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ON MAXIMUM NORM CONVERGENCE OF MULTIGRID 
METHODS FOR ELLIPTIC BOUNDARY VALUE PROBLEMS* 

ARNOLD REUSKENt 

Abstract. Multigrid methods applied to standard linear finite element discretizations of linear 
elliptic boundary value problems in two dimensions are considered. In the multigrid method, damped 
Jacobi or damped Gauss-Seidel is used as a smoother. It is proven that the two-grid method with 
v pre-smoothing iterations has a contraction number with respect to the maximum norm that is 
(asymptotically) bounded by Cv-1/2 l ln hkl2, with hk a suitable mesh size parameter. Moreover, 
it is shown that this bound is sharp in the sense that a factor I ln hk I is necessary. 

Key words. multigrid, convergence analysis, maximum norm, elliptic boundary value problems 

AMS subject classification. 65N20 

1. Introduction. If one considers elliptic boundary value problems in IRN (N 
2, 3), then multigrid methods can be used to efficiently solve the large sparse linear sys- 
tems that arise after discretization. In recent years there has been intensive research 
into the theoretical understanding of the convergence properties of these methods. 
We refer to Hackbusch [10], McCormick [14], and the references therein. The main 
feature of multigrid is that for a broad class of problems the contraction number has 
an upper bound that is smaller than one and independent of the mesh size. In theo- 
retical analyses this has been shown for several variants of multigrid. Usually in these 
analyses the energy norm is used; sometimes one uses the Euclidean norm. Some first 
results about multigrid convergence in the maximum norm are presented in [19]. In 
that paper, however, only two-point boundary value problems are treated. In this 
paper we present convergence results in the maximum norm for multigrid applied to 
a class of elliptic two-dimensional boundary value problems. We consider a regular 
linear (nearly) symmetric elliptic boundary value problem on a domain Q C k2, and 
we use linear finite elements on quasi-uniform triangulations. 

Two main results of this paper are the following. Firstly, we prove that for a two- 
grid method with v damped Jacobi or damped Gauss-Seidel smoothing iterations the 
contraction number with respect to the maximum norm is (asymptotically) bounded 
by Cv-r1/2 lIn hk12 (with hk a suitable mesh size parameter). Secondly, it is shown 
that this bound is sharp in the sense that a factor Iln hk I is necessary: For a concrete 
(very regular) example we prove that the contraction number with respect to the 
maximum norm of a standard two-grid method with a fixed number of smoothing 
iterations is bounded from below by C Iln hkI- 

So instead of an "optimal" bound Cv-1 for the contraction number in the energy 
norm (or the Euclidean norm) we obtain a "nearly optimal" bound CV-1/2 Iln hkI2 
if we use the maximum norm and this bound is sharp in some way. 

We now outline the remainder of this paper. In ?2 we introduce a class of elliptic 
boundary value problems. Some properties of the usual linear finite element discretiza- 
tion on a sequence of quasi-uniform triangulations are derived in ?3. An important 
property, due to Descloux [7], is that the mass matrix has a condition number which 
is uniformly bounded (for hk l 0) with respect to the maximum norm. In ??4 and 5 
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we prove the approximation property and smoothing property (cf. Hackbusch [10]), 
respectively. In the proof of the approximation property we use a regularity result 
due to Campanato [5] and an L?-finite element error estimate due to Rannacher and 
Frehse [18], [8]. From the latter the factor I ln hkl2 originates. The smoothing prop- 
erty is proved using a new technique introduced in [20]. In ?6 we derive convergence 
results for the two-grid method and we discuss multigrid convergence. Finally, in ?7, 
we analyze a specific example. We consider the Poisson equation on the unit square 
and use a linear finite element discretization on a uniform triangulation. We prove a 
Cl ln hk I lower bound for the contraction number of a standard two-grid method with 
a fixed number of smoothing iterations. Our analysis in ?7 is based on the approach 
used by Haverkamp in [11]. 

2. Continuous problem. Let Q C J2 be a bounded open domain with OQ 
sufficiently smooth. We consider the following variational boundary value problem: 

[ find * E Ho'(Q) such that for all H Co(Q) 

(2.1) 2_ Ja Pl 0dzz 0b 

I 

a 
w 

ij (9xi (zj |dx f Vd 

We use the notation 
2 O 

(2.2) a(p,4') = > f a - dx (WI EHo()) 
i,j=1 

( xi 

and we make the following assumptions about Q, f, a(-, 

(2.3) f C L2(Q)I 

(2.4a) &Q e C2,o (e E]0, 1]), 
(2.4b) aij = aji ; aij E Cl, (Q) (a,clo ]01])) 
(2.4c) there are constants A1, A2 > 0 such that for all (ff,22) C 2 

and all x C Q 
2 

A2 142 aij (x) (j (j < Al142 
Z,j 1 

By Hm P(Q), Hom '(Q) (1 < p < oo, m c V) we denote the usual Sobolev spaces with 
norm I - IIHm,p and I I II HnP I respectively. If p = 2 we use the notation Hm (Q), Ho (Q). 

Remark 2.1. In multigrid convergence theory an important role is played by the 

regularity of the differential operator. It is well known that under the assumptions 

(2.3), (2.4a)-(2.4c) we have H2-regularity: p* is an element of H2(Q) n Ho(Q) and 

llP*llH2 ? cllfllL2 with c independent of f. If instead of p = 2 we take another 

p c ]1, oo[, then a similar H2'P-regularity result holds (cf. [9]). However, even if &Q and 

the coefficients aii are very smooth, a similar H2' '-regularity estimate lIj *IIH2,0 < 

c lIf |ILO does not hold, as is shown by the following example. Let Q be the unit sphere 
and a(W,) := fQ VW. Vb dx. For e C [0,1] we define p*(x1,x2) = x1x2 ln(lxl + 

)- X1X2 ln(1 + e) (with p*(0, 0) := 0). Then = 0 and A & exists on Q. Now 

define f6 := -A*, then f6 e L-(Q) for all E C [0,1] and even f, E C(Q) if e C]0, 1]. 

However, if ? = 0 we have W* 0 H2' (Q) and if ? C]0, 1] we have p* C H2', but 

i|P *IIH2,o IIfSll1- is unbounded for E | 0. 
In the proof of the approximation property (?4) with respect to the L?-norm 

another type of regularity result (due to Campanato [5]) is used, in which the usual 
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LP(Q) space is replaced by the space of John-Nirenberg EO(Q) (also called the space 
of functions of bounded mean oscillation; cf. [12]). This space satisfies 

L??(Q) # E?(Q) 7 LP(Q) for all p E [1, [. 

3. Discretization and two-grid method. We take a sequence of quasi-uniform 
triangulations {Tk I k fE JAO} as follows. For every k we define Qk := UTETk T and 
for every 7k we use a mesh size parameter hk with 0 < hk+1 < hk < 1. We make the 
following assumptions (with constants ci independent of T and k): 

(3.1a) Qk C QkA+1 C Q for all k; 
(3. 1b) dist(9Qk, ,9Q) < coh2; 

(3. 1c) for any two different triangles in Tk the intersection is empty 
or consists of a common vertex or of a common side; 

(3.1d) for every T C Tk there is a disc with radius c1hk containing 
T and a disc with radius c2hk contained in T; 

(3.le) hkh-1 < C3. 

Continuous piecewise linear functions on such a triangulation TTk yield a finite-dimen- 
sional function space 

(3.2) 4,k = {V C C(Q) v is linear on every T C Tk and v -0 on OQk U (Q\Qk)}- 

The collection of interior grid points in Tk is denoted by {Xi%}iEJk for some index set 
Jk with # Jk = nk. We use the notation Uk = ]nk . The standard basis of I?k is given 
by the functions (i4 C 4)k which satisfy pi (xi) =ij (i,j C Jk). This induces the 
natural bijection 

(3.3) PkA: Uk 4+,k, PkA(u) S k 
iEJk 

On Uk we use a scaled Euclidean inner product with corresponding norm 

(3.4) (uV)A, - hV k E uivi, miUlk (u,u)k. 
iEJk 

The maximum norm on Uk is denoted by II K0 Below, adjoints are always defined 
with respect to the L2-inner product on (Pk and (, -)k on Uk. The norms 11 11 (on 
Uk) and 11 IIL?? (on 4Ak) induce associated operator norms, which are denoted by 

11 1100.> Remark 3.1. Lemma 3.2 below yields that the sequences (Pk)k>O, (P7-1)A>o, 

(Pk*)k>O, and ((Pk*)-l)k>o are uniformly bounded in 11 I In the analysis of multigrid 
convergence in the Euclidean norm (cf. [10]) such a uniform boundedness result is 
used too, but then with resepct to the norms 1 lk and 11 IIL2. The latter uniform 
boundedness is closely related to the well-known fact that the mass matrix Pk*Pk has 
a condition number 0(1) (hk I 0) in the Euclidean norm. The main argument in the 
proof of Lemma 3.2 is that the condition number of the mass matrix is 0(1) (hk 1 0) 
with respect to the maximum norm, too. This result has been proved by Descloux 
in [7]. 

LEMMA 3.2. For Pk : Uk -+ (Pk as in (3.3) the following holds with constants Cl 
and C2 independent of k: 

(1) lPk UIILOO = Ilullo0 for all u e Uk, 

(2) Cl I(kPIILo <? IlPk*iWll < C2 II(IIL- for all W e (Dk. 
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Proof. The result in (1) holds because Pk u is piecewise linear and (Pku)(x) 
equals the ith component of u. Due to (1) the statement in (2) is equivalent with 

(2') C, IjujjK) < HjPk*Pkuj1K0 < C21|ul10) for all u C Uk 

For i, j C Jk we have (with em the mth unit vector in Uk) 

(PkPk)i,j = h j2 (PkPkej,ei)k = hj2 J j4idx. 

So, using (3.1.d), we get 

IIP*PkI max h7 E J k < max h 2 SUPP(9) ? 02; 
j C Jk Q 

thus the second inequality in (2') holds. For the first inequality in (2') we note that due 
to the quasi-uniformity of the triangulations the assumptions in [7] hold. Theorem 2 
in [7] then yields the desired result. D 

Galerkin discretization results in a stiffness matrix Lk: Uk -* Uk defined by 

(3-5) (Lku, V)k = a(Pku, Pkv) for all u,v C Uk. 

Also we have that 

(3.6) a(PkLj1g, Pkv) = (9g v)k for all g, v C Uk. 

For the analysis of a multigrid method it is beneficial to have a hierarchy of finite 
element spaces (i.e., (1k C (Dk+1 for all k). Due to 9Q C C2,a and the assumptions in 
(3.1) we cannot have such a hierarchy here. Below, in ?6, we will point out why we 
make the assumption that 9Q is smooth instead of the usual assumption (in multigrid 
convergence analyses) that Q is polygonal. 

In order to separate the coarse to fine strategy (essential for multigrid) from the 
modifications close to the boundary we will be more specific about the refinement 
procedure we use. For every m > 0 we construct T2m?1 and T2m+2 from T2m as 
follows: First we use a refinement in which, for every triangle in T2m, the midpoints 
of the sides are connected; this yields T2mi+; then, in order to fulfill (3.1b), T2m+2 
is constructed from T2m+l by modifying (if necessary) the triangulation close to the 
boundary (consistent with the other conditions in (3.1)). As a consequence we have 

(3.1.f) (D2m C (D2m+1- 

Note, however, that in general '2m+1 ? (2m+2- 

In the remainder of this section we assume that k is odd and thus 

(3.7) 'k-1 C '1k 

For solving a system of the form LkUk = 9k we use a standard two-grid method. The 
iteration matrix of the smoothing method is denoted by Sk. For the prolongation 
P = Pk : Uk-i -* Uk we use the natural one: 

(3.8) P =k P k-l- 

For the restriction r = rk: Uk -* Uki, we take 

(3.9) r=p*. 

The iteration matrix of the two-grid method with v presmoothing iterations is given 
by 
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(3.10) Tk(v) = (I - pL-1rLk) SrL - (L1 - pL-1 r) LkSk 

Below, in ??4 and 5 we will prove the approximation property and smoothing property 
(cf. [10]) with respect to the norm 11 *K. 

4. The approximation property. We begin this section with a discussion of 
a rather special finite element L?-error estimate that will be used in the proof of the 
approximation property below. 

In most convergence analyses of multigrid the regularity of the underlying bound- 
ary value problem is used. If the analysis is based on the energy norm, then h- 
independent convergence can be proved under very weak regularity conditions (cf., 
eg., [1]-[4], [10], [13], and [16]). If, however, one wants to prove the approximation 
property in the scaled Euclidean norm, then an H2-regularity estimate 

(4.1) Ik'P*IIH2 <C cl ||o|L2 

is necessary, as is shown in [6]. The approximation property then follows from a 
combination of (4.1) with the following (in which W* is the Galerkin solution in 4ik): 

(4.2a) llp -W*IIL2 < ch2 Iko*IIH2 (finite element error estimate), 

(4.2b) 11 . IIL2 and 11 Ilk are uniformly equivalent for k -+ oo. 

In this paper we want to prove the approximation property in the maximum norm. 
Clearly, the analogue of (4.2b) is given in Lemma 3.2. With respect to (4.2a) we note 
that L?- error estimates of the form 

(4.3) 11(k * IW IL- < ch2 I In hk I IIW* |IH2,. 

can be found in the literature (e.g., in [8], [15], [22], and [23]). However, it is shown 
in Remark 2.1 that, even for very regular problems, an H2 '-regularity estimate 
II(1*IIH2.0 < c Ilf 11 L? does not hold. Therefore it is not clear how (4.3) can be used 
to prove the approximation property. 

In [8] and [18] Rannacher and Frehse prove the following type of (asymptotic) 
error estimate for f C L?: 

(4-4) ||kW* IL- < ch2k I In hk| lif JIL- 

This result, which is a substitute for the combination of (4.1) and (4.2a), and the 
result of Lemma 3.2 are the main points in the proof of the approximation property 
in Theorem 4.2 below. 

Remark 4.1. We briefly comment on the combination of regularity and approxima- 
tion properties of 4Jk used in the proof of (4.4). Instead of LP(Q) the John-Nirenberg 
space E?(Q) is used with a suitable norm denoted by 11 IL2,0. For EO(Q) one has 

c c 
Lo" (Q) :$ E? (Q) $ LP (Q) for every p c [1, oo[. 

Instead of H2(Q) the subspace H2 0(Q) of functions for which all generalized second 
derivatives are in E?(Q) is used. In [5] Campanato proves the following regularity 
result: 

(4.5) IIp*IIH2,0 < C clf 1L2,0 for all f E E?(Q). 

In [8] Frehse and Rannacher prove the following asymptotic error estimate (for ease 
Qk= Q): 
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(4.6) Ik(# - 9* IlL- < clhk I In hkI inf Pe'k IIV(99 - )||L? 
+ C2 infVE4)k 119P-(*IILo. 

Furthermore, in [18] Rannacher proves the following (less standard) approximation 
property of the space (?k if (p* e H2'0 (Q) n Ho (Q): 

(4.7) inf9Ck {hk IIV(p-(tp*)|IL + Ik -W ||IIL<} c ch2 ln hkl II9*IIH2Q0. 

The combination of (4.5)-(4.7) yields (4.4) (note that If IIL2,0 < cIIfIILo). 
THEOREM 4.2. Assume (2.4a)-(2.4c) and (3.1a)-(3.1f). Then there are constants 

ko and CA such that for all odd k > ko the following holds: 

(4.8) ||tL 1 - 
pL-_1 r|jcoo < CA h2 I In hk 

12 

Proof. Take g C Uk. In the proof different constants C, all independent of k and 
g, are used. Let p c Hol(Q), (Pk (E (Pk, and (9k-1 C (Pk-, be such that 

a ((P,) = ((Pk) 1g,0)L2 for all b C Ho'(Q), 

a((Pk, P) = ((Pk*) 1 9,)L2 for all V C 4)k, 

a(Pk-1,b)- ((Pk*) 19,L2 for all 0 C 'Tk-1. 

The asymptotic error estimate (4.4) yields that for k large enough, say k > ko, 
we have 

1199m - 99lIL? < Ch2 Iln hmI2 II(Pk*)-l 9ILL if m C {k,k - 1}. 

Using (3.1.e) this yields for k > ko 

(4.9) II99k - (9k-1 |ILc < C hk I ln hkI2 11(PS)1g1L 

From (3.6) it follows that Pk PkL-1 g and for k odd Pk-1 PkjL-1 rg. Using 
Lemma 3.2 and (4.9) we have that for k > ko, 

I(L-1 -pLk-1 r) 
gl??,, 

= IPkL1 
9-Fk_lLk-1 

r9lILoo = ||9Pk (k-1 JIL- 

< Ch I|ln hkI2 j|(Pk) 1g91Lo < Ch2 |ln hkI2 Ilgi. ? 

5. The smoothing property. The usual technique for proving the smoothing 
property requires symmetry (or a nearly symmetric situation), and yields results in the 
Euclidean norm or in the energy norm. We refer to Wittum [24], where smoothing and 
the construction of smoothers are discussed in a general framework. A new approach 
to the smoothing property has been introduced in [20]. The analysis there does not 
use symmetry and can also be used for the maximum norm. A disadvantage of this 
new approach is that we need a damping factor less than or equal to 0.5 (whereas 
the conditions for the damping factor in [24] are less restrictive). The results of this 
section can be found in a more general setting in [20]. The analysis here is the same 
as for the one-dimensional case in [19]. For completeness we give proofs here too. 

The smoothing iteration we use is based on a splitting 

(5.1) Lk = Wk - Rk- 

We make the following assumptions about this splitting: 

(5.2a) Wk is regular and IIW(-' RklIoo < 1 for all k, 

(5.2b) liWklloo < ch -2 for all k, with c independent of k. 
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Remark 5.1. It is well known that if Lk is weakly diagonally dominant (i.e., 
Ej=i I(Lk)ijI < I(Lk)iiI for all i), then (5.2a) holds if (5.1) corresponds to the Jacobi 
or Gauss-Seidel relaxation. It can also be shown (cf. [21]) that the following criterion 
holds: if Lk is such that Lk e > 0 (with e = (1, 1, . . ., I)T and ">" entrywise) and if 
(5.1) is a (weak) regular splitting then (5.2a) holds. 

This criterion applies to the ILU splitting of an M-matrix Lk. 
The proof of the smoothing property in Theorem 5.3 below is based on the fol- 

lowing elementary lemma. 
LEMMA 5.2. Let A be a square matrix with IIAIlo, < 1. Then the following holds: 

(5.3) I1(I - A) (I + A)VII ?2( [] ) < 2+?1 > 1). 

Proof. 

(I -A) (I + A)> = (I -A) E (v)Ak 
k=O 

= I - Av+1 + 
k ) (k- )) k. 

k= 1 

So 

(5.4) I1(I 1 A) (I + A)vI < 2 +Z () - (r-) 

Using (k) ? (1) X k < 1 (v + 1) and (k) (v-k) we get 

(k) (k-1) 

E ((k) (k-1)) [,(E] ((k-11)(k)) 

=~ ((k)-(k-l))?Z2 (G )-(in1)) 

-2 
(GDk) (kll)) (2[(Q]) -0) 

Combined with (5.4) this yields the first inequality in (5.3). Elementary analysis 
yields that 

(5.5) S~k =I Wk L, 0])2 

12 v~~~ 
ni K2u - forall~ 11>1 

For details we reerto[2]anV[1] I 
As a smoothe weus a apditrto bae ntesltigi 51.W 

(5.5) S~k=I-W1 Lk 2],] 
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THEOREM 5.3. Assume that (5.2a) and (5.2b) holds. Then we have the following 
inequality with a constant Cs independent of k and v: 

(5.6) Ilk Sklloo <? CS 
1 

hk2 

Proof. Let A I - 20W7-1Lk = 20W,71Rk + (1 - 20) I. Then due to (5.2a) and 
0 c]O, '] we have tJAJl < 1. Using Lemma 5.2 we get 

llLkS|loI = IILk(I -OW/ lLk)VlI| 

20 Wk(I-A) (2) (I + A) II 

1 2 v+ < 2 11 Wklo 2 

- - c-hk=:Cs h 2. 

6. Contraction number of the two-grid method. Theorems 4.2 and 5.3 
combined immediately yield the following result. 

THEOREM 6.1. Assume (2.4a)-(2.4c), (3.1a)-(3.1f), (5.2a) and (5.2b). Let Tk(v) 
be as in (3.10) with Sk from (5.5). Then there are constants ko and CTG independent 
of k and v such that for all odd k > ko, we have 

(6.1) IITk(v)JKoo < CTG I I ln hkl2. 

Clearly, Theorem 6.1 shows that if we take v = Vk then for IITk(vk)llK < c < 1 
to hold, in our upperbound we need IJk = g(hk) with g a logarithmically growing 
function for hk l 0 In ?7 we show that, with the assumptions as in Theorem 6.1, at 
least one factor ln hk is necessary in an upper bound for lITk (v) KJ0. 

Remark 6.2. With respect to multigrid convergence we note the following. The 
proofs of (4.6) and (4.7) also hold if Q is a convex polygonal domain. If a regularity 
result as in (4.5) would hold for that situation too (as in the case of H2-regularity), 
then we could assume Q convex and polygonal and thus (1k C (Dk+1 for all k. Clearly 
then the estimate in (6.1) holds for all k > ko and using the technique as given by 
Hackbusch in [10] it is straightforward to derive an L?-convergence result for the 
multigrid W-cycle. However, a regularity result as in (4.5) for a convex polygonal 
domain is not known to the author. Unfortunately, the best one can hope for is a 
result as in (4.5) for a very restricted class of convex polygonal domains, namely, 
domains with a maximum interior angle < 21r. This is clear from the following. 
Consider the Poisson equation on a convex polygonal domain with maximum interior 
angle 'yir, 0 < -y < 1. Suppose the solution o* is such that * C H20 holds (cf. 
Remark 4.1). Then * is an element of the Sobolev space H2"p for all p c [1, oo[ and 
thus (cf. [9]) 2 - 2/p < 1/-y must hold for all p C [1, oo[. This implies -y < 1. This 
regularity problem explains our assumption "9Q smooth" instead of "Q convex and 
polygonal." 

It is clear how to derive a multigrid LI-convergence result if we can prove an 
approximation property as in (4.8) for k even too. We have not solved this problem 
(yet). It can be shown that for k even the use of the L2-projection pj: %k-1 - bk 

yields an approximation property as in (4.8) (with p = Pk-'PPk_l). However, the 
L2-projection is computationally too expensive. Modification of this projection might 
yield acceptable results; e.g., one could replace the L2-inner product by the trapezoidal 
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quadrature rule on Tk which then yields a prolongation that is easy to compute (this 
corresponds to lumping of the mass matrix). Clearly some further analysis is needed 
here. 

Remark 6.3. In this paper we only consider the symmetric variational problem 
(2.1). From ?5 we see that in the proof of the smoothing property (Theorem 5.3) 
this symmetry is not used; the only conditions are (5.2a), (5.2b). The proof of the 
approximation property (Theorem 4.2) remains valid for a more general (e.g., non- 
symmetric) problem, provided that the results in Lemma 3.2 and in (4.4) hold. The 
results in Lemma 3.2 do not depend on a(.,-) at all, but only on the triangulation. So 
our analysis yields a result as in Theorem 6.1 for a more general second-order elliptic 
boundary value problem too, if the finite element error estimate (4.4) from [8] and [18] 
holds. In [8] and [18] only the symmetric situation as in (2.1) is considered; however, 
in [17] it is remarked that (4.4) can be carried over to general second-order elliptic 
problems, provided that &Q and the coefficients are sufficiently regular, and that the 
corresponding proofs in [8] and [18] require very little technical changes. 

7. A lower bound for the contraction number. In this section we show that 
the estimate in Theorem 6.1 is sharp in the sense that a factor Iln hk I is necessary 
(the power 2 of the Iln hk I term, however, may be due to the method of proof). 

We consider the Poisson equation on the unit square and use a linear finite element 
discretization on a uniform triangulation. We analyze the standard two-grid method 
as in ?3 for solving the resulting system of equations. 

We show (cf. Theorems 7.6 and 7.7 below) that for a fixed number of smooth- 
ing iterations the maximum norm of the iteration matrix is bounded from below by 
C I ln hk I. Our approach is based on the analysis given in [11]. Also we use an impor- 
tant result from [11] (Lemma 7.3 below). In view of the assumptions in Theorem 6.1 
we want a lower bound corresponding to the Poisson equation on a domain Q with 
OQ smooth. In Remark 7.8 below we indicate how the results for the unit square yield 
similar results for a disc that contains the unit square. 

Let Q be the unit square and consider the variational boundary value problem as 
in (2.1) and (2.2) with 

(7.1) a(so, b) :=J Vp- V')dx. 

We use a uniform triangulation with mesh size parameter hk - 2-(k+1) (k C A0) as 
indicated in Fig. 1. 

Now let Sk-l and Tk be two successive triangulations. We use the definitions of 
?3 and for ease of notation we introduce h hk, Th :T 7k, Jh := Jk, ih := bk, 

p Uh Uk, Ph Pk, (U, V)h :(U, V)k, Lh Lk. Likewise we use 
H:= 2h, TH, JH, H iH, UH, PH, (-,i)H, LH. Furthermore, the index in Jh (JH) 

corresponding to the grid point Q: (2 ) ) is denoted by iQ (iQ) and the unit vector 

in Uh (UH) corresponding to Q is denoted by eQ (eQ). 
We now introduce a function Wh C 4h, which plays an important role in the 

analysis below. This function is defined as the piecewise linear interpolant on Th of 
the (h-dependent) function 

W(XI,X2) = sin (hx lx- ') sin (j x2 - 'i)I 

We write Wh := PW 
1 Wh. For all grid points xi in Th we have Wh(Xh) C {-0, 4, O}. In 

Fig. 2 we show the pattern of these function values. 
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1 l x1 

0 1 0 

To (ho=2) 71 (h1=i ) 

FIG. 1. 

2 

if . = .. 

(7.2) a((p', (pl-1 +f +x X - 
v2h 

0 2 

LEMMA 7.1. FoT ,jcJ he following holds: 

(7.3) LhWh = h2 (4Wh - 

and for i c H 
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0 if i & H 

(7.4) a(Wh, AiH) = 
I if i=iQH. 

Proof. We extend the vector Wh C Uh by taking zero values corresponding to all 
boundary grid points of Th. Then Lemma 7.1 yields that h2 Lh corresponds to the 
difference star 

-1 -1 

4 

-1 -1 

in all interior points 
For i E Jh the value (h2LhWh)i can be found by application of this difference star 

in the grid point x4 to the function Wh = PhWh. Figure 2 then shows that 

{ 4(wh)i if i # ih 
(h 2Lhwh)i - i 

-1 if i=iQ. 

So h2Lhwh 4Wh - eQ holds. 
The proof of (7.4) runs as follows. For i c JH we have 

(7.5) a(wh, A) (Lhwh, pli )h - 4h2(Wh, P p H h 2(eP, P14)h 

Note that 

0 if i 7 iQ, 

(7.6) h-2 < eQ 5$P,,i >h (PhI H)Q 1 
I if i = iQH. 

With respect to the term 4h-2 (Wh, P,yI,f4I)h in (7.5) we note the following. First we 
take i C JH such that x' is a vertex of four triangles in TH. Then p iH has nonzero 
values in five grid points of Th as indicated in Fig. 3. Using Fig. 2 we see that in these 
grid points wh has values as indicated in Fig. 3. 

So 4h2 (Wh, P, 71 )h O. Secondly, for i C JH\{ii} such that x" is a vertex 
of eight triangles in TH we have values for WpH and wh as illustrated in Fig. 4. So 
again 4h-2(Wh, Ph IOi)h 0 O. Finally for i - iQ we have a situation as in Fig. 4 but 
now with a =3= =6 1, so 4h-2(wh, PT1h l )h = 2. 

Using these results for 4h-2(wh, P, 171p)h and the result (7.6) in (7-5) proves 
(7.4). El 

A proof of the following lemma is given by Haverkamp in [11, Lem. 5]. 
LEMMA 7.3. If 14H C BH is such that for i C JH we have 

0 if i #zi i, 
a (?I)H, (PHi )== 

I if i = iQ 
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fPH Wh 

FIG. 3. a4 +/ 0, triangles in TH 

(pH Wh 
FIGG43.B a,/C {-4,4 },O+i3 =,--:triangles in THr 

then OH (Q) > 7-2I InHI. I 

LEMMA 7.4. The following holds: 

(-pLrLh) Wh lo> 7r-2 I In(2h)I . 

I i I IH 

Proof. We take OH as in Lemma 7.3. Then it follows (cf. Lemma 7.2) that fH iS 

the orthogonal projection of Wh on PH: 

a(V)H, f H) a(Wh, A ) for all i E JH. 

2 2 

So 

(LHPH f , 1Pi H)H =(rLhhPHf) for all i E JH, 

1 0 

and thus 

OH = PHL-1rLhWhW 

This yields 

||(1 - pL71rLh) WhI loo 
= t lPh(Ir-epLo orh) Wh oLn 

= ||Wh -OH||L- > |(Wh- OH) (Q)I = IOH(Q)I > -9 |2 ln(2h)| 0 
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We now prove three theorems in which the main results of this section are given. 
Theorem 7.5 gives an estimate related to the approximation property in Theorem 4.2. 
In Theorems 7.6 and 7.7 we give lower bounds for JITk(v)IK,. In Theorem 7.6 we take 
damped Jacobi and damped Gauss-Seidel as a smoother with a damping parameter 
0 E]0, 2 [. In Theorem 7.7 we consider damped Jacobi again, but then with 0 c]0, 1[. 

THEOREM 7.5. The following holds: 

JIL-1 - pLi1rjII, > r-2 h2 1 ln(2h)j. 

Proof. From Lemma 7.2 we have IILhwhlIK, = h-2 114wh - eQII_ = h-2. Lemma 
7.4 then yields 

IL-1 -pLUlrIK,, > II(L-1 -pLU1r)LhWhIcxOjILhWhIlOO > 7r-2h2 l ln(2h)l. Q 

We consider a splitting as in (5.1) corresponding to the Jacobi or Gauss-Seidel 
method. Note that the conditions (5.2a) and (5.2b) are fulfilled. We use a damped 
version with damping parameter 0 (Sh = I - OW,1Lh). 

THEOREM 7.6. For 0 c ]0, 1 [ the following holds: 

IITh(v)IIK)0 > 4r-2(l - 20)v I ln(2h)j (I> 0). 

Proof. III- W,TiLhIIQo < 1 holds and thus IIWWTiLhIIoo < 2. So for 0 c ], 2[ we 
have 

(7.7) ||(I - 0WWiLh)1IIoo < (1 - 0 IIW,LhIIoo)1 < (1 - 20)-i. 

Combining (7.7), Lemma 7.4 and IlWhlloo = 4 yields 

IIT()lo = II(I-pL-irLh)SVIo oo- P H h ho 

> ||(I-pL71rLh) WhIoo/oIIS-'Whll,o > r2 | ln(2h)I (1 - 20)' 4. O 

THEOREM 7.7. Let Sh = I - 0 h2Lh be the iteration matrix corresponding to 
the damped Jacobi iteration. Then for 0 E JO, 1[ the following holds with a constant K 
independent of h: 

IITh(v)IKc) > 4(r-2(1 - 0)_ I ln(2h)I-K (I ? 0). 

Proof. The following holds (cf. Lemma 7.2): 

Shwh = (I- 0h2Lh) Wh = (1 -0)wh+ 1 40ehQ 

Thus 
v-1 

(7.8) ShWh = (1-0)v wh + 10 E (1-0)k Svh k eiQj 
k=O 

The analysis of the coarse grid correction with respect to the scaled Euclidean norm 

11 * Ilh = (., *)h yields (see, e.g., [10]): 

(7.9) II I-pLi4rLhllh < K, K independent of h. 

Also note that for every 0 G]0, 1[ we have 

(7.10) IlSmeQIIh <? IISMIlh lleQ|lh < h (m > 0). 
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Combination of Lemma 7.4, (7.8)-(7.10) and hjulK00 < h-1 IIuIh yields 

11(I - pLjrLh) Shloo > 4 ||(I -pL77rLh) SKwhIoo 
? 4(1 - Q)v 11 (I - pLH1rLh) WhI lloo 

iv-1 
- 40(I - pLj7rLh) S (1- _)k h 

k=O 0k 
v-1 

k=O 

* 4(1 - 0) v71r2 I In(2h) -K. O 

Remark 7.8. We now discuss how lower bounds as in Theorems 7.6 or 7.7 can 
be derived for the Poisson equation on a domain Qi with &Q smooth. Let Q2 be the 
disc with center (2, ') and radius 1. We consider the Poisson equation on Q. Let 

{fk I k E IV0} be a sequence of triangulations satisfying (3.1a)-(3.1f) and such that 
TklQ = Tk (with Tk as in Fig. 1). The notation of this section (for Q = [0,1]2) is used 
for Q too, but then with an upper "',.2 (so, e.g., Lh on Q, Lh on Q). Also for ease we 
assume that the triangulations TH and Th are nested (cf. (3.1f)). We take W9h E Jh 

such that &h Wh on Q (cf. Fig. 2) and &-h 0 on Q\Q. Below we use the same 
arguments as in [11, ?4] to derive an estimate as in Lemma 7.4 but now for Q. Let 
PH be such that a(bH - Wh, ti= 0 for all i E JH; then /H = PHL-iLhziVh with 

- ~ ~~~~~ H 

Wh = Phwh. Note that OH -OH (with OH as in Lemma 7.3) is a discrete harmonic on 
Q, i.e., 4H - bH is continuous and piecewise linear on TH and a(/H - bH, WPi) = 0 
for all i c JH. And thus (cf. [11]) for every u E C(Q) with uj9 = 0 we have 

IIUIIL?(Q) < 2 Ilu - (bH -OH)1ILo(Q). So we get 

11 - -IIH1 -h) WhIIo, 

= IIPWh -PHLHr LhwIL ~ ) I'h- HIL() 

? hlWh - PHLHoo IlWh - LQH =(H O Wh-H) I Loo(Q)> IIWh - L- (Q) 
> |lhHlL?Q = 2 lh16-Hf)|(Q lhf|L 
> h W,(Q) > 1 72 I ln(2h)I. -2 ~~~2 

Using this result it is straightforward to derive similar results as in Theorems 7.6 and 
7.7 for the two-grid method applied to the discretization of the Poisson equation on Q2. 
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