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SUMMARY 

In solids drying the calculation of drying rates and drying times is 

complicated by the concentration dependence of the diffusion coefficient 

and the shrinkage of the drying bodie due to the moisture loss. The 

calculation is further complicated if particles contain an internal gas 

core (e.g. in spray drying), which expands or shrinks during drying. In 

principle even the most complex processes can be calculated numerically. 

However, the lack of known product properties (for instance the relation 

between diffusion coeff icient and moisture concentration) and the extre

mely difficult and laborious programming render the numerical approach 

prohibitive for practical application by process engineers and desig

ners. It is the aim of this research to provide easily to handle short

cut calculatton procedures, which are applicable to slabs, massive and 

hollow cylinders and spheres, irrespective of their degree of shrinkage. 

Diffusion of moisture in shrinking and non-shrinking bodies of the 

various geometries is described by a generalized diffusion equation. 

This equation has been solved numerically for a power law dependence of 

the diffusion coefficient on moisture concentration. Two boundary condi

tions, which are typical for two main drying stages, are considered: 

constant surface flux and constant surface concentratton. Both drying 

stages can be subdivided into a Penetratton Period (centre concentration 

hardly affected) and a Regular Regime (centre concentration clearly 

affected). 

The numerical computer output can be described by simple correlations. 

For both Penetration Periods the introduction of a G·pa.rameter appears 

to be helpful and f or both Regular Regimes the concept of Sherwood 

ru.unbers of the dispersed phase is of great importance. Drying times 

calculated with the correlations deviate less than 5% from the "exact" 

calculated values. 

Moreover, a drying apparatus has been developed, to determine the weight 

of a sample (thin layer) as a function of time during drying (drying 

curve). The approximate correlations are used to evaluate the experimen

tal drying curves for obtaining the relevant model parameters. Next the 

same correlations are used to predict drying curves at different drying 

conditions. Deviations between predicted and experimental drying curves 

of aqueous maltodextrin solutions appear to vary from a few percent to 

about 30% . 



SAMENVATIING 

De berekening van het drooggedrag van deeltjes is erg gecompliceerd, 

omdat de diffusiecoefficient van het migrerende vocht veelal sterk 

afhangt van het vochtgehalte. Een "exacte" berekening van het droogge

drag vereist kennis van numerieke methoden, grote vaardigheid in het 

programmeren en de beschikking over een main-frame computer. Bovendien 

is de relatie tussen de diffusiecoefficient en het vochtgehalte meestal 

onbekend en zijn moeizame experimenten noodzakelijk ter bepaling hier

van. Proces ingenieurs en ontwerpers van droogapparatuur hebben in hun 

dagelijkse praktijk behoefte aan gemakkelijk te hanteren rekenproce

dures. 

Het onderzoek beschrijft een kortsluitrekenmethod.e, welke uitgaat van 

een machtsrelatie tussen de diffusiecoeffient en het vochtgehalte (power 

law diffuston). De (cor)relaties van deze vereenvoudigde berekening zijn 

gebaseerd op de "exacte" numeriek berekende oplossingen. De afwijkingen 

in droogtijden, berekend volgens de "exacte methode" en de kortsluit

methode, bedragen gemiddeld 2% en zijn maximaal 5% . De kortsluitmethode 

is toepasbaar voor holle en massieve deeltjes met elke graad van krimp 

(vlakke lagen, cylinders en bollen). 

Bovendien is een geautomatiseerde meetopstelling ontwikkeld. waarmee het 

gewicht van een monster {dunne laag) tijdens een droogproces kan worden 

geregistreerd {droogcuruen). M.b.v. de vergelijkingen van de kortsluit

methode worden uit deze experimentele droogcurven de relevante model 

parameters berekend; vervolgens wordt met de kortslui'tmethode het droog

gedrag bij andere droogcondities voorspeld. De afwijkingen tussen voor

spelde en experimentele droogtijden van maltodextrine oplossingen vari

ëren van enkele procenten tot 30% . 
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CHAJYrER I 

INTRODUCfIClf 

Though drying is an economical important unit operation. which is 

frequently used in many branches of industry, it still is a hard to 

grasp process. The design of dryers is complicated by: 

- the cha.nging conveyance properties of the ma.terial during drying 

e.g. a wet droplet ma.y first change into a sticky material and 

eventually into a free flowing powder; 

1 

- the prediction of the required drying time, which is a rather 

difficult calculation problem, especially if drying rates are fully 

controlled by diffusion of moisture in the material. 

In this thesis the attention is focussed on the latter problem. 

!...! Approxima.te Calculation Methods. 

In solids drying ma.ss transfer takes place from a dispersed phase 

(e.g. droplet of milk} toa continuous phase (e.g. air}. Interface 

mass transfer processes are usually split up into mass transfer in the 

continuous phase and ma.ss transfer in the dispersed phase. 

Mass transfer in the conttnuous phase is generally described in a 

phenomenological way by means of a mass transfer coefficient (one film 

model). For some situations literature provides theoretica! relations 
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for the calculation of mass transfer coefficients, however in most 

cases (semi-)empirical correlations of various dimensionless groups 

are to be used [1-9]. If mass transfer is fully controlled by the 

conditions of the continuous phase, the accuracy of the calculated 

drying rates is 20-30% at the best [3]. 

llass transfer in the dtspersed J;ita.se depends on process condtttons 

(e.g. mass transfer in the gas phase, temperature and hu1llidity of the 

drying air) and product properttes, such as: 

- sorptton-tsotherm [10,11], which describes the equilibrium between 

the thermodynamic moisture activity and the moisture content of the 

material; 

- parameters descrtbtng the ua.rtous mass transfer mechantsms, such as 

molecular diffusion, capillary transport, etc. [12,13]. In this 

thesis we confine ourselves to the description of rigid systems with 

a uniform temperature, thus internal circulations and temperature 

gradients do not contribute to mass transfer; 

- shrtnka.ge beha.utour [14-16]; three cases can be distinguished: 

maxtmum-shrtnktng, if the decrease of the body volume equals the 

volume of the removed moisture; 

parttal-shrtnktng, if the decrease of the body volume is less 

than the volume of the removed moisture: 

non-shrinktng, if the volume of the body remains constant during 

drying. 

In case of partial- and non-shrinking systems a porous solid will be 

formed during a drying process. 

On the one hand, calculation models taking into account all mass 

transfer mechanisms with a maximum of physical relevance are generally 

not suited for practical use. On the other hand, easy to h.andle 
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calculation models with a too small physical basis often fail in 

predicting the drying bebaviour with sufficient accuracy. Thus, in 

developing physical/mathematical models for the calculation of drying 

processes a good balance bas to be found between the theoretica! basis 

and the manageability of the calculation method. 

Despite the occurrence of various mechanisms, quite often ma.ss trans

fer is described with a single parameter, viz. the effective diffusion 

coefficient (D), in which many mechanisms are lumped together. This 

rather rigid ~~! simplification implies that in general the 

diffusion coefficient will be strongly dependent on moisture content 

and temperature; a decrease of several orders of magnitude during 

drying may occur. e.g. for water in aqueous carbohydrate solutions 

[17-22]. For the!!.!!!-!~!!~! description of the drying processes two 

main problems rematn: 

first, from a mass balance over an infinite small shell volume the 

diffusion equation is obtained. For constant diffusivity this equation 

bas been solved analytically for many initia! and boundary conditions. 

However, especially for particles with the geometry of a hollow cylin

der or sphere the algebraic solutions arè rather complicated and 

relatively difficult to handle (see Chapter IV). For concentration 

dependent diffusion coefficients a numerical approach is required. The 

numerical calculations are complicated, require highly sophisticated 

programming skill and high speed computers. 

second, product properties, such as the relationship between diffusion 

coefficient and moisture content are rather inaccurate; deviations of 

50% or more, depending on the range of moisture content, are quite 

common; moreover, in most cases product properties are even unknown 

and must be obtained from rather laborious experiments. 
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In genera!, mathematically exact calculation procedures may be very 

complicated and require product properties, llhich however, are not 

exact ,so there is a lot of room left. for approxtmate calculati.on 

me. thods without subs tantial loss of overall accuracy. 

Approximate calculation procedures show the following advantages: 

first, they offer a better insight; simple equations will contribute 

to a better understanding of drying kinetics; 

second, they are relatively easy to handle, especially of interest for 

practical engineers and designers; 

thtrd, the simple equations can be used in the evaluation of relevant 

product properties from laboratory drying experiments; 

fourth, the approximate methods can also be useful in building up 

algorithms for controlling drying processes. 

1..2 Strategy for Developing Approximate Calculation Methods. 

In Figure 1.1 a strategy for developing approximate calculation 

methods is schematically depicted. First of all a description of the 

processs in terms of physical phenomena is required. From this 

Jiiysf.cal llU.Xlel a mathema.ttcal llU.Xlel can be derived. Usually the mathe

matica! model consists of a partial differential equation with initia! 

and boundary conditions. Next, we have to find the exact solutf.ons. 

Sometimes these solutions can be found as algebraic expressions in 

literature, however in most cases one has to resort to a numerical 

approach. For extreme si.tuati.ons (e.g. short times, large times, low 

flux, high flux) quite often the exact solutions reduce to a simple 

form. 1ben the approximate solutions of the two extremes are connected 

by means of a simple correlation {short-cut of extremes, therefore the 

approximate methods are often referred to as short-cut 
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ca.lculatton methods). Finally, the approximate solutions are compa.red 

with the exact solutions. The result of this uertftca.tton determines 

whether one bas to make corrections or not. 

It will be shown in this thesis that by tolerating small errors (~5%} 

tremendous simplifications of the calculation procedure can be 

achieved. 

PHYSICAL MODEL 

1 
MATHEMATICAL MODEL 

l 
EXACT SOLUTION 

1 
EXTREME SOLUTIONS 

l 
SHORT-cUT OF EXTREMES 

l 
VERIFICATION 

.___n_o_t_O~.K~·~~~ l 
O.K. 

Figure 1.1 Strategy for developing short-cut calculation methods. 
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1.3 Short Historv 

1b.is research on approximate calculation methods for drying processes 

is a continuation of the investigations carried out by Schoeber 

[23,24], Luyben, Olieman, Bruin and Liou [25-30). Similar research on 

drying kinetics was later started by Yamamoto, Sano and Hoshika 

[31.32]. 

Schoeber analyzed the numerical solutions of the diffusion equation 

for many kinds of concentration dependence of the dif fusion coef fi

cient. From the numerical solutions he developed general approximate 

methods for the calculation of mass transfer in diffusion processes. 

Schoeber's concept is based on the combination of "short time solu

tions" {Penetration Period) and "large time solutions" (Regular 

Regime}. It appears from bis analysis that the Regular Regime solu

tions can serve as a basis f or the evaluation of dif fusion coeffi

cients from experimental drying curves. 

Luyben measured the drying curves of a number of food materials and 

comparéd them with calculated drying curves obtained from short-cut 

calculations (ba.sed on Schoeber's approach) and "exact" numerical 

calcul~tions. Furthermore, based on Schoeber's equations, he developed 

a method to derive diffuslon coefficients from non-isothermal drying 

curves of bodies with various geometries (slabs, cylinders and 

spheres). 

1b.e concentration dependence of the dif fusion coefficient can be 

described in. many ways: exponential. logaritmic, power law, polynom, 

etc .. However, none of them will really describe in a satisfying way 

the experimental values of the diffusion coefficient of various sys

tems over the whole concentration range of interest, unless one re

sorts to equations with many (more than two) fitting parameters. 

Based on the work of Schoeber and Luyben a power law dependence of the 

effective diffusion coefficient (D) with concentration was put forward 
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by Liou and Bruin: 

(1.1} 

in which, D is diffusion coefficient [m2/s]. p and p are the concen-m s 

trations of moisture and solid [kg/m3]. a and bare fitting pa.rame-

ters. 

Liou proposed a short-cut calculation method for drying rates, drying 

times and concentration profiles. His method is valid for non-shrink-

ing and maximum-shrinking slabs, massive cylinders and massive sphe-

res with a constant surface concentration. 

Liou's approximate method for "pmoer lrulJ dtffusion" has been extended 

to hollow and massive systems with any degree of shrinkage and to 

systems with constant surface flux by Coumans and Thijssen (33,34]; 

this approach will be described systematically in this thesis. 

1:..1 Drying Stages. 

The mathematica! formulation of the external boundary condition of the 

diffusion equation depends on the drying stage. In this thesis three 

main stages are distinguished (see also Chapter IV}: 

~!~Q~_!. at the beginning of the drying process the surface moisture 

activity remains nearly constant. For slabs and non-shrinking cylin-

ders and spheres this period is characterized by a nearly constant 

surface flux. 

~!!!Il~_!!· both the boundary flux and the boundary concentration de-

crease considerably during this stage. The boundary condition now is 

more complex and requires good knowledge of the sorption-isotherm. 
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§!~~-!!!: the surface concentration, relative to its total change, 

hardly changes anymore. Thus, by good approximation, there is a con

stant surface concentration. 

All three main stages can be subdivided into two substages: 

~~_!!:!!!!!!~~!Q!! (for short times), which is characterised by a 

centre concentration which bas hardly changed. 

~!~!:-~Q!~ (for large times}. during which the centre concentra

tion, compared to its initia! value, significantly decreases; the most 

striking feature or this drying stage is that the dryi.ng behtwtour has 

becoine independent of the tnttta.t condtttons. 

It appears that every substage bas its own approximate equations. 

This thesis only deals with drying stages I and III. It is assumed 

that drying stage Il, which is rather hard to describe, bas a minor 

contribution to the total drying time (see Chapter VI): therefore 

drying stage II bas not been investigated. Approximate methods for the 

calculation of the surface concentration as function of time (stage I) 

and for the calculation of drying rates and drying times at any given 

value of the averaged moisture concentration (stage 111) have been 

derived Îrom the analytica! and numerical solutions of the diffusion 

equation. 

The short-cut equations or drying stage I will be of special interest 

e.g. for spray drying processes [21] in order to predict whether 

droplets will agglomerate or not, or whether they will stick to the 

wal! of the dryer or not. Also the application of the method in 

short-cut calculation methods f or the prediction of aroma losses 

during drying [35,36] is interesting. The equations of drying stage 

III will be advantageous in predicting overall drying times. since for 

high intensity drying this stage contributes dominantly to the total 



drying time. 

The described short-cut methods refer to ma.ss transfer in dispersed 

phases, where diffusion plays an important role and even ma.y become 

rate controlling; though this thesis emphasizes drying processes the 

methods described ma.y also be applied to processes such as leaching, 

absorption, humidification and desorption. 

1.5 Scope of this Thesis. 

9 

The contents of the chapters are briefly summa.rized below. 

~E!~r-!!l Based on a comparison of mass transfer in maximum- and 

non-shrinking systems, a generalized mass transfer equatton is formu

lated for systems with any degree of shrinkage. Further some aspects 

of ma.ss and heat transfer coefficients in the gas phase are 

considered. 

~E!~r_II!l Mass transfer in slabs, hollow and ma.ssive cylinders and 

spheres with any degree of shrinkage is described with a generalized 

diffuston equatton. By transforming this equation into a dimensionless 

form, a similarity of solutions is obtained. Also a generalized repre

sentation of the total mass balance is presented. 

~E!~r_!!l Approxima.te equations are derived from the analytica! 

solutions of non-shrtnktng systems wtth constant dtffusivtty. It 

appears that this most simple drying situation yields approxima.te 

equations. which only need slight adaptations for shrinking systems 

with variable diffusion coefficients. 

~E!~r_Yl For power law diffusion in systems wtth any degree of 

shrtnhage approxima.te equations are derived from the numerical solu

tions. 



10 

~P!~r_!!I An experimental set-up for the continuous registration of 

the weight of a drying slab as function of time is described. Several 

drying experiments have been performed with thin layers of aqueous 

maltodextrin solutions. From the socalled drying curves {=sample 

weight versus time) relevant physical information is derived by means 

of the approximate equations of Cha.pter V. Finally, drying curves are 

predicted and compared with the experimental ones. 
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aIAPI'ER II 

MASS AND HEAT TRANSFER IN DRYING PROCESSE'S 

2.1 Introduction. 

Mass transfer in drying bodies is of ten described by mea:ns of an 

effective diffusion coefficient. In literature one comes across many 

defini tions of the diffusion coeffi<;:ient and the mass transfer 

equations can take on many forms. Sornetimes the definitions used are 

somewhat obscure. 

The aim of this chapter is to define in an unambiguous wa:y the basic 

equations for mass transfer in well-defined binary systems. 

Unfortunately, in most cases drying systems are thermodynamically 

111-defined. Further, extra complications are caused by shrinkage due 

to the loss of moisture during drying. Therefore a comparison between 

shrinking and non-shrinking systems is given, leading to a generalized 

definition of the mass transfer equation for systems irrespective of 

their shrinkage behaviour. 

The drying process is induced by the conditions of the external gas 

phase, especially the temperature, the humidity and the mass- and 

heat-transfer coefficients. The last part of this chapter deals with 

some aspects of these mass- and heat-transfer coefficients relevant 

for drying processes. 
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2.2 Mass Transfer in !deal One-Phase Svstems. 

In one-phase systems, like gas mixtures and liquid solutions, two 

mechanisms for ma.ss transfer can be distinguished: 

- molecular diffusion caused by a concentration gradient; 

- convection caused by a pressure gradient (forced convection} or a 

vertical density gradient (free convection}: bulk flow may also be 

induced by a concentration gradient. 

It is important to realize that the contribution of each mechanism 

depends on the definition of the coordinate system with respect to 

which ma.ss fluxes are defined. Ina coordinate system, fixed with 

respect to the observer, the mass flux ni of a component i with 

concentration p1 and velocity v1 is given by: 

(2.1) 

'Ihe mass flux n1 is built up of a convective flux and a diffusion flux 

J
1

, which is defined with respect toa certain reference velocity 

vref" Equation 2.1 can also be written as: 

or 

'Ihe reference velocity vref can be defined as: 

i} the mass average velocity v: 

(2.2) 

(2.3} 

(2.4) 



where p is the total mass concentration of the mixture. 

ii) the volume average velocity v0
: 

a 
vi n. 

v = - };_!_ (2.5) 
pi - .d. 

};- l l 

idi 

where d
1 

is the partial density of component i, 

pi/d
1 

is the volume fraction of component 1 in the mixture and 

n
1
/d

1 
is the volume flux of i. 
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iii) the velocity of another component in the mixture, for instance of 

iv) 

component b, thus vref=vb. 
0 

molar average velocity v : 

:Ici 
i 

c 

where ei is the molar concentration of component i, 

c is the total molar concentration of the mixture and 

N1 is the molar flux of component i. 

(2.6) 

Most frequently the ma.ss average velocity is chosen as a reference for 

the diffusion flux. Thus fora binary mixture with components a and b 

we get for the convective flux of a: 

(2.7) 

where wa is the rnass fraction of component a on total basis. 

The diffusion flux ja is described according to Fick's law with a 
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diffusion coefficient Da: 

öw 
j = -D P --.!!:. a a 8r 

(2.8) 

From equations 2.3, 2.7 and 2.8 the basic equation for mass transfer 

in binary solutions follows: 

(2.9) 

In fact equation 2.9 defines the diffusion coef ficient Da of component 

a in a binary mixture. lt can simply be proved that Da=Db=D. 

Taking another reference velocity will change the separate 

contributions of convection and molecular dif fusion to the total mass 

flux. In Table 2.1 a survey is given of expressions for the mass flux. 

It should be realised that in all these equations the diffusion 

coefficient D is defined aceording to equation 2.9. Further, all these 

equations are equivalent, because they all describe the same mass 

flux. However, in some special cases a sensible choice will lead toa 

simplifieation of the flux expression, namely: 

i) no net mass flux (equtma.ss) 

ii) no net volume flux (egutvolumetric) 

iii) Stefan diffusion 

iv) no net molar flux (egutmolar) 

na + ~ = 0 - choose I 

na ~ 
da + ~ = 0 - choose II 

- choose I, II 
II! or IV 

Na + Nb = 0 - choose IV 

Strictly, the equations of Table 2.1 only apply to binary one-phase 

systems, however most drying systems are multi-component systems and 

consist of more than two phases. 



Table 2.1 Survey of expressions for the massflux of 
component a in a binary mixture. 

reference total convective + diffusive 
velocity mass flux = flux flux 

&J 
I mass 

= (na+ ~}wa - Dp __.!!. n ave rage a ar 

volume =[ :: + ~ ]Pa 

ap 
II n - D __.!!. 

ave rage a är 

velocity lil ~8wa 
III 

a -n = ~ 1-w of b a 1-wa Br a 

molar 8x 
IV N (N + Nb)x 

. a 
= - De-

ave rage a a a ar 

Hel~ eguations: 

1. 2. 
Pa 

3. wa~ = 1 pa+pb = P (,) =-a p 

c 
4. 5. x a 6. xa+~ 1 ca+~ = c =- = a c 

7. 
Pa Pa pa/pb 

61 =-=---= 
l+pa/pb a p pa+pb 

2.3 Mass Transfer in Real Svstems. 

In drying processes three types of systems can be distinguished: 

maximum-shrinking, partial-shrinking and non-shrinking systems. 

Henceforth it is assumed that shrinkage, if present, is isotropic 

15 

(e.g. the shape of a shrinking body does not change) and that .partial 

densities are constant. 
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2.3.1 l{aximum-Shrinking Svstems. 

Shrinking is maximum if the volume decrease of the drying material 

equals the volume of the removed moisture (Examples: sugar solutions, 

milk, coffee extract, fruit juices). It is true that these systems are 

seldom binary, however, with respect to the drying process they may be 

considered as such with components moisture(m) and dissolved 

solids(s). In these systems the volume balance reads: 

(2.10) 

where pm/dm and p
5
/d

5 
are the volume fractions of moisture and 

dissolved solids respectively. Mass transfer of moisture and solids 

occurs by means of convection and molecular dif fusion, so the 

equations of Table 2.1 may be applied. The basic mass transfer 

equation now reads: 

&,,m 
n = (n +n )w - Dp ~r m m s m v 

(2.11) 

Because no pores are formed during drying, there is no net volume flux 

in maximum shrinking systems, thus also: 

(2.12} 

An expression for the moisture diffusion flux js with respect to the 
m 

solids velocity vs is found as follows: 

{2.13) 

Also 



n s 
{2.14) 

Eliminating n and n from equations 2.11, 2.13 and 2.14 gives: 
m s 

(2.15) 

With the help equations of Table 2.1 this expression can be 

transformed into: 

8(p /p ) 
j s = D m s 
m - Ps 8r (2.16) 

It should be noticed, that pm/ps is the so-called solids based 

moisture concentration {kgm/kg s). 

2.3.2 Non-Shrinking Systems. 

Non-shrinking systems are characterized by a constant volume during 

drying. This means that the volume of the moisture, which bas been 

removed from the system, will be replaced by an equal volume of gas. 

{Examples: air-drying of ceramics and sand.} 
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During the drying process of such systems a capillary porous material 

is built up, consisting of: 

three components viz. moisture {m), solid {s) and air {a), 

- several phases, viz. a solid matrix (S) with pores containing liquid 

moisture {L) and/or moisture vapour {G) and/or air {G). 

Mass transfer of moisture in capillary porous materials may occur by 

several mechanisms [12,13], such as capillary liquid flow, molecular 

diffusion, evaporation-condensation, surface diffusion, etc .. During a 

particular stage of the drying process one of these mechanisms may 
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domina.te, but in general several mechanisms will be present 

simultaneously. A fundamental description of mass transfer based on 

all occurring mechanisms will lead to rather complicated physical/ 

mathèmatical models. 

In a rigorous but more practical approach the non-shrinking material 

is considered as a pseudo one-phase system with three components viz. 

moisture(m), solid(s) and air(a). The volume fraction of the gaseous 

components (air/vapour) is called the porosity ~. Assuming that a 

neglible part of the moisture is present as vapour the volume balance 

rea.ds: 

(2.17) 

Similar to a binary system the diffusion coefficient of this ternary 

system is defined as: 

(2.18} 

Because a certain volume of liquid (moisture) is replaced by an equal 

volume of gas (air} the averaged moisture flux will be about 1400 

times larger than the averaged air flux, therefore: 

n ::: m 
oom 

(n +n )w - Dp ~8 m s m r (2.19) 

In non-shrinking systems a rigid non-moving solid matrix exists 

(n ::0), so that: 
s 

(2.20) 
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and from equation 2.13: 

(2.21) 

Taking into account that the solid concentration is constant (p
5

=p
80

} 

and that 

(2.22} 

equation 2.20 can be transformed into: 

ö(p /p ) 
D m s 

- PS Ör {2.23) 

From the above it can be stated that a.non-shrinking system can also 

be looked upon as a pseudo binary system {m+s). However, it is not 

meaningful to speak now in terms of equivolumetric mass transfer or 

not, because mass transfer of moisture may occur both as vapour and 

liquid. Further, the parameter D should be considered now as an 

effective diffusion coefficient, in which the contributions of several 

mass transfer mechanisms are lumped together. 

2.3.3 Svstems with Any Ilegree of Shrinkage. 

Characteristics of maximum-shrinking and non-shrinking systems are 

summarized once more in Table 2.2. From this table it can be seen that 

the same mass transfer equations apply for two extremes in shrinking 

behaviour, so it is obvious to apply these equations also for 

intermediate shrinking behaviour. Thus for all systems, regardless 
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Table 2.2 Comparison of ma.ss transfer in maximum-shrinking 
and non-shrinking systems. 

MAXIMU.11-SHRINKING SYSTEM 

ma.ss transfer in one phase 

pseudo binary system (m+s) 

migrating components in 
solution 

two mechanisms of mass 
transfer 

volume balance: 
Pm ps 
d+d= 1 

m s 

equivolumetric ma.ss transfer: 
n n m s 
d+d=O 

m s 

practical and thermodynamical
ly meaningful definition of 
the diffusion coef ficient: 

NON-SHRINKING SYSTEM 

mass transfer in more phases 

pseudo ternary (m+s+gas) 
or pseudo binary (m+s) system 

migrating components may occur in 
several aggregate states 

several mechanisms of mass 
transfer 

volume balance: 
Pm ps 
d + d = 1-e 

m s 

non-moving solid matrix: 

n
8 

= 0 and ps = p90 = constant 

practical but thermoè:l.Ynamically 
meaningless definition of the 
diffusion coefficient: 
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their degree of shrinkage, equation I (see Table 2.1) is taken as the 

generalized ba.sic equation for mass transfer: 

&l 
n = (n +n )w - Dp ___!!!. m m s m 8r 

(2.24) 

Because equations 2.13 and 2.14 are genera!, it follows that equation 

2.15 gives a genera! relation for the diffusion flux with respect to 

the solids velocity; applying equation 2.22 then yields: 

(2.25) 

The generalized volume ba.lance reads: 

(2.26) 

where the porosity é not only depends on moisture concentration hut 

also on the degree of shrinkage. The relationship among porosity, 

moisture concentration and degree of shrinkage will be worked out in 

Chapter III. 

Irrespective of the shrinkage behaviour. it appears that the ba.sic 

mass transfer equation 2.24 can also be transf ormed into: 

(2.27) 

This result seems to be trivia!, however it is not, because it can not 

be seen beforehand that equations 2.24, 2.25 and 2.27 are also 

consistent for systems irrespective their shrinkage behaviour. 
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2.4 Simultaneous Heat and Mass Transfer. 

For a description of the external ma.ss transfer of a drying body one 

bas to deal correctly with the simultaneously occurring heat transfer 

from·the gas phase towards the body. A sophisticated approach for this 

problem can be found in literature [8,9]. However, in this section 

simple basic equations for mass and heat transfer in the gas phase 

will be given. 

2.4.1 Heat Flux and Heat Transfer Coefficient. 

In most convective dryers heat transfer takes place to bodies 

submerged in a relatively extended gas phase, mostly air. It is 

assumed that the resistance for heat transfer is concentrated in a 

thin film at the interface 1 (Figure 2.1). In this film, with 

thickness 6H' the temperature of the gas phase increases from 91 at 

the interface to 9~ in the bulk . 

.--t----- 9~ 

Figure 2.1 Schema.tic representation 

of film for heat transfer. 

0 

Consider now steady-state conditions for ma.ss and heat transfer. The 

heat flux q in the film consists of a convective heat flux caused by 

the moisture flux and a conductive heat flux due to the temperature 

gradient: 

q = n c ce·-e:) - /\'ae· 
m pv i ar (2.28) 



where c is the heat capacity of the vapour; the diffusive pv 

contribution is written by ana.logy with the Fourier law of heat 

conduction, however. the quantity X'is now the so called "turbulent 
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coefficient of thermal conductivity" or "Eddy Conductivity" [1]. It is 

important to realize that x· is nota physical property of the gas 

phase, but depends on position, direction and the nature of the 

turbulent flow in the film. 

Because of steady-state conditions equation 2.28 can now be integrated 

between the limits r=O (interface) and r=ÖH (bulk). In case of no mass 

flux {n =O) integration yields: m 

q = -
1
- ca: - a.;,) 

óH i 

J ar 
0 r..· 

(2.29} 

The heat transfer coefficient a' is defined according to: 

(2.30) 

and thus equation 2.29 now becomes: 

(2.31) 

For an adiabatic drying process (nm~O} it is assumed that all the heat 

reaching the interface is used for evaporation of the moisture. thus: 

(2.32) 

where L1 is the enthalpy of evaporation at ai. 
Elimination of nm from equations 2.28 and 2.32 and next integration 



24 

yields: 

q = -a'...::i__ ln[l + cpv,f (S~ - s:)] 
c f L. i pv, i 

(2.33) 

where c f is the heat capacity of the vapour at average film pv. 

condi tions. 

The effective heat transfer coefficient (a~ff) is defined as: 

Thus: 

a~ff 
~= 

cLpv.r (0~ - 0:) 
i l 

{2.34) 

(2.35) 

c f 
In many practical drying situations ..EY.!.!.. (0'-0') << 1 and a first 

Li oo i 

approximation of equation 2.35 is given by: 

a~ff 
~= 1 - l ~ (S' - e·) 2 L

1 
.., i (2.36) 

Quite often it even holds that a~ff~ a:'. It can be concluded now that 

tn many practical dryi.ng si.tua.ti.ons the influence of ma.ss transfer on 

the heat transfer coefftcient a' wilt be neglible. 

Values of a' are calculated from (semi-) empirica! correlations for 

heat transfer [1-9], which take in general the following form: 

(2.37) 



where Nu is Nusselt number, Re is Reynolds number, Pr is Prandtl 

number, c
1

,c
2

,n,m are (semi-)empirical constants. In Table 2.3 the 

definitions of Nu, Re and Pr are summarized. 

2.4.2 Ma.ss Flux and Ma.ss Transfer Coefficient. 

Consider steady-state mass transfer from the surface of a drying 

material to an unsaturated drying gas. It is generally assumed, that 
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the resistance for mass transfer is concentrated in a thin film close 

to the interface (F1gure 2.2). 

Figure 2.2 Schematic representation 

w~ of film for mass transfer. 

0 -r 

The gas phase may be seen as a pseudo binary one-phase system with 

components moisture(m} and air(a}. 

Ina way similar to the heat transfer coefficient(§ 2.4.1), the mass 

transfer coefficient k' in the gas phase is defined by: 

ó 
1 M dr 
k'=f ii' 

0 
(2.38) 

With shrinking systems no air is transferred across the interface. 

With non-shrinking or partial-shrinking systems the air flux through 

the interface will be negligible with respect to the moisture flux 

(§ 2.3.2). So, the mass transfer of moisture in the film can be 

described as a Stefan diffusion process: 
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D' , Bw' 
n - !!.:..L _..!! 
m - 1-fA>' 8r 

m 
{2.39) 

By integrating this equation a problem arises. In most practical cases 

the moisture concentration will be very low, so that p' is hardly 

affected by the concentration. However, because of simultaneous heat 

transfer a temperature gradient in the film exists and p' will be a 

function of space r. Finding the space dependence of p' is a rather 

complicated problem. One can get around this difficulty by putting a 

constant value Pr· which is defined as the total concentration at the 

average film conditions ef and "'r· where: 

e·+e· 
,., • 1 "" 
"f = -2- and (2.40) 

Integration of equation 2.39 now yields the expression for the mass 

flux in the film: 

{2.41) 

1he effective ma.ss transfer coefficient k~ff is defined as: 

{2.42) 

From equations 2.41 and 2.42 follows: 

ln[ ~==~ ] m1 
6J' • (J !I 

m1 - ID"" 
(2.43) 



At not too high temperatures of the interface (e.g. 91~ 50 °c) the 

moisture concentrations in the film will be very low (w' .<<1 and 
m1 

surely wr:ioo<<l ) and a first approximation of equation 2.43 is: 

k' eff _ 1 

~- 1-w' mi 

and in many practical drying situations even: k~ff~ k'. 

(2.44) 

The mass transfer coefficient k' is found from (semi-)empirical 
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correlations, which can be obtained by analogy with the heat transfer 

correlations {Table 2.2). In genera!, the correlations for 

steady-state mass transfer to bodies, submerged in an extensive 

fluïdum take on the following form (see also equation 2.37): 

(2.45) 

where Sh is the Sherwood number for the gas phase and Se is the 

Schmidt number. 

Table 2.3 Analogy between Heat and Mass Transfer. 

heat transfer mass.transfer 

number symbol definition number symbol definition 

Nusselt Nu a' t Sherwood Sh k't 
T D' 

-------- -------- -------- ----------
Reynolds Re 

v't 
Reynolds Re v't 

V' V' 
-------- -------- ---------- -------- --------

...,. _________ 

Prandtl Pr 
v' 

Schmidt Se 
v' 

ä" iî' 
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ClIAPfER 111 

GENERALIZED FORMULATION OF DIFFUSION EQUATION AND MASS BALANCE 

ll Physical Model. 

The physical model used in this thesis is based on the concept of a 

concentration dependent diffusion coefficient. which accounts for the 

fact that not all of the moisture is bound equally strong or through 

the same physical mechanisms. Considered is the drying of shrinking 

and non-shrinking bodies with the following standard geometries: 

the infinite slab, the infinite {hollow) cylinder and the {hollow) 

sphere. 

Postulates underlying the physical model are as follows: 

1. The particle has a uniform temperature, which does not change 

with time {isothermal drying). 

2. The particle consists of two or three components: 

- solid component {e.g. milk solids); 

- moisture component {e.g. water); 

gas component {e.g. air). replacing the removed moisture in 

case of not completely shrinking systems. 

3. Mass transfer in the particle. however. is regarded as a pseudo 

binary diffusion process {moisture and solid). for which, 

irrespective of the degree of shrinkage, the mass transfer 
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equations of §2.2.3 may be applied. 

4. The moisture diffusion coefficient depends on the moisture 

content; for practical calculations a power-law relationship is 

proposed. The temperature dependence of the diffusion coef ficient 

can be described by means of an Arrhenius type relation. 

5. The volume reduction of shrinking systems is: 

- linear proportional to the moisture loss: 

- isotropic (no deformation of the body): 

- homogeneous (the local porosity in the moisture free solid is 

independent of the space coordinates). 

6. The partial quantities (e.g. densities) of the constituting 

components are independent of the changing composition. 

7. The moisture flux towards the gas phase, enclosed in hollow 

bodies, is assumed to be zero. 

8. The size of the enclosure, in case of hollow bodies, remains 

constant. 

9. Diffusion can be described by using only one space coordinate. 

10. Drying starts with a body of homogeneous composition, not 

considering the hollow core if a:ny. 

11. The external boundary condition is determined by the equilibrium 

sorption properties of the material being dried and the 

conditions of the gas medium carrying off the moisture. Two 

special cases will be considered: 

- constant surface water activity {e.g. in case of non-shrinking 

bodies this means a constant surface flux); 

- constant surface water concentration (e.g. surface of the 

drying body close to equilibrium with the external gas medium}. 



3.2 Mathematica! Model. 

The diffusion equation describing moisture transfer follows from a 

mass balance over an infinite small shell volume: 

Inttlal condttton: 

t=O 

Boundnru con.dit tons: 

t>O 

or 

a(p lp ) m s _ 
0 ar -

a(p lp ) 
D m s 

- ps 8r = .s (t} 
Jmi 

(3.1) 

(3.2} 

(3.3) 

{3.4) 

(3.5) 
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in which pm is the volume based concentration of the moisture (kglm3}; 

t is time (s); r is the space coordinate (m): R1 is the fixed internal 

radius of a hollow cylinder or sphere (see Figure 3.1): in case of a 

one sided drying slab R1=0: ~(t) is the (dynamic) external radius of 

the (shrinking) body at time t; nm is the moisture flux at space r 

(kglm2s} with respect to stationary space coordinates; j!1 is the 

2 moisture flux through the external interface {kglm s); v is the 

geometry parameter, with 

v = 0 infini te slab 

v = 1 infinite massive or hollow cylinder 

v = 2 massive or hollow sphere 
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Figure 3.1 Illustration of the boundary planes for 

"\ 
\ 

(non-)shrinking hollow cylinders and spheres. 

3.3 Dimensionless Diffusion Eguation. 

The ma.thematical transformation of the diffusion equation (eqns. 

\ 
l_ 

3.1-3.5) into a dimensionless form is described in Appendix A. Similar 

transformations for maximum- and non-shrinking systems have been given 

by Schoeber [23], Liou [28] and Van de Lijn [21]. In this thesis their 

work is generalized to massive and hollow systems with any degree of 

shrinkage. The transformation of the diffusion equation results in: 

Generaltzed parttal differenttal egua.tion: 

Initial condition: 

'T = 0 

Boundary condttions: 

'T > 0 <1>=0 

cl>= 1 

or 

m 1 

8m -D X. ":;;;;F; = F 
r i U\f' 

(3.6} 

(3.7) 

(3.8} 

(3.9) 

(3.10) 



The various {dimensionless} parameters and the shrinkage model used 

are explained in the following sections. 

Mass Concentration. 

The solids based moisture concentration u is defined as kg moisture 

per kg dry solid (kg mlkg ds). so that: 

(3.11) 

The dimensionless concentration m is defined as: 

withO~m~l (3.12) 

in which v is the ratio of the volume fractions of moisture (pm/dm) 

and solid (p
5
/ds}' expressed by: 

{3.13) 

In this expression ds and dm are the partial densities of solid and 

moisture respectively. It is assumed that the partial densities are 

33 

independent of composition and are equal to the densities of the pure 

components (d ::d , d ::d ). The initia! value of v is denoted as v
0

, 
m mp s sp 

the averaged value as v and the equilibrium value as v*; v# is some 

arbitrary reference value, e.g. the value where the diffusion 

coefficient is practically zero, or the equilibrium value v*. 
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Space Coordinate. 

The dimensionless solids based space coordinate <f> is defined as: 

wi tb 0 ~ <!> ~ 1 (3.14) 

This space coordinate is based on a ratio of amounts of dry solids. 

lntroduction of this space coordinate turns a dynamic external 

boundary (r=R2,t) into a fixed one C<P=l). 

3.3.3 Diffusion Coef ficient. 

The dimensionless diffusion coefficient D is defined as: 
r 

2 in which Dis the actual diffusion coefficient (m /s); n0 represents 

the value of the diffusion coeff icient at Pmo· 

The dimensionless time T is defined as: 

T = 

2 
DoPso t 

( d R )
2 

s,ap s 

(3.16} 
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where the solid radius R is the thickness of a one sided drying slab s 

or the thickness of the shell of a hollow body if all the water has 

been removed (;=0); d is the apparent density of the moisture free 
s,ap 

(porous) solid; it will be obvious that d will depend on the 
s,ap 

degree of shrinkage and the initial moisture content. In genera! it is 

true that 

and (3. 17) 

3.3.5 Hollowness Factor. 

The hollowness factor À of the drying body is defined as: 

(3. lS) 

By this definition the hollowness factor À remains constant during 

drying. For massive bodies À=O: if À-+1 the shell thickness of a hollow 

body is extremely thin with respect to its external radius, so tn case 

of À-va.lues approaching 1 the hollow geometry tends to be stmilar to 

the slab geometry. For this reason the solids radius R of hollow 
s 

systems is based on the dry shell thickness and not on the dry body 

radius, as is done by Schoeber [23]. 
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3.3.6 Flux Parameter. 

The dimensionless flux parameter F is defined as: 

(3.19) 

During drying the flux parameter F will only change if js. changes, 
m1 

because all other quantities in equation 3.19 are constants. 

3.3.7 X-pa.rameter. 

The definition of the X-parameter is given by: 

(3.20) 

and X. follows by putting <P=1 in the above equation. The physical 
1 

meaning of Xi will be explained in § 3.4. 

The X-parameter still contains the volume based concentration ps. The 

relation between ps and pm depends on the porosity of the material and 

therefore ps can only be expressed in terms of the dimensionless 

concentration m if the shrinkage behaviour is known (see § 3.3.8). 

3.3.8 Shrinkage Model. 

Quite often the volume Vof a material is a linear function of the 

average moisture content [44], which is expressed by: 

v = v {l+aV) s {3.21) 



where the solids volume V is the moisture free volume of the 
s 
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material; v is the ratio of the averaged volume fractions of moisture 

and solid {eqn. 3.13); o is the shrinkage coefficient, which is 

actually defined by equation 3.21. 

The solids mass balance reads: 

p v =d v s s,ap s 

so from equations 3.21 and 3.22 follows: 

For non-shrinking systems p =P =d , so o::O. s so s,ap 

For maximum-shrinking systems the volume balance reads: 

or 

d 
s 1+v 

Because now d =d =d it follows that o=l. s sp s,ap 

{3.22) 

{3.23) 

{3.24) 

{3.25) 

In general, for drying bodies with constant partial quantities the 

shrinkage coefficient will obey to 0 ~ o ~ 1. 

Assuming that shrinkage occurs isotropic and homogeneous and that o is 

independent of moisture content, equation 3.23 will also be valid for 

local concentrations. Therefore: 
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(3.26) 

and the expression for the X-parameter now becomes: 

(3.27) 

where v can be expressed in terms of the dimensionless concentration m 

by {eqn. 3.12): 

(3.28} 

The xt-pa.raaaeter follows from equation 3.27 with ~1: 

v 

X X [l + ( 1_" v+l >,.;;]v+l 
i = i,o=O 1' VY 

(3.29} 

where: 

X - (v+l)!±..__ 
i ,o=O - l-Àv+l 

(3.30) 

3.3.9 Generalized Biot Number. 

j
8

. in equation 3.19 must also obey the mass transfer equation 2.41 in 
m1 

the gas phase: 

{3.31) 

The motsture acttvtty am for ideal gas mixtures is defined as: 

1 
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(3.32} 

2 where Pm is the partial pressure {N/m } of the moisture in the gas 

phase, P t is the saturation pressure of the moisture at the given m,sa 
3 temperatures: p' and p' are moisture concentrations (kg/m ) in the ·m m,sat 

gas phase. 

The mass transfer coefficient (k"), based on a difference in moisture 

activities, is defined by: 

(3.33} 

From equations 3.31 and 3.33 it can be derived that for constant 

k'-values the value of k" will remain constant only if the temperature 

remains constant. 

Substitution of expression 3.33 into equation 3.14 yields: 

where Bi is the generalized Biot number, defined as: 

Bi 
" k" d R s,ap s 

2 0oPso 

(3.34) 

(3.35) 

in which " follows from the equilibrium relation am versus u (sorptton 

tsotherm; see Figure 4.1): 

(3.36) 

Substitution of equation 3.34 into the external boundary condition 



3.10 yields the most general formulation of the external boundary 

condition. In chapter IV it will be elucidated that this condition 

sometimes may be formulated as a constant surface flux or as a 

constant surface concentration. 

3.4 Mass Balance and Drying Time. 

The moisture balance over the drying body during a time interval dt 

reads: 

-p v d(p /p ) s m s (3.37) 

where A is the mass exchanging area and V is the (shell-)volume of the 

drying body. 

The averaged drying efficiency E is defined as the fraction of 

moisture removed: 

(3.38) 

Putting the balance in a dimensionless form one finds: 

{3.39} 

where 

(3.40) 

It can be proven that x1 according to equation 3.40 equals x1 
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according to equation 3.29. However, equation 3.40 offers a better 

insight in the physical meaning of xi. One can uisualize xi as the 

ratio of the solids volumina of a slab and the actual body, both with 

the sa.me extern.al area A and the sa.me soltds radius R . Thus for slabs 
s 

it simply follows that X1=1, which is in agreement with equation 3.29. 

Further, during a drying process X1 wil only change if the surface 

area A changes, because Rs and Vs will remain constant. In this view 

Xi may be looked upon as a dimensionless surface area. 

Integration of equation 3.39 gives the basic equation for the 

calculation of the drying time: 

E dE 
T = & FXi (3.41) 

It is obvious that the drying time can be calculated if both F and x
1 

are known as functions of E. 

The relationship between X1 and E is given by equations 3.29, and 

3.38. These equations can be rearranged to: 

v 

Xi = XiO (1-sE)u+l 

in which 

v 

XiO = xi,a=O [1+(1-Àv+l)avo]u+l 

and 

v+l 
(1-À )a(v0-v#) 

s = 
l+(l-Àv+l)av

0 

(3.42) 

(3.43) 

(3.44) 



The parameter s is a modi.fi.ed shrinkage coeffictent, which indicates 

to what extent the shrinking properties of the material will influence 

the drying behaviour, e.g. a material with a low initia! water content 

v0 will hardly shrink any more even if a has a high value. 

The relationship between F and E is far more complicated to be found 

and the following chapters of this thesis are dealing with this 

problem: 

Chapter IV: non-shrinking systems (a=O) with a concentration 

independent diffusion coefficient {Dr=l). 

Chapter V: (non-)shrinking systems (Ososl) with a power law 

dependence of the diffusion coefficient (D =ma). 
r 

3.5 Summary of Generalized Diffusion Eguation. Mass Balance 

and Definitions of Dimensionless Parameters. 

Generalized parti.al dtfferential eauatton: 

&n = ~D x2 ~) 
BT d<j>' r d<j>' 

Initial condition: 

Boundaru conditions: 

T > 0 

m = 1 

or 



Mass balance: 

FX.dT = dE 
l -

v 

Xi = XiO (1-sE)v+l 

E dE 
T =f-

0 FXi 

v 

[ 
v+l ]v+l 

XiO = xi,a=O 1+(1-À )avo 

X - (v+l)-l-_À __ 
i,a=Ü - l-Àv+l 

v+l 
(1-À )a(v0-v#) 

s 
l+(l-Àv+l)av

0 

Summary Qf definitions: 

concentration: u diffusion 
coefficient : Dr 

D 2 ps 
=--2-

0oPso 
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ds pm ds 
concentration: v = d - = du 

-----------------------2---------
DoP so t 

space 
coordinate 

hollowness 
factor 

m Ps m 
time : T = ----= 

(d R )2 

averaged 
efficiency 

flux 
parameter 

s,ap s 

'Y k" d R 
Biot number: Bi = ---=-s~,'""a .... p_s 

2 0oPso 

X = {v+l)~ [Àv+l + (1-Àv+l) 10c1+av)d<!>]v~l 1-Àv+l 
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ClIAPl'ER IV 

NON-SHRINKING SYSTEMS WITH CDNCENTRATION INDEPENDENT DIFFUSION 

OOEFFICIENT 

1:.1 Diffusion Eguation in Linear y--COordinates. 

For isothermal drying of non-shrinking bodies with concentration 

independent diffusion coefficient analytica! solutions of the 

45 

dif fusion equation can be obtained. In order to find these solutions 

we depart from the dimensional diffusion equation (§3.2), which in a 

form adapted for this case reads: 

Partial differential eguation: 

Bpm 1 8 v Bpm 
-= -- (r D-) 
Öt rv ör ar 

Initial condition: 

t = 0 

Boundaru conditions: 

t > 0 

or 

(4.1) 

(4.2) 

(4.3) 

(4.4} 

(4.5) 
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Table 4.1 Sunnary of parameters for non-shrinking system. 

concentratton: 

spa.ce 

dtf fuston 
coef ftctent 

ttme 

hottown.ess 
factor 

f1.ux 
parameter 

Btot nwnber : 

1.ocaL 
ef ftctency 

average 
efftcf.ency 

k"(~-R } 
Bi- _..,_ ---::--1-

- Pso 0o 

p -p 
E'= mO m = 1-m 

pmO-pm* 

A(~-Rl) 1-À 
X. = V = Xi _,... = (v+l)--1 l. ,u:.v 1-Àv+ 

(4.6} 

(4.7) 

(4.8) 

(4.9) 

(4.10} 

(4.11} 

(4.12} 

(4.13) 

(4.14) 

(4.15) 

(4.16) 
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Non-shrinking systems are characterized by a=O and p =p 0=d . s s s,ap 

Choosing the equilibrium concentration as reference value (m#=m*), the 

dimensionless parameters as defined in Chapter III now become as given 

in Table 4.1. 

In the literature no solutions are found in terms of a volume based 

space coordinate (Q>), therefore a dimensionless linear space 

coordinate (y) is introduced: 

(4.17) 

Substitution of the dimensionless parameters into the equations 

4.1-4.5 gives, in case of a constant diffusion coefficient (D=D0 , so 

D =l), the following diffusion equation in linear y-coordinates: 
r 

Partial differential eguation: 

: = 1 ~ ([À+(1-À)y]1' Bm) 
[À+(l-À)y]v 8y 8y 

Initial condition: 

T=Û 0 < y < 1 m = 1 

. Bourularu condi t ions: 

T ) 0 y = 0 

y = 1 

or 

am 
- 8y = F 

( 4.18} 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

From the analytica! solutions of the above differential equation 

(irnplicit) expressions for the drying time Tas a function of the 

average efficiency E can be derived. In the short-cut approach, as 



will be described in this chapter, (explicit) expressions for T versus 

E are obtained from the integration of the mass balance: 

1 E dE 
T = -x--f F 

i,a:::O 0 
(4.23) 

The integration requires the relationship between f luxparameter F and 

average efficiency E. Finding approximate equations for this 

relationship, which appears to depend on the drying stage, is the main 

theme of this chapter. 

4. 2 Drving Stages. 

Let us assume an adiabatic drying process with constant external 

conditions, which means constant temperature 9~. constant humidity 

w~. and constant mass transfer coefficient k'. Further, assume that 

the initial concentration u0 of the material is such, that the 

corresponding equilibrium moisture activity am approaches 1 (see 

Figure 4.1). Thus, after a relatively short time the ma.terial will 

take on the wet bulb temperature. For a drying system one can safely 

assume that at the interface the therrnodynamic equilibrium relation 

a versus u (sorption-isotherm) holds. Thus the local values at the rn 

interface (u1.am1) can be obtained from Figure 4.1. 

The rnoisture flux js. through the interface, expressed in terms of gas 
mi 

phase conditions (§2.3.2), reads: 

s 'k' • 1 [ jmi = Pr n (4.24) 

As long as the surface moisture activity ami remains nearly constant 



1 

0.9 

a 
m 

i 
1m1,..... __ I_I ___ ~ +-----_..;;;.! ____ ~ 

1 1 
1 

1 

1 

u er 
Pm 

====> u = - [kg m/kg s] 
ps 

Figure 4.1 

Schema.tic representation of a sorption-isotherm and some 

characteristic quantities {for explanation see text). 

Main Drying Stages: 

I nearly constant surface moisture activity 

(constant boundary flux for non-shrinking systems) 

II decreasing surface moisture activity 

III nearly constant surface moisture concentration 

(constant boundary concentration) 

49 
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(e.g. am1 ~0.9), then w~1 will remain nearly constant (see eqn. 3.32) 

and therefore the boundary flux js. will remain nearly constant as 
mi 

well. 

This first drying stage en. often referred to as the "constant flux 

period" or "constant activity period", is fully controlled by external 

conditions: the drying material behaves almost like pure moisture. For 

the boundary condition of the diffusion equation at y=l (eqn. 4.22) 

now holds: 

F = F ~ constant ca 

The end of the constant activity period is arbitrarily defined at 

ami=0.9 .At this moment the surface moisture concentration bas reached 

the so called critica! value u . From now on the surface moisture er 

activity starts to decrease significantly and drying stage II 11as 

started. It will be obvious from equation 4.24 that the boundary flux 

will decrease. Consequently, the temperature of the drying material 

gradually increases towards the dry-bulb temperature. The boundary 

condition of the diffusion equation at y=l is now given by equation 

4.22, with: 

F = Bi •mi 

Fora non-shrinking system the Biot number is given by equation 4.12; 

the value of~ follows from the sorption isotherm. If, in the 

concentration interval of interest, the sorption-isotherm may be 

approximated by a linear relationship (~~constant) and k" does not 

change too much despite of an increasing gas film temperature, then 

the Biot number will remain nearly constant during drying. However, in 

most practical drying situations this will not be the case. 

Arbitrarily, drying stage II ends and drying stage III starts ,when 

the surface concentration reaches a nearly constant value (e.g. 

mi ~ 0.1). During this final drying stage, often referred to as 
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"constant boundary concentration period" or "zero boundary 

concentratton period", the relative changes in the surf ace 

concentration ui with respect to the maximum attainable change (u
0
-u*) 

remain small. 1b.e boundary condition for the diffusion equation is now 

best given by equation 4.21, with: mi ~ 0. 

During this f inal drying stage the temperature of the material 

gradually increases until, in case of complete equilibrium, the 

dry-bulb temperature bas been reached. 

Each of the three main stages can be split up into two substages, 

namely: 

- Penetratton Pertod, during which the centre concentration changes 

hardly from the initial value (e.g. m t i 0.9). een re 

- Regular Regime, during which the centre concentration changes 

significantly from its initia! value {e.g. m t ~ 0.9). een re 

Not all six possible drying stages can occur during a drying process. 

1b.e occurrence of drying stages depends on the initial conditions 

(especially the starting flux) and the physical properties of the 

material (especially the sorption-isotherm). In Figure 4.2 two 

examples are given to illustrate the subsequent occurrence of stages 

during a drying process. 

1b.is thesis only deals with the drying stages I (nearty constant 

surface activity) and !II (nearly constant surface concentration); 

drying stage II {decreasing surface activity) was not investigated 

(see §1.4). 

As a first physical approximation a constant surface activity for 

stage 1 and a constant surface concentration for stage lil are assumed 

in the remaining part of this thesis. 
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~y 

high initia! flux {Fca=4) low initia! flux {Fca=l) 

Figure 4.2 Two examples of the subsequent occurrence of drying stages 

for a non-shrinking slab with a constant diffusion coeffi-

cient (PP=Penetration Period; RR::Regular Regime). 

4.3 Dryfng Stage wi tb C.Onstant Surf ace Flux. 

The end of this drying stage is defined as the moment, where the local 

drying efficiency at the interface bas reached the critica! value 

Ei.er; the corresponding average critical efficiency is denoted Eer· 

The drying time follows from the integrated mass balance: 

E 
T = "'F,..--,,.,x,..----

ca i,a=O 
(4.25) 

The duration of the constant activity period Tea follows from equation 

4.25, if Eer is known. Values of Eer decrease with increasing values 

of the constant flux parameter Fca. The relationship between Eer and 
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F , the so-called "critical-point curve", depends on the critica! 
ca 

surface concentration E: . The value of E: is derived from the i,cr i,cr 

sorption-isotherm; next the critical-point curve is known from the 

relationship among E. Ei and Fca; for this the diffusion equation has 

to be solved. 

4.3.1 Analytica! Solutions (Fca= constant). 

'Ibe solutions for the massive systems and hollow cylinders can be 

found in literature [37-39]; the diffusion equation of the hollow 

sphere was solved by Bosch [40]. Here the solutions are given in two 

different ways: one obtained by solving the diffusion equation via 

separation of variables and the other obtained via Laplace 

transformation. In Appendix B the solutions for massive and hollow 

systems, obtained by separation of variables, are given. In this main 

text only the solutions for massive systems will be presented. 

Via separation of variables: 

2 
E' 1 2 1 oo cos(J.\Y) exp(-~T) 

F ca = T + '11 - 6 - 2 Î cos(~) ~ (4.26) 

in which ~are the positive roots of the characteristic equation 

sin{~) = 0, thus ~=kir and cos(~) = {-l}k. 

Via Laplace transformation: 

E' 
F ca 

2 i ~ [expC(2k:;-y)2) - 2~y,;-y ../ir erfc{2~y,;-y) + 

2 
exp(-(2k:!+y) ) - 2~Y,!+y ..ftr erfc{2~!+y)] (4.27) 
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Via separation of variables: 

(4.28} 

in which '\:are the positive roots of the characteristic equation : 

J1(J\:)= O; J
0 

and J 1 are Bessel functions [41] of the first kind of 

order 0 respectively order 1. 

Via La.place transf ormation: 

E' .Jr. . !1 1+3y T 2 !1 F = 2 vy ierfc(2VT) + 2y vy i erfc(2'1r) + 
ca 

9+33y2+6y r.Jr .3 !1 lSy -vy- l erfc(2y.r) + ....... . (4.29) 

Via separation of variables 

(4.30} 

in which '\:are the positive roots of the characteristic equation 

tan(J\:} = '\:. 

Via La.place transf orma.tion: 

~~ ~ ~ [exp[-(1-y}+T] erfc(~ -lr) - erfc(~-}] (4.31) 

'Ibis latter solution is an approximation. 'Ibe exact solution can not 

be found, because of an unsolved back transformation from the La.place 

t 

l 
j 



domain [40]. However, the given approximation appears to be quite 

close to the exact solution, obtained via separation of variables 

(eqn. 4.30). 

4.3.2 Penetration Period (Fca= constant). 

At sufficiently small T values the concentration profiles are not yet 

penetrated into the centre of the system, in other words : the centre 

concentration has hardly changed from its initial value. During this 

period. which is called "Penetratton Pertod wtth constant bounda.ry 

fLux", the concentration profiles are independent of the hollowness 

factor À. 

The solutions, obtained via La.place transformation, reduce for low T 

values to the first term of the series. Nevertheless, a fairly 

complicated expression remains, which can be further simplified by 

developing the exponential- and error functions in infinite series 

[41], which in their turn reduce to a few dominant terms for small T 

values. The following expression appears to be a very good 

approximation for the surface efficiency {maximum deviations about 2% 

for T s 0.15): 

(4.32) 

For extremely small T values, equation 4.32 reduces to: 

(4.33) 

Thus, for this extreme situation Ei/Fca only depends on Tand is 

independent of the geometry parameter v and the hollowness factor À; 
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in this respect all massive and hollow systems behave like a slab. 

Elimination of T from equation 4.33 by means of the mass balance {eqn. 

4.25) gives : 

We now define a G-parameter: 

F E 
Ë'Ë' G __ i __ i_ 

- x1 

(4.34) 

(4.35) 

From equations 4.34, 4.35 and 4.36 follows the initia! value c0 : 

1T c0 = lim G = lim G = 4 T--0 E--0 
(4.36) 

It can be conclu.ded that the G0·parameter is independent of geometry 

and hottoim.ess, tn other words: the o0 parameter may be looked upon as 

a quantity expressing that alt hollow and massive geometries behave 

lihe a slab geometry at T--0. 

For small T-values. elimination of T from equation 4.32 and the mass 

balance {eqn. 4.25), yields a rather complicated expression. A better 

approach is based on finding a correlation of the exact calculated 

values of Fca/EÎ versus EilE , which appears to be a nearly straight 

line : 

(4.37) 

r 

l 
' 
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in which for the correlation parameter a the following relations can 

be obtained by fitting: 

For a slab a=O 
2 3 

Fora cylinder: a = 0.60-0.12X-0.31X -0.17X 

For a sphere 
2 3 a = 0.76-0.08À+0.04A -0.7'ZA. 

Note that equation 4.37 can also be expressed as: 

and a can also be found by putting G versus E1Ei· 

4.3.3 R~lar Regime (Fca= constant). 

{4.38a) 

(4.38b) 

{4.38c) 

(4.39) 

At sufficiently high T values. in case of low drying drying rates, the 

solutions obtained via separation of variables degenerate to a very 

simple form, because alt terms in the series are negligible small 

compared with T. During this d.rying stage concentration profites are 

parabolic and decrease linearly with time (see Figure 4.2). 

Irrespective of the values of the constant surface flux and the 

initia! moisture content, eventually the concentration profiles will 

take on the parabolic shape. This drying stage is called "Regular 

Regime with constant boundary flux". 

From equations 4.26, 4.28 and 4.30 the following expression for the 

surface efficiency can be derived: 

Ei 1 
F = (v+l)T + v+3 
ca 

(4.40) 
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Elimination of T by using the mass balance (eqn. 4.25) gives: 

Fca = (v+3)(Ei-E} (4.41) 

Defining the mass transfer coefficient kd for the dispersed phase as 

follows: 

(4.42) 

or in a dimensionless form: 

(4.43) 

and defining the Sherwood number for the dispersed phase according to: 

(4.44) 

gives 

(4.45) 

where Ör is an average reduced diffusion coefficient, defined as: 

m 
f D dm r 

fi mi 
B =n=---

r 0 m-m. 
l 

(4.46) 

For concentration independent dif fusion coef ficient D =D =1 equation 
r r 

4.45 can be written as: 
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{ 4.47) 

For masstue geometries the following simple expression for Shd can be 

derived from equations 4.41 and 4.47: 

Shd = 6+2v (4.48) 

In a similar way the following expressions for Shd can be obtained in 

case of hollow cylinders: 

and for hollow svhe.res: 

= 10 {l+À+À2)2 

1+3X+6>-2+5X3 

(4.49) 

(4.50) 

Thus. during the Regular Regime url. th constant boundary flux Shd takes 

on constant values (eqns. 4.48, 4.49 and 4.50). 

In Table 4.2 values of Shd are summa.rized. For a hollow geometry the 

values lay between those of the massive geometry (/\..-0) and the slab 

geometry p,_,1). 

It appears that equations 4.48-4.50 can be combined into one single 

handy relation: 

[
X. -O -1] 2.15-0. lSv 

Shd = 6 + 2v l,U-v (4.51) 

Only the exponent in this equation is a correlation parameter. 

obtained by fitting of the exact values. Deviations between 

approximate and exact values are less than 0.3% {see Table 4.2). 
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Tabel 4.2: Values of Shd during Regular Regime with 

constant boundary flux (Dr=l, a=O). 

cyl inder( v=l) sphere (v=2) 

exact approx. exact approx. 
À ( eqn.4.49) (eqn.4.51) (eqn.4.50) (eqn.4.51) 

0 8 8 10 10 
0.05 7.638 7.642 9.504 9.480 
0.1 7.341 7.347 9.026 8.999 
0.2 6.898 6.890 8.179 8.165 
0.3 6.594 6.591 7.503 7.504 
0.4 6.383 6.377 6.993 7.002 
0.5 6.236 6.230 6.622 6.633 
0.6 6.136 6.130 6.360 6.372 
0.7 6.069 6.066 6.185 6.195 
0.8 6.028 6.026 6.075 6.083 
0.9 6.006 6.006 6.017 6.021 
1 6 6 6 6 

massive 

slab (v=O) 

4.3.4 Transition from Penetration Period to Regular Regime 

.f.Eca; = constant) . 

At high values of Fca/El the Regular Regime correlation (eqn. 4.47) 

gives too low values of the drying time; at low values of F IE: the ca i 

Penetration Period correlation (eqn. 4.37) predicts too high values of 

the drying time. The transition {T) is chosen nearby the value of 

Fca/Ef where the difference between the drying times, obtained from 

the two correlations, is minimal. Based on the exact solutions of the 

differential equation, it appears that the transition criterium can be 

formulated as: 

(4.52) 

For values of Fca/Ei larger than this criterium the correlation for 

the Penetration Period should be used, whereas at lower values the 
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correlation for the Regular Regime should be applied. Thus, the two 

drying periods are short-cut in a simple way: stepping over from the 

one correlation to the other at a specific value of Fca/EÎ. The 

maximum error in the predicted drying time occurs at this transition 

point. By allowing maximum errors of about 4% the transition criterium 

could be formulated indepent of the geometry parameter v. 

Because initially Ei=<> and thus Fca/Et~' euery drying process with a 

constant boundary flux will show a Penetration Period. However, at 

sufficiently high drying fluxes the surface efficiency will reach the 

critica! value E
1
' before the concentration profiles are penetrated .er 

into the centre of the material; from the transition criterium follows 

that this will happen if: 

(4.53) 

In these cases no Regular Regime wtth constant boundary flux wtll 

succeed the Penetratton Period (see Figure 4.2}. 
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4.3.5 Algorithm for Short-CUt Calculation (Fca:= constant). 

An algorithm for calculating Tand E from given values of v. À. Fca 

and Ei could take on the following form: 

begin {short-cut algorithm, Dr=l, a=O, F=Fca} 

read(v,X,Fca,Ei) 

Fca 2 
if E7""" ~ 1.5-À+À 

i 

then {Penetration Period} 

calculate a from equations 4.38a-4.38c 

calculate E from equation 4.37 

else {Regular Regime} 

calculate Shd from equation 4.51 

calculate E from equation 4.47 

calculate T from equation 4.25 

write(T.E) 

end. 

Comparing this short-cut calculation of Tand E with the exact 

calculation method ,reveals that the maxtmum errors in Tand E occur 

near the transition point and are tess then 4%!! 

4.4 Drying Stage with Constant Surface Concentration. 

Assume a sufficiently high initia! flux, so that the moisture 

concentration profiles hardly have penetrated into the drying material 

at reaching the condition of nearly constant surface concentration 

(stage UI). Consequently, the moisture distribution in the material 

still will be nearly uniform and the drying time of the preceding 

1 
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stages I and II will be negligible with respect to the total drying 

time of the material. During drying stage III the drying flux will 

decrease continuously and in case of an isothermal process the drying 

time should be calculated using equation 4.23 . The relationship 

between the flux F and the efficiency E bas to be obtained from the 

(analytica!) solution of the diffusion equation. For the situation as 

described above, the diffusion equation 4.18 is solved with a uniform 

initia! concentration and a zero boundary concentration. 

4.4.1 Analytica! Solutions Cm1= 0). 

The analytica! solutions for massive and hollow systems with zero 

boundary concentration can be found in literature [37-39] and are 

sullllllarized in Appendix B. In this main text only the solutions for 

massive systems are presented. 

Slab (v=-0) 

2 ro cos(u. v) exp(-u. T) 
E' = 1-2 }; --.-·-..,,-K"_ ---·-K_ 

1 sin(~) ~ 
(4.54) 

in which ~are the positive roots of the characteristic equation 

1 k+l 
cos(~)=O; thus ~=(k""2)v and sin(~)=(-1) . 

Nassiue Cylinder (v=1) 

2 ro J0(u. v) exp{-u. T) 
E.= 1-2 }; ..,,_,,..·_....,. K" ____ ·_ K_ 

1 Jl(~) ~ 
(4.55) 

in which J0 and J1 are Bessel functions [41] of the first kind of 
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order 0 respectively order l; '\:are the positive roots of J0(J\:) = 0. 

A quite well approximation of the first six roots is given by 

l\:=2.404.S+{k-l)v with deviations ~ 0.5% . 

Masstve SJ;ihere Cn=2) 

2 
2 oo sin(u.v) exp(-u.T) 

E.= 1 +--"- :I --.,,-·~ K"' ____ ·_ K_ 

y 1 cos('\:) '\: 

in which '\:are the positive roots of sin(J\:)=O: thus '\:=kir 
k 

and cos(J\:)=(-1) . 

(4.56) 

From the above solutions the following expressions for the flux and 

the efficiency can be derived : 

(4.57) 

and 

2 oo 00 exp(-J\:T) 
1-E = J FXi -odT = 2(n+l) :I 2 

T ,O- 1 J\: 
(4.58) 

Penetration Period Cm1= 0}. 

At small T-values concentration profiles have not yet penetrated into 

the centre of the material and a slab may be looked upon as an 

infinite body. Moreover, cylinders and spheres behave like a slab in 

case of extremely small T-values (T--0). For these situations quite a 

number of terms of the series solutions (eqns. 4.54-4.56) is required. 

A simple short-time solution can be obtained from the analytica! 
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solution of the diffusion equation for infinite slabs (-<»<y~l} with a 

homogeneous initia! concentration and a zero boundary concentration 

[37]: 

For the flux follows: 

and for the drying efficiency: 

E 
T .JT 
f FX. -"dT = 2X. -" .,... 
0 

1,a=v i ,a=-v V7T 

(4.59} 

(4.60) 

(4.61} 

Elimination of T from equations 4.60 and 4.61 gives the relation 

wanted between F and E: 

F - !x ! 
- 1r i ,u=O E (4.62) 

This equation is valid during the entire Penetration Period of slabs, 

but for cylinders and spheres, as already mentioned, only for extreme 

small T-values (T-()). 

Applying the definition of the G-parameter (eqn. 4.35) now gives 

(realise that m.=O, thus E'.=1}: 
l 1 

(4.63) 

and it appears that also in this situation G0 is independent of 

geometry and hotLown.ess. 
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The entire Penetration Period for all hollow and massive geometries 

can be described very well with the correlation: 

(4.64} 

in which for the correlation parameter fj the following relations can 

he obtained by f1 tting: 

For a slab fj = 0 

2 Fora cylinder: (3 = 0.71-0.13X-0.58À 

For a sphere 2 3 (3 = O.SS-0.0SX-O.OSX -0.72X 

In terms of the G-parameter equation 4.64 reads: 

(4.65a} 

(4.65b) 

(4.65c} 

(4.66) 

It can be concluded now, that penetration processes with both constant 

bounda.ry flux and constant boundary concentratton can be descrf..bed in 

a similar wa.y. 

4.4.3 Regular Regime (m1= 0), 

At sufficiently high T-values the analytical solutions of §4.4.1 can 

be approximated quite well by the first term of the series. The 

concentration profiles take on the shape of a eosine, Bessel or damped 

sine function and decrease exponential with time. This shape no longer 

changes (similarity of concentration profiles} and the drying 

behaviour has become independent of the initia! conditions; sooner or 

later, every drying process will arrive at this drying stage. which is 

called: "Regular Regime with constant bouru!ary concentratton". 



The Regular Regime solution for the flux reads: 

(4.67) 

and for the efficiency: 

1-E (4.68) 

Elimination of T from those two equations gives a simple expression 

for the relation between F and E : 

2 
µ1 

F = v+l {1-E) (4.69) 

Analog to equation 4.47 the flux versus efficiency can also be 

expressed as (remember mi=O, so Ei=l): 

1 
F = 2fllid{l-E) (4.70) 

From equations 4.69 and 4.70 it follows for massive geometries: 

(4.71) 

Ina similar way, for both massive and hollow geometries, one finds: 

2 
2µ1 

x.-0 l,U= 

(4.72) 
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in which µ 1 follows from the characteristic equations as given in the 
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Appendix C. 

Apparently, during the Regular Regime with constant boundary 

concentration Shd takes on a constant ualue. Furthermore, f.t can be 

conctuded tha.t the Regular Regimes with constant bounda.ry flux and 

constant boundary cancentratf.on can be descrf.bed tn a sf.mi.lar 1DCty. 

In Table 4.3 values of Shd are summarized. As expected, the values for 

a hollow geometry lay between those of the massive geometry and the 

slab. Note tha.t at À=0.6·0.7 a minimum ualue of Sh.d occurs! The exact 

Shd values of Table 4.3 can be correlated quite well by the following 

polynoms of >.: 

For a slab 

For a cyltnder 

For a sphere 

.,,2 
Shd = 2 = 4.935 

2 3 Shd = 5.75-4.36À+6.34À -2.82À 

2 3 Shd = 6.58-7.14X+S.78À -3.29À 

(4.73a) 

(4.73b) 

(4.73c) 

The maximum deviations between the exact and approximated values of 

Shd amount 0.7% for cylinders and 0.4% for spheres. 

Tabel 4.3: Values of Shd during Regular Regime with 

constant boundary concentration ( Dr=l. o=O, m1=0 ). 

cylinder (u=l) sphere {u=2) 

exact approx. exact approx. 
À (eqn.4.72) {eqn.4. 73) (eqn.4.72) (eqn.4. 73) 

0 5.783 5.750 6.580 6.580 
0.1 5.339 5.375 5.953 5.951 
0.2 5.087 5.109 5.462 5.477 
0.3 4.943 4.936 5.127 5.139 
0.4 4.864 4.840 4.918 4.918 
0.5 4.828 4.803 4.802 4.794 
0.6 4.819 4.807 4.752 4.746 
0.7 4.830 4.837 4.752 4.756 
0.8 4.856 4.876 4.787 4.803 
0.9 4.891 4.906 4.850 4.867 
1 4.935 4.910 4.935 4.930 

massive 

slab (u=O) 

l 
' i' 



4.4.4 Transition from Penetration Period to Regular Regime Cm1= 0). 

Again it appears that both extremes can be connected most simply by 

just stepping over from the approximation of the one extreme to that 

of the other. Further. it bas practical advantages now to formulate 
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the transition criterium in terms of efficiencies, in other words: the 

Penetration Period ends and the Regular Regime starts at some 

specified value of the efficiency (E=E,-}. From the exact calculated 

values of F versus E the following transition criterium is found: 

E,- = 0.5+0.05v(5-v)(l-À} {4.74) 

Algorithm for Short-CUt Calculation (mi= 0). 

Expressions f or the drying time can now be f ound from equations 4.23. 

4.64 and 4.70: 

Penetration Period CE<I:Tl!. 

For a slab 

For a cyHnder 
and a sphere T = 

Regular Regime CE>I:Tl!. 

For att 
geometri.es 

. + 2 [1-E,-] 
·T = TT Sh X ln 1-E 

d i.a=O 

(4.75) 

(4.76) 

(4.77) 

where TT is the drying time at the end of the Penetration Period, when 

transition takes place. 
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Assuming that the drying times of stage I and II are negligible with 

respect to the total drying time, the following algorithm could be 

used for the calculation of the drying flux F and the drying time T at 

any given value of the drying efficiency E. 

begin {short-cut algorithm, D =l, a=O, m.=O, isothermal} 
r l 

read (u,>.,E) 

calculate ~ from equations 4.65a.-4.65c 

calculate Er from equation 4.74 

ifE~Er 

then {Penetration Period} 

calculate F from equation 4.64 

calculate T from equations 4.75 or 4.76 

else {Regular Regime} 

write (F,T} 

end. 

calculate TT from equations 4.75 or 4.76 

calculate Shd from equations 4.73 

calculate F from equations 4.70 

calculate T from equations 4.77 

Comparison of this short-cut calculation with the exact calculation 

shows that maximum errors in the flux and in the drying time occur at 

the transition point. It should be noticed that at the transition 

point the flux calculated with the penetration correlation yields a 

too high value, whereas the regular regime correlation gives a too low 

value. In any case, the relative deviation between both approximate 

fluxes and the the exact flux is within 5% . 

The maxtlllUllt errors in the approximated drying times are onl.y 3X • 

{ 

1 
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4.5 Adiabatic Drying Process. 

During the constant activity period of an adiaba.tic drying process the 

drying system takes on the wet-butb-temperature Twb" After this 

isotherma.L period the temperature of the system will increase. As was 

pointed out in literature [23,26,33] heat transfer from a gas phase to 

a body is very slow with respect to heat diffusivity in the body. This 

means that the temperature distribution in the body will remain nearly 

uniform. so the averaged temperature ë of the body nearly equals the 

surface temperatures a1: and because equilibrium is assumed at the 

interface: e::::ê~a 1=ai , where Bi is the interface temperature in the 

gas phase. 

Because in genera! the (latent) heat of evaporation {L) of the 

moisture is many times larger than the heat capacity of the body, a 

negligible part of the total heat flux is left to accumulate in the 

body. From this it follows that by good approximation the heat 

transfer process may be considered as a qua.si steady-state adiaba.tic 

eva:pora.tton process, for which the following thermal energy balance 

holds: 

(4.78) 

Note that this equation represents the wet bulb equation in its 

elementary form. 

In case of an enclosed gas phase, hollow systems will blow up with 

increasing temperature; however,this complication will not be 

considered here and the internal and external radii (R
1 

and R
2

) are 

assumed to remain constant. 

The diffusion coefficient D0 depends on the temperature and so changes 

during the drying process. The mass balance over the drying system now 

reads: 
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D 
FX. O O dt = dE 

i,a= ( )2 R2-Rl 

and the dimensional drying time t: 

t 

2 
(~-Rl) E dE 
X. f FD 

l,U=Ü Ü Ü 

(4.79) 

(4.80) 

Assuming a constant value of the hollowness factor À, which is 

certainly true for massive bodies, the relationship F versus E (§4.4) 

ts independent of temperature. In order to keep a maximum attainable 

value 1 for the efficiency E, the equilibrium moisture content pin* in 

the definitions of the fluxparameter F and the efficiency E should be 

taken from the sorption isotherm at dry.bulb temperature. The 

temperature dependence of the diffusion coefficient o0 can often be 

expressed by an Arrhenius type relation: 

in which T is the absolute temperature of the body (°K), 

An is the activation energy for diffusion [Joule/mol°K] and 

R is the gas constant. 

(4.81) 

From the definition of the flux parameter (eqn.4.11) and the thermal 

energy balance (eqn.4.78) the following relation for FD0 can be 

derived: 

(4.82) 

in which the subscript "ca" indicates the value of the parameters at 
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the condition of constant surface activity (thus 0 is the wet bulb ca 

ternperature); parameters without this subscript have actual values. If 

the difference between the dry- and wet-bulb temperature is not too 

high, the heat transfer coefficient a and the evaporation enthalpy L 

will not change too much and equation 4.82 simplifies to: 

(4.83) 

Assuming again very short stages I and II the drying curves F versus 

E. as given by equations 4.64 and 4.70, have to be used and the drying 

time can be calculated from equation 4.80; however, now the 

integration has to be carried out numerically (e.g. trapezium rule). 

The relationship FD0 versus E can be found by the following procedure: 

choose a value for T (remember: Tca~T~T~) 

calculate FD0 from equation 4.82 or 4.83 

calculate D0 from equation 4.81 

calculate F f rom the values of FD
0 

and D
0 

calculate E from the temperature independent relationship 

F versus E (eqns.4.64 and 4.70) 

The above procedure yields at any given temperature T the values of E. 

F and D. If one desires to integrate with equal steps of E, the 

temperature T must be found by iteration from equation 4.83. 
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rnAPTER v 

POWER LAW DIFFUSION IN SYSTEMS WITH ANY DEGREE OF SHRINKAGE 

5.1 Concentration Dependence of Diffusion Coefficient. 

It is assumed that the moisture diffusion coefficient depends on the 

moisture concentration according to a power law relation (see also 

chapter I): 

2 [pm Pmtt]a a 
Dp = b - - - = b(u-u ) 

s Ps Ps# # 
(5.1) 

Pmtt is the moisture concentration where the diffusion coefficient 

becomes practically zero; this thesis only deals with systems in which 

the diffusion coefficient approaches to zero at the equilibrium 

moisture content, so that u#~*. 

a and bare fitting parameters, which can be found by linear 

regression of ln(Dp;) versus ln(u-u#). In chapter VI it will be 

pointed out how these fitting parameters can be derived from a drying 

experiment. 

The diffusion coefficient D0 at the initial concentration u
0 

is given 

by: 

{5.2) 
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Applying the definitions of the reduced diffusion coefficient Dr and 

the concentration m (§3.3) yields: 

'(5.3) 

It will be clear that for non·shrtnktng systems. a concentration 

independent diffusion coefficient (D =l, so a=O) is a special case of 
r 

power law diffusion. However, it should be noti.ced that for shri.nki.ng 

systems a--0 does not ,correspond wi th a constant diffusion coefficient. 

5.2 Numerical Solution of the Diffusion Eguation. 

The power relation for Dr bas to be substituted in the generalized 

diffusion equation with <I> -coordinates (§3.3) or in the diffusion 

equation with linear coordinates (§4.1). 

In general. the diffusion equation, both in <I> -coordinates and linear 

coordinates, requires a numerical approach to be solved. It is beyond 

the scope of this thesis to deal extensively with the numerical 

approach. Only some important aspects, which ma.y cause serious 

problems, are treated in Appendix D. 

In genera! the solution of the diffusion equation {§3.3) can be 

written as: 

m = m(<j>,T,v,À,a,av0 ,av#,drying stage) (5.4) 

and the averaged concentration is given by: 

{5.5) 

! 
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The drying time is calculated by integration of the mass balance 

(§3.4); the required relationship F versus E is now obtained from the 

numerical computer output and will be a function of the following 

form: 

F = F(E,v,À,a,av0 ,av#,drying stage) (5.6) 

For didactica! reasons the drying stage with constant surface concen-

tration will be discussed first. 

Drying Stage wi tb Constant Surf ace Concentration (m.= 0). 
l 

For this drying stage Liou [28,29] proposed short-cut correlations for 

F versus E. which are valid for slabs, massive cylinders and massive 

spheres. The Regular Regime is described with Sherwood numbers, 

whereas the Penetration Perio<l of non-shrinking systems is described 

with Taylor series expansions for the G-parameter. In this section the 

method, used by Liou. is simplified and extended to hollow bodies, 

irrespective of their degree of shrinkage. 

5.3.1 Non-Shrinking Systems (D = ma,o = 0, m.= 0). 
r i 

Penetration Period 

It appears that during this period G versus E can be approximated 

qui te well by a linear relationship. During the Penetration Period the 

expressions for the drying flux and drying time are similar to those 

of constant diffusion coefficient, however, the parameters c
0 

and ff 

now depend on the exponent a: 

1 F = G0 X. =O (E- - ff) i,a- (5.7) 
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For a slab: 

Fora cyltnder. 
and a sphere · 

in which: 

2 [ 1.42 ]1.9S G ----0 - .,,. a+l.42 for O~a(oo 

and 

f3 = fja--0 {l .25)a for O~a<2 

1be expressions for fja--0 are given by equations 4.65. 

Reaular Reqf.me (D =ma, a = 0, m.= 0) 
r t. 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

During this drying period mass transfer is best described by means of 

a Sherwood number according to equations 4.45 and 4.47. For power law 

diffusion and a zero boundary concentration the flux equation now 

becomes: 

Sh 
F = l ~ (1-E)a+l 

2 a+l (5.12) 

Schoeber [23] observed that in case of power law diffusion (D =ma) 
r 

during the Regular Regime the Sherwood numbers (Shd) have constant 

values. Liou [28,29] reports that those constant values depend pseudo 

linearly on a:2 . (However, both Schoeber and Liou did not recognize 

that constant values of Shd will not occur in case of a non zero 

boundary concentration!) 
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Both observations are quite important, because they enable the 

development of very accurate correlations for the Regular Regime, 

being the drying stage that contributes predominantly to the drying 

time. A similar behaviour may be expected for hollow systems. Indeed, 

from the numerical computer output the following correlations for Shd 

can be derived: 

(5.13) 

in which: 

(5.14) 

X. _1 1.535-0.075v 

Shd,a..oiro = 7.391+(3.516v-0.034)[ 
1

•
0 ;:° ] (5.15) 

Shd,a=O is given by À-polynoms according to equations 4.73. However. a 

more elegant correlation for AShd' based on normalized x
1
-values, 

reads: 

x -1 1.04 

AShd = 2.456+(2.720v-0.087}[ 
1

•
0 ;:° ] (5.16) 

Note: only the exponents in equations 5.15 and 5.16 follow from a 

regression analysis. 

The accuracy af the abave correlation is within ± 1% . 

1be Regular Regime expressions for the drying time (isothermal) follow 

from the integration of the mass balance with the aid of equation 

5.12: 
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For a=O 
(eqn. 4.77) 

T = T T + ""Sb,--=~-. -- In [-1-_Er_] 
d, i ,a=Ü 1-E · 

a 
Transtti.on (Dr= ia , a = 0, "'t"' 0) 

(5.17) 

(5.18) 

The Liou approach needs a qui te severe criterium to be sure of Regular 

Regillie behaviour, namely: 

(5.19) 

So. in case of a concentration independent diffusion coefficient (a--0) 

the criterium becomes E=l, and the whole drying process is considered 

as a penetration process. However, the more simple approach described 

in this thesis takes better advantage of the Regular Regime 

properties, as given in Chapter IV. 

From the numerical calculated solutions the following transition 

criterium bas been derived: 

F_ = l+O.lv(5-v}(l~X} 
1 a+2 (5.20) 

a 
5.3.2 Svstems with any Degree of Shrinkage (Dr= m , 0 ~ a ~ 1. m1= 0) 

At the same value of thè drying efficiency E, the flux parameter :F of 

the shrinking system (a>O) is related to the flux parameter Fa=Ü of 

the non-shrinking system by nieans of the shrinkage factor H, 

introduced by Liou [28,29]: 

F 
H=-F-

a=O 
(5.21) 
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Finding F versus E has been reduced now to f inding expressions f or the 

shrink.age factor H. 

For a slab geometry (u=Ü) the solutions of the generalized diffusion 

equation (§3.4) are independent of the shrinkage behaviour, because in 

all cases X,t, = X.= X. _n = 1. So the solutions of non-shrinking 
'l' i i.a=v 

slabs. expressed in dimensionless quantities. are identical with those 

of shrinking slabs. The shrinkage properties of the material now 

emerge from the definitions of the dimensionless parameters and the 

diffusion relation (eqn. 5.1). 

Concluston: the shrinkage factor of slabs is 1, irrespective of the 

drying stage. 

For cylinders and spheres correlations of the shrinkage factor were 

derived according to Liou's method: first find the initia! value 

(T~). then look for an approximate solution for large times and 

eventually connect both extreme situations by means of a Taylor series 

expansion. 

Penetration with extremely short times (Dr= ma. 0 ~ a ~ 1, mi= 0) 

The flux parameter of the shrinking system (eqn. 3.14) is related to 

the flux parameter of a {fictive) non-shrinking system (eqn. 4.11) 

with exactly the same initial conditions and the same product 

properties. From the definitions of the flux parameters {eqns. 3.14 

and 4.11} follows: 

lim H = H0 
T~ 

d R 
s,ap s 

Equation 5.22 can also be written as: 

(5.22} 
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(5.23) 

where A0 and v0 are the initial values of the surface area and the 

(shell-)volume of the system. 

From the solid mass balance d V =P 0v0 and from the definitions of s,ap s s 

xi (eqns. 3.40 and 4.16) follows: 

x. 0 
H 

- _1_. __ 
o-x 

1,o::O 

Substituting the expression for Xi,O (eqn. 3.43) gives: 

v 

Ho = [1+{1-Àv+l)ovo]v+l 

(5.24) 

(5.25) 

This expression confirms that for a slab (v::O or À-+1) the shrinkage 

factor ffo=l. 

Note: 

Applying the definition of the G-parameter (eqn. 4.35) toa shrinking 

system with zero boundary concentration yields: 

HF E HOF--"'_ E 
G 11 FE l' o::O li u=v 

0 = m - = 1m -x-- = m X 
T-!Û Xi T-!Û i T-!Û i, Û 

with the aid of equation 5.24: 

Fo=<JE 
c0 = lim x--

T--0 i ,o::O 

(5.26) 

(5.27) 



Conclusion: the G
0

-correlation for non-shrinking systems (eqn. 5.10) 

is valid for shrinking systems as well. 

Regular Regime (D =ma, 0 S u S 1, m.= 0) r i 

A relation for the initial shrinkage factor H0 could be found by an 

algebraic analysis. However, the Regular Regime correlations for the 
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shrinkage factor has to be deduced from the nurnerical computer output. 

The Sherwoord numbers for shrinking systems, which do not take on 

constant values during the Regular Regime, are described by Schoeber 

[23] in the following way: 

(5.28) 

and the shrinkage factor simply follows: 

(5.29) 

For strongly concentration dependent diffusion coefficients (a..,ro} the 

concentration profile is rectangular (m=Ïii) and AShd,a-ll'l can be 

calculated analytically by comparing the flux expressions: 

(5.30) 

F ~--O -D X. . ,.,(~l,i.. 1 ~ r l , U=v Clq)' 'jl= 
(5.31) 

from which follows: 

(5.32) 
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and from equations 5.29 and 5.32 with Shd _r. = Shd -iOI>: 
,U;;.v ,a 

ASh = Sh [___s_ - 1] d,a-iOI> d,a-iOI> X. 0 1,0= 

(5.33) 

Schoeber [23] observed that AShd is hardly influenced by the kind of 

concentration dependence of the diffusion coefficient, so 

AShd~AShd,a-iOI> and from equations 5.29 and 5.33 now follows with 

Sh -Sh : d,a=O - d,a 

(5.34) 

Substitution of the expressions for X1 (eqn. 3.42) and H0 (eqn. 5.25) 

finally yields for the shrinkage factor: 

(5.35) 

The Sherwood numbers in this equation are to be calculated with 

equations 5.13-5.16. 

From equation 5.35 it can be seen that the shrinkage factor H 

decreases as the drying efficiency E increases. lf the averaged 

moisture content v=v*=<>. the shrinkage factor reaches the minimum 

value 1. Thus, at decreasing moisture concentrations the shrinking 

abilities of the material become less and at uery low moisture 

concentrations the shrinking system even behaves lik.e a non-shrinking 

system. 

i 
i· 

t 
1 
1 

t 
1 

f 

1 
1 
' 



Transition Period (Dr= ma, 0 ~ a ~ 1, mi= 0) 

According to the criterium, used in Liou's approach [28,29], the 

Regular Regime correlation 5.35 may be used if E~EQ' with: 

{5.36} 

For the transition region {O<E<EQ) the shrinkage factor H is 

approximated by an appropiate Taylor series expansion, starting in 

(E=O, H=H0 ) and merging into the Regular Regime correlation at E=EQ. 

To obtain a smooth transition at , equal zero and first 
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derivatives of the Regular Regime correlation and the Taylor function 

at E=EQ are imposed: 

H=HQ 

H{l)=H~l} 

{equal zero derivatives) and 

(equal first derivatives). 

The following Taylor series expansion appears to be a satisfying 

approximation of the transition region: 

H (5.37) 

where H( 2) and H(3 ) result from the above two conditions at E=EQ: 0 0 

6 [H - H - ~(I)] 
E2 Q 0 3 Q 
Q 

E H(2)] 
QO 

(5.38) 

(5.39) 
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Drutng ttmes (Dr= ma. 0 ~ a ~ 1, mi= 0) 

The drying time follows from the integration of the ma.ss ba.lance: 

where, F a=O is given by equation 5. 7 for O~~ and 

by equation 5.12 for E>Er 

H is given by equations 5.37 for O~E~~ and 

by equation 5.35 for E>EQ 

xi is given by equation 3.42 

(5.40) 

In general this integration has to be carried out by means of 

numerical methods (e.g. trapezium rule). 

5.4 Drying Stage with Constant Surface Activity. 
a . 

5.4.1 Non-sh.rinldng Svsteins (D = m , a = 0, F ~constant) r ca 

During the period with constant surface moisture activity 

(am1:::constant} the drying flux of a non-shrinking system will remain 

nearly constant: F=Fca~onstant (see chapter IV). 

The contents of §4.3 also apply to systems with concentration 

dependent diffusion coefficients. However, the relationship among Fca' 

E and Ei bas to be derived now from the numerical computer output. 

A straight forward use of the G-parameter {eqn. 4.35) and of 

correlations according to equation 4.37 now fails, because the 

parameter EIEi no longer is a continuously increasing quantity in all 

drying situations. e.g. at high fluxes EIEi versus T ma.y show a 

maximum! 

A different but succesful approach f or power law dif fusion departs 

1 
1 



from a transformation of the generalized diffusion equation with 

a+l m = m (see also Appendix D): 

Generalized partial differential eguation: 

a 

ge = c;;;)a+1 ~x2 ~ (5 .41) 

Initial condition: 

T = Û o~cp<1 m = 1 (5.42) 

Boundaru conditions: 

T ) Û cp = 0 (5.43) 

cp = 1 (5.44) 

where F = F{a+l). 
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The solution of this transformed diffusion equation can be written as: 

(5.45) 

For high a-values a limit solution is approached, because ~l -+ 1. a+ 

In addition to;;; and F some more helpful parameters are defined below. 

Table 5.1 Definitions of some parameters. 

~ a+l F = F{a+l) m=m 

E= l-{iii)a+1 E: = 1-(m. )a+l 
1 1 

F E 

E 1-(iii)a+ 1 E: E: 
€ c 1 1 = -= = -x-.-E: 1-(m. )a+l 1 

1 1 
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Reaular Regime (Il:::: m.a, a = 0, F :::: constant) 
r ca 

From equations 4.45 and 4.46 now follows: 

F _ !.. Shd,ca [<iii)a+l _ (mi)a+l] 
ca - 2 a+l (5.46) 

and expressed in the parameters of Table 5.1: 

(5.47) 

This latter expression for the flux parameter is analogous to equation 

4.47 for concentration independent diffusion çoefficient. However, in 

case of power Law dtffuston with a.FO no constant value for the 

Sherwood number ts obtained: af ter passing through a minimum value 

(Figure 5.1} the Sherwood number is gradually increasing until an end 

value at Ei=l is reached. Schoeber [23] observed that this end value 

is nearly independent of the flux parameter Fca. For massive 

geometries Liou [28,29] found a pseudo linear relationship by plotting 

the numerically computed values of Shd at E:=l against values of ,ca i 

a!2 : it appears now that this linearity also holds for hollow 

geometries. The correlation for Shd,Ej=l then reads: 

(5.48) 

in which Shd,a--0 is given by equation 4.51: 

X 1 2.15-0.lSu 
Sh == 6+2v [ 1 ,a=<> - ] 

d,a--0 v (4.51} 

and 

. 

1 . 



[
x -1 l.25-0.03v 

Shd = 10.443+5.935v i,a=Û ] 
.a~ v 

(5.49} 

Note that also in equation 5.49 only the exponent is a correlation 

parameter. 

For Regular Regime behaviour with Ei~l the Sherwood number of the 

constant activity period Shd is approximated quite well with the ,ca 

correlation: 

Shd = Shd -O + [shd E'-l - Shd ::0] Ei .ca .a- , i- ,a-

From equations 5.50 and 5.48 finally follows: 

Sh -Sh + [sh -Sh ] d,ca - d,a::O d,a-ioo d,a::O E' 
i 

Penetra.tton Pertod (D = m.a, o = 0, F ::: constant} 
r ca, 

(5.50) 

(5.51) 

Approximations for this drying sta.ge are based on Taylor series 

expansions of G versus € according to: 

(5.52) 

from which follows: 

F 
ca - [l - - 2] -- = G X. - + a + 'Yt E: o i € 

(5.53) 

1 

in which the tntttaL vaLue G0 appears to be independent of the power 

a. The solution can be derived analytically (Appendix E): 

(5.54) 
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From the numerical calculations the initia! slope of G versus € proved 

to be pseudo linear with aFca and the following correlation fora can 

be derived: 

0.5 aFca - v(l-À} 
a = ~~-=--~~~-=-

X. ,... 
l,O=v 

(5.55) 

A correlation for ~ is based on the end point (E--€ ,G:ê ) of the e e 

Penetration Period: 

€ e 

(5.56) 

With respect to the end of the Penetration Period two situations are 

to be considered: 

!J. the Penetra.tton Pertod ends diere the Reautar Reatme starts. 

Similarly to a concentration independent diffusion coefficient the 

following transition criterium should be used: 

F 
ca -- = 1.5 

E: 
(5.57) 

l 

Elimination of Fca from the Regular Regime approximation (eqn. 5.47) 

and the transition criterium (eqn. 5.57) gives: 

€ = 1 3.0 
e -~ 

d,ca 

and from the definition of G (Table 5.1}: 

ë = !.:!L € 
e X. e 

i,e 

(5.58) 

(5.59) 



Note, that in the approach of this chapter the transition criterium 

can be formulated independently of the geometry parameter v and the 

hollowness factor À (compare with eqn. 4.52). 

2l the Penetration Pertod ends tf E:=E: t.-t.,cr 
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If F ~1.5 Ë1' then the transition criterium (eqn. 5.57) indicates, ca ,er 

that there witl not be a. Regula.r Regime (wi.th a constant boundary 

flux) succeedi.ng the Penetra.tion Pertod. In this case the drying stage 

with a constant boundary flux ends with a concentration profile, which 

bas not yet penetrated into the centre of the material. The end value 

€ w111 be higher as F is choosen higher. The crtticat point curve e ca 

F versus € with E'. =E1' =1 shows great similarity to the ca e i,cr ,er 

penetration curve (eqn. 5.7) of a drying process with a zero boundary 

concentration. However, a much better approximation is found if F 
ca 

versus E is considered instead of F versus € : 
e ca e 

1 
Fca =Go X.(E - a) ,ca l e 

(5.60) 

For a--0 this equation must be identical with the penetration curve of 

a drying proces with constant boundary flux and Ei=l (eqn. 4.37) 

From the numerical computer output the following correlations for 

G0 and a are derived: ,ca 

11' [~]l.89 
GO,ca = 4 a+l.45 for O~a(ro (5.61) 

for O~a(4 (5.62) 

where aa=O is given by equations 4.38; for a,.iû a correction Aa, which 

is pseudo linear with a. bas to be added: 
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For a slab Aa = (O. ll}a 

For a cylinder: 
2 3 

Aa= (0.22-0.05X-0.20X +0.14X }a 

For a sphere Aa= (0.24+0.03X-0.19X2+0.03X3}a 

5.4.2 $ystems with Any Degree of Shrinkage 

(Dr= m~. 0 ~ a ~ l, ami~ constant). 

(5.63a} 

(5.63b} 

(5.63c} 

For shrinking cylinders and spheres the drying flux will not remain 

constant during the period with constant surface water activity, 

because the mass transfer coefficient in the gas phase depends on the 

dynamic outer radius R2 ,t of the shrinking body. In general the 

following relation holds: 

js. t(R- t}q =constant= 
Wl, -"2, 

where, 

q=O in case of a slab (v=O}; 

(5.64) 

q=l if the Sherwood number for the gasphase (Sh) is constant; 

for instance, Sh=2 for a droplet in a spray drier. 

q=l-n if Sh depends on the Reynolds number according to Sh - R n 
e 

(eqn. 2.45) 

The flux parameter of the constant activity period (Fca) can be 

related to its initial value (F 0 ) from equation 5.64 as follows: ca, 

F .s 
ca Jwi,t 

-F--= --= 
ca,O js. 0 

Wl, 

(5.65) 

and applying the expression for xi (eqn. 3.42): 



F F = _ca_,_o __ 
ca -9._ 

(5.66} 

(1-sE}v+l 

Equation 5.66 now becomes the boundary condition of the diffusion 

equation at Q> = 1. 

Integration of the ma.ss balance (eqn. 3.41) by using the expressions 

for X1 (eqn. 3.42) and Fca (eqn. 5.66} gives: 

T = 

g:!:l 

(v+l)[l-(1-sE)v+l] 

(q+l) sF ca,Oxi. 0 

(5.67) 

'Ibe relationship among F 0 . E and E: bas to be derived from the ca. l 

numerical solutions: however. this was not investigated. 
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CHAPTER VI 

EVALUATION OF EXPERIMENTAL DRYING CURVES 

§.:.1. Introduct1on. 

To investigate the practical aspects of power law dif fusion. drying 

experiments were carried out using aqueous maltodextrin solutions. In 

a vacuum drying apparatus samples with a slab geometry were dried 

isothermally; the weight of the sample as function of time was 

registrated automatically by means of a micro-computer. 

A slab geometry has some very important advantages over other 

geometries, viz.: 

- the data reduction of the experimental drying curves is very simple, 

because the relative simple correlations derived for non-shrinking 

systems, may be applied irrespective of the degree of shrinkage; 

- the exchange surface area is independent of the shrinkage behaviour 

and thus remains constant during an experiment: 

- samples can be prepared easily and reproducably; 

- isothermal drying conditions can be created relatively easily. 

1bis chapter deals first with some theoretica! aspects with respect to 

the data reduction of slab drying experiments, viz. the calculation of 

concentration dependent diffusion coefficients according to Schoeber's 

method [23] and the description and prediction of drying curves. Next 
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the drying apparatus and the experimental procedure are descr1bed. 

F1nally the results of the drying experiments are evaluated. 

Some relevant properties of ma.ltodextr1n are summarized in Appendix F. 

6.2 Theoretica! Aspects. 

6.2.1 Determination of Diffusion Coefficients. 

Schoeber (23] describes a method to derive diffusion coefficients from 

experimental Regular Regime (with m
1
=0) drying curves. By analyzing 

several concentration dependences of the dif fusion coef ficient he 

correlated Shd with dlnF/dln{l-E). He observed that a power law 

dependence showed a good "average" behaviour: irrespective of the 

concentration dependence of the diffusion coefficient, Shd-values 

deviate less than 15% from the Shd-values belonging to the power law 

dependence. Schoeber's method and its practical application are 

described below. 

In Chapter IV the following expression (eqns. 4.45 and 4.46) for the 

flux parameter F was introduced: 

(6.1) 

in which, 

m 
D (iii - m.) = f D dm r i r (6.2) 

mi 

From equations 6.1 and 6.2 with m1::0 follows: 



m 2F 
fD dm= -Sh 
Or d 

Dif f erentiation of this equation yields: 

d{2F/Shd) 
D = 

r dm 
-at m=m 

(6.3} 

(6.4) 

and the equation for the calculation of the diffusion coeff icient 

follows by applying the definitions of D • F and iii (see §3.5}: r 

at U=U (6.5} 
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The value of Shd is f ound from the Regular Regime correlation between 

Shd and dlnF/dln(l-E}. Assuming a power law concentration dependence 

of the diffusion coefficient. it follows from equations 5.13-5.16 for 

a slab geometry: 

a 
Shd = 4.935 + 2.456 a+2 

where a is found from: 

dlnF 
dln(l-E) = a+l 

(6.6) 

(6.7) 

Equation 6.5 can also be expressed in terms of the efficiency E as 

follows be low. 

{6.S) 
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In case of perfect shrinkage behaviour (a=l) the relation between p 
s 

and E is given by: 

and from equations 6.5, 6.8 and 6.9 follows: 

D = ~ [l+v0(1-E}]
2 

d(:i;} 

Shd l+v0 d(l-E) 

The mass balance can also be written as: 

2 
RO dE 

F--- n
0 

dt 

so equation 6.7 becomes: 

dE 
dln(dè 
...,..,,........,....~..,.... = a+l 
dln(l-E) 

SU.qht m.odi.ftca.tton of Schoeber's method 

If power law diffusion is assumed, then: 

Sh 
F = .!_ __!! (1-E)a+l 

2 a+l 

From equations 6.11 and 6.13 follows: 

Sh D 
~ _ l __!! _Q (l-E)a+l 
dt - 2 a+l R2 

0 

(6.9} 

(6.10) 

(6.11) 

{6.12) 

(6.13) 

(6.14) 

! 
t 
1 
f 
1 
f 

1 



and from equations 6.10 and 6.14 can be derived, that the diffusion 

coeff icient can also be calculated by using: 

[

l+vo(l-E}l2 a 
D = D

0 
(1-E) 

l+v0 

(6.15} 

in which a and D
0 

are found by linear regression over small intervals 

of ln{dE/dt) versus ln(l-E): 

[1~%] = In 2' a+l R2 + {a+l)ln{l-E} 
0 

(6.16) 

Description of Isothermal Drying Curves. 

During drying of slabs with a high initia! flux three drying stages 

can be distinguished: 

a relatively short period with a nearly constant surface moisture 

activity and thus a nearly constant drying flux; 

- a Penetration Period with a nearly constant surface concentration 

{m1:::0}, followed by 

- a Regular Regime {m1:::;G) 

In case of power law diffusion the isothermal drying of a material can 

be described fully by only two parameters, accounting for the 

concentration dependence of the diffusion coefficient, either a and b 

or a and D0 . 

These parameters can be derived from the Regular Regime drying curve 

by means of linear regression of ln(dE/dt) versus ln{l-E) according to 

equation 6.16, however, now regression should be performed over all 

data points of the Regular Regime. 

For high initia! drying fluxes the Penetration Period should be 
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evaluated by using the expression (see Chapter V}: 

in which, 

2 [ 1.42 ]l.98 
Go= 'T a+l.42 

and from equation 5.1: 

(6.17) 

(6.18) 

(6.19) 

Data reduction by linear regression of t versus E2 gives a value for 

the slope R~(2Ga1>0). Finding a and b from the slope, in combination 

with equations 6.18 and 6.19, requires at least two experiments at 

different initial concentrations u0 . 

6.3 Experimental. 

6.3.1 Description of Drying Apparatus. 

As we have seen in §6.2 the data reduction of the experiments requires 

the first and second derivatives of the drying curves. Therefore the 

measurement of the weight should be as free of noise as possible and 

many data points of weight versus time should be acquired. For this 

reason the drying is performed under vacuum conditions (no noisy drag 

forces caused by a streaming gas} and the experimental set-up is fully 

automa.ted by means of a micro-computer. 

1 
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The drying apparatus {Figure 6.1) consists of two horizontal 

cylindrical chambers, one on top of the other. The chambers are 

connected with each other by means of a tube and are accessible at the 

front. The diameter and the depth of each chamber are 50 cm. The 

sample bolder in the lower chamber is connected to an electronic 

precision balance (resolution 1 mg) in the upper chamber. 

The temperature of the sample is kept constant by an electrically 

heated radiation wire, placed about 10 cm above the sample bolder. The 

temperature of the sample layer is measured with a thermocouple (type 

T, Cu/CuNi). The power supplied to the radiation wire is regulated by 

a temperature controller. 

To dilute the evaporated moisture (p~~) clean and dry air (R4) is 

blown as evenly as possible over the sample. In order to avoid uneven 

drying of the slab a sieve plate is placed between the sample and the 

air stream. The distance between sieve plate and sample is about 1 cm. 

This space may be considered as a diffusional resistance. The moisture 

diffusion coefficient in the gas phase is inversely proportional to 

the absolute pressure [1]. The initia! rate of drying depends on the 

slab temperature, absolute pressure in the chambers and the distance 

between sample bolder and sieve plate. The absolute pressure in cham

bers is kept constant by means of a pressure transmitter and a pres

sure controller, which activates the servo motor of a needle valve 

(R2). The sample bolder is made of PfFE, which hardly takes up any 

moisture. Moreover, PTFE is a good heat insulator, which favours a 

uniform temperature distribution in the slab. The sample bolder bas a 

cylindrical shape with diameter 6 cm and depth 2.5 mm. 

For data-acquisition the digital weight balance, the temperature 

controller. the pressure controller and several thermocouples are 

connected to a microcomputer. During a drying experiment the following 
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sample 
wei ht 

A/D CDNVERTER 

conditioning 
chamber 

vacuum 

pressure 
controller 

temperature 
controller 

RS232C MICR.0-<XIMPUTER RS232C 

Figure 6.1 Vacuum drying apparatus 

... = sample: --- = sieve plate: 

coooce> = radiation source; T
5 

= sample temperature: 

Teb= temperature external bottom sample holder: 

T = temperature of radiation source: 
r 

Pda= pressure in drying apparatus. 
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physical quantities are automatically recorded: 

- the sample weight; 

- the temperature of the slab; 

the temperature in the neighbourhood of the radiation wire; this 

temperature is a rough indication for the acti"ity of the radiation 

source; 

- the temperature of the external bottom of the sample holder (to 

ascertain a uniform temperature in the sample}; 

- the absolute pressure in the chambers (to ascertain constant 

external drying conditions). 

6.3.2 Experimental Procedure. 

Sample preJ)(!.ration. 

To avoid internal circulations inside the slab, a gel of the aqueous 

maltodextrin solutions is prepared by adding a small amount of 

agar-agar (1 wt% on water basis). A sample layer is obtained by 

injecting the warm solution (50 °c) into the sample holder via a cover 

with two holes in it (Figure 6.2). 

î 
sample injection 

l 
cover 

sam le holder 

Figure 6.2 Preparation of a gelled layer. 

After gelation at a lower temperature (e.g. o0 c), the cover is shifted 

away and a perfectly smooth slab is obtained. Immediately the sample 

holder is closed with a stainless steel cover plate provided with a 

"O" ring. 
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Sall!ple condtttontng. 

It takes about three minutes to reach the desired pressure (about 

12000 N/m2 ) in the drying chamber. To obtain a well-defined starting 

point it must be avoided, that during this period the sample starts 

drying. Therefore the sample. with a cover over it. is first placed in 

a separate conditioning chamber (Figure 6.3). 

spindle 

vent R5 conditioning l 
:::::;ic::CK~==t chamber 

cover 

L_ thermostat 

DRYING APPARATIJS 

Figure 6.3 Conditioning chamber 

vacuum 

~ = double-walled heat exchanger, in which sample 

bolder is placed; 

Pee= chamber pressure; Ts =sample temperature. 

At reaching the desired pressure (Pee) and temperature (Ts) of the 

sample the cover plate with "0"-ring is pressed firmly to the sample 

bolder by means of a spindle and then the chamber is brought to 

atmospherie pressure again. 
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Start of drutng experiment. 

Because of the underpressure in the small space between cover plate 

and sample surface, the sample bolder will "stick" to the cover plate. 

In this condition the sample bolder is placed in the drying chamber, 

whereby the cover plate is resting on two bars (Figure 6.4). 

r cover plate 

D D 
bar 1 Lbar 

Figure 6.4 Position of sample holder just before the start 

of a drying experiment (~ = sample layer) 

The drying chamber is closed and the pressure is brought to the 

desired value. A short time before the end pressure is reached, the 

sample holder releases from the cover plate and falls on the digital 

electronic weight balance. The sudden change of the balance signal is 

registrated by the micro-computer and interpretated as the start of 

the experiment: at the same time the balance is zeroed and a motor is 

activated to pull away the cover plate. 

Durinq druing experiment. 

About 1000 times during an experiment the computer samples the 

following data: time, signal of the weight balance, signals of 

thermocouples (sample, external bottom of sample holder, radiation 

source) and signa! of pressure transmitter. 

End of drying experiment. 

The experiments are aborted if the drying efficiency is at least 0.95. 

The duration of an experiment varies from several hours to one day. 
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Representatton of resutts. 

From the momentary, initial and final weight of the sample the drying 

efficiency E can be calculated quite simply. For the evaluation of the 

drying experiment {§6.2) also dE/dt is required. To obtain sufficient-

ly accurate values f or dE/dt the increase of the efficiency during a 

time interval should be large enough. Theref ore a selection of about 

100 time intervals from all collected data bas been made; during the 

selected time intervals the increase of the ef f iency is about 

0.007-0.01. 

In Table 6.1 a summary of the conditions used in the various drying 

experiments is given. The pertinent experimental data (efficiency E 

versus time t) can be found in Appendix G. 

Table 6.1 Drying experiments of gelled maltodextrin/water layers 
3 (R0:::2.50 mm, d

5
=1610 kg/m } 

%wt of temp. ini tial Pso uo exp. pressure weight of 
number sol id {oC) {N/m2) layer {g) (kg/m3) {kg/kg) 

5 29.4 41.4 12500 7.66 331 2.40 

6 29.4 32.8 12450 7.84 331 2.40 

7 29.4 26.4 12400 7.92 331 2.40 

8 17.1 35.8 12400 7.51 183 4.85 

9 17 .1 26.7 12200 7.65 183 4.85 

6.4 Results and Discussion. 

From calculations, based on temperatures of the sample layer and of 

the external bottom of the sample bolder, it could be confirmed tha.t 

sample temperatures were uniform within ± 0.2 °c. It appeared, tha.t 

the temperature change of a sample during a whole experiment was of 

l 
r 

t 
t 

1 

j 



the same magnitude. The pressure in the drying chamber was constant 

within ±100 N/m2 . 

6.4.1 Merging of drying curves. 
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The relationship D versus u is a physical property of the ma.terial and 

so it bas to be independent of the initial drying conditions. 

s -Therefore it follows from equation 6.5 that curves jmidsRs versus u 

for e.g. different initia! moisture concentrations must merge in the 

Regular Regime. 

This conclusion bas been verified experimentally by Schoeber [23] for 

aqueous glucose solutions and by Luyben et.al. [25-27] for a number of 

materials. From our investigation it appears, that also for aqueous 

maltodextrin solutions, at low concentrations the two drying curves 

coincide (Figure 6.5); from this merging part of the drying curves the 

initia! conditions can not be reconstructed. Actually, Figure 6.5 

gives the experimental proof for the occurrence of Regular Regimes. 

Diffusion coefficients. 

Diffusion coefficients can be calculated from the experimental data in 

two ways: according to equation 6.10 and according to equation 6.15. 

Both methods have been used and they both require the relation of 

d.E/dt versus (1-E). To reduce noise and irregularities the first 

derivative d.E/dt is smoothed by recalculating each data point as an 

average of its original value and four surrounding data points, two 

before and two after the original point; all points are weighted 

equally. 
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Figure 6.5 

Merging of drying curves 

with different initial 

conditions. 

+ experiment 7 

A experiment 9 

Figure 6.6 

j 
Diffusion coefficient of 

water in aqueous mal to-

dextrin solution at 27 °c 

+ experiment 7 

A experiment 9 

- Furuta et.al. 



At each data point the second derivative in equation 6.10 and the a 

and o
0 

values in equations 6.12 and 6.16 are determined via linear 

regression of 9 data points, 4 points before and 4 points after the 

centra! data point; all points are weighted equally. 
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It appears that diffusion coefficients calculated according to 

equation 6.10 do not deviate significantly from those calculated with 

equation 6.15. Diffusion coefficients, derived from experiments 7 and 

9 with the modified Schoeber's method (eqn. 6.15) are represented in 

Figure 6.6. The oscillations. especially in experiment 9, due to 

experimental noise and irregularities, are not fully eliminated by 

smoothing and regression techniques. The random. errors, caused by 

these oscillations, are about ±10 % . 

Systematic deviations are found between diffusion coefficients, which 

have been derived from experiments with different initial moisture 

contents. For example. in a large concentration range diffusion 

coefficients from experiment 7 (u0=2.40 kg m/kg s) are about 25% 

higher than those from experiment 9 (u0=4.85 kgm/kg s). Because 

experiment 9 starts at a higher initia! moisture concentration, higher 

efficiencies are obtained at the same actual moisture concentration 

than in experiment 7; from this it is concluded that experiment 9 is 

more "regular" and will give more reliable diffusion coefficients than 

experiment 7. 

At lower concentrations the two drying curves coincide and nearly the 

same diffusion coefficients are found. Deriving diffusion coefficients 

from one drying curve, as proposed by Schoeber [23], appears to be 

doubtful. Deriuing diffusion coeffictents from. the merging pa.rts of 

seueral drytng curues with different tnttial moisture concentrattons, 

as done by Luyben et.al.[25], appears to be a bet ter approach. 

Diffusion coefficients at low concentrations wil! be more reliable, if 
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they are derived from experiments with low initia! moisture concentra-

tions. For example: at u=0.1 (kgm/kg s) a drying efficiency of 0.975 

is required if u0=4 and 0.9 is required if u0=1; in the first case 

relative errors in 1-E, due to experimental inaccuracies, will be 

larger than in the second case. 

Furuta et.al. [22] obtained diffusion coefficients of water in 

maltodextrin solutions from many desorption experiments. By applying 

low driving forces their concentration profiles were rather flat and 

the total change of the concentration during each single experiment 

was rather small. Therefore the diffusion coefficient could be assumed 

constant within those small concentration intervals. Their results 

(see Figure 6.6) are in fairly good agreement with ours, except for 

low concentrations (u<0.3 kgm/kg s). where large deviations exist. 

6.4.3 Description of experimental drying curves. 

A single drying experiment can be described quite well by means of the 

short-cut equations for power law diffusion (see Chapter V). Tb.is will 

be shown from experiment 9 as a typical example. In Figure 6.7 some 

cbaracteristic relations, derived from this experiment, are 

represented. 

From a first examination of the Regular Regime drying curve it was 

estima.ted tbat ~. Therefore Regular Regime bebaviour was assumed f or 

E~0.5. Linea.r regression of ln{dE/dt) versus ln(l-E), including all 

data points in this range, gives a better value for a and thus a 

better estimate for the pertinent concentration range; after two or 

-9 2 three iterations a = 0.075 and D0 = 1.00•10 m /s were found. Taking 

these values of a and D
0

• the drying history can be reconstructed as 

follows. 
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Constant flux verf.ad 

-4 -1 The imposed initia! drying flux dE/dt = 3.50•10 s is obtained by 

linear regression of E versus t in the arbitrarily chosen range 

O~E~0-.2. Now the initia! value of the flux parameter F = 2.187 ca 

follows from equation 6.11. The critica! moisture concentration 

ucr= 0.362 kg m/kg s follows from the sorption-isotherm of 

maltodextrin/water (see Appendix F), assuming that the critica! 

moisture activity ami= 0.9. From the definition of the efficiency 

follows for the critica! surface efficiency Ei' = 0.925. From ,er 

equation 5.53 follows after iteration, that at the end of this period 

the average efficiency Eca= 0.273. 

Now the duration of the constant flux period can be calculated from 

the mass balance Tea= Eca/Fca= 0.125. Applying the definition of T 

finally gives tea= 779 seconds. 

Penetrntton Pertod C1111:.Q} 

In case of the extreme situation that E
1
' = 1. it follows from .er 

equation 5.60 that Eca= 0.325 and tea= 928 seconds. With respect to 

the total drying time the difference between 928 s and 779 s is small 

and therefore it is assumed now. that the transition period, in which 

the surface efficiency increases from the critical value (E
1
'=E

1
' } to .er 

the equilibrium value (E:=l or m.=O) is reached within a neglible time 
l l 

interval. This means that it is assumed, that the critica! point curve 

(Fca versus Eca with mi.er= 0) nearly coincides with the penetration 

curve (F versus E with mi=O). 

Because in this experiment the constant flux period contributes 

substantially to the total drying time, the Penetration Period should 

be calculated with: 

l 
l 
1 



(6.20) 

in which, 

Eca= 0.273, tea= 779 seconds and G0= 0.575 {from eqn. 6.18). 

Transit ion 

The transition from the Penetration Period to the Regular Regime 

occurs at E.y-= 0.482 {from eqn. 5.20 ). 

Reaular Regime 

For E>E.y- the Regular Regime expression {frorn eqn. 5.18) reads: 

(6.21) 

in which Shd=5.024 {from eqn. 6.6) and tr=1634 s (from eqn. 6.20). 

A comparison of measured and calculated drying times shows, that 

maximum deviations are about 10% {see Appendix G-9). 
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This result, which is typical for all drying experiments, proofs that 

the whole drying history can be reconstructed from expertmental data 

of the Regular Regime. 

Though the initial value of the flux parameter is not very high in 

this case, it still ensures the occurrence of a Penetration Period 

wi th zero surf ace concentration (m
1
.=0); higher .ini tial values for F 

ca 

can be achieved by higher temperatures, lower pressures in the drying 

chamber, thicker slabs and lower initia! moisture contents (for 

obtaining lower values for D0 ): it should be noticed, however, that 
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thicker slabs and lower D0-values will increase the duration of a 

drying experiment. 

6.4.4 Prediction of experimental drving curves. 

In case of power law diffusion data reduction of all drying curves. 

irrespective of the initial concentration, should give one a-value and 

one b-value. However, it appears from our experiments, that power law 

diffusion does not apply strictly to solutions of maltodextrin/water 

(see also §6.4.6}. Therefore a semi~emptrical approach for the 

prediction of drying curves is proposed here. lt appears that from 

drying curves at higher initia! moisture contents the drying curves at 

lower initia! moisture contents can be predicted. This will be 

illustrated by predicting drying experiment 7 (u0= 2.40 kg m/kg s) 

from drying experiment 9 (u0= 4.85 kgm/kg s). 

The predtction method is 00.sed on the former observa.tton, that the 

Regular Regime drytng curves contatn alt necessary tnfonna.tton. The 

values of a and D0 for the prediction of experiment 7 are derived from 

the Regular Regime of experiment 9. Assuming a = 0.075 (so, E.y-= 0.482) 

the concentration range of the Regular Regime of experiment 7 is: 

O~u~l.16 kgm/kg s. Linear regression of ln(dE/dt} versus ln(l-E) with 

all data points from experiment 9 in this range gives a better a-value 

and thus a better estimate of the relevant concentration range; linear 

regression is repeated, etc .. After only two iterations: a = 0.292 and 

-10 2 Do= 5.03•10 m /s. Similarly to the method, as described in §6.4.3. 

the drying times of experiment 7 are calculated. The maximum deviation 

between measured and calculated drying times appears to be 20% (see 

Appendix G-7). 

1 

1 
f 
t 

1 
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The temperature dependence of drying curves, as stated by Schoeber 

[23,24], can be expressed with an Arrhenius-type relation: 

(6.22) 

in which R = 8.314 (J/mol °K}; 

T =absolute temperature (°K); 

~ = activation energy of the flux (Joule/mol). 

The activation energy ~· which depends on the moisture concentration, 

can be derived from at least two drying experiments with the same 

initial concentration, but with different temperatures. 

65~-~~~~~~~~~~~~~~~~~~~~ 

+ 

Figure 6.8 
55 

Activation energy of 

drying flux . 

45 + from experiments 6 & 7 

A from experiments 8 & 9 
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In Figure 6.8 the activation energies, derived from the Regular 

Regimes of two different sets of drying experiments (6+7 and 8+9} are 

represented. The concentration dependence of the activation energy ~ 

can be described very well by the following correlation, as proposed 

by Luyben [25]: 

~ = A exp(-B u) + C (6.23) 

in which for ma.ltodextrin/water the following values of the fitting 

parameters are found: A = 48 kJ/mol; B = -2.40 kg/kg, C = 18.8 kJ/mol. 

Isotherma.l drying curves at different temperatures and different 

initial concentrations can be predicted from experiment 9 as follows: 

first, the Regular Regime of experiment 9 is translated to the desired 

temperature by using equations 6.22 and 6.23. 

second, the parameter a and D0 at this temperature are obtained by 

linear regression of ln(dE/dt) versus ln(l-E) in the concentration 

range of interest. Because a is not known beforehand, some iterations 

(mostly two) are required, to find the correct concentration range and 

the corresponding values of a and D0 . 

third, the drying curve at the desired temperature level and desired 

initia! concentration can be calculated similar to the method as 

described in §6.4.3. 

The above procedure bas been applied to predict the drying curves of 

experiments 5,6,(7) and 8 from the Regular Regime drying curve of 

experiment 9: the agreement of predicted and measured drying times is 

fairly good. Deviations between measured and calculated drying times 

vary from a few percent to 30% (see Appendix G). 
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6.4.5 Prediction of Non-Isothermal Drying Curves. 

At the desired initial moisture concentration, the Regular Regime 

curves are predicted at several temperature levels. Then by linear 

regression the best fitting a-value for all temperature levels is 

determined. Next the best fitting D0 value at each temperature level 

is determined. The temperature dependence of D0 is expressed with an 

Arrhenius type equation. 

One single value of a is required to obtain temperature independent F 

versus E equations, so that the procedure analog to section 4.5 may be 

applied. The prediction of non-isothermal drying curves has not (yet) 

been verified experimentally in this study. 

6.4.6 Deviations from Power Law Diffusion. 

The exponent a can also be derived from drying experiments at 

different initial concentrations via: 

correlating values of D0 with u0 according to equation 6.19; 

- evaluation of values of G0D0 , found by linear regression of E2 

versus t with data from the Penetration Period (see Figure 6.7), by 

means of equations 6.17-19. 

In both cases negative a-values are obtained (Table 6.2), which 

strongly deviate from the foregoing observed values. This 

inconsistency of results means, that the power law relation: 

(6.24) 

in fact does not apply to the whole concentration range of the system 

maltodextrin/water. At higher moisture concentrations the diffusion 

2 coefficient D is nearly independent of the concentration, whereas ps 

will increase and thus Dp; will increase at a decreasing moisture 

concentration. At lower concentrations D will decrease more strongly 
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than the factor p; increases and thus Dp; wttt decrease. Putting Dp; 

versus p /p will show a maximum, and such a dependence can not be 
m s -------

expressed by a power law relation. 

One may wonder now why the description and prediction of drying 

curves. based on the power law concept. gives such satisfying results. 

The answer to this question might be, that drying behaviour is fully 

controlled by the lower concentrations at the interface, whereas the 

concentration dependence of the diffusion coefficient at the higher 

concentrations in the drying material is of minor importance then. In 

the range of rate controlling concentrations apparently a power law 

dependence of the diffusion coef ficient may be assumed. Because power 

law diffusion evidently does not apply to the whole concentration 

range it has to be concluded that the parameters a and Da should be 

considered as fitting parameters, e.g. Da is a fictive value of the 

diffusion coefficient at the intial concentration. 

Table 6.2 a-values calculated from drying experiments at 

different initia! moisture concentrations. 

uo GaDo from PP n0 from RR 
exp 2 a 

2 a 
(kg/kg) (m /s} (m /s) 

7 2.40 2.37·10-10 5.03·10-10 

5.04·10-10 -0.61 
1.00•10-9 -0.71 

9 4.85 

l 
1 
i 
1 

1 
l 
! 
t 

' 
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6.4.7 Conclusions. 

Diffusion coefficients should be derived from the merging parts of 

several drying curves with different initia! moisture concentrations. 

The whole drying history of a sample can be reconstructed frorn 

experirnental data of the Regular Regime only. 

Drying curves at lower initial rnoisture concentrations can be 

predicted frorn the Regular Regime data of drying curves at higher 

initia! moisture concentrations. 

Power law diffusion does not apply strictly to maltodextrin/water 

solutions. Though drying curves can be described and predicted fairly 

well by means of the equations of the short-cut method, the model 

parameters a and D0 should be considered as fitting parameters with a 

lirnited physical meaning. 
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APPENDIX A 

Transforma.tion of Diffusion Eguation. 

The diffusion equation for moisture transfer in bodies of standard 

geometries reads (§3.2): 

Parttal dtfferentiat equation: 

apm 1 a v 
-= --~r n) at v ar m 

r 

InittaL condition: 

t = 0 

Boundary condittons: 

t ) 0 

or 

a(p lp ) m s _ 
0 éJr -

a(p lp ) 
D m s = 

- ps éJr .s. (t} 
Jm1 

(A.1} 

(A.2) 

{A.3) 

(A.4) 

(A.5) 
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By analogy with equation (A.l) the partial differential equation for 

mass transfer of the dissolved solids (s) is given by: 

(A.6) 

Transformtna the concentratton. 

For the transformation of the diffusion equation A.l, expressed in the 

volume based moisture concentration pm (kglm3), into a form with the 

concentration u (kgm/kg s), the following two equations will be 

helpful: 
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(A.7) 

and from equations 2.13, 2.25 and u=pm/ps: 

(A.8) 

Dividing equation A.1 by ps and multiplying equation A.6 by pm/p: 

gives: 

1 8Pm 1 a v 
- - = - -- 3::-(r n ) p 8t v ar m 

s psr 
(A.9) 

(A.10) 

Subtracting equations A.9 and A.10, making use of equation A.7 and 

eliminating nm by means of equation A.8 results in: 

(au) (au) __ 1_ ~ rvD au) 
8t r +VS ar t - v fü\Ps 8r t 

psr 

Transform.tnq the space coordinate. 

lbe solids ba.sed space coordinate z is defined as: 

or 

(A.11) 

(A.12) 

' (A.13) 
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(A.14) 

and its maximum value: 

(A.15) 

Transforming the right hand side of equation A.12 into a form. using 

the solids ba.sed space coordinate z, is quite simple, but for the left 

hand side this transf ormation is somewhat more demanding. 

Consider u=u(t,z), from which follows: 

and thus: 

= (öu) + (öu ar) (az) 
at z ar az t öt r 

From equation A.13: 

1 
v 

P r s 

From equation A.14: 

(A.16) 

(A.17) 

(A. lS) 

(A.19) 

Substitution of equation A.6 in A.19 and assuming a non moving 

internal boundary, it follows: 
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(A.20) 

Equations A.17, A.18 and A.20 now give: 

(A.21) 

and equation A.12 written in the solids based space coordinate z 

finally reads: 

{A.22} 

Jlfak.inq the pa.rtial differential equation dimensionless. 

Introducing the dimensionless parameters m, D , T and 4=z/z {see r max 

Chapter III) 1nto the partial differential equation A.22 gives: 

in which the dimensionless X-pararneter is defined as: 

rvd R 
X = s,ap s 

z 
max 

Workina out the X·mrameter. 

Separation of variables in equation A.13 gives: 

(A.23) 

(A.24) 

(A.25) 

Integration between the limits r=R1 and r=r and substituting dz=zmaxdcp 

gives the following expression: 

f 

t 
l 
1 



v 
r 

For zma.x holds: 
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(A.26) 

(A.27} 

In fact equation A.27 is the mass balance of the solids; executing the 

integration of the most right member gives: 

_ ds,ap (cR +R )v+l _ R v+l] 
zmax - v+l 1 s 1 (A.28} 

From equations A.24, A.26, A.28 and the hollowness factor À 

(eqn. 3.18} the following expression for the X-pa.rameter can be 

derived: 

(A.29) 

From the shrinkage model follows (eqn. 3.26): 

(A.30} 

and the expression for the X-pa.ra.meter now becomes: 

Q> .2!.... 
X = (v+l)~ [Àv+l + (1-Àv+l} f(l+ov)d<j>lv+l. 

1-Àv+l 0 J {A.31) 
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Transformtna the: tntttal and bowidary condtttons. 

It will be clear that the initial condition reads: 

m = 1 (A.32) 

For the external boundary condition the flux equation 

s 8u 
jmi = -Dps 8r (A.33) 

can rather easily be transformed into a dimensionless form via the 

intermediate expression: 

j s = -Dp2 8u~ 
mi s z max 

(A.34) 

and by next applying equation 3.14 for the flux-parameter and equation 

A.24 for the X-pa.rameter, the dimensionless flux equation becomes: 

(A.35} 

where parameter X1 follows from equation A.31 by putting <?=1. 

After transformation the external boundary condition for a known 

surface concentration reads: 

<I> = 1 

or for a known surfaee flux: 

1 T > 0 
8m 

-D X EF:· = F r i "'!' 

Ina similar way the internal boundary condition reads: 

T > 0 
8m x ~= 0 

(A.36) 

(A.37) 

(A.3S) 

1 

1 
t 
l 
r 
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APPENDIX B 

Analytica! Solutions or DiCCusion Eguation with Constant Bouru:lary Flux 

The diffusion equation is given by (see §4.1): 

-----''---- ~[/..+(l-/\)y]v Bm) 
[À+{l-/..)y]v By By 

(B. l) 

Initial condition: 

T = 0 0 ~ y ~ 1 m = 1 (B.2) 

Bouru:lary cond.i t ions : 

T ) 0 = 0 
am (B.3} y By = 0 

y = 1 am 
By= Fca = constant (B.4) 

For all geometries the solutions can be described by: 

E' - X 
F - i,a=O 

ca 

ro 2 

[ 
\ exp(-J\: T)] 

T + f + L <1< 2 
k=l J\: 

(B.5) 

The functions f and Se and the characteristic root equations are given 

in the following tables. 
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Table B.1 Massive systems 

geometry f Se ~ 

tan(~) = 0 

slab 1 2 1 2 cos(J!Iè) 
~ = k•v 2Y -6 -cos(~) 

-cos(~)=(-1) 

cylinder 1 2 1 JoCJ!Iè) 
Jl(~) = 0 :f Y -9 -Jo(~) 

sphere 1 2 1 2 sin(J!Iè) 
tan(~) = ~ 5Y - 10 3y -sin{~) 

Table B.2 Hollow cylinder 

2 2 2 2 2 2 
f _ 1 (2x -3X -1)(1-X ) - 4X {(1-X )ln(x) + X ln(X)} 

- 8 (1-X)3(l+X) 

with : ~ 
~ = (1-X) 
x = X+{l-X}y 

Zn(a,b) = Y1(a}Jn(b) - J1(a)Yn(b) 
-2 z0 (a,a) = ;:a 

k+l 

1 

1 
r 
t 
f 
~ 



129 

Table B.3 Hollow sphere 

3 3 2 2 2 2 3 
f - À {-5y +15y +3y-3)+À (15y +6y-9)+À{l5y -6y-3}+5y -3y 

- 30(l+À+À2}(À+(l-À)y) 

2 2 2.2 
gk = -(À +À+l)•[(l-À} + '\:-~ ] 

3 4 3 2 4 
~ = À 1\: + À(l-À) 1\: - (1-À} 

[
34 2 2 4] ik = 1\: À 1\: + À(l-À) (l+À)I\: + (1-À) 

2 2 2 1\: : [{1-À) + À 1\: ] tan(I\:) - {1-À) 1\: = 0 
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APPENDIX C 

Analytica! Solutions of Diffusion Eguation wi tb Constant Boundaru 

Concentration CD
1
=1. o=O) · 

The diffusion equation is given by (see §4.1): 

Partial differential eauation: 

: = 1 ~ {[À+(l-À)y]v am) 
[À+{l-À)y]v 8y 8y 

Initial condition: 

m = 1 

Boundaru conditions: 

T) 0 y = 0 
am 
8y = 0 

y = 1 = 0 

{C.1) 

{C.2) 

(C.3) 

{C.4) 

For all massive and hollow geometries the solutions can be described 

by the following relations: 

m = l Aicexp(-Jlic2T) 
k=l 

" 
wi th R. = - [aAic] -k 8y y=l F = l l\exp{-Jlic2T) 

k=l 

" 2 exp(-J\: T) 
l-E = Xi,o=O l 1\ 2 

k=l J\: 

(C.5) 

(C.6) 

(C.7) 

The functions ~· 8k and the characteristic root equations are given 

in the tables below. 
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Table C.1 Massive geometries 

geometry ~ !\ ~ 

cos(~) = 0 ' 

slab 2 cos(~) 
2 = (2k-1) ~ 

~sin(~) ~ 

sin(~) = (-l)k+l 

cylinder 2 Jo<~> 
2 Jo<~> = o ~ Jl(~) 

sin(~) = 0 

sphere 2 sin(~) 
2 = kir 

~-cos(~) ~ 

-cos(~) = (-1) k+l 

Table C.2 Hollow cylinder 

Jl(~À) • Jo<~> 
~ = .,,. 2 2 •Zo(~À,~X) 

Jl (~À) - Jo <~> 

~ 
with ~ = l-À 

x = À+(l-À)y 

Z (a,b) = Y1(a)J (b) - J 1(a)Y (b) n n n 
2 

Jl (~À) 
!\ = 2(1-À) 2 2 

Jl {~À) - Jo <~> 
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Table C.3 Hollow sphere 

2 sin(IJ:Ic{l-Y)] 
~ = "ic-sin(IJ:Ic)cos("ic) À+ (1-À)y 



APPENDIX D 

Some Aspects of the Numerical Solution of the Diffusion Eguation. 

In genera!, the diffusion equation with D =ma bas to be solved by 
r 

numerical methods. Only some important aspects of the numerical 
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approach. which may cause serious problems, will be highlighted here. 

It appears that some of these problems can be dealt with by appropiate 

transformations of the diffusion equation; this will be illustrated 

with the generalized diffusion equation in <P-coordinates. 

lfoving external bmmdary 

The numerical calculation of partial differential equations requires a 

rectangular discretisation grid, in other words equidistant steps in 

time and space should be used. However, in discretisizing the linear 

r-coordinate of a shrinking system the external boundary will move 

through the grid. This problem can be solved by transforming the 

partial differential equation (eqn. 4.1) with a normalized linear 

space coordinate: 

y(t) = (D.1) 

During every time step R2 ,t has to be calculated: this requires the 

integration of the moisture flux with time or the integration of the 

moisture concentration with space. 

Transformation of the diffusion equation in <P-coordinates seems to be 

a good alternative. because now a fixed external boundary is obtained. 

However, the'integration now emerges in the X-parameter and the 

internal boundary condition for massive cylinders and spheres becomes 
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und.etermined (~and/,.=() -+X=O-+ éJmlö<j:l:::??). Tuis internal boundary 

problem also exists for non-shrinking systems. For cylinders and 

spheres with an infinite small value .of À the slope éJmlö<j> is clearly 

zero. Therefore, it may be expected that replacing the internal boun

dary condition of massive systems with éJm/8$=0 will cause minor 

errors. Indeed, by comparing the numerical solutions calculated in 

4>-coordinates with solutions calculated in y-coordinates no detectable 

errors could be traced. 

Stnqularttu of the bounda.ru flux 

If the boundary concentration mi takes on a zero value, the dif fusion 

coefficient will also be zero. Because of a fini te boundary flux, the 

concentration gradient at the external boundary will become infinite. 

Tuis singularity causes loss of convergence and must be avoided. Also 

for high values of the exponent a and low values of m
1 

steep 

concentration gradients at the external boundary will result. Even 

this non-singular situation may lead toa non-acceptable loss of 

convergence. Tuis problem can be eliminated by the following simple 

f i f th · a+ 1 The 1 • d trans ormat on o e concentrat1on: m = m . genera ize 

diffusion equation then becomes: 

Generaltzed. pg.rtial differential eguation: 

a 

: = (m}a+1 ~x2 ~ 
Initial condition: 

o~<I>< 1 m = 1 

Boundaru conditions: 

T) 0 <1>=0 
&! 

Xäq)=O 

<1> = 1 m =m. 
l 

&! or -x1 8<fi = F(a+l} 

(D.2) 

(D.3} 

(D.4) 

{D.5) 

(D.6) 
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From the boundary condition at $::1 it can easily be seen that for 

fini te values of F(a+l) the gradient of the transformed concentration 

Bwlo<Pwill remain finite for any value of the boundary concentration. 

(The sa.me holds for Bw/By and Bw/or). 

Inconsi.stency of lni.tial and boundary condition 

In modelling a real drying process it may happen that the idealized 

boundary condition is inconsistent with the idealized initia! 

condition; e.g. a uniform initia! concentration implies a zero 

boundary flux at t::O, whereas at t!o the boundary condition may impose 

a non-zero flux. In these cases a discontinuity exists, where the 

external boundary condition and the initial condition should link up. 

Tuis singularity tends to cause serious oscillations in the solutions 

and has to be dealt with. 

Initially there is a drying period during which the concentration 

profiles are penetrating into the centre of the body. For this 

penetration period (O~T~T ), where the drying body behaves like an 
pp . 

infite thick body, the so-called Boltzmann transformation is most 

suitable to avoid this kind of singularity problems: 

z = Jr 1-d> 
pp~ (D.7} 

Now the boundary $::1 is transformed to the origin z=O, whereas the 

initia! condition {T=O) is transformed to z-im. Thus, inconsistency of 

conditions no longer exists. At T=r a switch back from z-coordinates 
pp 

to <l>-coordinates is necessary. 
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Dtscreti.satton 

At increasing values of T the concentration prof iles change more 

slowly. To speed up the numerical calculations a gradually increasing 

time step is required. However, to determine the convergence of the 

numerical solutions, equidistant steps in space and time are required. 

This problem can be solved by transforming the time variable according 

to: T'::::./r; equidistant steps in T' yield growing steps in T, because 

ÄT=2T'ÄT'. 

The transformed diffusion equation is discretisized by means of the 

Crank-Nicolson scheme. Discretisation yields a set of equations which 

is solved by using the Thomas-algorithm. The order of the 

discretisation errors appears to be: 

(Az)2 and (!T')
2 for O~T~T ; (A<!>)2 and (AT')

2 for T~T pp pp 

For non-shrinking systems with constant diffusion coefficient the 

numerical calculations show excellent agreement (deviations less than 

O.lX) with the analytica! solutions (Chapter IV). For power law 

diffusion excellent agreement exists (deviations less than 0.5X) with 

the calculations of Schoeber [23] and Liou [28] and with the 

calculations of regular regimes based on geometrically similar 

concentration profiles [23,44]. 
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APPENDIX E 

The Initial Value G0 for Power Law Diffusion with Constant Bounda.ry 

Flux. 

In case of a power law dependence of the diffusion coefficient with 

concentration. the G-parameter (see Table 5.1) is defined as: 

F 
Ei Ei F{a+l) 1-(1-E)a+l 

G - -- - --- -----...,-..,... 
- x1 - x1 [l-(l-Ei)a+1]2 

(E. l) 

and the initia! value: 

a+l 
_ ~ F(a+l) [ 1-(1-E) ] 
G = lim G = --- lim -------.:-= 
o T---0 xi T--0 [1-(1-Ei)a+l]2 

(E.2) 

If T---0 then also E--0 and Ei--0 and thus: 

1-(1-E}a+l [ (a+l)E+higher E-terms ] 

;~[{l-(l-Ei)a+l}2] = !~ [(a+l)Ei+higher Eï-terms]2 

[ 
(a+l)E•(l+higher E-terms] ] 

lim 2 T--0 (a+1)2E:i •[l+higher Ei-terms] 

- lim[ E ] 
- T---0 (a+l)E: 2 

l 

(E.3) 

From equations E.1, E.3, and 4.35: 

(E.4) 



138 

It is assumed that the drying process with a constant boundary flux 

starts with a homogeneous concentration profile. At extremely small 

drying times (T'-iO), the moisture concentration at any place in the 

material, including the interface, bas hardly changed from its initia! 

value. So. the concentration dependence of the diffusion coefficient 

does not come to expression yet. Also the influence of shrinking, if 

present, will be negligible at this very first drying stage. For these 

reasons it can be concluded that, irrespective of the concentraU.on 

dependence of the diffusion coefftctent and the shrtnkage beha.vtour, 

in a.tt cases the G0~pa.rameter takes on the SQllle va.tue. So, the value 

obtained for non-shrinking systems with constant diffusivity {eqn. 

4.36) also holds in genera!: 

(E.5) 

! 
r 
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APPENDIX F 

Some Properties of Maltodextrin. 

The maltodextrin (trade name: Paselli MD20) used in this study is the 

same as used by Kerkhof [36] and Rulkens [35]. 

The composition as specified by the supplier (AvéBé. Veendam, the 

Netherlands). is: 

1.5 wt% glucose 

4.5 wt% maltose 

9.3 wt% tri-saccharides 

6.0 wt% tetra-saccharides 

4.5 wt% penta-saccharides 

74.2 wt% poly-saccharides 

The partial density of maltodextrin in aqueous solutions ma.y be 

considered to be constant [36] and is 1610 kglm3 . 

The sorption-isotherm in the range aw~0.9 can be described very well 

with the G.A.B-equation [43]: 

c ka 
!:!....= g w 
ul (1-ka )·(1-ka +C ka ) w w g w 

in which, 

-4 
u 1 = 0.06343 - S.586•10 •{0-20) 

k = 0.9132 + 3.839•10-3 ·(0-20) 

c = 6.394 + 2.558•(0-20) g 

with 15°C ~ 9 ~ 50°C 

(kg m/kg s) 

(F.1) 

(F.2) 

(F.3) 

(F.4) 
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The maltodextrin, used by Furuta et.al. [22]. is of a different origin 

and bas a different composition. In their paper they present the 

following correlation for the diffusi.on coefficient of water in 

maltodextrin solutions at 35°c: 

8 di 
= :I --

1=0 (l+u) 1 

with d0 = -9.62029, 

d3 = 704.872, 

d6 = -7952.04. 

dl = 3. 75424. d2 = -86.5335, 

d4 = -2853.10. d5 = 6354.49, 

~ = 5245.81. da = -1424.05 

(F.5) 

For the a.ctivation energy of the diffusion coefficient is given: 

with e0 = 3.32582, e1 = -15.8667, e2 = 151.217, 

e3 = -443.608, e4 = 481.664, e5 = -146.387 

(F.6) 

1 
i 
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APPENDIX G-5 

Experiment 5: measured and calculated drying curves of 
~elled la~er of maltodextrin/water. 

Conditions: uo = 2.40 kg m/kg s e = 41.4°C 
p = 12500 N/m2 R0 = 2.50 mm 

Fitting parameters: a = -0.092 Do = 3.88E-10 m2/s 

constant flux penetration period regular regime 

F = 21.563 G0 = 0.727 Shd = 4.816 ca 
GO = 0.889 Er = 0.524 

u = 0.398 kg/kg tT = 3058 sec. er 
E: = 0.834 l,Cr 
E = 0.029 (about 70% of all data points, used in ca 
t = 22 sec. the eualuation, are represented below) ca 

E time (s) % rel. E time (s) % rel. 
meas. calc. error meas. calc. error 

0.020 20 15 -23.9 0.562 2888 3527 22.1 
0.028 26 21 -18.6 0.570 2968 3630 22.3 
0.045 38 35 -9.1 0.585 3128 3836 22.6 
0.077 78 78 -0.6 0.594 3216 3952 22.9 
0.098 118 120 1.4 0.605 3344 4109 22.9 
0.132 198 205 3.5 0.623 3542 4365 23.2 
0.146 238 247 3.9 0.633 3662 4518 23.4 
0.171 318 335 5.5 0.653 3904 4821 23.5 
0.182 358 381 6.4 0.662 4024 4973 23.6 
0.193 398 427 7.2 0.671 4136 5114 23.6 
0.215 478 523 9.5 0.689 4386 5422 23.6 
0.225 518 572 10.4 0.697 4506 5560 23.4 
0.243 598 669 11.9 0.713 4746 5853 23.3 
0.252 638 716 12.2 0.720 4866 6002 23.3 
0.261 678 765 12.8 0.728 4986 6150 23.3 
0.277 758 863 13.9 0.742 5226 6443 23.3 
0.285 798 912 14.3 0.752 5396 6649 23.2 
0.300 878 1010 15.0 0.769 5716 7023 22.9 
0.307 918 1059 15.4 0.777 5876 7210 22.7 
0.314 958 1108 15.7 0.785 6036 7396 22.5 
0.342 1118 1306 16.8 0.801 6396 7802 22.0 
0.354 1198 1405 17.3 0.809 6596 8016 21.5 
0.379 1358 1603 18.0 0.824 6996 8443 20.7 
0.391 1438 1704 18.5 0.832 7236 8695 20.2 
0.403 1520 1809 19.0 0.839 7476 8925 19.4 
0.421 1652 1975 19.5 0.855 7998 9429 17.9 
0.435 1758 2109 19.9 0.862 8318 9706 16.7 
0.455 1918 2309 20.4 0.877 8996 10276 14.2 
0.465 1996 2406 20.5 0.884 9394 10586 12.7 
0.474 2078 2506 20.6 0.892 9846 10923 10.9 
0.493 2236 2708 21.1 0.907 10924 1164:3 6.6 
0.502 2316 2806 21.2 0.914 11604 12032 3.7 
0.520 2476 3005 21.4 0.928 13476 12913 -4.2 
0.529 2568 3120 21.5 0.935 14768 13402 ~9.2 

0.538 2648 3221 21. 7 0.942 16436 13944 -15.2 
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APPENDIX G-6 

Experiment 6: measured and calculated drying curves of 
1elled l~er of maltodextrin/water. 

Conditions: uo = 2.40 kgm/kg s 9 = 32.8 °c 
p = 12450 N/m2 R0 = 2.50 mm 

Fitting parameters: a = 0.076 D0 = 3.99E-10 m2/s 

constant flux penetration per:i.od regular regime 

F = 5.951 G0 = 0.574 Shd = 5.025 ca 
GO = 0.713 Er = 0.482 

u = 0.376 kg/kg tT = 3291 sec. er 
E:f. = 0.8431 ,er 
E = 0.0823 (about 65% of all data pof.nts. used in ca 
t = 217 sec. the eualuation, are represented below) ca 

E time (s) % rel. E time (s) % rel. 
meas. calc. error meas. calc. error 

0.055 160 145 -9.5 0.597 4032 5083 26.1 
0.074 192 196 2.0 0.606 4144 5242 26.5 
0.092 240 241 0.4 0.614 4272 5397 26.3 
0.124 320 334 4.2 0.629 4496 5686 26.5 
0.148 400 423 5.7 0.645 4736 5999 26.7 
0.160 432 475 9.9 0.652 4848 6149 26.8 
0.181 512 572 11. 7 0.669 5136 6519 26.9 
0.192 560 626 11. 7 0.676 5248 6679 27.3 
0.210 640 725 13.3 0.695 5568 7109 27.7 
0.232 736 857 16.4 0.712 5888 7546 28.2 
0.239 768 906 17.9 0.721 6048 7764 28.4 
0.255 848 1011 19.2 0.737 6368 8198 28.7 
0.269 928 1116 20.2 0.752 6688 8636 29.1 
0.277 976 1171 20.0 0.759 6848 8855 29.3 
0.304 1136 1383 21.7 0.776 7248 9405 29.8 
0.316 1216 1486 22.2 0.784 7456 9677 29.8 
0.339 1376 1694 23.1 0.799 7856 10224 30.1 
0.361 1536 1902 23.S 0.814 8304 10828 30.4 
0.371 1616 2008 24.3 0.822 8544 11154 30.5 
0.391 1776 2214 24.7 0.837 9056 11842 30.S 
0.410 1936 2418 24.9 0.851 9584 12543 30.9 
0.419 2016 2523 25.1 0.859 9904 12966 30.9 
0.437 2176 2727 25.3 0.873 10560 13802 30.7 
0.445 2256 2830 25.5 0.881 10928 14271 30.6 
0.462 2416 3036 25.6 0.896 11776 15319 30.1 
0.478 2576 3240 25.8 0.910 12768 16523 29.4 
0.485 2656 3343 25.8 0.917 13376 17212 28.7 
0.500 2816 3549 26.0 0.932 14784 18774 27.0 
0.522 3056 3859 26.3 0.946 16736 20766 24.1 
0.532 3168 4013 26.7 0.953 18016 21946 21.8 
0.552 3424 4323 26.2 0.975 23344 27305 17.0 
0.561 3536 4473 26.5 0.982 26032 30337 16.5 
0.571 3664 4635 26.5 0.989 30688 35028 14.1 
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APPENDIX G-7 

Eperiment 7: measured and calculated drying curves of 
gelled lazer of maltodextrin/water. 

Conditions: uo = 2.40 kg m/kg s 9 = 26.4 °c 
p = 12400 N/m2 Ho = 2.50 mm 

Fitting parameters: a = 0.292 D0 = 5.03E-10 m2/s. 

constant flux penetration period regular regime 

F = 3.SSS G0 = 0.440 Shd = 5.248 ca 

GO = 0.555 r.,. = 0.436 

u = 0.362 kg/kg tT = 2854 sec. er 
E'. = 0.849 l,Cr 
E = 0.082 ( about. 60% of all data points, used in ca 
t = 262 sec. ca the evalua.tion, are repl'.'esented betow) 

E time {s) % rel. E time {s) % rel. 
meas. calc. error meas. calc. error 

0.021 80 66 -18.1 0.566 4496 4823 7.3 
0.047 160 150 -6.4 0.581 4736 5098 7.6 
0.060 192 192 -0. l 0.589 4864 5236 7.6 
0.085 272 268 -1.3 0.605 5136 5562 8.3 
0.109 352 336 -4.6 0.620 5392 5863 8.7 
0.121 400 373 -6.8 0.628 5552 6053 9.0 
0.141 480 448 -6.6 0.645 5872 6435 9.6 
0.151 512 487 -4.8 0.653 6032 6627 9.9 
0.169 592 570 -3.6 0.669 6352 7014 10.4 
0;186 672 655 -2.6 0.684 6688 7:418 10.9 
0.194 720 697 -3.1 0.692 6848 7618 11.2 
0.209 800 786 -1.8 0.709 7248 8119 12.0 
0.224 880 874 -0.7 0.725 7648 8624 12 .. 8 
0.237 960 963 0.3 0.733 7840 8878 13.2 
0.262 1120 1138 1.6 0.748 8240 9392 14.0 
0.274 1184 1225 3.4 0.755 8448 9653 14.3 
0.296 1360 1403 3.1 0.771 8960 10311 15.1 
0.316 1520 1574 3.5 0.786 9440 10936 15.8 
0.325 1584 1662 4.9 0.794 9712 11305 16.4 
0.345 1760 1847 4.9 0.809 10272 12042 17.2 
0.362 1920 2018 5.1 0.824 10880 12851 18.1 
0.370 2000 2104 5.2 0.832 11232 13318 18.6 
0.386 2160 2273 5.2 0.846 11952 14274 19.4 
0.394 2240 2359 5.3 0.854 12352 14797 19.8 
0.409 2400 2529 5.4 0.868 13216 15928 20.5 
0.427 2608 2738 5.0 0.882 14240 17215 20.9 
0.437 2720 2863 5.3 0.890 14832 17963 21.1 
0.454 2928 3088 5.5 0.904 16192 19625 21.2 
0.473 3168 3349 5.7 0.918 17SSS 21622 20.9 
0.483 3296 3488 5.8 0.926 18928 22793 2Q.4 
0.501 3536 3750 6.0 0.949 23616 27915 18.2 
0.510 3664 3882 5.9 0.956 25712 30140 17.2 
0.527 3904 4149 6.3 0.971 31728 36692 15.6 
0.543 4144 4415 6.5 0.985 41616 49962 20.1 
0.551 4256 4548 6.9 0.992 54224 65396 20.6 
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APPENDIX G-8 

Experiment 8: measured and calculated drying curves of 
i!lled la;y:er of mal todextrin/water. 

Condi tions: 'il = 4.85 kg m/kg s 9 = 35.8 °c 
p = 12400 N/m2 R0 = 2.50 111111 

Fitting parameters: a = -0.087 D0 = 9.27E-10 m2/s 

constant flux penetration period regular regime 

Fca =· 4.254 c0 = 0.721 Shd = 4.824 

GO = 0.882 Er = 0.523 

ucr = 0.383 kg/kg tT = 1411 sec. 

Ej_ = 0.921 ,er 
Eca = 0.175 (about 80% of all data potnts, used tn 

tea = 277 sec. the eva.Lua.tton, are represented bel010) 

E time (s) % rel. E time {s) % rel. 
meas. calc. error meas. calc. error 

0.021 38 33 -14.5 0.620 1988 1951 -1.9 
0.049 78 78 0.1 0.632 2068 2030 -1.8 
0.077 118 122 3.1 0.644 2148 2108 -1.9 
0.101 156 161 3.0 0.656 2228 2188 -1.8 
0.156 246 248 0.7 0.679 2388 2349 -1.6 
0.178 286 2S3 -1.0 0.691 2468 2431 -1.5 
0.199 326 319 -2.0 0.702 2548 2514 -1.3 
0.218 366 356 -2.7 0.711 2616 2584 -1.2 
0.254 446 436 -2.2 0.732 2786 2762 -0.9 
0.267 478 468 -2.0 0.742 2866 2848 -0.6 
0.287 530 519 -2.0 0.751 2940 2926 -0.5 
0.302 570 560 -1.7 0.761 3030 3022 -0.3 
0.329 650 641 -1.4 0.779 3190 3196 0.2 
0.342 690 682 -1.1 0.788 3270 3285 0.5 
0.355 730 724 -0.8 0.796 3350 3374 0.7 
0.367 770 764 -0.7 0.804 3430 3465 1.0 
0.390 850 845 -0.6 0.819 3586 3637 1.4 
0.401 890 885 -0.6 0.827 3678 3739 1.6 
0.411 930 925 -0.6 0.834 3758 3831 1.9 
0.421 970 964 -0.6 0.844 3878 3968 2.3 
0.441 1050 1043 -0.7 0.863 4122 4247 3.0 
0.450 1090 1082 -0.8 0.872 4242 4384 3.3 
0.459 1130 1120 -0.9 0.880 4362 4523 3.7 
0.468 1170 1159 -0.9 0.887 4482 4656 3.9 
0.486 1250 1237 -1.1 0.904 4802 5008 4.3 
0.494 1290 1276 -1.1 0.913 5002 5215 4.3 
0.502 1330 1313 -1.3 0.921 5182 5392 4.1 
0.510 1370 1351 -1.4 0.928 5380 5592 3.9 
0.528 1460 1439 -1.4 0.943 5908 6066 2.7 
0.536 1500 1478 -1.5 0.951 6268 6358 1.4 
0.543 1540 1517 -1.5 0.958 6694 6662 -0.5 
0.550 1580 1555 -1.6 0.965 7272 7019 -3.5 
0.573 1708 1679. -1. 7 0.979 9794 8000 -18.3 
0.580 1748 1719 -1.7 0.986 13260 8751 -34.0 
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APPENDIX G-9 

Experiment 9: measured and calculated drying curves of 
gelled laier of maltodextrin/water. 

Conditions: uo = 4.85 kg m/kg s e = 26.7 °c 
p = 12200 N/m2 R0 = 2.50 mm 

Fitting parameters: a = 0.075 n0 = 1.00E-09 m2/s 

constant flux penetration period regular regime 

F 2.187 G0 = 0.575 Shd = 5.024 ca 
GO = 0.714 Er = 0.482 

u = 0.362 kg/kg tT = 1634 sec. er 
E: = 0.925 l,Cr 
E = 0.273 (about 70% of all data potnts, used in 

ca. 
t = 779 sec. the evaluation, are represented below) ca 

E time (s) % rel. E time (s) % rel. 
meas. calc. error meas. calc. error 

0.032 BO 92 15. l 0.589 2486 2292 -7.B 
0.044 122 126 3.7 0.601 2566 2373 -7.5 
0.070 202 200 -0.7 0.621 2726 2522 -7.5 
0.099 276 281 1.8 0.631 2806 2596 -7.5 
0.126 356 360 1.2 0.649 2966 2746 -7.4 
0.140 396 400 1.0 0.660 3046 2836 -6.9 
0.154 436 440 0.9 0.669 3126 2912 -6.B 
0.182 516 518 0.3 0.687 3292 3071 -6.7 
0.195 556 557 0.2 0.695 3372 3146 -6.7 
0.222 636 633 -0.5 0.711 3532 3306 -6.4 
0.235 676 671 -0.8 0.718 3612 3384 -6.3 
0.260 756 741 -2.0 0.734 3772 3547 -6.0 
0.272 796 776 -2.5 0.742 3864 3638 -5.8 
0.284 836 810 -3.1 0.750 3956 3733 -5.6 
0.305 916 880 -3.9 0.770 4196 3985 -5.0 
0.316 956 917 -4. l 0.779 4316 4103 -4.9 
0.336 1036 987 -4.8 0.797 4556 4352 -4.5 
0.345 1076 1021 -5.1 0.805 4676 4478 -4.2 
0.363 1156 1091 -5.6 0.820 4876 4719 -3.2 
0.371 1192 1120 -6.0 0.827 4996 4849 -2.9 
0.381 1236 1162 -6.0 0.835 5116 4980 -2.7 
0.400 1326 1241 -6.4 0.853 5434 5337 -1.8 
0.408 1366 1276 -6.6 0.861 5594 5523 -1.3 
0.423 1446 1345 -7.0 0.876 5914 5878 -0.6 
0.432 1486 1385 -6.8 0.884 6114 6090 -0.4 
0.446 1566 1454 -7.1 0.899 6514 6518 0.1 
0.453 1606 1488 -7.3 0.906 6714 6747 0.5 
0.460 1646 1524 -7.4 0.914 6994 7034 0.6 
0.487 1806 1665 -7.8 0.929 7606 7644 0.5 
0.500 1886 1737 -7.9 0.936 7966 7988 0.3 
0.520 2006 1852 -7.7 0.951 8950 8880 -0.8 
0.532 2086 1923 -7.8 0.958 9550 9415 -1.4 
0.556 2246 2071 -7.S 0.973 11276 10919 -3.2 
0.567 2326 2144 -7.B 0.980 13642 11999 -12.0 
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LIST OF SYMBOLS 

a exponent in power relation 

a thermodynamic activity 

a heat diffusivity 

a component in binary mixture 

A 

A 

A 

b 

b 

B 

mass exchanging area 

activation energy 

fitting parameter in eqn. 6.23 

factor in power relation 

component in binary mixture 

fitting parameter in eqn. 6.23 

Bi Biot number 

c constant value 

c molar concentration 

c specific heat at constant pressure 
p 

C fitting parameter in eqn. 6.23 

d (partial) density 

D dif fusion coef f icient 

D reduced diffusion coefficient 
r 

E efficiency 

E (see Table 5.1) 

F dimensionless f lux-.parameter 

F (see Table5.1) 

G help function for penetration processes 

G (see Table 5.1} 

H shrinkage factor 

j 

J 
k 

k" 

l 

L 

dif fusive mass flux 

Bessel functions 

mass transfer coefficient 

modified ma.ss transfer coefficient 

characteristic dimension 

latent heat of evaporation 

m exponent in Sherwood correlation (gas phase) 

m dirnensionless mass concentration 

m moisture 

m (see Table 5.1) 

Il mass flux in stationary coordinate system 

147 

2 
m 

J/mol °K 
J/mol 
kg2/m4s 

kg s/ kg m 

mol/m3 

J/kg oc 

m/s 
2 kg m /s 

m 

J/kg 

2 kg/m s 



148 

n exponent in Sherwood correlations (gasphase) 

N molar flux 

Nu Nusselt number 

P pressure 

Pr Prand t 1 number 

q heat flux 

q parameter to account for influence of dynamic 

radius on mass transfer coefficient k' 

r 

R 

space coordinate 

radius of cylinder and sphere or 

thickness of one-sided drying slab 

Re Reynolds number 

s solid(s) 

s modified shrinkage coefficient 

Se Schmidt number 

Sh Sherwood number 

t 

T 

u 

v 

v 

v 
x 

time 

absolute temperature 

solids based mass concentration 

ratio of volume fractions of moisture and solids 

velocity 

volume 

molar f raction on total basis 

X dimensionless parameter 

y 

z 

dimensionless linear space coordinate 

solids based space coordinate 

GREEK SYKBOI.S 

a heat transfer coefficient 

a correlation parameter in eqns. 4.37 and 5.60 

a correlation parameter in eqn. 5.52 

p correlation parameter in eqns. 4.65 and 5.7 

~ slope of linearized sorption-isotherm 
"' ~ correlation parameter in eqn. 5.52 

{j thickness film layer in gas phase 

e porosity 

E (see Table 5.1) 

Q> generalized space coordinate 

À 

À 

hollowness factor 

heat conductivity 

N/m2 

2 J/m s 

m 

m 

s 

kg m/kg s 

m/s 

m3 

mol/mol 

kg s/m2-v 

m 

J/ms 0c 

1 
f 
1 

1 
1 



~ roots of characteristic 

v geometry parameter 

v kinema.tic viscosity 

w mass fraction on total 

9 temperature 

p mass concentration 

a shrinkage coefficient 

T dimensionless time 

SUB&::R.IPTS 

a air 
ap apparent 
ca constant activity 
er critical 
d dispersed phase 
D diffuston 

equations 

basis 

e value at zero critica! surface concentration 
eff effective 
f film 
F flux 
H heat 
i interface 
i component in mixture 
m moisture 
M mass 
p pure component 
pp penetration period 
Q transition point (Penetration Period/Regular Regime) 
r reduced value 
s solid 
sat saturated 
T transition point (Penetration Period/Regular Regime) 
v vapour 
0 value at t::O 
1 first root 
1 internal radius 
2 external radius 
* equilibrium value 
# reference value 
oo bulk of gas phase 

SUPERSCRIPTS 

average value 
a volume average value 
o molar average value 
s solid 

gas phase 
local value 
(see Table 5.1} 
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m2/s 

kg/kg 

oc 

kg/m3 
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l 
I' 
r 
i 

j 

l 

1 
t 
1 

! 
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STEI.LINGEN behorende bij proefschrift W.J. Coumans. TUE, 29 mei 1987 

Stelling 1 

Voor systemen, waarin de dif fusiecoef ficient volgens een machtsrelatie 

afhangt van de concentratie en de grensvlakconcentratie ongelijk nul is, 

neemt het kengetal van Sherwood (betrokken op disperse fase) géén 

constante waarde aan gedurende het Regular Regime. Uit eigen onderzoek 

blijkt, dat het kengetal van Sherwood als functie van de droogtijd dan 

een mininrum vertoont. 

Ltou, J.K., Proefschrift LUW, 1982 

Reniers, P., Afstudeerverslag TUE, 1985 

Stelling 2 

De berekening van droogcurven met een empirische correlatie wordt door 

Petersen ten onrechte voorspelling van droogcurven genoemd. 

Petersen, J.N., Drying Technology, ~ (1986);319-330 

Stelling 3 

Het verlies van vluchtige aroma.componenten tijdens drogen vindt plaats 

gedurende het droogstadium, waarin de grensvlakconcentratie van de 

aromacomponent de waarde nul nog niet bereikt heeft. Bij rekenmodellen 

voor het aroma.transport is de veel gehanteerde randvoorwaarde, dat reeds 

vanaf het begin de grensvlakconcentratie nul zou zijn, daarom onjuist. 

Kerkhof, P.J.A.N., Proefschrift TUE, 1975 

Stelling 4 

Uit het vergelijken van stripexperimenten (alleen aroma.transport) en 

droogexperimenten (water- én aroma.transport) blijkt, dat in rekenmodel-· 

len voor het aroma.transport tijdens drogen de kruisdif fusieterm niet 

verwaarloosd mag worden. 

de Boer, M., Afstudeerverslag TUE, 1986 

Smits, J.H.P.M., Afstudeerverslag TUE,1985 

Stelling 5 

De wijze waarop Gupta et. al. op basis van beschikbare correlaties voor 

de warmteoverdracht een nieuwe correlatie samenstellen, leidt niet tot 

een beter begrip van het warmteoverdrachtsproces. 

Gupta et.al., Chem.Eng.Sci., 29 (1974), 839-843 



Stelling 6 

De door Furuta et.al. berekende diffusiecoefficienten voor water in 

maltodextrine oplossingen zijn niet in overeenstemming met de door hen 

gepubliceerde droogcurven. 

Furuta et.al., ].Food Eng.,~ (1984); 169·186 

Stelling 7 

Door Van de Lijn wordt niet onderkend. dat een kleine meetfout in de 

sorptie-isotherm zeer kritiek is bij het voorspellen van een explosie 

van een drogende holle druppel in een sproeidroger. 

van de Lijn, ]., Proefschrift LUW 1976 

Stelling 8 

Ook als de algebraïsche oplossing bekend is, kan numerieke discretisatie 

van differentiaal vergelijkingen rekentechnisch grote voordelen bieden. 

Bosch, M.L. ,Prakticumuerslag TUE, 1985 

Stelling 9 

Het gebruik van een interne standaard bij de analyse van vluchtige 

sporencomponenten (in bijv. sinaasappelsap) m.b.v. een destillatie/ 

extractie methode kan tot een sterke vergroting van fouten leiden. 

van Spreeuwel, R.C.W., Afstudeerverslag TUE 1984 

Stelling 10 

De bewering van McCathren, dat het polijsten van klarinet-rieten voor

komt dat tijdens het spelen de capillairen in het riet gevuld raken met 

speeksel, is onjuist. Evenmin is de bewering juist dat door polijsten de 

ongewenste veroudering van het riet door enzymatische afbraak van de 

vezels wordt voorkomen. 

RcCa.thren, D.E., The Instrumentalist, Octoher 1985, 56·63 

Stelling 11 

Een gezonde muzikale ontwikkeling van amateur Harmonie- en Fanfare

orkesten wordt vaak gehinderd door het traditionele verwachtingspatroon 

dat de gemeenschap heeft van deze orkesten. 


