EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Bandwidth reduction for video processing in consumer
systems

Citation for published version (APA):
Jaspers, E., & With, de, P. H. N. (2001). Bandwidth reduction for video processing in consumer systems. I[EEE
Transactions on Consumer Electronics, 47(4), 885-894. https://doi.org/10.1109/30.982804

DOI:
10.1109/30.982804

Document status and date:
Published: 01/01/2001

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1109/30.982804
https://doi.org/10.1109/30.982804
https://research.tue.nl/en/publications/7d13fb92-6029-45f3-8203-73f0ec90aab3

Jaspers and de With: Bandwidth Reduction for Video Processing in Consumer Systems

885

BANDWIDTH REDUCTION FOR VIDEO PROCESSING IN CONSUMER SYSTEMS

Egbert G. T. Jaspers® and Peter H. N. de With?
'Philips Research Labs., Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
2CMG Eindhoven/Eindhoven University of Technology, Den Dolech 2, 5600 MB, The Netherlands

Abstract—The architecture of present video processing
units in consumer systems is usually based on various
forms of processor hardware, communicating with an
off-chip SDRAM memory (see Fig. 1). Examples of
these systems are currently available MPEG encoders
and decoders, and high-end television systems. Due
to the fast increase of required computational power
of consumer systems, the data communication to and
from the off-chip memory has become the bottleneck in
the overall system performance (memory wall problem).
This paper presents a strategy for mapping pixels into
the memory for video applications such as MPEG pro-
cessing, thereby minimizing the transfer overhead be-
tween memory and the processing. A novelty in our ap-
proach is that the proposed communication model con-
siders the statistics of the application-dependent data
accesses in memory. With this technique, a 26% re-
duction of the memory bandwidth was obtained in an
MPEG decoding system containing a 64-bit wide memo-
ry bus. For double-data-rate SDRAM (DDR SDRAM),
the proposed mapping strategy reduces the bandwidth
in the system with even 50%. This substantial perfor-
mance improvement can readily be used for extending
the quality or the functionality of the system.

Keywords— bandwidth reduction, memory interface,
memory mapping, burst access, DDR SDRAM, MPEG.

Synchronous DRAM

“pDSP | .epU | | ASIP = Application Specific P
- ————— ko) @ DSP = Digital Signal Processor
'"g e 1 CPU = Central Processing Units

s

Fig. 1. Consumer system architecture.

I. INTRODUCTION

HE architecture of present advanced video pro-

cessing systems in consumer electronics commonly
uses various processor modules that communicate with
an off-chip SDRAM memory (see Fig. 1). For example
an MPEG decoder requires a background memory to
store reference pictures for prediction of successive
video frames. When a large variety of processors desire
communication with a standard off-chip memory
configuration, a communication bottleneck will be
exposed.

Manuscript received September 10, 2001

This above-mentioned bottleneck was 'already
recognized at an earlier stage in the design of
general-purpose computing systems. Moore predicted
that the performance density (i.e. the performance
per unit area and per unit power) of systems on chip
would double every 18 months. This has become par-
ticularly noticeable in the computer market where the
performance of the CPU has increased proportionally
with the number of integrated transistors on chip.
Hennessy & Patterson [1] showed this by measuring
the performance of microprocessors that were devel-
oped in the last decades. The performance is defined
as the time that is necessary to execute a well-defined
benchmark set [2]. Unfortunately, the performance
of off-chip memory communication has not evolved
in the same speed as the CPU performance. For
example, in [1] it is shown that the CPU performance
“increases 60% per year, whereas external memory
bandwidth improves only with 20%. Concluding,
there is an increasing gap between computational
power and memory bandwidth. Besides bandwidth,
the performance of memory is also determined by its
latency, i.e. the time between request for data and the
actual reception.

For media processing in consumer systems, the band-
width problem also exists. However, the latency
problem can be solved by using efficient pipelining
and prefetching techniques [3]. This is caused by the
property that the computing operations on one data
element are largely independent of operations on other
elements so that parallelism can be exploited.

Let us return to the bandwidth problem. In recently
developed systems this problem was combated by
communicating to several memory devices in parallel.
Currently, the smallest available double-data-rate
synchronous DRAM (DDR SDRAM) has a 64-Mbit
capacity with a 16-bit data bus or smaller, provid-
ing a peak bandwidth of 0.53 GB/s [4]. However,
significantly more bandwidth is required for media
applications, such as simultaneous High-Definition
MPEG decoding, 3-D graphics rendering and field-rate
conversion. The Imagine processor [3] features four
memory controllers with a 32-bit data bus each. The

0098 3063/00 $10.00 © 2001 [EEE

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 3, 2009 at 05:50 from IEEE Xplore. Restrictions apply.

886 IEEE Transactions on Consumer Electronics, Vol. 47, No. 4, NOVEMBER 2001

Emotion Engine processor [5] contains a dual 16-bit
memory bus at 800 MHz, providing 3.2 GB/s with
32 MByte in Direct Rambus DRAMs (RDRAM).
However, this solution of parallel memory devices
introduces more memory capacity than required by
the system, leading to a lower cost efficiency. For
the above mentioned systems, 256 Mbit of SDRAM
memory is the minimal available capacity which is
more than required by most consumer systems. In
this paper we focus.on the reduction of the memory
bandwidth, thereby contributing to a reduction of
parallel memory devices. This is important because
the use of parallel memory controllers leads to high
systems costs such as, increased power dissipation,
substantially larger silicon areas and more expensive
chip packages.

In our study we will concentrate on MPEG decoding
as-a pilot application. This application features block-
based video processing and memory access. Such
memory access to optimize bandwidth was already
addressed in [6], where a mapping of video data units
into the memory is proposed. This work is related
to analyzing the application software model only,
without considering data dependencies such as the set
of requested data blocks including their probability of
occurrence. In this paper, we determine an optimal
mapping of the video into the memory by analyzing
the actual memory accesses, so that data dependencies
are taken into account.

To understand the optimizations for bandwidth
efficiency, Section II elaborates on the architecture of
SDRAM-based memories and introduces the concept
of data units. Section III derives the size of data units
depending on the access timing parameters and the
memory bus width. Subsequently, Section IV explains
how the pixels are mapped onto the physical mem-
ory addresses considering the application-dependent
accesses and the organization in memory banks,
rows and columns. In Section V we will discuss the
optimization calculations and the implementation in
a realistic simulation model. All application-specific
issues that have an impact on the simulation results
will be discussed in Section VI by means of an MPEG
decoding application example.Finally, Section VII
presents the results and conclusions.

II. SDRAM-BASED MEMORY ARCHITECTURE AND
THE INTRODUCTION OF DATA UNITS

The increasing demand for more memory bandwidth
requires the use of sophisticated memory - devices

like DDR SDRAM or RDRAM. To obtain high.

performance, these devices use two main features: the
burst-access mode and the multiple-bank architecture.
A block diagram of a DDR SDRAM memory device is

Clock

command
lines

oo |
register
o

address
lines

Fig. 2. Block diagram of a DDR SDRAM.

shown in Fig. 2. The burst-access mode enables access
to a number of consecutive data words by giving a
single read or write command. Because the reading of
dynamic memory cells is destructive, the content in a
row of cells in the memory bank is copied into a row of
static memory cells (the page registers). Subsequently,
read and write access to this copied row is provided.
The result after the required accesses in the row
has to be copied back into the (destructed) dynamic
cells, before a new row in the memory bank can be
accessed. These actions, referred to as row-activation
and precharge respectively, consume valuable time in
which the array of memory cells (a bank) cannot be
accessed. In order to overcome this problem and access
the memory device also during row-activations and
precharges, a multiple-bank architecture is used, where
each bank can be accessed alternately. Hence, a bank
can be accessed while other banks are activated or
precharged. Furthermore, high throughput is achieved
by dividing the device into stages using pipelining (at
the expense of increased latency).

Let us now concentrate on the consequences of
the burst-access mode, using the previously described
SDRAM architecture. To optimize the utilization of
the memory-bus bandwidth, data can only be accessed

pixels

data{ units located in: wmem Bank 0 === Bank 1
. e Bank 2 Bank 3

Fig. 3. Video pixels mapped onto data units, each located in a
particular memory bank.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 3, 2009 at 05:50 from IEEE Xplore. Restrictions apply.

Jaspers and de With: Bandwidth Reduction for Video Processing in Consumer Systems 887

at the grain size of a data burst (e.g. eight words).
If the memory configuration provides a 64-bit bus
and is programmed for a burst length of eight words,
one data burst contains 8 x 64 bit = 64 bytes of
data. These data bursts represent non-overlapping
blocks in the memory which can only be accessed
as an entity. In the remainder of this paper, these
blocks are referred to as data units. Fig. 3 shows
an example how the pixels of a video picture are
mapped onto data units in the memory. Each colored

rectangle represents one data unit. A required group

of pixels (e.g. a macroblock in MPEG) might be partly
located in several data units and therefore results in
the transfer of all corresponding data units. Hence,
significantly more pixels than required are transferred.
In the sequel we call these extra, pixels pizel overhead.
This overhead becomes particularly noticable if the
size of the data units is relatively large compared to
the requested group of pixels. This paper describes
the partitioning of data units into memory banks and
determines the optimal dimensions of the data units
to maximize the available memory bandwidth. The
optimization includes statistical analysis of the data
to be accessed. A mapping of video data units into
the memory is already proposed in [6]. However, this

. paper proposes to analyzing the application software
model only without considering data dependencies
such as the set of requested data blocks including their
probability of occurrence. For example, the type of
data blocks that are fetched for motion compensa-
tion in an MPEG decoder, strongly depends on the
motion-estimation strategy applied by the encoder. In
this paper, we determine an optimal mapping of the
video into the memory by measuring and analyzing
the actual memory accesses, so that data dependencies
are taken into account. Another consideration that is
important for bandwidth efficiency is the organization
into memory banks, which is provided in all modern
memory devices. It will become clear that both
aspects contribute to a substantial improvement of the
available memory bandwidth.

III. DERIVATION OF THE DATA-UNIT SIZE

To access a data unit in the memory, first a row-
activate command also called Row Address Strobe
(RAS) has to be issued for a bank to copy the
addressed row into the page (static-cell registers) of
that bank. After a fixed delay trep (RAS to CAS
delay), a read or write command also called Column
Address Strobe (CAS) for the same bank can be issued
to access the required data units in the row. When
all required data units in the row are accessed, the
corresponding bank can be precharged, which takes
trp time. The time from row-activate command until
the precharge may not be less than the tgp45, which

: pOi 122334455667788990011223344556677889900112
!

,RC

f -~
| laas L tee
R C,R C.R . C,R C,R c
10 01 12 2'3 30 0
]]
Vtaeo b te
M 1554567 0
01234567
01234567

01234567

Note: R is row-activation command
: C, is column command followed by an auto-precharge
trc is minimal row cycle time
trAs is minimal row active time
trp is precharge time
trep is minimal RAS to CAS delay
tor is CAS to data latency

'Fig. ‘4. Timing of the memory command.

is the minimum time a row is active. After access of
a row, precharging is required to prepare the bank
for the subsequent row addressing in the same bank.
Hence a minimum time after activation of a row in a
bank (> tras), the precharge time tgp elapses before
that bank can be accessed again. Consequently, the
time between two subsequent row-activate commands
(referred to as the row cycle time) for the same bank
is at least tpc = tras + trp time and is typically 10
cycles for current DDR SDRAMSs (see Fig. 4).

The clock numbers are indicated twice because both
positive and negative clock transitions are used to
access data. The memory commands are provided at
each positive clock transition only. The bottom of the
figure shows how four bursts of eight data words are
read by four successive accesses, each in a different
bank. Obviously, the elapse time between the first data
word from the first bank until the last data word from
the fourth bank, consumed 32 double-data-rate (DDR)
cycles and is equivalent with 16 single-data-rate (SDR)
input cycles. Because this time exceeds the row cycle
time tgo, a new row-activate command can be issued
immediately, without wasting valuable memory-bus
cycles. It can be concluded, that interleaved access of
the memory banks provides optimal utilization of the
memory-bus bandwidth.

Let us now return to the primary objective of
this section and determine the best choice for the size
of the data unit from the above-mentioned memory
properties. Amongst others, it depends on the size
of the burst length. To minimize the pixel overhead
the data units are preferred to be small. However, if
the burst length is too small, the time that elapses
after accessing all four banks does not exceed trc
and causes some waiting cycles in which no data
is transferred over the bus. Apparently there is a
tradeoff between bus utilization and pixel overhead.
To determine the minimal burst length BL for which a

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 3, 2009 at 05:50 from IEEE Xplore. Restrictions apply.

888 IEEE Transactions on Consumer Electronics, Vol. 47, No. 4, NOVEMBER 2001

full utilization of the bus bandwidth can be achieved,

the number of data words transferred within tgc (tgo
cycles at DDR) is divided by the number of banks,
thus:

BL >20/4 @)

Because the burst length is a multiple of two due to
the double-data-rate and hecause the burst length can
only be programmed for the values 2, 4 or 8, the burst
length is set to BL = 8. Because this value is larger
than the determined lower bound of 5 (see Eq. (1)), it
is not required to interleave all four banks before the
first bank is accessed again. Note that access to three
successive banks occupies 3 x 8 cycles, thus already
exceeds tgc.-

Fw128 pixels _T

1 byte

|

1 32 lines

mmem Bank O === Bank 1 =ss= Bank 2 === Bank 3

Fig. 5. Mapping of 64 x 1 adjacent pixels onto data units.

IV. THE MAPPING OF PIXELS INTO THE MEMORY

In this section we discuss the key parameters that
determine the optimal dimensions of the data units.
Firstly, we will describe the partitioning of data unit-
s into memory banks, while considering an interleaved
usage of all banks. It will be shown how this is achieved
for both progressive and interlaced video signals.

Let us discuss a few examples for data unit dimensions
and the corresponding pixel overhead. For this pur-
pose, we assume a system that requires a 64-bit bus
SDRAM configuration to provide sufficient bandwidth.
Consequently, the data units in the memory contain
64 bytes. For the mapping of pixels, several options
can be recognized. The most straightforward way is to
map 64 successive pixels of a video line into one da-
ta unit as depicted in Fig. 5. The figure shows how
each consecutive block of 64 pixels is interleaved in the
banks in both horizontal and vertical direction. If for
such interleaved mapping the pixel data is sequentially
read or written (given by the application), the memory
banks are accessed alternately. However, when a data
block of 16 x 16 pixels is requested from the memo-
ry, the amount of data that needs to be transferred is
much more. If the data block is horizontally positioned
within one data unit, 64 x 16 pixels are transferred. If
the data block overlays two data units in horizontal
direction, the amount of transferred data is 128 x 16,

e 64 pixels ————
1———»16 bytes _ ‘

l 14 byte

d 32 lines

mmm Bank 0 == Bank {1 === Bank 2 ===a Bank 3

Fig. 6. Mapping of 16 x 4 adjacent pixels onto data units.

resulting in 700% pixel overhead. Fig. 6 shows a much
more appropriate mapping of pixels onto the memory
for this data-block request. Blocks of 16 horizontal by
4 vertical pixels are stored in a single data unit, result-
ing in less pixel overhead when accessing a data block
of 16 x 16 pixels. However, when a data block of 128 x 1
is requested, Fig. 5 provides a better mapping strategy.
Let us now discuss the effect of interlacing. For sever-
al applications in a multi-media system, it is necessary
to read the video data both progressively and inter-
laced, e.g. for frame prediction and field prediction
in MPEG decoding. However, when subsequent odd
and even lines are mapped onto the same data unit, it
is not possible to access only odd or even lines with-
out wasting memory bandwidth. Therefore, the odd
and even lines are positioned in different banks of the
memory. As a result, the data units are interleaved in
the memory when the vertical size is larger than one.
The resulting mapping strategy for data units of 16 x 4
pixels is shown in Fig. 7. For this mapping the 16 x 4

one
data unit

wem Bank 0 =—=Bank 1 ====Bank 2 Bank 3
Fig. 7. Mapping of interlaced video onto memory data units.

pixels are not adjacent. Four line pieces of 16 x 1 which
are interlaced in the video frame are mapped onto one
data unit. Note that for retrieval of data blocks with
progressive video lines, the size of the smallest data
packet to be accessed as an entity has become eight
lines high (two vertically adjacent data units), whereas
for access to data blocks with interlaced video, the size
is four lines (one data unit).

For efficient access of interlaced video data, the map-
ping of odd and even video lines into odd and even

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 3, 2009 at 05:50 from IEEE Xplore. Restrictions apply.

Jaspers and de With:

mmmBank 0 ===Bank 1 ==msBank 2 m-E;ank 3

Fig. 8. Decomposition into mappings for separate video fields.

banks is toggled after four units in vertical direction (a
reversal of the bank parity when looking to the global
checkerboard pattern in Fig. 7). In the first group of 16
video lines, the odd lines are mapped onto bank 0 and
2, while the even lines are mapped onto bank 1 and
3. In the following 16 video lines (two checkerboard
blocks lower), the odd lines are mapped onto bank 1
and 3 and the even lines are mapped onto bank 0 and 2.
For progressive video this gives only a minor difference,
but for interlaced video, this results in addressing of all
banks instead of only odd or even banks. This is shown
in Fig. 8 where the mapping of Fig. 7 is decomposed
into separate video fields. The left part of the figure
shows only one column of data units from Fig. 7.

Concluding all above-mentioned system aspects from
the previous examples in this section, the optimal map-
ping strategy depends on the following parameters (see
Fig. 9 for the definition of the size parameters).

data unit
requested data block

Fig. 9. Definition of the size parameters.

o The dimensions of the requested data blocks, By x B,.
MPEG-2 decoding contains a large variety of diffe-
rent data-block accesses: due to interlaced and pro-
gressive video, field and frame prediction, luminance
and chrominance data and due to the sub-pixel accu-
rate motion compensation (all these processing issues
are addressed in the MPEG standard).

The interlace factor of the requested data blocks.
Progressive data blocks require accesses in pairs of
data units in vertical direction. Consequently, the
smallest data entity to access is two data units.
Hence, the calculations are slightly different for pro-
gressive and interlaced video.

Bandwidth Reduction for Video Processing in Consumer Systems

889

o The probability of their occurrence, P(B; x By).
For example, if only 16 x 1 data blocks are accessed
(100% probability), the optimal data-unit dimension
will also be very much horizontally oriented. Obvi-
ously, the probability of each data-block type depen-
dents very much on the application. Moreover, it
depends on the implementation. For example if the
color components in an MPEG decoder are multi-
plexed before storage in the reference memory, some
data-block types for chrominance and luminance are
equal, thereby increasing their probability.

o The probability distribution of their positions,

PBszy(m7n)'
For this function, the parameter m = z mod M,
n = ymod N, M is the horizontal data-unit size
and N the vertical data-unit size. Thus (z,vy)
are the global coordinates of the requested data
block, (m,n) denote the local coordinates within
the corresponding data unit. If a requested data
block is aligned with the boundaries of the data
units, it overlays the minimum amount of data units,
resulting in the minimum pixel overhead. Data
blocks that overlay many data units cause much
pixel overhead. Note that the 16 x 16 macroblock
grid for MPEG and the high probability of the
zero-motion vectors have a positive influence on
reducing the pixel overhead.

The last two parameters indicate that the statistics of
the memory access are considered, because all request-
ed data blocks (e.g. location and usage frequency) are

" retrieved with varying probability. The probability dis-

tributions introduced in this section will be inserted in-
to an architecture model which is discussed in the next
section.

V. ARCHITECTURE MODEL FOR SIMULATION

To measure the statistics as indicated in the previous
section, an MPEG-2 decoder was modeled including
the main-memory interface that transfers data to and
from the SDRAM memory when requested by the
decoder. The interface between the MPEG-2 decoder
and the memory interface is defined as follows:

void transfer(
boolean read, // aread (TRUE) or write transfer
integer Bz, // horizontal data-block size
integer By, /] vertical data-block size
boolean interl, // interlaced (TRUE) or progressive
integer z, // horizontal data-block position
integer y, // vertical data-block position
integer line, [/ horizontal size of a video line
u char *mem,// pointer to the memory
u char *buf) // pointer to the read/write buffer

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 3, 2009 at 05:50 from IEEE Xplore. Restrictions apply.

890 IEEE Transactions on Consumer Electronics, Vol. 47, No. 4, NOVEMBER 2001

The implementation of the interface translates
the input parameters to a set of corresponding data-
unit addresses in the memory. Depending on the
state of the memory banks, arbitration is provided
between read and write requests from the MC unit,
and the output unit (VO) that displays the data.
Subsequently, it translates all data-unit requests
to memory commands and schedules the memory
commands to satisfy all timing parameters for an
optimal data-bus utilization. In addition, the memory
interface generates function calls to the communication
analyzer. The communication analyzer as depicted in
Fig. 10 analyzes the requests and updates the statistics
which were mentioned in the previous section into a
database. After decoding of a representative set of
bit streams, the optimal data-unit dimensions can be
calculated from the statistics in the database.

. SDRAM

main memory interface

Eooom |

MPEG-2 decoder |

Optimal M,N

Fig. 10. Architecture model for simulation.

The optimal data-unit dimensions are calculated by
minimizing the pixel overhead as function of the
data-unit dimensions. The pixel overhead &; for
interlaced data-block requests is calculated as:

> P(B. x By)H(M,N,V})

B xByeV;

az(Mva‘/l)z Z -1 (2)

Y P(B. xB,)-B:- By
B xBy€V;
with

M-1N-1

H(M,N,Vi)=3>" 3 Pp,xp,(m,n)eMeNe (3)
m=0 n=0

(1 | Ep=])e (1 | 2=),

where V; is the set of possible requested data blocks
B; x By, P(B; x By) the probability of the data
block, M the horizontal size of the data unit and
N the vertical size of the data unit (see Fig. 9
for the definition of the parameters). Probability
Pg,xp,(m,n) is equal to the probability that the
upper left corner pixel of a requested data block
B, x B, is positioned at any location (z,y) that
satisfies the following condition: £ mod M = m AND

y mod N = n. The numerator in Eq. (2) represents
the amount of transferred data including the pixel
overhead. The denominator represents the amount
of requested data without the pixel overhead. For
progressive data-block requests, the data has to be
partitioned into two interlaced data-block requests.
Therefore, the overhead calculation for progressive
data-block requests is slightly different. V; becomes V},
in Eq. (2) and H(M,N,V) in Eq. (3) is defined as:

H(M,N,V,) = (4)
M-12N-~1

Z ZPB.xBy(m,n)oMoNo(1+l_B -%n—lj).

m=0 n=0

(2+ | Beigniaizt | | Burolt iz)

When a system that uses a combination of progressive
and interlaced video has to be considered, the 'set of
requested data blocks has to be separated into a set,
of interlaced data blocks and a set of progressive data
blocks. Subsequently, Eq. (2) has to be applied with
both Eq. (3) and (4). Thus

o(M,N,V) = 0;(M,N,V;) + 6,(M, N, Vp), (5)
with V =V, UV,.

Note that Eq. (5) is a non-weighted sumof averages,
because each individual term covers only a part of the
overall occurrence probabilities (thus already statisti-
cally weighted). For example, if the occurrence ratio
between interlaced and progressive data-block requests
is 1:3, the value of o; is only one quarter of the actual
pixel overhead for interlaced data-block requests.

VI. MPEG DECODING AS APPLICATION EXAMPLE

As mentioned in the previous section, we modeled an
MPEG-2 decoder as a pilot application. In our simula-
tions, we consider the reading of data for prediction of
macroblocks (MBs), the writing of reconstructed MBs
and the reading of data for display.

A. Reading of prediction data

Let us consider the sets V; and V, that are used for
prediction of the MBs.

V, = {(16x 16),(17 x 16), (16 x 17), (17 x 17),
(16 x 8),(18 x 8),(16 x 9),(18 x 9)}
Vi = {(16 x 16),(17 x 16), (16 x 17), (17 x 17),
(16 x 8),(18 x 8),(16 x 9), (18 x 9),
(17 x 8),(17 x 9), (16 x 4), (18 x 4),
)7

(16 x 5), (18 x 5)}

The numbers 2P + 1 for the luminance data blocks
originate from sub-pixel accurate motion compensa-
tion. For the chrominance, the Cr and Cb components

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 3, 2009 at 05:50 from IEEE Xplore. Restrictions apply.

Jaspers and de With: Bandwidth Reduction for Video Processing in Consumer Systems

-

TABLE I
PROBABILITY OF OCCURRENCE, P(Bz x By).

Luminance Luminance Chrominance Chrominance
frame prediction field prediction frame prediction field prediction
block type | prob. [%] | block type | prob. [%] | block type | prob. [%] | block type | prob. [%] |
16 x16€Vp 1.59 16 x8€V; 2.28 16x8¢€Vp 12.95 16 x4€V; 7.85
17x16 € Vp 3.12 17x8€V; 6.84 18x8€Vp 4.47 18 x4€V; 6.24
16 x17€Vp 4.75 16x9€V, 3.06 16xX9€V, 4.05 16x5€V; 6.16
17X 17€Vp 14.86 17X9€V; 13.50 18x9€V, 2.86 18x5€V; 5.43
Total 24.32 25.68 . 24.32 25,68

are multiplexed in the horizontal direction. Each odd -

sample is a Cr value, each even sample is a Cb value.
Therefore, the sub-pixel accurate motion compensation
of chrominance data blocks may result in the numbers
2P + 2 for the horizontal direction. The probability
distribution of the position of a requested block
B; x B, that satisfies the condition £ mod M = m
AND y mod N = n was measured during decoding a
representative test-set of MPEG-2 bit streams. Fig. 11

probability .
%]
10.0

7.5

. .. 4
horizontal position 5 6

moduio 8

Fig. 11.

891

and 12 show two examples of a probability distribution
of the positions. Fig. 11 shows high probabilities at
the corner positions. At these positions, a progressive
block of 17 x 17 is aligned with boundaries of the

vertical position
rodulo 8

Example of probability distributions for luminance of

Py7x17(n, m) from set V, with (M, N) = (8,8).

probability
{%}]

modulo 16

Fig. 12.

8 9
horizontal position

01142

1314 4575 2

vertical position
modulo 4

Example of probability distributions for chrominance

of Pigx4(m,n) from set V; with (M, N) = (16,4).

8 x 8 data units and occurs when the block has a
zero-motjon vector (or half-pel). Apparently, zero
or very low-speed motion macroblocks (MBs) have a
high occurrence probability. If data blocks are aligned
with the boundaries of the data units, the amount
of pixel overhead is minimal. Consequently, the high
probability of zero-motion has a positive effect on
the transfer bandwidth. Fig. 12 shows the position
probabilities of an interlaced 18 x 4 block. From the
zero probability of the odd horizontal positions, it can
be concluded that it concerns a chrominance block
in which the C, and Cp samples are multiplexed in
the horizontal direction. Because the requested block
contains interlaced video, the probability of the odd
vertical positions are very similar to the probabilities
of the even vertical positions.

Besides the probability distribution of the posi-
tions, also the probability of occurrence of all block
types are measured (see Table I). Note that the
amount of block requests for luminance is equal
to the amount of block requests for chrominance.
Furthermore, the table shows that the blocks of
{(16 x 16), (17 x 16), (16 x 17), (17 x 17)} from set V;
are absent. This indicates that no field-based decoding
is carried out by the MPEG decoder. Hence, only
frame-based pictures are used. Since most commer-
cially available MPEG encoders perform coding of
frame-based pictures only, this is a realistic measure-
ment. Because the motion vectors for the luminance
and the chrominance in a MB are equal (apart from
scaling), the probability of each chrominance block
type can mathematically be determined from the
probabilities of the luminance block types. However,
this is not true for all applications. Hence, the
occurrence probability of all block types was measured
to generalize our optimization approach in this paper
for all applications.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 3, 2009 at 05:50 from IEEE Xplore. Restrictions apply.

892 ’ IEEE Transactions on Consumer Electronics, Vol. 47, No. 4, NOVEMBER 2001

B. Writing of the reconstructed data

In an MPEG decoder application, the reconstructed
pictures are written in memory for output display, or
as reference pictures to predict new pictures using mo-
tion compensation. This writing is done on MB basis
and consumes part of the memory bandwidth. Also for
this kind of block-based access, the pixel-overhead con-
siderations as discussed above are valid. However, the
access for writing reconstructed pictures is very regu-
lar. The MBs of the pictures are written sequentially
from left to right and from top to bottom at fixed grid
positions of 16 x 16. Consequently, the probability dis-
tribution of the positions can be determined easily. Let
us assume that the 16 x 16 grid of the MBs are always
aligned to some boundaries of the M x N grid. With
this restriction, the following probability distribution
holds:

Paexisev,)(m,n) = (6)
= ,mmod 16 =0An mod 16 =0
[161-1 161

7

0 ,elsewhere

with m = 2 mod M AND n = y mod N. Because the
bit streams in the test set only contain frame pictures,
the written MBs are only contained in the set V,. Be-
cause the occurrence probability is a relative measure,
it highly depends on the amount of data requests for
the prediction. This is determined by, amongst others,
the amount of field and frame predictions, the struc-
ture of the Group Of Pictures (GOP), the amount of
forward, backward and bi-directional predicted MBs in
a B-picture, etc. However, experiments have shown
that the final results as presented in Section VII, are
not very sensitive for these differences.

C. Reading of data for display

Besides the reading of prediction data and the writ-
ing of MBs, also reading of video data for display has
to be taken into account. In contrast with the previous
memory accesses, the reading of video data for display
is done line-wise instead of block-based. Conversion of
the block-based data in memory into line-based data
is another factor that influences the mapping strategy.
To optimize the mapping strategy as function of the
pixel overhead calculated with Equations (2)-(5), the
requests for display of the video have to be included
into the data set. For the dimensions of the requested
data for display, the following options should be con-
sidered:

« reading of video lines by means of block transfers,
thereby accepting a significant penalty in memory
bandwidth;

« usage of embedded video-line memories in the archi-
tecture to convert data blocks into video lines.

For the first option, line-based requests are used with
data blocks of size M x 1 and are added to the set of da-
ta blocks. The probability distribution of the position
depends on the data-unit dimensions by:’

for m mod M =0,

1
_J W
Pirxaevi) (M, N) _{ 0 elsewhere.

Y,

It is easy to derive that the pixel overhead for such
transfers equals

oM, 1,{(M x 1)}) = (N —1) ¢ 100%. (8)

Because the ratio between requests for writing the out-
put MBs and reading for video display is fixed, the
probability of occurrence for the line-based requests can
be calculated as follows:

16 x 16
Mx1

PMx1eV)= e P(16 x16 € V). (9)
When video-line memories are embedded, the size of
the requested data blocks is M x N with the following
probability distribution of the position:

PMxNevp(m,n) = (10)
1 for m mod M =0 An modN =0,
0 elsewhere,

with m = 2z mod M AND n =y mod N. The proba-
bility of occurrence is:

16 x 16
MxN

It is also possible to have a combination of the above-
described options. For example, an MPEG decoder
may use data units of 16 x 4 pixels instead of 32 x 2,
thereby reducing pixel overhead for block-based access-
es. In this case, embedded video-line memories for
N = 2 are used to convert the blocks into video lines.
Consequently, the pixel overhead for reading video lines
is not zero, but much smaller than 300% as in case
without video-line memories.

P(MxNeV,)= e P(16x 16 € V). (1)

D. Owverall occurrence probabilities

Table II shows the occurrence probability of each
block type, considering all memory requests performed
by the MPEG-2 decoder. The table results from using
a decoder that performs line-based requests for the out-
put display data and has a mapping of 16 x 2 pixels into
data units. Note that the occurrence probability of the
memory access for display is significant. Although it
is much higher than the occurrence probability of the
write requests for reconstructed MBs, the amount of
data that is requested is equal. This is caused by the
relation between the data-block size of M x 1 € V; for

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 3, 2009 at 05:50 from IEEE Xplore. Restrictions apply.

Jaspers and de With: Bandwidth Reduction for Video Processing in Consumer Systems 893

TABLE II
PROBABILITY OF OCCURRENCE, P(Bz X By).

prediction data-block requests
block type prob. [%] [block type [prob. [%]
16x16 €V} 0.21 16x8eV; 0.30
17x16 € Vp 0.41 17x8€V; 0.89
16x17€V, 0.62 16 x9€V; 0.40
17X 17€ Vp 1.94 17x9€¢V; 1.76
16 x 8 € Vp 1.69 16 x4€V; 1.02
18x8€Vp 0.58 18x4eV; 0.80
16x9€V, 0.53 16 x5€V; 0.81
18x9€V, 0.37 18x5€eV; 0.71

write MB requests
16x16€V, [512] |
output read requests
Mx1€eV;] 8185

Total 11.46 88.54

display of the video and 16 x 16 € V, for writing the
constructed MBs. Eq. (9) shows that the size of the
requested data-blocks times the occurrence probability
is constant, thus:

Mx1eP(Mx1€V;)=16x16e P(16 x 16 € V},).

It can be concluded that the pixel overhead is not
merely determined by the occurrence probability of the
data-block requests, but also by their size. However,
the size may have an impact on the utilization of the
data bus. As shown in Section III, the scheduling of
all memory commands is constrained by several timing
parameters. Relatively small data-block requests (< 3
data units), will result in a decreased memory efficien-
cy. Although memory command scheduling for small
data block requests is beyond the scope of this paper,
it can be concluded that a large amount of small data-
block requests for display has a negative influence on
the utilization of the memory bus.

VII. RESULTS AND CONCLUSIONS

We have simulated the architecture of Fig. 10 based
on an SDRAM interface for determining an optimal
mapping of the video into the memory with the
objective to minimize the overall memory bandwidth.
The mapping is optimized for reducing the transfer
overhead by measuring and analyzing the actual
memory accesses, so that data dependencies are taken
into account. Another issue that is important for
bandwidth efficiency is the organization into memory
banks, which is provided in all modern memory
devices. The proposed mapping strategy increases the
memory efficiency, thereby contributing to a decreased
memory-bandwidth requirement.

The experiments, conducted with a large test-set of bit
streams, were performed for architectures featuring a
32-bit and a 64-bit memory bus and for architectures
with and without line-memories for conversion of
block-based storage to line-based output. For each

architecture configuration, the measured statistics
were stored in a database for off-line calculation of
the optimal data-unit dimensions. Subsequently,
Equations (2)-(5) were applied to calculate the average
pixel overhead for a given dimension (M, N) of the
data units. The tables below show the simulated
bandwidth numbers for various data-unit dimensions.

Table III shows the final bandwidth results for
32-byte data units, where the requests for video
display are line-based. From -the table it can be
concluded that the mapping of 16 x 2 results in the
smallest pixel overhead. If the reading from memory
for display of the video is (M x N)-based, the optimal
data-unit dimensions have a more vertical preference.

TABLE III
BANDWIDTH RESULTS FOR 32-BYTE DATA UNITS AND LINE-BASED
REQUEST FOR OUTPUT.

data unit | requested! | transferred!

dimensions data [%] data [%)]
B2x1) 100 100 + 101
(16 x 2) 100 100 + 69
@ x4) 100 100 1 118
(4x38) 100 100 + 246

1 100% equals 240 MB/s for 25 Hz High-Definition video.

TABLE IV
BANDWIDTH RESULTS FOR 32-BYTE DATA UNITS AND
(M x N)-BASED REQUEST FOR OUTPUT.

data unit requested | transferred
dimensions | data [%] data [%]
(32 x1) 100 100 + 101
(16 x 2) 100 100 + 55
(8 x 4) 100 100 + 49
(4 x 8) 100 100 + 65
TABLE V

REQUEST FOR OUTPUT.

BANDWIDTH RESULTS FOR 64-BYTE DATA UNITS AND

data unit requested | transferred
dimensions | data [%] data [%]
(64 x 1) 100 100 + 241
(32 x 2) 100 100 + 144
(16 x 4) 100 100 + 142
(8 x 8) 100 100 + 262
TABLE VI

(M x N)-BASED REQUEST FOR OUTPUT.

data unit requested | transferred
dimensions | data [%)] data [%)
64 x 1) 100 100 + 241
(32X 2) 100 100 + 130
(16 X 4) 100 100 4 72
(B x8) 100 100 + 81

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 3, 2009 at 05:50 from IEEE Xplore. Restrictions apply.

BANDWIDTH RESULTS FOR 64-BYTE DATA UNITS AND LINE-BASED

894 IEEE Transactions on Consumer Electronics, Vol. 47, No. 4, NOVEMBER 2001

For this scenario, the 8 x 4 mapping outperforms
the 16 x 2 mapping. This is shown in Table IV.
Table V and VI show the results for 64-byte data
units. For these systems, the usage of 16 x 4 pixels for
data units results in the optimal solution. However,
the 32 x 2 mapping for line-based reading at the
output shows a similar performance.

In recent proposals for multimedia computing ar-
chitectures (e.g. [7]{8]{9]) video data is written line
by line into the address space. This can be regarded
as block-based data units with a vertical size of one
(N =1). For such systems, the results of the first row
in the tables apply. Hence, the system with 64-byte
data units consume a factor of 3.4 more memory band-
width than requested. The proposed mapping with
the optimal data-unit dimension reduces the amount
of memory bandwidth for such system with 50%.
For systems with 32-byte data units, the bandwidth
reduces with 26% (see Fig. 13). For HDTV MPEG
decoding, these numbers result in a reduction of 405
MB/s and 125 MB/s, respectively. This substantial
performance improvement corresponds with a band-
width magnitixde of a complete function or application
such as the display of a secondary SDTV channel or
the addition of an advanced 2-D graphics application.
Moreover, the presented results can be exploited to
reduce the continuously growing gap between required
computational power and memory bandwidth is.

bandwidth
[Mbyte/s]
900

requested
data

32-byte
optimal data units

mapping

traditional
mapping

Fig. 13. Bandwidth reduction of the proposed mapping strategy.

REFERENCES

[1] J.L. Hennessy and D.A. Patterson, Computer Architecture
a Quantitative Approach, p. 374, Morgan Kaufmann, 2nd
edition, 1996, ISBN 1-55860-372-7.

] www.specbench.org.

[3] B. Khailany et al., “Imagine: Media processing with
streams,” IEEE Micro, vol. 21, no. 2, pp. 35-46, March-
April 2001.

[4] B. Davis, T. Mudge, B. Jacob and V. Cuppu, “DDR2
and low latency variant,” in Proceedings of the Work-
shop on Solving the Memory Wall Problem, June 2000,
www.ece.neu.edu/wall2k.html.

[5] M. Oka and M. Suzuoki, “Design and programming the emo-
tion engine,” IEEE Micro (USA), vol. 19, no. 6, pp. 20-28,
Nov. 1999.

6] H. Kim and 1.C. Park, “Array address translation for
SDRAM-based video processing applications,” in Proc. of

SPIE: Vis. Comm. and Image Proc., June 2000, vol. 4067,
pp. 922-931.

(7} S. Rixner, et al., “Memory access scheduling,” Computer
Architecture News, vol. 28, no. 2, pp. 128-138, May 2000.

[8] S. Rathnam and G. Slavenburg, “Processing the new world
of interactive media,” IEEFE Signal processing Magazine, vol.
15, no. 2, pp. 108-117, March 1998.

[9] S. Dutta, D. Singh and V. Mehra, “Architecture and imple-
mentation of a single-chip programmable digital television
and media processor,” in Proc. IEEE Workshop on Sig.
Proc. Systems, SiPs 99, Design and Implementation, Oct.
1999, pp. 321-330.

Egbert Jaspers was born in

Nijmegen, The Netherlands,

in 1969. He graduated in

electrical engineering from

the Venlo Polytechnic in 1992

and subsequently, he joined

Philips Research Laboratories

in Eindhoven. He continued

his education at the Eindhoven

University of Technology,

and graduated (MSc) in elec-

trical engineering in 1996.

Afterwards, he joined Philips

Research Labs Eindhoven,

where he became a member of

the TV Systems Department.

There he worked on video

compression for digital HDTV recording. Currently he is

involved in the research of programmable architectures and
their implementation for consumer systems. In 2000 he received

a IEEE Consumer Electronics Section Paper Award.

[A

Peter H.N. de With gradu-
ated in electrical engineering
from the University of Tech-
nology in Eindhoven. In
1992, he received his Ph.D.
degree from the University
of Technology Delft, The
Netherlands, for his work on
video bit-rate reduction for
recording applications. He
joined Philips Research Labs
Eindhoven in 1984, where
he became a member of the
Magnetic Recording Systems
Department. From 1985
to 1993 he was involved in
several European projects on
! . sl At SDTV and HDTYV recording.
In this period he contributed as a coding expert to the DV
standardization. In 1994 he became a member of the TV
Systems group, where he was leading the design of advanced
programmable video architectures. In 1996, he became senior
TV systems architect and in 1997, he was appointed as full
professor at the University of Mannheim, Germany, at the
faculty Computer Engineering. In 2000, he joined CMG
Eindhoven as a principal consultant and he became professor
at the University of Technology Eindhoven, at the embedded
systems institute (EESI). He has written numerous papers on
video coding, architectures and their realization. Regularly, he
is a teacher of the Philips Technical Training Centre and for
other post-academic courses. In 1995 and 2000, he co-authored
papers that received the IEEE CES Transactions Paper Award.
In 1996, he obtained a company Invention Award. In 1997,
Philips received the ITVA Award for its contributions to the
DV standard. Mr. de With is a senior member of the IEEE,
program committee member of the IEEE CES and board
member of various working groups.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 3, 2009 at 05:50 from IEEE Xplore. Restrictions apply.

