA implementations. 

Gratton [35], GRAT, is an EOG-based correction method that corrects for 
blinking and eye movements separately and that is frequently used in EEG 
research. The method differs from most EOG-based methods in that it uses 
multiple, aligned, trials in the process of estimating eye movement artifacts in 
EEG recordings. Prior to this, GRAT detects and removes blinks based on the 
derivative of the vertical EOG signal.  

Joint Approximate Diagonalization of Eigen-matrices [59], JADE, like FICA is an 
Independent Components Analysis correction method that assumes that the 
recorded signal is composed of underlying components which are mutually 
independent. 

Principal Components Analysis [36], PCA, is perhaps the most basic components 
analysis method. Instead of independency, PCA assumes that components 
underlying a recorded signal are uncorrelated. 
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Multiple Linear Regression [39], MLR, is a standard mathematical tool that is 
used for many purposes. When applied to EEG research, simultaneously 
recorded EOG is scaled and subtracted from the raw EEG. 

Second order blind identification [51;52], SOBI, is a components-based method 
that like PCA only uses second-order statistics, i.e., correlations. Whereas PCA 
assumes merely that components are mutually uncorrelated at one moment in 
time (instantaneously), SOBI also assumes that components are mutually 
uncorrelated at other moments in time, dubbed lags. These lags should be 
carefully selected to optimize correction accuracy as was demonstrated in 
[124]. In the current implementation we used lags similar to those in Chapter 
2. 

Regression with an Auto-Regressive Error structure [46], RARE, is a special 
implementation of MLR, in which the cerebral electrical activity that is seen in 
the EEG is assumed to be spectrally colored. While the scaling factors of EOG 
propagation to EEG, as in MLR, are determined, this spectral content in 
considered. 

 

These methods were selected in part because prior studies, including the 
evaluation Chapter 2, suggested their appropriateness for ocular artifact 
correction [15;16;73;98] and in part because they are amongst the most 
frequently used correction methods to date.   

5.4 Quantifying ocular artifacts in EEG 

For each participant, the experimental data is segmented in a number, M, of 
trials. A trial represents all samples close to a STOP-stimulus, starting 0.5 s 
prior to this stimulus (t =0) and ending 1.5 s afterwards (t =2). In our 
experiment M=395.  The GO-stimulus of each trial is thus located in the first 
0.5 s of the trial. To (roughly) set the time-averaged amplitude of the trials to 
zero, the average voltage of the 0.5 s EEG prior to the GO-stimulus is 
determined for each trial and subtracted from each sample within that trial. 

 
The resulting data will be denoted as ( )mr t  with m=[1 : ]M  the specific trial 
number and t  a time index. Each trial contains electrical brain activity, ( )mf t ,  
related to the mth stimulus as well as other non-stimulus related electrical brain 
activity, ( )mb t , which is referred to as background EEG. The stimulus related 
electrical brain activity, ( )mf t , is assumed to be of similar morphology, ( )f t , for 
all trials, varying inter-trial only in ERP amplitude, mA , and ERP delay, mδ , 

 ( ) ( ).m m mf t A f t δ= ⋅ +  (5.1) 
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Additionally some trials may contain electrical activity, ( )me t , due to ocular 
artifacts. Thus 
 ( ) ( ) ( ) ( ).m m m mr t f t b t e t= + +  (5.2) 
For each trial ( )mr t , the trial-power (..)P  is defined as 
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P r r t dt
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= ∫  (5.3) 

By assuming that ( )mf t ,  ( )mb t , and ( )me t  are orthogonal, this leads to  

 ( ) ( ) ( ) ( ).m m m mP r P f P b P e= + +  (5.4) 
 

To quantify the amount of ocular artifact in a trial, an indication of the 
contribution of ( )mP e  to ( )mP r  is needed. Unfortunately, ( )mP r  is the only 
observable term in equation (5.4). The contribution of ( )mP e  can only be 
estimated when ( )mP f  and ( )mP b  either are assumed constant, or are in some 
way removed from ( )mP r .  

 

• The power ( )mP f  is not constant over trials because ERPs can vary in 
amplitude and latency. Caution should thus be taken not to mistake 
inter-trial ERP variations for ocular artifacts. To estimate the inter-trial 
ERP variations, we first estimate the trial-averaged ERP, (̂ )f t , together 
with the amplitudes, m̂A , and delays, m̂δ  of the separate trials using a 
maximum likelihood estimator described by [142]. These estimates can 
be used to estimate the single trial ERPs, ˆ ( )mf t , in a way similar to (5.1). 
Next, the estimated ˆ ( )mf t  is subtracted from ( )mr t  prior to calculating 

ˆ( )m mP r f− . Using (5.4) we get 

 
ˆ ˆ( ) ( ( ))

( ) ( ) ( ).

m m m m m m

m m m m

P r f P b e f f

P b e P b P e

− = + + −

≈ + = +
 (5.5) 

• The power ( )mP b  can be assumed constant for a period of several 
minutes and hence over multiple trials if measurements are performed in 
a controlled, and stabile, environment. For trials without ocular artifacts, 

( )mP e  is zero and ˆ( )m mP r f−  is approximately equal to ( )mP b  according 
to (5.5). Therefore, to estimate ( )mP b  we carefully select trials without 
ocular artifacts as described below, and determine ˆ( )m mP r f−  for these 
trials. Averaging over the resulting ˆ( )m mP r f−  leads to the trial-
averaged estimate for background EEG power, which will be referred to 
as REFP .  

Accordingly, we obtain an estimate for the power of the ocular artifact, ˆ( )mP e , 
in each trial as 
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 ˆ ˆ( ) ( ) .m m m REFP e P r f P= − −  (5.6) 
 
In the process of determining REFP , it is required that trials without ocular 
artifacts are separated from trials with ocular artifacts. To this end, we 
monitored eye tracker recordings simultaneously with each trial in order to 
mark trials based on whether or not they contain blinking artifacts and eye 
movement artifacts. Whenever the eye tracker lost track of the pupil, we 
marked the trial during which this happened. This loss of tracking is typical for 
blinking, as the eyelid briefly covers the pupil. Marking trials with eye 
movement artifacts requires a more delicate detection. An eye tracker can 
detect very small eye movements which cause potential changes in the EEG 
that are even smaller than ERPs. Clearly, a threshold based on which 
amplitude of the corresponding eye movement artifacts is considered 
significant, should be set for the eye-tracker recording. Based on extrapolation 
of artifacts for large eye movements in other experimental data, and on small 
eye movements in a simulation model, we found that a change in ocular 
orientation of app. 0.3° will cause an artifact of comparable amplitude as an 
ERP. This 0.3° threshold is used as the eye movement detection threshold. 
Applying this threshold to the eye tracker recordings aided in dividing the M 
trials in three categories, 

• OA0 No blinks, < 0.3° change in ocular orientation,  

• OA- No blinks, ≥ 0.3° change in ocular orientation,  

• OA+ Blinks. 

The fact that a fixation mark is visually presented to the participant during all 
trials, does not imply that no eye movements are made. Literature [143] shows 
that changes in ocular orientation during fixation occur, and that vertical 
changes in gaze direction during fixation have a standard-deviation of less than 
0.23o.  
Trials in the OA0 category are used for determining REFP  since for this 
category ( )mP e  is zero. For the OA- and the OA+ trials, ˆ( )m mP r f−  is expected 
to be larger than REFP . We will denote ˆ( )m mP r f− , averaged over all trials in 
these categories as P−  and P+ . Similarly, 0P  indicates ˆ( )m mP r f−  for the OA0 
category. 

 

Combining these expectations, we can define a measure j that indicates the 
amount of ocular artifact in all three categories combined,   
 0 .REF REF REFj P P P P P P− += − + − + −  (5.7) 
It is straightforward to see that j is nonnegative and equals zero only if the 
trial-averaged powers for all three categories are equal to REFP . Although it is 
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expected that 0 REFP P≈ , REFP P− > , and REFP P+ > , the use of absolute values 
in (5.7) ensures that both too large and too small trial-averaged powers will 
increase j. Later this will be shown useful for corrected data. 

Because both the properties of background EEG and ocular artifacts can vary 
between subjects, P− ,P+ , 0P , REFP , and j may show inter-subject variability. 
We define one final overall yardstick J for the amount of ocular artifact in data 
as 
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9 k
J j k
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with k the participant-number. An overview of the steps discussed above is 
given in Figure 5.1. 
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(̂ )f t

ˆ ( )mf t ˆ( )m mP r f−

 
Figure 5.1: Illustration of the sequence of steps for determining yardstick J from raw 

EEG data. Relevant trials in the raw data are selected and categorized based on what 
sort of ocular artifacts they contain. Subsequently, the ERP estimate ˆ ( )mf t is subtracted 

from each trial and the power of the remaining signals, ˆ( )m mP r f− , is determined. 
After repeating these steps for all nine participants, the yardstick J which represents the 

amount of ocular artifact in data is determined. For illustrative purposes, seven 
relevant trials are closely spaced in time. In reality, these trials will be separated by 

fragments of raw EEG that do not contain a STOP-stimulus. Only 30% of all GO 
stimuli are followed by a STOP-stimulus. 

 
Ocular artifact correction is supposed to remove ( )me t  from ( )mr t , without 
affecting both ( )mf t  and  ( )mb t . We will denote corrected data by a superscript, 
e.g., *( )mr t . Because ocular artifact correction removes ( )me t , * ˆ( )m mP r f−  should 
ideally equal REFP  regardless of whether or not a trial contained ocular 



Evaluating correction methods on challenging experimental data 129 
 

 

artifacts prior to correction. For corrected data it is therefore expected 
that *P+ , *P− and *

0P  are all equal to REFP . Note that equality of *
0P  and REFP  is 

not trivial even though they both relate to data without ocular artifacts. A 
correction method might erroneously affect trials without ocular artifacts and 
therefore we included the 0 REFP P−  term to (5.7). 

5.5 Results & discussion 

The number of trials in each category is given in Table 5.1. Trials in which a 
STOP-stimulus was given, but in which a response did occur, or in which 
other, non-ocular, artifacts occurred were not used for further analysis. 

 

Table 5.1: Number of trials in each category 

 1 2 3 4 5 6 7 8 9 

OA0 51 104 42 61 39 20 36 58 46 

OA- 28 36 31 76 61 22 11 125 5 

OA+ 69 26 53 44 22 29 49 11 129 

 

In (5.8) , results for all participants are weighted equally, regardless of the 
number of trials they have in the different categories.  If a trial category for a 
participant contains only a very limited number of trials, the accuracy of 

ˆ( )m mP r f−  for this category is limited as *
mr  is (partly) stochastic. For this 

reason, participant 9 was excluded. 

For each category, one trial of participant 4 is illustrated in Figure 5.2. The 
bottom subfigure shows (̂ )f t . Clearly visible in the OA+ trial is the blink 
artifact at t=1.3 s, whereas in both the OA0 and OA+ trials visual detection of 
any ocular artifact is difficult. In (̂ )s t , an ERP shape can be seen after the 
STOP-stimulus at t=0.5 s. This ERP shows typical characteristics associated 
with ERPs of stop signal tasks, namely a negative peak app. 0.2 s after the 
STOP-stimulus and a positive peak app. 0.3 s after the STOP-stimulus. 

The power ˆ( )m mP r f−  for these trials is indicated.  
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Figure 5.2: Examples of trials in the three categories, OA0, OA-, and OA+, with their 
corresponding ˆ( )m mP r f− . Lower plot shows the estimated, stimulus-related and trial-

averaged, ERP potential (̂ )f t . All y-axis scalings are in μV. 

 

For this participant, the results averaged over multiple trials lead to 
0P = REFP = 101, P−=118, and P+ =194 for the uncorrected data. After 

correction by EYE it is found that *
0P =96 *P− =117 and *P+ =102. As expected 

( )0P P P− +< < , ( )*P P− −< , ( )*P P+ +< and ( )* *
0 0P P P+≈ ≈ . Contrary to the 

expectations, ( )*
0P P P− −≈ ≠ , which indicates that resemblance between OA- 

trials before and after correction is larger than the resemblance between 
corrected OA- trials and uncorrected OA0 trials. Surprisingly, for the OA- trials 
of this participant similar results were also observed when other correction 
methods were used. A possible explanation for this would be that the 
background EEG for these trials is significantly different from the background 
EEG of the OA0 trials. A visual inspection of Figure 5.2, suggests that this is a 
plausible explanation. This explanation contradicts the assumption 



Evaluating correction methods on challenging experimental data 131 
 

 

(constant ( )mP b  ) that we made for background EEG in Section 5.4. The 
consequences of this would be that the optimal j and J values are (slightly) 
above zero, and overcorrection can erroneously be overlooked. Because this 
unexpected result was only found in one participant, no actions are taken. 

Similar calculations of trial-, and corrected trial powers are performed for all 
participants. The resulting J-scores are shown in Figure 5.3. 
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Figure 5.3: Correction accuracy determined for seven different ocular artifact 

correction methods. The y-axis indicates J-score, as defined in (5.8), which is a non-
negative measure that is zero for optimal correction. High J-score relates to low 

correction accuracy. 

 

To verify whether results on a single trial appear to be in line with the general 
result presented in Figure 5.3, the result of correcting three single trials is 
shown for all correction methods in Figure 5.4. These particular trials, prior to 
correction are identical to those already shown in Figure 5.2. The left column 
of Figure 5.4 shows ( )mr t  and * ( )mr t . For all three categories of trials, the 

* ( )mr t  corresponding to the different correction methods appear to be similar. 
Accuracy of the different correction methods apparently is hard to distinguish 
based on the corrected signal because the relatively high amplitude of 
background EEG obscures them. Therefore, the right column of Figure 5.4 
shows the estimate of the ocular artifact, * ( ) ( )m mr t r t− . Differences between 
correction methods are visually much more apparent in this right column. 
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OA+ 

 

Figure 5.4: Left column: Raw and corrected data for trials with and without ocular 
artifacts. Right column: estimated ocular artifact. Rows correspond to different 

correction methods, indicated ate the left. For OA-, the HEOG is also shown. All y-axis 
scalings are in μV. 

 

It can be seen that the estimated ocular artifact is, for all correction methods, 
largest in the OA+, trials and smallest in the OA0 trials, as was expected. All of 
the correction methods estimate some ocular artifact in all trial categories. 
Even for the OA0 category, which is assumed to be free of ocular artifact, 

* ( ) ( )m mr t r t−  is not zero. Based on our assumptions, this implies that none of 
the correction methods is fully accurate.  
For all correction methods except EYE, * ( ) ( )m mr t r t−  in the OA0 category 
shows low amplitude, high frequency fluctuations. These fluctuations are either 
caused by 

1. brain activity or electrode noise in EOG channels, and in the case of 
components-based methods, other EEG channels, or by 

2. very small, high frequency, eye movements during fixation. 

If these fluctuations would be mainly due to the first cause, they are not part of 
the ocular artifact and they should not be removed from ( )mr t , which would 
indicate in accordance with Figure 5.3 that EYE is most accurate. If the 
fluctuations would be mainly due to the second cause, they are artifactuous, and 
they should be removed, which would indicate that EYE is least accurate. 
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It is known that eye movements during fixation merely exhibit a slow drift and 
occasional micro-saccades [143], resetting the point of focus. This suggests 
that erroneously removed brain activity is the cause of these fluctuations and 
that the effect seen in Figure 5.4 is thus not of ocular origin and should not be 
seen as part of the ocular artifact.  

Representing OA- trials, a trial is shown during which a participant made a 
brief horizontal eye movement. This can be seen in the HEOG that is shown in 
the right column. In ( )mr t , the ocular artifact due to this eye movement is 
nearly impossible to detect, but * ( ) ( )m mr t r t−  illustrates that all correction 
methods detect a step-like artifact. The correction methods do not agree on the 
amplitude of this step-like artifact. Which of the methods estimates the artifact 
amplitude best, cannot be concluded based solely on this trial’s corrected data. 
Similar to the OA0 category, EYE is the only method that lacks high 
frequencies in the estimated ocular artifact. 

For the OA+ trial category, a trial with an obvious blink artifact is corrected. 
Again, differences between correction methods are difficult to detect in * ( )mr t . 
Again, EYE is the only method that lacks high frequencies in the estimated 
ocular artifact, although in Figure 5.4 this is obscured by the high amplitude of 
the estimated blinking artifact. 

5.6 Conclusions  

This chapter estimates the correction accuracy of eight ocular artifact 
correction methods. For EEG that is recorded during a stop-signal task, it is 
essential that ocular artifacts are accurately corrected to be able to extract the 
low amplitude ERP waveforms. We therefore test for correction accuracy on 
trials that are recorded during a stop-signal task. The trials are categorized in 
three groups, based on which artifacts they contain, and subsequently corrected 
and evaluated. As expected, all methods succeed in removing (part of) the 
ocular artifacts from the data. All correction methods in Figure 5.3 have an 
accuracy yardstick J  which is lower than the J  calculated for raw data.  

The overall ranking of the estimated accuracies of the eight methods, in Figure 
5.3, corresponds very well with the correction accuracy of these methods on 
simulated data in Chapter 4. To illustrate this, Figure 5.5 shows the 1SNR  
performance measure of the simulated data of Chapter 4, and the yardstick J of 
the experimental data of this chapter for those correction methods that are 
evaluated in both chapters. There is a clear correlation between the two 
measures. 
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Figure 5.5: Performance measure 1SNR  and yardstick J for several correction methods. 
This figure combines the results shown in Figure 5.3 with the results shown in Figure 

4.3 for random eye movements at a blinking rate of 0.1 blinks/s.  

 

For raw data the first right hand-side term in (5.7) by definition equals zero, 
whereas for corrected data this term is only zero if these trials are not affected 
by correction. The improvements in J  due to correction methods therefore 
cannot be attributed to unexpected effects in artifact free trials, but are the 
result of ocular artifact removal from the OA-, and OA+ categorized trials. 

In the single-trial correction comparison, in Figure 5.4, we find that all 
correction methods except EYE consistently estimate an ocular artifact that 
contains low amplitude high frequency fluctuations. Because no high frequency 
eye movements are expected to occur during fixation, these fluctuations are 
probably due to non-ocular influences, like brain-activity or electrode noise. 
Thus, such fluctuations should not be removed by ocular artifact correction 
methods. The fact that both the EOG-based and the components-based 
correction methods do remove some of these fluctuations, illustrates their 
susceptibility to overcorrection, whereas EYE does not appear to overcorrect 
the data. 

The EYE method again appears to be most suited for ocular artifact correction, 
which was expected because it is the only method that exploits the extra eye 
tracker recordings in the process of correction. The GRAT method that was 
not tested in Chapter 4, is similarly accurate as the SOBI correction method. 
Interestingly, the SOBI method requires multi-channel EEG recordings, 
whereas GRAT requires only one EEG channel but requires the use of 
multiple EOG electrodes and accurate trial alignment. MLR performs 
remarkably well considering the simplicity of merely scaling and subtracting 
EOGs. The result that simple EOG-based techniques can outperform ICA 
methods was also reported in [16;144]. The PCA correction performs better 
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than the ICA-based correction methods JADE and FICA in this experiment. 
Although this complies with results of some studies [16], this result may 
appear strange given the amount of attention that ICA-based methods are 
currently receiving. It also contradicts results of other studies [98]. However, 
in [98], an implementation of ICA other than JADE and FICA was used [57], 
and the validation of correction of ocular artifacts is based solely on a visual 
inspection of the extracted components. All components-based methods have 
the advantage that they can easily be used for a much wider range of 
applications than specialized ocular artifact correction methods like EYE and 
GRAT. They estimate ocular artifact simultaneously to a variety of other 
artifacts, e.g., [77], whereas EYE can only be used for this single application. 
Furthermore, components-based methods have also been demonstrated to be 
able to accurately extract task-specific EEG activity from raw EEG signals 
[145]. This versatility of components-based correction methods aids to their 
user-friendliness and will assure that they will continue to be improved further. 
The ICA methods that are currently widely used, and are therefore selected for 
evaluation here, were developed already in 1993 (JADE) and 1999 (FICA). 
Probably there have already been improvements to these methods that will 
result in improved ocular artifact correction accuracy that simply have not yet 
found their way to mainstream EEG-research.  



 

 

 

Chapter 6 

Conclusions, recommendations & perspectives 
 

 

6.1 Conclusions and recommendations 

This thesis concerns the correction of ocular artifacts in EEG recordings. To 
aid in estimating the accuracies of various existing correction methods, the 
thesis introduces a model of the human head that can simultaneously simulate 
eye movement artifacts, blinking artifacts and EEGs in a realistic way. This 
model is used in the process of validating correction methods throughout the 
thesis. For all these model-based validations, similar evaluations on 
experimental data were performed to check for inconsistencies between 
simulated and experimental data. The comparisons between the correction of 
simulated and experimental data did not reveal any significant inconsistencies 
and hence the model appears to incorporate the most essential elements of 
EEG and artifact signal generation. Despite this, model refinements are 
desirable to further increase agreement with reality. Potentially relevant 
refinements include  

• the use of more accurate skull modeling, especially concerning the 
eyeball sockets, 

• the use of a more refined mesh for the tissue boundaries, and  

• providing an analytic, yet realistic, description of various eye movement 
patterns. This will eliminate the need for the eye tracker as a basis for 
simulated eye movement patterns. 

Another major improvement would be the modeling of eyelid movements, 
using the same model as the model for eye movement modeling. Such an 
improvement will yield an analytic description of blink-artifact patterns and 
will eliminate the need for the EOG recording as a basis for blink-artifact 
patterns. This would require the use of a head model that allows changes in 
morphology over time. Considering that the boundary element method does 
not allow for such changes, a finite element modeling approach may be more 
suitable for this. 

 



138  Chapter 6 
 

 

For the correction of ocular artifacts, this thesis introduces a radically new 
approach. Whereas previous correction methods used only the EEG and/or the 
EOG in order to estimate ocular artifacts, the newly introduced EYE method 
uses an eye tracker for this purpose, as illustrated in Figure 6.1.  

 

 
Figure 6.1: Illustration of the eye-tracker solution to the correction of ocular artifacts in 
the EEG, with an impression of signal morphology on the right. The eye tracker only 

records ocular information, which can be converted to an accurate estimate of the ocular 
artifact. Combined with the electrode recording which contained both EEG and 

artifact, an accurate estimate of the EEG is derived. 

 

Because an eye tracker’s recording simply cannot reflect electrical brain 
activity, traditionally troublesome issues like forward/backward propagation 
play no role in the EYE method. 

In this thesis it is shown on simulated data, that the EYE method consistently 
estimates the ocular artifact more accurately than other methods.  

For the EYE method, it is expected that results can be further improved by 
altering the assumptions concerning the structure of the EEG. In the current 
implementation, the procedure that is used for the tracking of parameters of the 
Kalman filter uses the assumption that the corrected EEG has a white 
spectrum. A more accurate estimate for the spectrum of the corrected EEG, 
implemented via a noise whitening filter, should further improve the accuracy 
of correction. The EYE method could also be extended to cope with unstable 
lighting conditions during experiments. As mentioned in Section 1.3, the 
difference in electrical charge between cornea and retina depends on the 
lighting conditions. A recording of the luminance signal by the eye tracker, can 
be used as an additional parameter in the estimation of ocular artifacts. 

Next to this methodological improvement, some practical improvements 
related to the eye tracker will also result in better correction accuracy, namely 

• the use of an eye tracker with a higher sampling rate (e.g. 256 Hz), will 
give more accurate estimates for fast saccadic movements, 
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• the development and use of different eye tracker software to provide 
information on pupil position in a recorded image, 

• the use of a head mounted eye tracker to eliminate the effects of head 
movements in the detection of pupil position. For this improvement, it is 
required that the head mounted eye tracker does not interfere (either 
mechanically or electronically) with the EEG recording. Placing a light 
weight eye tracker on the frame of a pair of glasses could be an elegant 
solution to this. 

One remaining disadvantage, even if all the suggestions above are implemented 
and an advanced eye tracker would be used, is the fact that the pupil position 
cannot be detected by the eye tracker when the eyelids are closed. During a 
blink this causes a brief interruption in the pupil position detection. This 
problem could be countered by using an estimated small shift in pupil position 
that is known to occur during blinking. More seriously, the inability to record 
pupil position when the eyes are closed disqualifies the use of the EYE method 
in combination with eye tracker recordings for EEG recordings that are taken 
while the eyes remain closed. A possible alternative in this situation could be 
the use of the EYE method with magnets or magnetic coils. Magnets attached 
to eyeball and eyelid can be used to obtain information on pupil and eyelid 
position that is essentially the same as the information as provided by an eye 
tracker. However, even when the eyes are closed separate information on 
eyeball and eyelid movement can be obtained by monitoring the magnetic field 
surrounding these magnets.   

For some applications the consequences of (slightly) lower accuracy, of 
rejecting data with ocular artifacts, and even of not correcting data will be 
tolerable, and an eye tracker will be considered merely as an extra burden in 
the recording setup. In contrast, many modern EEG-based applications require 
highly accurate correction. For such challenging applications, it is 
demonstrated on experimental data regarding response inhibition, that the 
accuracy of correction is highest when an eye tracker and the EYE correction 
method are used.  

6.2 Perspectives 

When in the near future more and more EEG-based applications are improved 
and newly introduced, it is to be expected that many of these application will 
depend (even more than today) on a highly accurate separation of the electrical 
effects of brain activity from other electrical activities.  

A good example of an already existing application is the brain computer 
interface. With such an interface, the brain of a person is linked to a computer 
in order to control computer driven processes. Some of these brain computer 
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interfaces attempt to ‘read’ the brain’s natural processes e.g., involved in 
decision making or motor control. They use information on these processes to 
control the computer. As these (often subtle) processes are obscured by other 
brain processes that occur simultaneously, one major challenge still is to 
accurately extract the relevant process from the background EEG. It will 
evidently be essential that no other factors, like ocular artifacts, further 
complicate this process. Ultimately, real-time operation in which a single 
thought is enough to control the computer process may be the goal of future 
experiments. 

If all requirements for an ocular artifact correction method would be listed, the 
following two requirements will probably be most important: 

• Accuracy, 
as it is clearly essential that “the corrected EEG is the correct EEG”. 

• Usability, 
as the method used to correct for ocular artifacts should not impose 
serious limitations to the environment in which the EEG is recorded and 
should not be time consuming in that it requires lengthy installment and 
calibration of equipment or lengthy calibration trials.  

In addition to these requirements it is also essential that there is a ‘need for 
correction’.  Section 1.5 showed that for some studies the simplest solutions 
(artifact rejection) are often preferred if accurate correction is not considered to 
be essential. The need for correction is beyond the focus of the correction 
method itself, but is likely to increase with future applications such as the brain 
computer interfaces described above. 

The accuracy of EYE was shown in this thesis to be already superior to the 
accuracy of several frequently used other correction methods, and can be 
improved even further with the suggestions given in Section 6.1. The usability 
of the EYE method currently is limited. Adding an eye tracker in an 
experimental protocol, synchronizing eye tracker recordings with EEG 
recordings, and time consuming calibration of the eye tracker are all 
undesirable features in an optimal correction method.  

The development of easy-to-use hardware, such as an eye tracker mounted on a 
pair of glasses as suggested in Chapter 4, as well as the development of 
advanced (supporting) software for synchronization and eyelid position 
detection, will be needed, but seems all together feasible. Thus the EYE 
method that is proposed in this thesis could further develop to meet the 
accuracy and usability requirements, and hence be a good starting point in the 
search for the ultimate correction method.  

 



 

 

 

Appendix A 

Eye tracker recordings 
 
 

The eye tracking system that is used throughout this thesis is video-based. It 
consists of a camera, an infra-red light source, and accompanying image 
processing software. 

 

The camera focuses on one of the eyes and records its orientation as the 
observed person is observing a screen or a monitor which is placed in front of 
him. In Figure A.1 this is illustrated for a remote eye tracking device, where 
the camera is not attached to the subject and placed at a distance of 
approximately one meter. The chin of the participant is supported during the 
experiments to reduce head movements. Other eye tracking devices can be 
head-mounted, which means that they are attached to the head, e.g., by means 
of a helmet, and that they move whenever the head moves.  

 

 
Figure A.1: Illustration of the positioning of screen, eye tracker, and participant during 

experiments. 

 

The camera records images that are subsequently analyzed by image 
processing software. A brightness threshold is employed to detect the darkest 
area in these images. This threshold is adjusted manually until the darkest area 
coincides with the pupil of the eye. Next, the center of the darkest area is 
determined, which represents the center of the pupil, as is illustrated in Figure 
A.2.  

 



142  Appendix A 
 

 

 
Figure A.2: Example of the image as recorded by the eye tracker. The white circular 
shape in the center corresponds to all points below the brightness threshold; the cross 

marks the center of this shape. 

 

The coordinates of the center-point are usually expressed on a pixel-based 
scale which depends on the resolution of the camera. A calibration protocol is 
employed to determine how these pixel-values can be related to the position of 
a marker on the screen, expressed in m. 

Typical parameters that can be determined from the image in real-time are  

• the horizontal position of the pupil, 1( )p t , 
• the vertical position of the pupil, 2( )p t , and 
• the diameter of the pupil, ( )pd t , expressed in arbitrary units. 

To illustrate the changes in these three parameters during eye movement, 
Figure A.3 illustrates these parameters when recorded during a visual tracking 
task. The participant was asked to focus his eyes on a dot that followed a 
circular path on the screen. Light intensity in the room remained constant 
throughout this experiment. 

 

 
Figure A.3: Eye tracker data recorded during a 30 s visual tracking task. 

 

Note that the ‘spike’ in Figure A.3 that occurs in all three parameters after 
approximately 23 s is caused by blinking.  

 

 



 

 

 

Appendix B 

Methodological backgrounds to Section 1.5 
 
 
Appendix B1 (MLR) 

Equation (1.2) can be used to obtain 

 
( ) ( )

2

 - -

  - 2  .

TT

T T T

n n y x y x

y y x x x y

α α

α α

= ⋅ ⋅

= + ⋅ ⋅
 (B.1) 

Regression assumes that vector n  is zero mean, white, of normal distribution, 
and independent of x . Now α̂  is the estimate for α  that minimizes the noise 
sum of squares as given by (B.1). This leads to 

 ( ) ( )-1
ˆ  .T Tx x x yα =  (B.2) 

By using α̂ , it is now possible to estimate n  according to  

 ˆ ˆ- .n y xα= ⋅  (B.3) 
Similarly for MLR it is found that 

 ( ) ( )-1
ˆ  .T TX X X yα =  (B.4) 

 
Appendix B2 (PCA) 

Assume for now that a blinking artifact is recorded at all electrodes, and at the 
same time there is no prominent other electrical activity at any of the N 
electrodes. In matrix Y , all columns contain some information on the changes 
in electric potential due to this blinking. If PCA is successful in identifying the 
exact blinking artifact as a single component  nz , then just this one component 
together with its corresponding row in PCAW  captures all information on the 
artifact. In effect this reduces the dimensionality of the system from N to one. 

PCA first estimates the covariance between different electrodes. With N 
electrodes this results in a covariance matrix  

 1
.T

Y Y Y
T

Σ =  (B.5) 

Because the ocular artifacts are detected at all electrodes, all elements in matrix 
YΣ  tend to be non-zero. If all information on the artifacts is isolated in one 

column,  nz , of Z , then calculating a similar matrix 

 1
,T

Z Z Z
T

Σ =  (B.6) 
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will only have a non-zero variance for the element in ZC  which corresponds to 

  
T
n nz z . All other elements, reflecting  ...  ...

Tz z , are approximately equal to zero. 

By combining (1.9), (B.5) and (B.6) it follows that  

 -1 -1 ,
T

Z PCA Y PCAW WΣ = Σ  (B.7) 
and thus matrix -1

PCAW should transform a fully filled matrix YΣ  into a diagonal 
matrix ZΣ . 

Note now that this also holds for situations with more than one electrically 
active source. Assuming that their electrical activities are uncorrelated, PCA 
can identify them by simply minimizing covariances. 
Because YΣ  is symmetric, an orthogonal matrix PCAW  that can perform the 
diagonalization as described in (B.7) exists [146] (Theorem 5.8). Two specific 
properties of such an orthogonal transformation are that -1

PCA PCA
TW W= , and 

that the Eigen values of matrix YΣ  appear, ordered in magnitude, on the 
diagonal of matrix ZΣ . After PCAW  is determined, the principal components 
matrix PCAZ  follows from (1.9).  

Other implementations 
In (B.5), matrix YΣ  is taken as a starting point for deriving the principal 
components. This matrix contains the covariances of vectors  1y , ...y , Ny .  

Instead of using covariances between different electrodes when determining 
YΣ  as in (B.5), it is also possible to use covariances between different samples, 

based on TYY  instead of TY Y . This way the main assumption is no longer that 
different components have uncorrelated time-series (temporal-PCA), but that 
different components have uncorrelated scalp topographies (spatial-PCA). A 
more thorough description about differences between these two 
implementations can be found e.g., in [147]. Instead of using covariances, 
matrix YΣ  can be replaced by a correlation matrix. This alternative 
implementation also results in uncorrelated components [117]. 

 
Appendix B3 (sphering) 

It is easy to demonstrate how the orthogonal components can be converted to 
orthonormal components. Note that (1.9) does not strictly define the 
magnitudes of Z  and W  because a scaling matrix A  can change them both as 

 
-1

-1 ,

T T

T T

Z W Y

AZ AW Y

= ⋅

= ⋅
 (B.8) 

with A  being a full rank matrix (NxN). Determining covariances similar to 
(B.6) leads to 
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.T T T

AZ ZAZ ZA A A
T

Σ = = Σ  (B.9) 

Because ZΣ  is diagonal with Eigen values λ1, λ2, .., λN on the diagonal, it follows 

that when A  is a diagonal matrix with 
1

1
λ

,
2

1
λ

,…, 1

Nλ
 on its diagonal, 

matrix AZΣ  equals I . 

 
Appendix B4 (SOBI) 
The matrix Y  is transformed using PCA and sphering. This leads to the 
component-space of PCA, 

2PCAZ , defined as 

 ( )2 2

-1
PCA PCA .

TTZ W Y= ⋅  (B.10) 
The next steps will use 

2PCAZ  as a starting point for finding SZ .  

In effect SOBI thus performs a new components analysis to the components 
that were obtained by PCA. A new mixing matrix 2SW  is derived in this extra 
components analysis,  

 ( )2 2

-1 -1 -1
S 2 PCA 2 PCA .T T T

S SZ W Z W W Y= ⋅ = ⋅ ⋅  (B.11) 
The full mixing matrix SW which is required to relate SZ  directly to Y  is 
defined as 

 ( )2 2

1-1 -1
2 PCA PCA 2S S SW W W W W

−
= ⋅ = ⋅  (B.12) 

 
When shifting all rows of a matrix, e.g.,Z , the notation ( )Z τ  will be used to 
reflect the fact that all components in this matrix are delayed in time. By 
combining (1.13) and (1.14), a time shifted covariance matrix of SOBI 
components ( )

SZ τΣ  is found,  

 ( )

1

2

( ) 0 0 0

0 ( ) 0 01
( ) .

0 0 ... 0

0 0 0 ( )

S

T
Z S S

N

Z Z
T τ

ρ τ

ρ τ
τ

ρ τ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

Σ = = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 (B.13) 

Similar to (B.7), there exists some diagonalization operation for the delayed 
covariance matrix that transforms 

2
( )

PCAZ τΣ  to ( )
SZ τΣ , 

 
22 2( )  ( ) .

S PCA

T
Z S Z SW Wτ τΣ = Σ  (B.14) 

Clearly, different delays will result in different matrices 
2
( )

PCAZ τΣ  and ( )
SZ τΣ . 

SOBI determines one mixing matrix 2SW  which optimizes the joint 
diagonalization of all matrices ( )

SZ τΣ  that are obtained at different delays. 
Matrix 2SW  is obtained by minimizing the sum of all off-diagonal elements 
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over all matrices ( )
SZ τΣ . A way to iteratively estimate this minimum, and find 

the jointly diagonalizing matrix 2SW  is given in [51]. 
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Symbols 
 
 

 

Symbol 

 

 

First 
appears 

in 
Chapter 

α  ‘propagation factor’, relating ( )y t  to ( )x t  1 

α̂  estimate of α  1 

α  vector with several iα  e.g.,  1 2 3[ , , ]Tα α α  1 

α̂  estimate of α  3 

β contribution of a cerebral source to r 1 

γ contribution of an artifact source to r 1 

γ̂  estimate of γ 1 
^

( )b tΓ  asymmetric peak approximation of the bth blink in 
the EOG 

4 

( )tε  artifact electrical activity 1 

( )tη  noise signal 1 

( )tκ  Kalman gains 3 

λ Eigen value 1 

μ  auto-correlation between elements of n  1 

μ̂  estimate of μ  1 
1 2 3 4, , ,b b b bξ ξ ξ ξ  four parameters defining the shape of the bth blink 

in 
^

( )b tΓ  

4 

( )tΠ  a posteriori estimate error covariance of ( )tφ  3 

σ conductivity 2 
2
Xσ  diag(Q ) 3 

2
3Xσ  third diagonal element ofQ  3 

Σ  covariance matrix  1 
( )τΣ  covariance matrix for delay signals 1 

τ  delay 1 

wτ  constant delay 3 
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1( )tφ , 2( )tφ ,.... parameters 1,2, ... in relation between ( )e t  and 
( )p t  

3 

( )tφ  vector with parameters φ 1(t),φ 2(t),.... 3 

(̂ )tφ  estimate of ( )tφ  3 
Φ  Matrix defining expected changes in ( )tφ  3 

Ψ  Vector containing representations of ( )p t  3 

ω angular frequency 3 
A  scaling matrix, used for sphering 1 

b blink index number 4 

B total number of blinks in recording 4 

BT threshold value for blink detection 4 

( )mb t  background electrical brain activity during mth 
stimulus 

5 

( )c t  cerebral electrical activity 1 

ĉ  vector with estimates of cerebral electrical 
activity 

1 

Ĉ  matrix with several  ̂ic  1 

md  maximum amplitude of ( )p t   3 

D noise order in AR model 1 

( )e t  ocular electrical activity 3 

ê  vector with estimates of artifact electrical activity 1 

Ê  matrix with several  ̂ie  1 

( )mf t  electrical brain activity related to the mth 
stimulus 

5 

ˆ ( )mf t  estimate of ( )mf t  5 

(̂ )f t  trial-averaged ERP 5 

Fb blink frequency 4 

g SNR gain 2 

G indicator for performance of a correction 
algorithm 

2 

i electrode number (subscript) 1 
I  identity matrix 1 
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j single-person measure for amount of ocular 
artifact  

5 

J multi-person yardstick for the amount of ocular 
artifact  

5 

K number of ocular artifact sources 1 

M number of trials 5 

( )n t  noise signal 1 

n  vector with multiple ( )n t  values 1 

n̂  estimate of n  1 

N number of electrodes 1 

1( )p t  pupil position (horizontal) 3 

2( )p t  pupil position (vertical) 3 

3( )p t  eyelid position  4 

3̂( )p t  EOG-based estimate of eyelid position  4 
( )p t  vector with pupil (and eyelid) positions 3 
(̂ )p t  vector with pupil and EOG-based eyelid 

iti  
4 

P(..) trial-power 5 

0P  ˆ( )m mP r f− , averaged over all trials in the OA0 
category 

5 

P−  ˆ( )m mP r f− , averaged over all trials in the OA- 
category 

5 

P+  ˆ( )m mP r f− , averaged over all trials in the OA+ 
category 

5 

REFP  trial-averaged estimate for background EEG 
power 

5 

Q  expected co-variances of (t)w  3 

R expected variance of ( )c t  3 

( )r t  raw EEG 1 

( )mr t  raw EEG during trial m 5 

( )s t  signal of interest 3 

SBA set of blink artifact time indices 4 

rSNR  signal-to-noise ratio based on ( )r t  2 

cSNR  signal-to-noise ratio based on (̂ )c t  2 
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1SNR  signal-to-noise ratio measure  4 

2SNR  signal-to-noise ratio measure for blinks 4 

t time index 1 

T maximum value of t in an interval/recording 1 

t1 start of recording 3 

wT  duration of dataset 3 

( )u t  short notation for ( )c t - (̂ )c t  3 

( )w t  fluctuations in ( )tφ  3 
W  mixing matrix for components analysis 1 

#W  changed mixing matrix for artifact removal 1 

x (t) signal 1 

x  vector with multiple ( )x t  values 1 
X  matrix with several  ix , e.g., 1 2 3[ , , ]x x x  1 

y (t) signal  1 
y  vector with multiple ( )y t values 1 
Y  matrix with several  iy  1 

z (t) component  1 

z  vector with multiple z(t) values 1 
Z  matrix with several  iz , e.g., 1 2 3[ , , ]z z z  1 
* referring to data after correction 5 

 
 

 



 

 

 

Summary 
 
Validating and Improving the Correction of Ocular Artifacts in 

Electro-encephalography 
 
 
For modern applications of electro-encephalography, including brain computer 
interfaces and single-trial Event Related Potential detection, it is becoming 
increasingly important that artifacts are accurately removed from a recorded 
electro-encephalogram (EEG) without affecting the part of the EEG that 
reflects cerebral activity. 

Ocular artifacts are caused by movement of the eyes and the eyelids. They 
occur frequently in the raw EEG and are often the most prominent artifacts in 
EEG recordings. Their accurate removal is therefore an important procedure 
in nearly all electro-encephalographic research. As a result of this, a 
considerable number of ocular artifact correction methods have been 
introduced over the past decades. A selection of these methods, which contains 
some of the most frequently used correction methods, is given in Section 1.5.  

When two different correction methods are applied to the same raw EEG, this 
usually results in two different corrected EEGs. A measure for the accuracy of 
correction should indicate how well each of these corrected EEGs recovers the 
part of the raw EEG that truly reflects cerebral activity. The fact that this 
accuracy cannot be determined directly from a raw EEG is intrinsic to the need 
for artifact removal. If, based on a raw EEG,  it would be possible to derive an 
exact reference on what the corrected EEG should be, then there would not be 
any need for adequate artifact correction methods. 

Estimating the accuracy of correction methods is mostly done either by using 
models to simulate EEGs and artifacts, or by manipulating the experimental 
data in such a way that the effects of artifacts to the raw EEG can be isolated.  

In this thesis, modeling of EEG and artifact is used to validate correction 
methods based on simulated data. A new correction method is introduced 
which, unlike all existing methods, uses a camera to monitor eye(lid) 
movements as a basis for ocular artifact correction. The simulated data is used 
to estimate the accuracy of this new correction method and to compare it 
against the estimated accuracy of existing correction methods. The results of 
this comparison suggest that the new method significantly increases correction 
accuracy compared to the other methods. Next, an experiment is performed, 



160  Summary 
 

 

based on which the accuracy of correction can be estimated on raw EEGs. 
Results on this experimental data comply very well with the results on the 
simulated data. It is therefore concluded that using a camera during EEG 
recordings provides valuable extra information that can be used in the process 
of ocular artifact correction. 

 

In Chapter 2, a model is introduced that assists in estimating the accuracy of 
eye movement artifacts for simulated EEG recordings. This model simulates 
EEG and eye movement artifacts simultaneously. For this, the model uses a 
realistic representation of the head, multiple dipoles to model cerebral and 
ocular electrical activity, and the boundary element method to calculate 
changes in electrical potential at different positions on the scalp. With the 
model, it is possible to simulate different data sets as if they are recorded using 
different electrode configurations. Signal to noise ratios are used to assess the 
accuracy of these six correction methods for various electrode configurations 
before and after applying six different correction methods. Results show that 
out of the six methods, second order blind identification, SOBI, and multiple 
linear regression, MLR, correct most accurately overall as they achieve the 
highest rise in signal to noise ratio.  

The occurrence of ocular artifacts is linked to changes in eyeball orientation. In 
Chapter 2 an eye tracker is used to record pupil position, which is closely 
linked to eyeball orientation. The pupil position information is used in the 
model to simulate eye movements. 

Recognizing the potential benefit of using an eye tracker not only for 
simulations, but also for correction, Chapter 3 introduces an eye movement 
artifact correction method that exploits the pupil position information that is 
provided by an eye tracker. Other correction methods use the electro-
oculogram (EOG) and/or the EEG to estimate ocular artifacts. Because both 
the EEG and the EOG recordings are susceptive to cerebral activity as well as 
to ocular activity, these other methods are at risk of overcorrecting the raw 
EEG. Pupil position information provides a reference that is linked to the 
ocular artifact in the EEG but that cannot be affected by cerebral activity, and 
as a result the new correction method avoids having to solve traditionally 
problematic issues like forward/backward propagation and evaluating the 
accuracy of component extraction.  

By using both simulated and experimental data, it is determined how pupil 
position influences the raw EEG and it is found that this relation is linear or 
quadratic. A Kalman filter is used for tuning of the parameters that specify the 
relation. On simulated data, the new method performs very well, resulting in 
an SNR after correction of over 10 dB for various patterns of eye movements. 
When compared to the three methods that performed best in the evaluation of 
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Chapter 2, only the SOBI method which performed best in that evaluation 
shows similar results for some of the eye movement patterns. However, a 
serious limitation of the correction method is its inability to correct blink 
artifacts.  

In order to increase the variety of applications for which the new method can 
be used, the new correction should be improved in a way that enables it to 
correct the raw EEG for blinking artifacts. Chapter 4 deals with implementing 
such improvements based on the idea that a more advanced eye-tracker should 
be able to detect both the pupil position and the eyelid position. The improved 
eye tracker-based ocular artifact correction method is named EYE. Driven by 
some practical limitations regarding the eye tracking device currently available 
to us, an alternative way to estimate eyelid position is suggested, based on an 
EOG recorded above one eye. The EYE method can be used with both the eye 
tracker information or with the EOG substitute.  

On simulated data, accuracy of the EYE method is estimated using the EOG-
based eyelid reference. This accuracy is again compared against the six other 
correction methods. Two different SNR-based measures of accuracy are 
proposed. One of these quantifies the correction of the entire simulated data set 
and the other focuses on those segments containing simulated blinking 
artifacts. After applying EYE, an average SNR of at least 9 dB for both these 
measures is achieved. This implies that the power of the corrected signal is at 
least eight times the power of the remaining noise. The simulated data sets 
contain a wide range of eye movements and blink frequencies. For almost all of 
these data sets, 16 out of 20, the correction results for EYE are better than for 
any of the other evaluated correction method. On experimental data, the EYE 
method appears to adequately correct for ocular artifacts as well. As the 
detection of eyelid position from the EOG is in principle inferior to the 
detection of eyelid position with the use of an eye tracker, these results should 
also be considered as an indicator of even higher accuracies that could be 
obtained with a more advanced eye tracker. Considering the simplicity of the 
MLR method, this method also performs remarkably well, which may explain 
why EOG-based regression is still often used for correction.  

In Chapter 5, the simulation model of Chapter 2 is put aside and, alternatively, 
experimentally recorded data is manipulated in a way that correction 
inaccuracies can be highlighted. Correction accuracies of eight correction 
methods, including EYE, are estimated based on data that are recorded during 
stop-signal tasks. In the analysis of these tasks it is essential that ocular 
artifacts are adequately removed because the task-related ERPs, are located 
mostly at frontal electrode positions and are low-amplitude. These data are 
corrected and subsequently evaluated. For the eight methods, the overall 
ranking of estimated accuracy in Figure 5.3, corresponds very well with the 
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correction accuracy of these methods on simulated data as was found in 
Chapter 4. In a single-trial correction comparison, results suggest that the 
EYE corrected EEG, is not susceptible to overcorrection, whereas the other 
corrected EEGs are. 

 



 

 

 

Samenvatting 
 

Validating and Improving the Correction of Ocular Artifacts in 
Electro-encephalography 

 
 
Voor moderne toepassingen van elektro-encefalografie, zoals brain-computer 
interfaces en single-trial analyses, is het van groot belang dat artefacten uit het 
elektro-encefalogram (EEG) verwijderd kunnen worden zonder dat de gemeten 
hersenactiviteit hierdoor wordt beïnvloed. 

Oogartefacten worden veroorzaakt door bewegingen van de ogen en van de 
oogleden en komen veelvuldig voor in EEG-registraties. Het nauwkeurig 
verwijderen van deze artefacten uit registraties is daarom een belangrijk aspect 
van vrijwel ieder EEG-onderzoek. Er zijn in de afgelopen jaren dan ook vele 
oogartefactcorrectiemethodes geïntroduceerd. De meest gangbare 
correctiemethodes worden behandeld in Sectie 1.5 van dit proefschrift.  

Wanneer twee verschillende correctiemethodes worden gebruikt om dezelfde 
EEG registratie te corrigeren, zal dit meestal leiden tot twee verschillend 
gecorrigeerde EEGs. Om aan te kunnen geven welke van deze EEGs het beste 
de elektrische activiteit van de hersenen weergeeft, is een maatstaf nodig. Het 
feit dat deze maatstaf niet eenvoudig is af te leiden uit het gemeten EEG is 
intrinsiek aan het probleem van artefact correctie. Immers, wanneer het op 
basis van een gemeten EEG mogelijk zou zijn om een exacte maatstaf af te 
leiden, dan zou oogartefact correctie overbodig zijn. Het bepalen van zo’n 
maatstaf voor de nauwkeurigheid van verschillende correctiemethodes gebeurt 
meestal door gebruik te maken van gesimuleerde data, of door gemeten data 
dusdanig te manipuleren dat de aanwezigheid van artefacten naar voren 
gebracht wordt. 

In dit proefschrift worden EEG-data gesimuleerd, om vervolgens 
correctiemethodes te valideren. Hierna wordt een geheel nieuwe 
correctiemethode geïntroduceerd die, in tegenstelling tot alle bestaande 
methodes, gebruik maakt van een eye-tracker om oog- en ooglidbewegingen te 
registreren. Deze registraties bieden waardevolle informatie bij het corrigeren 
van oogartefacten. Door gebruik te maken van gesimuleerde data wordt de 
nauwkeurigheid van de nieuwe correctiemethode vergeleken met de reeds 
bestaande methodes. De nieuwe correctiemethode blijkt significant 
nauwkeuriger dan bestaande methodes te zijn. Ook op (gemanipuleerde) 
gemeten EEG-data leidt de nieuwe correctiemethode tot aantoonbaar betere 
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correctie, waaruit wordt geconcludeerd dat de met een eye-tracker verkregen 
data een belangrijke bron van informatie vormen in het correctieproces. 

 

In hoofdstuk 2 wordt een model gepresenteerd waarmee hersenactiviteit en 
oogbewegingen tegelijkertijd kunnen worden gesimuleerd. Hiertoe wordt 
gebruik gemaakt van een realistisch model van het hoofd, van een aantal dipool 
bronnen die de elektrische gevolgen van hersenactiviteit en oogbewegingen 
simuleren en van de ‘boundary element method’ waarmee de elektrische 
potentialen op de hoofdhuid als gevolg van de dipool bronnen kunnen worden 
bepaald. Met behulp van dit model kunnen EEG-metingen worden 
gesimuleerd voor verschillende elektrode-configuraties. Enkele experimenten 
zijn uitgevoerd waarbij een eye-tracker is gebruikt om de pupil-positie te 
registreren. De zo verkregen informatie over oogbewegingspatronen is 
gebruikt om realiteitsgetrouwe oogbewegingen en artefacten te simuleren. 

De gesimuleerde data worden vervolgens met diverse correctiemethodes 
opgeschoond. Hierna wordt voor iedere correctiemethode bepaald wat de 
signaal-ruis verhouding na opschoning is. Hieruit blijkt dat de second order 
blind identification methode (SOBI) en de multiple linear regression (MLR) 
methode de grootste stijging in signaal-ruis verhouding opleveren ten opzichte 
van het ongecorrigeerde signaal en dus het nauwkeurigst corrigeren.  

Aangezien een eye-tracker in potentie niet alleen voor simulatie van data, maar 
ook voor correctie van data gebruikt kan worden, wordt in hoofdstuk 3 een 
correctiemethode geïntroduceerd die gebaseerd is op het meten van de pupil-
positie. Aan de hand van de pupil-positie wordt de amplitude en de vorm het 
artefact in het EEG geschat. In tegenstelling tot het elektro-oculogram wat 
door bestaande correctiemethodes vaak wordt gebruikt om 
oogbewegingsartefacten te detecteren en corrigeren, kan de meting van pupil-
positie niet worden beïnvloed door de elektrische gevolgen van 
hersenactiviteit. Hierdoor heeft een op pupil-positie gebaseerde 
correctiemethode als voordeel dat klassieke moeilijkheden die samenhangen 
met oogartefact correctie, bijvoorbeeld ten gevolge van forward/backward 
propagatie en component selectie, kunnen worden omzeild. Voor zowel 
gesimuleerde als voor gemeten EEGs wordt vervolgens vastgesteld dat de 
relatie tussen artefact-amplitude en pupil-positie kan worden beschreven met 
een eerste of tweede graads vergelijking. De parameters die bij deze 
vergelijkingen horen worden met behulp van een Kalman filter geschat. 
Wanneer de correctieresultaten worden vergeleken met de correctieresultaten 
voor de methodes uit hoofdstuk 2, blijkt dat alleen de SOBI methode een 
vergelijkbaar resultaat behaalt. Tevens wordt de nauwkeurigheid van 
verschillende correctiemethodes voor experimenteel verkregen data bekeken, 
waarbij een vergelijkbare correctie nauwkeurigheid wordt gevonden.  
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Een tekortkoming van de tot dusverre beschreven nieuwe correctiemethode is 
het feit dat oogknipperartefacten niet gecorrigeerd kunnen worden. In 
hoofdstuk 4 wordt de correctiemethode daarom uitgebreid en wordt de 
mogelijkheid om oogknipperartefacten te corrigeren toegevoegd. Deze 
toevoeging is gebaseerd op het idee dat het in de nabije toekomst mogelijk zal 
zijn om met meer geavanceerde eye-trackers ook de ooglid-positie te 
registreren. Gedwongen door de beperkingen van onze huidige eye-tracker, 
wordt een alternatieve manier voor detectie van ooglidbewegingen 
aangedragen. Dit alternatief is gebaseerd op registratie van oogknippers door 
gebruik te maken van een EOG elektrode, geplaatst boven het oog. De nieuwe 
correctiemethode, EYE,  kan ofwel worden gebruikt met de eye-tracker, ofwel 
met de EOG elektrodes, om de ooglidpositie te detecteren. Met behulp van 
gesimuleerde data wordt de nauwkeurigheid van de EYE methode, met 
gebruik van de EOG elektrode, bepaald. Deze nauwkeurigheid wordt wederom 
vergeleken met die van zes bestaande methodes. Hiertoe worden twee 
verschillende maatstaven gedefinieerd. De eerste hiervan is gebaseerd op de 
signaal-ruis verhouding van het gehele gecorrigeerde EEG en de tweede is 
alleen gebaseerd op de signaal-ruis verhouding van die segmenten uit het EEG 
waarin een oogknipperartefact gedetecteerd wordt. Na correctie met EYE is de 
signaal-ruis verhouding volgens beide maatstaven minimaal 9 dB, wat aangeeft 
dat in het gecorrigeerde signaal het vermogen van de ruis acht keer lager is 
dan het vermogen van het relevante signaal.  

Meerdere datasets, met verschillende typen oogbewegingen en met 
verschillende oogknipper frequentie, zijn gesimuleerd en voor vrijwel al deze 
datasets, 16 uit 20, is de uiteindelijke signaal-ruis verhouding na EYE-correctie 
hoger dan na toepassing van de reeds bestaande correctiemethodes. Aangezien 
EOG-gebaseerde detectie van ooglid positie in principe minder accuraat is dan 
eye-tracker gebaseerde detectie, zal de nauwkeurigheid van correctie 
waarschijnlijk nog verder toenemen indien een geavanceerde eye-tracker voor 
detectie wordt gebruikt.  

In hoofdstuk 5 worden experimentele data gebruikt om de correctiemethodes 
te valideren. Voor acht verschillende correctiemethodes, waaronder EYE, 
wordt de nauwkeurigheid van correctie bepaald aan de hand van EEG-data 
gemeten tijdens stop-taken. Aangezien de aan deze taak gerelateerde 
hersenactiviteit en event-related-potentials (ERPs) vooral frontaal optreden en 
slechts een lage amplitude hebben, is het juist voor deze ERPs essentieel dat 
alle oogartefacten nauwkeurig worden verwijderd. De gevonden correctie 
nauwkeurigheid voor de acht correctiemethodes, te zien in Figuur 5.3, komt 
overeen met de in Hoofdstuk 4 gevonden nauwkeurigheden op gesimuleerde 
data. In een vergelijking van de correctienauwkeurigheid op single-trial niveau 
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is te zien dat de EYE methode, in tegenstelling tot andere methodes, niet 
overcorrigeert en dus de ERPs in tact laat bij de correctie. 
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