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SUMMARY

In solids drying the calculation of drying rates and drying times is
complicated by the concentration dependence of the diffusion coefficient
and the shrinkage of the drying bodie due to the moisture loss. The
calculation is further complicated if particles contain an internal gas
core (e.g. in spray drying), which expands or shrinks during drying. In
principle even the most complex processes can be calculated numerically.
However, the lack of known product properties (for instance the relation
between diffusion coefficient and moisture concentration) and the extre-
mely difficult and laborious programming render the numerical. approach
prohibitive for practical application by process engineers and desig-
ners. It is the aim of this research to provide easily to handle short-
cut calculation procedures, which are applicable to slabs, massive and
hollow cylinders and spheres, irrespective of their degree of shrinkage.
Diffusion of moisture in shrinking and non-shrinking bodies of the
various geometries is described by a generalized diffusion equation.
This equation has been solved numerically for a power law dependence of
the diffusion coefficient on moisture concentration. Two boundary condi-
tions, which are typical for two main drying stages, are considered:
constant surface flux and constant surface concentration. Both drying
stages can be subdivided into a Penetration Period (centre concentration
hardly affected) and a Regular Regime (centre concentration clearly
affected).

The numerical computer output can be described by simple correlations.
For both Penetration Periods the introduction of a G-parameter appears
to be helpful and for both Regular Regimes the concept of Sherwood
numbers of the dispersed phase is of great importance. Drying times
calculated with the correlations deviate less than 5% from the "exact"
calculated values.

Moreover, a drying apparatus has been developed, to determine the weight
of a sample (thin layer) as a function of time during drying {drying
curve). The approximate correlations are used to evaluate the experimen-
tal drying curves for obtaining the relevant model parameters. Next the
same correlations are used to predict drying curves at different drying
conditions. Deviations between predicted and experimental drying curves
of aqueous maltodextrin solutions appear to vary from a few percent to
about 30% .



SAMENVATTING

De berekening van het drooggedrag van deeltjes is erg gecompliceerd,
omdat de diffusiecoefficient van het migrerende vocht veelal sterk
afhangt van het vochtgehalte. Een "exacte” berekening van het droogge-
drag vereist kennis van numerieke methoden, grote vaardigheid in het
programmeren en de beschikking over een main-frame computer. Bovendien
is de relatie tussen de diffusiecoefficient en het vochtgehalte meestal
onbekend en zijn moeizame experimenten noodzakelijk ter bepaling hier-
van. Proces ingenieurs en ontwerpers van droogapparatuur hebben in hun
dagelijkse praktijk behoefte aan gemakkelijk te hanteren rekenproce-
dures.

Het onderzoek beschrijft een kortsluitrekenmethode, welke uitgaat van
een machtsrelatie tussen de diffusiecoeffient en het vochtgehalte {power
low diffusion). De {cor)relaties van deze vereenvoudigde berekening zijn
gebaseerd op de "exacte” numeriek berekende oplossingen. De afwijkingen
in droogtijden, berekend volgens de "exacte methode" en de kortsluit-—
methode, bedragen gemiddeld 2% en zijn maximaal 5% . De kortsluitmethode
is toepasbaar voor holle en massieve deeltjes met elke graad van krimp
(vlakke lagen, eylinders en bollen}.

Bovendien is een geautomatiseerde meetopstelling ontwikkeld, waarmee het
gewicht van een monster {dunne laag) tijdens een droogproces kan worden
geregistreerd {droogcurven). M.b.v. de vergelijkingen van de kortsluit-
methode worden uit deze experimentele droogcurven de relevante model
parameters berekend; vervolgens wordt met de kortsluitmethode het droog-
gedrag bij andere droogcondities voorspeld. De afwijkingen tussen voor-
spelde en experimentele droogtijden van maltodextrine oplossingen vari-

gren van enkele procenten tot 30% .
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CHAPTER 1

INTRODUCTION

Though drying i.;s an econémical importaﬁt unit operation, which is
frequently used invmny branches of industry, it ;till is a hard to
grasp process. The design of dryers is complicated by:

- the changing conveyance properties of the material during drying
e.g. a wet droplet may first change'into a sticky material ahd
eventually into a free flowing powder; |

- the prediction of the required drying time, which”is a rather
difficult calculation proBlem, especially if drying rates are fully
controlled by diffusion of moisture in the material.

In this thesis the attention is focussed on the latter problem. -

1.1 Approximate Calculation Methods.

In solids drying mass transfer takes place from a dispersed phase
(e.g. droplet of milk) to a continuous phase {e.g. air). Interface
mass transfer processes afe usually spli't up into mass transfer in the
continuous phase and mass transfer in the dispersed phése.

Mass transfer in the continuous phase is generally described in a
phenomenological way by means of a mass trans.fer coefficient {one film

model). For some situations literature provides theoretical relations



for the calculation of mass transfer coefficients, however in most
cases (semi~)empirical correlations of various dimensionless groups
are to be used [1-9]. If mass transfer is fully controlled by the

conditions of the continuous phase, the accuracy of the calculated

drying rates is 20~30% at the best ‘[3].

Mass transfer in the dispersed phase depends on process conditions
{(e.g. mass transfer in the gas phase, temperature ahd humidity of the
dfying air) and product properties, such as:

—'sorpti,onﬁ,sotherm [10,11], which describes the equilibrium between
:the thermodynamic moisture activity and the moisture éontent of the
material;

- parameters describing the various mass transfer mechanisms, such as
molecular diffusion, capillary transport, etc. [12,13]. In this
thesis we confine ourselves to the description of rigid systems with
a uniform temperature, thus internal circulations and temperatﬁre
‘ gradirents do not contribute to mass tranéfér:

-~ shrinkage behaviour [14~16j; three cases can be distinguished:
moximum-shrinking, if the decrease of the body volume équals the
volume of the removed moisture;
partial-shrinking, if the decrease of the body volume is less
than the volume of the removed moisture:
non-shrinking, if the volume of the body remains constant during
dryirig. | V

In éase of partial- and non-shrinking systems a porous Solid will be

formed during a drying process.

On the one hand, calculation models taking into account all mass
transfer mechanisms with a maximum of physical relevance are generally

not suited for practical use. On the other hand, easy to handle



calculation models with a too small physical basis often fail in
predicting the drying behaviour with sufficient accuracy. Thus, in
developing physical/mathematical models for the calculation of drying
processes a good balance has to be found between the theofetical basis
and the manageability of the calculation method. ‘

Despite the occurrence of various mechanisms, guite often mass trans-
fer is described with a single parameter, viz. the effective diffusion
coefficient (D), in which many mechanisms are lumped together. This
rather rigid physical simplificétion implies that in general the
diffusion coefficient will be strongly dependent on moisture content
and temperature; a decrease of several orders of magnitude during
drying may occur, e.g. for water in aqueous carbohydrate solutions
[17-22]. For the mathematical description of the drying processes two
main problems remain: .

first, from a mass balance over an infinite small shell volume the
diffusion equation is obtained. For constant diffusivity this equation
has been solved analytically for many initial and boundary conditions.
However, especially for particles with the geometry of a hollow cylin-
der or sphere the algebraic solutions aré rather complicated and
relatively difficult to handle (see Chapter IV)}. Fot' concentratién
dependent diffusion coefficients a numerical approach is required. The
numerical calculations are complicated, require highiy sophisticated
programming skill and high speed computers.

second, product properties, such as the relationship between diffusion
coefficient and moisture content are rather inaccurate; deviations of
50% or more, depending on the range of moisture content, are quite
common; moreover, in most cases product properties are even unknown

and must be obtained from rather laborious experiments.



In general, mathematically exact calculation procedures moy be very
complicated and require product properties, which however, are not
exact ,s0 there is a lot of room left for approximate calculation

methods without substantial loss of overall accuracy.

Approximate calculation procedures show éhe following advantages:
firgt, they offer a better insight; simple equations will contribute
to a better understanding of drying kinetics:

second, they are relatively easy to handle, especially of interest for
practical engineers and designers;

third., the simple equations can be used in the evaluation of relevant
product properties from laboratory drying experiments:

fourth, the approximate methods can also be useful in building up

algorithms for controlling drying processes.

1.2 Stratesy for Developing Approximate Calculation Methods.

In Figure 1.1 a strategy for developing approximate calculation
methods is schematically depicted. First of all a description of the
processs in terms of physical phenomena is required. From this
physical model a mathematical model can be derived. Usually the mathe-
matical model consists of a partial differential equation with initial
and boundary conditions. Next, we have to find the exact solutions.
Sometimes these solutions can be found as algebraic expressions in
literature, however in most cases one has to resort to a numerical .
approach. For extreme situations (e.g. short times, large times, low
flux, high flux) quite often the exact solutions reduce to a simple
form. Then the approximate solutions of the two extremes are connected
by means of a simple correlation {short-cut of extremes, therefore the

approximate methods are often referred to as short-cut



calculation methods). Finally, the approximate solutions are compared
with the exact solutions. The result of this verification determines
whether one has to make corrections or not.

It will be shown in this thesis that by tolerating small errors (<5%)
tremendous simplifications of the calculation procedure can be

achieved.

———> | PHYSICAL MODEL

l

MATHEMATICAL MODEL

l

EXACT SOLUTION

l

EXTREME SOLUTIONS

l

SHORT-CUT OF EXTREMES

l

VERIFICATION

not OQ.K. l

0.K.

Figure 1.1 Strategy for developing short-cut calculation methods.



1.3 Short History

fhis research on approximate calculation methods for drying processes
is a continuation of the investigations carried out by Schoeber
[23,24], Luyben, Olieman, Bruin and Liou [25-30]. Similar research on
drying kinetics was later started by Yamamoto, Sano zand Hoshika
[31,32].

Schoeber analyzed the numerical solutions of the diffusion equation
for many kinds of concentration dependence of the diffusion coeffi-
cient. From the numerical solutions he developed general approximate‘
methods for the calculation of mass transfer in diffusion processes.
Schoeber’s concept is based on the combination of “"short time solu-
tions” (Penetration Period) and "large time solutions” (Regular
Regime). It appears from his analysis that the Regulap Regime solu~
tions can serve as a basis for the evaluation of diffusion coeffi-
cients from experimental drying curves.

Luyben measured the drying curves of a number of food materials and
comparéd them with calculated drying curves obtained from short-cut
calculations (based on Schoeber's approach) and "exact” numerical
calcu;gtions; Furthermore, based on Schoeber’s equations, he developed
a method to derive diffuslon coefficignts from non-isothermal drying
curves of bodies with varisu; geometries (slabs, cylinders and
spheres).

The conceniratlon dependence of the diffusion coefficient can be
described iﬂ_many ways: exponential, logaritmic, power law, polynom,
etc..‘quevér, none of them will really describe in a satisfying way
the experimental values of the diffusion:coefficient of various sys-
tems over the whole concentration range of interest, unless one re-
sorts to equations with many (more than iwo} fitting parameters.
Based on the work of Schoeber and Luyben a power law dependence of the

effective diffusion coefficient (D) with concentration was put forward




by Liou and Bruin:
p_-a
Dp2 = b [—‘3‘-] (1.1)

in which, D is diffusion coefficient [mz/s], Py and p, are the concen-
trations of moisture and solid [kg/m3]. a and b are fitting parame-
ters.

Liou proposed a short—-cut calculation method for drying rates, drying
times and concentration profiles. His method is valid for non-shrink-
ing and maximum~shrinking slabs, massive cylinders and messive sphe-
res with a constant surface concentration.

Liou's approximate method for "power law diffusion” has been extended
to hollow and massive systems with any degree of shrinkage and to
systems with constant surface flux by Coumans and Thijssen [33,34]:

this approach will be described systematically in this thesis.

1.4 Drving Stages.

The mathematical formulation of the external boundary condition of the
diffusion equation depends on the drying stage. In this thesis three
main‘stages are distinguished {see also Chapter IV):

‘Stage I, at the beginning of the drying process the surface moisture
éctivify remains nearly constant. For slabs and non-shrinking cylin~
ders and spheres this period is characterized by a nearly constant
surface flux. '
Stage 171, both'the boundary flux and the boundary concentration de-
crease considerably during this stage. The boundary condition now is

more complex and requires good knowledge of the sorption-isotherm.



Stage III: the surface concentration, relative to its total change,
hardly changes anymore. Thus, by good approximation, there is a con—

stant surface concentration.

All three main stages can be subdivided into two substages:

Penetraton Period (for short timés). which is characterised by a

centre concentration which has hardly changed.

Regular Regime (for large times}, during which the centre concentra-
tion, compared to its initial value, significantly decreasés: the most
striking feature of this.drying stage is that the drying behaviour has
become independent of the initial Witions.

It appears that every substage has its own approximate equations.

This thesis only deals with dryiﬁg stages I and I1II. It is ﬁssﬁmed
that drying stage II, which is rather hard ﬁo describe, has a minor
contributioﬁ to the total drying time {see Chapier VI): ther:afore
drying stage II has not been investigated. Approximate methods for the
calculation of the surface concentration as function of time (stage I)
and for the calculation of drying rates and drying times at any‘given
vaiue of the averaged moisture concentration (stage III) have been |
derived from the analytical and numerical solutions of the diffusioﬁ
equation. ' ‘

The short—cut equations of drying stage I will beof spécial interest
e.g. for spray drying processes [21] in order to predict whether
dropléts will agglomérate or not, or whether they §i11 stick to the
wall of the d;'yer or not. Also the application of the method in
short—cut calculation methods for the prediction of aromaVlosses
during drying [35,36] is interesting. The equations of dryiné stage
III will be advantageous in predicting overall drying times.’ gsince for

high intensity drying this stage contributes dominantly to the total



drying time.

The described short-cut methods refer to mass transfer in dispersed
phases, where diffusion plays an important role and even may become
rate controlling: though this thesis emphasizes drying processes the
methods described may also be applied to processes such as leaching,

absorption, humidification and desorption.

1.5 Scope of this Thesis.

The contents of the chapters are briefly summarized below.

Chapter_II: Based on a comparison of mass transfer in maximm~ and
non-shrinking systems, a generalized mass transfer equation is formu—
lated for systems with any degree of shrinkage. Further some aspects
of mass and heat transfer coefficients in the gas phase are
considered.

Chapter I1]: Mass transfer in slabs, hollow and massive cylinders and
spheres with any degree of shrinkage is described with a generalized
diffustion eguation. By transforming this equation into a dimensionless
form, a similarity of splutions is obtained. Also a gengralized repre—
sentation of the total mass balance is presented.

Chapter IV: Approximate equations ar‘e derived from the analytical
solutions of non-shrinking systems with constant diffustvity, It
appears that this most simple drying situation yields approximate
equations, which only need slight adaptations for shrinking systems
with variable diffusion coefficients.

shrinkage approximate equations are derived from the numerical solu-

tions.



10

Chapter VI: An experimental set—up for the continuous registration of
the weight of a drying slab as function of time is described. Several .
drying experiments have been performed with thin layers of aqueous
maltodextrin solutions. From the socalled drying curves (=samp}e
weight versus time) relevant physical information is derived by means
of the approximate equations of Chapter V. Finally, drying curves are

predicted and compared with the experimental ones.
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CHAPTER 11

MASS AND HEAT TRANSFER IN DRYING PROCESSES

2.1 Introduction;

Mass transfer in drying bodies is often described by means of an
effective diffusion coefficient. In literature one comes across many
definitions of the diffusion coefficient and the mass transfer
equations can take on many forms. Sometimes the definitions used are
somewhat obscure.

The aim of this chapter is to define in an unambiguous way the basic
equations for mass transfer in well-defined binary systems.
Unfortunately, in most cases drying systems éfe‘thermodyﬁamically
ill-defined. Further, extra complications are caused by shrinkage due
to the loss of moisture during drying. Thefefore a comparison bétween
shrinking and non-shrinking systems is given, leading to a generalized
definition of the mass transfer equation for systems irrespective of
their shrinkage behaviour.

The drying process is induced by the conditions of the external gas
phase, especially the temperature, the humidity and the mass- and
heat~transfer coefficients. The last part of this chapter deals with
some aspects of these mass—~ and heat—transfer coefficients relevant

for drying processes.
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2.2 Mass Transfer in Ideal One-Phase Systems.

In one~phase systems, like gas mixtures and liquid solutions, two

mechanisms for mass transfer can be distinguished:

~ molecular diffusion caused by a concentration gradient;

- convection caused by a pressure gradient (forced convection) or a
vertical density gradient {free convection); bulk flow may also be
induced by a concentration gradient.

It is important to realize that the contribution of each mechanism

depends on the definition of the coordinate system with respect to

which mass fluxes are defined. In a coordinate system, fixed with

respect to the observer, the mass flux n

i

concentration Py and velocity vy is given by:

of a component i with

n, = pv, (2.1)

The mass flux ny is built up of a convective flux and a diffusion flux

3 T which is defined with respect to a certain reference velocity

Vief' Equation 2.1 can also be written as:
By = PiVrer * pi(vi-vref) (2.2)
or
By = PyVrer * 4 (2.3
The reference velocity Vief C21 be defined as:
i) the mass average velocity v:
f”i"i fni
= - 2.4)
v Epi 3 , (2.4)



13

where p is the total mass concentration of the mixture.

.. . o,
ii) the volume average velocity v :

oA
3. Vi n.
MRS N S S (2.5)
P d,
§}JL 11
1
194

where di is the partial density of component i,
pi/d1 is the volume fraction of component i in the mixture and
ni/di is the volume flux of i.

iii) the velocity of another component in the mixture, for instance of
component b, thus Vet Vb

iv) molar average velocity v

o

(2.6)

where ¢ i is the molar concentration of component i,
¢ is the total molar concentration of the mixture and

Ni is the molar flux of component i.

Most frequently the mass average velocity is chosen as a reference for
the diffusion flux. Thus for a binary mixture with components a and b
we get for the convective flux of a:

n_+
a

PuY = Py pnb = (na+n.b)wa » (2.7)

where w, is the mass fraction of component a on total basis.

The diffusion flux ja is described according to Fick's law with a
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diffusion coefficient Da:

a("a.
ja = -Dap e (2.8)
From equations 2.3, 2.7 and 2.8 the basic equation for mass transfer

in binary solutions follows:

n, = (na+nb)wa - Dp T (2.9}

In fact equation 2.9 defines the diffusion coefficient Da of component
a in a binary mixture. It can simply be proved that Da=Db=D'

Taking another reference velocity will change the separate
contributions of convection and molecular diffusion to the total mass
flux. In Table 2.1 a survey is given of expressions for the mass flux.
It should be realised that in all these equations the diffusion
coefficient D is defined according to equation 2.9. Further, all these
equations are equivalent, because they all describe the same mass
flux. However, in some special cases a sensible choice will lead to a

simplification of the flux expression, namely:

i} no net mass flux {(equimass) Pn, o+ = O = choose I
.M

ii) no net volume flux {equivolumetric) : Tti = 0 ~3 choose II

| a % |

iii) Stefan diffusion in =0 — choose I,II

’ : ‘ “III or IV

iv) no net molar flux {egquimolar) : Na + Nb = 0 — choose IV

Strictly, the equations of Table 2.1 only apply to binary one-phase
systems, however most drying systems are multi-component systems and

consist of more than two phases.



Table 2.1 Survey of expressions for the maesflux of

component a in a binary mixture.

reference

total _ convective diffusive
velocity mass flux flux flux
mass a
I average fa - (na * nb)wa - D dr
I volume n _[ 119_ + n._!_)’ - D 5k,
average a - da db Py or
dw
velocity ‘ - Ya _ b a
11 of b Ty =Ty l-ma l-va ar
ax
o molar T
v average Na - (Na + Nl:))xa De ar
Help equations:
Pa
1. PPy = P 2. ma=p—- 3. w =1
Ca
4. c:e‘-bt:b = C 5. Xy =5 6. xa-d-xb =1
7w=fg_ Pa ="a"’b
"a T p pa+pb 1+pa!pb

2.3 Mass Transfer in Real Systems.

In drying processes three types of systems can be distinguished:
maximum—-shrinking, partial~-shrinking and non~shrinking systems.

Her;ceforth it is assumed that shrinkage, if present, is isotropic

15

(e.g. the shape of a shrinking body does not change) and that partial

densities are constant.
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2.3.1 Maximum-Shrinking Systems.

Shrinking is‘ maximum if the volume decrease of the drying material
equals the volume of the removed moisture (Examples: sugar solutions,
milk, coffee extract, fruit juices)}. It is true that these systems are
seldom binary, however, with respecjt to the drying process they may be
considered as such with components ﬁoisture{m} and dissolved

solids{s). In these systems the volume balance reads:

p_s
d
s

Qol g‘b

+ =1 {2.10)

g

where pm/dm and ps/ds are the volume fractions of moisture and
dissolved solids respectively. Mass transfer of moisture and solids
occurs by means of convection and molecular diffusion, so the
equations of Table 2.1 may be applied. The basic mass transfer

equation now reads:

n = (n4n o - Dp § (2.11)

Because no pores are formed during drying, there is no net volume flux

in maximum shrinking systems. thus also:

n =-~D o ' ‘ ' (2.12)

An expression for the moisture diffusion flux j: with respect to the

solids velocity v_ is found as follows:
n_=pv_ +j° (2.13)
" Pn's T 9m

Also
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(2.14)

$=-22__n (2.15)

With the help equations of Table 2.1 this expression can be

transformed into:

s a(pm/ps)

2 =-p, 54— (2.16)

It should be noticed, that pm/pS is the so~called solids based

moisture concentration (kg m/kg s).

2.3.2 Non-Shrinking Systems.

Non-shrinking systems are characterized by a constant volume during

drying. This means that the volume of the moisture, which has been

removed from the system, will be replaced by an equal volume of gas.

(Examples: air-drying of ceramics and sand.)

During the drying process of such systems a capillary porous material

is built up, consisting of:

- three components Viz.tmoisture (m), solid (s) and air (a),

- several phases, viz. a solid matrix (S) with pores containing liquid
moisture (L) and/or moisture vapour (G) and/or air (G).

Mass transfer of moisture in capillary porous materials may océur by

several mechanisms [12,13], such as capillary liquid flow, molecular

diffusion, evaporation-condensation, surface diffusion, etc.. During a

particular stage of the drying process one of these mechanisms may
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dominate, but in general several mechanisms will be present
similtaneously. A fundamental description of mass transfer based on
all occurring mechanisms will lead to rather complicated physical/
mathematical models.

In a rigorous but more practical approach the non-shrinking material
is considered as a pseudo one-phase system with three components viz.
moisture{m), solid(s) and air(a). The volume fraction of the gaseous
components (air/vapour) is called the porosity e. Assuming that a
neglible part of the moisture is present as vapour the volume balance
reads:

Pn  Ps

I + = l-e (2.17)
m -]

Similar to a binary system the diffusion coefficient of this ternary
system is defined as:

awm
n = (nm+ns+na)wm - Dp - (2.18)
Because a certain volume of liquid (moisture) is replaced by an equal

volume of gas (air) the averaged moisture flux will be about 1400

times larger than the averaged air flux, therefore:

S
~ - =
n % (nm+ns)(»)m Dp T {2.19)

In non-shrinking systems a rigid non-moving solid matrix exists

(ns_—.O) . so that:

- 1-o_ or (2.20)
m
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and from equation 2.13:
n = j (2.21)

Taking into account that the solid concentration is constant (ps=ps,o)

and that

p_ P P

m m m

m ee— ~ 2.22
“m=p T o Aetp, | pthg (2.22)
equation 2.20 can be transformed into:
dp 3(p 7p.)

8 m MmO s

R - A (2-23)

From the above it can be stated that a non-shrinking system can also
be looked upon as a pseudo binary system {mts). However, it is not
meaningful to speak now in terms of equivolumetric mass transfer or
not, because mass transfer of moisture may occur both as vapour and
liquid. Further, the parameter D should be considered now as an
effective diffusion coefficient, in which the contributions of é\;eral

mass transfer mechanisms are lumped together.

_2___2}__.3 stems wi(th An ree Qf Shri €.,

Characteristicé of maximum-shrinking and non-shrinking systems are
summarized once more in Table 2.2. From this table it can be seen that
the same mass transfer equations apply for two extremes in shrinking
behaviour, so it is obvious to apply these equations also for

intermediate shrinking behaviour. Thus for all systems, regardless



Table 2.2 Comparison of mass transfer in maximum—shrinking
and non-shrinking systems.

MAXIMUM~-SHRINKING SYSTEM

NON-SHRINKING SYSTEM

mass transfer in one phase

mass transfer in more phases

pseudo binary system (mts)

pseudo ternary {(mis+gas)
or pseudo binary (mts) system

migrating components in
solution

migrating components may occur in

several aggregate states

two mechanisms of mass
transfer

several mechanisms of mass
transfer

volume balance:

volume balance:

Pn  Pq
d—+d—=
m s

1-&

equivolumetric mass tramsfer:

’nm ns
a—+d—=q
W &

non-moving solid matrix:

ns=0 and Pg = Pgo =

practical and thermodynamical-
1y meaningful definition of
the diffusion coefficient:

practical but thermodynamically
meaningless definition of the
diffusion coefficient:

constant

do_
n, = (o, + 0o, - Dp, o
equivolumetric ns.—.O and ps=constant
8p_ 8(p_/p_)
m. e m's
n,=-Dg— and g, =-Dp, —5
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their degree of shrinkage, equation I (see Table 2.1) is taken as the

generalized basic equation for mass transfer:

8w
n_ = (n o, - Dp a—rﬁ (2.24)

m
Because equations 2.13 and 2.14 are general, it follows that equation
2.15 gives a general relation for the diffusion flux with respect to

the solids velocity; applying equation 2.22 then yields:

a(p /p.)
s W' s
jm = - Dps 5 {2.25)

The generalized volume balance reads:

p. P

m.,'s

T = 1-e (2.26)
m s

where the porosity & not only depends on moisture concentration but
also on the degree of shrinkage. The relationship among porosity,
moisture concentration and degree of shrinkage will be worked out in
Chapter III.

Irrespective of the shrinkage behaviour, it appears that the basic

mass transfer equation 2.24 can also be transformed into:

n_ =-D p-ranl (z.20)

This result seems to be trivial, however it is not, because it can not
be seen beforehand that equations 2.24, 2.25 and 2.27 are also

consistent for systems irrespective their shrinkage behaviour.
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2.4 Simultaneous Heat and Mass Transfer.

For a description of the external mass transfer of a drying body one
has to deal correctly with the simultaneously occurring heat transfer
from the gas phase towards the body. A sophisticated approach for this
problem can be found in literature [8,9]. However, in this section
simple basic equations for mass and heat transfer in the gas phase

will be given.

2.4.1 Heat Flux and Heat Transfer Coefficient.

In most convective dryers heat transfer takes place to bodies
submerged in a relatively extended gas phase, mostly air. It is’
assumed that the resistance for heat transfer is concentrated in a
thin film at the interface i {Figure 2.1}. In this film, with
thickness 6}{’ the temperature of the gas phase increases from Gi at

the interface to 6, in the bulk.

Figure 2.1 Schematic representation

of film for heat transfer.

Consider now steady-state conditions for mass and heat transfer. The
heat flux g in the film consists of a convective heat flux caused by
the moisture flux and a conductive heat flux due to the temperature

gradient:

v s .ae’
q= nmcpv(e —61) - A A {2.28)




where cpv is the heat capacity of the vapour; the diffusive
contribution is written by analogy with the Fourier law of heat
conduction, however, the quantity A’is now the so called "turbulent
coefficient of thermal conductivity” or "Eddy Conductivity” [1]. It is
important to realize that A’ is not a physical property of the gas
phase, but depends on position, direction and the nature.of the
turbulent flow in the film.

Because of steady~state conditions equation 2.28 can now be integrated
between the limits r=0 (interface) and r=6H {bulk). In case of no mass
flux (nm=0) integration yields:

q = 51— (8] - 6) (2.29)

ar
=

O

The heat transfer coefficient a’ is defined according to:

&
H

1 dr

i J N {2.30)
0

and thus equation 2.29 now becomes:

q = a'(ei - 8.} {2.31)

For an adiabatic drying process (nm¢0) it is assumed that all the heat

reaching the interface is used for evaporation of the moisture, thus:

q + nmLi =0 (2.32)

where L1 is the enthalpy of evaporation at 9;.

Elimination of o, from equations 2.28 and 2.32 and next integration
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yields:
L Cov, £

q=- ln[l + 2 (g - e:)] (2.33)
c L, © i
pv,f i

where cpv £ is the heat capacity of the vapour at average film
conditions.

The effective heat transfer coefficient (aéff) is defined as:

a =l (8] - 8) ‘ (2.34)

Thus:

[+
£
. ln[l + B2 (g0 - e')]
%eff _ by, "= 8

a

o (2.35)
Vv, v +

c
In many practical drying situations —E—Y-—f- (60’0-9;) < 1 and a first
i

approximation of equation 2.35 is given by:

eff

1 %v.f o0
2 =1-§—2£‘;’——{em-e) (2.36)

i

Quite often it even holds that aéffx a’. It can be concluded now that
in many practical drying situations the influence of mass trans{""er on
the heat transfer coefficient o’ will be neglible.

Values of a’ are calculated from (semi-) empirical correlations for

heat transfer [1-9], which take in general the following form:

Nu = c1+<:2RenPrm (2.37)

ot




where Ru is Nusselt number, Re is Reynolds number, Pr is Prandtl
number, €y+Cg.m,m are {semi-)empirical constants. In Table 2.3 the

definitions of Nu, Re and Pr are summarized.

2.4.2 Mass Flux and Mass Transfer Coefficient.

Consider steady-state mass transfer from the surface of a drying
material to an unsaturated drying gas. It is generally assumed, that
the resistance for mass transfer is concentrated in a thin film close

to the interface (Figure 2.2).

!
; !
I
H | Figure 2.2 Schematic representation
% o :

A of film for mass transfer.

[
foT N
-t

The gas phase may be seen as a pseudo binary one-phase system with
components moisture{m) and air{a).
In a way similar to the heat transfer coefficient{8 2.4.1), the mass

transfer coefficient k' in the gas phase is defined by:

6M
1 dr
== 5 (2.38)

¥With shrinking systems no air is transferred across the interface.
With non-shrinking or partial-shrinking systems the air flux through
the interface will be negligible with respect to the moisture flux
{8 2.3.2). So, the mass transfer of moisture in the film can be

described as a Stefan diffusion process:



(2.39)

By integrating this equation a problem arises. In most practical cases
the moisture concentration will be very low, so that p' is hardl&
affected by the concentration. However, because of simultaneous heat
transfer a temperature gradient in thé film exists and p’ will be a
function of space r. Finding the space dependence of p’ is a rather
complicated problem. One can get around this difficulty by putting a
constant value p%, which is defined‘as the total concentration at the

»

average film conditions Gf and w%. where:

0;+6,, )+

0; = —5 and  ©; = —3 (2.40)

Integration of equation 2.39 now yields the expression for the mass

flux in the film:

* s miw
nm=k Py ln{——,——} {2.41)
The effective mass transfer coefficient kéff is defined as:

B = 2P} g = %) (2.42)

From equations 2.41 and 2.42 follows:

) l—wl;‘°°
koee L Toop
o s —— B (2.43)

mi ~ me



At not too high temperatures of the interface (e.g. eig 50 0C) the
moisture concentrations in the film will be very low (0$i<<1 and
surely wéw<<1 ) and a first approximation of equation 2.43 is:

Kegs 1

; (2.44)

and in many practical drying situations even: kéffz k'.

The mass transfer coefficient k’ is found from {semi-)empirical
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correlations, which can be obtained by analogy with the heat transfer

correlations (Table 2.2). In general, the correlations for
steady-state mass transfer to bodies, submerged in an extensive
fluidum take on the following form (see also equation 2.37):

Sh = cl+02RenScm (2.45)

where Sh is the Sherwood number for the gas phase and Sc is the

Schmidt number.

Table 2.3 Analogy between Heat and Mass Transfer.

heat transfer mass . transfer
number | symbol |definition| number | symbol! |definition
Nusselt Nu EXL' Sherwood Sh Eﬁi
Reynolds Re XEE- Reynolds Re X;;
p’ . v’
Prandtl Pr ar Schmidt Sc o
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CHAPTER III

GENERALIZED FORMULATION OF DIFFUSION EQUATION AND MASS BALANCE

3.1 Physical Model.

The physical model used in this thesis is based on the concept of a
concentration dependent diffusion coefficient, which accounts for the
fact that not all of the moisture is bound equally strong or through
the same physical mechanisms. Considered is the drying of shrinking
and non-shrinking bodies with the following standard geometries:

the infinite slab, the infinite (hollow) cylinder and the (hollow)

sphere.

Postulates underlying the physical model are as follows:

1. The particle has a uniform temperature, which does not change
with time (isothermal drying).

2. The particle consists of two or threé components:
- solid component (e.g. milk solids});
~ moisture component (e.g. water);
- gas component (e.g. air), replacing the removed moisture in

case of not completely shrinking systems.

3. Mass transfer in the particle, however, is regarded as a pseudo

binary diffusion process (moisture and solid), for which,

irrespective of the degree of shrinkage, the mass transfer



10.

11.

equations of §2.2.3 may be applied.
The moisture diffusion coefficient depends on the moisture

content; for practical calculations a power~law relationship is

proposed. The temperature dependence of the diffusion coefficient

can be described by means of an Arrhenius type relation.

The volume reduction of shrinking systems is:

- linear proportional to the moisture loss;

- isotropic {no deformation of the bedy):

~ homogeneous (the local porosity in the moisture free solid is
independent of the space coordinates).

The partial quantities {e.g. densities) of the constituting

components are independent of the changing composition.

The moisture flux towards the gas phase, enclosed in hollow

bodies, is assumed to be zero.

The size of the enclosure, in case of hollow bodies, remains

constant.

Diffusion can be described by using only one space coordinate.

Drying starts with a body of homogeneous composition, not

considering the hollow core if any.

The external boundary condition is determined by the equilibrium

sorption properties of the material being dried and the

conditions of the gas medium carrying off the moisture. Two

special cases will be considered:

- constant surface water activity (e.g. in case of non—shrinking
bodies this means a constant surface flux);

-~ constant surface water concentration (e.g. surface of the

drying body close to equilibrium with the external gas medium).
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3.2 Mathematical Model.
The diffusion equation describing moisture transfer follows from a

mass balance over an infinite small shell volume:

Partial differentiol equation:
ap
m 1 4,0
3t = " arl’ "w) (3.1)
by

Initial condition:

=0 Rl <r< R2(0) P = Pno (3.2)
Boundary conditions:
©0 r =R, ?_(_21:__/.’.’.?_) =0 (3.3)
r = Ry(t) P = Py (t) (3.49)
or
-Dpsf£§$ff§} = Jps (V) (3.5)

in which P is the volume based concentration of the moisture {kg/ms};
t is time (s); r is the space coordinate (m}: R, is the fixed internal
radius of a hollow cylinder or sphere {see Figure 3.1); in case of a
one sided drying slab R1=0; R2(t) is the tdynamic) external radius of
the (shrinking) body at time t; n is the moisture flux at space r
(kg/mzs) with respect to stationary space coordinates; j:i is the
moisture flux through the external interface (kg/mzs); v is the
geometry parameter, with

b

"

0 infinite slab

v 1 infinite massive or hollow cylinder

"

p o= 2 massive or hollow sphere



ot - — - —

T
R, +Rg R, (t) R2,0

0 R

1
Figure 3.1 Illustration of the boundary planes for

{non-)shrinking hollow cylinders and spheres.

3.3 Dimensionless Diffusion Equation.

The mathematical transformation of the diffusion equation (egns.
3.1-3.5) into a dimensionless form is described in Appendix A. Similar
transformations for maximum~ and non-shrinking systems have been given
by Schoeber [23], Liou [28] and Van de Lijn [21]. In this thesis their
work is generalized to massive and hollow systems with any degree of

shrinkage. The transformation of the diffusion equation results in:

Generalized partial differential equotion:
mn & dm ‘
ar = a—cﬁwrxz Kol (3.6)

Initial condition:

7T =0 o<1 m=1 (3.7)
Boundary conditions:
r>0 b=0 xg-'“@zo (3.8)
b=1 m o= m (3.9}
or

-D X, (3.10)

3
::1




The various (dimensionless) parameters and the shrinkage model used

are explained in the following sections.

3.3.1 Mass Concentration.

The solids based moisture concentration u is defined as kg moisture

per kg dry solid (kg w/kg ds), so that:

3

u=-2 (3.11)

A

The dimensionless concentration m is defined as:

with 0 {m < 1 , (3.12)

in which v is the ratio of the volume fractions of moisture (pm/dm}

and solid (ps/ds), expressed by:

d p d
s “m s

[ . A ‘ (3-13)
4, Ps dm

In this expression dS and dm are the partial densities of solid and
moisture respectively. It is assumed that the partial densities are
independent of composition and are equal to the densities of the pure
components (dm=dmp Vo
the averaged value as v and the equilibrium value as Vier Vi is some

R dszdsp). The initial value of v is denoted as

arbitrary reference value, e.g. the value where the diffusion

coefficient is practically zero, or the equilibrium value Vie:
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3.3.2 Space Coordinate.

The dimensionless solids based space coordinate § is defined as:

T »
f p_ridr
R, S
¢=R1— with0 < G ¢ 1 (3.14)
2 v
f€p_rdr
RS
1
This space coordinate is based on a ratio of amounts of dry solids.

Introduction of this space coordinate turns a dynamic external

boundary (r=R, .) into a fixed one (=1).

3.3.3 Diffusion Coefficient.

The dimensionless diffusion coefficient Dr is defined as:

X (3.15)
Do"so

in which D is the actual diffusion coefficient (m2/s); D0 represents

the value of the diffusion coefficient at Pro

3.3.4 Time,

The dimensionless time T is defined as:

2
= DOPSO t
- 2
(ds,apRs)

(3.16)

S ——
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where the solid radius Rs is the thickness of a one sided drying slab
or the thickness of the shell of a hollow body if all the water has
been removed (5:0); ds ap is the apparent density of the moisture free
(porous) solid; it will be obvious that d_ ap will depend on the

degree of shrinkage and the initial moisture content. In general it is

true that @

Pso $ ds,ap < dsp

and Rg.p S Rg SRy oRy (3.17)

3.3.5 Hollowness Factor.

The hollowness factor A of the drying body is defined as:

1
)\=-R—+—R"" with O ¢ A1 (3-18)

By this definition the hollowness factor A remains constant during
drying. For massive bodies A=0; if A=l the shell thickness of a hollow
body is extremely thin with respect to its external radius. so in case
of A-values approaching 1 the hollow geomeiry tends to be similar to
the slab geometry. For this reason the solids radius RS of hollow
systems is based on the dry shell thickneés and not on the dry body

radius, as is done by Schoeber [23].
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3.3.6 Flux Parameter.

The dimensionless flux parameter F is defined as:

i, d R
ml S, a] S

F = (3.19)

2
DoPso(Uoy)
During drying the flux parameter F will only change if j:i changes,

because all other quantities in equation 3.19 are constants.

3.3.7 X-parameter.

The definition of the X-parameter is given by:

Z d e
X = (yI2 [\, (1avtlyg ] 4] (3.20)
1A+ $.8p g P

and Xi follows by putting ¢h1 in the above equation. The physical
meaning of Xi will be explained in § 3.4.

The X-parameter still contains the volume based concentration Py The
relation between Py and P depends on the porosity of the material and
therefore p, can only be expressed in terms of the dimensionless

concentration m if the shrinkage behaviour is known (see § 3.3.8).

3.3.8 Shrinkage Model.

Quite often the volume V of a material is a linear function of the

average moisture content [44], which is expressed by:

V = V_(1+ov) (3.21)
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where the solids volume VS is the moisture free volume of the
material; v is the ratio of the averaged volume fractions of moisture
and solid (eqn. 3.13); o is the shrinkage coefficient, which is
actually defined by equation 3.21.

The solids mass balance reads:

PV =dg Ve (3.22)

so from equations 3.21 and 3.22 follows:

d

=22 o J4ov (3.23)
Py

For non-shrinking systems ps=pso=ds,ap' so 0=0.

For maximum-shrinking systems the volume balance reads:

PP
m ]
E— + E‘ =1 (3'24)
m s
or
dS _
— = 1l+v (3.25)
Ps
Because now d =d _=d it follows that o=1.
s sp s,ap

In general, for drying bodies with constant partial quantities the
shrinkage coefficient will obey to 0 { ¢ < 1.
Assuming that shrinkage occurs isotropic and homogeneous and that o is

independent of moisture content, equation 3.23 will also be valid for

local concentrations. Therefore:



= l+ov (3.26)

and the expression for the X-parameter now becomes:

v

@ —
X = (1)l [;3’“1 + (17 f{1+av)d¢}”*1 (3.27)
1A 0 «

where v can be expressed in terms of the dimensionless concentration m

by (eqn. 3.12):
Vvt (vo— #)m (3.28)

The Xt"mrameter follows from equation 3.27 with ¢=1:

2]

p+l, ~|p*1
Xi = Xi,a:() [1 + {(1-A )ov] {3.29)
where:
1-A . .
Xi.o:O = (v+1)1—>\T (330)

3.3.9 Generalized Biot Number.
J

-]

mi in equation 3.19 must also obey the mass transfer equation 2.4l in

the gas phase:

s
m

1-w
3pg = K'p; ln[ e ] (3.31)

The moisture activity o, for ideal gas mixtures is defined as:
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Po . P
a =9 = . (3.32)
m, sat pm,sat

where Pm is the partial pressure {N/mz} of the moisture in the gas

phase, P

m. sat is the saturation pressure of the moisture at the given
. :

temperatures; p& and p& sat 2re moisture concentrations (kg/m3) in the
gas phase.
The mass transfer coefficient (k"), based on a difference in moisture

activities, is defined by:

8

Jpg = k"(ami ~a ) , (3.33)

‘meo

From equations 3.31 and 3.33 it can be derived that for constant
k’~values the value of k" will remain constant only if the temperature
remains constant.

Substitution of expression 3.33 into equation 3.14 yields:
F= B.i‘mi (3.34)

where Bi is the generalized Biot number, defined as:

vk d, R
Bi = - , (3.35)

DoPso

in which + follows from the equilibrium relation a versus u {sorption

isotherm; see Figure 4.1):

Y = ——ml LiLi (336)

ui—u*

Substitution of equation 3.34 into the external boundary condition
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3.10 yields the most general formulation of the external boundary
condition. In chapter IV it will be elucidated that this condition
sometimes may be formulated as a constant surface flux or as a

constant surface concentration.

3.4 Mass Balance and Drying Time.
The moisture balance over the drying body during a time interval dt

reads:
s - - -
Jmi Adt = -psV d(pm/ps) (3.37)

where A is the mass exchanging area and V is the {shell-)volume of the
drying body.
The averaged drying efficiency E is defined as the fraction of

moisture removed:

E=-2 =2 _1& (3.38)

FX,dr = dE (3.39)

where

Ad R AR
X, = 22 e (3.40)

i —
psv s

It can be proven that Xi according to equation 3.40 equals Xi
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according to equation 3.29. However, equation 3.40 offers a better
insight in the physical meaning of Xi' One con visualize Xi as the
ratio of the solids volumina of a slab and the actual body, both with
the same external area A and the same solids rodius Rs' Thus for slabs
it simply follows that Xi=1’ which is in agreement with equation 3.29.
Further, during a drying process Xi wil only change if the surface
area A changes, because Rs and VS will remain constant. In this view
Xi may be looked upon as o dimensionless surfoace area.

Integration of equation 3.39 gives the basic equation for the

calculation of the drying time:

[a
[e3]

(3.41)

~
U

(= N o)
A

It is obvious that the drying time can be calculated if both F and Xi
are known as functions of E.
The relationship between Xi and E is given by equations 3.29, and

3.38. These equations can be rearranged to:

12}
X, = X, (1-sE)”*! (3.42)
in which
v
+1 +1
Xio = Xi‘o=0 [l+(1-Av }O'VO]D (343)
and
(12" Hatvy-v,)
s = — (3.44)
1H+(1-A )ovo
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The parameter s is a modified shrinkage coefficient, which indicates
to what extent the shrinking properties of the material will influence
the drying behaviour, e.g. a material with a low initial water content

Yo will hardly shrink any more even if o has a high value.

The relationship between F and E is far more complicated to be found

and the following chapters of this thesis are dealing with this

problem: 7

Chapter IV: non—shrinking systems {o=0)} with a concentration
independent diffusion coefficient (Dr=1)'

Chapter V: (non-)shrinking systems (0<o<1) with a power law

dependence of the diffusion coefficient (Dr=ma).

3.5 Summary of Generalized Diffusion Equation, Mass Balance

and Definitions of Dimensionless Parameters.

Generalized partial differential eguation:

om @ 2 dm
ar = P a9/

Initial condition:

T=0 o¢<det m

H
.

Boundary conditions:

T>0 b=0 X
b=1

32

1
8

or

"Drxi % =F
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Mass balance:
E
FX.dT = dE —_ T = I dE—
i FX.
0 i
L
v+l
Xi = Xio (1-sE)
L
v+l v+l
X0 = %4,0-0 [1"(1’7‘ )""0]
1-A
X, = (v+l)—————
i,o=0 1__)\v+1
+1
(1-A"" Yo (vgvy)
s =
1+(1-)\v+1)crvo
Summary of definitions:
2
. . pm diffusion . Dps
concentration: u = — P : D
P coefficient r g 2
0Ps0
2
d d Dp .t
concentration: v = d_s_ ML d_s u time T = 0"s0 5
m's m (d R )
s.ap s
u -y v -V V.-V
concentration: m = " —u# =3 -v# 2‘;??2%220 : E = vo- = 1-m
o' Vo 's y 0 V#
f
p rdr
R, S 3. d R
space D= 1 flux : =M _s.ap s
coordinate R2 » parameter = D 2 (uu,.)
[ o rVdr ™
Ry
R ~ k" d R
hollowness A= 1 Biot number: Bi = S.ap s
factor R1+Rs D 2
0Ps0

b
X = (v+1)1—:T [7\"” + (1AM z(lw'v)dd)]vﬂ
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CHAPTER IV

NON-SHRINKING SYSTEMS WITH OONCENTRATION INDEPENDENT DIFFUSTION

CQOEFFICIENT

4.1 Diffusion Equation in linear y—Coordinates.

For isothermal drying of non-shrinking bodies with concentration

independent diffusion coefficient analytical solutions of the

diffusion equation can be obtained. In order to find these solutions

45

we depart from the dimensional diffusion equation (§3.2), which in a

form adapted for this case reads:

Partial differential equation:

Initial condition:

t=20 R1 <r« R2

Boundary conditions:

t >0 r‘=R1
r=R2

or

(4.1)

(4.2)

(4.3)
(4.4)

(4.5)




Table 4.1 Summary of parameters for non-shrinking system.

p_-p «
concentration: m = —— e (4.6)
PGP
v+l _ R11)+1
space S e (4.7)
2 1
diffusion _b_
coeffictent = D= D, | (4.8)
Dot
time : T = 5 (4‘9)
(Rz_Rl}
hollowness Rl
factor A= R, (4.10)
i (R.-R,)
flux F o omi R’y (4.11)
parameter Do(”mo"’_mx) .
k"( .'R )
Biot number : Bi= —— _% (4.12)
Ps0 0 ,
local Pro P
E'= = 1 R
effictency P oo P m {4.13)
average . E = P00 P - (4.14)
efficiency Pro P
p+1
X = xi,ot__o[hv+l+(1-7\”+1}¢] v (4.15)
A(R,R,)
1 1-A
157V " Koo = (DT (4.16)
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Non-shrinking systems are characterized by 0=0 and pszpsozds,ap'
Choosing the equilibrium concentration as reference value (m#zm*), the
dimensionless parameters as defined in Chapter III now become as given
in Table 4.1.

In the literature no solutions are found in terms of a volume based

space coordinate {§), therefore a dimensionless linear space

coordinate (y} is introduced:

r —R1
y = Rz_Rl (4.17)

Substitution of the dimensionless parameters into the equations
4.1-4.5 gives, in case of a constant diffusion coefficient (D=D0. s0

Drzi). the following diffusion equation in linear y-coordinates:

Partial differential eguation:

am_ 1
o " I (1ay1”

Initial condition:

& (D+av2” 3 (4.18)

=0 0<Ky<1 ‘ m=1 {4.19)

_ Boundory conditions:

m
>0 y=0 ‘é’;zo (420)
y =1 m=m (4.21)
or
Sm
- m = F R
3y (4.22)

From the analytical solutions of the above differential equation
{implicit) expressions for the drying time 7 as a function of the

average efficiency E can be derived. In the short-cut approach, as
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will be described in this chapter, {(explicit) expressions for t versus

E are obtained from the integration of the mass balance:
E ‘ :
dE
T = X-. é _F (423)

The integration requires the relationship between fluxparameter F and '

average efficiency E. Finding approximate equations for this

relationship, which appears to depend on the drying stage, is the main

theme of this chapter.

4.2 Drving Stages.

Let us assume an adiabatic drying process with constant external
conditions, which means constant temperature 9;, constant humidity
co';w, and constant mass transfer coefficient k'. Further, assume that

the initial concentration Uy of the material is such, that the

corresponding equilibrium moisture activity a. approaches 1 (see

Figure 4.1). Thus, after a relatively short time the material will

take on the wet bulb temperature. For a drying system one can safely
assume that at the interface the thermodynamic equilibrium relation
a versus u {sorption-isotherm) holds. Thus the local values at the

interface (ui.am} can be obtained from Figure 4.1.

The moisture flux ,js. through the interface, expressed in terms of gas
mi

phase conditions (82.3.2), reads:

1-w’ '
s Cals s me
Spi = k Ps ln{—l_{%i] {(4.24)

As long as the surface moisture activity a . remains nearly constant



——
0.9 4 m mm l
4 I !i
T |
a 1 i&iv ‘ I |
T I | {
T i |
T 1/l l
T i/ ! |
a —
T /| | I
00 ‘l* | '“Ilcr 7 ‘;0
Em—, ] = ;21- [kg m/kg s]
s
Figure 4.1

Schematic representation of a sorption—isbtherm and some

characteristic quantities (for explanation see text).

Main Drying Stages:

I ! nearly constant surface moisture activity
{constant boundary flux for non-shrinking systems)

II i decreasing surface moisture activity

IIT : nearly constant surface moisture concentration

{constant boundary concentration)



50

(e.g. amizo.g), then

i will remain nearly constant (see eqn. 3.32)

and therefore the boundary flux j;i will remain nearly constant as
well.

This first drving stage (I), often referred to as the "constant flux
period” or “constant activity period”, is fully controlled by external
conditions: the drying material behaves almost like pure moisture. For
the boundary condition of the diffusion equation at y=1 (eqn. 4.22)
now holds:

F = Fca X constant

The end of the constant activity period is arbitrarily defined at
ami=0.9 .At this moment the surface moisture concentration has reached
the so called critical value L From now on the surface moisture
activity starts to decrease significantly and drving stage IT has
started. It will be obvious from equation 4.24 that the boundary flux
will decrease. Consequently, the temperature of the drying material
gradually increases towards the dry-bulb temperature. The boundary
condition of the diffusion equation at y=1 is now given by equation
4.22, with:

F = Bi.mi

For a non-shrinking system the Biot number is given by equation 4.12;
the value of v follows from the sorption isotherm. If, in the
concentration interval of interest, the sorption-isotherm may be
approximated by a linear relationship (+*constant) and k" does not
change too much despite of an increasing gas film temperature, then
the Biot number will remain nearly constant during drying. However, in
most practical drying situations this will not be the case.
Arbitrarily, drying stage II ends and drying stage III starts ,when
the sﬁrface concentration reaches a nearly constant value (e.g.

m, < 0.1). During this final drying stage, often referred to as
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"constant boundary concentration period” or “zero boundary
concentration period”, the relative changes in the surface
concentration u, with respect to the maximum aftainable change (uo—u*)
remain small. The boundary condition for the diffusion equation is now
best given by equation 4.21, with: m, ~ 0.

During this final drying stage the temperature of the material

gradually increases until, in case of complete equilibrium, the

dry-bulb temperature has been reached.

Each of the three main stages can be split up into two substages,
namely:
- Penetration Period, during which the centre concentration changes

hardly from the initial value (e.g. Mentre

> 0.9).
- Regular Regime, during which the centre concentration changes

significantly from its initial value {(e.g. m < 0.9).

centre
Not all six possible drying stages can occur during a drying process.
The occurrence of drying stages depends on the initial conditions
{especially the starting flux) and the physical properties of the
material (especially the sorption-isotherm). In Figure 4.2 two
examples are given to illustrate the subsequent occurrence of stages

during a drying process.

This thesis only deals with the drying stages I (nearly constant
surface activity) and III1 (nearly constant surface concentration);
drying stage II (decreasing surface activity) was not investigated
{see §1.4).

As a first physical approximation a constant surface activity for
stage I and a constant surface concentration for stage III are assumed

in the remaining part of this thesis.



52

m— B
o o

-4
‘3
.2
.1

i) :

o .1 .2 .3 .4 .5 .6 .7 .8 .8 1

=y =}y
high initial flux (Fca=4) | low initial flux (Fcazl)

Figure 4.2 Two examples of the subsequent occurrence of drying stages
for a non-shrinking slab with a constant diffusion coeffi~-

cient (PP=Penetration Period; RR=Regular Regime).

4.3 Drying Stage with Constant Surface Flux.

The end of this drying stage is defined as the moment, where the local
drying efficiency at the interface has reached the critical value
Ei or’ the corresponding average critical efficiency is denoted Ecr'

The drying time follows from the integrated mass balance:

(4.25)

The duration of the constant activity period Tea follows from equation
4,25, if Ecr is known. Values of Ecr decrease with increasing values

of the constant flux parameter Fca. The relationship between Ecr and

e et
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Fca’ the so-called "critical-point curve”, depends on the critical

surface concentration Ei or” The value of E; er is derived from the
sorption-isotherm; next the critical-point curve is known from the
relationship among E, Ei and Fca; for this the diffusion equation has

to be solved.

4.3.1 Analytical Solutigg§_(£ca5_ggg§£gg£l.

The solutions for the massive systems and hollow cylinders can be
found in literature [37-39]; the diffusion equation of the hollow
sphere was solved by Bosch [40]. Here the solutions are given in two
different ways: one obtained by solving the diffusion equation via
separation of variables and the other obtained via Laplace
transformation. In Appendix B the solutions for massive and hollow
systems, obtained by separation of variables, are given. In this main

text only the solutions for massive systems will be presented.

Slab_(v=0)

Via separation of variables:

12 1 © cos(my) exp(-uif)
v - & 2 f cos(uk) ui v (4.26)

|

N
{i
-‘
+

in which M, are the positive roots of the characteristic equation :
sin(uk) =0, thus p = kwr and cos(uk) = (—1)k.

Via Laplace transformation:

t

: D[ —(2kel-y)2  Zktl-y Okt 1—
=22 [exp( T ) T T U erfe(Sh) ¢

ca

I

2
exp(_(Zk;i+Y) ) - 2§$¢+y Var erfc(ggséizo] (4.27)
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Massive cylinder (v=1)

Via separation of variables:

® Jolny) exp(-ui'r)
T2 T 2
1 Yo\ M

2

1 :
3 (4.28)

&"JJ:H

%’—:.*21'-!-
ca

in which M are the positive roots of the characteristic equation :
Jl(p.k)z 0; Jo and ‘Jl are Bessel functions [41] of the first kind of
order O respectively order 1.

Via Laplace transformation:

%i—a- =2 % ierfc(%) + l% TW‘ izel‘fc(‘é_:g‘) +

2 -
9+3:13x6y+62 TVr i3erfc(%£) P (4.29)

Massive sphere {(v=2)

Via separation of variables :

B 12 3 g% sin(my) ep(-pr)
F—c;-.—. 3’3‘4’? - E_;f Sin(u«k) uﬁ (4.30}

in which W, are the positive roots of the characteristic equation :

Via Laplace transformation:

*

=

% ;-; [eXp[‘(l—y)+7] erfe(3F V) - erfc(%)] (4.31)

N

ca

This latter solution is an approximation. The exact solution can not

be found, because of an unsolved back transformation from the Laplace




domain [40]. However, the given approximation appears to be quite
close to the exact solution, obtained via separation of variables

{egqn. 4.30).

4.3.2 Penetration Period (F ca™ constant).

At sufficiently small 7 values the concentration profiles are not yet

penetrated into the centre of the system, in other words : the centre
concentration has hardly changed from its initial value. During this
period, which is called "Penetration Period with constant boundary
fFlux”, the concentration profiles are independent of the hollowness
factor A.

The solutions, obtained via Laplace transformation, reduce for low T
values to the first term of the series. Nevertheless, a fairly
complicated expression remains, which can be further simplified by
developing the exponential—~ and error functions in infinite series
[41], which in their turn reduce to a few dominant terms for small v
values. The following expression appears to be a very good
approximation for the surface efficiency (maximum deviations about 2%

for T £ 0.15):
i 2 +2 2 +2 3.2
A= e By 20210y + (20 *H? (4.32)

For extremely small 7 values, equation 4.32 reduces to:

)

i

= %; vr (4.33)

X

ca

Thus, for this extreme situation E%/Fca only depends on T and is

independent of the geometry parameter v and the hollowness factor A;
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in this respect all massive and hollow systems behave like a slab.

Elimination of 7 from equation 4.33 by means of the mass balance (eqn.

4.25) gives :
I:cazc T Ei
E;" =3X 00 F {4.34)
We now define a G-parameter

F E

$ E’
L (4.35)
i

From equations 4.34, 4.35 and 4.36 follows the initial value GO:

Gy =1limG = limG
-0 E-0

i}

e

(4.36)

It can be concluded that the Go*parameter is independent of geometry
and hollowness, in other words: the Go parameter may be looked upon as
a gquantity expressing that all hollow and massive geometries behave

like a slab geometry at 7-0.

For small 7—values. elimination of T from equation 4.32 and the mass
balance {eqn. 4.25), yields a rather complicated expression. A better
approach is based on finding a correlation of the exact calculated

values of Fcafgi versus E;/E , which appears to be a nearly straight

line :

g

Ea
ca i
w = GOX’I.U=O[E~ - Ct] (437)

L g e
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in which for the correlation parameter a the following relations can

be obtained by fitting:

For a slab ta=0 {4.38a)

For a cylinder: a = 0.60-0.12x-0.31A2-0.17A> (4.38b)

For a sphere :@ o = 0.76—0.08A+0.04A2—0.72R3 {4.38¢)

Note that equation 4.37 can also be expressed as:

G = G (1-a &) (4.39)
= Gy E] .

and a can also be found by putting G versus E/Ei.

4.3.3 Regular Regime (F_= constant).

At sufficiently high T values. in case of low drying drying rates, the
solutions obtained via separation of variables degenerate to a very
simple form, because all terms in the series are negligible small
compared with 7. During this drying stage concentration profiles are
parabolic and decrease linearly with time (see Figure 4.2).
Irrespective of the values of the constant surface flux and the
initial moisture content, eventually the concentration profiles will
take on the parabolic shape. This drying stage is called “Regular
Regime with constant boundary flux”.

From equations 4.26, 4.28 and 4.30 the following expression for the

surface efficiency can be derived:

(o}

A .
P~ 0T (4.40)



58

Elimination of T by using the mass balance {egn. 4.25) gives:
Foy = (v#3)(E;-E) (4.41)

Defining the mass transfer coefficient kd for the dispersed phase as

follows:

35t = kg(PyPuy) - (4.42)

or in a dimensionless form:

k. (R,-R,) _
= dn.% (m-m,) (4.43)

and defining the Sherwood number for the dispersed phase according to:

2k (R,-R.)
Shd = _g_l_ (4’44)
D
}
[
gives :
1 -
F = §Shd1)r(m-mi) (4.45)

where ﬁr is an average reduced diffusion coefficient, defined as:

= _D
Dr =§F = (4.46)

4] m-m,
. i

For concentration independent diffusion coefficient ﬁr=Dr=1 equation

4.45 can be written as:
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1 .
F = 56h (E;-E) (4.47)

For massive geometries the following simple expression for Shd can be

derived from equations 4.41 and 4.47:
Sh, = 6+2v (4.48)

In a similar way the following expressions for Shd can be cobtained in

case of hollow cuylinders:

a3y (1-2)>

Sh, = 8 (4.49)
477 (-a2)ys3-ain )t
and for hollow spheres:
2.2
shy = 10 ALNR)_ (4.50)
1+3A6AT+5N

Thus, during the Regular Regime with constant boundary flux Shd takes
on constant values (eqns. 4.48, 4.49 and 4.50).

In Table 4.2 values of Shd are summarized. For a hollow geometry the
values lay between those of the massive geometry (A=0) and the slab
geometry (A-1}.

It appears that equations 4.48-4.50 can be combined into one single

handy relation:

Sh, = 6 + 2»

4 (4.51)

14 2.15-0.18v
]

[Xi ,a=0

Only the exponent in this equatien is a correlation parameter,
obtained by fitting of the exact values. Deviations between

approximate and exact values are less than 0.3% (see Table 4.2).
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Tabel 4.2: Values of Shd during Regular Regime with

constant boundary flux (Dr=1’ o0=0).

cylinder(v=1) sphere (v=2)
exact approx. exact approx.
A (eqn.4.49) [(eqn.4.51)|[(eqn.4.50) [(eqn.4.51)
0 8 8 10 10 massive
0.05 7.638 7.642 9.504 9.480 T
0.1 7.341 7.347 9.026 8.999
0.2 6.898 6.890 8.179 8.165
0.3 6.594 6.591 7.503 7.504
0.4 6.383 6.377 6.993 7.002
0.5 6.236 6.230 6.622 6.633
0.6 6.136 6.130 6.360 6.372
0.7 6.069 6.066 6.185 6.195
0.8 6.028 6.026 6.075 6.083
0.9 6.006 6.006 6.017 6.021 4
1 6 6 6 6 slab (v=0)

4.3.4 Transition from Penetration Period to Regular Regime
LEca= constant).

At high values of Fca/Ei the Regular Regime correlation (eqn. 4.47)

gives too low values of the drying time; at low values of Fca/Ei the
Penetration Period correlation (eqn. 4.37) predicts too high values of
the drying time. The transition (T) is chosen nearby the value of
Fca/Ei where the difference between the drying times, obtained from
the two correlations, is minimal. Based on the exact solutions of the
differential equation, it appears that the transition criterium can be

formulated as:

Fca 2 '
[E—] = 1.5-A+\ (4.52)
i T

For values of Fca/Ei larger than this criterium the correlation for

the Penetration Period should be used, whereas at lower values the
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correlation for the Regular Regime should be applied. Thus, the two
drying periods are short-cut in a simple way: stepping over from the
one correlation to the other at a specific value of Fca/Ei‘ The
maximum error in the predicted drying time occurs at this transition
point. By allowing maximum errors of about 4% the transition criterium
could be formulated indepent of the geometry parameter b.

Because initially Ei:O and thus Fca/Eiﬁw, every drying process with a
constant boundary flux will show a Penetration Period. However, at
sufficiently high drying fluxes the surface efficiency will reach the
critical value Ei.cr before the concentration profiles are penetrated
into the centre of the material; from the transition criterium follows

that this will bappen if:

2 .
F, 2 (1.5-MNE] : (4.53)

In these cases no Regular Regime with constant boundary flux will

succeed the Penetration Period (see Figure 4.2).
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4.3.5 Algorithm for Short-Cut Calculation 1Fca= constant).

An algorithm for calculating T and E from given values of v, A, Fca

and Ei could take on the following form:

begin {short—cut algorithm, Dr=1' 0=0, F=Fca}
read(v.}\,Fca,Ei)
Fca. 2
if e 2 1.5-A+N
i
then {Penetration Period}
calculate a from equations 4.38a-4.38c
calculate E from equation 4.37
else {Regular Regime}
calculate Shd from equation 4.51
calculate E from equation 4.47
calculate T from equation 4.25
write(r,E)

end.

Comparing this short-cut calculation of T and E with the exact
calculation method ,reveals that the maximum errors in v and E occur

near the transition point and are less then 42!}

4.4 ing S with Constant Surface Concentration.

Assume a sufficiently high initial flux, so that the moisture
concentration profiles hardly have penetrated into the drying material
at reaching the condition of nearly constant surface concentration

(stage IIT). Consequently, the moisture distribution in the material

still will be nearly uniform and the drying time of the preceding




stages I and II will be negligible with respect to the total drying
time of the material. During drying stage III the drying flux willi
 decrease continuously and in case of an isothermal process the drying
time should be calculated using equation 4.23 . The relationship
between the flux F and the efficiency E has to be obtained from the
{analytical) solution of the diffusion equation. For the situation as
described above, the diffusion equation 4.18 is solved with a uniform

initial concentration and a zero boundary concentration.

4.4.1 Analytical Solutions ‘mi= 0}.

The analytical solutions for massive and hollow systems with zero
boundary concentration can be found in literature [37-39] and are
summarized in Appendix B. In this main text only the solutions for

massive systems are presented.

Stab {v=0

° 2
Ee 19 3 cos(iyy) exp(-u 1)

1 sin(uk) Py

(4.54)

in which w, are the positive roots of the characteristic equation

cos(iy )=0; thus “k=(k”'%)”’ and Sin(uk)=(-1)k+l.

Massive Cylinder (p=1)

® Joliy) exp(-ur)

E'=1-2 3
1 J10) By

(4.55)

in which J, and J1 are Bessel functions [41] of the first kind of
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order 0 respectively order 1; M, are the positive roots of Jo(uk) = 0.

A quite well approximation of the first six roots is given by

uk=2;4048+(k~1)r with deviations { 0.5% .

Massive re [(p=2

2
) o ® sin(uy) exp(-4T)
BT (T R

(4.56)

in which W, are the positive roots of sin(uk)=0: thus pkzkw
and cos(uk)=(-l)k.

From the above solutions the following expressions for the flux and

the efficiency can be derived :

F= -{%)yﬂ = (%5},:1 -23 exp(2T) (4.57)
and
2
® @ exp(~i, T) v
1-E = [ FX; __odr = 2(v+1) 3 Tuk (4.58)
T T 1 M

4.4.2 Penetration Period (mi= 0).

At small r-values concentration profiles have not yet penetrated into
the centre of the material and a slab may be looked upon as an
infinite body. Moreover, cylinders and spheres behave like a slab in

case of extremely small r-values {r-0). For these situations quite a

number of terms of the series solutions {(eqns. 4.54-4.56) is required.

A simple short-time solution can be obtained from the analytical

P O ——

e e oo
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solution of the diffusion equation for infinite slabs (~%<y{1) with a
homogeneous initial concentration and a zero boundary concentration

[373:
E'= 1-erf(i¥-) ‘ (4.59)
er 2‘/"

For the flux follows:

F= (-%53,:1 = 3(—;7—) (4.60)

and for the drying efficiency:

v vir
E= é FX, o087 =2 o7 , (4.61)

Elimination of v from equations 4.60 and 4.61 gives the relation

wanted between F and E:

F =

ERIN]

X

i,0=0 (4.62)

(G

This equation is valid during the entire Penetration Period of slabs,
but for cylinders and spheres, as already mentioned, only for extreme
small r-values (%40).

Applying the definition of the G-parameter (éqﬁ. 4.35) now gives

(realise that mi=0, thus E;:l):
2
Gy =7 (4.63)

and it appears that also in this situation GG is independent of

geometry and hollouness.
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The entire Penetration Period for all hollow and massive geometries

can be described very well with the correlation:

oo b4 e

in which for the correlation parameter 8 the follqwing relations can

be obtained by fitting: -

For a slab t =0 : {4.65a)
For a cylinder: B = 0.71-0.13A-0.58\> (4.65b)
For a sphere : B = 0.88-0.08A-0.08A2-0.72\>  (4.65c)

In terms of the G-parameter equation 4.64 reads:
G = Gy(1-BE) (4.66)

It can be concluded now, that penetration processes with both constant
boundary flux and constant boundary concentration can be described in

a similaor way.

4.4.3 Regular Regime (m = 0).

At sufficiently bigh r-values the analytical solutions of §4.4.1 can
be approximated quite well by the first term of the series. The
concentration profiles take on the shape of a cosine, Bessel or damped
sine function and decrease exponential with time. This shape no longer
changgs {similarity of concentration profiles} and the drying
behaviour has become independent of the initial conditions; sooner or
later, every drying process will arrive at this drying stage, which is

called: "Regular Regime with constant boundary concentration”,




The Regular Regime solution for the flux reads:

2
F = 2exp(—u1T) (4.67)
and for the efficiency:

2
exp(-1;7)
1-E = 2(v+])——5— (4.68)
"1

Elimination of 7 from those two equations gives a simple expression

for the relation between F and E :

2
1
F = =q(1-E) _ (4.69)

Analog to equation 4.47 the flux versus efficiency can also be

expressed as (remember mi=0, so Ei:l):
1
F = §Shd(1—E) (4.70)

From equations 4.69 and 4.70 it follows for massive geometries:

Sh, = —= (4.71)

In a similar way, for both massive and hollow geometries, one finds:

2u?
Sh, =
d Xi ,0=0

(4.72)

67

in which My follows from the characteristic equations as given in the
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Appendix C.

Apparently ; d.ur’i.ng‘the Regular Regime with constant boundary
concentration Shd takes on a constant value. Furthermore, it can be
concluded that the Regular Regimes with constont bouhdary flux and
constant boundary concentration can be dgscribed in a similar way.

In Table 4.3 values éf Shd are)summarized. As expected, the values for
a hollow geometry lay between those of the massive geometry and the
slab. Note that at A=0.6-0.7 a minimum value of Shd. occurs! The exact
Shd values of Table 4.3 can be correlated quite well by the following

polynoms of A:

2

For a slab : Shy = & = 4.935 (4.73a)
For a cylinder : S‘hd = 5.75-4.36}\4»6.34?\2-2.82?\3 {4.73b)
For a sphere : Shy = 6.58-7.14M8.780%-3.20\> (4.73¢)

The maximum deviations between the exact and approximated values of

Shd amount 0.7% for cylinders and 0.4% for spheres.

Tabel 4.3: Values of Sh N during Regular Regime with

constant boundary concentration { D =1, 0=0, m;=0 ).

cylinder (v=1) sphere (v=2)

exact approx. exact approx.
A |[(ean.4.72) |(eqn.4.73) |[(eqn.4.72) | (eqn.4.73)
0 5.783 5.750 6.580 6.580 massive
0.1 5.339 5.375 5.953 5.951 1
0.2 5.087 5.109 5.462 5.477
0.3 4.943 4.936 5.127 5.139
0.4 4.864 4.840 4.918 4.918
0.5 4.828 4.803 4.802 4.794
0.6 4.819 4.807 4.752 4.746
0.7 4.830 4.837 4.752 4.756
0.8 4.856 4.876 4.787 4.803
0.9 4.891 4.906 4.850 4.867 4
1 4.935 4.910 4.935 4.930 slab (v=0)
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4.4.4 Transition from Penetration Period to Repular Regime !miz 0}).

Again it appears that both extremes can be connected most simply by
just stepping over from the approximation of the one extreme to that
of the other. Further, it has practical advantages now to formulate
the transition criterium in terms of efficiencies, in other words: the
Penetration Period ends and the Regular Regime starts at some
specified value of the efficiency (E:ET}. From the exact calculated

values of F versus E the following transition criterium is found:

Ep = 0.5+0.050(5-) (1-}) (4.74)

4.4.5 Algorithm for Short-Cut Calculation {mi= 0}.

Expressions for the drying time can now be found from equations 4.23,

4.64 and 4.70:
Penetration Period !EgEr_);

8%

For a slab tT o= {4.75)
(o)
For o cylinder , _ _  -BE-In{1-BE) :
ond o sphere | - G (X )252 (4.76)
OV ,0=0
Regular Regime E)Er_}___
1..
For all ) 2 [ Er]
o= Tt Inj=— (4.77)
geometries T Shdxi,o:.o 1-E

where Tr is the drying time at the end of the Penetration Period, when

transition takes place.
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Assuming that the drying times of stage I and II are negligible with
respect to the total drying time, the following algorithm could be
used for the calculation of the drying flux F and the drying time T at

any given value of the drying efficiency E.

begin {short-cut algorithm, D =1, 0=0, m;=0, isothermal}
read {(v,A.E)
calculate B from equations 4.65a-4.65¢
calculate E’l‘ from equation 4.74
if E { E;
then {Penetration Period}
calculate F from equation 4.64
calculate T from equations 4.75 or 4.76
else {Regular Regime}
caleulate Tr from equations 4.75 or 4.76
calculate Sh 4 from equations 4.73
calculate F from equations 4.70
calculate v from equations 4.77
write (F,T)

end.

Comparison of this short-cut calculation with the exact calculation
shows that maximum errors in the flux and in the drying time occur at
the transition point. It should be noticed that at the transition
point the flux calculated with the penetration correlation yields a
too high value, whereas the regular regime correlation gives 2 too low
value. In any case, the relative deviation between both approximate
fluxes and the the exact flux is within 5% .

The maximum errors in the approximated drying times are only 3% .
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4.5 Adiabatic Drying Process.

During the constant activity period of an adiabatic drying process the
drying system takes on the wet-bulb-temperature wa. After this
isothermal period the temperature of the system will increase. As was
pointed out in literature [23,26,33] heat transfer from a gas phase to
a body is very slow with respect to heat diffusivity in the body. This
means that the temperature distribution in the body will remain neariy
uniform, so the averaged temperature 0 of the body nearly equals the
surface temperatures 61; and because equilibrium is assumed at the
interface: exéxeizei . where Bi is the interface temperature in the
gas phase.

Because in general the (latent) heat of evaporation (L) of the
moisture is many times larger than the heat capacity of the body, a
negligible part of the total heat flux is left to accumulate in the
body. From this it follows that by good approximation the heat
transfer process may be considered as a guasi steady-state adiabatic
evaporation process, for which the following thermal energy balance

holds:

. e 8
a(ﬁw-Bi) X dni L,

s (4.78)

Note that this equation represents the wet bulb equation in its
elementary form.

In case of an enclosed gas phase, hollow systems will blow up with
increasing temperature; however,this complication will not be
considered here and the internal and external radii (R1 and R2} are
assumed to remain constant.

The diffusion coefficient DO depends on the temperature and so changes
during the drying process. The mass balance over the drying system now

reads:
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Dy

——— dt = dE (4.79)
(R,R))

i,0=0

and the dimensional drying time t:

2

RyR)™E 4
t =t [ & (4.80
Xi,a:O é FDO )

Assuming a constant value of the hollowness factor A, which is
certainly true for massive bodies, the relationship F versus E (8&.4)
is independent of.temperature. In order to keep a maximum attainable
value 1 for the efficiency E, the equilibrium moisture content P e in
the definitions of the fluxparameter F and the efficiency E should be
taken from the sorption isotherm at dry bulb temperature. The
temperature dependence of the diffusion coefficient Do can often be

expressed by an Arrhenius type relation:
Dy(T) = Dy(T) exp|- 22k - Ly (4.81)
0 T ToM1 R T1 T :

in which T is the absolute temperature of the body (OK),

AD is the activation energy for diffusion [Joule/moloK] and

R is the gas constant.

From the definition of the flux parameter (eqn.4.11) and the thermal

energy balance (eqn.4.78) the following relation for FD, can be

0
derived:
s s o
FDO' = Imi _.a_Lc_a__em 0 4.82
(M) _ ~Ts. ~a_ 1.0 -0 (4.82)
O/ca  (3.) ca i « ca
mi‘ca

in which the subscript "ca" indicates the value of the parameters at
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the condition of constant surface activity (thus sca is the wet bulb
temperature); parameters without this subscript have actual values. If
the difference between the dry- and wet-bulb temperature is not too
high, the heat transfer coefficient a and the evaporation enthalpy L

will not change too much and equation 4.82 simplifies to:

FD, 0,0 T,-T 4.5
(FDy) oy~ 00 ® T T ‘ .

© “ca

Assuming again very short stages I and II the drying cufves F versus
E, as given by equations 4.64 and 4.70, have to be used and the drying
time can be calculated from equation 4.80; however, now the
integration has to be carfied out numerically (e.g. trapezium rule).
The relationship FDO versus E can be found by the following procedure:
-~ choose a value for T (remember: TcaSTSTé}
- calculate FDO from equation 4.82 or 4.83
- calculate DO from equation 4.81
-~ calculate F from the values of FDO and DO
- calculate E from the temperature independent relationship

F versus E (eqns.4.64 and 4.70)
The above procedure yields at any given temperature T the values of E,
F and D. If one desires to integrate with equal steps of E, the

temperature T must be found by iteration from equation 4.83.



74



75

CHAPTER V

POWER LAW DIFFUSION IN SYSTEMS WITH ANY DEGREE OF SHRINKAGE

5.1 Concentration Dependence of Diffusion Coefficient.

It is assumed that the moisture diffusion coefficient depends on the
moisture concentration according to a power law relation (see also

chapter I}:

2 - b[fﬁ - i“ﬁ]a = b(u-u,)? (5.1)

Ps  Poit #
Pt is the moisture concentration where the diffusion coefficient
becomes practically zero; this thesis only deals with systems in which
the diffusion coefficient approaches to zero at the equilibrium
moisture content, so that u#Zu*.
a and b are fitting parameters, which can be found by linear
regression of ln(Dpi} versus ln{u—u#}. In chapter VI it will be
pointed out how these fitting parameters can be derived from a drying
experiment.
The diffusion coefficient DO at the initial concentration uy 1s given
by:

5
DyPgo = bluguy)® (5.2)
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Applying the definitions of the reduced diffusion coefficient Dr and
the concentration m (83.3) yields:

D =n® | | ' (5.3)

It will be clear that for non-shrinking systems, a concentration
independent diffusion coefficient (Dr=1’ .so a=0) is a special case of

power law diffusion. Howgver, it should be noticed that for shrinking

systems a=0 does not correspond with a constant diffusion coefficient.

5.2 Numerical Solution of the Diffusion Equation.

The power relaﬁion for Dr has to be substituted in the generalized
difi;usion equation with ¢ -coordinates (§3.3) or in the diffusion
equation with linear coordinates (§4.1).

In general, the diffusion equation, both in ¢ ~coordinates and linear
coordinates. requires a numerical apf)roach to be solved. It is beyond
the scope of this thesis to deal extensively with the numerical
. approach. Only some important aspects, which may cause serious
problems, are treated in Appendix D.

In general the solution of the diffusion equation (§3.3) can be

wriiten as:
m = 'm((!),w',v.?\,a,ovo.av .drying stage) (5.4)
and the averaged concentration is given by:

m = ﬁ(#.v,?\.a.ovo, 4 drying stage) (5.5)

e = e
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The drying time is calculated by integration of the mass balance
{83.4); the required relationship F versus E is now obtained from the
numerical computer output and will be a function of the following

form:
F = F(E,v.A,a,0ov .ov#,drying stage) {(5.6)
For didactical reasons the drying stage with constant surface concen-

tration will be discussed first.

5.3 Drying Stage with Constant Surface Concentration (miz 0).

For this drying stage Liou [28,29] proposed short-cut correlations for
F versus E, which are valid for slabs, massive cylinders and massive
spheres. The Regular Regime is described with Sherwood numbers,
whereas the Penetration Period of non-shrinking systems is described
with Taylor series expansions for the G-parameter. In this section the
method, used by Liou, is simplified and extended to hollow bodies,

irrespective of their degree of shrinkage.

5.3.1 Non-Shrinking Systems (Drx n.o =0, m= 0).

Penetration Period

It appears that during this period G versus E can be approximated
quite well by a linear relationship. During the Penetration Period fhe
expressions for the drying flux and drying time are similar to those
of constant diffusion coefficient, however, the parameters GO and B

now depend on the exponent a!

B) (5.7)
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For a slab: T = 5 © (5.8)

For a cylinder,

and a sphere T == e _ (5-9)

- 292
01,000 P

in which:

1.98
Gy = 727 [a-}-l4‘2l2] for Ogalw : (5.10)
and
B =B, (1.25)° for 0¢a<2 (5.11)

The expressions for Ba:O are given by equations 4.65.

Reqular Regime (D = »%, o = 0, m = 0)
During this drying period mass transfer is best described by means of
a Sherwood number according to equations 4.45 and 4.47. For power law

diffusion and a zero boundary concentration the flux equation now

becomes:
Sh
1 d a+l
F = 5o (1-E) (5.12)

Schoeber [23] observed that in case of power law diffusion (Dr=ma)
during the Regular Regime the Sherwood numbers (Shd) have constant

values. Liou [28,29] reports that those constant values depend pseudo

linearly on 5%5" (However, both Schoeber and Liou did not recognize

that constant values of Shd will not occur in case of a non zero

" boundary concentration!)
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Both observations are quite important, because they enable the
development of very accurate correlations for the Regular Regime,
being the drying stage that contributes predominantly to the drying
time. A similar behaviour may be expected for héllow systems. Indeed,
from the numerical computer output the following correlations for Shd

can be derived:

2

Shd = Shd,a—ﬁ - As}ld‘m (5.13)

in which:

AShy = Shy . = Shy o (5.14)
< _y,1.535-0.075p

Shy o = 7-391+(3.516v-0.034) [%—] (5.15)

Shd a=0 is given by A-polynoms according to equations 4.73. However, a

more elegant correlation for AShd, based on normalized Xi-values,

reads:
1.04
Xi o=0 -1
AShd = 2,456+(2.72On-0.087)[——L—g————l (5.186)

Note: only the exponents in equations 5.15 and 5.16 follow from a
regression analysis.

The accuracy of the above correlation is within + 1% .

The Regular Regime expressions for the drying time (isothermal) follow
from the integration of the mass balance with the aid of equation

5.12:



9 in [I;ET],

- For a=0 ¥ T= Tt

. (5.17)
(eqn. 4.77) Shy Xj.0=0 li- 1
T T | Y 1] '
For (1#0- T — TT + Sh. X T[ {5.18}

d "i,0=0

1B (-Ep™

Transition,(l)rz n*, o0 =0, m, = 0) K
The Liou dpproach needs a‘quité severe criterium ‘to be sure of Regular

Regime behaviour, namély:
E2zs - ‘ (5.19)

So, in case of a concentration independent diffusion coefficient‘ {a=0)
the criterium becomes E=l, and the whole drying process is consideéred
as a pene;ration proceés. However, the more simple approaéh described
in this thésis takes better advantage of the Regular Regime
propérties, as given in Chapter IV.‘

Froni the riumerical calculated solutions the following transition

criterium haé been derived:

E = 1+o.;_:£5~n)(1-7\} | ‘ ‘ | S (5.20)

5.3.2 Systems with any (Degx_'e‘cé of Shrinkage (D =m". 0 { o < 1, m.= 0)
At the sémevaiue of the drying efficiency E, the flux parameter F of
the shrinking system (o>0) is r:elat:ed‘to the flux parameter Fa:O of
the non-shrinking system by means of the shrinkage factor H, ‘
introduced 'by Liou [28.29]: o ‘

H=g— . o (5.21)
o=0 . ) .
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Finding F versus E has been reduced now to finding expressions for the
shrinkage factor H.

For a slab geometry {v=0) the solutions of the generalized diffusion
equation {§3.4) are independent of the shrinkage behaviour, because in

all cases X¢ = Xi= X = 1. So the solutions of non-shrinking

i.0=0
slabs, expressed in dimensionless quantities, are identical with those
of shrinking slabs. The shrinkage properties of the material now
emerge from the definitions of the dimensionless parameters and the
diffusion relation (eqn. 5.1}).

Conclusion: the shrinkage factor of slabs is 1, irrespective of the

drying stage.

For cylinders and spheres correlations of the shrinkage factor were

derived according to Liou’s method: first find the initial value
{70}, then loock for an approximate solution for large times and
eventually connect both extreme situations by means of a Taylor series
expansion.

a

Penetration with extremely short times (Dr= m, 0<{a<1, m, = 0)

The flux parameter of the shrinking system {eqn; 3.14) is related to
the flux parameter of a (fictive) non-shrinking system {(eqn. 4.11)
with exactly the same initial conditions and the same product
properties. From the definitions of the flux parameters (eqns. 3,14

and 4.11} follows:

ds a) RS
limH=H, = —=2P. 5 (5.22)
-0 0 peolRy o7Ry)

Equation 5.22 can also be written as:
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(5.23)

where AO and VO are the initial values of the surface area and the

{shell-)}volume of the system.

From the solid mass balance d V =p V. and from the definitions of
s,ap s 's0 0O

Xi (eqns. 3.40 and 4.16) follows:

Xi 0O
H, = gr—— (5.24)
0 Xi,a:O
Substituting the expression for Xi 0 {egqn. 3.43) gives:
-
p+l v+l
HO = [14-(1-?\ )orvo] (5.25)

This expression confirms that for a slab (=0 or A1) the shrinkage

factor H0=1 .

Note:
Applying the definition of the G-parameter {eqn. 4.35) to a shrinking

system with zero boundary concentration yields:

HF__E HF E
G = lim 5= = 1im —=0 = 1im 220 (5.26)
0 "1 10 i 70 i,0

with the aid of equation 5.24:

F _E .
GO = lim T — {(5.27)
™0 Ti,0=0 ;
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Conclusion: the Go-correlation for non-shrinking systems {egn. 5.10)

is valid for shrinking systems as well.

Reqular Regime (Dr= nt, 0 o<1, m = 0)

A relation for the initial shrinkage factor HO could be found by an
algebraic analysis. However, the Regular Regime correlations for the
shrinkage factor has to be deduced from the numerical computer output.
The Sherwoord numbers for shrinking systems, which do not take on

constant values during the Regular Regime, are described by Schoeber

[23] in the following way:

Shy = Shy o + AShy (5.28)

and the shrinkage factor simply follows:

H=1+g—— (5.29)

For strongly concentration dependent diffusion coefficients {a-®) the

concentration profile is rectangular (mzﬁ) and AShd g BT be

calculated analytically by comparing the flux expressions:

F=-DX, (%)@1 (5.30)
m
Fo:O = -Drxi.o=0{5¢9¢hl (5.31)

from which follows:

H =g (5.32)
a=e Xi o=0
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and from equations 5.29 and 5.32 with Shd,o=0 = Shd,aqm:

ASh = Sh [Xx_ - 1] (5.33)

Schoeber [23] observed that AShd

concentration dependence of the diffusion coefficient, so

is hardly influenced by the kind of

AShdzAShd and from equations 5.29 and 5.33 now follows with

, a=

Shy 0=0 = SPq.a’

Shd,a-l°°

Shd,a

X, '
H=1+ [X_ - 1] (5.34)
i,0=0
Substitution of the expressions for Xi (eqn. 3.42) and HO (eqn. 5.25)

finally yields for the shrinkage factor:

_ Sh prsy
H=1+ g [Hy(1-sE)”"" - 1] (5.35)

The Sherwood numbers in this equation are to be calculated with
equations 5.13-5.16.

From equation 5.35 it can be seen that the shrinkage factor H
decreases as the drying efficiency E increases. If the averaged
moisture content ;=v*=0, the shrinkage factor reaches the minimum
~value 1. Thus, at decreasing moisture concentrations the shrinking
abilities of the material become less and at very low moisture
_concentrations the shrinking system even behaves like a non-shrinking

system.

U S —

RO ——

g < vm—

R
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Tronsition Period (Dr= m, 0<o<1, m= 0)

- - 1

According to the criterium, used in Liou’s approach [28,297], the
Regular Regime correlation 5.35 may be used if E;EQ. with:

a
Ey = 295 (5.36)

For the transition region (O<E<EQ} the shrinkage factor H is
approximated by an appropiate Taylor series expansion, starting in
{E=0, H:HO) and merging into the Regular Regime correlation at E:EQ.
To obtain a smooth transition at E:EQ . equal zero and first
derivatives of the Regular Regime correlation and the Taylor function
at E=E. are imposed:

Q

H=H (equal zero derivatives) and

Q
H(l):ﬂél) (equal first derivatives).
The following Taylor series expansion appears to be a satisfying

approximation of the transition region!

NOBEENC)
0 .2 C .3
H=H0+"é—E +TE ‘ (5.3?)

where Hég) and Hés) result from the above two conditions at E:EQ:

E .
2 6 Q.. (1)
2 b 30 -
Q
H(® - E% [Hél) - EQH(()z}] (5.39)
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Drying times (D= u*, 0 {0 < 1, m.= 0)

The drying time foiiows from the integration of the mass balance:

T (5.40)
i o=0"1

-y
[}
© ey r
A
]
© & I

where, Fa=0 is given by equation 5.7 for OgEgEr and

by equation 5.12 for E)Er
H is given by equations 5.37 for OSESEQ and
by eqqation 5.35 for E)EQ
X is given by equation 3.42

In general this integration has to be carried out by means of

numerical methods (e.g. trapezium rule).

5.4 }}_rzr VIQgVSt_ag e with Constant Surface Activity.

5.4.1 Noﬁ—-Shrim{ipg Systems (Drg m, o =0, sz‘ cénstant)

During the period with constant surface moisture activity
(amixconStant) the drying flux of a non;shrinking system will femain
nearly constant: Fcha*«iconstant {see chapter IV}.

The contents of §4.3 also apply to systems with concentration
dependent diffusion coefficients. However, the relationship among Fca.
E and Ei has to be derived now from the numerical computer output.

A straight forward use of the G-parameter (eqn; 4.35) and of
correlations according to eqﬁation 4.37 now fails, because the
parémeter E/E; no longer is a continuously increasing quantity in all
drying situatiqns. e.g. at high fluxes E./I:':1 versus T may show a

maximum!

A different but succesful approaph fér power law diffusion departs

e vpgens oo e e



from a transformation of the generalized diffusion equation with

~ a+l
m=m

(see also Appendix D):

87

Generalized partial differential equation:

~

a+1 2 38
e @ 50 B

Initial condition:

T=0 0<h<c1

Boundary conditions:

T>0 =0

¢=1

82

(5.41)

(5.42)

(5.43)

(5.44)

where F = F(a+l).

The solution of this transformed diffusion equation can be written as:

m=m (¢,T,D,A,§£lu§,av

For high a-values a limit solution is approached, because

09

(5.45)

25,

a+l

In addition to m and F some more helpful parameters are defined below.

Table 5.1 Definitions of some parameters.

a+1

m=m = F(a+1)
F = 1-m2"! E; = 1—(mi)a+1
FE
~ - + N’ N’
e E @ P
E —(m,
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a ~
Regular Regime (Dr" m, o=0, Fca~ constant)

From equations 4.45 and 4.46 now follows:

e [(E)a*l - (mi)a+1] (5.46)

(E:-E) (5.47)

This latter expression for the flux parameter is analogous to equation
4.47 for concentration independent diffusion coefficient. However, in
case of power law diffusion with a¢0 no constont value for the
Sherwood number is obtained: after passing through a minimum value
{(Figure 5.1) the Sherwood number is gradually increasing until an end
value at E;=1 is reached. Schoeber [23] observed that this end value
is nearly independent of the flux parameter Fca' For massive
geometries Liou [28,29] found a pseudo linear relationship by plotting
the numerically cmﬁputed values of Shd,ca at Ei:l against values of
5%5; it appears now that this linearity also holds for hollow

geometries. The correlation for Shd E’=] then reads:
* i‘-

Sh vq =
d.Ei—l

Sh

d,a=0 * (Sh

a
4,80 ~ P4 a-0) a3 (5.48)

in which Shd.a.:O is given by equation 4.51:

2.15-0.18v
(4.51)

and

et oS e mrmt v e e



1.25-0.03p
Xi o=0 -1
Sh = 10.443+5,935p [—‘ ;

- (5.49)

Note that also in equation 5.49 only the exponent is a correlation
parameter.

For Regular Regime behaviour with Eiﬁl the Sherwood number of the
constant activity period Shd.ca is approximated quite well with the

correlation:

Sh E; (5.50)

Shy ca = Shg a0 * {Shd.Ei=1 - d.am] i

From equations 5.50 and 5.48 finally follows:

Sh

d,ca = OB,

4 .a=0 + [Sh - Sh

a ’
d.aw d.azo] 242 By (5.51)

Penetration Period {Dr= n*, o =0, sz constant)

Approximations for this drying stage are based on Taylor series
expansions of G versus € according to:

e

= G0[1 + o€ + %’e?’] (5.52)

from which follows:

R

= oni [é—- +a+ 362] (5.53)

R

g

in which the initial value 50 appears to be independent of the power

a. The solution can be derived analytically (Appendix E):

(5.54)

ol
[}
ENE
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From the numerical calculations the initial slope of G versus € proved

to be pseudo linear with aFca and the following correlation for @ can

be derived:

.~ 0.5 a.Fca ~ p{1-A)

@ = X (5.55)
i,o=0

A correlation for v is based on the end point (&Ge,@e) of the

Penetration Period:

v 5.56
¥ e—g { )
e

With respect to the end of the Penetration Period two situations are

to be considered:

1) the Penetration Period ends where the Reqular Regime storts.
Similarly to a concentration independent diffusion coefficient the

following transition criterium should be used:

(5.57)

Ml"_ll I 8"’32
"
i
L4)]

Elimination of ﬁca from the Regular Regime approximation {(eqn. 5.47)

and the transition criterium (eqn. 5.57) gives:

3.0

Ge =1 - &h (5.58)
d,ca

and from the definition of G (Table 5.1):

~ 1.5

g =g2¢€, (5.59)
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Note, that in the approach of this chapter the transition criterium
can be formulated independently of the geometry parameter v and the

hollowness factor A {compare with eqn. 4.52).

2) the Penetration Period ends if {EE;,Cr

1f fcazl.S Ei,cr then the transition criterium {eqn. 5.57) indicates,
that there will not be a Regular Regime (with a constant boundary
flux) succeeding the Penetration Period. In this case the drying stage
with a constant boundary flux ends with a concentration profile, which
has not yet penetrated into the centre of the material. The end value
€e will be higher as ﬁca is choosen higher. The critical point curve
fca versus Ge with ﬁ;’ rin,crzl shows great similarity to the
penetration curve {eqn. 5.7) of a drying process with a zero boundary

concentration. However, a much better approximation is found if F

versus Ee is considered instead of Fca versus ee:

1
F = GO,caXi(E: - a) (5.60)

For a=0 this equation must be identical with the penetration curve of
a drying proces with constant boundary flux and E%:l {eqn. 4.37)
From the numerical computer output the following correlations for

G, and a are derived:

O,ca
. 1.89
T 1.45
GO,ca = Z [m] for Ocal= (5.61)
a=a ot Ao for 0La4 (5.62)

where a0 is given by equations 4.38; for a0 a correction Aa, which

is pseudo linear with a, has to be added:
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For a slab : Aa = (0.11)a (5.63a)
For a cylinder: Ao = (0.22-0.057-0.20A2+0.14x>)a (5.63b)
For a sphere : Aa = (0.24+0.03A-0.1972+0.03>)a (5.63¢)

5.4.2 Systems with Any Degree of Shrinkage

a ~
(Dr= m,0<o0¢1, a % constant).

For shrinking cylinders and spheres the drying flux will not remain

constant during the period with constant surface water activity,

because the mass transfer coefficient in the gas phase depends on the

dynamic outer radius R2 t of the shrinking body. In general the

following relation holds:

S q _ _ S q
Jwi,t(R2.t) = constant = jwi,O(RZ,O) (5.64)
where,
q=0 in case of a slab (v=0);
=1 if the Sherwood number for the gasphase (Sh) is constant;

for instance, Sh=2 for a droplet in a spray drier.

q=1-n if Sh depends on the Reynolds number according to Sh ~ Ren

(eqn. 2.45)

The flux parameter of the constant activity period (Fca) can be

related to its initial value (Fca 0) from equation 5.64 as follows:

(5.65)

s 9 1
Fea  dwie [Rz.o]q _ [f‘g]” ~ [Xi,o]”
Ro.t A X

and applying the expression for Xi (eqn. 3.42):

e e e
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F

F_o=—20 (5.66)
ca q

(I-SE)D+1

Equation 5.66 now becomes the boundary condition of the diffusion
equation at § = 1.
Integration of the mass balance (eqn. 3.41) by using the expressions

for Xi (eqn. 3.42) and Fca {eqn. 5.66} gives:

g+l
(1) [1-(1-s5)?*T ]

T (5.67)

(a+1) SFca.Oxi,O

The relationship among Fc E and Ei has to be derived from the

a,0’

numerical solutions; however, this was not investigated.






CHAFTER VI

EVALUATION OF EXPERIMENTAL DRYING CURVES

6.1 Introduction.

To investigate the practical aspects of power law diffusion, drying

experiments were carried out using aqueous maltodextrin solutions. In

a vacuum drying apparatus samples with a slab geometry were dried

isothermally; the weight of the sample as function of time was

registrated automatically by means of a micro—computer,

A slab geometry has some very important advantages over other

geometries, viz.:

- the data reduction of the experimental drying curves is very simple,
because the relative simple correlations derived for non-shrinking
systems, may be applied irrespective of the degree of shrinkage:;

~ the exchange surface area is independent of the shrinkage'behaviour
and thus remains constant during an experiment;

~ samples can be prepared easily and reproducably;

- isothermal drying conditions can be created relatively easily.

This chapter deals first with some theoretical aspects with respect to
the data reduction of slab drying experiments, viz. the calculation of
concentration dependent diffusion coefficients according to Schoeber’s

method [23] and the description and prediction of drying curves. Next
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the drying apparatus and the experimental procedure are described.
Finally the results of the drying experiments are evaluated.

Some relevant properties of maltodextrin are summarized in Appendix F,

6.2 Theoretical Aspects.

6.2.1 Determination of Diffusion Coefficients.

g e e e e

Schoeber [23] describes a method to derive diffusion coefficients from
experimental Regular Regime (with mi=0) drying curves. By analyzing
several concentration dependences of the diffusion coefficient he
correlated Shd with dInF/din(1-E). He observed that a power law

dependence showed a good "average” behaviour: irrespective of the

concentration dependence of the diffusion coefficient, Sh d-values
deviate less than 15% from the Sh d—values belonging to the power law

dependence. Schoeber’s method and its practical application are |

described below.

In Chapter IV the following expression {eqns. 4.45 and 4.46) for the

flux parameter F was introduced:

1 -
F= 5 Sthr(m - mi) {(6.1)
in which,
_ m
Dr{m - mi) = ;{; Drdm (6.2)
i

From équations 6.1 and 6.2 with mi=0 follows:



o7

- .
oF

D dm = & (6.3)

oT Shy

Differentiation of this equation yields:

D = — at m=m (6.4)

T dm

d(2F/Sh )

and the equation for the calculation of the diffusion coefficient

follows by applying the definitions of Dr’ Fand m (see §3.5):

8
1 2 d(jmidsRs)

2

D=— e —
(Ps) Shd du

at u=u (6.5)

The value of Shd is found from the Regular Regimé correlation between
Shd and dlnF/din{1-E). Assuming a power law concentration dependence
of the diffusion coefficient, it follows from equations 5.13-5.16 for

a slab geometry:

Shy = 4.935 + 2.456 = (6.6)

where a is found from:

din(1-E) ~ a+l (6.7)

Equation 6.5 can also be expressed in terms of the efficiency E as
follows below.
From the mass balance over the slab follows {dSRS=p

sORO):

- _ 2, dE i
JmidSRs - diRs(uO u*)dt (6.8)
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In case of perfect shrinkage behaviour (o=1) the relation between ES

and E is given by:

pi = 1_+v0__ (6.9)
Peo 1+v0(1-E)
and from equations 6.5, 6.8 and 6.9 follows:
282 [1+v0(1-z)]2 aE)
D= ~— (6.10)
Shd 1+v0 d(1-E)
The mass balance can also be written as:
2
R
0 dE
F = b dc {(6.11)
(o}
so equation 6.7 becomes:
am(E)
an(1-E) - **! (6.12)
Slight modification of Schoeber’'s method
If power law diffusion is assumed, then:
Sh
1 7d a+l
F = 5o (1-E) (6.13)
From equations 6.11 and 6.13 follows:
" Sh, D
dé 1 7d70 a+l
&= zwl g U (6.14)

O
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and from equations 6.10 and 6.14 can be derived, that the diffusion

coefficient can also be calculated by using:

1+v0(1-E) 2 a
D =D, |——— (1-E) (6.15)

1*v0

in which a and Do are found by linear regression over small intervals

of In(dEs/dt) versus In(1-E):

Sh, D

dE 17470
ln(d—t~) = ln[imk'—z] + (a+l)ln(1-E) (616)
O

6.2.2 Description of Isothermal Drying Curves.

During drying of slabs with a high initial flux three drying stages

can be distinguished:

~ a relatively short period with a nearly constant surface moisture
activity and thus a nearly constant drying flux;

~ a Penetration Period with a nearly constant surface concentration
(miit‘zO). followed by

-~ a Regular Regime (miz())

In case of power law diffusion the isothermal drying of a material can

be described fully by only two parameters, accounting for the

concentration dependence of the diffusion coefficient, either a and b

or a and DO'

These parameters can be derived from the Regular Regime drying curve

by means of linear regression of In{dE/dt) versus In(1-E) according to

equation 6.16, however, now regression should be performed over all

data points of the Regular Regime.

For high initial drying fluxes the Penetration Period should be
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evaluated by using the expression {see Chapter V}:

R2
1 0 .2
t =5 E (6.17)
2 GODO
in which,
1.98
2 1 1.42
G =7 [a+1.42] (6.18)
and from equation 5.1:
b(u,-u )®
D, = ——g—u—’i— (6.19)
Pso

Data reduction by linear regression of t versus E2 gives a value for
the slope Rg/{z;ol)o). Finding a and b from the slope, in combination
with equations 6.18 and 6.19, requires at least two experiments at

different initial concentrations Uy

6.3 Experimental.
6.3.1 Description of Drying Apparatus.

As we have seen in §6.2 the data reduction of the experiments requires
the first and second derivatives of the drying curves. Therefore the
measurement of the weight should be as free of noise as possible and
many data points of weight versus time should be acquired. For this
reason the drying is performed under vacuum conditions (no noisy drag
forceé caused by a streaming gas) and the experimental set-up is fully

automated by means of a micro-computer.
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The drying apparatus {Figure 6.1) consists of two horizontal
cylindrical chambers, one on top of the other. The chambers are
connected with each other by means of a tube and are accessible at the
front. The diameter and the depth of each chamber are 50 cm. The
sample holder in the lower chamber is connected to an electronic
precision balance {resolution 1 mg) in the upper chamber.

The temperature of the sample is kept constant by an electrically
heated radiation wire, placed about 10 cm above the sample holder. The
temperature of the sample layer is measured with a thermocouple (type
T, Cu/CuNi}. The power supplied to the radiation wire is regulated by
a temperature controller.

To dilute the evaporated moisture (pész) clean and dry air {R4) is
blown as evenly as possible over the sample. In order to avoid uneven
drying of the slab a sieve plate is placed between the sample and the
air stream. The distance between sieve plate and sample is about 1 cm.
This space may be considered as a diffusional resistance. The moisture
diffusion coefficient in the gas phase is inversely proportional to
the absolute pressure [1]. The initial rate of drying depends on the
slab temperature, absolute pressure in the chambers and the distance
between sample holder and sieve plate. The absolute pressure in cham—
bers is kept constant by means of a pressure transmitter and a pres-—
sure controller, which activates the servo motor of a needle valve
(R2). The sample holder is made of PTFE, which hardly takes up any
moisture. Moreover, PTFE is a good heat insulator, which favours a
uniform temperature distribution in the slab. The sample holder has a
cylindrical shape with diameter 6 cm and depth 2.5 mm.

For data-acquisition the digital weight balance, the temperature
controller, the pressure controller and several thermocouples are

connected to a microcomputer. During a drying experiment the following
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Figure 6.1 Vacuum drying apparatus
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physical quantities are automatically recorded:

- the sample weight;

~ the temperature of the slab;

- the temperature in the neighbourhood of the radiation wire; this
temperature is a rough indication for the activity of the radiation
source;

- the temperature of the external bottom of the sample holder (to
ascertain a uniform temperature in the sample);

- the absolute pressure in the chambers (to ascertain constant

external drying conditions).

6.3.2 Experimental Procedure.

Sample preparation.

To avoid internal circulations inside the slab, a gel of the aqueous
maltodextrin solutions is prepared by adding a small amount of
agar-agar (1 wt% on water basis). A sample layer is obtained by
injecting the warm solution (50 0C) into the sample holder via a cover

with two holes in it (Figure 6.2).

T sample injection

cover 7
7///////////////////////////////////%

sample holder

Figure 6.2 Preparation of a gelled layer.

After gelation at a lower temperature (e.g. OOC), the cover is shifted
away and a perfectly smooth slab is obtained. Immediately the sample
holder is closed with a stainless steel cover plate provided with a

"O0" ring.
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Somple conditioning.

It takes about three minutes to reach the desired pressure (about

12000 N/mz) in the drying chamber. To obtain a well-defined starting
point it must be avoided, that during this period the sample starts

drying. Therefore the sample, with a cover over it, is first placed in

a separate conditioning chamber (Figure 6.3).

spindle ‘

P
[ ce
vent R_.|conditioning
1 chamber l ==4>Q§%
cover
_ thermostat !
A/D
micro
computer
R1 ‘
DRYING APPARATUS |—X] = o P

Figure 6.3 Conditioning chamber

7 = double-walled heat exchanger, in which sample

holder is placed:

Pcc= chamber pressure; Ts = sample temperature.

At reaching the desired pressure (Pcc) and temperature (Ts) of the

sample the cover plate with "0"-ring is pressed firmly to the sample

holder by means of a spindle and then the chamber is brought to

atmospheric pressure again.
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Start of druying experiment.

Because of the underpressure in the small space between cover plate
and sample surface, the sample holder will "stick™ to the cover plate.
In this condition the sample holder is placed in the drying chamber,

whereby the cover plate is resting on two bars (Figure 6.4).

[——'cever plate

Figure 6.4 Position of sample holder just before the start

of a drying experiment (Z = sample layer)

The drying chamber is closed and the pressure’is brought to the
desired value. A short time before the end pressure is reached, the
sample holder releases from the cover plate and falls on the digital
electronic weight balance. The sudden change of the balance signal is
registrated by the micro—computer and interpretated as the start of
the experiment; at the same time the balance is zeroed and a motor is

activated to pull away the cover plate.

During drying experiment.

About 1000 times during an experiment the computer samples the
following data: time, signal of the weight balance, signals of
thermocouples (sample, external bottom of sample holder, radiation

source) and signal of pressure transmitter.

End of drying experiment.
The experiments are aborted if the drying efficiency is at least 0.95.

The duration of an experiment varies from several hours to one day.
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Representation of results.

From the momentary, initial and final weight of the sample the drying
efficiency E can be calculated quite simply. For the evaluation of the
drying experiment (86.2) also dE/dt is required. To obtain sufficient-
ly accurate values for dE/dt the increase of the efficiency during a
time interval should be large enough. Therefore a selection of about
100 time intervals from all collected data has been made; during the
selected time intervals the increase of the effiency is about
0.007-0.01.

In Table 6.1 a summary of the conditions used in the various drying
experiments is given. The pertinent experimental data {efficiency E

versus time t) can be found in Appendix G.

6.1 Drying experiments of gelled maltodextrin/water layers
(Ry=2.50 mm, d_=1610 ke/m")

exp. %wt of | temp.| pressure wzl‘i‘;ﬁiaif Pso Uy
number | solid (°C) (N/mz) layer (g) (kg/m3) (keg/kg)
—————————
5 29.4 41.4 12500 7.66 331 2.40
6 29.4 32.8 12450 7.84 331 2.4
7 20.4 26.4 12400 7.92 331 2.40
8 17.1 3.8 12400 7.51 183 4.85
9 17.1 26.7 12200 7.65 183 4.85

6.4 Results and Discussion.

From calculations, based on temperatures of the sample layer ax;d of
the external bottom of the sample holder, it could be confirmed that
sample temperatures were uniform within 4 0.2 %. 1t appeared, that

the temperature change of a sample during a whole experiment was of
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the same magnitude. The pressure in the drying chamber was constant

within £100 N/mz.

6.4.1 Merging of drying curves.

The relationship D versus u is a physical property of the material and
so it has to be independent of the initial drying conditions.
Therefore it follows from equation 6.5 that curves j:idsRs versus u
for e.g. different initial moisture concentrations must merge in the
Regular Regime.

This conclusion has been verified experimentally by Schoeber [23] for
aqueous glucose solutions and by Luyben et.al. [25-27] for a number of
materials. From our investigation it appears, that also for agueous
maltodextrin solutions, at low concentrations the two drying curves
coincide (Figure 6.5): from this merging part of the drying curves the
initial conditions can not be reconstructed. Actually, Figure 6.5

gives the experimental proof for the occurrence of Regular Regimes.

6.4.2 Diffusion coefficients.

Diffusion coefficients can be calculated from the experimental data in
two ways: according to equation 6.10 and according to equation 6.15.
Both methods have been used and they both require the relation of’
dE/dt versus {1-E)}. To reduce noise and irregularities the first
derivative dE/dt is smoothed by recalculating each data point as an
average of its original value and four surrounding data points, two
before and two after the original point; all points are weighted

equally.
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At each data point the second derivative in equation 6.10 and the a
and DO values in equations 6.12 and 6.16 are determined via linear
regression of 9 data points, 4 points before and 4 points after the
central data point; all points are weighted equally.

It appears that diffusion coefficients calculated according to
equation 6.10 do not deviate significantly from those calculated with
equation 6.15. Diffusion coefficients, derived from experiments 7 and
9 with the modified Schoeber's method {eqn. 6.15) are represented in
Figure 6.6. The oscillations, especially in experiment 9, due to
experimental noise and irregularities, are not fully eliminated by
smoothing and regression techniques. The random errors, caused by
these oscillations, are about $10 % .

Systematic deviations are found between diffusion coefficients, which
have been derived from experiments with different initial moisture
contents. For example, in a large concentration range diffusion
coefficients from experiment 7 (u0=2.40 kg m/kg s) are about 25%
higher than those from experiment 9 (u0=4.85 kg m/kg s). Because
experiment 9 starts at a higher initial moisture concentration, higher
efficiencies are obtained at the same actual moisture concentration
than in experiment 7; from this it is concluded that experiment 9 is
more "regular"” and will give more reliable diffusion coefficients than
experiment 7.

At lower concentrations the two drying curves coincide and nearly the
same diffusion coefficients are found. Deriving diffusion coefficients
from one drying curve, as proposed by Schoeber [23], appears to be
doubtful. Deriving diffusion coefficients from the merging parts. of
several drying curves with different initial moisture concentrations,
as done by Luyben et.al.[25], appears to be a better approach.

Diffusion coefficients at low concentrations will be more reliable, if
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they are derived from experiments with low initial moisture concentra-
tions. For example: at u=0.1 (kg m/kg s8) a drying efficiency of 0.975
is required if uo-z‘i and 0.9 is required if u0=1; in the first case
relative errors in 1-E, due to experimental inaccuracies, will be
larger than in the second case,

Furuta et.al. [22] obtained diffusion coefficients of water in
maltodextrin solutions from many desorption experiments. By applying
low driving férces their concentration profiles were rather flat and
the total change of the concentration during each single experiment
was rather small. Therefore the diffusion coefficient could be assumed
constant within those small concentration intervals. Their results

{see Figure 6.6) are in fairly good agreement with ours, except for

low concentrations (u<0.3 kg m/kg s), where large deviations exist.

6.4.3 Description of experimental dryving curves.

A single drying experiment can be described quite well by means of the
short-cut equations for power law diffusion (see Chapter V). This will
be shown from experiment O as a typical example. In Figure 6.7 some
characteristic relations, derived from this experiment, are
represented.

From a first examination of the Regular Regime drying curve it was
estimated that a¥). Therefore Regular Regime behaviour was assumed for
E>0.5. Linear regression of In{dE/dt) versus In{l1-E), including all
data points in this range, gives a better value for a and thus a
hetter estimate for the pertinent concentration range; after two or

three iterations a = 0,075 and D, = 1.00~ 10-9 m2/s were found. Taking

0

these values of a and DO, the drying history can be reconstructed as

follows.

g e A Wy

o e gt e
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Constant flux period

The imposed initial drying flux dE/dt = 3.50-,10_4 "1

is obtained by
linear regression of E versus t in the arbitrarily chosen range
0<EL0.2. Now the initial value of the flux parameter ‘Fca= 2.187
follows from equation 6.11. The critical moisture concentration

u, .= 0.362 kg w'kg s follows from the sorption-isotherm of
maltodextrin/water (see Appendix F), assuming that the critical
moisture activity a .= 0.9. From the definition of the efficiency
follows for the critical surface efficiency Ei,cr = 0.925. From
equation 5.53 follows after iteration, that at the end of this period
the average efficiency Ecaz 0.273.

Now the duration of the constant flux period can be calculated from

the mass balance Tea™ Eca/Fca= 0.125. Applying the definition of T

finally gi\}es tca= 779 seconds.

Penetration Period [mtﬂl
In case of the extreme situation that Ei or™ 1, it follows from -

equation 5.60 that Eca.z 0.325 and tea™ 928 seconds. With respect to
the total drying time the difference between 928 s and 779 s is small
and therefore it is assumed now, that the transition period, in which
the surface efficiency increases from the critical value (Eiin.cr} to
the equilibrium value (Ei:l or mi=0) is reached within a neglible time
interval. This means that it is assumed, that the critical point curve
(Fca versus Eca with My o= Q) nearly coincides with the penetration
curve (F versus E with mi=0)‘

Because in this experiment the constant flux period contributes

substantially to the total drying time, the Penetration Period should

be calculated with:

et o e e

S ——

|
|
i
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Rz
0 2 2

t = tca + 5D {(E™ - Eca) {6.20)
00

in which,

E_=0.273, t_ = 779 seconds and G,= 0.575 (from eqn. 6.18).
ca ca

Transition
The transition from the Penetration Period to the Regular Regime

occurs at ET: 0.482 {from eqn. 5.20 ).

Regular Regime

For E>ET the Regular Regime expression (from eqn. 5.18) reads:

2
2R
¢ =t % 0 atl [ 1 1 ]

TSP, = lge () (6.21)
in which Shd=5.024 (from eqn. 6.6) and tT=1634 s (from eqn. 6.20).

A comparison of measured and calculated drying times shows, that
maximum deviations are about 104 (see Appendix G-9).

This result, which is typical for all drying experiments, proofs that
the whole drying history can be reconstructed from experimental data

of the Reguloar Regime.

Note

Though the initial value of the flux parameter is not very high in
this case, it still ensures the occurrence of a Penetration Period
with zero surface concentration (mi=0}: higher initial values for Fca
can be achieved by higher temperatures, lower pressures in the drying
chamber, thicker slabs and lower initial moisture contents (for

obtaining lower values for Do}; it should be noticed, however, that
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thicker slabs and lower DO-values will increase the duration of a

drying experiment.

6.4.4 Prediction of experimental drying curves.

In case of power law diffusion data reduction of all drying curves,
irrespective of the initial concentration, should give one a-value and
one b-value. However, it appears from our experiments, that power law
diffusion does not apply strictly to solutions of maltodextrin/water
{see also 86.4.6). Therefore a seml-empirical approach for the
prediction of drying curves is proposed here. It appears that from
drying curves at higher initial moisture contents the drying curves at
lower initial moisture contents can be predicted. This will be
illustrated by predicting drying experiment 7 (u0= 2.40 kg m'kg ;)
from drying experiment 9 (uoz 4.85 kg n/kg s).

The prediction method is based on the former observation, that the
Regular Regime drying curves contain all necessary information. The
values of a and D0 for the prediction of experiment 7 are derived from
the Regular Regime of experiment 9., Assuming a = 0.075 (so, F‘l“= 0.482)
the concentration range of the Regular Regime of experiment 7 is:

0gugl.16 kg m/kg s. Linear regression of In{dE/dt) versus In(1-E) with
all data points from experiment 9 in this range gives a better a-value
and thus a better estimate of the relevant concentration range; linear
regression is repeated, etc.. After only two iterations: a = 0.292 and
Dy= 5.03:10 10 n?/s. Similarly to the method, as described in §6.4.3,

the drying times of experiment 7 are calculated. The maximum deviation

between measured and calculated drying times appears to be 20% {see

Appendix G-7).
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The temperature dependence of drying curves, as stated by Schoeber

[23,24], can be expressed with an Arrhenius-type relation:

] - [%]Tle}(p 5 ;‘F‘ G- 1) (6.22)

in which R = 8.314 (J/mol °K);

T

]

absolute temperature (OK);

AF = activation energy of the flux (Joule/mol).
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The activation energy AF’ which depends on the moisture concentration,

can be derived from at least two drying experiments with the same

initial concentration, but with different temperatures.

Figure 6.8
Activation energy of

drying flux.

— equation 6.23

+ from experiments 6 & 7

A from experiments 8 & 9O
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In Figure 6.8 the activation energies., derived from the Regular

Regimes of two different sets of drying experiments (6+7 and 8+9) are
represented. The concentration dependence of the activation energy A}.
can be described very well by the following correlation, as proposed

by Luyben [25]:
AF = A exp(-B u) + C (6.23)

in which for maltodextrin/water the following values of the fitting

parameters are found: A = 48 kJ/mol;, B = -2.40 kg/kg, C = 18.8 kJ/mol.

Isothermal drying curves at different temperatures and different
initial concentrations can be predicted from experiment 9 as follows:
first, the Regular Regime of experiment 9 is translated to the desired
temperature by using equations 6.22 and 6.23.

second, the parameter a and Do at this temperature are obtained by

linear regression of In{dE/dt) versus In{1-E} in the concentration

range of interest. Because a is not known beforehand, some iterations
(mostly two) are required, to find the correct concentration range and
the corresponding values of a and D,.

0
third, the drying curve at the desired temperature level and desired

initial concentration can be calculated similar to the method as

described in §6.4.3.

The above procedure has been applied to predict the drying curves of
experiments 5,6,(7) and 8 from the Regular Regime drying curve of

experiment 9; the agreement of predicted and measured drying times is
f‘airlyb good. Deviations between measured and calculated drying times

vary from a few percent to 30% (see Appendix G)}.

v

g
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6.4.5 Prediction of Non-Isothermal Drying Curves.

At the desired initial moisture concentration, the Regular Regime
curves are predicted at several temperature levels. Then by linear
regression the best fitting a-value for all temperature levels is
determined. Next the best fitting Do value at each temperature level
is determined. The temperature dependence of D0 is expressed with an
Arrhenius type equation.

One single value of a is required to obtain temperature independent F
versus E equations, so that the procedure analog to section 4.5 may be

applied. The prediction of non-isothermal drying curves has not (yet)

been verified experimentally in this study.

6.4.6 Deviations from Power Law Diffusion.

The exponent a can also be derived from drying experiments at

different initial concentrations via:

— correlating values of D0 with Uy according to equation 6.19;

- evaluation of values of GODO, found by linear regression of E2
versus t with data from the Penetration Period (see Figure 6.7)., by
means of equations 6.17-19.

In both cases negative a-values are obtained (Table 6.2), which

strongly deviate from the foregoing observed values. This

inconsistency of results means, that the power law relation:
2 a
Dps = b(u-u,) (6.24)

in fact does not apply to the whole concentration range of the system
maltodextrin/water. At higher moisture concentrations the diffusion
coefficient D is nearly independent of the concentration, whereas pg
will increase and thus ng will increase at a decreasing moisture

concentration. At lower concentrations D will decrease more strongly
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than the factor p‘z increases and thus Dpﬁ will decrease. Putting Dpi

expressed by a power law relation.

One may wonder now why the description and prediction of drying

curves, based on the power law concept, gives such satisfying results.

The answer to this question might be, that drying behaviour is fully
controlled by the lower concentrations at the interface, whereas the
concentration dependence of the diffusion coefficient at the higher
concentrations in the drying material is of minor importance then. In
the range of rate controlling concentrations apparently a power law
dependence of the diffusion coefficient may be assumed. Because power
law diffusion evidently does not apply to the whole concentration
range it has to be concluded that the parameters a and Do should be
considered as fitting parameters, e.g. DO is a fictive value of the

diffusion coefficient at the intial concentration.

Table 6.2 a-values calculated from drying experiments at

different initial moisture concentrations.

Uy GODO from PP DO from RR
exp 9 a 9 a
(kg/ke) (m~/s) (m"/s)
7 | 2.40 2.37.10710 5.03-10710
1o | 0.8t o | oM
o | 4.85 | 5.04-10 1.00+10

e e ebv—— ey 3 -
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6.4.7 Conclusions.

Diffusion coefficients should be derived from the merging parts of
several drying curves with different initial moisture concentrations.
The wheole drying history of a sample can be reconstructed from
experimental data of the Regular Regime only.

Drying curves at lower initial moisture concentrations can be
predicted from the Regular Regime data of drying curves at higher
initial moisture concentrations.

Power law diffusion does not apply strictly to maltodextrin/water
solutions. Though drying curves can be described and predicted fairly
well by means of the equations of the short-cut method, the model
parameters a and Bb should be considered as fitting parameters with a

limited physical meaning.
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APPENDIX A

Transformation of Diffusion Equation.

The diffusion equation for moisture transfer in bodies of standard

geometries reads (83.2):

Partial differential equation:

dp
1 8 !
3 = "5 ar(” o) (A1)

Initial condition:

t=0 R1 <r <R2(0) Pa = Prno (A.2)

Boundary conditions:

a(e,/p.)
t>0 r = R1 & = 0 {A.3)
r = Ry(t) Py = Py (1) (A.-4)
or
a(p_/p_)
m S 8
“Dp —5r— = J;(t) (A.5)

By analogy with equation (A.1) the partial differential equation for

mass transfer of the dissolved solids (s) is given by:

aps

1 8, v
5t = “;E'é?‘r n,) (A.6)

Tronsforming the concentration.

For the transformation of the diffusion equation A.1, expressed in the
volume based moisture concentration Py (kg/m3), into a form with the

concentration u (kg m/kg s}, the following two equations will be

helpful:



gt = 8t~ p 8t 2 3t (4.7
and from equations 2.13, 2.25 and u=pm/ps:

. Bu
+ J: = uns—Dps 5 (A.8)

Dividing equation A.1 by Py and multiplying equation A.6 by pm/pi

gives:
dp
1 m 1 8.,v
P 3 =T - B (.9)
Ps
p_ 8p P
m s 1 md , v
2 at P p_s. 3?(1' ns) (A.10)
Ps Py

Subtracting equations A.9 and A.10, making use of equation A.7 and

eliminating n by means of equation A.8 results in:

8u 1 6{ v, du v SBu

3t = v [ar "s"Dar T 5r (A.11)
p_T
s

and with n_=p.v, equation A.11 becomes:

Su du 1 a v, du
(at)r * Vs(ar)t = v ar(psr D ar’t (A.12)
pr
s

Transforming the space coordinate.

The solids based space coordinate z is defined as:

dz = psrvdr (A. i3)

or
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by
z={ psrvdr {A.14)
R

and its maximum value:

Ry
b
2o = f pgr dr (A.15)
Rl
Transforming the right hand side of equation A.12 into a form, using
the solids based space coordinate z, is quite simple, but for the left
hand side this transformation is somewhat more demanding.

Consider u=u(t,z), from which follows:

du du
du = (37), dt + (37), dz : (A.16)
and thus:
8u 8u 8u 8r, ,9z
Gor = Gt G G (A-17)

From equation A.13:

&, - - | (A.18)

Q.z_ = f (_S_) rvdr (Alg)

Substitution of equation A.6 in A.19 and assuming a non moving

internal boundary, it follows:
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dz v v
(é?)r =-rn, =-TpyV, (A.20)

Equations A.17, A.18 and A.20 now give:
du 8u du
GO = GOz ~ V(3D (A.21)

and equation A.12 written in the solids based space coordinate z

finally reads:

du 3 2 2v 8u
(38)z = 3zPPs T 52 (A.22)

Making the partial differential equation dimensionless.

Introducing the dimensionless parameters m, Dr' T and ¢=z/zmax (see

Chapter III) into the partial differential equation A.22 gives:

(-g-"';)q, = %(Drxz %)T (A.23)

in which the dimensionless X-parameter is defined as:

| IJ)ds a Rs
X = ~ : (A.24)
max
Yorking out the X-parameter.
Separation of variables in equation A.13 gives:
rPar = & (A.25)
Ps

Integration between the limits r=R, and r=r and substituting dz=z

1
gives the following expression:
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b v+l d® [v+l
r o= [Rl + (U+1)zn|ax - ] {A.268)
s
For LA holds:
Rz(t)v R1+R )
Zx = f prdr = f ds’apr dr (A.27)
R1 R1

In fact equation A.27 is the mass balance of the solids; executing the

integration of the most right member gives:

d
z = S8R [(les)"*l - R1”+1] (A.28)

max v+l

From equations A.24, A.26, A.28 and the hollowness factor A
{eqn. 3.18) the following expression for the X-parameter can be

derived:

X = ()2 { "l he o ﬂ]”“l (A.29)

>\D+1 %s.ap") Py

From the shrinkage model follows (eqn. 3.26):
= l+ov | h o (A.30)

and the expression for the X-parameter now becomes:

L2
o [)\”*1 + (17 ?(1+av)d¢]v+l, . (A.31)
0

X = (1)
1A
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Transforming the initial and boundary conditions.
It will be clear that the initial condition reads:

7=0 0<d¢1 m=1 (A.32)

For the external boundary condition the flux equation

3u .
= -Dps -8? (A.SS)

s
mi

J

can rather easily be transformed into a dimensionless form via the

intermediate expression:

s
mi

2 r’ 8u
3 = -Dps zmx % (A.M)

and by next applying equation 3.14 for the flux-parameter and equation

A.24 for the X-parameter, the dimensionless flux equation becomes:
am B

F= Drxi F) {A.35)

where parameter X1 follows from equation A.31 by putting dhl.

After transformation the external boundary condition for a known

surface concentration reads:

>0 b=1 m = m {(A.36)
or for a known surface flux:
Om
T>0 =1 DX a5=F (A.37)

In a similar way the internal boundary condition reads:

>0 $=0 xg%=o (A.38)




127

APPENDIX B

Analytical Solutions of Diffusion Equation with Constant Boundary Flux

(D =1, o=0}.

The diffusion equation is given by (see §4.1):

Partial differential equation:

dm d
E L LT P (8.1)
A1 ?\)y]

Initial condition:

T=0 0O<ys1 m=1 (B.2}

Boundary conditions:

T>0 y=0 gg-: 0 {B.3)
y=1 - g% = F_, = constant (B.4)

For all geometries the solutions can be described by:

X; 0e0 [—r + £ o+ z Ckexp(‘l‘k ’r)]

"ﬂlt'l?

(B.5)

The functions f and Ck and the characteristic root equations are given

in the following tables.
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Table B.1 Massive systems

geometry f Ck oy
t:an(uk} =0
2 cos(uky)
1 2 1
slab § y - g —“CO—S(JK_)— p,k = kew

~cos(uk)=(-1)k+1

Jo(y) ‘
cylinder ;liyz - é- __—3% Jym) =0
N 12 1| g sy
sphere §Y "0 | 3 Gy | =0 Tk

Table B.2 Hollow cylinder

¢ o 1 @23%1)01%) - 22(0-2%)in(x) + AIn0))
8 (1-0)3(147)

‘ Z (@ ha) * Zo(aA,

G = - (1-32) olara) * Zolad.qx)

Zo (o h ) - 2% (e o)

Py
with : o = m}-
x = A{1-A)y
Z (a.b) = Y, (a)J (b) - J;(a)Y, (b)

-2
Zo(a.a) = —

. A 1
Me f LT Mot M) = 0

e R e e ey ~tarne Ay e oy

e v —ne < 2




Table B.3 Hollow sphere

¢ - A5y +15y%3y-3) 7 (15y%46y-0) M (15y%-6y-3)+5y -3y

- 30( 1+)\+>\2) (A {1-N)y)

2uk gkcos(pk) (I—A)sin(uky) + pkhcos(uky)

% = 3 B sin(y Joos(m )+, &+ (159%)
g, = ~(Zaa1)-[(1-0)7 + 1 2%
b = 0wt a2 - an?

i, = ”k[ Mt s AP + (1-h)4]

s [N2 + A 2] tan() - (1-0)%, =0
Mx M Mx My

129



130

APPENDIX C

Analytical Solutions of Diffusion Equation with Constant Boundary

Concentration (Dl=1, o=0).

The diffusion equation is given by (see §4.1):

Partial differential equation:
Om 1
o (AT
Initial condition:

& (Dw(-Ny1° 3 (CRY

T=0 0<y¢g1 m=1 (C.2)
Boundary conditions:

T>0 y=0 (C.3)

0
y=1 m = =0 (C4)

For all massive and hollow geometries the solutions can be described

by the following relations:

n = 2 Akexp(—p.kz'r) (C.5)
k=1
F = } Bkexp(—uk T) with Bk [ ] (C.8)
k=1
exp(-nsz) .
E =X g LB "

k=1

The functions Ak’ Bk and the characteristic root equations are given

in the tables below.

s

OO I —




Table C.1 Massive geometries

geometry Ak Bk M
cos(uk) =0
cos( ) "
slab EE'ETHT;E;_ 2 e = (k1)
sin(y ) = (—1)k+1
Jo(my) .
2 0
cylinder E W 2 Jo(p.k) =0
sin(pk) =0
sin(y, y)
sphere ’2‘_1{3'- -cosl(L)ijk) 2 M = kw
—cos(iy) = (-1)**

Table C.2 Hollow cylinder

Z,(a.b) = Y,(a)J,(b) - J;(a)Y, (b)
SRR
3,2 - I e

B, = 2(1-)

. A 1
Mt Zo(IR e TR M) = O
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Table C.3 Hollow sphere

Fr—

sinfiu (1)

- 2
Ak h uk—sin(uk)cos(uk) A+ (1-AN)y

_ 2
By = uk—sin(pk}cos {uk)

m t (1) tan(n) = -Nay
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APPENDIX D

Some Aspects of the Numerical Solution of the Diffusion Equation.

In general, the diffusion equation with Drzma has to be solved by
numerical methods. Only some important aspects of the numerical
approach, which may cause serious problems, will be highlighted here.
It appears that some of these problems can be dealt with by appropiate
transformations of the diffusion equation; this will be illustrated

with the generalized diffusion equation in ¢-coordinates.

Moving external boundary

The numerical calculation of partial differential equations requires a
rectangular discretisation grid, in other words equidistant steps in
time and space should be used. However, in discretisizing the linear
r-coordinate of a shrinking system the external boundary will move
through the grid. This problem can be solved by transforming the
partial differential equation {eqn. 4.1) with a normalized linear

space coordinate:
y(t) = ——— ' (b.1)

During every time step Rz.t has to be calculated; t;his requires the
integration of the moisture flux with time or the integration of the
moisture concentration with space.

Transformation of the diffusion equation in (b—coordimtes seems to be
a good alternative, becausg now a fixed external boundary is obtained.
However, the integration now emerges in the X-parameter and the

internal boundary condition for massive cylinders and spheres becomes
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undetermined ($=0 and A=0 - X=0 - 9m/8¢=??). This internal boundary
problem also exists for non-shrinking systems. For cylinders and
spheres with an infinite small value of A the slope am/ad is clearly
zero. Therefore, it may be expected that replacing the internal boun-
dary condition of massive systems with 8m/84k0 will cause minor
errors. Indeed, by comparing the numerical solutions calculated in
¢{-coordinates with solutions calculated in y-coordinates no detectable

errors could be traced.

Singularity of the boundary flux

If the boundary concentration m, takes on a zero value, the diffusion
coefficient will also be zero. Because of a finite boundary flux, the
concentration gradient at the external boundary will become infinite.
This singularity causes loss of convergence and must be avoided. Also

for high values of the exponent a and low values of m, steep

i

concentration gradients at the external boundary will result. Even

this non~singular situation may lead to a non-acceptable loss of

convergence. This problem can be eliminated by the following simple
a+]

transformation of the concentration: m = m . The generalized

diffusion equation then becomes:

Generalized partial differential equation:

= a“ %(x 55) (D.2)

Initiol condition:

on

T=0 0¢<d< m=1 (D.3)
Boundary conditions:

>0 ¢= X % =0 (D.4)

b= m = . (0.5)

or X, % = F(a+1) (D.6)
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From the boundary condition at ¢h1 it can easily be seen that for
finite values of F(at+l) the gradient of the transformed concentration
6w/8¢ will remain finite for any value of the boundary concentration.

{The same holds for 8w/dy and dw/Or).

In modelling a real drying process it may happen that the idealized
boundary condition is inconsistent with the idealized initial
condition; e.g. a uniform initial concentration implies a zero
boundary flux at t=0, whereas at tlO the boundary condition may impose
a non-zerg flux. In these cases a discontinuity exists, where the
external boundary condition and the initial condition should link up.
This singularity tends to cause serious oscillations in the solutions
and has to be dealt with.

Initially there is a drying period during which the concentration
profiles are penetrating into the centre of the body. For this
penetration period (O$T$7pp). where the drying body behaves like an -
infite thick body, the so-called Boltzmann transformation is most

suitable to avoid this kind of singularity problems:
z=vr L (0.7)
rp

Now the boundary ¢=1 is transformed to the origin z=0, whereas the
initial condition {r=0} is transformed to z-». Thus, inconsistency of
conditions no longer exists. At Tzrpp a switch back from z-coordinates

to ¢Fcoordinates is necessary.
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Discretisation

At increasing values of T the concentration profiles change more
slowly. To speed up the numerical calculations a gradually increasing
time step is required. However, to determine the convergence of ithe
numerical solutions, equidistant steps in space and time are required.
This problem can be solved by transforming the time variable according
to: T'=Vr; equidistant steps in T yield growing steps in 7, because
AT=27"AT".

The transformed diffusion equation is discretisized by means of the
Crank~Nicolson scheme. Discretisation yields a set of equations which
is solved by using the Thomas-algorithm., The order of the
discretisation errors appears to be:

(Az)? and (a7")2 for ogrsr (Ad)2 and (a7')2 for nr

For non-shrinking systems with constant diffusion coefficient the
numerical calculations show excellent agreement (deviations less than
0.1%) with the analytical solutions (Chapter IV). For power law
diffusion excellent agreement exists (deviations less than 0.5%) with
the calculations of Schoeber [23] and Liou [28] and with the
calculations of regular regimes based on geometrically similar

concentration profiles [23,44].

R —

R e LR L
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APPENDIX E

The Initial Value go for Power law Diffusion with Constant Boundary

Flux.
In case of a power law dependence of the diffusion coefficient with

concentration, the §—parameter {see Table 5.1} is defined as:

FE
. E B Flav) 1-(1-E)2*! 7
G = = (E.1)
L a+li.2
X, X, [1-(-Ep**h)

and the initial value:

. _ Fla+1) 1-(1-E)2*!
G, = lim G = lim[ {E.2)
0" 10 X, To1-(1-)*' 7
If 70 then also E-0 and Ei-lO and thus:
1-—(1-—122}8‘“!“1 {a+1)E+higher E-terms 1
lim[—'——m] = lim[ 3
™0 {1—(1-Ei) } ™0 [(a+1)E£+higher Ei-tems]
{a+1)E-[i+higher E~terms]
= lim[ 5 ]
70 (a+1)%;%- [1+higher E}-terms]
E .
- Lin[——] (E.3)
0 (a+1)E%
From equations E.1, E.3, and 4.35:
. F-E
G, = lim[ ] =1lim G =G (E.4)
O rolxe? 0 0

ivi
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It is assumed that the drying process with a constant boundary flux
starts with a homogeneous concentration profile. At extremely small
drying times (v0), the moisture concentration at any place in the
material, including the interface, has hardly changed from its initial
value. So, the concentration dependence of the diffusion coefficient

* does not come to expression yet. Also the influence of shrinking, if
present, will be negligible at this very first drying stage. For these
reasons it can be concluded that, irrespective of the concentration
dependence of the diffusion coefficient and the shrinkage behaviour,
in all cases the Go~mrmter takes on the same value. So, the value
obtained for non-shrinking systems with constant diffusivity {(eqn.

4,36) also holds in general:

-l T
GO = GO =3 (E.5)

e
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APPENDIX F

Some Properties of Maltodextrin.

The maltodextrin {trade name: Paselli MD20) used in this study is the
same as used by Kerkhof [367] and Rulkens [35].
The composition as specified by the supplier (AvéBé, Veendam, the
Netherlands), is:

1.5 wt% glucose

4.5 wt% maltose

9.3 wtX tri-saccﬁarides

6.0 wtX tetra-saccharides

4.5 wt% peﬁta-saccharides

74.2 wt4 poly-saccharides
The partial density of maltodextrin in aqueous solutions may be

considered to be constant [36] and 1s 1610 kg/m°.

The sorption-isotherm in the range awg().Q can be described very well

with the G.A.B-equation [43]:

u C ka’?l

o= g (F.1)
1 (1-ka,)(1-ka +C ka, )

in which,

u, = 0.06343 - 8.586-107*+(6-20) (kg m/kg s) (F.2)

k = 0.9132 + 3.839:10 >+ (6-20) (F.3)

C, = 6.391 + 2.558(8-20) (F.4)

with 15%C ¢ 8 ¢ 50°%C
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The maltodextrin, used by Furuta et.al. [22], is of a different origin
and has a different composition. In their paper they present the
following correlation for the diffusion coefficient of water in

maltodextrin solutions at 35°C:

8 di
’°1og(D:5} = 3 i {F.5)
i=0 (1+u)
with do = -9.62029, dl = 3.75424, dz = -86.5335,
dB = 704.872, d4 = -2853.10, dS = 6354.49,
dﬁ = ~7952.04, d7 = 5245.81,7 d8 = -1424.05

For the activation energy of the diffusion coefficient is given:

5 ei°104

Ep =3 - (F.6)
i=0 {(1+u)

with e) = 3.32562, e, = -15.8667, e, = 151.217,
ey = ~443.608, o, = 481.664, e = ~146.367

N
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APPENDIX G-5

Experiment 5: measured and calculated drying curves of
gelled layer of maltodextrin/water.

Conditions: ug = 2.40 kg mke s 8 =41.4°%C
P = 12500 N/m2 Ro = 2.50 mm
Fitting parameters: a = -0.092 Do = 3.88E-10 m2/s
constant flux penetration period regular regime
F = 21.563 G, = 0.727 Sh., = 4.816
ca [¢] d
G0 = 0.889 E& = 0.524
u,. = 0.398 kg/kg tT = 3058 sec.
E; = 0.834
i,er
ca = 0.029 (about 70% of all data points, used in
tea = 22 sec. the evaluation, are represented below)
E time (s) % rel. E time (s) % rel.
meas. calc. error meas. calc. error

.020 20 15 -23.
.028 26 21
.045 38 35
077 78 78
.098 118 120
.132 198 205
.146 238 247

.562 2888 3527 22,
.570 2968 3630 22.
.585 3128 3836
.594 3216 3952 22,
.605 3344 4109 22.
.623 3542 4365
.633 3662 4518
.653 3004 4821
.662 4024 4973
.671 4136 5114
.680 4386 5422
.697 4506 5560
713 4746 5853
.720 4866 6002
.728 4986 6150 23,
742 5226 6443 23,
752 5396 6649  23.
5716 7023 22
777 5876 7210 22.
785 6036 7396 22
.801 6396 7802 22.
.809 6596 8016 21
.824 6096 8443  20.
.832 7236 8605  20.
.839 7476 8925 19
.855 7998 9420 17.
.862 8318 9706 16.
.877 8996 10276 14
.884 9394 10586 12.
.892 9846 10923  10.
.907 10924 11643 6.
.914 11604 12032 3.
028 13476 12013 4.
.935 14768 13402 -9.
0.942 16436 13944 -15.
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APPENDIX G-6
Experiment 6: measured and calculated drying curves of

gelled layer of maltodextrin/water.

Conditions: uy = 2.40 kg mkg s e =32.8%
P = 12450 N/m2 Ro = 2.50 mm
Fitting parameters: a = 0.076 DO = 3.99E-10 m2/s
constant flux penetration period regular regime
F = 5.951 G, = 0.574 Sh, = 5.025
ca 4] d
GO = 0.713 F.r = 0.482
u, = 0.376 keg/kg tp = 3291 sec.
E; = 0.8431
i,er
Eca = 0.0823 {about 65% of all dota points, used in
tca. = 217 sec. the evaluation, are represented below)
E time (s} % rel. E time (s) % rel.
meas. calc. error meas. calc. error
0.055 160 146 -9.5 0.597 4032 5083 26.1
0.074 192 196 2.0 0.606 4144 5242 26.5
0.092 240 241 0.4 0.614 4272 5397 26.3
0.124 320 334 4.2 0.629 4496 5686 26.5
0.148 400 423 5.7 0.645 4736 5998 26.7
0.160 432 475 9.9 0.652 4848 6149 26.8
0.181 512 572 11.7 0.669 5136 6519 26.9
0.192 560 626 11.7 0.676 5248 6679 27.3
0.210 640 725 13.3 0.695 5568 7109 27.7
0.232 736 857 16.4 0.712 5888 7546 28.2
0.239 768 906 17.9 0.721 6048 7764 28.4
0.255 848 1011 19.2 0.737 6368 8198 28.7
0.269 928 1116 20.2 0.752 6688 8636 29.1
0.277 976 1171 20.0 0.759 6848 8855 29.3
0.304 1136 1383 21.7 0.776 7248 9405 29.8
0.316 1216 1486 22.2 0.784 7456 9677 20.8
0.339 1376 1694 23.1 0.799 7856 10224 30.1
"0.361 1536 1902 23.8 0.814 8304 10828 30.4
0.371 1616 2008 24.3 0.822 8544 11154 30.5
0.391 1776 2214 24.7 0.837 9056 11842 30.8
0.410 1936 2418 24.9 0.851 9584 12543 30.9
0.419 2016 2523 25.1 0.859 9904 120686 30.9
0.437 2176 2727 25.3 0.873 10560 13802 30.7
0.445 2256 2830 25.5 0.881 10928 14271 30.6
0.462 2416 3036 25.6 0.896 11776 15319 30.1
0.478 2576 3240 25.8 0.910 12768 16523 29.4
0.485 2656 3343 25.8 0.917 13376 17212 28.7
0.500 2816 3549 26.0 0.932 14784 18774 27.0
0.522 3056 3859 26.3 0.946 16736 20766 24.1
0.532 3168 4013 26.7 0.953 18016 21946 21.8
0.552 3424 4323 26.2 0.975 23344 27305 17.0
0.561 3536 4473 26.5 0.982 26032 30337 16.5
0.571 3664 4635 26.5 0.989 30688 35028 14.1
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Eperiment 7! measured and calculated drying curves of
gelled layer of maltodextrin/water.

Conditions: uy =2.40 kg m/kg s 6 =26.4°%
P = 12400 N/m2 R0 = 2.50 mm
Fitting parameters: a = 0,202 D0 = 5.03E-10 m2/s
constant flux penetration period regular regime
F = 3.888 G. = 0.440 Sh, = 5.248
ca [¢] d
Go = 0.555 EI‘ = 0.436
4. = 0.362 keg/kg t’I‘ = 2854 sec.
E; = 0.849 :
i,cr
ca = 0.082 {(about 60% of all data points, used in
to, = 262 sec. the evaluation, are represented below)
E time (s) % rel. E time (s) % rel.
meas. calc. error meas. calc. error
.021 80 66 -18.1 0.566 4496 4823 7.3
047 160 150 -6.4 0.581 4736 5008 7.6
.060 192 192 -0.1 0.580 4864 5236 7.6
085 272 268 ~1.3 0.605 5136 5562 8.3 -
.109 352 336 -4.6 0.620 5392 5863 8.7
121 400 373 -6.8 0.628 5552 6053 9.0 |
.141 480 48 -6.6 0.645 5872 6435 9.6
L1581 512 487 4.8 0.653 6032 6627 9.9
. 169 502 570 ~3.6 0.669 6352 7014 10.4
,186 672 655 -2.6 0.684 6688 7418 10.9
. 194 720 697 =3.1 0.692 6848 7618 11.2
. 209 800 86 -1.8 0.708 7248 8118 12.0
.224 880 874 ~0.7 0,725 7648 8624 12.8
.237 960 963 0.3 0.733 7840 8878 13.2 -
.262 1120 1138 1.6 0.748 8240 9302 14.0
274 1184 1225 3.4 0.755 8448 9653 14.3
.206 1360 1403 3.1 0.771 8960 10311 15.1
.316 1520 1574 3.5 0.786 9440 10936 15.8
.325 1684 1662 4.9 0.794 9712 11305 16.4
.345 1760 1847 4.9 0.809 10272 12042 17.2
362 1920 2018 5.1 0.824 10880 12851 18.1
370 2000 2104 5.2 0.832 11232 13318 18.6
386 2160 2273 5.2 0.846 11952 14274 19.4
394 2240 2359 5.3 0.854 12352 14797 19.8
400 2400 2529 5.4 0.868 13216 15928 20.5
427 2608 2738 5.0 0.882 14240 17215 20.9
437 2720 2863 5.3° 0.850 14832 17963 21.1
454 2928 3088 5.5 0.904 16192 19625 21.2
4713 3168 3349 5.7 0.918 17888 21622 20.9
483 3296 3488 5.8 0.926 18928 22793 20.4
501 3536 3750 6.0 0.949 23616 27915 18.2
510 3664 3882 5.9 0.956 25712 30140 17.2
527 3904 4149 6.3 0.971 31728 36602 15.6
543 4144 4415 6.5 0.985 41616 49962 20.1
551 4256 4548 6.9 0.992 54224 65396 20.8

CO000000000OOOO00D0000000000O000000
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APPENDIX G-8

Experiment 8: measured and calculated drying curves of

gelled layer of maltodextrin/water.

Conditions:

L}

35.8 °C
2.50 mm

4.85 kg - w'kg s ]

12400 N/m2 RO =

Yo
P

i

Fitting parameters: a = -0.087 Do = 9.27E-10 m2/s

constant flux

penetration period

regular regime

F = 4.254 G, = 0.721 Sh, = 4.824
ca 0 d
Go = 0.882 E‘T = 0.523
U, = 0.383 kg/kg ty = 1411 sec.
E; = 0,921
i.cer
Eca = 0.175 (about 80% of all data points, used in
tca = 277 sec. the evaluation, are represented below)
E time (s) % rel. E time (s) % rel.
meas. calc. error meas. calc. error
0.021 38 33 -14.5 0.620 1988 1951 -1.9
0.049 8 78 0.1 0.632 2068 2030 ~-1.8
0.077 118 122 3.1 0.644 2148 2108 -1.9
0.101 156 161 3.0 0.656 2228 2188 -1.8
0.158 246 248 0.7 0.679 2388 2349 -1.6
0.178 286 283 -1.0 0.691 2468 2431 -1.5
0.199 326 319 -2.0 0.702 2548 2514 -1.3
0.218 366 356 -2.7 0.711 2616 2584 -1.2
0.254 448 436 -2.2 0.732 2186 2762 -0.9
0.267 478 468 -2.0 0.742 2866 2848 0.6
0.287 530 519 2.0 0.751 2040 2026 -0.5
0.302 570 560 -1.7 0.761 3030 3022 -~0.3
0.329 650 641 -1.4 0.779 3190 3196 0.2
0.342 690 682 -1.1 0.788 3270 3285 0.5
0.355 730 724 -0.8 0.796 3350 3374 0.7
0.367 770 e -0.7 0.804 3430 3465 1.0
0.390 850 845 -0.6 0.819 3586 3637 1.4
0.401 890 885 -0.6 0.827 3678 3739 1.6
0.411 930 925 0.6 0.834 3758 3831 i.9
0.421 970 964 -0.6 0.844 3878 3968 2.3
0.441 1050 1043 -0.7 0.863 4122 4247 3.0
0.450 1090 1082 ~0.8 0.872 4242 4384 3.3
0.459 1130 1120 -0.9 0.880 4362 4523 3.7
0.468 1170 1159 ~-0.9 0.887T 4482 4656 3.9
0.486 1250 1237 ~1.1 0.904 4802 5008 4.3
0.494 1290 1276 ~1.1 0.913 5002 5215 4.3
0.502 1330 1313 ~1.3 0.921 5182 5392 4.1
0.510 1370 1351 ~1.4 0.928 5380 55092 3.9
0.528 1460 1439 -~-1.4 0.943 5908 6066 2.7
0.536 1500 1478 -~1.5 0.951 6268 6358 1.4
0.543 1540 1517 -1.5 0.958 6694 6662 -0.5
0.550 1580 1585 ~1.6 0.965 7272 7019 -3.5
0.573 1708 1679 ~1.7 0.979 9794 8000 -18.3
0.580 1748 1719 ~1.7 0.986 13260 8751 -34.0

[
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APPENDIX G-9

Experiment 9: measured and calculated drying curves of
gelled layer of maltodextrin/water.

4.85 kg mkg s e

26.7 °c
12200 N/m2 Ry = 2.50 mm

0.075 D0 = 1,00E~-09 m2/s

Conditions: Uy
P
Fitting parameters: a

it

constant flux penetration period regular regime
F = 2.187 G, = 0.575 Sh, = 5.024
ca 0 d
GO = 0.714 ET = 0.482
ucr = 0.362 kg/kg tT = 1634 sec.
E; = 0,925
i,er
Eca = 0.273 {about 70% of all dota points, used in
tea = 779 sec. the evaluation, are represented below}
E time (s) % rel. E time {s) % rel.
meas. calc. error meas. calc. error

0.032 80 92 15.1 0.589 2486 2292 -7.8
0.044 122 126 3.7 0.601 2566 2373 -7.5
0.070 202 200 -0.7 0.621 2726 2622 -7.5
0.089 276 281 1.8 0.631 2806 2506 -7.5
0.126 356 360 1.2 0.649 2066 2746 7.4
0.140 396 400 1.0 0.660 3046 2836 -6.9
0.154 436 440 0.9 0.665 3126 2912 -6.8
0.182 516 518 0.3 0.687 3202 3071 -B6.7
0.195 556 557 0.2 0.695 3372 3146 -6.7
0.222 636 633 ~0.5 0.711 3532 3306 -6.4
0.235 676 671 -~0.8 0.718 3612 3384 -6.3
0.260 756 741 -2.0 0.734 3772 3547 -6.0
0.272 796 776 -2.5 0.742 3864 3638 5.8
0.284 836 810 -3.1 0.750 3956 3733 -5.6
0.305 916 880 -3.9 0.776 4196 3985 5.0
0.316 556 217 -4.1 0.779 4316 4103 -4.9
0.336 1036 o087 -4.8 0.797 4556 4352 -4.5
0.345 1076 1021 ~5.1 0.805 4676 4478 -4.2
0.363 1156 1091 -5.6 0.820 4876 4719 -3.2
0.371 1192 1120 -6.0 0.827 4996 4849 -2.9
0.381 1236 1162 -6.0 0.835 5118 4980 -2.7
0.400 1326 1241 -6.4 0.853 5434 5337 -1.8
0.408 1366 1276 -6.6 0.861 5594 5523 -1.3
0.423 1446 13456 -7.0 0.876¢ 5914 B87T8 -0.6
0.432 1486 1385 -6.8 0.884 6114 6090 -0.4
0.446 1566 1454 7.1 0,899 6514 6518 0.1
0.453 1606 1488 -7.3 0.906 6714 6747 0.5
0.460 1646 1624 ~7.4 0.914 6994 7034 0.6
0.487 1806 1665 -7.8 0.920 7606 T644 0.5
0.500 1886 1737 -7.9 0.936 7966 7988 0.3
0.520 2006 1852 -7.7 0.951 8950 8880 -0.8
0.532 2086 1923 -7.8 0.958 9550 9415 ~1.4
0.556 2246 2071 -7.8 0.973 11276 10918 -3.2
0.567 2326 2144 -7.8 0.980 13642 11999 -12.0
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LIST OF SYMBOLS

B o o e >0 88 P

o
oy

[+

e}
<
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5 B3 8 B Ot o~

exponent in power relation
thermodynamic activity

heat diffusivity

component in binary mixture
mass exchanging area
activation energy

fitting parameter in eqn. 6.23
factor in power relation
component in binary mixture
fitting parameter in eqn. 6.23
Biot number

constant value

molar concentration

specific heat at constant pressure

fitting parameter in egn. 6.23
(partial) density
diffusion coefficient

reduced diffusion coefficient

efficiency

{see Table 5.1)
dimensionless flux-parameter
{see Tableb.1)

help function for penetration processes

{see Table 5.1)

shrinkage factor

diffusive mass flux

Bessel functions

mass transfer coefficient
modified mass transfer coefficient
characteristic dimension

latent heat of evaporation

exponent in Sherwood correlation {gas phase)

dimensionless mass concentration
moisture
(see Table 5.1)

mass flux in stationary coordinate system

147

m /s

J/mol %K
J/mol
kg>/mis

kg s/ kgm
mol/m
J/kg °c
J/mol

kg/m

m /s

kg/mzs

kg mzfs

J/kg

kg/m”s
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n exponent in Sherwood correlations (gasphase}
N molar flux
Nu  Nusselt number
P pressure
Pr  Prandtl number
q heat flux
q parameter to account for influence of dynamic
radius on mass transfer coefficient k’
T space coordinate
radius of cylinder and sphere or
thickness of one-sided drying slab
Re Reynolds number
s solid(s)
s modified shrinkage coefficient
Sc¢  Schmidt number
Sh  Sherwood number
t time
T absolute temperature
u solids based mass concentration
v ratio of volume fractions of moisture and solids
v velocity
v volume
X molar fraction on total basis
X dimensionless parameter
y dimensionless linear space coordinate
z solids based space coordinate
GREEK SYMBOLS
a heat transfer coefficient
a correlation parameter in eqns. 4.37 and 5.60
P correlation parameter in eqn. 5.52
B correlation parameter in egns. 4.65 and 5.7
5 slope of linearized sorption-isotherm
¥ correlation parameter in eqn. 5.52
[ thickness film layer in gas phase
[ porosity
€ {see Table 5.1)
¢ generalized space coordinate
A hollowness factor
A heat conductivity

mol/mzs
N/m

J/mZs

mol/mol

kg s/m> 7

J/m2s °%c

J/ms °C




“k roots of characteristic equations
D geometry parameter
v kinematic viscosity m2/s
w mass fraction on total basis kg/ke
3] temperature %
] mass concentration kg/m3
o shrinkage coefficient
T dimensionless time
SUBSCRIPTS
a air
ap apparent
ca constant activity
cr eritical
d dispersed phase
D diffusion
e value at zero critical surface concentration
eff effective
film
flux
heat
interface
component in mixture
moisture
mass

e+

SHXN= O —ig M OYTT RE e kT
[ed

pure component

penetration period

transition point (Penetration Period/Regular Regime)
reduced value

solid

saturated

transition point (Penetration Period/Regular Regime)
vapour

value at t=0

first root

internal radius

external radius

equilibrium value

reference value

bulk of gas phase

SUPERSCRIPTS

0 01

-

average value
volume average value
molar average value
solid

gas phase

local value

{see Table 5.1)
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STELLINGEN behorende bij proefschrift W.J. Coumans, TUE, 29 mei 1987

Stelling 1
Voor systemen, waarin de diffusiecoefficient volgens een machtsrelatie
afhangt van de concentratie en de grensvlakconcentratie ongelijk nul is,
neemt het kengetal van Sherwood (betrokken op disperse fase) géén
constante waarde aan gedurende het Regular Regime. Uit eigen onderzoek
blijkt, dat het kengetal van Sherwood als functie van de droogtijd dan
een minimum vertoont.
Liou, J.K., Proefschrift LUW, 1982
Reniers, P., Afstudeerverslag TUE, 1985

Stelling 2
De berekening van droogcurven met een empirische correlatie wordf door
Petersen ten onrechte voorspelling van droogcurven genocemd.
Petersen, J.N., Drying Technology, & (1986);319-330

Stelling 3
Het verlies van vluchtige aromacomponenten tijdens drogen vindt plaats
gedurende het droogstadium, waarin de grensvlakconcentratie van de
aromacomponent de waarde nul nog niet bereikt heeft. Bij rekenmodellen
voor het aromatransport is de veel gehanteerde randvoorwaarde, dat reeds
vanaf het begin de grensvlakconcentratie nul zou zijn, daarom onjuist.
Kerkhof, P.J.A. M., Proefschrift TUE, 1975

Stelling 4
Uit het vergelijken van stripexperimenten {alleen aromatransport) en
droogexperimenten (water— én aromatransport) blijkt, dat in rekenmodel-
len voor het aromatransport tijdens drogen de kruisdiffusieterm niet
verwaar loosd mag worden.
de Boer, M., Afstudeerverslag TUE, 1986
Smits, J.H.P.M., Afstudeerverslag TUE, 1985

Stelling 5
De wijze waarop Gupta et. al. op basis van beschikbare correlaties voor
de warmteoverdracht een nieuwe correlatie samenstellen, leidt niet tot
een beter begrip van het warmteoverdrachtsproces.
Gupta et.al., Chem.Eng.Sci., 29 (1974), 839-843



Stelling 6
De door Furuta et.al. berekende diffusieccefficienten voor water in
maltodextrine oplossingen zijn niet in overeenstemming met de door hen

gepubliceerde droogcurven.
Furuta et.al., J.Food Eng., 3 (1984k); 169-186

Stelling 7
Door Van de Lijn wordt niet onderkend, dat een kleine meetfout in de
gorptie-isotherm zeer kritiek is bij het voorspellen van een explosie
van een drogende holle druppel in een sproeidroger.
van de Lijn, J., Proefschrift LUW 1976

Stelling 8
Ock als de algebraische oplossing bekend is, kan numerieke discretisatie
van differentiaal vergelijkingen rekentechnisch grote voordelen bieden.
Bosch, M.L. ,Prakticumverslag TUE, 1988

Stelling 9
Het gebruik van een interne standaard bij de analyse van vluchtige
sporencomponenten {in bijv. sinaasappelsap) m.b.v. een destillatie/
extractie methode kan tot een sterke vergrotiﬁg van fouten leiden.
van Spreeuwel, M.C.¥W., Afstudeerverslag TUE 1984

Stelling 10
De bewering van McCathren, dat het polijsten van klarinet-rieten voor-
komt dat tijdens het spelen de capillairen in het riet gevuld raken met
speeksel, is onjuist. Evenmin is de bewering juist dat door polijsten de
ongewenste veroudering van het riet door enzymatische afbrask van de
vezels wordt veorkomen.
McCathren, D.E., The Instrumentalist, October 1985, 56-63

) Stelling 11
" Een gezonde muzikale ontwikkeling van amateur Harmonie- en Fanfare-
orkesten wordt vaak gehinderd door het traditionele verwachtingspatroon

dat de gemeenschap heeft van deze orkesten.



