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Abstract

In this paper a mathematical formulation is presented which is used to calculate the flow
field of a two-dimensional Stokes fluid that is represented by a lattice of unit cells with pores
inside. The formulation is described in terms of an integral equation based on Lorentz's
formulation, whereby the fundamental solution is used that represents the flow due to a
periodic lattice of point forces. The derived integral equation is applied to model the viscous
sintering phenomenon, viz. the process that occurs (for example) during the densification
of a porous glass heated to such a high temperature that it becomes a viscous fluid. The
numerical simulation is carried out by solving the governing Stokes flow equations for a
fixed domain through a Boundary Element Method (BEM). The resulting velocity field then
determines an approximate geometry at a next time point which is obtained by an implicit
integration method. From this formulation quite a few theoretical insights can be obtained
of the viscous sintering process with respect to both pore size and pore distribution of the
porous glass. In particular this model is able to examine the consequences of microstructure
on the evolution of the pore size distribution as will be demonstrated for several example
problems.

A.M.S. Classifications: 65R99,76D07
Keywords Moving Boundaries, Stokes Flow, Boundary Element Method

Viscous Sintering.
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2 INTRODUCTION

1 Introduction

A method to produce glass fibres for the telecommunication industry is heating a porous pure
glass to a sufficiently high temperature so that the glass becomes a highly viscous fluid: the flow
causes densification of the glass. The driving force for this phenomenon is the excess of free
surface energy of the porous glass compared to a same quantity of a fully dense glass. This
process is usually referred to as viscous sintering. The glass flow appears to be highly viscous,
incompressible and Newtonian: the Stokes creeping flow equations hold (cf. Kuiken [16] and
Van de Vorst [26]). In general, the starting porous pure glass is produced by the so-called sol-gel
technique (cf. Brinker and Scherer [5]); therefore the porous glass will also be referred to as the
gel.

Ideally, one wants to produce a dense and homogeneous glass, free from voids and impurities.
this way. Therefore, a good theoretical understanding is needed of the densification kinetics of
the porous glass, Le. the viscous sintering phenomenon. In particular, one is interested in the
shrinkage rate of the glass as a function of the viscosity and particle size, which reflects how time,
temperature and microstructure influence the development of the densification process. Another
question is what kind of structural configuration leads to a higher densification rate.

A simple approach of describing the sintering phenomenon is to consider the behaviour
of simple systems only, Le. so-called unit problems like the coalescence of two cylinders or
two spheres. Such unit problems can be used to understand the behaviour of macroscopic
systems. This approach goes back to 1945, when Frenkel [8] described the early stage of the
coalescence of two equal spherical particles. He introduced the empirical rule, which is used in
most mathematical models of viscous sintering to date, that the work done by surface tension in
decreasing the total surface area is equal to the total energy produced by dissipation of the flow.

In the last few years a lot ofwork has been done in simulating the sintering of two-dimensional
and axisymmetric unit problems. By now the evolution of some particular geometries can be
solved even analytically, in particular using conformal mapping techniques, cf. Hopper [10]-[12].

The first numerical simulation of a unit problem of viscous sintering was carried out by Ross
et al. [21]. They considered the sintering of an infinite line of equal cylinders and performed their
simulation by employing a Finite Element Method (FEM). Jagota and Dawson [13]-[15] applied
the FEM to simulate two axisymmetric problems, Le. the coalescence of two equal spheres and
of an infinite line of equal spheres. In Jagota and Dawson [14], the calculated behaviour of the
two coalescing spheres is used to simulate the densification of a powder compact. In that paper,
the particle packing is modelled as a framework of links between any pair of touching spheres
and the growth of those links is described by considering the behaviour ofeach pair ofcoalescing
spheres separately.

Kuiken [16] considered two-dimensional domains with a rather moderately varying curvature.
He used an integral formulation based on the stream function and vorticity function and solved
the resulting equations by employing a Boundary Element Method (BEM). In earlier work,
cf. Van de Vorst et al. [23]-[27], we reported about the solution of the problem for arbitrarily
shaped two-dimensional fluid regions with holes inside. In those papers, the Stokes problem is
described by an integral formulation based on boundary distributions of single- and double layer
hydrodynamical potentials, which goes back to Lorentz [17].
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A more sophisticated approach to describe the sintering phenomenon is the determination of
a representative unit cell within the gel and to consider the densification of it. This unit cell has
to be chosen so that it reflects the sintering of the porous glass as a whole realistically. Such a
unit cell may consist of a number of particles, depending on the structure of the compact; this cell
is also referred to as a meso-cell (De With [29]). Examples of this approach are the densification
models developed by Mackenzie and Shuttleworth [18] and Scherer [22].

The model of Mackenzie and Shuttleworth [18] (MS-model) is generally accepted for the
late-stage viscous sintering. In this model, the densification results from the shrinkage ofuniform
spherical pores distributed throughout the gel. Hence the MS-model is also referred to as the
closed pores model. The representative unit cell is an individual spherical pore for which the
flow field can be calculated analytically. The MS-modelleads to an equation for the sintering
time necessary to reach a particular density of the gel.

Scherer [22] developed the so-called open pores model, that assumes the gel to be a regular
three dimensional array of interconnected liquid cylinders, and considered its shrinkage. This
model was used by Scherer to analyze the early and intermediate stage of the sintering of gels.
For the unit cell that represents this structure, Scherer took a cubic array consisting of intersecting
cylinders on all the edges from which the total surface was calculated. After applying Frenkel's
energy balance, he obtained an analytical relationship between the relative density and the time.
However, the model breaks down when the pore is trapped in each cell, in the late sintering stage.
Scherer's main result is a figure showing the density of the gel as a function of time which is very
close to the predicted densification rate of the MS-model.

In this paper, we present a mathematical formulation that can be used to simulate the den­
sification of a two-dimensional arbitrary shaped unit cell numerically. Therefore, it is assumed
that the structure of the gel can be described by a periodic continuation of this particular unit cell
as time evolves. The flow of the pores in the unit cell will be described in terms of an integral
equation based on Lorentz's formulation. However, as fundamental solution in this equation
the solution of the Stokes problem for a two-dimensional lattice of point forces is used, derived
by Hasimoto [9] for the three-dimensional case. In section 2, we outline the derivation of this
fundamental solution in terms of a rapidly converging series. The derivation of the governing
integral formulation is briefly discussed in section 3. The numerical solution of this formulation
is based on the two-dimensional numerical code developed by us earlier, cf. Van de Vorst et al.
[23]-[27]. Hence, the BEM is applied to solve the governing integral equations for a fixed domain.
After solving the flow problem, the time stepping is carried out by an implicit time integrator:
a variable step, variable order Backward Differences Formulae (BDF) scheme. Finally, we will
demonstrate the usefulness of this approach in obtaining more details about the viscous sintering
phenomenon, by considering some example problems.

2 Fundamental Solution for a Lattice of Point Forces

In this section we outline the derivation of the fundamental solution for a lattice of point forces
in the two-dimensional plane in terms of a rapidly converging series, by roughly following the
approach of Hasimoto [9].
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Figure 1: The basic vectors of the unit cell of a periodic two-dimensional Stokes fluid lattice.

Let a 1 and a2 be the time dependent basic vectors of the unit cell of the lattice (see figure 1).
Hence the position of the ),fh lattice is given by

(Ai = 0, ±1, ±2, ... ). (2.1)

In analogy with the derivation of the fundamental solution for a point force in an infinite fluid (cf.
Lorentz [17]), we seek the vector field um and the scalar function qm that satisfies the following
Stokes problem and continuity equation,

L 8(x - XA)em

A

divum
- 0.

(2.2)

Here m = 1 or 2, em with ei = 8im , is the mth unit vector of an arbitrarily chosen Cartesian
coordinate system, and 8(x) is the Dirac deltafunction. Moreover, the summation symbol used
in equati?n (2.2) is an abbreviation for the double sum with respect to both Al and A2 over all
negative and positive integers. Physically, the above equations may be interpreted as the velocity
at x induced by a two-dimensional lattice of unit point forces in the em-direction concentrated at
the points XA•

Following Hasimoto [9], we may expand um and (grad qm) by means of a Fourier series due
to the periodicity of the flow field, thus

urn = L 11: exp(-i x . KtL)
It

and - grad qm = Lit: exp(-i x . KII), (2.3)
It

where· denotes the inner product and KII is a vector in the reciprocal lattice space and is equal to

(pi = 0, ±1, ±2, ... ). (2.4)
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The vectors bl and bZ are the basic vectors of the unit cell of the reciprocal lattice which are
defined as

Z 271" ( I t) Tb = - - az, at ,
T

(2.5)

and T is the total surface area of one cell, Le. T = ata~ - aia~. It can easily be seen that the
following relation is satisfied between the basic vectors of the original and the reciprocal lattice,

(2.6)

After substitution of both the Fourier series (2.3) and the equality

(2.7)

into equation (2.2), we obtain the following relations for the coefficients u: and q~,

T

0,

(2.8)

(2.9)

where k = IKILI. When we take Jl = 0, i.e. Jll = Jlz = 0 so that KIL = 0, equation (2.8) reduces
to

(2.10)

Physically, the above equation states that the force acting on the fluid is balanced by the mean
pressure gradient. Next, we assume Jl =f. 0; taking the inner product of (2.8) with respect to KIL
and substituting equations (2.9) and (2.10) yields

x xy =

KIL . qAm = ~ KIL . em _ KIL. qAm
IL T - o·

Moreover, we note that from the identity curl( grad qm ) = 0, follows the equality

Note that the operator x in the two-dimensional space reduces to

Xt YI I = XtY2 - X2YI·
X2 Y2

From the equations (2.11) and (2.12) we obtain

(2.11)

(2.12)

(2.13)
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(2.15)

After substitution of this relation into equation (2.10) we find for the coefficients u~.

Am = .!. [I<~ KIJ _ ~ m] (2.14)UIJ T k4 P e .

From equations (2.13) and (2.14). we can derive the following Fourier series for the fundamental
solution in the reciprocal lattice space.

Xmqm(x) - - - + '\7mSI(X)
T

uj(x)

where '\7j denotes the derivative with respect to xj and the Fourier series Sn are given by

. 1 I 1
Sn(x) = -" - exp(-i x . KIJ).

T LJ k2n
IJ

(2.16)

(2.18)

Here the prime' means that the term J-l = 0 is excluded from the summation.
The next step will be an improvement of the convergence of the series (2.16) by applying

the so-called Ewald summation technique. This method consists of splitting up the sum in two
separate parts: one part is summed in the lattice space and the other part in the reciprocal space
(cf. Nijboer and De Wette [19]). Here. we require the following identity of the Gammafunction
r(n). viz.

_1__ ~ (X> n-I -ak2t d _ ~ (I n-I -ak2t d r(n, ak
2

) (2.17)
pn - r(n) 10 t e t - r(n) 10 t e t + r(n)pn'

(the first identity can be found. for example. in Abramowitz and Stegun [1, equation 6.1.1]). Here
a is an arbitrary parameter that will be fixed below; r(n, x) is the incomplete Gamma function
which is defined by

r(n, x) = 100

e-ttn
-

Idt.

Substitution of the identity (2.17) into equation (2.16) yields

1 I r(n, ak2 ) ..

Tr(n)~ pn exp(-zx.KIJ)

an 11 I+-- tn-Il: exp(-ak2t-ix.KIJ)dt.
Tr(n) 0 IJ

The first sum on the right-hand side of the above equation converges rapidly due to the exponential
decay of the Gamma function; the convergence speed of the second sum behaves similar as the
original sum (2.16). The convergence of this latter series will be improved by considering its
summation in the original lattice space. In order to accomplish this, we apply the two-dimensional
version of the Poisson summation formula, Le.
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where F(k) is the two-dimensional Fourier transform of f(x). Note that this summation formula
can easily be deduced from the two-dimensional analogue of Parseval's theorem. In particular
the following holds

'" I A2 1r", (. k
2

)L..J exp(-a x - X I ) = - L..J exp - zx . K~ - - ,
A ~~ ~

since the two-dimensional Fourier transform of the Gaussian function exp(-alxI2) is equal to
1r exp(-lkI2/4a)/a (see for instance Champeney [6, p.48]). Using the latter equality in the
second sum of equation (2.18), we obtain

We thus have split the Fourier series Sn(x) in two rapidly converging sums, viz.

rnf(n)

(2.19)

whereby we observe that the parameter a can still be chosen freely. It can be shown that equation
(2.19) is equivalent to the solution obtained by Hasimoto [9].

For deriving a workable expression for the fundamental solution (2.15), we have to evaluate
Sn(x) and it's first and/or second order derivative with respect to x for n is equal to 1 and 2. Note
that the involved incomplete Gamma functions can be evaluated by

1
f(-I,x) = - e-x

- E1(x),
x

f(l,x) = e-x ,

f(O, x) El(X),

f(2,x) - (l+x)e- X
,

respectively. Here E1(x) denotes the Exponential integral, which is defined by

E1(x) = /.00 e-xtt dt.

After substitution of equation (2.19) into the fundamental solution (2.15), and working out all
the derivatives, we arrive at the fundamental solution for the Stokes flow due to a lattice of unit
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point forces,

uj(x)
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(2.20)

where rJ = Xj - XI and r = Ix - X'\I. From the asymptotic behaviour of Et(x) as x is
approaching to zero, Le.

E1(x) = -,-log x +O(x) (x ~ 0),

(2.21)

where, = 0.5772156649 ... is Euler's constant, we observe thatthe fundamental solution um has
a logarithmic singularity at the lattice points. Hence this solution behaves like the fundamental
solution of the Stokes flow induced by a single unit point force in an infinite two-dimensional
fluid, Le. the Stokesfet. Moreover, if we take the constant uQ. equal to

J

u~ = i; [log 4a - 2 - ,],

it can be shown that close to a pole the fundamental solution (2.20) reduces to a Stokeslet.
From the definition of the stress tensor 1ijm for a Newtonian fluid (cf. equation (3.3)), we can

obtain an expression for the stress in the Stokes flow induced by the lattice of unit point forces,
Le.

Here a repeated index in an expression denotes a summation over all possible values of that index
(Einstein summation convention). Substitution of the fundamental solution (2.20) and carrying
out the derivatives yields

6ioXm + _1_ '" [-6imr~ _ 6omr~ + 2r;rJr~ (1 + 4a)] exp (_ r2
)

J T 8a1r LJ J J I r 2 r 2 4a
,\

+ ;:~'~ [(1 +ak') (k'(6;mKj +O;mKrJ - 2KiKjK::')

+ 6ij k2J(~] exp(-ak2
) sin(x· K#). (2.22)

Finally, we have to fix the parameter a which controls the convergence speed of both the
lattice sums in the original and the reciprocal space. Ideally, this parameter has to be taken such
that both series are converging at equal rates. This can be accomplished by requiring the same
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exponential decay in both lattice sums, which yields the following value for the convergence
parameter a, viz.

ITIa = -. (2.23)
41r

Note that this value is the two-dimensional analogue of the convergence parameter which is used
in the case of a lattice sum in the three-dimensional space (cf. Beenaker [3]).

In the derivation of the integral formulation, as we will outline in the section below, we also
require the fundamental solution due to a lattice of point sources. This fundamental solution, say
ii and q, satisfies the following equations

Do ii - gradq = 0; divii = - 2:: c5(x - XA).
A

(2.24)

The solution of the above equations can be obtained following an analogue procedure as for the
derivation of the lattice of point forces. Hence ii and (grad ij) are expanded by means of Fourier
series,

ii = 2:: uJL exp(-i x . KJL)
JL

and - grad ij = 2:: qJL exp(-i x· KIJ).
JL

(2.25)

Substitution of the above expansion into equation (2.24) we obtain

- k2uJL + qJL = 0 (2.26)

KIJ. UJL
Z

T
(2.27)

When It = 0 it can easily be seen that qo = 0; letting It =J. 0 and taking the inner product of (2.26)
with respect to KJL together with equation (2.27) yields

v Z KqJL = -- JL,
T

so that from equation (2.26) we find for the coefficients ulJ '

(2.28)

(2.29)

From subsequently the equations (2.25),(2.7), (2.19) and (2.23) we derive the following series
for the fundamental solution

(2.31)

(2.30)ij(x)
1 I

--2:: exp(-ix'KJL) = - 2::c5(x-XA) = 0
T JL A

- '\7mSt(x)

1 r~ 1rr2 1 I J<I!' Tk2

- --2:: -l..exp (- -) - -2::-1 exp (- -) sin(x. KIJ).
21r A r 2 T T JL k2 41r

Note that ij = 0 follows from the fact that x f:. XAsince a lattice of point sources is required
which are situated inside the interior of each hole in a cell (cf. Van de Vorst [25]).
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For the fundamental stress tensor t using the above equation, we find

7;; (x) = 1 L: ( A A( 1 1r)) 1 (1r'l'2)- - Oi - - 2r· r· - + - - exp --
1r J 1 J '1'2 T '1'2 T

A

2 I J(I!'J(I!' Tk2
- -L: 1 J exp ( - -) cos(x . K~).

T ~ k2 41r
(2.32)

3 Integral Formulation for the Unit Cell

Here, we will deduce an integral formulation for the unit cell of a two-dimensional lattice by
applying the fundamental solutions that are derived in the previous section. However, before
we outline this derivation, we will briefly summarize the governing equations that describe the
viscous sintering phenomenon.

Here we assume that the sintering gel can be represented by a periodic continuation, in two
directions, of a unit cell at any stage during the densification process. Hence the shrinkage of the
unit cell corresponds to the shrinkage rate of the whole gel in the two-dimensional plane. The
material transport by viscous sintering is modelled as a viscous incompressible Newtonian fluid
driven solely by surface tension, cf. Kuiken [16]. So the Stokes creeping flow equations are valid,
which can be characterized by the dynamic viscosity TI, the surface tension I and the magnitude
of the body say through its cross-section, e.g. length f.. We define a characteristic velocity vc, a
characteristic pressure Pc and a characteristic time tc based on the parameters " TI and f. by

I
Pc = f'

Using these characteristic parameters and taking f. as the characteristic length, we obtain for the
Stokes equation the following dimensionless form

6.v - gradp = O. (3.1)

Here v denotes the dimensionless velocity and p is the dimensionless pressure of the flow. The
conservation of mass can be expressed by the continuity equation

diyv = O.

The dimensionless stress tensor T for a Newtonian fluid is defined by

(
ov. av.)7;. = -pO" + _I +_J

IJ IJ ax. ox- .
J 1

(3.2)

(3.3)

On the boundary, the dimensionless tension in the normal direction, say b, for a free fluid surface
can be found as (Batchelor [2, p.150])

(3.4)

where fi, is the curvatures of the boundary and n is the outward unit normal vector.
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The motion of the boundary is obtained by applying the Lagrangian representation for the
boundary velocity v,

dx
-d = v(x),t .

(x E f), (3.5)

where t is the dimensionless time. The above kinematic constraint expresses the displacement
of the material boundary particles: the trajectories of those particles are followed. Hence a
quasi-static approach is used to solve the viscous sintering problem.

For the derivation of an integral formulation for the boundary velocity of a particular unit
cell, we require the so-called Green sformula corresponding to the Stokes problem, Le.

in [( 6 Vi - ::)Ui - (6 Ui +::)Vi] dn =

= { [1ij(p, V)Uinj - 1ij(-q, U)Vinj] df,ir .

(3.6)

where n denotes a closed fluid domain that is surrounded by a boundary denoted by f. Here f
represents the union of both the outer boundary of the unit cell, say f 0, and the boundaries of
the pores in the inside of the cell which are denoted by The above integral identity can easily be
derived by the integration overnof the derivative of the stress tensor together with the application
of the divergence theorem of Gauss.

Moreover, we note that if the vector x in the fundamental solution (2.20) is replaced by x - y,
the obtained functions um (x - y) and qm (x - y) are still the solutions of the Stokes problem (2.2).
It can also be verified that these functions are the solutions to the adjoint system, Le.

L: h(x - y - X-')em

-' (3.7)

(3.8)

By ( )y we mean that the differentiation is carried out with respect to y.
We replace U and q in Green's formula (3.6) with the fundamental singular solutions um(x-y),

qm(x - y) and consider those as a function of y, thus to be the solution of the adjoint system
(3.7). Furthermore, the domain n is taken equal to a unit cell and we require that v and p satisfy
the Stokes problem (3.1) and (3.2). Then we obtain the following Fredholm integral equation of
the second kind,

Vm(x) = k1ij(_qm,Um)yvinjdfy - k1ij(p,V)Uminjdfy,

for any x E n. Here the coefficient Umi = ui(x - y), Le. equation (2.20). The vector 1ij(p, v)nj
is given by the boundary condition (3.4), i.e. T(p, v)n = b. Moreover, it can be seen that for the
other kernel, say qmi, holds
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(3.11)

Thus, using equation (2.22) and the optimal choice for the parameter a, viz. equation (2.23), we
obtain for qmi(X) the following expression,

xmni 1 ~ [,\ ,\ 2r~r;r;nj ( ITI )] (1rr2)
qmi(X) = -T- + 21TI 7 -rj nm - Dmirj nj + r2 1 + 1rr2 exp - j;f

+ ~~' :4 [(1 + 1~1:2)(k2(I<rnm - DmJ<jnj) - 2I<~I<rKjnj)

+ k2I<~ni] exp ( _ 1~1:2) sin(x· K#J). (3.9)

When we let x in equation (3.8) approach the boundary and use the assumption that this boundary
is "smooth", we arrive at the following integral formulation

!Vj(x) +l qjj(x - y)vj(y) dry = l Ujj(x - y)bj(y) dry, (3.10)

where the kernels Uij and qij are given by the equations (2.20) and (3.9) respectively.
Like in the two-dimensional formulation, when we used a Stokeslet as fundamental solution

(cf. Van de Vorst [25, 26]), we have to deflate the above integral equation (3.10) with respect to
the outward normal in order to make the integral equation uniquely defined and to accomplish
that the pores in the inside of the unit cell are vanishing.

Here we will only give the resulting integral formulation after the deflation is accomplished.
Therefore, we require the integral equation in which the fundamental solution for a point force is
used, for this deflation with respect to the outward normal. Substitution of equations (2.31) and
(2.32) into the Greens formulae (3.6) yields

l qi(X - Y)Vj(Y) dry = l Ui(X - y)bi(y) dry,

where

and in all the holes we choose an arbitrary point: let zm be a point in the inside of the area
surrounded by f m (m=I,...,M).

Then the deflated formulation of integral equation (3.10) can be expressed as,

M

!vi(xm ) + L ( [ qjj(xm
- y)vj dfy + nr(xm

) [ qj(zm - y)vj df)
k=O irk irk

M

= L ( [ Uij(Xm
- y)bj dry + nr(xm

) [ Uj(zm - y)bj df).
k=l irk irk

Here the superscript m denotes that the particular variable is lying on the boundary of hole f m'

Note that the contribution of the cell boundary f o for the right handside is not included, since
it can be shown that this particular integral is equal to zero for every arbitrary periodic force
b. This is a very nice property because we cannot give an expression for the force on the outer
boundary anyway. The above integral formulation is applied to simulate the densification of the
unit cell in the Stokes flow with vanishing holes in the inside.
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The integral equation (3.11) is solved by applying a BEM. Hence the boundary is discretized into
a set of nodal points, say N; the boundary curve r is replaced by a polygon through these nodal
points. Moreover, the integral formulation is enforced on the polygon for each of the collocation
points. This results into a square full rank system of 2N linear algebraic equations with 2N
unknowns which will be denoted by,

1i(z)v = Q(z)b(z),

where z is a vector of length 2N that consists of all successive collocation points, viz.

(4.1)

(4.2)

whereas the vectors v and b represent the corresponding boundary velocity and tension respec­
tively. The vector b is known (cf. equation (3.4»: this vector is approximated by fitting a
quadratic polynomial through three successive collocation points. The unknowns v are obtained
after solving the linear square full rank system (4.1) by Gaussian elimination with partial pivoting
(LU-decomposition). More details about the implementation of the BEM for general Stokes flow
problems can be found, for example, in Van de Vorst [26].

However, an extra detail in the present formulation is the accurate calculation of the lattice and
reciprocal lattice summations which occur in the kernels of the integral equation (3.11). Because
of the exponential decay of the separate terms in the lattice sums, we observed that summation
over two or three lattice and reciprocal lattice layers was enough to obtain sufficient accuracy.

A point of concern is that the basic vectors a i of the cell are varying, due to the densification
of the lattice cell as time proceeds. Using the velocity of the corners of the outer cell boundary,
these basic vectors can be calculated at each time step. Remark that due to the periodicity of the
cell corner velocities, it is sufficient to compute only one corner velocity. Hence the discretized
system of unknowns which is obtained from the outer cell boundary r0, can be reduced to two
unknowns: the velocity in the 1- and 2-direction.

After calculating the required velocity field, a time step has to be performed. Using the
kinematic constraint (3.5) for each collocation point together with equation (4.1), yields the
following 2N non-linear system of ODEs,

dzdt = 1i-1(z)Q(z)b(z).

In available literature about free creeping Stokes flows this system of ODEs is discretized by
a simple forward Euler scheme or other explicit schemes. However, it appears that the above
system of ODEs can be stifjfor certain type of shapes (e.g. shapes which are having cusp-like
regions); in such a case the time step in the forward Euler scheme has to be taken very small
for obtaining a stable method. Therefore, we have implemented a variable step, variable order
Backward Differences Formulae (BDF) method to solve these ODEs. More details about this
implementation are available in Van de Vorst and Mattheij [27].
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The choice of unit cell b.
The densification at t = 0.0(0.1)1.0

Figure 2: Some choices of unit cells that can be made in a Stokes flow with uniformly sized and distributed
cylindrical pores. In (a)-(c) is shown the densification shapes of the various unit cells at three subsequent time steps.

The collocation points of the boundary are (re)distributed after a certain number of time
steps. In Van de Vorst and Mattheij [24], we proposed an algorithm for a fairly optimal node
redistribution based on equidistributing the curvature of the boundary. The aim of that algorithm
is twofold. Firstly, the number and position of the discretization points are optimized, which is
important because the computational costs per time step are proportional to (2N)3. Secondly,
the algorithm treats regions with a large curvature "cusp" so that the curvature of this particular
region is preserved after the redistribution to avoid (numerical) oscillations in the computed
velocity field.

5 Numerical Results

Results of numerical simulation for a number of two-dimensional sintering geometries are pre­
sented to demonstrate the correctness of the mathematical formulation developed and to show
some typical evolution properties.

5.1 Validation of Mathematical Model

We will investigate the influence of the choice of the unit cell in a fluid with both uniformly sized
and distributed pores, onto the numerically obtained densification results of this geometry. In
order to validate the mathematical formulation as outlined in the previous sections, the differences
in densification rates have to be minimal with respect to the choice of the representative unit cell.

Therefore we consider a fluid with cylindrical pores of radius 0.5 which are distributed
uniformly in the two-dimensional plane. The distance between the centers of two subsequent
pores is taken equal to 2. A part of this fluid domain is shown in figure 2. We consider the
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densification of this fluid domain for three different choices of unit cells as indicated in the same
picture (a-e). Hence the unit cells consist of I, 4 or 9 cylindrical pores. The shape deformation
ofthe various unit cells is also plotted in figure 2 at subsequent time steps t = 0.0(0.1)1.0.

The density, say p, of the fluid domain at a particular time is found from dividing of the
surface occupied by fluid in the unit cell by the total area that surrounds the outer boundary of
the cell. In figure 3 the numerically obtained densification rate is plotted for the three cells as
time evolves. From this plot, we observe that the differences between the three shrinkage rates
are very small: this gives some validation of our proposed mathematical approach. Hence, we
can restrict ourself to consider the densification of the most simple unit cell, Le. case a. Note
that from the figure it can be observed that the densification proceeds at an almost linear rate
here. We have also plotted the densification rates as are obtained from the analytical models of
both Mackenzie and Shuttleworth [18] (closed pores model or MS-model) and Scherer [22] (open
pores model).

The model of Mackenzie and Shuttleworth [18] is generally used to describe the late-stage
viscous sintering of the gel. The densification results from the shrinkage of spherical pores
distributed uniformly throughout the fluid. Moreover, it is assumed that all the pores have
an identical radius. The closed pores model in full dimensional variables gives the following
analytical relationship between the relative density of the sintering gel and the reduced time,

,. _ 2(3) ~ (1 [(1 +ao)3(1 +a3
)] r;; [ 2V3(ao - a) ])

li 3(t-to) - 3 411" 2 log (I + a)3(1 + a5) +v 3 arctan 3 + (2ao_ 1)(2a _ 1) ,(5.1)

where

ao = a(po); • Popo =-;
Ps

and
• p
p= -,

ps

with 0 < po :::; P< 1. Here p is the bulk density of the gel, po is the initial bulk density (at
t = to), Ps is the density of the solid phase (skeletal density) and n is the number of closed pores
per unit of volume of solid phase.

In the two-dimensional plane, we can deduce an analogous closed pores model by assum­
ing that the densification results from the shrinkage of uniform cylindrical pores distributed
throughout the fluid. The following densification rate is then obtained

I<2(t - to) = ~ [arcsin(1 - po) - arcsin(1 - M], (5.2)

where I<2 = ,ViiI1J' In the sequel, we will refer to (5.1) as the 3D closed pores model and to
(5.2) as the 2D closed pores model.

The so-called open-pores model of Scherer [22] is normally used to analyze the early and
intermediate stage of the sintering process. As was stated in the introduction, in this description
it is assumed that the gel can be modelled as a regular three-dimensional array of interconnected
liquid cylinders. For the unit cell representing this structure, a cubic is taken which is characterized
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Figure 3: A good matching is obtained when comparing the numerically obtained density (p) changes of the three
unit cells of figure 2 as time (t) proceeds. Both the analytic relations of the open and closed pores model predict an
almost similar behaviour of the shrinkage rate.

by the edge length and the cylinder radius. After approximating the flow field of this unit cell,
the following densification equation can be deduced

T 1 (1 [(1 - bo+ b5)(1 +b?] [2V3(bo- b) ])
li 3(t-to) = 2k 2: log (1 _ b+ b2)( 1 + boF +V3 arctan 3 + (2bo _ 1)(2b _ 1) ,(5.3)

where

b _ (2(1 +cos~CP))L
- 1-2cos!cp ,_ 3

and bo is found by substituting CPo in the relation for b. The variable cpo is similarly defined by
using po instead of pin the equation above. Equation (5.3) applies for 0 ~ p~ 0.942 only, since
it can be shown that at the density p= 0.942 the parallel cylinders of the unit cell touch. Next,
each cell contains an isolated pore so that the closed pores model applies.

The dimensionless form of the analytical densification equations (5.1)-(5.3) can easily be
found by skipping the factor 'Y /TJ and taking ps = 1, hence p = p. Moreover, we note that
in the above three models the pores are assumed to be of equal size and distributed uniformly
throughout the sintering material. Although the equations (5.1) and (5.3) are developed for a
really three-dimensional sintering gel, the comparison with the numerical results gives some
quantitative insight in the reliability and limitations of those approximations. When comparing
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The choice of unit cell b.
The densification at t = 0.0(0.1)0.6

Figure 4: The choice of unit cell that can be made in a Stokes flow with uniformly sized and distribClted cylindrical
particles. In (a)-(c) is shown the densification shape of the various unit cells at subsequent time steps.

these analytical predictions with the densification rate obtained numerically as is shown in figure
3, we observe that during the initial stage the numerical shrinkage rate proceeds a little bit
slower than the analytical predictions; during later stages of the densification the opposite holds.
Moreover, we see quite a reasonable agreement between the numerical results and the closed
pores model in two dimensions, Le. relation (5.2). The latter observation also provides some
justification of the proposed mathematical model in this paper.

A more complicated densification problem is the sintering of a regular packing of equally
sized cylinders. A part of this packing is shown in figure 4. The initial radii of all cylinders
is taken equal to 0.5 and the contact radius, say r, between two touching cylinders, the so­
called neck region, is initially set equal to 0.095 for all the coalescing regions. Furthermore, we
use Hopper's analytical solution for the coalescence of two equal cylinders to approximate the
neck regions of the initial shape (cf. Hopper [10]). In figure 4a-4c we show the densification
of these three unit cells.. All curves are plotted at equal periods of 0.1. An explanation for
the differences in shape deformation of these three cells can be found from the mathematical
formulation itself, Le. the evolution differences are not due to numerical errors. Since the basic
lattice vectors are taken equal to the outer boundary of all the three cells, the periodicity of the
velocity field is imposed on these cell boundaries. So in the case of the 4 and 9 pores cells these
pores have the freedom to move to each other. However, this translation of pores should not
have any effect on the various densification rates. Therefore a comparison of the numerically
obtained densification rates is shown in figure 5. Now we observe that the differences are larger
between these three curves, compared to the numerical results obtained in the previous example.
However, the general behaviour of the three curves is similar, so that we may still conclude that
our mathematical formulation holds.

In figure 5 we have also compared the densification rate of the above mentioned unit cells to
the analytical open and closed pores models. Now we observe that these relations predict quite
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Figure 5: A sufficient matching is obtained when comparing the densification rates of the above three unit cells.
During the early stage the numerical densification behaviour differs quite a bit with the prediction of the analytic
open and closed pores models.
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Figure 6: The contact radius r development of the cylindrical packing compared with the exact analytical solution
of the coalescence of two equal cylinders shows only an agreement during the early stage. At later time stages the
neck radius of the cylindrical packing develops much slower.
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Figure 7: The shape deformation of the unit cell of a periodic lattice of non-uniformly sized cylindrical pores at
subsequent times shows that the pores vanish in order of size.

a different densification evolution during the early stage compared to the obtained numerical
simulation results: the numerically obtained rate proceeds much slower than the analytical
predictions. This is caused by a smoothing of the neck region during this stage, which results in
only a small reduction of the pore size. Hence this example illustrates that the densification rate
depends on the pore shape of the initial geometry.

An interesting question is the behaviour of the neck growth between two touching cylinders
of these packings compared to the exact contact radius development of two coalescing cylinders.
In figure 6 we show the development in time of the contact radius for the unit cell 4a. The exact
neck radius for the coalescence of two cylinders with initial radii equal to 0.5, as obtained from
Hopper's analytical solution, is also plotted. From this picture we see that only during the initial
stage the neck growth is similar to the contact radius development of two coalescing cylinders,
Le. during the smoothening of the neck region. Thereafter, the contact radius is increasing much
slower compared to the analytic solution. Hence the later prediction should only be used during
the early stage of the sintering process.
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Figure 8: The numerically densification rate of the periodic lattice of nonuniformly sized cylindrical pores of
figure 7 is compared with the two-dimensional closed pores model prediction. A good matching is obtained when
in this model only the significantly largest pores of the unit ceIl are taken (2) compared to when all the pores are
counted (12).

5.2 Densification Effects due to Irregularities

In practice, one does not deal with a uniform sized pore distribution or a regular packed array
of cylinders as we considered in the above subsection. Usually, the sintering compact is an
irregular particle packing that consists of a variety of particle sizes with (often) a non-spherical­
(cylindrical) form. Moreover another effect due to these irregularities has to be taken into account:
the rearrangement of particles and the opening and closure of pores induced by this rearranging
of particles.

Because of this, an important issue in sintering research is the quantification of the rest­
porosity of the gel after sintering. The scientific interest for this densification process is to
understand the magnitude of the driving force for this process and to deduce how the driving
force and thus the densification rate are affected by the gel microstructure as is illustrated by the
last example of the previous subsection.

The effect of nonuniformly sized and distributed pores can be illustrated by the fluid lattice
plotted in figure 7 at t = 0.0. Here we consider a unit cell of length 1 by 1 with 12 nonuniformly
sized cylindrical pores from which the radii are varying between 0.05 and 0.25. The plots at
various time steps of the deformed cell shape show that the pores vanish in order of size one
after another: all pores are shrinking which results in the vanishing of the smallest pores first,
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Figure 9: The densification of a texture model of a base-catalysed aerogel demonstrates that some pores are
growing initially before they start shrinking. This phenomenon influences the densfication rate negatively.

followed by the larger pores. Moreover, we observe from these pictures that the aspect ratio of
the unit cell is changing which might be seen as an effect on the shrinkage of the entire viscous
sintering body.

This behaviour is the opposite of the numerical results obtained for afinite two-dimensional
fluid region with nonuniform sized pores (cf. Van de Vorst [26, p.ll?]). There, it appears that the
initially larger sized pores are shrinking significantly faster as compared to the smallest ones as
time evolves. This difference can be explained from the fact that in the finite domain case, the
fluid obtains an extra tension due to the curvature of the outer boundary.

In figure 8 the numerically obtained densification rate of the above unit cell is plotted which
is compared to the two-dimensional closed pores model prediction (5.2). A good matching is
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Figure 10: The numerically densification rate of the aerogel texture of figure 9 is compared with the two­
dimensional closed pores model prediction. Again. a good matching is obtained when in this model only the
significantly largest pores of the unit cell are taken (3) compared to when all the pores are counted (17).

obtained in this model when the significantly largest pores of the unit cell are counted only
(n = 2/0.409), Le. the smaller pores are ignored. When all pores are taken into account
(n = 12/0.409), the predicted densification rate decreases considerably.

All pores in the cells we considered so far were shrinking during the entire densification
process. However, it might also be possible that some pores first grow in size, before they
shrink and vanish. This process will influence the densification rate negatively. In figure 9 this
phenomenon is demonstrated. The unit cell represents a texture model of an aerogel that is
formed in a base-catalysed way (after Craievich et al. [7]). Initially, the size of the rectangular
unit cell is taken equal to 2.1 by 2.8, with density po = 0.439 and it contains 17 pores.

Again it can be seen from the subsequent time plots in figure 9 that the smaller pores are
vanishing first. Moreover, we observe that during the early time stage some pores become larger
in size before they start shrinking. Especially this occurs for pores that have large concave
boundary parts. Such a pore has a much longer boundary length than what would strictly be
required to surround the pore contents. Hence the pore may expand whereas the total pore
boundary length still decreases as time evolves. Thus we conclude that one should avoid such
kind of pore shapes as much as possible.

The density change of the unit cell of the aerogel texture model is plotted in figure 10 for
increasing time by a solid line. In the same figure we have also plotted the results obtained from
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the analytical closed pores model prediction. Again, we observe that this equation provides the
most accurate prediction of the numerical densification rate when only the three largest pores
are counted in the densification relation (n=3/2.579). However, the predicted densification rate
deviates more from the numerical solution which is caused by the pore growing phenomenon.
It seems to be impossible to introduce the phenomenon of growing pores in a densification
model; hence the only way to discover this effect for a certain given microstructure would be by
numerical simulation of the representative unit cell.

More details about numerical results of simulating representative unit cells numerically will
be provided in an accompaning paper, cf. Van de Vorst [28].
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