
 

Likelihood ratio confidence bands in nonparametric regression
with censored data
Citation for published version (APA):
Li, G., & Van Keilegom, I. (2000). Likelihood ratio confidence bands in nonparametric regression with censored
data. (SPOR-Report : reports in statistics, probability and operations research; Vol. 200008). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/2000

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/bce3af1d-f6e3-4121-b62f-4011097b90d8


Likelihood ratio confidence bands

in nonparametric regression with censored data

Gang Li∗

University of California at Los Angeles

Department of Biostatistics

Ingrid Van Keilegom

Eindhoven University of Technology

Department of Mathematics

May 11, 2000

Abstract

Let (X, Y ) be a random vector, where Y denotes the variable of interest possibly subject

to random right censoring, and X is a covariate. We construct confidence intervals and

bands for the conditional survival and quantile function of Y given X using a nonparametric

likelihood ratio approach. This approach was introduced by Thomas and Grunkemeier

(1975), who estimated confidence intervals of survival probabilities based on right censored

data. The method is appealing for several reasons: it always produces intervals inside [0, 1],
it does not involve variance estimation, and can produce asymmetric intervals. Asymptotic

results for the confidence intervals and bands are obtained, as well as simulation results, in

which the performance of the likelihood ratio intervals and bands is compared with that of

the normal approximation method. We also propose a bandwidth selection procedure based

on the bootstrap and apply the technique on a real data set.

KEY WORDS: Beran estimator; Confidence band; Confidence interval; Empirical likeli-

hood; Likelihood ratio; Nonparametric regression; Right censoring.
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1 Introduction

Conditional survival and quantile functions are useful tools for assessing the influence

of risk factors on survival. Let Yi , Ci and Xi denote the survival time, censoring time and

covariate, respectively, of the i th subject under study, 1 ≤ i ≤ n. Assume that one ob-

serves n i.i.d. triples (T1, �1, X1), . . . , (Tn, �n, Xn) where, for each i , Ti = min(Yi , Ci ) and

�i = I (Yi ≤ Ci ) and assume that Yi is independent of Ci for given Xi . This paper derives

nonparametric likelihood ratio-based confidence intervals and bands for the conditional survival

function S(t |x) = P(Yi > t |Xi = x) and the conditional quantile function S−1(p|x), for fixed

x , on the basis of right censored regression data.

Nonparametric estimation of S(t |x) and related applications have been studied by a num-

ber of authors; see, among others, Beran (1981), Dabrowska (1987, 1992), McKeague and

Utikal (1990), Akritas (1994), Li and Doss (1995), McKeague et al. (1995), McKeague and

Sun (1996), and Li (1997) for random design regression, and González Manteiga and Cadarso

Suarez (1994), and Van Keilegom and Veraverbeke (1997, 1998) for fixed design regression.

Confidence intervals and bands for S(t |x) or S−1(p|x) can be obtained based on normal ap-

proximations as discussed later in Section 2 (Remark 2.3). However, normal confidence in-

tervals for S(t |x) could include impossible values outside the range [0,1]. Their small sample

properties are also not satisfactory as shown in Section 3. This is similar to the pitfalls of the

Kaplan-Meier method for homogeneous data (with no covariate) as discussed by Hollander et

al. (1997). Construction of normal confidence intervals for S−1(p|x) is also problematic be-

cause it requires density estimation in order to estimate the variance and the resulting variance

estimate is not stable.

In the absence of covariates, Thomas and Grunkemeier (1975) introduced a nonparametric

likelihood ratio method to construct confidence intervals for a survival probability from right

censored data. The resulting confidence intervals never include values outside [0,1] and showed

better small sample performance than the Kaplan-Meier normal approximation method in sim-

ulations.

In this paper, we extend the method of Thomas and Grunkemeier (1975) to the nonpara-

metric regression setting to obtain confidence intervals and bands for S(t |x) and S−1(p|x). To

explain the idea, we begin with a nonparametric likelihood ratio test for the null hypothesis
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H0 : S(t |x) = p where 0 < p < 1. Define a weighted likelihood ratio for H0 by

R(p, t |x) = sup{L(S(·|x))|S(t |x) = p, S(·|x) ∈ �}
sup{L(S(·|x))|S(·|x) ∈ �} , (1.1)

where L(S(·|x)) = ∏{[S(Ti −|x)− S(Ti |x)]�i [S(Ti |x)]1−�i }Wi is a weighted likelihood func-

tion, � is the space of all survival functions supported on (0, ∞), and the weight functions {Wi }
are defined in the next section. Here we only mention that the contribution of individual i to the

likelihood of S(·|x) is determined by the weight Wi and that the {Wi } assign heavy weights to

individuals whose covariate values are close to x and vice versa. Clearly large values of R(t |x)

provide evidence in favor of H0. We propose to form a confidence interval for S(t |x) for a given

t as the set of all values p for which the H0 is not rejected by a likelihood ratio test based on

R(p, t |x). Similarly, for a given p, a confidence interval for S−1(p|x) is defined as the set of all

values t for which the H0 is not rejected. Confidence bands can be obtained by pasting together

an appropriate set of confidence intervals. We establish large sample properties of the nonpara-

metric likelihood ratio R(p, t |x) and show how to determine critical values for the likelihood

ratio confidence intervals and bands. The nonparametric likelihood ratio approach is appealing

for several reasons. For example, it respects the range of the parameter. It uses data to deter-

mine the shape of the confidence intervals and can, consequently, produce asymmetric intervals

to reflect possible skewness in the distribution of the estimated parameter. It does not involve

variance estimation which is especially important for quantile interval estimation. It also leads

to narrower confidence intervals and bands than the normal approximation method as shown in

our simulation study.

Although its use dates back at least to Thomas and Grunkemeier (1975), rigorous treat-

ment of the nonparametric likelihood ratio method was first given in a different problem by

Owen (1988, 1990), who studied the now well known empirical likelihood method to construct

nonparametric confidence intervals for the mean of a random vector based on i.i.d. complete

data. Since Owen’s (1988, 1990) work, the likelihood ratio approach has been extended to

a wide range of nonparametric and semiparametric problems, including linear models (Owen

(1991) and Chen (1993, 1994)), generalized linear models (Kolaczyk (1994)), quantile esti-

mation (Chen and Hall (1993)), biased sample models (Qin (1993)), generalized estimating

equations (Qin and Lawless (1994)), confidence intervals and bands for unconditional survival

and quantile functions (Li (1995), Murphy (1995), Owen (1995), Li, Hollander, McKeague and

Yang (1996) and Hollander, McKeague and Yang (1997)), dependent process models (Kitamura
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(1997)), partial linear models (Wang and Jing (1999)), confidence tubes for multiple quantile

plots (Einmahl and McKeague (1999)), and nonparametric regression (Chen and Qin (2000)).

In Section 2 we study the asymptotic properties of R(p, t |x) and discuss how to compute

the resulting likelihood ratio confidence intervals and bands for S(t |x) and S−1(p|x). We also

include a discussion on how to choose the bandwidth sequence. Section 3 presents a simulation

study to study the performance of the developed likelihood ratio method compared with the

normal approximation method. An illustration is given in Section 4 using data on cancer of the

larynx. All proofs are collected in the Appendix.

2 Main results

Let (Xi , Yi , Ci , Ti , �i ), i = 1, . . . , n, be n independent random vectors as defined in

Section 1 and let (X, Y, C, T , �) have the joint distribution of each (Xi , Yi , Ci , Ti , �i ). Let

F(t |x) = P(Y ≤ t |x), S(t |x) = P(Y > t |x), G(t |x) = P(C ≤ t |x), H(t |x) = P(T ≤
t |x), Hu(t |x) = P(T ≤ t, � = 1|x) and FX (x) = P(X ≤ x). The assumed independence of

Y and C for given X implies that 1 − H(t |x) = (1 − F(t |x))(1 − G(t |x)). The probability

density functions of the distributions defined above will be denoted with lower case letters.

We define the local (or weighted) log likelihood by

log L(S(·|x)) (2.1)

=
n∑

i=1

Wi (x; hn){�i log[S(Ti − |x) − S(Ti |x)] + (1 − �i ) log S(Ti |x)},

where

Wi (x; hn) =
K
(

x−Xi
hn

)
∑n

j=1 K
(

x−X j
hn

)
are Nadaraya-Watson weights, K is a known density function (kernel) and hn is a sequence of

positive constants tending to zero as n → ∞ (bandwidth). It can be shown that, in the absence

of ties, the local likelihood function is maximal at

Ŝ(t |x) =
∏

Ti≤t,�i=1

{
1 − Wi (x; hn)∑n

j=1 W j (x; hn)I (Tj ≥ Ti )

}
,

3



which is the estimator proposed by Beran (1981). We refer to Section 1 for references on this

estimator and related applications. The estimator reduces to the Kaplan-Meier (1958) estimator

when no covariates are present (i.e. Wi (x; hn) = n−1) and to the estimator of Stone (1977) when

there is no censoring (i.e. Ti = Yi , �i = 1). The proof that Ŝ(t |x) maximizes the likelihood

function is very similar to the proof given in Kaplan and Meier (1958).

The idea behind constructing likelihood ratio confidence intervals for an unknown probabil-

ity S(t |x) is to include all values p in the interval for which the test for H0 : S(t |x) = p based

on the weighted likelihood ratio statistic R(p, t |x) defined in (1.1) is not rejected. Since large

values of R(p, t |x) provide evidence in favor of H0, define for t > 0 and 0 < r < 1,

C(t, r |x) = {p : R(p, t |x) ≥ r}.
We will show that for an appropriate choice of r , C(t, r |x) will be a 100(1 − α)% confidence

interval for S(t |x). Analogously, a confidence interval for S−1(p|x) (0 < p < 1) will be of the

form

Q(p, r |x) = {t : R(p, t |x) ≥ r}
for some 0 < r < 1. For the statement of the asymptotic results below, we need to introduce

the following estimators :

f̂ X (x) = (nhn)
−1

n∑
i=1

K

(
x − Xi

hn

)

Ĥ(t |x) =
n∑

i=1

Wi (x; hn)I (Ti ≤ t)

Ĥu(t |x) =
n∑

i=1

Wi (x; hn)I (Ti ≤ t, �i = 1).

Also, let τx = inf{t : H(t |x) = 1} and define

σ 2(t |x) =
∫

K 2(u) du f −1
X (x)

∫ t

0

d Hu(s|x)

(1 − H(s|x))2
,

which is the asymptotic variance of the cumulative hazard function of Y given X = x , if H(·|x)

is continuous (see e.g. Li and Doss (1995)). This function is estimated by

σ̂ 2(t |x) =
∫

K 2(u) du f̂ −1
X (x)

∫ t

0

d Ĥu(s|x)

(1 − Ĥ(s|x))(1 − Ĥ(s − |x))
.
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Theorem 2.1 (Confidence interval for S(t|x)) Assume nh5
n → 0 and nhn → ∞. Assume

further that the regularity conditions (R1)-(R3) of Li and Doss (1995, Section 4) hold and that K

is a bounded density function, symmetric around zero. Let 0 < t < τx be such that S(t |x) < 1.

(a) Then,

−2nhn
f̂X (x)∫

K 2(u) du
log R(S(t |x), t |x)

d→ χ2
1 .

(b) Let

rα = exp

{
−
∫

K 2(u) du

2nhn f̂X (x)
χ2

1 (α)

}
,

where χ2
1 (α) is the 100(1 − α)th percentile of the χ 2

1 distribution. Then,

lim
n→∞ P{S(t |x) ∈ C(t, rα|x)} = 1 − α.

(c) A 100(1 − α)% confidence interval for S(t |x) is given by

C(t, rα|x) = {p : R(p, t |x) ≥ rα}.

The proof can be found in the Appendix.

Let eα(u1, u2) (u1 ≤ u ≤ u2) be the 100(1 − α)th percentile of the distribution of

sup
u1≤u≤u2

∣∣∣∣ B0(u)√
u(1 − u)

∣∣∣∣
where B0(u) is a Brownian bridge on [0, 1]. Some specific percentiles of this distribution can

be found in Nair (1984).

Theorem 2.2 (Confidence band for S(·|x)) Assume that the conditions of Theorem 2.1 hold.

Let 0 < t1 < t2 < τx be such that S(t1|x) < 1.

(a) The process

−2nhn
f̂X (x)∫

K 2(u) du
log R(S(t |x), t |x)

(t1 ≤ t ≤ t2) converges weakly to the process
{

B0(u)√
u(1−u)

}2
, where u = σ 2(t |x)/(1 +

σ 2(t |x)).
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(b) Let û j = σ̂ 2(t j |x)/(1 + σ̂ 2(t j |x)) ( j = 1, 2) and

rα(û1, û2) = exp

{
−
∫

K 2(u) du e2
α(û1, û2)

2nhn f̂X (x)

}
.

Then,

lim
n→∞ P{S(t |x) ∈ C(t, rα(û1, û2)|x) for all t1 ≤ t ≤ t2} = 1 − α.

(c) A 100(1 − α)% confidence band for S(t |x) (t1 ≤ t ≤ t2) is given by

C(t, rα(û1, û2)|x) (t1 ≤ t ≤ t2).

The proof can be found in the Appendix.

Theorem 2.3 (Confidence interval for S−1( p|x)) Assume that the conditions of Theorem 2.1

hold. Let 0 < p < 1 be such that G(S−1(p|x)|x) < 1 and assume that S(·|x) is strictly

decreasing in a neighborhood of S−1(p|x).

(a) Then,

lim
n→∞ P{S−1(p|x) ∈ Q(p, rα|x)} = 1 − α.

(b) A 100(1 − α)% confidence interval for S−1(p|x) is given by

Q(p, rα|x) = {t : R(p, t |x) ≥ rα}.

The result follows readily from part (a) of Theorem 2.1.

Theorem 2.4 (Confidence band for S−1(·|x)) Assume that the conditions of Theorem 2.1 hold.

Let 0 < p1 < p2 < 1 be such that G(S−1(p1|x)|x) < 1 and assume that S(·|x) is strictly de-

creasing on [S−1(p2|x), S−1(p1|x)].

(a) Let v̂ j = σ̂ 2(Ŝ−1(p j |x)|x)/(1 + σ̂ 2(Ŝ−1(p j |x)|x)) ( j = 1, 2). Then,

lim
n→∞ P{S−1(p|x) ∈ Q(p, rα(v̂2, v̂1)|x) for all p1 ≤ p ≤ p2} = 1 − α.
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(b) A 100(1 − α)% confidence band for S−1(p|x) (p1 ≤ p ≤ p2) is given by

Q(t, rα(v̂2, v̂1)|x) (p1 ≤ p ≤ p2).

The proof is very similar to that of Theorem 2.2 and will therefore be omitted.

Remark 2.1. [Computation of the confidence intervals and bands] We first describe how to

compute C(t, r |x). It follows from Lemma A.2 that

R(p, t |x) = φ(λn(p, t |x)),

where

φ(u) =
∏

Ti≤t,�i=1

(
Ri

Ri + u

)Ri
(

Ri − Wi + u

Ri − Wi

)Ri−Wi

,

and Wi , Ri and λn are defined by (A.1), (A.2) and (A.3) in the Apppendix. Let D = max
Ti≤t,�i=1,Wi>0

(Wi−
Ri ). It can be verified that φ(u) is strictly increasing on (D, 0], strictly decreasing on [0, ∞),

lim
x↘D

φ(x) = 0, lim
x→+∞ φ(x) = 0, and φ(0) = 1. Furthermore, λn(p, t |x) is continuous and

strictly increasing in p. Therefore,

C(t, r |x) = {p : R(p, t |x) ≥ r} = [pL(t), pU (t)],

where

pL(t) =
∏

Ti≤t,�i=1

(
1 − Wi

Ri + λL(t)

)
,

pU (t) =
∏

Ti≤t,�i=1

(
1 − Wi

Ri + λU (t)

)
,

and λL (t) and λU (t) are the unique solutions of the equation

φ(λ) = r, (0 < r < 1)

on the intervals (D, 0) and (0, ∞), respectively.

Now we discuss how to compute Q(p, r |x). Let t1 < . . . < tk denote the distinct and

ordered uncensored times for all individuals with Wi > 0. By mimicking the arguments of

Li et al. (1996), one can show that Q(p, r |x) is always an interval. The lower limit is the

first t j for which R(p, t j |x) ≥ r , and the upper boundary is the first subsequent t j for which

R(p, t j |x) < r .
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Remark 2.2. [Bandwidth selection] An important issue in the context of kernel regression is

the selection of an appropriate bandwidth sequence hn . Unlike in estimation problems, where

the bandwidth is often chosen as the value for which the mean (integrated) squared error is

minimal, a different criterium should be used for the construction of confidence intervals and

bands. As was done in Hall (1991, 1992), among others, it is sensible to consider the bandwidth

for which the coverage error of the interval or band is minimal. It is however not easy to

find the optimal bandwidth under this criterium. For the construction of confidence intervals

for a density function based on completely observed data, Hall (1991, 1992) considered two

methods for obtaining the optimal bandwidth: one method is based on undersmoothing and the

other one requires the explicit estimation of the asymptotic bias. He found that undersmoothing

leads to a smaller coverage error and is therefore preferable. He also showed that for both

methods, the optimal bandwidth satisfies nh5
n → 0, while in estimation problems this condition

is nh5
n → C > 0.

Although we did not determine the rate of the optimal bandwidth in the present context

theoretically, we carried out a simulation study to learn how the bands behave when nh 5
n =

C > 0 (in which case there is an extra bias term in the formula of the bands). The simulations

strongly indicated that estimating the bias term often leads to coverage probabilities that are

considerably too low. Further examination of the simulation results showed that the bias term

is often badly estimated, and is the main reason of the large coverage errors. As will be seen in

the next section, this is not the case when the asymptotic bias does not need to be estimated (i.e.

when nh5
n → 0).

Remark 2.3. [Normal approximation methods for constructing confidence intervals and

bands] It has been shown that (cf. Li and Doss (1995, Theorem 4 and the remark following

the proof of Theorem 1)), if nhn → ∞ and nh5
n → 0, then

√
nhn(Ŝ(t |x) − S(t |x)) converges

weakly to S(t |x)U(t |x), where U(t |x) is a continuous Gaussian martingale with mean zero and

variance function σ 2(t |x). This result enables one to construct confidence intervals and bands

for S(t |x). For example, an approximate 1 − α confidence interval for S(t |x) is given by

Ŝ(t |x) ± zα/2 Ŝ(t |x)σ̂ (t |x)/
√

nhn,

where zα/2 is the α/2 upper quantile of a standard normal distribution. Confidence bands for

S(t |x) can be derived using the method of Hall and Wellner (1980) for an unconditional sur-

vival function based on homogeneous data. Furthermore, weak convergence of Ŝ−1(p|x) to a
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Gaussian process follows directly from that of Ŝ(t |x) and the functional delta-method (cf. An-

dersen et al. (1993), Propositions II.8.1 and II.8.5). Normal confidence intervals for S−1(p|x)

can then be obtained in the usual manner. Hall-Wellner type confidence bands for S−1(p|x) can

be derived using the idea described in Li et al. (1996, p.634).

3 Simulations

In this section we will carry out a number of simulations to illustrate the small sample

performance of the proposed confidence intervals and bands for S(t |x). More precisely, we will

compare the coverage probability and the width of the proposed intervals and bands with those

of the normal method. All simulation results are based on 1000 simulation runs. The programs

are written in the statistical package Gauss.

Assume that the covariate X is uniformly distributed on the interval [0, 1]. The conditional

distribution of the response Y given X = x is exponential with mean a0 + a1x + a2x2, while

the censoring time C has an exponential distribution with mean function b0 + b1x + b2x2 for

certain constants a0, a1, a2, b0, b1 and b2. As usual, we assume that Y and C are independent,

conditionally on X . Hence, it is readily verified that (T |X = x) ∼ Exp(1/(a0 + a1x + a2x2) +
1/(b0 + b1x + b2x2)) and that

P(� = 0|x) = a0 + a1x + a2x2

a0 + b0 + (a1 + b1)x + (a2 + b2)x2
. (3.1)

We carry out simulations for samples of size 25, 50 and 100, for x = 0.5 and α = 0.05. At

x = 0.5, the probability of censoring is either 0.25, 0.50 or 0.75. The kernel function K is a

biquadratic kernel K (x) = (15/16)(1−x2)2 I (|x | ≤ 1). For each method, we used a bandwidth

that minimizes the coverage error of the interval or band over a grid of bandwidths ranging

from 0.2 up to 0.5 (see Remark 2.2 for a detailed description and references on this bandwidth

selection method). Table 1 shows the result for confidence intervals at t = S−1(0.5|x) and for

different choices of the parameters a0, a1, b0, b1 and b2. The value of a2 is determined in such a

way that the probability of censoring, given by (3.1), equals one of the three considered values

(0.25, 0.50 or 0.75).

The table shows that the coverage probability of the likelihood method is very stable and

everywhere close to 0.95 (by taking a finer grid of bandwidths it would be possible to obtain

coverage probabilities which are even closer to 0.95). On the other hand, the coverage proba-

bility of the normal method is everywhere below 0.95. Especially under heavy censoring, the

9



Table 1: Coverage probability and length of simulated confidence intervals for S−1(0.5|x) (ob-

tained by selecting the bandwidth that minimizes the coverage error).

Para- P(� = 0|x) n coverage probab. length

meters normal likel. normal likel.

a0=1 0.25 25 0.927 0.952 0.488 0.504

a1=2 50 0.933 0.949 0.349 0.339

b0=4 100 0.930 0.943 0.278 0.312

b1=5 0.50 25 0.910 0.952 0.542 0.633

b2=50 50 0.938 0.950 0.391 0.377

100 0.938 0.950 0.279 0.274

0.75 25 0.824 0.944 0.668 0.748

50 0.858 0.946 0.511 0.653

100 0.886 0.948 0.443 0.661

a0=1 0.25 25 0.921 0.951 0.488 0.459

a1=-1 50 0.925 0.951 0.350 0.511

b0=1 100 0.938 0.949 0.249 0.312

b1=1 0.50 25 0.900 0.950 0.549 0.641

b2=-1 50 0.936 0.952 0.397 0.382

100 0.930 0.944 0.283 0.439

0.75 25 0.818 0.960 0.675 0.762

50 0.878 0.953 0.536 0.658

100 0.909 0.959 0.409 0.670

behavior of the normal method is very poor. The table also shows that the normal method

produces shorter intervals than the likelihood ratio method. However, this comparison is mis-

leading, since the normal method has lower coverage probability. Table 2 shows that when the

two intervals have about the same lengths, the likelihood interval has higher coverage probabil-

ity than the normal method. Also note from Table 2 that the coverage probabilty for bandwidths

other than the optimal one, is quite stable for the likelihood method, but can be far from 0.95

for the normal method.

Next, we compare the behavior of the likelihood ratio confidence band and the Hall-Wellner
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Table 2: Coverage probability and length of simulated confidence intervals for S−1(0.5|x),

when a0 = 1, a1 = 2, b0 = 4, b1 = 5, b2 = 50 and P(� = 0|x) = 0.75. The numbers in italic

are the ones for which the coverage error is minimal.

n hn coverage probab. length

normal likel. normal likel.

25 0.2 0.564 0.973 0.660 0.833

0.3 0.710 0.944 0.704 0.748

0.4 0.785 0.914 0.709 0.664

0.5 0.824 0.891 0.668 0.595

50 0.2 0.731 0.973 0.689 0.763

0.3 0.823 0.946 0.638 0.653

0.4 0.849 0.933 0.575 0.565

0.5 0.858 0.911 0.511 0.482

100 0.2 0.825 0.948 0.598 0.661

0.3 0.856 0.926 0.521 0.540

0.4 0.886 0.928 0.443 0.446

0.5 0.883 0.916 0.382 0.373

band. The bandwidth is again determined such that the coverage error is minimal. The same

distributions are considered as for the confidence intervals, except that a2 = b2 = 0, i.e. the

survival and censoring times have a linear mean function. The value of b0 is determined such

that the probability of censoring at x = 0.5 equals one of the three considered values (0.25, 0.50

and 0.75). The bands are compared over the interval [u1, u2] = [0.1, 0.9]. The critical point

eα(û1, û2) equals 3.06 (see Nair (1984)). The result is shown in Table 3. Again we see that the

likelihood method outperforms the normal method, both in terms of coverage probability and

total area of the bands.

4 Data analysis

We will illustrate the proposed method on data on cancer of the larynx, discussed by Kar-

daun (1983). Of each of 90 male larynx cancer patients, diagnosed and treated during the period

11



Table 3: Coverage probability and total area of simulated confidence bands (obtained by se-

lecting the bandwidth that minimizes the coverage error).

Para- P(� = 0|x) n coverage probab. total area

meters normal likel. normal likel.

a0=0.5 0.25 25 0.969 0.981 1.574 1.298

a1=1 50 0.967 0.973 1.109 0.974

b1=1 100 0.956 0.959 0.771 0.701

0.50 25 0.983 0.986 1.125 0.915

50 0.968 0.974 1.020 0.864

100 0.956 0.963 0.750 0.664

0.75 25 0.993 0.986 0.677 0.308

50 0.978 0.980 0.687 0.580

100 0.966 0.983 0.633 0.472

a0=1 0.25 25 0.956 0.966 0.715 0.596

a1=-1 50 0.953 0.955 0.599 0.498

b1=2 100 0.954 0.955 0.486 0.407

0.50 25 0.971 0.963 0.469 0.372

50 0.952 0.952 0.435 0.366

100 0.950 0.966 0.371 0.347

0.75 25 0.989 0.960 0.358 0.267

50 0.957 0.957 0.347 0.295

100 0.950 0.952 0.297 0.285

1970-1978 in a hospital in the Netherlands, the age at diagnosis of the cancer (in years) and the

time between the first treatment and the death of the patient (in years) are recorded (among other

variables). At the end of the study in 1981, 40 out of the 90 patients were alive. Since their

survival time could not be recorded, these individuals are right censored. We wish to construct

a confidence band for the survival distribution at a given age.

To select an appropriate bandwidth hn , we use the criterium based on minimizing the cov-

erage error (as described in Remark 2.2). But, since this coverage error is unknown, we will

generate bootstrap samples from the data and approximate the coverage error by a bootstrapped

12



coverage error. More precisely, generate B bootstrap samples according to the resampling

method given in Li and Datta (1999) for random design (and Van Keilegom and Veraverbeke

(1997) for fixed design). This method consists of two stages. In the first stage, we resample with

replacement from the set {X1, . . . , Xn} to obtain the bootstrap sample {X ∗
1, . . . , X∗

n}. Next, for

each i , we draw a pair (T ∗
i , �∗

i ) with replacement from (T1, �1), . . . , (Tn, �n), giving prob-

ability W j (X∗
i ; gn) to (Tj , � j ) ( j = 1, . . . , n), where {gn} is a second bandwidth sequence.

Next, calculate from each of these B bootstrap samples a 100(1 − α)% confidence band for

Ŝ(g)(·|x) (where Ŝ(g)(·|x) denotes the Beran estimator Ŝ(·|x) using the bandwidth gn) and com-

pute the coverage probability of these bands (i.e. the proportion of these B bands which include

Ŝ(g)(·|x)). Select the bandwidth hn for which this coverage probability is closest to 1 − α (i.e.

for which the coverage error is minimal).

Let K (x) = (15/16)(1 − x2)2 I (|x | ≤ 1) be a biquadratic kernel function, let α = 0.05

and x = 65 (so we construct a 95 % confidence band for a 65 years old patient). Further, we

work with gn = h0.8
n , since this choice performs well in the computation of the bootstrapped

coverage errors. Table 4 shows the bootstrapped coverage probabilities for different values of

the bandwidth hn and based on B = 1000 bootstrap samples. For the normal method, the best

result is obtained for hn = 20, while the likelihood method performs the best when hn = 22.5.

Figure 1 shows the normal and likelihood ratio bands by using these bandwidth choices. The

bands are at most time points narrower for the likelihood ratio method than for the normal

approximation method. Note that this is in agreement with the results of the simulations in

Section 3, which also indicated that the normal method leads to wider confidence bands than

the likelihood ratio method.

Table 4: Bootstrapped coverage probabilities for the larynx cancer data.

hn 15 17.5 20 22.5 25

cover. prob. normal 0.945 0.939 0.949 0.945 0.939

cover. prob. likel. 0.974 0.973 0.962 0.959 0.961
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Figure 1: Normal and likelihood ratio confidence bands for the larynx cancer data. The full

line is the Beran estimator Ŝ(t |x), while the dashed respectively dotted lines are the upper and

lower bound of the normal respectively likelihood ratio confidence band.

Appendix

Throughout this appendix we use the following abbreviated notations:

Wi = Wi (x; hn), (A.1)

Ri =
n∑

j=1

W j I (Tj ≥ Ti ). (A.2)

We start with two lemmas which enable us to calculate the likelihood ratio statistic R(p, t |x).

The proof of the first one is very similar to part of the proof of Theorem 2.1 in Li (1995) and is

therefore omitted.

Lemma A.1 Assume that t is inside the convex hull of all uncensored survival times of individ-

uals with Wi > 0 and assume that S(·|x) is continuous. Then,

R(p, t |x) =
sup

{∏
�i=1

hWi
i (1 − hi )

Ri−Wi

}

∏
�i=1

(
Wi

Ri

)Wi
(

1 − Wi

Ri

)Ri−Wi
,

14



where the supremum is taken over all h1, . . . , hn such that
∏

Ti≤t,�i=1(1 − hi ) = p and

0 ≤ hi ≤ 1 for i = 1, . . . , n, �i = 1.

Let λn(p, t |x) (or simply λn) be the unique solution of∏
Ti≤t,�i=1

{
1 − Wi

Ri + λ

}
= p (A.3)

on the interval (D, +∞), where

D = max
Ti≤t,�i=1,Wi >0

(Wi − Ri ).

(Note that the left hand side of (A.3) is a strictly increasing function of λ on (D, +∞), which

converges to 0 as λ tends to D and to 1 as λ tends to +∞.)

Lemma A.2 Under the assumption of Lemma A.1,

R(p, t |x) =
∏

Ti≤t,�i=1

(
Ri

Ri + λn(p, t |x)

)Ri
(

Ri − Wi + λn(p, t |x)

Ri − Wi

)Ri−Wi

.

Proof. We will show that the supremum in the numerator of R(p, t |x) is reached when hi =
Wi/(Ri + λn) for Ti ≤ t, �i = 1 and hi = Wi /Ri for Ti > t, �i = 1. Simple calculations then

lead to the result. Define the Lagrange function

L(h1, . . . , hn, α) = log

{ ∏
Ti≤t,�i=1

hWi
i (1 − hi )

Ri−Wi

}
+α

{
log p − log

( ∏
Ti≤t,�i=1

(1 − hi )

)}
.

It is easily verified that the system of equations ∂L
∂hi

= 0, ∂L
∂α

= 0 (i = 1, . . . , n) leads to

hi = Wi

Ri − α
if Ti ≤ t, �i = 1

hi = Wi

Ri
if Ti > t, �i = 1.

From the definition of λn it follows that α = −λn and hence the result follows.

Lemma A.3 Assume that the conditions of Theorem 2.1 hold. Then, for 0 < t1 < t2 < τx , such

that S(t1|x) < 1,

λn(S(t |x), t |x) = OP((nhn)
−1/2),

uniformly in t1 ≤ t ≤ t2.
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Proof. Take t1 ≤ t ≤ t2 fixed. We consider two cases. If λn < 0, then, since λn > D, we

have that Ri + λn > Wi ≥ 0 and 0 ≤ Wi
Ri+λn

< 1 for Ti ≤ t, �i = 1. Hence, the inequality

− log(1 − x) ≥ x for 0 ≤ x < 1 leads to

− log S(t |x) = −
∑

Ti≤t,�i=1

log

(
1 − Wi

Ri + λn

)
≥

∑
Ti≤t,�i=1

Wi

Ri

Ri

Ri + λn

≥ 1

1 + λn

∑
Ti≤t,�i=1

Wi

Ri
= 1

1 + λn
�̂(t |x),

where �̂(t |x) = ∑
Ti≤t,�i=1

Wi
Ri

is an estimator of the cumulative hazard function �(t |x) =
− ∫ t

0
d S(s|x)
S(s|x)

= − ∫ t
0

d Hu(s|x)
1−H(s|x)

. Hence,

|λn | ≤ �̂(t |x) + log S(t |x)

log S(t |x)
= OP ((nhn)

−1/2),

uniformly in t1 ≤ t ≤ t2, which follows from the weak convergence of �̂(t |x) (see e.g. Li and

Doss (1995)).

If λn ≥ 0, then, since log(1 − x) + x is non-increasing on [0, 1),

log S(t |x) =
∑

Ti≤t,�i=1

log

(
1 − Wi

Ri + λn

)

≥
∑

Ti≤t,�i=1

{
− Wi

Ri + λn
+ log

(
1 − Wi

Ri

)
+ Wi

Ri

}

= −
∑

Ti≤t,�i=1

Wi

Ri

Ri

Ri + λn
+ log Ŝ(t |x) + �̂(t |x)

≥ − 1

1 + λn
�̂(t |x) + log Ŝ(t |x) + �̂(t |x). (A.4)

Next, since log(1 − x) − log(1 − y) ≤ y−x
1−y for 0 ≤ x, y < 1, it follows after some simple

calculations that �̂(t |x) + log Ŝ(t |x) − log S(t |x) ≥ 0. This together with (A.4) and the weak

convergence of log Ŝ(t |x) (see Li and Doss (1995)) yields

|λn | ≤ log S(t |x) − log Ŝ(t |x)

�̂(t |x) + log Ŝ(t |x) − log S(t |x)
= OP ((nhn)

−1/2),

uniformly in t1 ≤ t ≤ t2, from which the result follows.
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Lemma A.4 Assume that the conditions of Theorem 2.1 hold. Then, for 0 < t1 < t2 < τx , such

that S(t1|x) < 1,

−2nhn
f̂X (x)∫

K 2(u) du
log R(S(t |x), t |x)

= nhn σ̂
−2(t |x)(log Ŝ(t |x) − log S(t |x))2 + oP(1),

uniformly in t1 ≤ t ≤ t2.

Proof. First note that for Ti ≤ t , Ri converges to 1 − H(Ti |x) > 1 − H(t |x) > 0 and hence Ri

is bounded away from zero uniformly in all i for which Ti ≤ t . Let

A(λ) = log

{ ∏
Ti≤t,�i=1

(
1 − Wi

Ri + λ

)}
.

Then, A(0) = log Ŝ(t |x), A(λn(S(t |x), t |x)) = log S(t |x) and A′(0) = f̂ X (x)σ̂ 2(t |x)/∫
K 2(u) du, since

σ̂ 2(t |x) =
∫

K 2(u) du f̂ −1
X (x)

∫ t

0

d Ĥu(s|x)

(1 − Ĥ(s|x))(1 − Ĥ(s − |x))

=
∫

K 2(u) du f̂ −1
X (x)

∑
Ti≤t,�i=1

Wi

Ri (Ri − Wi )
.

Hence, a Taylor expansion yields that

log S(t |x) = log Ŝ(t |x) + λn
f̂X (x)σ̂ 2(t |x)∫

K 2(u) du
+ λ2

n

2
A′′(ξn),

where |ξn | < |λn |. It follows that

λn =
∫

K 2(u) du f̂ −1
X (x)σ̂−2(t |x)(log S(t |x) − log Ŝ(t |x)) + OP ((nhn)

−1),

since Lemma A.3 implies that

λ2
n A′′(ξn) = −λ2

n

∑
Ti≤t,�i=1

(2(R j + ξn) − W j )W j

(R j − W j + ξn)2(R j + ξn)2

= OP ((nhn)
−1).
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Using again a Taylor expansion and Lemma A.2, we have

−2nhn
f̂X (x)∫

K 2(u) du
log R(S(t |x), t |x)

= −2nhn f̂X (x)∫
K 2(u) du

∑
Ti≤t,�i=1

{
(Ri − Wi ) log

(
1 + λn

Ri − Wi

)
− Ri log

(
1 + λn

Ri

)}

= nhn f̂X (x)∫
K 2(u) du

{
λ2

n

∑
Ti≤t,�i=1

Wi

Ri (Ri − Wi )
− 2λ3

n

3

∑
Ti≤t,�i=1

[(
1

Ri − Wi

)2

−
(

1

Ri

)2
]

+λ4
n

2

∑
Ti≤t,�i=1

[(
1

Ri − Wi

)3

−
(

1

Ri

)3
]}

+ OP((nh3
n)

−1/2)

= T1 + T2 + T3 + oP(1).

We start with T1 :

T1 = nhn f̂ 2
X (x)

(∫
K 2(u) du

)2

λ2
n σ̂

2(t |x)

= nhnσ̂
−2(t |x)(log S(t |x) − log Ŝ(t |x))2 + OP((nhn)

−1).

Simple calculations show that T2 = OP((nhn)
−1/2) and that T3 = OP ((nhn)

−1). This finishes

the proof.

Proof of Theorem 2.1. (a) Use Lemma A.4 together with the asymptotic normality of log Ŝ(t |x)

given in Li and Doss (1995).

(b) Since S(t |x) ∈ C(t, rα|x) if and only if R(S(t |x), t |x) ≥ rα, this follows readily from part

(a).

Proof of Theorem 2.2. (a) It follows from Lemma A.4 and from Li and Doss (1995) that,

as n → ∞,

−2nhn
f̂X (x)∫

K 2(u) du
log R(S(t |x), t |x)

= nhnσ̂
−2(t |x)(log Ŝ(t |x) − log S(t |x))2 + oP(1)

d→
{

Z(t |x)

σ (t |x)

}2
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in D[t1, t2], where Z(t |x) is a continuous Gaussian process with mean 0 and covariance

Cov(Z(s|x), Z(t |x)) = σ 2(min(s, t)|x). Next, note that the processes Z(t |x)
σ (t |x)

and

(β B0)(
σ 2(t |x)

1+σ 2(t |x)
) are equal in distribution since they are Gaussian processes with the same mean

and covariance function, where β(u) = (u(1 − u))−1/2 (0 < u < 1). Hence, the result follows.

(b) It follows from (a) that

lim
n→∞ P{S(t |x) ∈ C(t, r |x) for all t1 ≤ t ≤ t2}
= lim

n→∞ P{R(S(t |x), t |x) ≥ r for all t1 ≤ t ≤ t2}

= lim
n→∞ P

{
sup

t1≤t≤t2

(
−2nhn

f̂X (x)∫
K 2(u) du

log R(S(t |x), t |x)

)
f̂ −1
X (x) ≤ − 2nhn log r∫

K 2(u) du

}

= lim
n→∞ P


 sup

û1≤u≤û2

∣∣∣∣ B0(u)√
u(1 − u)

∣∣∣∣ ≤
√

−2nhn f̂X (x) log r∫
K 2(u) du


 .

For r = rα(û1, û2), this probability equals 1 − α.
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