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Plenty of Franklin Magic Squares, but none of order 12

C.A.J. Hurkens

June 4, 2007

Abstract

We show that a genuine Franklin Magic Square of order 12 does not exist. This is
done by choosing a representation of Franklin Magic Squares that allows for an exhaustive
search of all order 12 candidate squares. We further use this new representation (in terms
of polynomials) to generate large classes of true Franklin Magic Squares of orders 8 and
multiples of 16. Next we show how Franklin Magic Squares of orders n = 20 + 8k can be
constructed. Finally we indicate how almost-Franklin Magic Squares of order 20 can be
constructed in a general way.

1 Franklin Magic Squares

According to various descriptions a natural Franklin Magic Square of even size n is a square
matrix M with n rows and columns with the properties

1. the entries of M are 1, 2, . . . , n2;

2. each row and each column has a fixed entry sum n(1 + n2)/2;

3. each two by two sub-square
[

Mi,j Mi,j+1

Mi+1,j Mi+1,j+1

]
has sum 2(1 + n2);

4. each half row starting in column 1 or n/2 + 1 has sum of entries equal to n(1 + n2)/4,
and similar for half columns starting in row 1 or n/2 + 1;

5. each half of the main diagonal (starting in column 1 or n/2+1) together with each half
of the back diagonal has total sum (such as

∑n/2
i=1(Mi,i+Mi,n+1−i)) equal to n(1+n2)/2.

This construction is called a bent diagonal. The sum requirements also hold for so-called
bent rows, which are translates of the two half-diagonals, possibly wrapping over the
matrix sides.

These squares are called after the former US president and scientist Benjamin Franklin
who constructed a few of such matrices, two of order eight, one of order 16. Note that the
fourth property implies that n is a multiple of four. It turns out that the condition on 2x2
subsquares is the most prominent one and generates a lot of shapes with a constant-sum-
property. In particular we have that

2x2 squares wrapping along one side of the matrix also have fixed sum 2(1 + n2),

and further that
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for arbitrary i, j, k the entries in
[

Mi,j Mi,j+1+2k

Mi+1,j Mi+1,j+1+2k

]
have sum 2(1 + n2).

Combining this on two consecutive rows i, i + 1 we find that for arbitrary i, j, k,

Mi,j + Mi,j+1+2k and Mi+2,j + Mi+2,j+1+2k have equal values.

In the end this leads to the observation that for arbitrary i, j, k,m we have that

each four-tuple Mi,j ,Mi+2m+1,j ,Mi,j+2k+1,Mi+2m+1,j+2k+1 has sum 2(1 + n2).

This property of Franklin Magic Squares is often referred to as the mirroring property
because its consequence is that on any shape that is symmetric horizontally and vertically
along a line separating rows or columns, respectively, the entries of square add up to a number
that is independent of the choice of the intersection of the axes of symmetry. Here we allow
moving over the border of the square by embedding it on a torus. Note that this property is
merely based on the 2x2 sub-square property.

Applying the above insights on the top halves of the main and back diagonal we find that
the sum-of-half-diagonals property is equivalent (given the 2x2 square with fixed sum) to
the statement that M1,1,M2,2,M1,3,M2,4, . . . , M1,n/2−1,M2,n/2 and M2,n/2+1,M1,n/2+2, . . . ,
M2,n−1,M1,n together sum up to n(1 + n2)/2.

Subtracting n/4 ‘subsquares’ [M1,2k,M2,2k,M1,n+1−2k,M2,n+1−2k] of constant sum we find
that M1,1−M1,2 + . . .+M1,n/2−1−M1,n/2 plus its mirror image M1,n+1−1−M1,n+1−2 + . . .+
M1,n+1−n/2−1 −M1,n+1−n/2 equals zero.

Adding a full row sum leads to a pattern of n/2 entries, with

(M1,1 +M1,3 + . . .+M1,n/2−1)+(M1,n/2+2 +M1,n/2+4 + . . .+M1,n) = n(1+n2)/4.

which holds for ordinary magic squares with the 2x2 square property and the bent-diagonals-
property.

Subtracting a fixed half row sum starting in column n/2 + 1 we finally obtain the property
that

M1,1 + M1,3 + . . . + M1,n/2−1 equals M1,n/2+1 + M1,n/2+3 + . . . + M1,n−1.

This alternate sum property is hence equivalent with the bent-diagonal property (in pres-
ence of the other franklin conditions), but much more easily checked. Obviously a similar
reasoning is possible for vertical bent-diagonals, leading to columns having the alternate sum
property.

All this leads to the following more compact definition of a Franklin Magic Square of
arbitrary order 4k, which is a matrix with properties:

1. entries are 1, . . . , n2;

2. each 2x2 sub-square has entries summing up to 2(1 + n2);

3. the first half of the first row, the second half of the first row, the first half of the first
column, and the second half of the first column, each have entries that sum up to
n(1 + n2)/4;
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4. entries on odd positions in the first half of the first row add up to the same value as
entries on odd positions in the second half of the first row; similarly, entries on odd
positions in the first half of the first column add up to the same value as entries on odd
positions in the second half of the first column.

2 More compact representation

2.1 Isomorphisms

It turns out that any Franklin Magic Square maintains its magic properties under a number
of matrix transformations, namely:

1. reflection along the horizontal, or vertical axis of symmetry;

2. permutation of row (column) indices within the sets S1 = {2k + 1 | 0 ≤ k < n/4},
S2 = {2k | 1 ≤ k ≤ n/4}, S3 = {2k +1 |n/4 ≤ k < n/2} and S4 = {2k |n/4 < k ≤ n/2};

3. exchanging the n/4 rows (columns) indexed by S1 with those indexed by S3; similarly,
exchanging the n/4 rows (columns) indexed by S2 with those indexed by S4;

4. reflection along the diagonal;

5. replacing each entry Mij by n2 + 1−Mij .

The first three properties suffice to prove that we can assume without loss of generality
that the first entry M1,1 = 1. It is evident that the transformations above leave the compact
definition of Franklin Magic Squares intact.

2.2 Bookkeeping

Based on the 2x2 sub-square property the square can be fixed by determining the entries on
the first row and first column. For computational reasons it is more convenient to index rows
and columns by 0, . . . , n−1, and to subtract 1 from each entry in the Franklin square, so that
the entries become 0, . . . , n2 − 1. Note that now the average entry value is ν = (n2 − 1)/2,
instead of (n2 + 1)/2. We now assume that the upper leftmost element is zero. We call this
Franklin square basic instead of natural.

Next consider the following transformation C(F ) on any Franklin Magic Square F :

Vij = C(F )ij :=
{

Fij if i + j ≡ 0 modulo 2
n2 − 1− Fij if i + j ≡ 1 modulo 2

which can be viewed as complementing entries on black positions (of the underlying chess
board). Note that F = C(V ).

The 2x2 sub-square property of F translates into a favorable property for V , namely:
Vi,j +Vi+1,j+1−Vi,j+1−Vi+1,j = 0, for all i, j. Based on this property, having the zero in F00

gives that V has the nice property that Vij = Vi0 +V0j . Hence to generate candidate Franklin
Magic Squares F we enumerate all vectors x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1), with
properties:
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1. x0 = y0 = 0;

2. x0 < x2 < . . . < xn/2−2,
x1 < x3 < . . . < xn/2−1,
xn/2 < xn/2+2 < . . . < xn−2,
xn/2+1 < xn/2+3 < . . . < xn−1;

3. y0 < y2 < . . . < yn/2−2,
y1 < y3 < . . . < yn/2−1,
yn/2 < yn/2+2 < . . . < yn−2,
yn/2+1 < yn/2+3 < . . . < yn−1;

4. x0 + x2 + . . . + xn/2−2 =
x1 + x3 + . . . + xn/2−1 =
xn/2 + xn/2+2 + . . . + xn−2 =
xn/2+1 + xn/2+3 + . . . + xn−1;

5. y0 + y2 + . . . + yn/2−2 =
y1 + y3 + . . . + yn/2−1 =
yn/2 + yn/2+2 + . . . + yn−2 =
yn/2+1 + yn/2+3 + . . . + yn−1;

6. x1 < xn/2+1;

7. y1 < yn/2+1;

8. maxi y2i > maxj x2j ;

9. 0 ≤ yi + xj ≤ n2 − 1, for all i, j;

10. the set {yi + xj |i + j ≡ 0} ∪ {n2 − 1− yi − xj |i + j ≡ 1} equals {0, . . . , n2 − 1}.

3 Not Finding the 12x12 Franklin Magic Square

Evidently the enumeration should be kept to a minimum by pruning the search for candidate
Franklin Magic Squares as early as possible. For the 12 by 12 Franklin Square the following
strategy turns out to lead to a manageable enumeration scheme.

1. generate a 3x6 sub-matrix on the 6 columns with even index and on rows indexed 0, 2, 4;

2. extend this to a 6x6 sub-matrix on the even columns and the even rows;

3. extend to a 9x9 sub-matrix adding rows and columns indexed 1, 3 and 5;

4. finally extend to a full 12x12 matrix

At each stage, before adding (three) more rows or (three) more columns, we update a list
of candidate xj or yi values, given the partially filled F . Note that for instance, after the first
step, possible values for y6, y8, y10 come from a limited common domain, consistent with the
3x6 sub-matrix already filled.

Proceeding in this way we generate:
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831083 tuples x2, x4, x6, x8, x10;
40467771 extensions y4,

1473501105 extensions y2, y4, i.e. 3x6 sub-matrices
25663243622 extensions y2, y4, y10,
24473864360 extensions y2, y4, y6, y8, y10, i.e. 6x6 squares,
22532519520 of which cannot be ruled out immediately;

121404978 9x9 extensions,
93083 of which might be extended to a 12x12 square.

In the end, none of these would lead to the desired Franklin Magic Square. Computation of
these cases was carried out by a network of 50 computers. For this we split the work into 70
cases, corresponding with the possible settings for x2 ∈ {1, . . . , 70}. (For a higher value for x2

we would have that x4 +ymax ≥ 72+73 = 145 > max{0, . . . , 122−1}. The total computation
time was approximately 160 hours.

4 A generic scheme for building Magic Squares

The above described formulation in terms of vectors x and y can also be used in a generic
way to generate (Franklin) Magic Squares with the 2x2 sub-square property for arbitrary even
order, with or without additional properties. To this purpose we formulate the magic square
properties in terms of an equation in polynomials.

4.1 An encoding in polynomials

The polynomials we consider have coefficients 0 and 1. Let δ or δ(P ) denote the degree of
a polynomial P . Then for a polynomial in z, P (z), of degree δ, and any number ν ≥ δ, let
P

ν be defined by P
ν(z) = zνP (1/z). We are more or less writing P backwards, or better, we

are reflecting its exponents with respect to the value ν/2. If we do not mention ν we take by
convention the degree of the polynomial.

Let us now associate with each (Franklin) Magic Square, given in terms of x and y, the
polynomials A(z) :=

∑n
j=0 zxj , and B(z) :=

∑n
i=0 zyi . Let us further split these summations

over odd and even indices: A(z) = A0(z) + A1(z), with Ak(z) :=
∑n

j=0,j≡k zxj , for k = 0, 1;
and B(z) = B0(z) + B1(z), with Bk(z) :=

∑n
i=0,i≡k zyi , for k = 0, 1. A square with numbers

{0, . . . , n2 − 1} with the 2x2 sub-square property then satisfies the condition:

(A0B0 + A1B1)(z) + A0B1 + A1B0
n2−1(z) =

zn2 − 1
z − 1

(1)

which simply stipulates that all numbers are present once in the matrix. Here A0, A1, B0, B1

are polynomials with n/2 terms each. Solving the above system (to find the square) is possible
if one restricts to certain types of solutions. One such restriction (Type 1a) could be to choose

B0 = B1 = B0
δ(B0) (2)

which leads to the following simplification of the equation above:

(AB0)(z) + AB0
n2−1(z) = (A + A

n2−1−δ(B0))(z)B0(z) =
zn2 − 1
z − 1

(3)

A variant of this approach (Type 1b) would be to choose
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B0 = B1 6= B0
δ(B0) and A = A

δ(A) (4)

which leads to the simplification:

(AB0)(z) + AB0
n2−1(z) = A(z)(B0 + B0

n2−1−δ(A))(z) =
zn2 − 1
z − 1

(5)

A second approach (Type 2) could be to assume the existence of a number ν such that

A0 = A0
n2−1−ν

, A1 = A1
n2−1−ν

, B0 = B0
ν
, B1 = B1

ν (6)

A third approach (Type 3) is to assume an integer ν exists such that

A0 = A1
n2−1−ν

, A1 = A0
n2−1−ν

, B0 = B1
ν
, B1 = B0

ν (7)

Both (6) and (7) translate equation (1) into the simple

A(z)B(z) =
zn2 − 1
z − 1

(8)

Now, for n = 2qk, with odd k, the right hand side in equation (1) can be rewritten as

zn2 − 1
z − 1

=
zk222q − 1
zk22q − 1

zk22q − 1
z22q − 1

2q−1∏
j=0

(1 + z2j
)

Note that the first two factors in this decomposition are polynomials in z with k terms
each, whereas the other factors are two-term polynomials. In case k = 1 this decomposition
is unique, but for other values there are many possible decompositions.

Using the first method to solve (1), we look for a candidate polynomial B0, with n/2
terms, by selecting one of the two first factors, and q − 1 factors from the other ones. Their
product is indeed a polynomial in n/2 terms, and is symmetric (meaning B0 = B0

ν , for some
ν). The factors not selected form a product Σ(z) that is in fact a symmetric polynomial in

2n terms, and that we have to set equal to the sum A+A
n2−1−δ(B0) by an appropriate choice

for A.
For the variant we select one factor from the first two and next q factors from the second

part so as to build A. The co-factor (with n terms) must then match B0 + B0
n2−1−δ(A) for

an appropriate choice of B0.
When using the second or third method, we may define B say, by taking one of the two

first factors, and adding q factors from the other ones. Their product is then a symmetric
polynomial in n terms, which can further be split into B0 and B1. The remaining factors are
used to build A0 and A1.

In the remainder of the paper we show how to construct various types of Franklin Magic
Squares. We first formulate how additional requirements on the constructed squares translate
into conditions on the vectors x and y, and hence on the polynomials A0, A1, B0, B1. Define
Xik =

∑
j≡i,b2j/nc=k xj for i, k ∈ {0, 1}. Similarly, let Yik =

∑
j≡i,b2j/nc=k yj .

magic row sum X00 +X01 = X10 +X11 or, equivalently, the sum of exponents in A0 equals
the sum of exponents in A1;
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magic column sum Y00 + Y01 = Y10 + Y11 or, equivalently, the sum of exponents in B0

equals the sum of exponents in B1;

magic sum on horizontal bent diagonals X00 = X11 and X01 = X10, or, equivalently,
A0 = A00 +A01, A1 = A10 +A11 is a split into four polynomials of n/4 terms each with
exponents in A00 (A10) adding up to the same as those in A11 (A01, respectively);

magic sum on vertical bent diagonals Y00 = Y11 and Y01 = Y10, or, equivalently, B0 =
B00 + B01, B1 = B10 + B11 is a split into four polynomials of n/4 terms each with
exponents in B00 (B10) adding up to the same as those in B11 (B01, respectively);

half the magic sum in first and second half row X00 = X10 and X01 = X11, or, equiv-
alently, there is a split of A, as above, with exponents in A00 summing to the same as
those in A10, and exponents in A01 summing to the same as those in A11;

half the magic sum in first and second half column Y00 = Y10 and Y01 = Y11, or,
equivalently, there is a split of B, as above, with exponents in B00 summing to the
same as those in B10, and exponents in B01 summing to the same as those in B11;

pan-diagonal magic sum X00 + X01 + X10 + X11 + Y00 + Y01 + Y10 + Y11 = n(n2 − 1)/2,
or equivalently, exponents in A and B add up to the magic sum;

most-perfect This means: complementary entries lie on the same diagonal, n/2 positions
apart. That is, Mi,j + Mi+n/2,j+n/2 = (n2 + 1), for all i, j. We then have xj + xj+n/2 +
yi + yi+n/2 = n2 − 1, for all i, j, implying that xj + xj+n/2 = δ(A), for all j < n/2, and
yi + yi+n/2 = δ(B), for all i < n/2, and each of A0, A1, B0, B1 must be symmetric;

four-on-a-row This means: blocks of 4 consecutive entries partitioning a row (or column)
each have magic entry sum. In other words, Mi,4k+1 + Mi,4k+2 + Mi,4k+3 + Mi,4k+4 =
2(n2 +1), for all i, k. Then x4j +x4j+2 = x4j+1 +x4j+3, for all j, implying that pairs of
exponents in A00 match with pairs of exponents in A10 having the same sum, etcetera.

4.2 Simple Magic Squares

4.2.1 Method 1a

If we pose no further restrictions, then for each symmetric polynomial Σ(z) of 2n terms we
can easily find 2n different solutions A(z) as follows: for the n smallest powers zj in Σ we
have that zN−j is in Σ as well, where N = δ(Σ). For each j, select one of {j, N − j} to be in
the set of powers of A. For instance

1 + z2 + z3 + z6 + z9 + z12 + z13 + z15 = (1 + z3 + z6 + z13) + (1 + z3 + z6 + z13)
15

Now A and B will lead to a square matrix of numbers {0, . . . , n2 − 1} satisfying the 2x2
sub-square property. Each column will have fixed sum n(n2−1)/2, for the simple reason that
B0 and B1 are equal.

In order to have fixed row sums as well, we should be able to split A(z) = A0(z) + A1(z),
with exponents in A0 adding to the same sum as the exponents in A1. This can be done in
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general as follows. Let 1 + z2j
be a factor of Σ, that is Σ(z) = (1 + z2j

)Ω(z), where Ω is
symmetric as well, and with (even) n terms. Pair the terms in Ω(z) with matching exponents

(zt + zδ(Ω)−t). Taking A(z) = Ω(z) gives A
δ(Ω)+2j

(z) = z2j
A(z). Now split A into A0 and A1

by taking for A0 half of the n/2 pairs in Ω(z), and for A1 the remaining n/4 pairs. As each
pair contributes δ(Ω) to the sum of exponents, the split will be balanced. So the exponents
in A0 will add up to the same sum as those in A1, and hence the resulting matrix will have
constant row sums.

4.2.2 Method 1b

In order to find Type 1b squares with fixed row and column sum, we have to be able to split
the n-term polynomial A into two parts of equal exponent sum. This is easily achieved by
the method described above: form pairs of matching terms zj , zδ(A)−j , and divide these pairs
over two groups of equal size. If n is a multiple of four, such a split is possible in

(n/2
n/4

)
ways,

for any given A.
In order to find a matching B0 it suffices to pair matching terms zj , zn2−1−δ(A)−j and

select one of each pair as an element of B0. There are 2n/2 possible B0’s, for a given A. By
definition B0 and B1 have the same sum of exponents.

4.2.3 Method 2

After decomposing zn2−1
z−1 = A(z)B(z) where both A and B have n terms, we have lots of

ways to split A into parts A0, A1 with Ai = Ai
δ(A) by pairing the jth lowest term with the

jth highest term in A, and then assign half of these pairs to A0 and the other half to A1.
Similar for B. There are

(n/2
n/4

)
ways to generate A0 and there are

(n/2
n/4

)
ways to generate B0

(for fixed A and B). We only need n to be a multiple of 4.
Note that by keeping matching exponents close together method 2 as described above

generates 4x4 blocks that have the property that each row, each column and each (broken)
diagonal has magic sum 2(n2 + 1). So if we apply this method to generate squares of order
4k, only caring about 4 fields on-a-row having fixed sum 2(n2 + 1), we get squares that
have the property that each 8x8 sub-square has all the Franklin Magic Square properties as
far as row, column and bent-diagonal sums are concerned, with average entry value equal
to (n2 + 1)/2. For instance take n = 12, A(z) = (1 + z48 + z96)(1 + z8)(1 + z4), and
B(z) = (1 + z16 + z32)(1 + z2)(1 + z). With x = (0, 4, 108, 104, 8, 12, 100, 96, 48, 52, 60, 56)
and y = (0, 1, 35, 34, 2, 3, 33, 32, 16, 17, 19, 18) we obtain the square M12.2 given in Figure 1.
It contains four 8x8 subsquares, aligned with the 4x4 block structure, with all the Franklin
Magic Square properties (except for containing 64 consecutive numbers). Notice that each 4x4
block in the structure is most-perfect in the sense that its 2x2 subsquares are one another’s
complement. Further observe that in this example every 4x4 block with upper left entry in an
odd row and an odd column has magic row and column sum! This can be enforced in general
by building the x-vector in strips of four with values j, j + α, N − j,N − j−α, for some fixed
α, and similarly build the y-vector in strips of four of value j, j + β, N ′ − j,N ′ − j − β, for
some fixed β. Here N = δ(A) and N ′ = δ(B). The features are highlighted in bold font.
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M12.2 =

1 140 109 40 9 132 101 48 49 92 61 88

143 6 35 106 135 14 43 98 95 54 83 58

36 105 144 5 44 97 136 13 84 57 96 53

110 39 2 139 102 47 10 131 62 87 50 91

3 138 111 38 11 130 103 46 51 90 63 86

141 8 33 108 133 16 41 100 93 56 81 60

34 107 142 7 42 99 134 15 82 59 94 55

112 37 4 137 104 45 12 129 64 85 52 89

17 124 125 24 25 116 117 32 65 76 77 72

127 22 19 122 119 30 27 114 79 70 67 74

20 121 128 21 28 113 120 29 68 73 80 69

126 23 18 123 118 31 26 115 78 71 66 75

Figure 1: Block structure with 4x4 most-perfect magic subsquares

4.2.4 Method 3

After decomposing zn2−1
z−1 = A(z)B(z) where both A and B have n terms, we have lots of

ways to split A into parts A0, A1 with A0 = A1. However we need to enforce equal sums of
exponents. By extracting a factor (1 + zα)(1 + zβ) from A(z): A(z) = (1 + zα)(1 + zβ)Ω(z),
we can take care for this. Match terms zj and zN−j in Ω(z), where N = δ(Ω), and write
(1 + zα)(1 + zβ)(zj + zN−j) = (zj + zα+N−j + zβ+N−j + zα+β+j) + (zN−j + zα+j + zβ+j +
zα+β+N−j). Both four-tuples have exponent sum 2(N +α+β). Assign one 4-tuple to A0, and
the other to A1. There are 2n/8 such assignments, for fixed α, β, and there are many ways to
choose α and β, for fixed A.

Similarly, for B we find several ways to come up with a proper partition into B0 and B1.

4.3 Magic Squares with bent-diagonals with magic sum

As indicated before, the properties of 2x2 subsquares having fixed sum, and rows and columns
having fixed magic sum, lead to the equivalence of the bent-diagonal property with the condi-
tion that odd positions in the first half and even positions in the second half of the first row add
up to half the magic sum. This in terms of x means x0+x2+. . .+xn/2−2 = xn/2+1+. . .+xn−1,
and in terms of our polynomials this means that A0 and A1 must have a subset of n/4 terms
each with the same exponent sum.

If n is a multiple of 8, the above construction of A by method 1a or 1b already provides
such a decomposition of A. And for B = B0 + B1 it is easy to distribute the terms of B0 and
B1 in a symmetric way. Simply take yi = yn−1−i, for all i (we had B0 = B1).

If n is a multiple of 4, method 2 applied in the previous section yields pairs of terms each
with the same exponent sum. Keeping these pairs adjacent (i.e. on positions i and i+2) and
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in the same half (i.e. i+2 < n/2 or i ≥ n/2) yields x and y vectors with the right properties.
This requires n to be a multiple of 8.

As method 3 generates 4-tuples of equal exponent sum we can nicely distribute such 4-
tuples provided n is a multiple of 16. Simply keep 4-tuples adjacent (on positions i, i + 2, i +
4, i + 6) and on the same half.

4.4 Magic Squares with half rows having half the magic sum

If we insist on the property of having half rows with half the magic sum, and not necessarily
having the bent-row property, we can do the same as in the previous subsection. Indeed,
in order to have half the magic sum in the first half of the first row it suffices to have a
subset of n/4 terms in A0 and a subset of n/4 terms in A1 having the same sum of exponents.
But this was exactly the same condition we needed for having bent-diagonals with magic sum.

By interchanging the columns 1, 3, . . . , n/2 − 1 with the set of columns n/2 + 1, n/2 +
3, . . . , n− 1 a magic square with magic sum on horizontal bent diagonals transforms into one
with half the magic sum on half rows, and vice versa. Similarly for vertical bent diagonals
and half columns with half the magic sum. Hence the construction for magic squares with
bent diagonals having magic sum, can be used to generate magic squares with half the magic
sum on half rows and half columns.

5 Full Franklin Magic Squares of order 8k

We can have both half rows and columns with half the magic sum, and bent-diagonals with
magic sum, if both A and B can be split into four parts each with n/4 terms, such that the
subsets of A have the same sum of exponents, and the subsets of B have the same exponent
sum. As an exponent cannot appear four times a requirement is that n is at least 8.

In this section we discuss general construction methods for Franklin Magic Squares given
that the order is a multiple of 8, with and without special features such as pan-diagonality
and perfectness.

5.1 Regular constructions of Franklin Magic Squares

5.1.1 Method 1a

By construction along method 1a A already admits the partition into four parts of equal size
and equal exponent sum. For B we merely have to pair each zj in B0(z) with zδ(B0)−j . Again
if n is a multiple of 8, it is then possible to split B0 into two sets of terms with n/8 pairs
each.

For example, for n = 8 one can take

z64 − 1
z − 1

= (z32 + 1)(z16 + 1)(z8 + 1)︸ ︷︷ ︸
A(z)

(z4 + 1) (z2 + 1)(z + 1)︸ ︷︷ ︸
B0(z)

which yields A(z) = (1 + z56) + (z8 + z48) + (z16 + z40) + (z24 + z32), and B0(z) = (1 + z3) +
(z1 + z2). Via vectors x = (0, 16, 56, 40, 8, 24, 48, 32), and y = (0, 2, 3, 1, 1, 3, 2, 0) we obtain
the 8x8 squares
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M1a =

1 48 57 24 9 40 49 32

62 19 6 43 54 27 14 35

4 45 60 21 12 37 52 29

63 18 7 42 55 26 15 34

2 47 58 23 10 39 50 31

61 20 5 44 53 28 13 36

3 46 59 22 11 38 51 30

64 17 8 41 56 25 16 33

M1b =

1 48 57 24 9 40 49 32

60 21 4 45 52 29 12 37

6 43 62 19 14 35 54 27

63 18 7 42 55 26 15 34

2 47 58 23 10 39 50 31

59 22 3 46 51 30 11 38

5 44 61 20 13 36 53 28

64 17 8 41 56 25 16 33

Figure 2: Franklin Magic Squares obtained by methods 1a and 1b

V =

0 16 56 40 8 24 48 32
2 18 58 42 10 26 50 34
3 19 59 43 11 27 51 35
1 17 57 41 9 25 49 33
1 17 57 41 9 25 49 33
3 19 59 43 11 27 51 35
2 18 58 42 10 26 50 34
0 16 56 40 8 24 48 32

−→ F =

0 47 56 23 8 39 48 31
61 18 5 42 53 26 13 34
3 44 59 20 11 36 51 28

62 17 6 41 54 25 14 33
1 46 57 22 9 38 49 30

60 19 4 43 52 27 12 35
2 45 58 21 10 37 50 29

63 16 7 40 55 24 15 32

and finally we obtain a square M1a given in Figure 2.

5.1.2 Method 1b

When we apply method 1b we again have to able to split A into four parts with equal exponent
sum, and B0 into two parts with equal exponent sum. The first part is easy because A is
symmetric and if n is a multiple of 8 we can easily create n/2 pairs and partition them
over 4 groups. As B0 is not symmetric in all cases we have to enforce this by defining
(B0 + B0

n2−1−δ(A))(z) = (1 + zα)Ω(z), and take B0 = Ω. Match complementary terms and
split the set of pairs in two.

For an example of method 1b let us consider A(z) = (z32+1)(z16+1)(z8+1) as above, and
(B0+B0

7)(z) = (z4+1)(z2+1)(z+1) = (z2+1)B0(z), with B0(z) = B1(z) = (1+z5)+(z1+z4).
With vectors x = (0, 16, 56, 40, 8, 24, 48, 32) and y = (0, 4, 5, 1, 1, 5, 4, 0) this leads to matrix
M1b given in Figure 2.

Note that both method 1a and 1b lead to symmetry along the horizontal axis: each entry
f mirrors its complement n2 + 1− f .

5.1.3 Method 2

Application of method 2 immediately generates A and B consisting of pairs of terms with
sums of exponents equal to δ(A) and δ(B), respectively. As a side-result, all matrices obtained
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M2 =

1 48 57 24 9 40 49 32

62 19 6 43 54 27 14 35

8 41 64 17 16 33 56 25

59 22 3 46 51 30 11 38

2 47 58 23 10 39 50 31

61 20 5 44 53 28 13 36

7 42 63 18 15 34 55 26

60 21 4 45 52 29 12 37

Figure 3: Franklin Magic Square obtained by method 2

in this way will be magic squares that are pan-diagonal. Further, keeping the pairs adjacent
(i.e. on positions i and i+2) and on the same half (either i+2 < n/2 or i ≥ n/2) yields x and
y vectors with the right properties, in particular they yield matrices with the bent-diagonal
property. For the latter to be true, n must be a multiple of 8.

For an example of method 2 let us consider A(z) = (z32 + 1)(z16 + 1)(z8 + 1) as above,
and B(z) = (z4 + 1)(z2 + 1)(z + 1), with B0(z) = (1 + z7) + (z1 + z6), and B1(z) =
(z2 + z5) + (z3 + z4). With vectors x = (0, 16, 56, 40, 8, 24, 48, 32) and y = (0, 2, 7, 5, 1, 3, 6, 4)
this leads to matrix M2 given in Figure 3. Again, notice the most-perfectness of the 4x4 blocks.

5.1.4 Method 3

Application of method 3 yields 4-tuples of the same exponent sums equal to 2δ(A) and
2δ(B), hence for multiples of 16 it works. As an example let us take A(z) = (z128 +
1)(z32 + 1)(z16 + 1)(z8 + 1), and B = (z64 + 1)(z4 + 1)(z2 + 1)(z + 1). For splitting
A we take α = 128, β = 32, N = 24 and we get A00(z) = z0 + z152 + z56 + z160,
A10(z) = z24+z128+z32+z184, A01(z) = z8+z144+z48+z168, A11(z) = z16+z136+z40+z176.
For splitting B we have α = 64, β = 4, N = 3 yielding B00(z) = z0 + z67 + z7 + z68,
B10(z) = z3 + z64 + z4 + z71, B01(z) = z1 + z66 + z6 + z69, B11(z) = z2 + z65 + z5 +
z70. With vectors x = (0, 24, 152, 128, 56, 32, 160, 184, 8, 16, 144, 136, 48, 40, 168, 176), and
y = (0, 3, 67, 64, 7, 4, 68, 71, 1, 2, 66, 65, 6, 5, 69, 70) this yields M3 as given in Figure 4.

Notice that each 8x8 quadrant is rotationally anti-symmetric: rotating the quadrant by
180 degrees maps each entry on its complement.

5.2 Pan-diagonal Franklin Magic Squares

We may also want to enforce squares with diagonals having the magic sum. Then in addition
to the previous conditions we have to restrict ourselves to polynomials A and B each splittable
in four subsets of equal exponent sum, such that the sum of exponents of A0 and B0 add up to
the desired value n(n2 − 1)/4. Application of methods 2 and 3 directly leads to pan-diagonal
Franklin Magic Squares, as by construction the average values of the xj and yi add up to
(n2 − 1)/2.
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M3 =

1 232 153 128 57 224 161 72 9 240 145 120 49 216 169 80

253 28 101 132 197 36 93 188 245 20 109 140 205 44 85 180

68 165 220 61 124 157 228 5 76 173 212 53 116 149 236 13

192 89 40 193 136 97 32 249 184 81 48 201 144 105 24 241

8 225 160 121 64 217 168 65 16 233 152 113 56 209 176 73

252 29 100 133 196 37 92 189 244 21 108 141 204 45 84 181

69 164 221 60 125 156 229 4 77 172 213 52 117 148 237 12

185 96 33 200 129 104 25 256 177 88 41 208 137 112 17 248

2 231 154 127 58 223 162 71 10 239 146 119 50 215 170 79

254 27 102 131 198 35 94 187 246 19 110 139 206 43 86 179

67 166 219 62 123 158 227 6 75 174 211 54 115 150 235 14

191 90 39 194 135 98 31 250 183 82 47 202 143 106 23 242

7 226 159 122 63 218 167 66 15 234 151 114 55 210 175 74

251 30 99 134 195 38 91 190 243 22 107 142 203 46 83 182

70 163 222 59 126 155 230 3 78 171 214 51 118 147 238 11

186 95 34 199 130 103 26 255 178 87 42 207 138 111 18 247

Figure 4: Franklin Magic Square by method 3
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For methods 1a and 1b we can enforce this feature in various ways.

5.2.1 Method 1a

Consider in the decomposition of zn2−1
z−1 a factor product of the form

Wα,β(z) = (1 + zα)(1 + zβ) = 1 + zα + zβ + zα+β

We choose Wα,β to be a factor of A + A
n2−1−δ(B0). In (A + A

n2−1−δ(B0))(z)/Wα,β(z) let
us pair up terms zj and zN−j , where N is the degree of the co-factor.

Notice that Wα,β(z)(zj + zN−j) = (zj + zα+N−j + zβ+N−j + zα+β+j) + (zN−j + zα+j +
zβ+j +zα+β+N−j). The first four terms have exponent sum 2N +2α+2β, and the same holds
for the last four terms. Hence the average exponent value is (N + α + β)/2, which is half the

degree of A+A
n2−1−δ(B0). Note that the two parts are each others complement (with respect

to power ν = N + α + β).
One further observation is that in both 4-tuples, the first two terms have exponents adding

up to N + α, whereas the second pair has exponent sum N + α + 2β. Assign one of the two
parts to A. This split is actually already possible for n being a multiple of four. If n is a
multiple of 16, the aforementioned method allows us to generate polynomials A that can be
split up in four groups with n/4 terms each, such that within each group the average exponent
equals (n2−1−δ(B0))/2. Now, together with averaged exponents in B0 this leads to Franklin
Magic Squares that have the additional property that all diagonals have the magic sum, and
all half diagonals (i.e. diagonals within each quadrant) have half the magic sum.

Working out the above approach for n = 16 yields 40320 different pan-diagonal Franklin
Magic Squares the first of which is generated by:

x 0 96 225 129 226 130 3 99 160 32 65 193 66 194 163 35
y 0 4 28 24 8 12 20 16 16 20 12 8 24 28 4 0

A0 0 225 226 3 160 65 66 163
A1 96 129 130 99 32 193 194 35
B0 0 28 8 20 16 12 24 4
B1 4 24 12 16 20 8 28 0

which yields a square Mpd1a given in Figure 5.
The square contains all numbers from 1 to 256, with rows, columns and diagonals each

summing to 2056; with half rows, half columns and half main and back diagonal summing
to 1028; with bent-diagonals summing to 2056, and with each 2x2 square having sum 514.
Each four-on-a-row has sum 514. The four sub-matrices are magic themselves, with constant
row, column and diagonal sums, including parallels of the diagonals and back diagonals. The
matrix is anti-symmetric along the horizontal line of symmetry, opposite entries add up to
257.

5.2.2 Method 1b

In this case we have to be able to split B0 into two parts with equal exponent sum and we like
to retain the horizontal axis of symmetry. We borrow from the trick we applied for method
1a, and identify a factorization of (B0 + B0

n2−1−δ(A))(z) = Wα,β(z)Ω(z). We pair up terms
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Mpd1a =

1 160 226 127 227 126 4 157 161 224 66 63 67 62 164 221

252 101 27 134 26 135 249 104 92 37 187 198 186 199 89 40

29 132 254 99 255 98 32 129 189 196 94 35 95 34 192 193

232 121 7 154 6 155 229 124 72 57 167 218 166 219 69 60

9 152 234 119 235 118 12 149 169 216 74 55 75 54 172 213

244 109 19 142 18 143 241 112 84 45 179 206 178 207 81 48

21 140 246 107 247 106 24 137 181 204 86 43 87 42 184 201

240 113 15 146 14 147 237 116 80 49 175 210 174 211 77 52

17 144 242 111 243 110 20 141 177 208 82 47 83 46 180 205

236 117 11 150 10 151 233 120 76 53 171 214 170 215 73 56

13 148 238 115 239 114 16 145 173 212 78 51 79 50 176 209

248 105 23 138 22 139 245 108 88 41 183 202 182 203 85 44

25 136 250 103 251 102 28 133 185 200 90 39 91 38 188 197

228 125 3 158 2 159 225 128 68 61 163 222 162 223 65 64

5 156 230 123 231 122 8 153 165 220 70 59 71 58 168 217

256 97 31 130 30 131 253 100 96 33 191 194 190 195 93 36

Figure 5: Pan-diagonal Franklin Magic Square by method 1a
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zj and zN−j in Ω(z), where N = δ(Ω).
As before, rewrite Wα,β(z)(zj + zN−j) = (zj + zα+N−j + zβ+N−j + zα+β+j) + (zN−j + zα+j +
zβ+j +zα+β+N−j). The first four terms have exponent sum 2N +2α+2β, and the same holds
for the last four terms. Hence the average exponent value is (N + α + β)/2, which is half

the degree of B0 + B0
n2−1−δ(A). Note that the two parts are each others complement (with

respect to power ν = N + α + β). Select one of the four-tuples to be a part of B0.
If n is a multiple of 16, Ω(z) contains an even number of matched pairs zj , zN−j . The

four-tuples destined for B00 remain as they are, the four-tuples for B01 should be reversed
in order, that is, rewritten as (zα+β+j + zβ+N−j + zα+N−j + zj). By doing so the pairs
adjacent terms in B0 will nicely match with the pairs of adjacent terms in B1. Again we
define yn−1−i = yi, for each even i.
Application of method 1b is illustrated by the following example. Let us take A(z) =
(z128 + 1)(z32 + 1)(z16 + 1)(z8 + 1), and B0 + B0

71 = (z64 + 1)(z4 + 1)(z2 + 1)(z + 1). For
splitting A into four parts we simply take matching pairs zj , z184−j and distribute these pairs
evenly. We may obtain A00(z) = z0 + z184 + z8 + z176, A10(z) = z16 + z168 + z24 + z160,
A01(z) = z32 + z152 + z40 + z144, A11(z) = z48 + z136 + z56 + z128. To obtain B0 let
us take α = 64, β = 4, N = 3. We may get B00(z) = z0 + z67 + z7 + z68, B10(z) =
z1 + z66 + z6 + z69, B01(z) = z69 + z6 + z66 + z1, B11(z) = z68 + z7 + z67 + z0. Now
A has average exponent 92 and B has average exponent 71/2 which sums up to 255/2 =
(n2 − 1)/2. With vectors x = (0, 16, 184, 168, 8, 24, 176, 160, 32, 48, 152, 136, 40, 56, 144, 128)
and y = (0, 1, 67, 66, 7, 6, 68, 69, 69, 68, 6, 7, 66, 67, 1, 0) we obtain matrix Mpd1b in Figure 6.

5.3 Most-perfect Squares

Sometimes we like to have yet another even stronger requirement for symmetry: diagonals
should be composed of pairs of complementary integers, at distance n/2. Complementary
integers are pairs of entries with sum (n2 + 1). Being n/2 apart (which is even) they must
match with exponents xj , xj+n/2 both in A0 or both in A1. Hence, methods 1a, 1b and 3
cannot yield such solutions. Method 2 does create solutions that have the right property. It
is a matter of ordering the coefficients in x and y respectively in the right way so as to have
xj + xj+n/2 = δ(A), for all j < n/2 and yi + yi+n/2 = δ(B), for all i < n/2. For a given A, as
before, write A(z) = (1 + zα)(1 + zβ)Ω(z), and consider matching terms zj and zN−j .

Now we rewrite (1 + zα)(1 + zβ)(zj + zN−j) = (zj + zα+N−j + zβ+N−j + zα+β+j) +
(zα+β+N−j + zβ+j + zα+j + zN−j). Now the order in the second 4-term has been rearranged
such that complementary terms can be offset in the x-vector by n/2 positions. The first
4-tuples are used for building the polynomials A00 and A10, the second 4-tuples are used for
A01 and A11.

For n = 16 this approach leads to 1260 different most-perfect Franklin Magic Squares,
with the additional property of four-on-a-row. The first in the series was generated by A,B, x
and y given by

x 0 64 208 144 224 160 48 112 240 176 32 96 16 80 192 128
y 0 4 13 9 14 10 3 7 15 11 2 6 1 5 12 8

A0 0 208 224 48 240 32 16 192
A1 64 144 160 112 176 96 80 128
B0 0 13 14 3 15 2 1 12
B1 4 9 10 7 11 6 5 8

16



Mpd1b =

1 240 185 88 9 232 177 96 33 208 153 120 41 200 145 128

255 18 71 170 247 26 79 162 223 50 103 138 215 58 111 130

68 173 252 21 76 165 244 29 100 141 220 53 108 133 212 61

190 83 6 235 182 91 14 227 158 115 38 203 150 123 46 195

8 233 192 81 16 225 184 89 40 201 160 113 48 193 152 121

250 23 66 175 242 31 74 167 218 55 98 143 210 63 106 135

69 172 253 20 77 164 245 28 101 140 221 52 109 132 213 60

187 86 3 238 179 94 11 230 155 118 35 206 147 126 43 198

70 171 254 19 78 163 246 27 102 139 222 51 110 131 214 59

188 85 4 237 180 93 12 229 156 117 36 205 148 125 44 197

7 234 191 82 15 226 183 90 39 202 159 114 47 194 151 122

249 24 65 176 241 32 73 168 217 56 97 144 209 64 105 136

67 174 251 22 75 166 243 30 99 142 219 54 107 134 211 62

189 84 5 236 181 92 13 228 157 116 37 204 149 124 45 196

2 239 186 87 10 231 178 95 34 207 154 119 42 199 146 127

256 17 72 169 248 25 80 161 224 49 104 137 216 57 112 129

Figure 6: Pan-diagonal Franklin Magic Square obtained with method 1b
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Mpf2 =

1 192 209 112 225 96 49 144 241 80 33 160 17 176 193 128

252 69 44 149 28 165 204 117 12 181 220 101 236 85 60 133

14 179 222 99 238 83 62 131 254 67 46 147 30 163 206 115

247 74 39 154 23 170 199 122 7 186 215 106 231 90 55 138

15 178 223 98 239 82 63 130 255 66 47 146 31 162 207 114

246 75 38 155 22 171 198 123 6 187 214 107 230 91 54 139

4 189 212 109 228 93 52 141 244 77 36 157 20 173 196 125

249 72 41 152 25 168 201 120 9 184 217 104 233 88 57 136

16 177 224 97 240 81 64 129 256 65 48 145 32 161 208 113

245 76 37 156 21 172 197 124 5 188 213 108 229 92 53 140

3 190 211 110 227 94 51 142 243 78 35 158 19 174 195 126

250 71 42 151 26 167 202 119 10 183 218 103 234 87 58 135

2 191 210 111 226 95 50 143 242 79 34 159 18 175 194 127

251 70 43 150 27 166 203 118 11 182 219 102 235 86 59 134

13 180 221 100 237 84 61 132 253 68 45 148 29 164 205 116

248 73 40 153 24 169 200 121 8 185 216 105 232 89 56 137

Figure 7: Most-perfect Franklin Magic Square, by method 2

and the resulting square Mpf2 is given in Figure 7.

6 Franklin Magic Squares of order 20 and higher

In section 3 it was shown that no 12 by 12 Franklin Magic Square exists. It turns out that
this is a unique exception. Below we show how to construct a Franklin Magic Square of order
20 + 8k, for k ≥ 0. We first construct two squares of order 20.

6.1 Franklin Magic Squares of order 20

Using method 1a we aim for a polynomial A of 20 terms, and a polynomial B0 of 10 terms,
such that (A + A

399−δ(B0))(z)B0(z) = z400−1
z−1 . We need that A can be split into four parts

of five terms with equal exponent sum, and B0 must be split into two parts of 5 terms each,
again with equal exponent sum.

A candidate solution for B0 is of the form (1 + zγ + z2γ + z3γ + z4γ)(1 + z10γ) which can
be split into (z0 + zγ + z10γ + z11γ + z13γ) + (z2γ + z3γ + z4γ + z12γ + z14γ). Each part has
exponent sum 35γ.

A candidate solution for A is derived from the general form (A + A
ν)(z) = (1 + zα)(1 +

zβ + z2β + . . . + z19β). One possible solution is Aα,β(z) := (z0 + zβ + z7β + z16β+α + z17β) +
(zα+z4β+z8β+z11β+z18β) + (z4β+α+z5β+z9β+z10β+z13β) + (z2β+z5β+α+z6β+z12β+z16β).
Here each part has sum α+41β. Take ν = α+19β, then A and A

ν have no term in common.
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1 300 2 396 8 392 117 389 18 382 105 398 6 295 10 394 11 388 14 384

120 381 119 285 113 289 4 292 103 299 16 283 115 386 111 287 110 293 107 297

21 280 22 376 28 372 137 369 38 362 125 378 26 275 30 374 31 368 34 364

160 341 159 245 153 249 44 252 143 259 56 243 155 346 151 247 150 253 147 257

201 100 202 196 208 192 317 189 218 182 305 198 206 95 210 194 211 188 214 184

320 181 319 85 313 89 204 92 303 99 216 83 315 186 311 87 310 93 307 97

221 80 222 176 228 172 337 169 238 162 325 178 226 75 230 174 231 168 234 164

340 161 339 65 333 69 224 72 323 79 236 63 335 166 331 67 330 73 327 77

261 40 262 136 268 132 377 129 278 122 365 138 266 35 270 134 271 128 274 124

360 141 359 45 353 49 244 52 343 59 256 43 355 146 351 47 350 53 347 57

41 260 42 356 48 352 157 349 58 342 145 358 46 255 50 354 51 348 54 344

140 361 139 265 133 269 24 272 123 279 36 263 135 366 131 267 130 273 127 277

61 240 62 336 68 332 177 329 78 322 165 338 66 235 70 334 71 328 74 324

180 321 179 225 173 229 64 232 163 239 76 223 175 326 171 227 170 233 167 237

81 220 82 316 88 312 197 309 98 302 185 318 86 215 90 314 91 308 94 304

200 301 199 205 193 209 84 212 183 219 96 203 195 306 191 207 190 213 187 217

241 60 242 156 248 152 357 149 258 142 345 158 246 55 250 154 251 148 254 144

380 121 379 25 373 29 264 32 363 39 276 23 375 126 371 27 370 33 367 37

281 20 282 116 288 112 397 109 298 102 385 118 286 15 290 114 291 108 294 104

400 101 399 5 393 9 284 12 383 19 296 3 395 106 391 7 390 13 387 17

Figure 8: 20x20 Franklin Magic Square M20.1, constructed by method 1a

These partial solutions can be combined for (α, β, γ) = (100, 1, 20) or (α, β, γ) = (5, 20, 1).
We obtain solution (x1, y1) with

x1 = (0, 100, 1, 4, 7, 8, 116, 11, 17, 18, 104, 2, 5, 105, 9, 6, 10, 12, 13, 16), and
y1 = (0, 280, 20, 240, 200, 80, 220, 60, 260, 40, 40, 260, 60, 220, 80, 200, 240, 20, 280, 0).

This yields matrix M20.1, depicted in Figure 8. The second solution (x2, y2) is given by

x2 = (0, 5, 20, 80, 140, 160, 325, 220, 340, 360, 85, 40, 100, 105, 180, 120, 200, 240, 260, 320),
and
y2 = (0, 14, 1, 12, 10, 4, 11, 3, 13, 2, 2, 13, 3, 11, 4, 10, 12, 1, 14, 0),

yielding matrix M20.2. The last square is given in Figure 9.

6.2 Franklin Magic Squares of order 20 + 8k

The construction of 20 by 20 squares given above can be extended to yield an n by n Franklin
Magic Square for any n = 20 + 8k, with k ≥ 0. Again we use method 1a.
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1 395 21 320 141 240 326 180 341 40 86 360 101 295 181 280 201 160 261 80

386 20 366 95 246 175 61 235 46 375 301 55 286 120 206 135 186 255 126 335

2 394 22 319 142 239 327 179 342 39 87 359 102 294 182 279 202 159 262 79

388 18 368 93 248 173 63 233 48 373 303 53 288 118 208 133 188 253 128 333

11 385 31 310 151 230 336 170 351 30 96 350 111 285 191 270 211 150 271 70

396 10 376 85 256 165 71 225 56 365 311 45 296 110 216 125 196 245 136 325

12 384 32 309 152 229 337 169 352 29 97 349 112 284 192 269 212 149 272 69

397 9 377 84 257 164 72 224 57 364 312 44 297 109 217 124 197 244 137 324

14 382 34 307 154 227 339 167 354 27 99 347 114 282 194 267 214 147 274 67

398 8 378 83 258 163 73 223 58 363 313 43 298 108 218 123 198 243 138 323

3 393 23 318 143 238 328 178 343 38 88 358 103 293 183 278 203 158 263 78

387 19 367 94 247 174 62 234 47 374 302 54 287 119 207 134 187 254 127 334

4 392 24 317 144 237 329 177 344 37 89 357 104 292 184 277 204 157 264 77

389 17 369 92 249 172 64 232 49 372 304 52 289 117 209 132 189 252 129 332

5 391 25 316 145 236 330 176 345 36 90 356 105 291 185 276 205 156 265 76

390 16 370 91 250 171 65 231 50 371 305 51 290 116 210 131 190 251 130 331

13 383 33 308 153 228 338 168 353 28 98 348 113 283 193 268 213 148 273 68

399 7 379 82 259 162 74 222 59 362 314 42 299 107 219 122 199 242 139 322

15 381 35 306 155 226 340 166 355 26 100 346 115 281 195 266 215 146 275 66

400 6 380 81 260 161 75 221 60 361 315 41 300 106 220 121 200 241 140 321

Figure 9: 20x20 Franklin Magic Square M20.2, constructed by method 1a
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For B0 we need a polynomial with 10 + 4k terms that can be split into two parts with
equal exponent sum. We choose B0 to be of the form (1+z(10+4k)γ)(1+zγ + . . .+z(5+2k−1)γ),
where the latter factor has 5 + 2k terms. Now a possible split into two parts may be
B00 = (1+zγ+[z4γ+z6γ+. . .+z(5+2k−3)γ ])+z(10+4k)γ(1+[zγ+z3γ+. . .+z(5+2k−2)γ ]), and B01 =
(z2γ +[z3γ +z5γ + . . .+z(5+2k−2)γ ]+z(5+2k−1)γ)+z(10+4k)γ(z2γ +[z4γ +z6γ + . . .+z(5+2k−1)γ ]).
Each part has exponent sum (5 + 2k)(10 + 4k)γ/2 + (5 + 2k)(5 + 2k − 1)γ/2.

For A to be derived from A + A
n2−1−δ(B0) = (1 + z(10+4k)γ)(1 + zα + z2α + . . . + z(n−1)α),

we can choose either γ = 1, α = 15 + 6k, or α = 1, γ = n = 20 + 8k. Now write (1 + zα +
z2α + . . . + z(n−1)α) = (1 + zα + z2α + . . . + z(4k−1)α)+ z4kα(1 + zα + z2α + . . . + z(n−8k−1)α)+
z(n−4k)α(1 + zα + z2α + . . . + z(4k−1)α).

Now define A(z) = 1 · (1 + zα + z2α + . . . + z(4k−1)α)+ z(10+4k)γ · z(n−4k)α(1 + zα + z2α +
. . . + z(4k−1)α)+ z4kαAγ,α(z). Here the last part is taken from the general solution for n = 20
in the previous subsection.

It is not difficult to see that both solutions generate an n by n Franklin Magic Square
with the symmetry property along the horizontal middle line.

6.3 Huub Reijnders’ method for a 20 by 20 Franklin Magic Square

The first known 20 by 20 Franklin square was constructed by Huub Reijnders, who did this
apparently from scratch. It appears that his solution falls in the scheme set above. The
exception is that he has a special way of solving A + A

n2−1−δ(B0) = (1 + zn/4)(1 + zn + z2n +
. . .+z(n−1)n). His solution for n = 20 is A20(z) = (1+z5)(1+z20 + . . .+z140)+(z160 +z180 +
z200 + z220) which splits into (1 + z40 + z120 + z140) + z180, z5(1 + z40 + z120 + z140) + z160,
(z20 + z60 + z80 + z100) + z220, and z5(z20 + z60 + z80 + z100) + z200, each with exponent sum
480.

The split for B0 is the same as in the subsection above.
In terms of vectors Reijnders’s solution is given by

x = (0, 2, 1, 3, 10, 4, 11, 12, 13, 14, 14, 13, 12, 11, 4, 10, 3, 1, 2, 0), and
y = (0, 5, 60, 65, 80, 85, 220, 200, 120, 125, 140, 145, 180, 160, 100, 105, 40, 45, 20, 25)

yielding matrix M20.r given in Figure 10.
This solution approach can be extended to n = 20 + 8k by realizing that the above trick

works by matching four exponents n/4 against one exponent n. In the remainder of solution
A one needs only exponents that are multiples of n. This is easily realized by considering the
solution An(z) = (1+zn/4)(1+zn+ . . .+z7n)+(z(n−4)n/2+z(n−2)n/2+z(n+0)n/2+z(n+2)n/2)+
Qn(z) where Qn(z) = z8n + z9n + . . . + z(n−6)n/2 + z(n+4)n/2 + . . . + z(n−9)n. Note that Q(z)
contains n− 20 = 8k terms with an average exponent of (n− 1)n/2. The terms in Q can be
paired up in 4k pairs each with exponent sum (n−1)n, and these pairs can be evenly divided
over four sets with equal exponent sum.

7 Almost-Franklin Magic Squares of order 12

It was proved in section 3 that no true Franklin Magic Squares of order 12 exist. Hence, one
may try to construct Magic Squares that are as ‘Franklin’ as possible. We will stick to the
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1 398 2 397 11 396 12 388 14 386 15 387 13 389 5 390 4 399 3 400

395 8 394 9 385 10 384 18 382 20 381 19 383 17 391 16 392 7 393 6

61 338 62 337 71 336 72 328 74 326 75 327 73 329 65 330 64 339 63 340

335 68 334 69 325 70 324 78 322 80 321 79 323 77 331 76 332 67 333 66

81 318 82 317 91 316 92 308 94 306 95 307 93 309 85 310 84 319 83 320

315 88 314 89 305 90 304 98 302 100 301 99 303 97 311 96 312 87 313 86

221 178 222 177 231 176 232 168 234 166 235 167 233 169 225 170 224 179 223 180

200 203 199 204 190 205 189 213 187 215 186 214 188 212 196 211 197 202 198 201

121 278 122 277 131 276 132 268 134 266 135 267 133 269 125 270 124 279 123 280

275 128 274 129 265 130 264 138 262 140 261 139 263 137 271 136 272 127 273 126

141 258 142 257 151 256 152 248 154 246 155 247 153 249 145 250 144 259 143 260

255 148 254 149 245 150 244 158 242 160 241 159 243 157 251 156 252 147 253 146

181 218 182 217 191 216 192 208 194 206 195 207 193 209 185 210 184 219 183 220

240 163 239 164 230 165 229 173 227 175 226 174 228 172 236 171 237 162 238 161

101 298 102 297 111 296 112 288 114 286 115 287 113 289 105 290 104 299 103 300

295 108 294 109 285 110 284 118 282 120 281 119 283 117 291 116 292 107 293 106

41 358 42 357 51 356 52 348 54 346 55 347 53 349 45 350 44 359 43 360

355 48 354 49 345 50 344 58 342 60 341 59 343 57 351 56 352 47 353 46

21 378 22 377 31 376 32 368 34 366 35 367 33 369 25 370 24 379 23 380

375 28 374 29 365 30 364 38 362 40 361 39 363 37 371 36 372 27 373 26

Figure 10: 20x20 Franklin Magic Square M20.r, constructed by Reijnders
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property of 2x2 squares having constant sum. Further we will stick to the typical Franklin
feature of having bent diagonals with the magic sum. As order 12 Franklin Magic Squares do
not exist we have to give up on having magic half rows and magic half columns. Actually we
may stick to having Franklin half rows and Franklin bent-diagonals if we just give up Franklin
half columns. Another opportunity is to have Franklin half rows and Franklin half columns
and only horizontal Franklin bent-diagonals.

We may abandon the requirement of having magic half rows and magic half columns, and
turn to having either the four-on-a-row property or having most-perfectness.

7.1 Horizontally correct Franklin Magic Squares

Application of method 1a yields a polynomial A of 24 terms and a polynomial B0 of 6 terms.
If A + A is of the form (1 + zα)(1 + zβ + . . . + z11β), with α < β or α ≥ 12β, then a
solution A exists that can be split into four parts of equal exponents sum. For instance
A(z) = (z3β +z9β +z5β+α)+ (zβ +z5β +z11β+α)+ (z4β +z10β +z3β+α)+ (z2β +z11β +z4β+α).
Here each part has exponent sum α + 17β.

A matching B0 of the form (1 + zδ)(1 + zγ + z2γ) leads to a vector y, with y11−i =
yi, and thus yields a square with magic bent-diagonals (both horizontally and vertically).
Furthermore this square has a horizontal line of symmetry reflecting complementary entries.
By properly ordering the exponents one even gets columns with the four-on-a-row property:
take y = (0, δ, δ + γ, γ, 2γ, δ + 2γ, δ + 2γ, 2γ, γ, δ + γ, δ, 0).

An example, with β = 1, α = 72, γ = 12, δ = 36, yields

x = (3, 1, 9, 5, 77, 83, 4, 2, 10, 11, 75, 76) and
y = (0, 36, 48, 12, 24, 60, 60, 24, 12, 48, 36, 0).

The result is the square M12a given in Figure 11.
By interchanging rows 2, 4, 6 with 8, 10, 12 the square changes into one which has magic

half columns, instead of having vertical magic bent-diagonals.

7.2 Decomposition and basic arrangements

In table 1 we list the possible decompositions of z144−1
z−1 into two- and three term factors with

coefficients 1. There are
(
6
2

)
= 15 of such decompositions.

They are labeled by a sequence of 2s and 3s that indicate the place of the factors with
three terms.

Table 2 displays all possible permutations of numbers 0 up to 11 that have the properties

v4i − v4i+1 + v4i+2 − v4i+3 = 0, for i = 0, 1, 2, (9)

v0 + v2 + v4 = v7 + v9 + v11, (10)

up to isomorphism. These permutations were found by enumeration.
All rows except the ones marked by an asterisk have the property that for each pair j, 11−j

both entries are on an even position, or both are on an odd position.
Evidently, when properties (9) and (10) hold for a certain vector v, then they also hold

for w = Cv, where C is an arbitrary scalar. The right-most entries s− t in the table denote
that for some vectors properties (9) and (10) also hold for exponents in the polynomials
(1 + zα + . . . + z(s−1)α)(1 + zβ + . . . + z(t−1)β) according to the conversion table 3.
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M12a =

4 143 10 139 78 61 5 142 11 133 76 68

105 38 99 42 31 120 104 39 98 48 33 113

52 95 58 91 126 13 53 94 59 85 124 20

129 14 123 18 55 96 128 15 122 24 57 89

28 119 34 115 102 37 29 118 35 109 100 44

81 62 75 66 7 144 80 63 74 72 9 137

64 83 70 79 138 1 65 82 71 73 136 8

117 26 111 30 43 108 116 27 110 36 45 101

16 131 22 127 90 49 17 130 23 121 88 56

93 50 87 54 19 132 92 51 86 60 21 125

40 107 46 103 114 25 41 106 47 97 112 32

141 2 135 6 67 84 140 3 134 12 69 77

Figure 11: As Franklin as possible, no magic half columns

222233 (1 + z)(1 + z2)(1 + z4)(1 + z8)(1 + z16 + z32)(1 + z48 + z96)
222323 (1 + z)(1 + z2)(1 + z4)(1 + z8 + z16)(1 + z24)(1 + z48 + z96)
222332 (1 + z)(1 + z2)(1 + z4)(1 + z8 + z16)(1 + z24 + z48)(1 + z72)
223223 (1 + z)(1 + z2)(1 + z4 + z8)(1 + z12)(1 + z24)(1 + z48 + z96)
223232 (1 + z)(1 + z2)(1 + z4 + z8)(1 + z12)(1 + z24 + z48)(1 + z72)
223322 (1 + z)(1 + z2)(1 + z4 + z8)(1 + z12 + z24)(1 + z36)(1 + z72)
232223 (1 + z)(1 + z2 + z4)(1 + z6)(1 + z12)(1 + z24)(1 + z48 + z96)
232232 (1 + z)(1 + z2 + z4)(1 + z6)(1 + z12)(1 + z24 + z48)(1 + z72)
232322 (1 + z)(1 + z2 + z4)(1 + z6)(1 + z12 + z24)(1 + z36)(1 + z72)
233222 (1 + z)(1 + z2 + z4)(1 + z6 + z12)(1 + z24)(1 + z48)(1 + z96)
322223 (1 + z + z2)(1 + z3)(1 + z6)(1 + z12)(1 + z24)(1 + z48 + z96)
322232 (1 + z + z2)(1 + z3)(1 + z6)(1 + z12)(1 + z24 + z48)(1 + z72)
322322 (1 + z + z2)(1 + z3)(1 + z6)(1 + z12 + z24)(1 + z36)(1 + z72)
323222 (1 + z + z2)(1 + z3)(1 + z6 + z12)(1 + z18)(1 + z36)(1 + z72)
332222 (1 + z + z2)(1 + z3 + z6)(1 + z9)(1 + z18)(1 + z36)(1 + z72)

Table 1: Possible decompositions of z144−1
z−1
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v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 remark
0 1 7 6 11 8 2 5 4 3 9 10 4-3, 6-2
0 1 7 6 9 10 4 3 2 5 11 8 6-2
0 1 10 9 6 7 4 3 2 5 11 8 *
0 2 6 4 11 10 8 9 3 1 5 7 3-4
0 2 8 6 7 10 4 1 3 5 11 9 4-3
0 2 8 6 10 7 1 4 3 5 11 9 4-3
0 2 10 8 4 9 11 6 1 3 7 5
0 2 10 8 6 7 5 4 1 3 11 9 3-4
0 2 10 8 7 6 4 5 1 3 11 9 3-4
0 3 9 6 11 4 1 8 2 5 10 7 2-6
0 3 9 6 10 5 2 7 1 4 11 8 2-6
0 3 9 6 7 8 2 1 4 5 11 10 6-2
0 3 9 6 7 8 5 4 1 2 11 10 *
0 3 9 6 7 8 11 10 2 1 4 5
0 3 10 7 9 4 1 6 2 5 11 8 2-6
2 5 11 8 0 7 10 3 1 4 9 6 2-6
4 5 11 10 0 3 9 6 2 1 7 8 4-3, 6-2
4 6 10 8 0 5 7 2 1 3 11 9
5 7 11 9 0 1 3 2 6 4 8 10 3-4
6 7 10 9 1 0 3 4 5 2 8 11

Table 2: Possible arrangements with 4-on-a-row and bent-diagonal properties

s t conversion of k

2 6 bk/6cα + (k%6)β
3 4 bk/4cα + (k%4)β
4 3 bk/3cα + (k%3)β
6 2 bk/2cα + (k%2)β

Table 3: Conversion table for order 12 sequences
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M12.V =

56 17 129 88 19 90 127 54 92 125 21 52

86 131 13 60 123 58 15 94 50 23 121 96

68 5 141 76 31 78 139 42 104 113 33 40

80 137 7 66 117 64 9 100 44 29 115 102

41 32 114 103 4 105 112 69 77 140 6 67

107 110 34 39 144 37 36 73 71 2 142 75

47 26 120 97 10 99 118 63 83 134 12 61

95 122 22 51 132 49 24 85 59 14 130 87

53 20 126 91 16 93 124 57 89 128 18 55

101 116 28 45 138 43 30 79 65 8 136 81

62 11 135 82 25 84 133 48 98 119 27 46

74 143 1 72 111 70 3 106 38 35 109 108

Figure 12: 12x12 Magic Square with bent-diagonals and 4-on-a-row, by method 2

7.3 Method 2 for bent-diagonal and 4-on-a-row properties

Application of method 2 on any vector x taken from Table 2, together with a vector y obtained
by taking any row of this table and multiplying it by 12 directly leads to a pan-diagonal 12x12
Magic Square with the bent-diagonals property as well as the four-on-a-row property. One
should not take any of the rows marked by an asterisk.

Now we show how method 2 can be applied on a less trivial factorization. Consider
the decomposition z144−1

z−1 = A(z)B(z), with A(z) = (1 + z + z2)(1 + z36 + z72 + z108) and
B(z) = (1 + z3 + z6 + . . . + z33). For B any row from the table not marked by an asterisk,
multiplied by 3 will do. Let us take the last one: y = (18, 21, 30, 27, 3, 0, 9, 12, 15, 6, 24, 33).
For A pick a row marked 3-4 or 4-3, let us say the one but last row. We have α = 1, β = 36,
s = 3, t = 4. The row is converted to x = (1 + 36, 1 + 108, 2 + 108, 2 + 36, 0 + 0, 0 + 36, 0 +
108, 0+72, 1+72, 1+0, 2+0, 2+72) = (37, 109, 110, 38, 0, 36, 108, 72, 73, 1, 2, 74). The resulting
square M12.V is depicted in Figure 12.

Similarly, an even more complicated decomposition can be base of a pan-diagonal 12x12
square with 4-on-a-row and bent-diagonal properties. Consider any decomposition of z144−1

z−1
into four factors, each with a geometric series of 2, 3, 4 or 6 terms. For example, take
A(z) = (1 + z)(1 + z6 + z12 + z18 + z24 + z30) and B(z) = (1 + z2 + z4)(1 + z36 + z72 + z108).
For an appropriate vector x select a row from table 2 marked 2-6 or 6-2, for a vector y take
a row with mark 3-4 or 4-3. Using the conversion table 3 one constructs x and y and from
these one builds a 12x12 square with the desired properties.
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v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 remark
0 2 8 6 7 10 10 7 6 8 2 0 4-3
0 2 10 8 6 7 7 6 8 10 2 0 3-4

Table 4: Arrangements of B with 4-on-a-row, bent-diagonal and symmetry properties

7.4 Method 1b for bent-diagonal and 4-on-a-row properties

Using method 1b we start again from a decomposition into four factors as above. Given the
decomposition select two factors with 3 + 4 or 2 + 6 terms, whose product will be A, and use
the conversion table 3 to build an appropriate vector x.

The other two factors will have as product B0 +B0
143−δ(A). Choose B0 in such a way that

the six terms have exponents two pairs of which have the same sum. This is often possible
in many ways. Let e0, . . . , e5 be the exponents in B0 and assume e0 + e1 = e2 + e3. Define
y = (e0, e2, e1, e3, e4, e5, e5, e4, e3, e1, e2, e0). This arrangement will yield a square which has
bent-diagonal and 4-on-a-row properties, and in addition, it will have the mirroring property,
i.e. complementary entries will reflect in the horizontal axis of symmetry.

In general this procedure will not yield a square which is pan-diagonal. If we want to
enforce this property we have to be more restrictive in the choice for A and B0 + B0

143−δ(A).
In particular we need that the average exponent in B0 equals half the degree of B0+B0

143−δ(A).
The only basic six-term that has the desired property for B0 (with δ(A) = 132) is z0+z2+

z6 + z7 + z8 + z10. Note that there are two ways of pairing these exponents up appropriately.
Either take e1 = (0, 8, 2, 6, 7, 10) or e2 = (0, 10, 2, 8, 6, 7). Now the basic y-vectors, with their
potential conversions are given in table 4.

A general description to generate a pan-diagonal Magic Square of order 12, with bent-
diagonal property, with four-on-a-row property and which reflects along the horizontal axis
of symmetry is the following:

1. From decomposition table 1 select a row, and pick two consecutive two-term factors.
Multiply them to get a factor (1 + zα + z2α + z3α);

2. From the same row select a three-term factor (1 + zβ + z2β) such that of the three
remaining factors at least two are consecutive;

3. These three remaining factors constitute a polynomial A(z) for which there are several
possible arrangements, by use of table 2 and an appropriate conversion. Rows marked
with an asterisk should not be considered;

4. The other factors make up the factor B0 + B0(z) to be arranged as one of the rows in
table 4.

Remark: the HSA-square, designed by a group of Dutch high school students and publicized
in March 2007, fits in this scheme. As an example, let us select the second row in the
decomposition table B0 + B0

ν = (1 + z2)(1 + z4)(1 + z48 + z96) and A(z) = (1 + z)(1 + z8 +
z16)(1 + z24). Writing out the consecutive factors we obtain A(z) = (1 + z)(1 + z8 + z16 +
z24 + z32 + z40) and B0 + B0

ν = (1 + z2 + z4 + z6)(1 + z48 + z96), with ν = 143− 41 = 102.
From table 2 pick the first row: 0, 1, 7, 6, 11, 8, 2, 5, 4, 3, 9, 10 to arrange the exponents of
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Mpd12.4 =

1 143 26 120 42 112 9 127 17 135 34 104

48 98 23 121 7 129 40 114 32 106 15 137

101 43 126 20 142 12 109 27 117 35 134 4

140 6 115 29 99 37 132 22 124 14 107 45

53 91 78 68 94 60 61 75 69 83 86 52

90 56 65 79 49 87 82 72 74 64 57 95

55 89 80 66 96 58 63 73 71 81 88 50

92 54 67 77 51 85 84 70 76 62 59 93

5 139 30 116 46 108 13 123 21 131 38 100

44 102 19 125 3 133 36 118 28 110 11 141

97 47 122 24 138 16 105 31 113 39 130 8

144 2 119 25 103 33 136 18 128 10 111 41

Figure 13: Pan-diagonal symmetric 12x12 Magic Square with bent-diagonals, by method 1b

A. It has a 6-2 generalization, with α = 8 and β = 1. We obtain x = (0α + 0β, 0α +
1β, 3α + 1β, 3α + 0β, 5α + 1β, 4α + 0β, 1α + 0β, 2α + 1β, 2α + 0β, 1α + 1β, 4α + 1β, 5α + 0β)
= (0, 1, 25, 24, 41, 32, 8, 17, 16, 9, 33, 40).

To build B0 pick the first row from table 4 0, 2, 8, 6, 7, 10, 10, 7, 6, 8, 2, 0. With the 4-3
factorization with α = 2 and β = 48 this leads to y = (0α+0β, 0α+2β, 2α+2β, 2α+0β, 2α+
1β, 3α+1β, 3α+1β, 2α+1β, 2α+0β, 2α+2β, 0α+2β, 0α+0β) = (0, 96, 100, 4, 52, 54, 54, 52, 4, 100, 96, 0).

Plugging in these vectors yields a square Mpd12.4 depicted in Figure 13.

7.5 Method 1a for bent-diagonal and 4-on-a-row properties

Using method 1a we start from a decomposition into factors A+A and B0, where the first has
24 terms and the second only 6. If we take for the first factor 1+zα times a factor representable
(by conversion) with a row from table 2, we can take for A this second factor. If B0(z) =
(1+zβ)(1+zγ+z2γ), a proper reordering gives B0(z) = (1+zβ+γ)+(z2γ+z2γ+β)+(zγ+zβ) and
B1(z) = (zβ + zγ) + (z2γ+β + z2γ) + (zβ+γ + 1). The resulting square will have bent-diagonal
properties, four-on-a-row properties and symmetry along the horizontal axis of symmetry.
The result will in general not be pan-diagonal.

To enforce pan-diagonality, the choice for A + A
143−δ(B0) is restricted to be of the form

(1 + zα) times a 12-term representable by a row from table 4.

7.6 Method 2 for constructing most-perfect order 12 Magic Squares

It is possible to impose on the 12 by 12 Magic Square that it has the most-perfectness
property. For this to be true one has to have xj + xj+6 equal to δ(A). Such an arrangement
for A(z) = 1 + z + · · ·+ z11 can explicitly be found by complete enumeration.
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v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 remark
0 2 6 7 8 10 11 9 5 4 3 1 3-4, 4-3
0 2 6 7 10 8 11 9 5 4 1 3 3-4, 4-3
0 2 6 8 7 10 11 9 5 3 4 1 3-4, 4-3
0 2 7 6 8 10 11 9 4 5 3 1 3-4, 4-3
0 2 7 6 10 8 11 9 4 5 1 3 3-4, 4-3
0 2 8 6 10 7 11 9 3 5 1 4 3-4, 4-3
0 6 2 7 8 10 11 5 9 4 3 1 3-4, 4-3
0 6 2 7 10 8 11 5 9 4 1 3 3-4, 4-3
0 6 2 8 7 10 11 5 9 3 4 1 3-4, 4-3
0 7 2 8 6 10 11 4 9 3 5 1 3-4, 4-3

Table 5: arrangement with most-perfect features

This yields the table 5, in which the remark section, as before, indicates how to use the
conversion table 3 to get even more polynomials with the property of providing a most-perfect
arrangement.

As an example, take the first row and 12 times the last row of Table 5 to get

x = (0, 2, 6, 7, 8, 10, 11, 9, 5, 4, 3, 1), and
y = (0, 84, 24, 96, 72, 120, 132, 48, 108, 36, 60, 12).

The resulting square M12.p has magic row and column sums, magic bent-diagonals, and has
complementary entries in opposite quadrants, as seen from Figure 14.

8 Conclusions

The existence of Franklin Magic Squares of order n = 4k, with n 6= 4 and n 6= 12 has been
shown. Multiples of 8 pose no problems. Orders 20 + 8k are more difficult to realize, but
not impossible. We have described four methods by which one can construct many Franklin
Magic Squares. We are not aware of any Franklin Magic Square that does not fit into one of
these four schemes.

The non-existence of a 12 by 12 Franklin Magic Square has been demonstrated by an
exhaustive search that was only possible by maximal use of symmetry arguments as well as
aggressive pruning.

I like to thank Andries Brouwer and Tonny Hurkens for fruitful discussions, and of course
Arno van den Essen, and students Petra, Jesse and Willem, for the hype and interest they
created.

29



M12.p =

1 142 7 137 9 134 12 135 6 140 4 143

60 87 54 92 52 95 49 94 55 89 57 86

25 118 31 113 33 110 36 111 30 116 28 119

48 99 42 104 40 107 37 106 43 101 45 98

73 70 79 65 81 62 84 63 78 68 76 71

24 123 18 128 16 131 13 130 19 125 21 122

133 10 139 5 141 2 144 3 138 8 136 11

96 51 90 56 88 59 85 58 91 53 93 50

109 34 115 29 117 26 120 27 114 32 112 35

108 39 102 44 100 47 97 46 103 41 105 38

61 82 67 77 69 74 72 75 66 80 64 83

132 15 126 20 124 23 121 22 127 17 129 14

Figure 14: Most-perfect 12 by 12 Magic Square with bent-diagonals

30


