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Chapter 1

Introduction

1.1 Pressing of Glass in a Bottle and Jar Manufac-
turing

This thesis is devoted to the mathematical modelling of the process of pressing
of glass. In order to derive a mathematical model we describe in some detail
the process of bottle and jar manufacturing. A more precise description of the
various aspects of the bottle and jar production can be found in [9], [4]. Here
we try to avoid the jargon used in glass industry and give an overall description
of the process. In general, this consists of four major stages: melting, pressing,
blowing and annealing. We are particularly interested in the second stage, i.e.,
pressing. This is a typical stage for many glass forming processes, which is
being carried out when the glass is sufficiently hot.

After having been melted in the oven (the melting stage) gobs of a hot glass
(of about 1100 oC) are delivered to one of the process units of a cluster. These
units work synchronously to transform gobs of glass into a final product. First
a gob is transformed into a preform, the so-called parison, which is then blown
into its final shape, a bottle or a jar. The latter is placed on a conveyor belt for
the last procedure, called annealing. The distance between the bottles (jars) on
the line depends on the intensity of the production, which is one of the process
parameters. This characteristic of the machinery unit is the so-called cavity
rate, i.e. the number of parisons produced by a single machine per minute. In
practice this can be regulated by a switch, which will adjust the machinery to a
desired rate, thus producing a single parison in a longer or a shorter time. The
typical value of the cavity rate is 10 – 12 bottles (jars) per minute. Obviously,
one is interested to have this number as high as possible. However, this should
not be done at the cost of quality.
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Figure 1.1: Mechanical system.

Consider now in more detail the forming stages of the pressing process. A gob
of molten glass falls down into a mechanical construction, the mould, where
the pressing takes place. In Figure 1.1 we have sketched the various parts
making up for the mould. The actual mould consists of the baffle, the blank,
and the neckring. Initially the baffle part is removed and the mould is open
from above (cf. Figure 1.2a). Once a gob of glass is inside the mould, the baffle
is closed and the plunger moves up gradually (cf. Figure 1.2b,c). In a mould we
then obtain an intermediate form, the parison (see Figure 1.2d), which is then
blown into it final shape at the next, blowing stage (see Figure 1.3).

All parts of the mould and the plunger have axisymmetric geometry. Their
inner and outer shapes are built up of lines and arcs, which conjunct contin-
uously. Clearly, this implies the parison to become an axisymmetric body as
well, after having filled the mould. Nevertheless it may slightly deviate from
this symmetric shape during the pressing.

A particular step during the pressing stage is defined by means of the machine
settings. The values of these settings are given in degrees and distributed on
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(a) (b)

(c) (d)

Figure 1.2: Pressing process.

the interval from 0o to 360o, which represents a complete cycle. So the glass
falls down into the mould at 56o, for example; the plunger starts to move up
at 79o, etc. In Figure 1.4 the pressing stage is illustrated in terms of machine
settings. After the pressing is completed, the baffle is removed, the blank is
open, and the parison is moved to another mould for blowing. This is done by a
neckring which holds the parison and inverts it placing it in a blowing system.

Note that these settings do not directly imply the time of a particular step. This
relation follows from the cavity rate, i.e. one degree of the circle corresponds to
the time needed for producing one bottle (jar) divided by 360

60 s

c
= ps = 360o so, (1.1)

where c is the cavity rate, ps is the time for producing a single bottle (jar), and
so is the number of seconds in one degree for a current process.
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(a) (b)

Figure 1.3: Pressing process.
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Figure 1.4: Machine settings (typical values).

Hence, for the further discussion we may use the actual time, not the machine
settings. One should keep in mind that these settings introduce some physical
limitations with respect to the modelling, i.e., the time interval of the process
stages are defined a priori.

The whole pressing stage can be described by the following steps

1. The baffle is removed; the plunger is in its initial position.
2. A gob of glass falls down on top of the plunger into the blank.
3. The baffle is closed; the plunger starts moving up.
4. The molten glass takes an appropriate form.
5. The plunger moves down.
6. The baffle is removed; the mould is open; the parison is ready.

Note that the plunger is powered by a piston, and its movement is a result of
applying a certain pressure pp from the bottom. The force is activated during
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a certain time interval forcing the plunger to move upwards. The interval cor-
responds to Plunger up – Plunger down, see Figure 1.4. During this stage the
glass gob deforms and fills the mould. In most cases the force on the plunger
remains constant during pressing.

It is of great importance to know when the parison is actually ready and the
mould can be opened. Therefore the time elapse between steps 3 and 5, the
pressing time, turns out to be a key parameter, indicating how long it will take
to fill the mould. Depending on the specific process, this time is about 1-2 sec-
onds. During this phase the pressure will increase and eventually will make the
plunger stop. For a glass manufacturer it is important to distinguish between
the actual motion and time duration after the plunger has been stopped. The
first is called pressing time and the second dwell time (see Figure 1.5). The first
period insures the geometry of the parison, while the second is mainly used for
cooling.

-� -�

t t
Plunger up Plunger down

Pressing time Dwell time

Figure 1.5: Pressing of glass.

As it was said before, one is interested in a high cavity rate. This would require
to decrease the time elapse between steps 3 and 5. At the same time, the
pressing time will not change, as it is depending on the force on the plunger
only. Therefore, setting the cavity rate too high may cause the mould to open
while the actual pressing is still in progress. This will produce a parison which
is unacceptable for further processing.

One may try to increase the cavity rate by increasing the pressure on the
plunger. This is not a solution, as the pressure applied to the plunger bot-
tom is limited by the fact that the pressure in the mould should remain rel-
atively low; otherwise the parts of the mechanical construction (baffle, blank,
see Figure 1.1) may open under higher pressures.

Note that the temperature of glass gobs coming out of the oven is more than
1100 oC. The temperatures of the mould and the plunger during pressing have
to stay within reasonable limits. Otherwise their life-time would not be long.
This is done by liquid cooling for both the mould and the plunger.

Pressing of glass in a bottle and jar production is a complicated process. Most
of the glass forming is carried out in closed constructions involving high tem-
peratures. It is rather difficult to measure and control those stages in practice.
Therefore modelling and numerical simulations are important tools to get more
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understanding of various process aspects. Among those are the motion of glass
in a mould while pressing, the velocity of the plunger, the pressing (dwell) time,
and the temperature distribution. All these aspects will be considered in this
thesis.

1.2 Thesis Outline

This thesis is build up as follows. In Chapter 2 we describe the mathematical
foundations for the modelling the process of bottle and jar manufacturing. In
Sections 2.1, 2.2, 2.3 we derive the mathematical model which will be used to
implement the simulation tool. It is shown that the heat exchange in the glass
and the motion of the glass can be decoupled.

In Chapter 3 we discuss the Stokes problem. An essential choice for the co-
ordinate system turns out to be the cylindrical coordinates. The part of the
model is therefore reformulated in terms of this coordinate system. We define
topology of our computational domain with respect to the boundary conditions
defined in Section 3.3. Finally, in Section 3.4 we derive the variational (weak)
formulation for our problem, as needed for the numerical (FEM) method.

The finite elements method has been used to solve the problem numerically.
In Chapter 4 we describe the procedure of assembling the system of linear
equations which is used to obtain the approximate glass quantities. The finite
elements spaces are defined in Section 4.1. However, in order to obtain a sys-
tem of linear equations for a given domain we have to perform some technical
work, i.e. the formulas for the stiffness matrices must be derived. This is done
in Sections 4.2, 4.3, 4.4.

The problem of numerical mass conservation is the subject of Chapter 5. The
way we treat the time-dependency in our problem requires to perform an inte-
gration steps for the points of the computational domain (see Section 5.1). The
physical property of mass conservation can be easily violated due to incorrect
numerical implementation. There is a number of known (symplectic) methods
which may be used with this respect. Unfortunately all known techniques can
be applied to the two-dimensional problems only; i.e. the conservation of the
two dimensional volume (area) can be achieved in a relatively simple way. For
our problem we need to have the conservation of the three-dimensional volume
(the initial volume of the glass). In Section 5.3, 5.4 we develop the method to
achieve this.

In Chapter 6 we deal with the stiff ordinary differential equation. The stiffness
phenomenon arises at a certain moment of our numerical simulation. However,
no standard methods could be used to overcome this problem. Luckily we have
managed to find out an easy and elegant solution and therefore to perform the
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computations; this described in Section 6.3.

Some aspects of the program tool and obtaining the results are discussed in
Chapter 7. Namely we describe finite element implementation for the Stokes
problem (a design of the system of linear equations, solving the saddle point
problem). Then we show simulations of the pressing process, visualize the
velocity and the pressure fields, track the development of the glass flow, and
finally compute the motion of the plunger.

Finally, as a conclusion (Chapter 8) we remind shortly the most important
factors of our study.
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Chapter 2

Mathematical Modelling

In Chapter 2 we describe the mathematical foundations for the modelling the
process of bottle and jar manufacturing. In Sections 2.1, 2.2, 2.3 we derive
the mathematical model which will be used to implement the simulation tool.
It is shown that the heat exchange in the glass and the motion of the glass can
be decoupled.

2.1 Mathematical Model

Here we consider the pressing stage of the process as described in Section 1.1.
The final goal is to determine the pressing time (see Figure 1.5). In order to
achieve this, we model the motion of glass and obtain the velocity of the plunger.

Let us define the time intervals in to the pressing stage

tup – constant force on the plunger is switched on,
tstop – pressure in the mould stops the plunger,
tdown – the force on the plunger is switched off.

(2.1)

Here tup, tdown are fixed and defined by the machine settings,

∆ttotal := tdown − tup = const > 0, (2.2)

and tstop has to be found. Further we define
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∆tpress := tstop − tup, ∆tdwell := tdown − tstop. (2.3)

Let us denote the velocity of the plunger by Vp(t), t ∈ [tup, tdown]. Then tstop >
tdown is the minimal solution of

Vp(t) = 0, t ∈ [tup, tdown]. (2.4)

Note that Vp(t) is an unknown function and depends on the total force on the
plunger. Let F (t) denote the total force on the plunger and mp be the mass of
the plunger. Then, the Newton’s second law states that

dVp(t)

dt
=
F (t)

mp
, t ∈ [tup, tdown], (2.5)

with

Vp(tup) = 0.

In order to obtain F (t) we must know the force on the plunger due to the pres-
sure in glass. In the next section we define the equations of motion. Clearly,
the development of the flow is dictated by the movement of the plunger, which
affects the motion of the glass, i.e. the velocity field and the pressure. At the
same time, according to (2.5) the velocity of the plunger Vp(t) depends on the
glass flow. This coupling needs a special treatment and does not have a simple
solution. This issue is described in Chapter 6. For now we concentrate on
modelling the glass flow in a mould.

During the pressing stage glass can be considered as an incompressible New-
tonian fluid (see [7]). The main characteristics of the glass gob during the
pressing, i.e., the temperature, the velocity, and the pressure, are modeled by
means of partial differential equations.

Our problem domain is defined by the glass gob geometry which transform in
time. As it was described in Section 1.1, a gob of hot glass falls into the mould.
At this moment its geometry is not well defined and can take many shapes. We
therefore have to make assumptions on that. Taking into account the axisym-
metric geometry of the mould, the plunger, and the resulting parison, we let
the initial glass gob to be an axisymmetric body as well.



2.2 Navier-Stokes and Stokes Equations 11

2.2 Navier-Stokes and Stokes Equations

In this section we derive the equations representing the glass flow. The motion
of hot glass can be described by the Navier-Stokes equations for fluids (see [37],
[22]). First, we make the problem dimensionless.

Typical values for the problem are

ρ = 2.5 · 103 kg/m3 – density of glass,
M = 104 kg/s m – dynamic viscosity of the glass,
T = 10−1 s – typical pressing time,
L = 10−2 m – typical length scale of the parison.

(2.6)

A typical velocity follows from T and L

U =
L

T
= 10−1 m/s. (2.7)

Note that the density ρ remains constant through the whole pressing stage.
The length scales are also fixed and determined by the geometries of the mould
and the plunger.

Denote the time by t, the spatial variable by x, the velocity of the fluid by v,
and the pressure in the fluid by p. Let Ωt be the region occupied by the fluid at
time t. Conservation of momentum and mass for an incompressible fluid with
homogeneous density lead to the Navier-Stokes equations

ρ

(
∂v

∂t
+ v · ∇v

)
−∇ · σ = ρf , (2.8)

∇ · v = 0. (2.9)

Here σ is the stress tensor and f are the volume forces. For Newtonian fluids
the stress tensor has the following form

σ(v, p) = −pI + η (∇v + ∇vT ). (2.10)

Here I is the identity tensor and η is the dynamic viscosity of the fluid. The
influence of the latter on our modelling is discussed in the next section. For
now we assume that the viscosity is only a function of the spatial variable
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η = η(x). (2.11)

Substituting (2.10) into (2.8) the Navier-Stokes equations we obtain

ρ

(
∂v

∂t
+ v · ∇v

)
−∇p+ ∇ · (η∇v) = ρf , (2.12)

∇ · v = 0. (2.13)

The first equation is the equation of motion, and the second one is an incom-
pressibility constraint.

One of the characteristics of viscous fluids, the Reynolds number, is frequently
used to analyse the behaviour of the fluid. It represents the relation between
the inertial and viscous forces. Because of the high viscosity, this number is
small for our problem. Indeed, from (2.6) we typically find

Re :=
ρUL

M
= 2.5 · 10−4. (2.14)

Using the typical values (2.6), (2.7) we perform a dimensional analysis of (2.12),
(2.13). Let us define dimensionless variables by

t′ =
1

T
t, x′ =

1

L
x, v′ =

1

U
v, p′ =

Re

ρU2
p. (2.15)

In addition, we define the dimensionless viscosity

η′ =
1

M
η. (2.16)

Rewriting (2.12), (2.13) in terms of dimensionless variables gives

Re

(
∂v′

∂t′
+ v′ · ∇v′

)
−∇p′ + ∇ · (η′ ∇v′) = Re

L

U2
f , (2.17)

∇ · v′ = 0, (2.18)

where spatial derivatives are taken with respect to x′ now. Since the Reynolds
number for the problem is small, the first term on the left-hand side of (2.17)
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is also small and can thus be neglected. The volume forces for the problem
consist of the gravity force only, which is approximately 10 kg m/s2, so

Re
L

U2
‖f‖ ≈ 10−3. (2.19)

We conclude that for our problem the viscous forces dominate the volume forces
and the equations describing t he flow can be written in the following dimen-
sionless form. For simplicity we shall drop the primes from now on.

∇ · (η∇v) = ∇p, (2.20)

∇ · v = 0. (2.21)

The latter equations are known as the (creeping) Stokes equations for incom-
pressible fluids. One can reformulate (2.20), (2.21) in terms of the stress tensor

∇ · σ(v, p) = 0, (2.22)

∇ · v = 0. (2.23)

The above equations describe the glass flow during pressing. They are used
later to find the position of the glass numerically at the interval [tup, tstop], as
defined in the previous section.

2.3 Heat Exchange

The viscosity coefficient η in (2.19) depends on the temperature of glass. For
this we take the so-called Vogel-Fulcher-Tammann (VFT) relation, which is gen-
erally used in glass problems (see [9], [27])

log10 η = A+
B

T − T0
. (2.24)

Here T is the temperature of glass, and A, B, T0 are the so-called Lakatos
coefficients (see [9]). The values of the coefficients depend on the type of glass.
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As usual in viscous fluid flow the energy equation is ignored because in an
incompressible Newtonian fluid with constant viscosity it is not coupled to the
equations of motion. In the present case the highly viscous forces might gen-
erate heat by friction, such that the temperature rises and the viscosity de-
creases.

For the heat exchange analysis it is necessary to have available the typical
temperatures and parameters for the glass and the mould. We may assume
that the temperature of the mould and the plunger remain constant due to
the cooling mechanism as described in Section 1.1. The typical values for the
process are

Tg = 1100 oC – the temperature of the glass,
Tp = 600 oC – the temperature of the mould-plunger construction,
cp = 13.5 J/kgK – the specific heat of glass,
kc = 1.5 W/mK – the conductivity of glass.

(2.25)

The energy equation for an incompressible fluid is given by

ρ cp
DT

Dt
= −∇ · q + Φ. (2.26)

Here ρ is the density of glass, cp is the heat capacity, q is the heat flux due to the
heat transfer mechanisms of conduction and radiation, and the source term Φ
comes from the internal heat generation by viscous and volume forces. Because
of the high temperatures in this process and the semi-transparency of glass –
it absorbs, emits and transmits radiative energy – knowledge of radiation is
necessary. Because of the high temperatures and the importance of radiation
the heat flux, the flux q, consists of a conductive heat flux qc and a radiative
heat flux qr, or

q = qc + qr. (2.27)

During the rest of the analysis we assume that all material properties (2.25) are
constant throughout the medium and in time. Furthermore, we assume that
the conduction obeys Fourier’s law, which states that

qc := −kc ∇T, (2.28)

where kc is the conductivity, a material property (cf. (2.25)).
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The most commonly used approximation for the radiative heat flux is the Rosse-
land approximation (see [29], [41], [47]), which can be written as

qr := −kr(T )∇T. (2.29)

Here kr(T ) is called the Rosseland parameter and is given by

kr(T ) :=
4

3

n2σ̄T 3

κ
, (2.30)

where n is the refractive index (a material property), σ̄ is the Stefan-Boltzmann
constant (see [29]), and κ represents an absorption which varies for different
types of glass. We see that the only difference with the conductive heat flux is
the non-linearity of the diffusion coefficient.

In order to investigate this possibility consider the energy equation (2.26) for
incompressible flow. Using (2.27), (2.28) and (2.29) we can rewrite it as

ρcp

(
∂T

∂t
+ v · ∇T

)
= kc∇2T + ∇ · (kr(T )∇T ) + η

((
∇v + ∇vT

)
: ∇v

)
. (2.31)

Let us introduce a dimensionless temperature variable T ′

T = Tp + ∆T T ′, (2.32)

where ∆T = Tg −Tp (Tg, Tp are the temperatures of the glass and the mould, as
defined in (2.25)). Using dimensionless variables (2.14), (2.15) and (2.32) the
equation above reads as

∂T ′

∂t′
+ v′ · ∇T ′ =

1

Pe
∇2T ′ + ∇ ·

(
kr(T )

kc

1

Pe
∇T ′

)
+

(2.33)
Ec

Re
η′
((

∇v′ + ∇v′T
)

: ∇v′

)
.

Both the dimensionless numbers 1/Pe and Ec/Re, defined by

Pe :=
ρ cpLU

kc
, Ec :=

U2

cp ∆T
, (2.34)
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are of order 10−4. Thus the energy equation (2.33) simplifies to

dT

dt
=
∂T

∂t
+ v · ∇T = 0. (2.35)

So the temperature remains constant along streamlines. Thus, assuming a
uniform temperature distribution in the glass gob, we can compute the flow
using a constant viscosity. Hence we simplify our pressing problem by setting

η = const. (2.36)

in time and space. We can thus decouple the equations of motion and the
energy equation. This allows us to solve (2.22), (2.23) with a constant viscosity
to obtain the velocity and pressure.



Chapter 3

Stokes Problem in
Cylindrical Coordinates

As described in Section 1.1, the parts making up the mould and the plunger
are axisymmetric bodies. An appropriate choice for the coordinate system to
be used in order to solve the equations numerically are cylindrical coordinates.
The Stokes equations will be considered as describing a two-dimensional ax-
isymmetric problem. In this chapter we reformulate the problem in the terms
of cylindrical coordinates, define the boundary conditions, and derive the weak
(variational) formulation (cf. [37], [11]) for our problem. The latter is used in
Chapter 4 in order to construct the system of linear equations which give the
approximate solution of the Stokes equations.

3.1 Stress Tensor and Equations of Motion in Cylin-
drical Coordinates

The Stokes problem in cylindrical coordinates can be formulated as follows.
Find the velocity field v := (ur(r, z, ϕ), uz(r, z, ϕ), uϕ(r, z, ϕ))T and pressure field
p := p(r, z, ϕ), which satisfy

∇ · σ(v, p) = 0, (3.1)

∇ · v = 0, (3.2)
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where σ(v, p), the stress tensor, is given by

σ(v, p) = −pI + η(∇v + ∇vT ). (3.3)

Here I is the identity tensor.

Using the formula for the gradient in cylindrical coordinates we obtain

σ =




−p+ 2η
∂ur

∂r
η

(
∂ur

∂z
+
∂uz

∂r

)
η

(
1

r

∂ur

∂ϕ
+
∂uϕ

∂r
− uϕ

r

)

η

(
∂ur

∂z
+
∂uz

∂r

)
−p+ 2η

∂uz

∂z
η

(
1

r

∂uz

∂ϕ
+
∂uϕ

∂z

)

η

(
1

r

∂ur

∂ϕ
+
∂uϕ

∂r
− uϕ

r

)
η

(
1

r

∂uz

∂ϕ
+
∂uϕ

∂z

)
−p+ 2η

(
1

r

∂uϕ

∂ϕ
+
ur

r

)




.

(3.4)

Equations (3.2), (3.1), rewritten in terms of cylindrical coordinates, read as

∂2ur

∂r2
+
∂2ur

∂z2
+

1

r2
∂2ur

∂ϕ2
+

1

r

∂ur

∂r
− 2

r2
∂uϕ

∂ϕ
− ur

r2
=

1

η

∂p

∂r
, (3.5)

∂2uz

∂r2
+
∂2uz

∂z2
+

1

r2
∂2uz

∂ϕ2
+

1

r

∂uz

∂r
=

1

η

∂p

∂z
, (3.6)

∂2uϕ

∂r2
+
∂2uϕ

∂z2
+

1

r2
∂2uϕ

∂ϕ2
+

1

r

∂uϕ

∂r
+

2

r2
∂ur

∂ϕ
− uϕ

r2
=

1

ηr

∂p

∂ϕ
, (3.7)

∂ur

∂r
+
∂uz

∂z
+

1

r

∂uϕ

∂ϕ
+
ur

r
= 0. (3.8)

3.2 Rotational Symmetry

As was explained in Section 1.1 both the mould and the plunger are axisym-
metric. The velocity of the plunger Vp(t) as defined in Section 2.1 in cylindrical
coordinates is given by

vp(t) = Vp(t)ez := (0, Vp(t), 0)T , (3.9)
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where ez is the unit vector in z direction. We may reduce the dimension of the
problem and consider (3.1), (3.2) in two-dimensional axisymmetric coordinates.
The velocity field then has the components

v := (ur(r, z, ϕ), uz(r, z, ϕ), 0)T , (3.10)

and the pressure field

p := p(r, z, 0). (3.11)

From (3.4) we obtain the stress tensor for the axisymmetric case

σ =




−p+ 2η
∂ur

∂r
η

(
∂ur

∂z
+
∂uz

∂r

)
0

η

(
∂ur

∂z
+
∂uz

∂r

)
−p+ 2η

∂uz

∂z
0

0 0 −p+ 2η
ur

r




. (3.12)

The Stokes equations (3.5)- (3.8) take the following form

∂2ur

∂r2
+
∂2ur

∂z2
+

1

r

∂ur

∂r
− ur

r2
=

1

η

∂p

∂r
, (3.13)

∂2uz

∂r2
+
∂2uz

∂z2
+

1

r

∂uz

∂r
=

1

η

∂p

∂z
, (3.14)

∂ur

∂r
+
∂uz

∂z
+
ur

r
= 0. (3.15)

Clearly, the pressure p is defined up to a constant. One can notice singular-
ities in (3.12)-(3.7) when r = 0. Note that here we use symmetry boundary
conditions, i.e. ur(0, z, 0) = 0.

3.3 Boundary Conditions

As we have an axisymmetric problem we obtain a domain Ω, as sketched in
Figure 3.1. The boundary Γ := ∂Ω of the domain consists of four parts
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Figure 3.1: Problem domain.

Γ = Γs ∪ Γm ∪ Γp ∪ Γf , (3.16)

where the indices s, m, p, f represent the symmetric, mould, plunger and free
boundaries respectively. Let

n = (nr, nz, 0)T , t = (tr, tz, 0)T (3.17)

be the normal and tangent unit vectors respectively for the boundary Γ in the
directions as displayed in Figure 3.1. Then we find the following boundary
conditions.

Because of symmetry, the boundary conditions on Γs are
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v · n = 0, (3.18)

σn · t = 0. (3.19)

It is easy to see that

n = (−1, 0, 0)T , t = (0, −1, 0)T , σn = (−σrr, −σrz, 0)T (3.20)

on Γs. Using the expressions for the stress tensor components (3.12) we obtain

ur = 0,
∂ur

∂z
+
∂uz

∂r
= 0. (3.21)

Since ur ≡ 0 on Γs, it follows that the derivative along Γs is also equal to zero,
i.e., ∂ur/∂z = 0. As a result the boundary conditions on Γs can be written as

ur = 0,
∂uz

∂r
= 0. (3.22)

For the mould and the plunger we will allow both slip and no slip boundary
conditions and everything in between. A partial slip boundary condition for the
mould means that the normal component of the velocity should be zero and the
tangential component proportional to the tangential stress, i.e.

v · n = 0, (3.23)

(σn + βmv) · t = 0, (3.24)

where βm is a friction coefficient. The first equation clearly represents a Dirich-
let boundary condition, and the second a Robin boundary condition.

For the plunger which moves with velocity vp (see (3.9)), we find

(v − vp) · n = 0, (3.25)

(σn + βp(v − vp)) · t = 0. (3.26)



22 Stokes Problem in Cylindrical Coordinates

Note that vp does not depend on r, z, and βp is again the friction coefficient.
The physical meaning of these conditions is the same as for (3.23), (3.24), with
the only difference that here we consider the velocity relative to vp, i.e., v − vp.
Also we are using the fact that σ(v − vp, p) = σ(v, p). Let Vp > 0 be the absolute
velocity of the plunger, then

vp = Vpez := (0, Vp, 0)T . (3.27)

Actually, the velocity of the plunger Vp is an unknown function of time t, so
we should write Vp(t). Nevertheless, for the boundary conditions below and the
Stokes problem as such, we view this as just a parameter. Hence, the boundary
conditions read as follows

v · n = Vpez · n, (3.28)

(σn + βpv) · t = βpVpez · t. (3.29)

Finally the boundary conditions at the free boundary Γf are defined as the
vector relation

σn = −p0n, (3.30)

where p0 is the external pressure. We can take the inner product of (3.30) with
n, t and obtain the boundary conditions in the form of two scalar equations

σn · n = −p0, (3.31)

σn · t = 0. (3.32)

Note that the velocity field found from (3.1), (3.2) with the boundary conditions
(3.18) – (3.32), is independent of the value of p0. From the physical point of
view this can be explained by the incompressibility of the fluid.

3.4 Variational Formulation (Saddle Point Problem)

In order to solve (3.1), (3.2) numerically we first derive a variational formulation
in terms of bilinear forms and functionals (see [43], [20], [12]), thus obtaining
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the weak formulation of the Stokes problem together with the boundary condi-
tions.

Consider the Dirichlet boundary conditions (3.18), (3.23), (3.28) for the whole
boundary Γ

v · n = 0, (r, z) ∈ Γs ∪ Γm, (3.33)

v · n = Vpez · n, (r, z) ∈ Γp. (3.34)

Define the space of test functions W

W := {w ∈ H1(Ω) ×H1(Ω) | w · n = 0, (r, z) ∈ Γs ∪ Γm ∪ Γp}, (3.35)

where H1(Ω) is a Sobolev space with a norm ‖u‖H1(Ω) = (
∫
Ω u

2 dx+
∫
Ω |∇u|2dx)1/2

(| · | is a standard Euclidean norm). An element of W satisfies the same but
homogeneous boundary conditions as (3.33), (3.34). Let w ∈ W be an arbitrary
function. By multiplying (3.1) by w and integrating over Ω we obtain

∫

Ω

∇ · σ(v, p) ·w r dr dz = 0. (3.36)

Using Green’s formula (cf. [1]) on the left hand side of the equation (3.36) we
obtain

∫

Ω

3∑

i=1

(
σ∇w

)
ii
r dr dz =

∫

Γ

σn · w r dγ. (3.37)

A vector w on the boundary Γ can be decomposed into a sum of its normal and
tangent components,

w = wnn + wtt, (3.38)

where wn = w · n, wt = w · t. Since w ∈ W it follows that wn = 0 on Γs ∪ Γm ∪ Γp.
Thus

∫

Γs∪Γm∪Γp

σn · w r dγ =

∫

Γs∪Γm∪Γp

(σn · t)(w · t) r dγ. (3.39)
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Using the boundary conditions for the tangential component of the stress ten-
sor (3.19), (3.24), (3.29) we obtain

∫

Γs∪Γm∪Γp

σn · w r dγ = −βm

∫

Γm

(v · t)(w · t) r dγ −

(3.40)

−βp

∫

Γp

(v · t)(w · t) r dγ + βpVp

∫

Γp

(ez · t)(w · t) r dγ.

The procedure can be repeated for the free boundary

∫

Γf

σn ·w r dγ =

∫

Γf

(σn ·n)(w ·n) r dγ+

∫

Γf

(σn · t)(w · t) r dγ = −p0

∫

Γf

w ·n r dγ. (3.41)

As a result of (3.24), (3.25) we obtain

∫

Γ

σn ·w r dγ = −βm

∫

Γm

(v · t)(w · t) r dγ − βp

∫

Γp

(v · t)(w · t) r dγ +

(3.42)

+ βpVp

∫

Γp

(ez · t)(w · t) r dγ − p0

∫

Γf

w · n r dγ.

Consider the summation
∑3

i=1

(
σ∇w

)
ii

3∑

i=1

(
σ∇w

)
ii

= 2η

(
∂ur

∂r

∂wr

∂r
+
∂uz

∂z

∂wz

∂z
+
ur

r

wr

r

)
+

(3.43)

+ η

(
∂ur

∂z
+
∂uz

∂r

)(
∂wr

∂z
+
∂wz

∂r

)
− p

(
∂wr

∂r
+
∂wz

∂z
+
wr

r

)
.

Using (3.33), (3.43) we define the following bilinear forms
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a0(v,w) := 2η

∫

Ω

(
∂ur

∂r

∂wr

∂r
+
∂uz

∂z

∂wz

∂z
+
ur

r

wr

r

)
r dr dz +

(3.44)

+ η

∫

Ω

(
∂ur

∂z
+
∂uz

∂r

)(
∂wr

∂z
+
∂wz

∂r

)
r dr dz,

aΓ(v,w) := βm

∫

Γm

(urtr + uztz)(wrtr + wztz) r dγ +

(3.45)

+ βp

∫

Γp

(urtr + uztz)(wrtr + wztz) r dγ,

b(q,w) :=

∫

Ω

q

(
∂wr

∂r
+
∂wz

∂z
+
wr

r

)
r dr dz, (3.46)

and let

a(v,w) := a0(v,w) + aΓ(v,w). (3.47)

Let us finally define the following functional

f(w) := βpVp

∫

Γp

tz(wrtr + wztz) r dγ − p0

∫

Γf

(wrnr + wznz) r dγ. (3.48)

Then, the momentum equations in terms of variational formulation take the
following form

a(v,w) − b(p,w) = f(w), w ∈ W. (3.49)

By multiplying (3.2) by an arbitrary scalar function q ∈ L2(Ω) and integrating
over Ω we get the incompressibility equation in variational form

b(q,v) = 0. (3.50)
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Hence, the variational formulation reads as follows. Find vectors of velocity v

and pressure p, such that

ur nr + uz nz = 0, (r, z) ∈ Γs ∪ Γm,

(3.51)
ur nr + uz nz = Vp nz, (r, z) ∈ Γp,

and for any w ∈ W which satisfy

wrnr − wznz = 0, (r, z) ∈ Γs ∪ Γm ∪ Γp, (3.52)

and any scalar function q ∈ L2(Ω)

a(v,w) − b(p,w) = f(w),

(3.53)

b(q,v) = 0.

There are only Dirichlet boundary conditions left in this formulation. All Neu-
mann boundary conditions are included in the bilinear form and the right-hand
side functional.

It is easy to see that the bilinear form a(v,w) is symmetric, which means that
corresponding finite element matrix will be symmetric for any set of basis func-
tions. The system of linear equations can be written in the following saddle
point problem form

(
A B
BT 0

)(
u

p

)
=

(
f1
f2

)
, (3.54)

where A is symmetric positive-definite matrix.



Chapter 4

Finite Element
Discretization

This chapter deals with the finite element implementation of stationary varia-
tional Stokes problem in cylindrical coordinates, which was formulated in the
previous chapter. In Section 4.1 we will describe in detail the finite element
spaces, which are stable in the sense of Babushka-Brezzi condition; then in
Section 4.2 the local stiffness matrices and the functional of the right-hand side
will be derived. In Section 4.3 the modification of ordinary lumping procedure
will be applied to the approximation of some integrals with singularities. These
singularities arise as the result of the cylindrical coordinates we used. Finally,
in Section 4.4 we introduce a new type of basis functions for the elements,
which contain the edges on a part of the boundary. These finite elements are
very suitable for obtaining the force on the plunger (see Chapter 6).

4.1 Finite Element Spaces

To solve the Stokes problem numerically we consider a space of piecewise linear
functions Wh to approximate the velocity v (see (3.35)), and a space of piecewise
constant functions Sh to approximate the pressure p.

Let Ωh be the discretization of the original domain Ω. Consider a triangle τ =
τi,j,k ∈ Ωh, where i, j, k are the indices in the global numeration of nodes. Using
a local numeration consider the vertices of τ (see Figure 4.1)

M1 = (r1, z1), M2 = (r2, z2), M3 = (r3, z3). (4.1)
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Figure 4.1: Triangle τ of the discretization Ωh.

Besides let us define the middle points on the edges

M4 =

(
r2 + r3

2
,
z2 + z3

2

)
, M5 =

(
r1 + r3

2
,
z1 + z3

2

)
, M6 =

(
r1 + r2

2
,
z1 + z2

2

)
.

(4.2)

It is easy to see that

τ = τ1 ∪ τ2 ∪ τ3 ∪ τ4. (4.3)

For each of the 6 nodes we define a basis function φi(r, z), i = 1, . . . , 6, corre-
sponding to the velocity unknowns, which is continuous on τ and linear on
each of the four triangles. Moreover,

φα(rβ , zβ) = δα,β, α, β = 1, . . . , 6, (4.4)

where

δα,β =





1, α = β,

0, α 6= β.
(4.5)

We define a basis function for the pressure as a constant in τ
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χ(r, z) =





1, (r, z) ∈ τ,

0, otherwise.
(4.6)

Then the approximate solution in τ has the following form

p(r, z) = pτ χ(r, z) = const, (4.7)

ur(r, z) = ur,1 φ1(r, z) + ur,2 φ2(r, z) + ur,3 φ3(r, z) + (4.8)

+ ur,4 φ4(r, z) + ur,5 φ5(r, z) + ur,6 φ6(r, z),

uz(r, z) = uz,1 φ1(r, z) + uz,2 φ2(r, z) + uz,3 φ3(r, z) + (4.9)
+ uz,4φ4(r, z) + uz,5 φ5(r, z) + uz,6 φ6(r, z).

The pressure in τ is defined by a constant pτ and the velocity vector in τ is
defined by 12 unknowns with the following ordering

u1 = ur,1, u2 = uz,1, u3 = ur,2, u4 = uz,2, u5 = ur,3, u6 = uz,3,

(4.10)

u7 = ur,4, u8 = uz,4, u9 = ur,5, u10 = uz,5, u11 = ur,6, u12 = uz,6.

So, all odd indices correspond to the variable ur(r, z), and all even indices to
the variable uz(r, z). Furthermore, define vector basis functions

Φ2m−1 :=




φm

0
0


 , Φ2m :=




0
φm

0


 , m = 1, . . . , 6. (4.11)

Then the velocity components can be written in vector form

v(r, z) =
12∑

m=1

umΦm(r, z). (4.12)
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Let us define the explicit formulas for the basis functions on a standard triangle
τ̂ in (r̂, ẑ) plane, see Figure 4.2. Its vertices are

M̂1 = (0, 0), M̂2 = (1, 0), M̂3 = (0, 1). (4.13)
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Figure 4.2: Standard triangle τ̂ .

In triangle τ̂1

φ̂1 = 1 − 2(r̂ + ẑ), φ̂2 = 0, φ̂3 = 0,

φ̂4 = 0, φ̂5 = 2ẑ, φ̂6 = 2r̂.
(4.14)

In triangle τ̂2

φ̂1 = 0, φ̂2 = −1 + 2r̂, φ̂3 = 0,

φ̂4 = 2ẑ, φ̂5 = 0, φ̂6 = 2(1 − r̂ − ẑ).
(4.15)

In triangle τ̂3

φ̂1 = 0, φ̂2 = 0, φ̂3 = −1 + 2ẑ,

φ̂4 = 2r̂, φ̂5 = 2(1− r̂ − ẑ), φ̂6 = 0.
(4.16)

In triangle τ̂4

φ̂1 = 0, φ̂2 = 0, φ̂3 = 0,

φ̂4 = −1 + 2(r̂ + ẑ), φ̂5 = 1 − 2r̂, φ̂6 = 1 − 2ẑ.
(4.17)
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Thus we can define the pair of finite dimensional spaces Wh (Wh ⊂ W when
Vp = 0) and Sh ⊂ L2(Ω) for the approximation of the velocity and the pressure
respectively. Here the Babushka-Brezzi condition must be satisfied in order to
obtain the resolvable system of linear equations. These spaces are stable in the
sense of Babushka-Brezzi condition, i.e.

inf
q∈Sh

sup
w∈Wh

b(q,w)

‖q‖L2(Ω) ‖w‖W

≥ α, (4.18)

where α is positive number which is independent on the mesh parameters (see
[12]).

4.2 Local Stiffness Matrices

In this section we derive the local stiffness matrices and the local vector of
the right-hand side as needed for constructing a global matrix for the prob-
lem. Note, that the Dirichlet boundary conditions are typically taken into the
account after assembling the global matrices (3.54). However, in our case the
Dirichlet boundary conditions on the symmetry boundary Γs (r = 0) must be
taken into the account while constructing the local stiffness matrix. Otherwise
one cannot compute urwr/r term in (3.28) for the elements which have nodes
on Γs. Let us distinguish between three possibilities for the triangle under
consideration: no nodes on Γs, one node on Γs, two nodes on Γs.

Consider the bilinear form (3.28). Obviously, the local stiffness matrix Aτ for
the element (triangle) τ is a 12× 12 matrix, defined by the bilinear form

aτ (v,w) := 2η

∫

τ

(
∂ur

∂r

∂wr

∂r
+
∂uz

∂z

∂wz

∂z
+
ur

r

wr

r

)
r dr dz +

(4.19)

+η

∫

τ

(
∂ur

∂z
+
∂uz

∂r

)(
∂wr

∂z
+
∂wz

∂r

)
r dr dz,

and the elements of this matrix are Am,l = aτ (Φm,Φl). Using the structure of τ
and the vector function Φm it is possible to write

Aτ := A(1) +A(2) +A(3) +A(4), (4.20)
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where the A(n), n = 1, 2, 3, 4 are symmetric matrices, defined by their upper
triangular (including diagonal) parts

A
(n)
2m−1,2l−1 = η

∫

τn

(
2
∂φm

∂r

∂φl

∂r
+
∂φm

∂z

∂φl

∂z

)
r dr dz + 2η

∫

τn

φmφl

r
dr dz,

A
(n)
2m,2l = η

∫

τn

(
∂φm

∂r

∂φl

∂r
+ 2

∂φm

∂z

∂φl

∂z

)
r dr dz,

(4.21)

A
(n)
2m−1,2l = η

∫

τn

∂φm

∂r

∂φl

∂z
r dr dz,

A
(n)
2m,2l−1 = η

∫

τn

∂φm

∂z

∂φl

∂r
r dr dz.

Note, that the derivatives of the basis functions are constants in the triangles
τn, i.e., the following quantities are also constants

D
(n)
2m−1,2l−1 = 2

∂φm

∂r

∂φl

∂r
+
∂φm

∂z

∂φl

∂z
,

D
(n)
2m,2l =

∂φm

∂r

∂φl

∂r
+ 2

∂φm

∂z

∂φl

∂z
,

(4.22)

D
(n)
2m−1,2l =

∂φm

∂r

∂φl

∂z
,

D
(n)
2m,2l−1 =

∂φm

∂z

∂φl

∂r
.

Hence, (4.21) reduces to
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A
(n)
2m−1,2l−1 = η D

(n)
2m−1,2l−1

∫

τn

r dr dz + 2η

∫

τn

φmφl

r
dr dz,

A
(n)
2m,2l = η D

(n)
2m,2l

∫

τn

r dr dz,

(4.23)

A
(n)
2m−1,2l = η D

(n)
2m−1,2l

∫

τn

r dr dz,

A
(n)
2m,2l−1 = η D

(n)
2m,2l−1

∫

τn

r dr dz.

In order to compute these integrals we use the standard triangle (4.13). Con-
sider the affine transformation from τ̂ into τ , such that M̂1, M̂2, M̂3 maps into
M1, M2, M3 respectively

(
r
z

)
= G

(
r̂
ẑ

)
+

(
r1
z1

)
, (4.24)

where

G =

(
g11 g12
g21 g22

)
=

(
r2 − r1 r3 − r1
z2 − z1 z3 − z1

)
. (4.25)

The Jacobian of this transformation is

J = detG = g11g22 − g12g21 6= 0, (4.26)

as |J | = 2Sτ , where Sτ is the area of the triangle τ . Thus one can define the
inverse transformation

(
r̂
ẑ

)
= G−1

(
r − r1
z − z1

)
, G−1 =

1

J

(
g22 −g12

−g21 g11

)
. (4.27)

It is easy to see that M4, M5, M6 maps into

M̂4 = (1/2, 1/2), M̂5 = (0, 1/2), M̂6 = (1/2, 0), (4.28)
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respectively, which are the middle points of the standard triangle edges. Hence,
the affine transformation (4.27) will map τ1, τ2, τ3, τ4 into

τ̂1 = {M̂1, M̂6, M̂5}, τ̂2 = {M̂6, M̂2, M̂4},
τ̂3 = {M̂4, M̂3, M̂5}, τ̂4 = {M̂4, M̂5, M̂6}.

(4.29)

respectively. One should define a variable transformation from (r, z) to (r̂, ẑ) for
all functions and integrals above. The following notation will be used

f(r, z) = f(r1 + g11r̂ + g12ẑ, z1 + g21r̂ + g22ẑ) = f̂(r̂, ẑ), (4.30)

where f(r, z) is an arbitrary scalar function.

Then for the derivatives we obtain

∂f

∂r
=

∂f̂

∂r̂

∂r̂

∂r
+
∂f̂

∂ẑ

∂ẑ

∂r
=

1

J

(
g22

∂f̂

∂r̂
− g21

∂f̂

∂ẑ

)
,

∂f

∂z
=

∂f̂

∂r̂

∂r̂

∂z
+
∂f̂

∂ẑ

∂ẑ

∂z
=

1

J

(
−g12

∂f̂

∂r̂
+ g11

∂f̂

∂ẑ

)
.

(4.31)

And for the integral we obtain

∫

τ

f(r, z) dr dz = |J |
∫

�

τ

f̂(r̂, ẑ) dr̂ dẑ. (4.32)

In view of (4.22) we need to compute

cn :=
1

|J |

∫

τn

r dr dz, n = 1, 2, 3, 4. (4.33)

It follows, that

cn =

∫

�

τn

(r1 + g11r̂ + g12ẑ) dr̂ dẑ, n = 1, 2, 3, 4. (4.34)

After some arithmetic this results in
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c1 =
4r1 + r2 + r3

48
, c2 =

r1 + 4r2 + r3
48

,

c3 =
r1 + r2 + 4r3

48
, c4 =

r1 + r2 + r3
24

.

(4.35)

We define the following derivative products

P
(n)
m,l = J2 ∂φm

∂r

∂φl

∂r
, Q

(n)
m,l = J2 ∂φm

∂z

∂φl

∂z
,

R
(n)
m,l = J2 ∂φm

∂r

∂φl

∂z
, S

(n)
m,l = J2 ∂φm

∂z

∂φl

∂r
,

(4.36)

where 1 ≤ m, l ≤ 6. Using (4.31) one can find

P
(n)
m,l = g2

22

∂φ̂m

∂r̂

∂φ̂l

∂r̂
+ g2

21

∂φ̂m

∂ẑ

∂φ̂l

∂ẑ
− g21g22

(
∂φ̂m

∂r̂

∂φ̂l

∂ẑ
+
∂φ̂m

∂ẑ

∂φ̂l

∂r̂

)
,

Q
(n)
m,l = g2

12

∂φ̂m

∂r̂

∂φ̂l

∂r̂
+ g2

11

∂φ̂m

∂ẑ

∂φ̂l

∂ẑ
− g11g12

(
∂φ̂m

∂r̂

∂φ̂l

∂ẑ
+
∂φ̂m

∂ẑ

∂φ̂l

∂r̂

)
,

R
(n)
m,l = −g12g22

∂φ̂m

∂r̂

∂φ̂l

∂r̂
− g11g21

∂φ̂m

∂ẑ

∂φ̂l

∂ẑ
+ g11g22

∂φ̂m

∂r̂

∂φ̂l

∂ẑ
+ g12g21

∂φ̂m

∂ẑ

∂φ̂l

∂r̂
,

S
(n)
m,l = −g12g22

∂φ̂m

∂r̂

∂φ̂l

∂r̂
− g11g21

∂φ̂m

∂ẑ

∂φ̂l

∂ẑ
+ g12g21

∂φ̂m

∂r̂

∂φ̂l

∂ẑ
+ g11g22

∂φ̂m

∂ẑ

∂φ̂l

∂r̂
.

(4.37)

Now let us compute the derivatives of the basis functions (4.14)-(4.17) for the
standard triangle.

In triangle τ̂1

∂φ̂1

∂r̂
= −2,

∂φ̂1

∂ẑ
= −2,

∂φ̂2

∂r̂
= 0,

∂φ̂2

∂ẑ
= 0,

∂φ̂3

∂r̂
= 0,

∂φ̂3

∂ẑ
= 0,

∂φ̂4

∂r̂
= 0,

∂φ̂4

∂ẑ
= 0,

∂φ̂5

∂r̂
= 0,

∂φ̂5

∂ẑ
= 2,

∂φ̂6

∂r̂
= 2,

∂φ̂6

∂ẑ
= 0.

(4.38)

In triangle τ̂2
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∂φ̂1

∂r̂
= 0,

∂φ̂1

∂ẑ
= 0,

∂φ̂2

∂r̂
= 2,

∂φ̂2

∂ẑ
= 0,

∂φ̂3

∂r̂
= 0,

∂φ̂3

∂ẑ
= 0,

∂φ̂4

∂r̂
= 0,

∂φ̂4

∂ẑ
= 2,

∂φ̂5

∂r̂
= 0,

∂φ̂5

∂ẑ
= 0,

∂φ̂6

∂r̂
= −2,

∂φ̂6

∂ẑ
= −2.

(4.39)

In triangle τ̂3

∂φ̂1

∂r̂
= 0,

∂φ̂1

∂ẑ
= 0,

∂φ̂2

∂r̂
= 0,

∂φ̂2

∂ẑ
= 0,

∂φ̂3

∂r̂
= 0,

∂φ̂3

∂ẑ
= 2,

∂φ̂4

∂r̂
= 2,

∂φ̂4

∂ẑ
= 0,

∂φ̂5

∂r̂
= −2,

∂φ̂5

∂ẑ
= −2,

∂φ̂6

∂r̂
= 0,

∂φ̂6

∂ẑ
= 0.

(4.40)

In triangle τ̂4

∂φ̂1

∂r̂
= 0,

∂φ̂1

∂ẑ
= 0,

∂φ̂2

∂r̂
= 0,

∂φ̂2

∂ẑ
= 0,

∂φ̂3

∂r̂
= 0,

∂φ̂3

∂ẑ
= 0,

∂φ̂4

∂r̂
= 2,

∂φ̂4

∂ẑ
= 2,

∂φ̂5

∂r̂
= −2,

∂φ̂5

∂ẑ
= 0,

∂φ̂6

∂r̂
= 0,

∂φ̂6

∂ẑ
= −2.

(4.41)

Using these formulas we can compute the values of P (n)
m,l , Q

(n)
m,l, R

(n)
m,l and S

(n)
m,l for

each of the triangles (n = 1, 2, 3, 4). All non-zero values are listed below.

For triangle τ̂1
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P
(1)
1,1 = 4(g22 − g21)

2, P
(1)
1,5 = 4g21(g22 − g21), P

(1)
1,6 = 4g22(g21 − g22),

P
(1)
5,5 = 4g2

21, P
(1)
5,6 = −4g21g22, P

(1)
6,6 = 4g2

22,

Q
(1)
1,1 = 4(g11 − g12)

2, Q
(1)
1,5 = 4g11(g12 − g11), Q

(1)
1,6 = 4g12(g11 − g12),

Q
(1)
5,5 = 4g2

11, Q
(1)
5,6 = −4g11g12, Q

(1)
6,6 = 4g2

12,

R
(1)
1,1 = 4(g11 − g12)(g22 − g21), R

(1)
1,5 = 4g11(g21 − g22),

R
(1)
1,6 = 4g12(g22 − g21), R

(1)
5,5 = −4g11g21, R

(1)
5,6 = 4g12g21, R

(1)
6,6 = −4g12g22,

S
(1)
1,1 = R

(1)
1,1, S

(1)
1,5 = 4g21(g11 − g12), S

(1)
1,6 = 4g22(g12 − g11),

S
(1)
5,5 = R

(1)
5,5, S

(1)
5,6 = 4g11g22, S

(1)
6,6 = R

(1)
6,6.

(4.42)

For triangle τ̂2

P
(2)
2,2 = P

(1)
6,6 , P

(2)
2,4 = P

(1)
5,6 , P

(2)
2,6 = P

(1)
1,6 , P

(2)
4,4 = P

(1)
5,5 , P

(2)
4,6 = P

(1)
1,5 , P

(2)
6,6 = P

(1)
1,1 ,

Q
(2)
2,2 = Q

(1)
6,6, Q

(2)
2,4 = Q

(1)
5,6, Q

(2)
2,6 = Q

(1)
1,6, Q

(2)
4,4 = Q

(1)
5,5, Q

(2)
4,6 = Q

(1)
1,5, Q

(2)
6,6 = Q

(1)
1,1,

R
(2)
2,2 = S

(1)
6,6 , R

(2)
2,4 = S

(1)
5,6 , R

(2)
2,6 = S

(1)
1,6 , R

(2)
4,4 = S

(1)
5,5 , R

(2)
4,6 = S

(1)
1,5 , R

(2)
6,6 = S

(1)
1,1 ,

S
(2)
2,2 = R

(1)
6,6, S

(2)
2,4 = R

(1)
5,6, S

(2)
2,6 = R

(1)
1,6, S

(2)
4,4 = R

(1)
5,5, S

(2)
4,6 = R

(1)
1,5, S

(2)
6,6 = R

(1)
1,1.

(4.43)

For triangle τ̂3

P
(3)
3,3 = P

(1)
5,5 , P

(3)
3,4 = P

(1)
5,6 , P

(3)
3,5 = P

(1)
1,5 , P

(3)
4,4 = P

(1)
6,6 , P

(3)
4,5 = P

(1)
1,6 , P

(3)
5,5 = P

(1)
1,1 ,

Q
(3)
3,3 = Q

(1)
5,5, Q

(3)
3,4 = Q

(1)
5,6, Q

(3)
3,5 = Q

(1)
1,5, Q

(3)
4,4 = Q

(1)
6,6, Q

(3)
4,5 = Q

(1)
1,6, Q

(3)
5,5 = Q

(1)
1,1,

R
(3)
3,3 = R

(1)
5,5, R

(3)
3,4 = R

(1)
5,6, R

(3)
3,5 = S

(1)
1,5 , R

(3)
4,4 = S

(1)
6,6 , R

(3)
4,5 = S

(1)
1,6 , R

(3)
5,5 = S

(1)
1,1 ,

S
(3)
3,3 = S

(1)
5,5 , S

(3)
3,4 = S

(1)
5,6 , S

(3)
3,5 = R

(1)
1,5, S

(3)
4,4 = R

(1)
6,6, S

(3)
4,5 = R

(1)
1,6, S

(3)
5,5 = R

(1)
1,1.

(4.44)

For triangle τ̂4
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P
(4)
4,4 = P

(1)
1,1 , P

(4)
4,5 = P

(1)
1,6 , P

(4)
4,6 = P

(1)
1,5 , P

(4)
5,5 = P

(1)
6,6 , P

(4)
5,6 = P

(1)
5,6 , P

(4)
6,6 = P

(1)
5,5 ,

Q
(4)
4,4 = Q

(1)
1,1, Q

(4)
4,5 = Q

(1)
1,6, Q

(4)
4,6 = Q

(1)
1,5, Q

(4)
5,5 = Q

(1)
6,6, Q

(4)
5,6 = Q

(1)
5,6, Q

(4)
6,6 = Q

(1)
5,5,

R
(4)
4,4 = R

(1)
1,1, R

(4)
4,5 = R

(1)
1,6, R

(4)
4,6 = R

(1)
1,5, R

(4)
5,5 = S

(1)
6,6 , R

(4)
5,6 = S

(1)
5,6 , R

(4)
6,6 = S

(1)
5,5 ,

S
(4)
4,4 = S

(1)
1,1 , S

(4)
4,5 = S

(1)
1,6 , S

(4)
4,6 = S

(1)
1,5 , S

(4)
5,5 = R

(1)
6,6, S

(4)
5,6 = R

(1)
5,6, S

(4)
6,6 = R

(1)
5,5.

(4.45)

According to (4.23), in order to complete the matrix A(n), the only thing left is
to compute the following integrals

I
(n)
m,l =

1

|J |

∫

τn

φmφl

r
dr dz =

∫

�

τn

φ̂mφ̂l

r(r̂, ẑ)
dr̂ dẑ, n = 1, 2, 3, 4. (4.46)

It is rather complicated to perform an exact calculation of these integrals, be-
cause of the 1/r(r̂, ẑ) term. So we will use a lumping procedure (see [14], [15],
[13]), which will give us the numerical values for (4.46). In the next section we
define Î(n)

m,l, n = 1, 2, 3, 4. We thus finally have obtained matrices A(n)

A
(n)
2m−1,2l−1 =

η

|J |
(
2P

(n)
m,l +Q

(n)
m,l

)
cn + 2η |J | Î(n)

m,l,

A
(n)
2m,2l =

η

|J |
(
P

(n)
m,l + 2Q

(n)
m,l

)
cn,

A
(n)
2m−1,2l =

η

|J | R
(n)
m,l cn,

A
(n)
2m,2l−1 =

η

|J | S
(n)
m,l cn,

(4.47)

and thus the local stiffness matrix for τ

Aτ = A(1) +A(2) +A(3) +A(4). (4.48)

Consider now the bilinear form (3.45). We assume that the tangent vector t

has a counter clock-wise direction, see Figure 3.1. Consider a boundary edge
γ ⊂ Γm ∪ Γp with the vertices M1 = (r1, z1), M2 = (r2, z2), and let

M3 =

(
r1 + r2

2
,
z1 + z2

2

)
(4.49)
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be the middle point of this edge. Assume that the direction from M1 to M2 is
the same as the direction of t. Then one can see

tr =
r2 − r1
lM1,M2

, tz =
z2 − z1
lM1,M2

, (4.50)

where lM1,M2
is the length of the boundary edge

lM1,M2
=
√

(r2 − r1)2 + (z2 − z1)2. (4.51)

Clearly, the piecewise linear basis functions from Section 4.1 on the edges of
the elements turn out to be one-dimensional piecewise linear basis functions

φ1(r(γ), z(γ)), φ2(r(γ), z(γ)), φ3(r(γ), z(γ)), (4.52)

where

r(γ) = r1 + (γ − γ1)tr, z(γ) = z1 + (γ − γ1)tz , γ1 ≤ γ ≤ γ1 + lM1,M2
. (4.53)

Analogously to (4.10) for the nodes on the edge we shall use the following nu-
meration for unknowns

u1 = ur,1, u2 = uz,1, u3 = ur,2, u4 = uz,2, u5 = ur,3, u6 = uz,3. (4.54)

Then

v(r(γ), z(γ)) =

6∑

m=1

umΦm(r(γ), z(γ)), (4.55)

where

Φ2m−1 =




φm

0
0


 , Φ2m =




0
φm

0


 , m = 1, 2, 3. (4.56)

The local stiffness matrix Aγ corresponding to the edge γ is a 6 × 6 matrix is
defined by the following bilinear form
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aγ(v,w) = β

∫

γ

(urtr + uztz)(wrtr + wztz) r dγ, (4.57)

where

β =





βm, γ ⊂ Γm,

βp, γ ⊂ Γp.
(4.58)

The elements of this matrix are defined by

Am,l = aγ(Φm,Φl). (4.59)

In order to operate on a standard element (this time it is a line segment), we
use the linear transformation

γ = lM1,M2
γ̂ + γ1, 0 ≤ γ̂ ≤ 1, (4.60)

which maps γ̂ ∈ [0, 1] into γ ∈ [γ1, γ1 + lM1,M2
]. Then

r̂(γ̂) = r(γ(γ̂)) = r1 + tr lM1,M2
γ̂,

ẑ(γ̂) = z(γ(γ̂)) = z1 + tz lM1,M2
γ̂.

(4.61)

The basis functions φ̂m(γ̂) = φ̂m(r̂(γ̂), ẑ(γ̂)) = φm(r(γ), z(γ)) have the following
form

φ̂1(γ̂) = 1 − 2γ̂, 0 ≤ γ̂ ≤ 1/2, φ̂1(γ̂) = 0, 1/2 ≤ γ̂ ≤ 1,

φ̂2(γ̂) = 0, 0 ≤ γ̂ ≤ 1/2, φ̂2(γ̂) = 2γ̂ − 1, 1/2 ≤ γ̂ ≤ 1,

φ̂3(γ̂) = 2γ̂, 0 ≤ γ̂ ≤ 1/2, φ̂3(γ̂) = 2(1 − γ̂), 1/2 ≤ γ̂ ≤ 1,

(4.62)

The elements Am,l of the matrix Aγ can be written as follows
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A2m−1,2l−1 = β lM1,M2
t2r

1∫

0

φ̂mφ̂l r̂ dγ̂,

A2m,2l = β lM1,M2
t2z

1∫

0

φ̂mφ̂l r̂ dγ̂,

A2m−1,2l = β lM1,M2
tr tz

1∫

0

φ̂mφ̂l r̂ dγ̂,

A2m,2l−1 = β lM1,M2
tr tz

1∫

0

φ̂mφ̂l r̂ dγ̂.

(4.63)

Computation of the integrals dm,l :=
1∫
0

φ̂mφ̂l (r1 + lM1,M2
tr γ̂) dγ̂ gives

d1,1 =
7r1 + r2

48
, d1,2 = 0, d1,3 =

3r1 + r2
48

,

d2,2 =
r1 + 7r2

48
, d2,3 =

r1 + 3r2
48

, d3,3 =
r1 + r2

6
.

(4.64)

Hence,

A2m−1,2l−1 = β lM1,M2
t2r dm,l,

A2m,2l = β lM1,M2
t2z dm,l,

A2m−1,2l = β lM1,M2
tr tz dm,l,

A2m,2l−1 = β lM1,M2
tr tz dm,l.

(4.65)

Now consider the bilinear form (3.46). As done before, we consider a triangle τ .
On τ we have p(r, z) = pτ = const (see (4.7)). So

p(r, z) =
∑

τ

pτχτ (r, z), (4.66)

where χτ (r, z) is defined by (4.6). Then

bτ (p,w) := pτ

∫

τ

(
∂wr

∂r
+
∂wz

∂z
+
wr

r

)
r dr dz (4.67)
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defines the local stiffness matrix for bilinear form (3.46). One could use Green’s
formula here, i.e.,

∫

τ

(
∂wr

∂r
+
∂wz

∂z
+
wr

r

)
r dr dz =

∫

Γτ

w · nτ r dγ =

∫

Γτ

(wr sinατ − wz cosατ ) r dγ,

where Γτ is the boundary of τ , nτ is a unit normal vector to that boundary,
and ατ is the angle between er and tτ . But all the computations are already
simple enough in the original integral. The local matrix Bτ is a 1 × 12 vector
with elements Bm = bτ (χτ ,Φm), with Φm(r, z) defined by (4.11). Hence

B2m−1 =

∫

τ

(
r
∂φm

∂r
+ φm

)
dr dz,

B2m =

∫

τ

r
∂φm

∂z
dr dz.

(4.68)

Based on the structure of the standard element we can define

Bτ := B(1) +B(2) +B(3) +B(4), (4.69)

where

B
(n)
2m−1 = d

(n)
r,m

∫

τn

r dr dz +

∫

τn

φm dr dz,

B
(n)
2m = d

(n)
z,m

∫

τn

r dr dz.

(4.70)

Here d(n)
r,m, d(n)

z,m are constants defined by

d(n)
r,m :=

∂φm

∂r
(r, z), d(n)

z,m :=
∂φm

∂z
(r, z), (r, z) ∈ τn. (4.71)

Again, we use the fact that derivatives of basis functions (4.38)-(4.41) are con-
stant on τn. The integrals

∫
τn

r dr dz were derived before and equal to |J |cn (see

(4.35)).
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As a result we obtain

B
(n)
2m−1 = |J | cn d(n)

r,m +

∫

τn

φm dr dz,

B
(n)
2m = |J | cn d(n)

z,m.

(4.72)

The values of derivatives are computed using the transformation to the stan-
dard triangle and formulas (4.38)-(4.41)

d
(1)
r,1 =

2

J
(g21 − g22) , d

(1)
r,5 = − 2

J
g21, d

(1)
r,6 =

2

J
g22,

d
(2)
r,2 = d

(1)
r,6 , d

(2)
r,4 = d

(1)
r,5 , d

(2)
r,6 = d

(1)
r,1 ,

d
(3)
r,3 = d

(1)
r,5 , d

(3)
r,4 = d

(1)
r,6 , d

(3)
r,5 = d

(1)
r,1 ,

d
(4)
r,4 = −d(1)

r,1 , d
(4)
r,5 = −d(1)

r,6, d
(4)
r,6 = −d(1)

r,5 ,

(4.73)

d
(1)
z,1 =

2

J
(g12 − g11) , d

(1)
z,5 =

2

J
g11, d

(1)
z,6 = − 2

J
g12,

d
(2)
z,2 = d

(1)
z,6, d

(2)
z,4 = d

(1)
z,5, d

(2)
z,6 = d

(1)
z,1,

d
(3)
z,3 = d

(1)
z,5, d

(3)
z,4 = d

(1)
z,6, d

(3)
z,5 = d

(1)
z,1,

d
(4)
z,4 = −d(1)

z,1, d
(4)
z,5 = −d(1)

z,6, d
(4)
z,6 = −d(1)

z,5.

(4.74)

For any n = 1, 2, 3, 4 and any m = 1, . . . , 6 it is easy to see

∫

τn

φm dr dz =
1

24
|J |. (4.75)

Hence we conclude

B
(n)
2m−1 = |J |

(
cn d

(n)
r,m +

1

24

)
,

B
(n)
2m = |J | cn d(n)

z,m.

(4.76)
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Finally, consider the functional on the right-hand side (3.47). Let γ ⊂ Γp ∪Γf be
a part of the boundary with the vertices M1 = (r1, z1), M2 = (r2, z2). There are
two possibilities: either γ ⊂ Γp or γ ⊂ Γf . In the first case

fγ(w) = βpVp

∫

γ

tz(wrtr + wztz) r dγ. (4.77)

According to the numeration of the nodes and unknowns on the edge (4.54),
the vector corresponding to this functional consists of six components fm =
fγ(Φm), m = 1, . . . , 6, where

f2m−1 = βp Vp tr tz

∫

γ

φm r dγ,

f2m = βp Vp t
2
z

∫

γ

φm r dγ.

(4.78)

After a linear transformation from γ ∈ [γ1, γ1 + lM1,M2
] to γ̂ ∈ [0, 1], we obtain

f2m−1 = βpVp lij tr tz

1∫

0

φ̂m r̂ dγ̂,

f2m = βpVp lij t
2
r

1∫

0

φ̂m r̂ dγ̂.

(4.79)

Using (4.62) one can compute the integrals in (4.79)

1∫

0

φ̂1 r̂ dγ̂ =
5r1 + r2

24
,

1∫

0

φ̂2 r̂ dγ̂ =
r1 + 5r2

24
,

1∫

0

φ̂3 r̂ dγ̂ =
r1 + r2

4
. (4.80)

The second case is when γ ⊂ Γf . Here

fγ(w) = −p0

∫

γ

(wrnr + wznz) r dγ. (4.81)

In the same way we obtain
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f2m = −p0 nr

1∫
0

φ̂m r̂ dγ̂,

f2m+1 = −p0 nz

1∫
0

φ̂m r̂ dγ̂,

(4.82)

where one can use the previous formulas (4.80) for the integrals.

4.3 Lumping Procedure

In this section we apply the lumped mass method [13] for the appropriate cal-
culation of integrals defined by (4.46). Clearly, near the symmetry axis (r = 0)
these integrals have a 1/r singularity. Therefore instead of using an ordinary
lumping procedure we use some modification which takes these singularities
into the account. As it will be seen below, for sufficiently large r our formulas
coincide (approximately) with those for the ordinary lumped mass method.

In our case we need to replace I (n)
m,l by

Î(n)
m,m :=

∫

�

τn

φ̂m

r(r̂, ẑ)
dr̂ dẑ, Î

(n)
m,l = 0 m 6= l, n = 1, 2, 3, 4, (4.83)

where m = 1, 5, 6 for n = 1, m = 2, 4, 6 for n = 2, m = 3, 4, 5 for n = 3, and m = 4, 5, 6
for n = 4. Hence the task is to compute the following non-zero quantities

Î
(1)
1,1 , Î

(1)
5,5 , Î

(1)
6,6 , Î

(2)
2,2 , Î

(2)
4,4 , Î

(2)
6,6 , Î

(3)
3,3 , Î

(3)
4,4 , Î

(3)
5,5 , Î

(4)
4,4 , Î

(4)
5,5 , Î

(4)
6,6 . (4.84)

Computing the above quantities is the most complicated step which has to be
performed in order to construct the local stiffness matrix.

First, let us compute 12 basis integrals

Ĩ(n) :=

∫

�

τn

1

r(r̂, ẑ)
dr̂ dẑ, Ĩ

(n)
�

r :=

∫

�

τn

r̂

r(r̂, ẑ)
dr̂ dẑ, Ĩ

(n)
�

z :=

∫

�

τn

ẑ

r(r̂, ẑ)
dr̂ dẑ. (4.85)

Here it is important to distinguish between two cases: either a triangle τ con-
tains an edge which is parallel to Oz, or it does not contain such an edge. In
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the first case we will always assume that the node numbers of the edge which
is parallel to Oz are i and k, i.e., g12 = 0, and g11 6= 0, g11 6= g12 (otherwise J = 0).
In the second case: g11 6= 0, g12 6= 0, g11 6= g12.

For the first case, i.e. when g12 = 0, g11 6= 0, g11 6= g12, we obtain

Ĩ(1) =
1

2g11

[(
1 +

2r1
g11

)
ln

(
1 +

g11
2r1

)
− 1

]
,

Ĩ
(1)

�

r =
1

2g11

[
1

4
+

r1
g11

− r1
g11

(
1 +

2r1
g11

)
ln

(
1 +

g11
2r1

)]
,

Ĩ
(1)

�

z =
1

2g11

[
1

4

(
1 +

2r1
g11

)2

ln

(
1 +

g11
2r1

)
− 3

8
− r1

2g11

]
,

(4.86)

Ĩ(2) =
1

2g11

[
2

(
1 +

r1
g11

)
ln

(
1 +

g11
2r1 + g11

)
− 1

]
,

Ĩ
(2)

�

r =
1

2g11

[
1

4
+

r1
g11

− 2r1
g11

(
1 +

r1
g11

)
ln

(
1 +

g11
2r1 + g11

)]
,

Ĩ
(2)

�

z =
1

2g11

[(
1 +

r1
g11

)2

ln

(
1 +

g11
2r1 + g11

)
− 5

8
− r1

2g11

]
,

(4.87)

Ĩ(3) = Ĩ(1),

Ĩ
(3)

�

r = Ĩ
(1)

�

r ,

Ĩ
(3)

�

z =
3

4
Ĩ(1) − 1

4
Ĩ
(1)

�

r ,

(4.88)

Ĩ(4) =
1

2g11

[
1 − 2r1

g11
ln

(
1 +

g11
2r1

)]
,

Ĩ
(4)

�

r =
1

2g11

[
2

(
r1
g11

)2

ln

(
1 +

g11
2r1

)
+

1

4
− r1
g11

]
,

Ĩ
(4)

�

z =
1

2g11

[
3

8
+

r1
2g11

− r1
g11

(
1 +

r1
g11

)
ln

(
1 +

g11
2r1

)]
.

(4.89)
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For the second case an attempt to derive (4.84) in explicit form leads to ex-
tremely complicated and non-readable formulas. That is why instead of using
those we rather consider a procedure to obtain them. It is based on two explicit
integrals

Ψ1(x1, x2; a, b) :=

x2∫

x1

ln(ax+ b) dx = (4.90)

=
1

a

{
(ax2 + b) ln(ax2 + b) − (ax1 + b) ln(ax1 + b)

}
+ x1 − x2,

Ψ2(x1, x2; a, b) :=

x2∫

x1

x ln(ax+ b) dx = (4.91)

=
1

2a2

{
(a2x2

2 − b2) ln(ax2 + b) − (a2x2
1 − b2) ln(ax1 + b)

}
+

+ (b/2a+ x1/4− x2/4)(x2 − x1).

It is assumed here that a 6= 0 and ax + b > 0 for x1 ≤ x ≤ x2. As a result we
obtain

Ĩ(1) =
1

g12

[
Ψ1(0, 1/2; g11 − g12, r1 + g12/2) − Ψ1(0, 1/2; g11, r1)

]
,

Ĩ
(1)

�

r =
1

g12

[
Ψ2(0, 1/2; g11 − g12, r1 + g12/2) − Ψ2(0, 1/2; g11, r1)

]
,

Ĩ
(1)

�

z =
1

g11

[
Ψ2(0, 1/2; g12 − g11, r1 + g11/2) − Ψ2(0, 1/2; g12, r1)

]
,

(4.92)

Ĩ(2) =
1

g12

[
Ψ1(1/2, 1; g11 − g12, r1 + g12) − Ψ1(1/2, 1; g11, r1)

]
,

Ĩ
(2)

�

r =
1

g12

[
Ψ2(1/2, 1; g11 − g12, r1 + g12) − Ψ2(1/2, 1; g11, r1)

]
,

Ĩ
(2)

�

z =
1

g11

[
Ψ2(0, 1/2; g12 − g11, r1 + g11) − Ψ2(0, 1/2; g12, r1 + g11/2)

]
,

(4.93)

Ĩ(3) =
1

g12

[
Ψ1(0, 1/2; g11 − g12, r1 + g12) − Ψ1(0, 1/2; g11, r1 + g12/2)

]
,

Ĩ
(3)

�

r =
1

g12

[
Ψ2(0, 1/2; g11 − g12, r1 + g12) − Ψ2(0, 1/2; g11, r1 + g12/2)

]
,

Ĩ
(3)

�

z =
1

g11

[
Ψ2(1/2, 1; g12 − g11, r1 + g11) − Ψ2(1/2, 1; g12, r1)

]
,

(4.94)
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Ĩ(4) =
1

g12

[
Ψ1(0, 1/2; g11, r1 + g12/2)− Ψ1(0, 1/2; g11 − g12, r1 + g12/2)

]
,

Ĩ
(4)

�

r =
1

g12

[
Ψ2(0, 1/2; g11, r1 + g12/2)− Ψ2(0, 1/2; g11 − g12, r1 + g12/2)

]
,

Ĩ
(4)

�

z =
1

g11

[
Ψ2(0, 1/2; g12, r1 + g11/2)− Ψ2(0, 1/2; g12 − g11, r1 + g11/2)

]
.

(4.95)

Now, using basis integrals let us derive the required diagonal components of
the matrix

Î
(1)
1,1 = Ĩ(1) − 2Ĩ

(1)
�

r − 2Ĩ
(1)

�

z , Î
(1)
5,5 = 2Ĩ

(1)
�

r , Î
(1)
6,6 = 2Ĩ

(1)
�

r ,

Î
(2)
2,2 = 2Ĩ

(2)
�

r − Ĩ(2), Î
(2)
4,4 = 2Ĩ

(2)
�

z , Î
(2)
6,6 = 2Ĩ(2) − 2Ĩ

(2)
�

r − 2Ĩ
(2)

�

z ,

Î
(3)
3,3 = 2Ĩ

(3)
�

z − Ĩ(3), Î
(3)
4,4 = 2Ĩ

(3)
�

r , Î
(3)
5,5 = 2Ĩ(3) − 2Ĩ

(3)
�

r − 2Ĩ
(3)

�

z ,

Î
(4)
4,4 = 2Ĩ

(4)
�

r + 2Ĩ
(4)

�

z − Ĩ(4), Î
(4)
5,5 = Ĩ(4) − 2Ĩ

(4)
�

r , Î
(4)
6,6 = Ĩ(4) − 2Ĩ

(4)
�

z .

(4.96)

Actually, the above procedure is required only for the region closed to r = 0
(Oz), where 1/r varies dramatically. Otherwise much simpler formulas can be
used

Î(n)
m,m =

1

24r̂m
, m = 1, . . . , 6, (4.97)

where

r̂1 = r1, r̂2 = r2, r̂3 = r3,

r̂4 =
r2 + r3

2
, r̂5 =

r1 + r3
2

, r̂6 =
r1 + r2

2
.

(4.98)

All formulas for Ĩ(n), Ĩ(n)
�

r , Ĩ(n)
�

z , and hence, for Î(n)
m,m can be used only for elements

with r1 > 0, r2 > 0 and r3 > 0. Otherwise, we get undefined expressions (ln 0)
in the integrals (4.90), (4.91). At this point we shall use Dirichlet (symmetric)
boundary conditions. This situation needs a special treatment, i.e., two cases
must be considered: the first is when only one vertex of the element is on Oz,
and the second is when there are two vertices on Oz.

Assume that r2 = 0, r1 > 0, r3 > 0. So the transformation to the standard
triangle maps vertex M2 = (r2, z2) ∈ Oz to M̂2 = (1, 0). Clearly, g11 = −r1, hence
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r = r1(1 − r̂) + g12ẑ. (4.99)

Note that (4.83) must be changed only for the triangle τ̂2. So one should com-
pute Ĩ(2), Ĩ(2)

�

r , and Ĩ
(2)

�

r . Again we consider two possibilities: g12 = 0 and g12 6= 0.

In the first case r = r1(1 − r̂) and computation of the integrals in (4.85) gives

Ĩ(2) =
1

2r1
, Ĩ

(2)
�

r =
3

8r1
, Ĩ

(2)
�

z =
1

16r1
(4.100)

and thus

Î
(2)
2,2 =

1

4r1
, Î

(2)
4,4 =

1

8r1
, Î

(2)
6,6 =

1

8r1
. (4.101)

For the second case, as was said before, r = r1(1 − r̂) + g12ẑ. So

Ĩ(2) =
1

2g12
ln

(
1 +

g12
r1

)
, Ĩ

(2)
�

r =
3

4
Ĩ(2), Ĩ

(2)
�

z =
1

8g12
− r1

4g12
Ĩ(2). (4.102)

One should note that in this case (one vertex on Oz) we do not use the Dirichlet
boundary conditions (ur = 0), as the integrals are finite anyway. But this is not
the case when there are two vertices on Oz.

Assume, that r1 = r3 = 0 (g12 = 0), r2 > 0. It is easy to see that some of the
integrals in this case turn out to be ∞. In order to overcome this problem we
shall use Dirichlet boundary conditions on Oz. At this moment, however, we
are not yet going to eliminate corresponding unknowns, as this will be done
later. Instead, we set all the integrals which form the matrix for nodes m = 1,
m = 3 and m = 5, i.e, Î(1)

1,1 , Î(1)
5,5 , Î(3)

3,3 , Î(3)
5,5 and Î

(4)
5,5 to zero, or mark it in some other

way. Hence,

Î
(1)
1,1 = Î

(1)
5,5 = Î

(3)
3,3 = Î

(3)
5,5 = Î

(4)
5,5 ≡ 0. (4.103)

For the integrals Î(2)
2,2 , Î(2)

4,4 , Î(2)
6,6 all the formulas stay unchanged.

Finally, we need to compute the following integrals

Î
(1)
6,6 , Î

(3)
4,4 , Î

(4)
4,4 , Î

(4)
6,6 , (4.104)
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which form the equations for nodes m = 4 and m = 6. Let us recall that

Î
(1)
6,6 = 2Ĩ

(1)
�

r , Î
(3)
4,4 = 2Ĩ

(3)
�

r , Î
(4)
4,4 = 2Ĩ

(4)
�

r + 2Ĩ
(4)

�

z − Ĩ(4), Î
(4)
6,6 = Ĩ(4) − 2Ĩ

(4)
�

z . (4.105)

All the integrals on the right-hand sides are finite. Taking into the account that
in this case we have r = r2r̂, the formulas read as follows

Ĩ
(1)

�

r =
1

8r2
, Ĩ

(3)
�

r =
1

8r2
, Ĩ(4) =

1

2r2
, Ĩ

(4)
�

r =
1

8r2
, Ĩ

(4)
�

z =
3

16r2
, (4.106)

or

Î
(1)
6,6 = Î

(3)
4,4 =

1

4r2
, Î

(4)
4,4 = Î

(4)
6,6 =

1

8r2
. (4.107)

Substitution of the values of (4.83) into (4.47) completes the process of obtain-
ing the local stiffness matrix for triangle τ and bilinear form a0(v,w).

4.4 Boundary Elements with Extra Degrees of Free-
dom

In this section we introduce a new type of basis functions for the elements,
which contain the edges on the boundary Γp. This basis will allow us to use
additional unknowns for the velocity components in the middle of the boundary
edges. These unknowns are the derivatives of the velocity with respect to r and
z. The final goal is to compute σn and σt as needed for obtaining the force
on the plunger (see Chapter 6). Note that the pressure p is continuous at the
middle points of the edges.

Consider a standard element τ̂ as depicted in Figure 4.3; it is split into four
sub-elements τ̂n, n = 1, 2, 3, 4.

The vertices are numbered as follows

M̂1 = (0, 0), M̂2 = (1, 0), M̂3 = (0, 1),

M̂4 = (1/2, 1/2), M̂5 = (0, 1/2), M̂6 = (1/2, 0),

(4.108)

Consider the following functions in sub-triangles of τ̂ .
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Figure 4.3: Standard triangle τ̂ .

In triangle τ̂1

φ̂1 = (1 − 2(r̂ + ẑ))(1 − 2 ẑ), φ̂2 = 0, φ̂3 = 0,

φ̂4 = 0, φ̂5 = 4 ẑ (1 − ẑ), φ̂6 = 2 r̂ (1 − 2 ẑ),

ψ̂5,
�

r = 2 r̂ ẑ, ψ̂5,
�

z = ẑ (2 ẑ − 1).

(4.109)

In triangle τ̂2

φ̂1 = 0, φ̂2 = 2 r̂ − 1, φ̂3 = 0,

φ̂4 = 2 ẑ, φ̂5 = 0, φ̂6 = 2 (1 − r̂ − ẑ)

ψ̂5,
�

r = 0, ψ̂5,
�

z = 0.

(4.110)

In triangle τ̂3

φ̂1 = 0, φ̂2 = 0, φ̂3 = (1 − 2 (r̂ + ẑ))(1 − 2 ẑ),

φ̂4 = 2 r̂ (2 (r̂ + ẑ) − 1), φ̂5 = 4 (1 − r̂ − ẑ)(r̂ + ẑ), φ̂6 = 0,

ψ̂5,
�

r = 2 r̂ (1 − r̂ − ẑ), ψ̂5,
�

z = (r̂ + ẑ − 1)(1 − 2 ẑ).

(4.111)

In triangle τ̂4
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φ̂1 = 0, φ̂2 = 0, φ̂3 = 0,

φ̂4 = 2 r̂ (2 (r̂ + ẑ) − 1), φ̂5 = 1 − 4 r̂2, φ̂6 = 2 r̂ (1 − 2 ẑ),

ψ̂5,
�

r = r̂ (1 − 2 r̂), ψ̂5,
�

z = (r̂ − 1/2)(1− 2 ẑ).

(4.112)

These functions are continuous and have the following properties

φ̂m(M̂l) = δm,l, ψ̂5,
�

r(M̂l) = 0, ψ̂5,
�

z(M̂l) = 0, m, l = 1, . . . , 6 (4.113)

∂φ̂m

∂r̂
(M̂5) = 0,

∂φ̂m

∂ẑ
(M̂5) = 0, m = 1, . . . , 6

∂ψ̂5,
�

r

∂r̂
(M̂5) = 1,

∂ψ̂5,
�

r

∂ẑ
(M̂5) = 0,

∂ψ̂5,
�

z

∂r̂
(M̂5) = 0,

∂ψ̂5,
�

z

∂ẑ
(M̂5) = 1.

(4.114)

In order to continue with the functions above as with the basis for τ̂ we need
the following property.

Property 1 The functions (4.109)-(4.112) are linear independent and form a ba-
sis for τ̂ .

Proof. In order to prove this one must show that

v(r̂, ẑ) =

6∑

m=1

αmφ̂m(r̂, ẑ) + α7ψ̂5,
�

r(r̂, ẑ) + α8ψ̂5,
�

z(r̂, ẑ) ≡ 0 (4.115)

implies αm = 0, m = 1, . . . , 8. Clearly, (4.115) holds for every M̂l and

0 = v(M̂l) = αl, l = 1, ..., 6. (4.116)

Taking derivative we obtain

0 =
∂v

∂r̂
(M̂5) = α7, 0 =

∂v

∂ẑ
(M̂5) = α8. (4.117)
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Hence, the basis functions φ̂m, m = 1, .., 6, ψ̂5,
�

r, ψ̂5,
�

z form the basis. �

The functions φ̂5, ψ̂5,
�

r and ψ̂5,
�

z have their support entirely in τ̂ . On the boundary
of τ̂ the functions φ̂m, m 6= 5 are linear and take the same value as the piece-wise
linear basis functions (4.4)-(4.7). Thus one can construct a continuous basis
in Ω which will contain piece-wise linear and quadratic functions in different
parts of the domain. This is clearly seen in τ̂ , where φ̂4 is quadratic in τ̂3 ∪ τ̂4,
and linear in τ̂2.

Consider the standard element and its basis functions in (r, z). Let τ be the
triangle with vertices (r1, z1), (r2, z2) and (r3, z3). We assume that the edge on
the boundary Γp is the one corresponding to (r1, z1), (r3, z3). Let us define the
local numeration of nodes for τ (including the middle points)

M1 = (r1, z1), M2 = (r2, z2), M3 = (r3, z3),

M4 =

(
r2 + r3

2
,
z2 + z3

2

)
, M5 =

(
r1 + r3

2
,
z1 + z3

2

)
, M6 =

(
r1 + r2

2
,
z1 + z2

2

)
.

(4.118)

Using the affine transformation (4.24) which maps M̂m into Mm it is easy to see
that φm(r, z) = φ̂m(r̂, ẑ), m = 1, ..., 6. Clearly,

φm(Ml) = δm,l, m, l = 1, . . . , 6,

∂φm

∂r
(M5) =

∂φm

∂z
(M5) = 0, m = 1, . . . , 6.

(4.119)

Let us define

φ7(r, z) =
1√
|J |

(g11ψ̂5,
�

r(r̂, ẑ) + g12ψ̂5,
�

z(r̂, ẑ)),

φ8(r, z) =
1√
|J |

(g21ψ̂5,
�

r(r̂, ẑ) + g22ψ̂5,
�

z(r̂, ẑ)).

(4.120)

From the properties of ψ̂5,
�

r and ψ̂5,
�

z it follows

φ7(Mm) = φ8(Mm) = 0, m = 1, . . . , 6. (4.121)

Furthermore
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√
|J | ∂φ7

∂r
=

∂

∂r̂
(g11ψ̂5,

�

r + g12ψ̂5,
�

z) ·
∂r̂

∂r
+

∂

∂ẑ
(g11ψ̂5,

�

r + g12ψ̂5,
�

z) ·
∂ẑ

∂r

=
1

J

(
g22

∂

∂r̂
(g11ψ̂5,

�

r + g12ψ̂5,
�

z) − g21
∂

∂ẑ
(g11ψ̂5,

�

r + g12ψ̂5,
�

z)

)
.

(4.122)

From the properties of ψ̂5,
�

r and ψ̂5,
�

z it follows

∂φ7

∂r
(M5) =

1

J
√
|J |

(g22g11 − g21g12) =
1√
|J |

. (4.123)

Then,

√
|J | ∂φ7

∂z
=

∂

∂r̂
(g11ψ̂5,

�

r + g12ψ̂5,
�

z) ·
∂r̂

∂z
+

∂

∂ẑ
(g11ψ̂5,

�

r + g12ψ̂5,
�

z) ·
∂ẑ

∂z

=
1

J

(
−g12

∂

∂r̂
(g11ψ̂5,

�

r + g12ψ̂5,
�

z) + g11
∂

∂ẑ
(g11ψ̂5,

�

r + g12ψ̂5,
�

z)

)
,

(4.124)

which gives

∂φ7

∂z
(M5) =

1

J
√
|J |

(−g12g11 + g11g12) = 0. (4.125)

Analogously we derive

√
|J | ∂φ8

∂r
=

∂

∂r̂
(g21ψ̂5,

�

r + g22ψ̂5,
�

z) ·
∂r̂

∂r
+

∂

∂ẑ
(g21ψ̂5,

�

r + g22ψ̂5,
�

z) ·
∂ẑ

∂r

=
1

J

(
g22

∂

∂r̂
(g21ψ̂5,

�

r + g22ψ̂5,
�

z) − g21
∂

∂ẑ
(g21ψ̂5,

�

r + g22ψ̂5,
�

z)

)
.

(4.126)

Then

∂φ8

∂r
(M5) =

1

J
√
|J |

(g22g21 − g21g22) = 0. (4.127)

Finally,
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√
|J | ∂φ8

∂z
=

∂

∂r̂
(g21ψ̂5,

�

r + g22ψ̂5,
�

z) ·
∂r̂

∂z
+

∂

∂ẑ
(g21ψ̂5,

�

r + g22ψ̂5,
�

z) ·
∂ẑ

∂z

=
1

J

(
−g12

∂

∂r̂
(g21ψ̂5,

�

r + g22ψ̂5,
�

z) + g11
∂

∂ẑ
(g21ψ̂5,

�

r + g22ψ̂5,
�

z)

)
.

(4.128)

Then

∂φ8

∂z
(M5) =

1

J
√
|J |

(−g12g21 + g11g22) =
1√
|J |

. (4.129)

As the formulas for derivatives we obtain

∂φ7

∂r
(M5) =

1√
|J |

,
∂φ7

∂z
(M5) = 0,

∂φ8

∂r
(M5) = 0,

∂φ8

∂z
(M5) =

1√
|J |

. (4.130)

All the elements of the local stiffness matrix are scaled by
1√
|J |

and are of the

same order.

The approximate solution in τ can now be written in the following form

v(r, z) =

16∑

l=1

ulΦl(r, z), (4.131)

where

Φ2m−1 =




φm

0
0


 , Φ2m =




0
φm

0


 , m = 1, . . . , 8. (4.132)

It is easy to see that
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ur(Mm) = u2m−1, uz(Mm) = u2m, m = 1, . . . , 6,

∂ur

∂r
(M5) =

u13√
|J |

,
∂uz

∂r
(M5) =

u14√
|J |

,

∂ur

∂z
(M5) =

u15√
|J |

,
∂uz

∂z
(M5) =

u16√
|J |

.

(4.133)

So, with known values of the velocity components u1, ..., u12 in the nodes of τ we
have the values of the derivatives at the middle points u13, ..., u16.

Consider now vectors σn(M5) and σt(M5)

σn(M5) =




σrrnr + σrznz

σrznr + σzznz

0


 , σt(M5) =




σrrtr + σrztz
σrztr + σzztz

0


 , (4.134)

where

σrr(M5) = −pτ +
2η√
|J |

u13,

σzz(M5) = −pτ +
2η√
|J |

u16,

σrz(M5) =
η√
|J |

(u14 + u15).

(4.135)

As was said before, urwr/r is approximated using a piece-wise linear basis.
Here we use integral expressions from Section 4.3 for Î(n)

m,m, m = 1, . . . , 6. For
m = 7, 8 these integrals are not needed.

The local stiffness matrix is 16× 16 and symmetric. Since the derivatives of the
basis functions are no longer constant, the elements of the matrix

Aτ = A(1) +A(2) +A(3) +A(4) (4.136)

have the following form
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A
(n)
2m−1,2l−1 = η

(
2P

(n)
m,l +Q

(n)
m,l + 2|J | Î(n)

m,l

)
,

A
(n)
2m,2l = η

(
P

(n)
m,l + 2Q

(n)
m,l

)
,

A
(n)
2m−1,2l = η S

(n)
m,l,

A
(n)
2m,2l−1 = η R

(n)
m,l,

(4.137)

where

P
(n)
m,l =

∫

τn

∂φm

∂r

∂φl

∂r
r dr dz, Q

(n)
m,l =

∫

τn

∂φm

∂z

∂φl

∂z
r dr dz,

R
(n)
m,l =

∫

τn

∂φm

∂r

∂φl

∂z
r dr dz, S

(n)
m,l =

∫

τn

∂φm

∂z

∂φl

∂r
r dr dz.

(4.138)

The non-zero values are m, l = 1, 5, 6, 7, 8 (for n = 1), m, l = 2, 4, 6 (for n = 2),
m, l = 3, 4, 5, 7, 8 (for n = 3), and m, l = 4, 5, 6, 7, 8 (for n = 4).
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Chapter 5

Mass Conservation

The Stokes equations as such are time independent. However, because of the
moving boundary at the plunger, the domain evolves in time. In this chapter
we discuss the implementation of the kinematic boundary conditions (3.28),
(3.29). In Section 5.1 we describe the basis algorithms which are used in or-
der to track the evolution of the computational domain. The main topic of
this chapter is the numerical mass conservation during the time integration.
The numerical integration procedure can introduce unphysical variations of the
glass volume during the pressing. We discuss the numerical mass conservation
in Sections 5.3 and 5.4. They are presented in generic form, i.e. the algorithms
can be applied to a wider class of problems. This is illustrated by a number of
examples.

5.1 Time Stepping

The solution of the Stokes equations (2.22), (2.23) gives the velocity field and
the pressure field on a mesh which corresponds to the physical domain. The
evolution of the glass domain is defined by the movement of the free boundary
and the position of the pressing device (the mould and the plunger). The motion
of the glass domain is described by the ordinary differential equation

dx

dt
= v(x(t)), (5.1)

where x is a point of this domain, v the velocity, and t ∈ [tup, tstop].

Let xi, i = 1, . . . , Nf be points on a free boundary Γf (see Figure 5.1). After the
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velocity field v(x(t)) and the pressure p(x(t)) have been obtained by solving the
Stokes problem on the domain Ωt we can integrate the latter and find Ωt+∆t.
Here ∆t denotes the time discretization step. Let us define xk

i to be an approxi-
mation of x(tk) at time level tk. We may thus obtain the new position of xi using
an explicit scheme as follows

xk+1
i = xk

i + ∆tvk
i , (5.2)

where vk
i := v(xk

i ) and tk := k∆t.

A particular question is how to deal with the moving boundary. Depending on
the velocity we may encounter a situation where the obtained position xk+1

i lies
outside the physical domain (see Figure 5.1).
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Figure 5.1: Time integration on the free boundary.

In this situation we may use one of the strategies described below. We restrict
ourselves to the explicit integration (5.2) for simplicity’s sake.

A first idea is to decrease the time step so that integration by (5.2) results in
the point x̃k+1

i ∈ Ωtk+1
(see Figure 5.1). Clearly, for a suitable αk

i ∈ [0, 1] we have

x̃k+1
i = xk

i + αk
i ∆tvk

i . (5.3)

In (5.2) we therefore may use

∆t̃ki := min
i
αk

i ∆t ≤ ∆t

instead of ∆t (see Figure 5.1) and obtain a new domain Ωt̃k+1
, where t̃k+1 =

tk + ∆t̃ki . This algorithm, unfortunately, introduces a variable time step which
turns out to be very irregular in practice, and, in particular, can be very small.
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In order to have consistency in the topology of the computational domains they
should be obtained by integration with a constant time step.

In Figure 5.2 we illustrate an alternative, the clip algorithm which takes the
new points along a discrete ”solution curve” and as long as they stay within the
domain, i.e. till the boundary. So the trajectories may actually be ”clipped” at
the boundary. For the point xi which steps out of the physical domain at time
level tk+1 (see Figure 5.2) we set

x̃k+1
i = xk

i + αk
i ∆tvk

i , (5.4)

where αk
i ∈ [0, 1]. Note that for a non-clipped point αk

i = 1.
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Figure 5.2: Clip algorithm.

This algorithm has a clear disadvantage: the ”clipping” influences the mass
conservation property of the physical domain. In Section 5.3 we discuss the
mass conservation in a more general context; below we give estimates for both
the position and the volume errors of (5.4).

Let yk+1
i := xk+1

i − xi(tk+1) denote the local error. Note that xk+1
i is the result of

(5.4), where xk
i ≡ x(tk) and vk

i ≡ v(xi(tk)). Using a Taylor expansion for x(tk+1)
it is easy to see that

‖yk+1
i ‖ = ‖(αk

i − 1) ∆tvk
i ‖ +O(∆t2), (5.5)

where ‖ · ‖ is the standard Euclidean distance norm. Then the local error in
general can be estimated as

‖yk+1
i ‖ = O(∆t). (5.6)



62 Mass Conservation

We now estimate the volume error. Let xi(tk) = (ri(tk), zi(tk))T be a point on a
free boundary Γf at time tk. Let xk

i = (rk
i , z

k
i )T be an approximation of this point

at time level tk. Consider four points in Orz

xi(tk) = (ri(tk), zi(tk))T , xk
i = (rk

i , z
k
i )T ,

xi+1(tk) = (ri+1(tk), zi+1(tk))T , xk
i+1 = (rk

i+1, z
k
i+1)

T .

Using (5.6) is easy to see that

‖xi+1(tk) − xi(tk)‖ = O(h), ‖xk
i+1 − xk

i ‖ = O(h),

‖xi(tk) − xk
i ‖ = O(∆t), ‖xi+1(tk) − xk

i+1‖ = O(∆t),

where h is the mesh size. Then the area Sk
i,i+1 between these points can be

estimated as

Sk
i,i+1 = O(h∆t) ≈ (rk

i+1 − rk
i )O(∆t).

The volume of the area rotated over Oz can be estimated then as

V k
i,i+1 ≈ 2π

rk
i+1 − rk

i

2
Sk

i,i+1.

Summation over i gives the global volume error estimate at time level tk

V k =
∑

xk
i ∈Γf

V k
i,i+1 =

∑

xk
i ∈Γf

π(rk
i+1

2 − rk
i

2
)O(∆t). (5.7)

Taking a closer look at (5.7) we see that the algorithm (5.4) may result in sig-
nificant mass losses. In the next section we describe an alternative to the clip
algorithm above.



5.2 Modified Clip Algorithm 63

5.2 Modified Clip Algorithm

We can modify the clip algorithm (5.4) providing a better mass conservation.
We alter the velocities at the points which end up outside the boundaries such
that their normal component stays the same, i.e.

ṽk
i · n = vk

i · n, (5.8)

and the tangential component vk
i · t is obtained by turning the velocity vector

such that xk
i ends up at the boundary of the physical domain (see Figure 5.3).

In formula this can be expressed as

ṽk
i := αk

i R
k
i vk

i , (5.9)

where αk
i is the scaling parameter and Rk

i is 2 × 2 the rotation matrix

Rk
i :=




cos γk
i − sin γk

i

sin γk
i cos γk

i


 . (5.10)

The net outflow for the modified velocity field remains zero and thus the algo-
rithm should give a better mass conservation

∫

Γ

ṽ · n dΓ =

∫

Γ

v · n dΓ = 0. (5.11)

An approximate position of points xi which would be outside the physical do-
main at time tk+1 is obtained using the modified according to (5.9) velocity field

x̃k+1
i = xk

i + ∆t ṽk
i . (5.12)

There is yet another problem. Although (5.1) looks deceivingly simple, it does
not lend itself for easy numerical computation (see [38], [19], [42]). For one
thing, the variable x is an element in a continuum (in contrast to the usual
finite dimension). Hence it is not easy, at least not trivial computationally,
to use an implicit time discretization instead of (5.2). Indeed, we would first
have to make at least a guess needed for an implicit method (see [31]). Clearly,
the explicit scheme (5.2) can be replaced by a more sophisticated algorithm, in
particular an implicit scheme for the reasons to become clear later. Consider
the following implicit scheme
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Figure 5.3: Modified clip algorithm.

xk+1
i = xk

i + ∆tvk+1
i , (5.13)

where vk+1
i is the velocity at point xk+1

i ∈ Ωtk+1
. Note that the velocity field

is not known at tk+1; it is the result of numerical computations on a problem
domain. Hence, in order to use (5.13) it is necessary to perform velocity field
computations on Ωtk+1

somehow. On the other hand Ωtk+1
is the result of (5.2).

This difficulty can be overcome by employing an algorithm which will iterate on
xk+1

i . Unfortunately, this straightforward approach requires solving the Stokes
problem for each iteration, and in the context of this thesis is therefore con-
sidered to be too expensive. We therefore introduce a numerical tool how to
overcome the essential difficulty of the implicitness of the integration scheme,
by employing the fact that the velocity field for our problem is autonomous.
This is described in Section 5.4.

5.3 Hamiltonian Formulation and Symplectic Nu-
merical Schemes

Quite another problem, and the main topic of this chapter, is the concern how
to preserve the mass numerically. From numerical ODE theory we know that
there exist so-called symplectic methods which preserve the volume of a flow
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(see [2], [3], [19], [40]); we shall restrict ourselves to the implicit midpoint rule
here, which is good enough to demonstrate our case. It is important to note
that the theory of symplectic methods deals with a finite dimensional systems
of even order. It is possible to generalize this to two-dimensional volumes (or
rather areas). For a three dimensional problem the underlying Hamiltonian
theory is essentially impossible, as it requires an even order space (see [40]).

In the next section we describe a way to deal with bodies in a physically three
dimensional space, only requiring some form of symmetry, e.g. cylindrical. We
shall employ the fact that such a problem can essentially be reduced to a two
dimensional problem, which in turn may be solved by a symplectic method as
mentioned above.

For our discussion we shall consider incompressible fluids. The continuity
equation for a fluid body with density ρ and velocity v is then given by ∇·ρv = 0.
For homogeneous density this simplifies to

∇ · v = 0. (5.14)

Let V (t) denote a three dimensional domain at time t with surface S(t), and
|V (t)| denote the volume of V (t). Then we know that

∫

V (t)

∇ · v dV =

∫

S(t)

v · n dS = 0. (5.15)

Clearly, the net outflow is zero, i.e. |V (t)| is constant. Let x(t) = (x(t), y(t))T ∈
V (t) be a point in Cartesian coordinates with a velocity

v := (ux(x, y), uy(x, y))T . (5.16)

Then (5.14) implies

∂

∂x
ux +

∂

∂y
uy = 0. (5.17)

This can be associated to a stream function, ψ(x, y) say (see [7]), with





ux = −∂ψ
∂y

,

uy =
∂ψ

∂x
.

(5.18)
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Since ux = dx/dt and uy = dy/dt we have the system of ordinary differential
equations





dx

dt
= −∂ψ

∂y
,

dy

dt
=

∂ψ

∂x
.

(5.19)

Although we may not (wish to) know ψ, we do note that the system underlying
(5.1) is in fact (5.19), a Hamiltonian form. So a divergence-free two dimensional
velocity field implies a symplectic form for a point in that field. There is a host
of literature on Hamiltonian systems, see [1], [3], [40]. We only use the fact
that they preserve a flow volume. The latter property has to do with the two
dimensional volume V (t) in which (x, y)T runs. It is well known that one can
use symplectic numerical integrators which are also volume preserving. Here
we will restrict ourselves to the implicit midpoint rule which reads for (5.19)
(using (5.18))





xk+1 = xk + ∆t ux

(
xk + xk+1

2
,
yk + yk+1

2

)
,

yk+1 = yk + ∆t uy

(
xk + xk+1

2
,
yk + yk+1

2

)
.

(5.20)

Here ∆t is the time step and k is the time level. This method is of the second
order in ∆t (see [19], [40]). For a linear system (5.20) will give a conservation
of flow volume, for nonlinear systems this is not necessarily so; still it is often
gives near conservation, see [40].

From the very form of (5.19) it is clear that we cannot hope to have a Hamil-
tonian form for a three dimensional vector. Yet, for the problems which have
some kind of symmetry we can reduce the order often by 1 so that a de facto
two dimensional problem remains. This is the subject of the next sections.

The most common types of symmetry in fluid problems are cylindrical and
spherical symmetry. We shall consider the first one in this section, the second
one in the next two.

We use cylindrical coordinates r, z, ϕ as radial, axial, and angular variables
respectively. Consider the continuity equation in cylindrical coordinates

∇ · v =
1

r

∂

∂r
(rur) +

∂

∂z
uz +

1

r

∂

∂ϕ
uϕ = 0, (5.21)
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where v = (ur, uz, uϕ)T . Here ur, uz, uϕ are the velocity components in r, z, and
ϕ directions respectively. In the axisymmetric case we have uϕ = 0, and (5.21)
simplifies to

1

r

∂

∂r
rur +

∂

∂z
uz = 0. (5.22)

For (ur, uz)
T one can define a stream function ψ such that





ur = −1

r

∂ψ

∂z
,

uz =
1

r

∂ψ

∂r
,

(5.23)

This gives a system of ordinary differential equations





dr

dt
= −1

r

∂ψ

∂z
,

dz

dt
=

1

r

∂ψ

∂r
,

(5.24)

Clearly, (5.24) is not a Hamiltonian system

∂

∂z

dr

dt
+

∂

∂r

dz

dt
6= 0. (5.25)

We can, however, find a transformation of variables which does lead to a Hamil-
tonian form, viz.

x :=
1

2
r2, y := z. (5.26)

Then it is easy to see that





dx

dt
= r

dr

dt
= −∂ψ

∂z
= −∂ψ

∂y
,

dy

dt
=

dz

dt
=

1

r

∂ψ

∂r
=

∂ψ

∂x
,

(5.27)
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which is a Hamiltonian system with respect to x and y. Using (5.23), (5.26) we
can derive an equivalent formulation





dx

dt
=

√
2xur(

√
2x, y),

dy

dt
= uz(

√
2x, y).

(5.28)

Consider now the following system of ordinary differential equations (which is
equivalent to (5.24))





dr

dt
= ur(r, z),

dz

dt
= uz(r, z).

(5.29)

Direct application of the midpoint rule to (5.29) gives





rk+1 = rk + ∆t ur

(
rk + rk+1

2
,
zk + zk+1

2

)
,

zk+1 = zk + ∆t uz

(
rk + rk+1

2
,
zk + zk+1

2

)
.

(5.30)

On the other hand, if we apply the midpoint rule to (5.28) we obtain





xk+1 = xk + ∆t
√
xk + xk+1 ur

(√
xk + xk+1,

yk + yk+1

2

)
,

yk+1 = yk + ∆t uz

(√
xk + xk+1,

yk + yk+1

2

)
.

(5.31)

Since (5.30) and (5.31) are implicit we may e.g. employ a predictor-corrector
method to find a solution. Of course, this requires the problem to be not stiff,
which we therefore assume here. We use Euler forward as a predictor. For
(5.28) this leads to





xk+1 = xk + ∆t
√

2xk ur(
√

2xk, yk),

yk+1 = yk + ∆t uz(
√

2xk, yk).

(5.32)
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A corrector then iterates on xk+1 in (5.31). Let us illustrate these methods by
two examples.

Example 5.3.1. Consider an axisymmetric velocity field given by





dr

dt
= πr,

dz

dt
= −2πz.

(5.33)

These equations can simply be solved to give





r(t) = r(0) eπt,

z(t) = z(0) e−2πt.
(5.34)

In particular let the initial domain be a cylinder with radius r = 1 and height
h = π, being the initial values of functions r(t) and z(t) respectively. Then it
can be seen that the volume of the body V (t) := πr2(t)z(t) remains constant
and maintains a cylindrical form. Indeed, the points at the top of the cylinder
(see Figure 5.4) all move with the same speed downwards. Those at the bottom
have vertical velocity equal to zero and those at the cylinder surface all have the
same radial velocity. One can see that the geometry of the cylinder is defined
by the motion of the point P (t), which has initial value P (0) := (r(0), z(0))T .

As for solving the problem numerically, a direct application of the midpoint rule
(see (5.30)) to (5.33) gives





rk+1 = rk + 1
2∆t π(rk + rk+1),

zk+1 = zk − ∆t π(zk + zk+1).
(5.35)

So that we find

rk+1 =
1 + ∆t π/2

1 − ∆t π/2
rk , zk+1 =

1 − ∆t π

1 + ∆t π
zk. (5.36)

Hence

[
1

2

(
rk+1

)2
zk+1

]
=

(
1 + ∆t π/2

1 − ∆t π/2

)2
1 − ∆t π

1 + ∆t π

[
1

2

(
rk
)2
zk

]
. (5.37)
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Figure 5.4: Cylinder evolution in time (Example 5.3.1).

From (5.37) we clearly see that we do not have conservation of volume.

Now we associate a Hamiltonian ψ(r, z) = −πr2z to the time evolution of point
P (t). Clearly, it satisfies (5.24). We now use (5.26) and move directly to (5.31)
(note that ur(r, z) = πr = π

√
2x = ur(x, y)), which gives





xk+1 = xk + ∆t π(xk + xk+1),

yk+1 = yk − ∆t π(yk + yk+1).
(5.38)

Consequently we have

[
1

2

(
rk+1

)2
zk+1

]
=

1 − ∆tπ

1 + ∆tπ
· 1 + ∆tπ

1 − ∆tπ

[
1

2

(
rk
)2
zk

]
. (5.39)
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Hence this method conserves the volume numerically.
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Figure 5.5: Volume error graphs for different number of mid-point correction
steps (Example 5.3.1).

We have performed a numerical simulation of P (t), a point at the top edge of
the cylinder (see Figure 5.4a), for t ∈ [0, 0.2]. This gives the values for r(t) and
z(t) and thus we can find an estimate of the volume as well. In Figure 5.5 we
have plotted the error, i.e. the difference between exact and numerical volume
as a function of t for various values of Nc, the number of correction steps. For
Nc = 8 we appear to have full accuracy (up to round-off error).

The next example will demonstrate the idea for a non-linear problem.

Example 5.3.2. Consider a cylindrically symmetric three dimensional velocity
field
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ur = −1

8
r4 cos z,

uz =
1

2
r2 sin z.

(5.40)

Since (5.22) is satisfied, the velocity field above is divergence free. Rewriting r,
z in terms of x, y (see (5.26)) gives





dx

dt
= −1

2
x2 cos y,

dy

dt
= x sin y.

(5.41)

This system is a Hamiltonian system. Indeed, one can easily find the expression
for the Hamiltonian itself

ψ(x, y) =
1

2
x2 sin y. (5.42)

In Figure 5.6a we have drawn a typical cylinder with radius 1 and height π.
The initial position of the cylinder’s upper and lower planes correspond to z = π
and z = 0 respectively. Note that the velocity component in the z-direction is
proportional to sin z and stays 0 for z = 0, π. The volume of the body at time t
can be represented by the following integral

π

∫ π

0

r2(z) dz, (5.43)

The evolution of the resulting surface is depicted in Figure 5.6.

As was illustrated in the first example, conservation of volume depends on the
number of correction steps. However, here we have a more complicated surface
requiring numerical integration. Therefore we introduce another parameter, Nh

say, that indicates the number of intervals used in an equispaced trapezoidal
rule to evaluate (5.43). We like to point out that this Nh is not relevant for
our method as such (and indeed a higher order quadrature formula would do
a much better job). Yet it is interesting to see how the accuracy improves by
increasing Nh, see Figure 5.7. Note that the trapezoidal method is second order
(in space!) and is apparently dictating the overall accuracy.
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Figure 5.6: Cylinder evolution in time (Example 5.3.2).

5.4 Midpoint Rule for Autonomous Velocity Fields

So far we have assumed that v was available in explicit form. Of course, in
practice the velocity is computed from continuity and momentum equations
numerically. We may assume that this has been done to some degree of accu-
racy, e.g. by a finite element method (cf. [37]). The question is now how to use
the midpoint rule, as we do not have values for the velocities at midpoints, even
less at the unknown end points. Since (5.1) is an ODE we could still formally
use Euler forward to predict the next time level position, in fact adopting a La-
grangian point of view. We then still have the formal problem that a correction
by the midpoint rule would be at best an approximate real midpoint step, as we
do not know exact trajectories (of the ODE!). Below we work out an alternative
method which both avoids iteration and problems at intermediate points; the
only cost is some interpolation (including errors resulting from this).

We shall first sketch the idea for a scalar equation; so consider
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Figure 5.7: Volume error graphs for different number of integration intervals
(Example 5.3.2).

dx

dt
= v(x), t ∈ [0, T ]. (5.44)

Though dealing with an ODE, we now like to see x(t) as a element of a flow, i.e.
a compactum I(t) moving on the x-axis in time. Let x(0) ∈ I(0), then x(t) ∈ I(t).
With x0 = x(0) we obtain xk by numerical integration with ∆t as step size. If we
have a set of points xi(0), i = 1, . . . , N , with xi(0) ∈ I(0) then defining xk

i as the
numerical approximant of xi(t

k) for i = 1, . . . , N , we can find an approximation
of I(tk) by interpolating on the values xk

i .

The idea is to bypass the implicitness of the midpoint rule, by employing the
autonomy of (5.44). For this we realize that the midpoint rule on (tk, tk+ 1

2 ) coin-
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Figure 5.8: The method.

cides with the Euler backward method applied on that interval, see Figure 5.8a.
Therefore, if we would know the direction field at tk+ 1

2 , we could do a ”forward”
step in negative time direction and obtain values at tk, x̂k

i say, see Figure 5.8b.
Any xk

i can be seen as a certain weighted average of those points, e.g. the point
xk

0 can be found from x̂k
1 and x̂k

2 by linear interpolation (see Figure 5.8c). This
in turn is then used with the same weights for the v-values at tk+ 1

2 to obtain

an approximate v(x
k+ 1

2

i ). The nice thing about autonomous ODE is that the
direction field is constant in time. So we simply use the v-values at tki for those

at tk+ 1
2

i . Of course, one can use higher order interpolation too, giving a more

accurate computation of v(xk+ 1
2

i ) (within accuracy bounds set by the local error
discretization).

The final step now is to compute xk+1
i as

xk+1
i = xk

i + ∆t v(x
k+ 1

2

i ), i = 1, . . . , N. (5.45)
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Note that v(xk+ 1
2

i ) is not known exactly, being the price for employing inter-
polation. Yet, the results are remarkably good, see examples below. The set
of points xk

i may be reshuffled, all depending on how the flow moves. A fur-
ther discussion of this is outside the scope of this thesis and will be dealt with
elsewhere.

The method above can be applied to two (and three) dimensional problems as
well. Consider an autonomous Hamiltonian system for x = (x, y)T

dx

dt
= v(x), t ∈ [0, T ], (5.46)

where v(x) = (ux(x, y), uy(x, y))T . The mid-point integration rule for a particular
point xi reads as

xk+1
i = xk

i + ∆tv(x
k+ 1

2

i ). (5.47)

We define x̂
k+ 1

2

i as the result of shifting of xk
i over 1

2 ∆t, and because the system
is autonomous we have

v(x̂
k+ 1

2

i ) = v(xk
i ). (5.48)

We first employ linear interpolation to approximate the velocity at x
k+ 1

2

i . So we

choose some x̂
k+ 1

2

j , j = 1, 2, 3. By ”integrating backwards” we obtain

x̂k
j = x̂

k+ 1
2

j − 1

2
∆tv(x̂

k+ 1
2

j ), j = 1, 2, 3. (5.49)

We now use the thus obtained x̂k
j , j = 1, 2, 3, as interpolation points at tk and

v(x̂
k+ 1

2

j ), j = 1, 2, 3, as values, to find a vector interpolation polynomial

g(x) =

(
axx+ bxy + cx
ayx+ byy + cy

)
, (5.50)

such that g(xk
j ) = v(x̂

k+ 1
2

j ), j = 1, 2, 3. The interpolation of the velocity at x
k+ 1

2

i

is then found as

v(x
k+ 1

2

i ) = g(xk
i ). (5.51)
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In order to use a higher order interpolation one should choose more points

x̂
k+ 1

2

j , say j = 1, . . . , n. For n = 6, for example, this could be quadratic interpo-
lation and g will have the following form

g(x) =

(
axx

2 + bxy
2 + cxxy + dxx+ exy + fx

ayx
2 + byy

2 + cyxy + dyx+ eyy + fy

)
. (5.52)

To illustrate the method above we give two examples. Both deal with 3-D cases
where symmetry allows for a suitable Hamiltonian formulation. The first exam-
ple is just to demonstrate the quality of the method; therefore it uses a given
vector field v (as in Example 5.3.2). The second example employs a Finite El-
ement method to solve a series of Stokes problems for obtaining the velocity
field.

Example 5.4.1. In this example we consider the same ODE as Example 5.3.2,
i.e. an axisymmetric problem where the velocity field is given by (see (5.40))





ur = −1

8
r4 cos z,

uz =
1

2
r2 sin z.

(5.53)

We now let the initial domain be an ellipsoid with principle axis in the r and
z direction equal to 2 and 1 respectively. Clearly, for computational purposes
we employ the formulation (5.41), where the initial domain is a transformed
quarter of an ellipse. A graphical description of its evolution from t = 0 to
t = 0.3 is given in Figure 5.9. For the numerical experiments we choose the
time step as ∆t = 10−2. The number of points at the boundary is taken equal to
Nh = 26. For the time stepping we use the implicit midpoint rule in the setting
outlined above. First we employ linear interpolation. In Figure 5.10a we have
depicted the difference between the exact volume of the body and the volume
found by the numerical approximation method. We remark that the error is
proportional to t. This can be seen as the cumulative interpolation error in v.
Note that at each time step the contribution of the interpolation to the local
error equals this error times ∆t. This is confirmed by Figure 5.10b, where
we have displayed the error when quadratic interpolation is used; the error is
still linear in t. Actually we see that the error drops by two decades, showing
that it is a result of interpolation indeed (so the discretization errors from the
midpoint rule do not show up). The high accuracy in both cases (much more
than to be expected from O(∆t2)) confirms that we have effectively ”numerical
conservation”.

Example 5.4.2. This example illustrates how the algorithm can be applied
when v is not known explicitly. Note that in all previous examples the velocity
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(a) (b)

(c) (d)

Figure 5.9: Evolution of an ellipse (Example 5.4.1).

field and the stream function were known analytically, through the whole time
interval. We now use velocities which are computed numerically.

Consider the motion of a viscous axisymmetric droplet driven by the surface
tension. This problem can be described by the Stokes equations (see [37])

∇ · σ = 0,

∇ · v = 0,
(5.54)

where σ = −pI + η(∇v + ∇vT ) is the stress tensor. Here v is the velocity of
the fluid, and p is the pressure. Since we have axisymmetry we can take v =
(ur(r, z), uz(r, z))

T .

Let us take an ellipsoid as initial value for the body, with principle axis in
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Figure 5.10: Volume error graphs for the midpoint rule with different time steps
and fixed mesh size: ∆t = 10−2, Nh = 26 (Example 5.4.1).

r and z direction equal to 2 and 1 respectively. In fact, one can employ the
symmetry to let the initial computational domain Ω0 be a quarter of an ellipse
(cf. Figure 5.11a). Clearly, the boundary of the domain Γ consists of three parts
Γ = ΓOr ∪ ΓOz ∪ Γs. Therefore we have three types of boundary conditions for
every part of the boundary. For x ∈ ΓOr ∪ ΓOz we have symmetric boundary
conditions which read as follows

v · n = 0,

σn · t = 0,
(5.55)

where n is the outward normal and t is the tangent to the boundary.

For x ∈ Γs we use the so called surface tension boundary conditions (see [24])
which can be written as

σn = −k(s)n. (5.56)

Here k(s) is the curvature of the boundary.

We use finite elements to discretize the problem (see [37]); they give a solution
with second order errors (in the mesh size). The resulting system of linear
equations has the following block structure
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Figure 5.11: Evolution of the Stokes flow driven by the surface tension in time
(Example 5.4.2).

(
A B
BT 0

)(
u

p

)
=

(
f1
f2

)
, (5.57)

where A is a symmetric positive definite matrix and u, p are the vectors of
unknown velocity and pressure respectively. The system can e.g. be solved
using a Schur complement method, see [37]. This requires the matrix A to be
easily invertible (unless an iterative procedure is going to be used). For this we
obtain a complete Cholesky factor of A, after permuting the matrix according
to a minimum degree reordering (see [36]).

Once we have boundary data (in particular the free boundary) we can use them
to obtain the velocity field at a certain time point and consequently in a time
stepping method. For the latter we have to solve (5.29). However, we use to
(5.28) instead, which is a Hamiltonian system.
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In Figure 5.12 we have depicted the evolution computed by employing the
implicit midpoint rule with ∆t = 10−2 and the algorithm outlined above (see
(5.47)-(5.51)) with various values of the number of discretization intervals at
the boundary, Nh. In Figure 5.12 one can see that the accuracy of the com-
puted area is much higher than the discretization error and quadratic in the
grid size. Since linear interpolation gives second order accuracy, quadratic in-
terpolation does not improve the accuracy here, as the Stokes solver is second
order. This is due to the fact that the velocity field is not known exactly and
therefore the discretization error (from FEM solver) limits the volume preserva-
tion.
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Figure 5.12: Volume error graphs for the midpoint rule with fixed time step and
different mesh sizes: ∆t = 10−2, Nh = 27 (Example 5.4.2).
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Chapter 6

Motion of the Plunger

In the previous chapters we assumed the velocity Vp(t) of the plunger to be
known. So its values could be used in order to prescribe the boundary condi-
tions for the Stokes problem (see Section 3.3). In practice this velocity is the
result of a movement caused by some external force on the one hand and the
counter force from the glass on the other. In this chapter we study in detail
this movement and the numerical computation. First we deduce the equation
of motion here, which will be straightforward Newtonian mechanics. In Sec-
tion 6.1 it is shown that the Stokes equations and the derived ordinary differ-
ential equation are coupled with respect to the plunger velocity. Taking a closer
look on the ODE we show that the equation is stiff, i.e. it should be solved by
an implicit method. However, as the velocity of the plunger is coupled with the
motion equations a straightforward implementation of the implicit scheme is
impossible. In Section 6.3 we give a solution to this problem.

6.1 Ordinary Differential Equation for the Plunger
Velocity

The plunger movement is the result of a certain pressure pp applied to its bot-
tom. Let F (t) denote the total force on the plunger and mp be the mass of the
plunger. Then

dVp(t)

dt
=
F (t)

mp
. (6.1)

This total force is the sum of
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F (t) = Fp + Fg(t), (6.2)

where Fp remains constant through the whole process and Fg(t) is the force on
the plunger from the glass. The constant force can be computed as

Fp = Sppp = const, (6.3)

where Sp is the area of the surface where pressure pp is applied. The second
term Fg(t), is the force on the plunger from the glass. The force from the glass
can be expressed in terms of the stress tensor (3.12)

Fg(t) =

∫

S(t)

σn · ez dS, (6.4)

where σ ≡ σ(t) is the stress tensor, and S(t) the part of the plunger surface
which is in contact with the glass at time t. The formula requires integration
of the second component of σn only, as the first one will vanish due to such
integration because of the axisymmetrical nature of the problem.

6

�

r

z
R(z)

n

t

nr

nzds

dz

Figure 6.1: Geometry of the plunger.

Consider Figure 6.1 which depicts one half of the plunger (cf. Figure 1.1) turned
by 90 degrees. If z is the axial variable and R(z) denotes the form of the plunger
we can derive

dS = 2π Rp(s) ds = 2π
√

1 +R′
p(z)

2Rp(z) dz, (6.5)
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where s represents the length over the plunger profile. The two dimensional
surface S(t) is related to the interval [z0, z1] on the z axis. Then (6.4) can be
written as follows

Fg(t) = 2π

∫ z1

z0

σn · ez

√
1 +R′

p(z)
2Rp(z) dz. (6.6)

The values of σn can be obtained as described in Section 4.4. Nevertheless
we work out an alternative form of (6.6). The normal components nr, nz (see
Figure 6.1) are computed as follows

n = − 1√
1 +R′

p(z)
2

(1, R′

p(z), 0)T . (6.7)

Using the expressions (3.12) for the stress tensor components, (6.6) reads

Fg(t) = 2π

∫ z1

z0

((
p− 2η

∂uz

∂z

)
R′

p(z) + η

(
∂ur

∂z
+
∂uz

∂r

))
Rp(z) dz. (6.8)

Now, in order to compute the velocity of the plunger Vp(t) as a function of time,
one should solve the ordinary differential equation





dVp(t)

dt
=

Fg(t)

mp
+
Fp

mp
,

Vp(0) = V0,

(6.9)

where V0 is some initial velocity of the plunger. Note that we can compute Fg(t),
once ur, uz, p (or σn) are known. The latter are obtained from the solution of
the Stokes equations (2.22) and (2.23). In order to solve the Stokes equations
one needs some value for the plunger velocity Vp in (3.28) and (3.29). So, at
time t = 0 we use V0 from (6.9) and find Fg(0). We can thus perform an explicit
integration step in (6.9). In general, suppose we use the Euler forward scheme

V k+1
p = V k

p + ∆tk
Fg(t

k) + Fp

mp
. (6.10)

Having solved the Stokes equations, with the new velocity of the plunger V k+1
p ,

we can complete the boundary conditions for the Stokes problem at t = tk+1.
To this end the velocity of the plunger obtained from (6.10) is used. However,
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Figure 6.2: Velocity of the plunger (numerical instabilities).

as illustrated in Figure 6.2, the algorithm turns out to be unstable. Looking
more carefully at Figure 6.2 we detect a phenomenon that looks like stiffness.
To overcome this we should take recourse to implicit methods. A fully implicit
scheme, however, practically impossible as we do not know the plunger velocity
at tk+1; thus we cannot use it for the boundary conditions (3.28), (3.29). Of
course, a predictor-corrector scheme for such an implicit integrator will only
converge for infeasible small time steps because of stiffness.

6.2 Stiffness Phenomenon

In this section we like to investigate the stiffness of the ordinary differential
equation (6.9). Clearly, we need to have a closer look at Fg(t), as derived in (6.8).
In general it is impossible to compute it exactly so we take recourse to a thin
film approximation. Here we shall approach the problem analytically in order
to point out the stiffness phenomenon detected in numerical simulation. For a
more detailed discussion see [39]. We shall consider a simple, yet meaningful
geometry for the mould and the plunger, see Figure 6.3. Let each of them be
defined by a parabola, say

Rm(z) = dm

√
z, Rp(z) = dp

√
z − z0, (6.11)

where coefficients dm, dp have positive values and z0 is the position of the
plunger.
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Figure 6.3: Mould and plunger geometries defined by parabolas.

Let us define ε := D/L as the ratio between the length scales corresponding
to the parison’s wall thickness D and the height of the parison L. Since D is
smaller than L, ε is a small parameter. The variables can be then scaled as
follows

r = Dr′, z = Lz′, ur = εV u′r, uz = V u′z, p =
ηV L

D2
p′, (6.12)

where V is the typical flow velocity. Using (6.12) we can make (6.8) dimension-
less

Fg(t) := 2πηV LF ′

g(t). (6.13)

Then (6.8) can be approximated by the following expression

F ′

g(t) =

∫ z′

1

z′

0

((
p′ − 2ε2

∂u′z
∂z′

)
R′

p
′
(z′) +

(
ε2
∂u′r
∂z′

+
∂u′z
∂r′

))
R′

p(z
′) dz

(6.14)

≈
∫ z′

1

z′

0

(
p′R′

p
′
(z′) +

∂u′z
∂r′

)
R′

p(z
′) dz.

Using (6.12) it is possible to find the exact solution of the Stokes equations
(3.13), (3.14), (3.15) (see [39])
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u′r =
1

r′
d

dz′

∫ R′

m

r′

r′u′z(r
′, z′) dr,

(6.15)

u′z =
1

4
r′

2 dp′

dz′
+A(z′) ln r′ +B(z′),

where A(z′) and B(z′) can be obtained from the boundary conditions. The
eventually dimensional force Fg(t) takes then the following form

Fg(t) ≈ 2πηV LV ′

p(t′)

∫ z′

1

z′

0

cm − cp
(bm − bp)2 − (am − ap)(cm − cp)

dz, (6.16)

where V ′

p(t′) is the dimensionless velocity of the plunger scaled with V ; am, ap,
bm, bp, cm, cp denote

am = lnR′

m(z′) + sm/R
′

m(z′), ap = lnR′

p(z
′) + sp/R

′

p(z
′),

bm = R′

m
2
(z′)(1 + 2sm/R

′

m(z′)), bp = R′

p
2
(z′)(1 + 2sp/R

′

p(z
′))

cm = R′

m
4
(z′)(1 + 4sm/R

′

m(z′)), cp = R′

p
4
(z′)(1 + 4sp/R

′

p(z
′)),

(6.17)

respectively. Here sm, sp are dimensionless parameters similar to the friction
coefficients βm, βp as defined in Section 3.3. Note that all defined quantities are
dimensionless.
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Figure 6.4: Force on the plunger as a function of z′1

The dimensionless integral in (6.14) can be computed numerically. The graph
in Figure 6.4 shows the results of this integration as a function of upper bound
z′1 in (6.14). Using the same scaling (6.9) reads
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dV ′

p

dt′
= V ′

pI(t)
2πL2η

V mp
+ const, (6.18)

where t = t′ L/V , Vp = V V ′

p, and I(t) is the dimensionless integral from (6.14).
The typical values for L and V are 10−1 m and 10−1 s respectively. The mass of
the plunger device mp is of order 1. The viscosity coefficient η for our problem
is a large number

η ≈ 104 kg/s m. (6.19)

One can see that the coefficient of V ′

p in the right-hand side is a large. Indeed,
taking I(t) ≈ 1 (see Figure 6.4) we thus find

I(t)
2πL2η

V mp
≈ 104. (6.20)

This clearly indicates that (6.18) is a stiffness equation. One should note that
η is the dominating quantity. This will also be the case for more complicated
geometries. This then shows the inherent stiffness of the plunger motion equa-
tion.

6.3 Uncoupling the Flow Equations and the Plunger
Velocity

As it was shown in Sections 6.1 and 6.2 an explicit method leads to numerical
instabilities. We therefore prefer to use an implicit method instead. However,
the right-hand side F (t)/mp of (6.1) depends on the solution of the Stokes equa-
tions. In order to apply an implicit step to (6.1) at time t = tk we need to know
Fg(t

k+1). In this case we would compute

V k+1
p = V k

p + ∆tk
Fg(t

k+1) + Fp

mp
. (6.21)

Note that Fg(t
k+1) resulting from the solution of the Stokes equations with V k+1

p .
Clearly, in this way the Stokes equations and the motion of the plunger are cou-
pled. In order to use the implicit scheme (6.21), we could, for example, predict
the velocity of the plunger using (6.10) and then use it for the boundary con-
ditions in the Stokes equations. After having solved the latter, let us compute



90 Motion of the Plunger

the value for Fg(t
k+1) and perform (6.21). Unfortunately this does not work

because of the explicit prediction step, which sooner or later cause numerical
instabilities.

Below we work out how to overcome the stiffness phenomenon for our problem.
The crucial role here is played by regarding the velocity of the plunger Vp(t)
uncoupled from the parameter Vp in the boundary conditions for the Stokes
problem. We shall make use of the following lemma.

Lemma 1 Let v1, p1 and v2, p2 be the solutions of the Stokes equations (2.22)
and (2.23) with corresponding plunger velocities Vp1

and Vp2
respectively. Then

k1v1 + k2v2, p0 + k1(p1 − p0) + k2(p2 − p0) is also a solution of these equations with
Vp = k1Vp1

+ k2Vp2
.

Proof. From ∇ · p0I = 0, it follows that

∇ · σ(k1v1 + k2v2, p0 + k1(p1 − p0) + k2(p2 − p0)) =

(6.22)

k1∇ · σ(v1, p1) + k2∇ · σ(v2, p2) = 0.

Hence, (2.22) is satisfied. Clearly (2.23) holds as well, since

∇ · (k1v1 + k2v2) = k1 ∇ · v1 + k2 ∇ · v2 = 0. (6.23)

In the same way this property can be shown for the boundary conditions. Con-
sidering the pressure field relative to p0, the boundary conditions (3.31), (3.32)
are satisfied

σ(k1v1 + k2v2, p0 + k1(p1 − p0) + k2(p2 − p0))n =

(6.24)

k1(σ(v1, p1)n + p0n) + k2(σ(v2, p2)n + p0n) − p0n = −p0.n.

This proves the lemma. �

From Lemma 1 it follows that we may consider the velocity and pressure fields
at some time t as affine functions of Vp, so

v(t;Vp) = Vp v(t; 1),

p(t;Vp) = p0 + Vp (p(t; 1) − p0).
(6.25)
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Here v(t;α), p(t;α) is the solution of the Stokes equations with the velocity of
the plunger equal to α = const.

As a consequence we deduce from (6.8) that this then also holds for the glass
force

Fg(t;Vp) = F0(t) + Vp (Fg(t; 1) − F0(t)) , (6.26)

where F0(t) is the force on the glass due to normal air pressure

F0(t) = 2π

∫ z1

z0

p0R
′

p(z)Rp(z) dz. (6.27)

Using (6.26) we can reformulate (6.9) as follows





dVp(t)

dt
= Vp(t)

Fg(t; 1) − F0(t)

mp
+
Fp + F0(t)

mp
,

Vp(0) = V0.

(6.28)

Note that one should use Vp = 1 for the boundary conditions (3.28), (3.29).
By tracking the free boundary and defining the Stokes problem, the glass force
Fg(t; 1) can be computed for the changing domain Ω. As a consequence it makes
sense to consider the force as a function of the plunger position, not the time.
So we slightly change the notation

Fg := Fg(z;Vp), Vp := Vp(z). (6.29)

Equation (6.28) should be reformulated as follows





1

2

dV 2
p (z)

dz
= Vp(z)

Fg(z; 1) − F0(z)

mp
+
Fp + F0(z)

mp
,

Vp(0) = V0.

(6.30)

Here we used

dVp(t)

dt
=
dVp(z)

dz
Vp(z). (6.31)
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By solving the equations for evaluating glass domain we may e.g. obtain a table
with plunger positions, and velocity and pressure fields computed for Vp = 1 in
corresponding domains. Hence, the velocity of the plunger can be considered
as a function of plunger position, but it is still unknown as a function of t.

If one applies the Euler explicit method to (6.30),





1

2

V k+1
p

2 − V k
p

2

zk+1 − zk
= V k

p

Fg(z
k; 1) − F0(z

k)

mp
+
Fp + F0(z

k)

mp
,

V 0
p = V0.

(6.32)

it appears that this approach is identical to one in which the plunger velocity
for the boundary conditions at the next time-step were obtained straight from
the previous velocity field and pressure field

Vp(t+ ∆t) = Vp(t) + ∆t
Fg(t) + Fp

mp
. (6.33)

The boundary conditions (3.28), (3.29) for the next stationary Stokes problem
should use Vp(t+ ∆t). We omit further discussion of (6.33).
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Figure 6.5: Velocity of the plunger obtained using implicit scheme.

Now consider the implicit Euler method instead
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1

2

V k+1
p

2 − V k
p

2

zk+1 − zk
= V k+1

p

Fg(z
k+1; 1) − F0(z

k+1)

mp
+
Fp + F0(z

k+1)

mp
,

V 0
p = V0.

(6.34)

Although (6.34) is implicit, we just have a quadratic equation for V k+1
p , which

can be solved trivially. The result is in Figure 6.5a. We clearly have a stable
calculation now.

The velocity of the plunger in Figure 6.5a as is a function of z. In order to obtain
the velocity as a function of t the following approximation can be used





zk+1 = zk + ∆tk Vp(z
k),

tk+1 = tk + ∆tk,
(6.35)

where t0 = 0. The final graph is depicted in Figure 6.5b.
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Chapter 7

Heat Exchange Modelling

In this chapter we consider the heat exchange problem. Clearly, this involves
the glass, the mould, and the plunger. We start with considering time-dependent
energy equations in cylindrical coordinates for each of the subdomains. Then
we discuss the boundary conditions including those on the borders between
the glass and the mechanical construction. The main difficulty here is that the
plunger moves as a solid body, while the glass changes its geometry in time.
In Section 7.2 we derive the variational formulation of the problem, followed
by the FEM discretization. In Section 7.3 we describe in more detail an ap-
proximation of the energy equations on a moving nonmatching grid , which is a
combination of a FEM discretization in 2-D and implicit domain decomposition
algorithm.

7.1 The Heat Equation in Cylindrical Coordinates

Following (2.31) we see that the heat equation in axisymmetrical cylindrical
coordinates can be written as follows

cgρg
∂Tg

∂t
=

1

r

∂

∂r

(
r kg(Tg)

∂Tg

∂r

)
+

∂

∂z

(
kg(Tg)

∂Tg

∂z

)
−

(7.1)

cgρg

(
ur
∂Tg

∂r
+ uz

∂Tg

∂z

)
+ Φ(ur, uz),

where Tg is the temperature of the glass, cg, ρg, kg(Tg) are the conductivity, the
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density, and the heat exchange coefficient of glass respectively, and Φ(ur, uz)
stands for the mass force built up from the viscous forces of moving glass.
Equation (7.1) has to be solved in the glass domain Ωt,g.

Consider the energy equation for the plunger which is moving along Oz with
defined velocity −Vp(t)

cpρp
∂Tp

∂t
=
kp

r

∂

∂r

(
r
∂Tp

∂r

)
+ kp

∂2Tp

∂z2
+ cpρpVp

∂Tp

∂z
. (7.2)

Here Tp is the temperature of the plunger, and cp, ρp and kp are the conductivity,
the density, and the heat exchange coefficient of the plunger respectively. The
above equation has to be solved in the plunger subdomain Ωt,p, which moves
as a solid body.

The energy equation for the mould, i.e. in the domain Ωm, has the following
form

cmρm
∂Tm

∂t
=
km

r

∂

∂r

(
r
∂Tm

∂r

)
+ km

∂2Tm

∂z2
. (7.3)

Here cm, ρm and km are the conductivity, the density, and the heat exchange
coefficient of the mould, respectively.

Next consider the boundary conditions and the conditions on the interface be-
tween the subdomains Ωt,g, Ωt,p, Ωm. To start with, in general the boundary of
Ωt,g consists of four parts (see Figure 7.1)

Γt,g = Γg,s ∪ Γg,p ∪ Γg,m ∪ Γg,f .

Here Γg,s is the symmetry part and changes as a result of the plunger move-
ment; Γg,p and Γg,m are the boundaries which are in contact with the plunger
and the mould; Γg,f is a free boundary.

For the plunger subdomain we have

Γt,p = Γp,s ∪ Γp,f ∪ Γp,g ,

where Γp,s is the symmetry boundary, Γp,f is the boundary which is in contact
with the free space inside of the mould, and Γp,g = Γg,p.

Finally, the boundary of the mould subdomain is
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Figure 7.1: Problem domain.

Γm = Γm,g ∪ Γm,f ,

where Γm,g = Γg,m.

On the symmetry boundary we have the standard boundary conditions

∂Tg

∂r
(0, z) = 0, (0, z) ∈ Γg,s,

(7.4)
∂Tp

∂r
(0, z) = 0, (0, z) ∈ Γp,s.

Let n = (nr, nz)
T and t = (tr, tz)

T be the outward normal and tangential vectors
to the boundary. On the free boundary Γg,f ∪ Γp,f ∪ Γm,f we have the following
boundary conditions
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kg(Tg)

(
∂Tg

∂r
nr +

∂Tg

∂z
nz

)
+ αg,f (Tg − Text) = 0, (r, z) ∈ Γg,f ,

kp

(
∂Tp

∂r
nr +

∂Tp

∂z
nz

)
+ αp,f (Tp − Text) = 0, (r, z) ∈ Γp,f , (7.5)

km

(
∂Tm

∂r
nr +

∂Tm

∂z
nz

)
+ αm,f (Tm − Text) = 0, (r, z) ∈ Γm,f ,

where Text is the external temperature (the temperature of the air), and αg,f ,
αp,f , αm,f are the heat exchange coefficients with the air.

We now define the boundary conditions on the interface between the subdo-
mains. Since n and t are orthogonal vectors we have

kg(Tg)

(
∂Tg

∂r
nr +

∂Tg

∂z
nz

)
+ αg,p(Tg − Tp) = 0, (r, z) ∈ Γg,p,

kp

(
∂Tp

∂r
nr +

∂Tp

∂z
nz

)
+ αg,p(Tg − Tp) = 0, (r, z) ∈ Γg,p,

(7.6)

kg(Tg)

(
∂Tg

∂r
nr +

∂Tg

∂z
nz

)
+ αg,m(Tg − Tm) = 0, (r, z) ∈ Γg,m,

kp

(
∂Tm

∂r
nr +

∂Tm

∂z
nz

)
+ αg,m(Tg − Tm) = 0, (r, z) ∈ Γg,m.

7.2 Variational Formulation

In this section we derive a variational formulation of the problem defined in
the previous section. The current formulation differs from the standard one
because of (7.6). Note that here

T = Ti, (r, z) ∈ Ωt,i, i = g, p,m

is a discontinuous function. For example T 6∈ H1(Ωt), where Ωt = Ωt,g∪Ωt,p∪Ωm.

Our goal is to find the functions

Tg ∈ H1(Ωt,g), Tp ∈ H1(Ωt,p), Tm ∈ H1(Ωm),
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such that for any

Qg ∈ H1(Ωt,g), Qp ∈ H1(Ωt,p), Qm ∈ H1(Ωm),

and for any t ≥ t0 the following three equations (for the glass, the plunger, and
the mould) are satisfied

cgρg

∫

Ωt,g

∂Tg

∂t
Qgr drdz +

∫

Ωt,g

kg(Tg)

(
∂Tg

∂r

∂Qg

∂r
+
∂Tg

∂z

∂Qg

∂z

)
rdrdz +

cgρg

∫

Ωt,g

(
ur
∂Tg

∂r
+ uz

∂Tg

∂z

)
Qgrdrdz +

∫

Γg,f

αg,f (Tg − Text)Qg r dγ +

(7.7)∫

Γg,p

αg,p(Tg − Tp)Qg r dγ +

∫

Γg,m

αg,m(Tg − Tm)Qg r dγ =

∫

Ωt,g

Φ(ur, uz)Qg r drdz,

cpρp

∫

Ωt,p

∂Tp

∂t
Qpr drdz + kp

∫

Ωt,p

(
∂Tp

∂r

∂Qp

∂r
+
∂Tp

∂z

∂Qp

∂z

)
rdrdz −

cpρpVp(t)

∫

Ωt,p

∂Tp

∂z
Qprdrdz +

∫

Γp,f

αp,f (Tp − Text)Qp r dγ + (7.8)

∫

Γg,p

αg,p(Tp − Tg)Qp r dγ = 0,

cmρm

∫

Ωm

∂Tm

∂t
Qmr drdz + km

∫

Ωm

(
∂Tm

∂r

∂Qm

∂r
+
∂Tm

∂z

∂Qm

∂z

)
rdrdz +

(7.9)∫

Γm,f

αm,f (Tm − Text)Qm r dγ +

∫

Γg,m

αg,m(Tm − Tg)Qm r dγ = 0.

Finally, for the initial temperature distribution we use
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Ti(t0, r, z) = Ti,0(r, z), (r, z) ∈ Ω0,i, i = g, p,m. (7.10)

The above formulation allows for discontinuous solutions, which may not be-
long to H1(Ωt). Note that for αg,p, αg,m → ∞ we have the standard formulation,
which gives a solution from H1(Ωt).

7.3 Domain Decomposition Algorithm

In this section we describe the way (7.7) - (7.9) are discretized on nonmatching
moving grids. Note that for both the mould and the plunger subdomains, i.e.
Ωt,p and Ωm, the mesh remains unchanged in time (as for the Ωt,p it moves
together with the plunger). We therefore have to deal with nonmatching grids
on the boundaries Γg,p and Γg,m. Because of the variational formulation derived
in the previous section we can overcome this difficulties, as (7.7) - (7.9) allow
us to use discontinuous functions.

Assume that at tk+1 we have discretized the subdomains Ωk+1
g := Ωtk+1,g and

Ωk+1
p := Ωtk+1,p. In Ωk+1

g we have obtained the solution of the Stokes equations
as described in the previous chapters. Let Hk,g, Hk,p and Hk,m = Hm be the
spaces of piece-wise linear functions, which are the finite subspaces of H1(Ωt,g),
H1(Ωt,p) and H1(Ωm), respectively. Note that Hk,m does not depend on t (the
first index is used here for notation consistency reasons). The goal now is to
compute T k+1

i ∈ Hk+1,i using T k
i ∈ Hk,i, i = g, p,m, which are known.

First of all we interpolate T k
g (r, z), (r, z) ∈ Ωk

g onto Ωk+1
g . Now, in order to define

the functions from Ωk
g on Ωk

g ∪ Ωk+1
g consider the following set

Gk+1
g = {(r, z) ∈ Ωk+1

g , (r, z) 6∈ Ωk
g}.

Let
{
(rk+1

i , zk+1
i )

}
be the set of nodes, discretizing Ωk+1

g . Then we define

T̂ k
g (rk+1

i , zk+1
i ) = T k

g (rk+1
i , zk+1

i ), (rk+1
i , zk+1

i ) ∈ Ωk
g ,

(7.11)
T̂ k

g (rk+1
i , zk+1

i ) = Text, (rk+1
i , zk+1

i ) ∈ Gk+1
g .

On the remaining part of Ωk+1
g (where T̂ k

g (rk+1
i , zk+1

i ) is not defined) we define it
using the basis functions φk+1

g,i (r, z) in Ωk+1
g . As a result we have T̂ k

g ∈ Hk+1,g.
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Now consider approximations of (7.7) - (7.9). As the mould subdomain remains
the same in time we have time independent discretization (fixed mesh) with the
basis functions φm,i. This means that for any k an approximate solution in Ωm

can be found using the same finite space T k
m ∈ Hm. Consider the approximation

of (7.9)

cmρm

∫

Ωm

T k+1
m − T k

m

∆t
φm,i r drdz +

km

∫

Ωm

(
∂T k+1

m

∂r

∂φm,i

∂r
+
∂T k+1

m

∂z

∂φm,i

∂z

)
rdrdz + (7.12)

∫

Γk+1

m,f

αm,f (T k+1
m − Text)φm,i r dγ +

∫

Γk+1
g,m

αg,m(T k+1
m − T̂ k

g )φm,i r dγ = 0.

The reason to use T̂ k
g instead of T k

g is related to the fact that computations
should be performed on Γk+1

g,m . Although T̂ k
g belongs to a different space domain,

it is perfectly defined on Γk+1
g,m .

Next we consider (7.8). As the plunger moves along Oz with velocity −Vp(t) we
make the following variable transformation

z′ = z +

t∫

t0

Vp(s)ds.

Let

T̃p(t, r, z
′) = Tp(t, r, z).

Then

∂Tp

∂t
=
∂T̃p

∂t
+ Vp(t)

∂T̃p

∂z′
,

∂Tp

∂z
=
∂T̃p

∂z′
,

and (7.8) takes the following form
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cpρp

∫

Ω0
p

∂T̃p

∂t
Q̃pr drdz

′ + kp

∫

Ω0
p

(
∂T̃p

∂r

∂Q̃p

∂r
+
∂T̃p

∂z′
∂Q̃p

∂z′

)
rdrdz′ +

∫

�

Γp,f

αp,f (T̃p − Text) Q̃p r dγ
′ +

∫

�

Γg,p

αg,p(T̃p − T̃g) Q̃p r dγ
′ = 0, (7.13)

where

T̃g(t, r, z
′) = Tg(t, r, z), Q̃p(t, r, z

′) = Qp(t, r, z).

In this formulation instead of the plunger movement we deal with the motion
of glass along the plunger border with the velocity v+vp, where vp = (0, Vp(t))

T ,
and v is the velocity field in glass. In order to discretize (7.13) we use time
independent basis functions φ0

p,i which gives us a finite space H0,p, such that
T̃ k

p ∈ H0,p for any k. Analogously to (7.12) we have

cpρp

∫

Ω0
p

T̃ k+1
p − T̃ k

p

∆t
φ0

p,i r drdz
′ + kp

∫

Ω0
p

(
∂T̃ k+1

p

∂r

∂φ0
p,i

∂r
+
∂T̃ k+1

p

∂z′
∂φ0

p,i

∂z′

)
rdrdz′ +

(7.14)∫

�

Γk+1

p,f

αp,f (T̃ k+1
m − Text)φ

0
p,i r dγ

′ +

∫

�

Γk+1
g,p

αg,p(T̃
k+1
p − T̃ k

g )φ0
p,i r dγ

′ = 0,

where

T̃ k
g (r, z′) = T̂ k

g ( r, z).

Finally we derive the relation between the stationary and the moving coordinate
systems of the plunger. This is only needed for the function values on the
boundary Γ̂k+1

g,p . Assume that T̂ k
g (r, z) and T̃ k+1

p (r, z′) are known. Let us define

δk := ∆t
k−1∑

j=1

V j
p +

∆t

2
(V 0

p + V k
p ), (7.15)

where V j
p is the approximate value of Vp(tj). Then
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T̃ k
g (r, z + δk) = T̂ k

g (r, z), (r, z) ∈ Γk
g,p,

(7.16)

T k+1
p (r, z′ − δk+1) = T̃ k+1

p (r, z′), (r, z′) ∈ Γ̃k+1
g,p .

Note that the temperature of the plunger at tk+1 is defined by the function
T̃ k+1

g (r, z′).

Now consider the heat exchange in glass (equation (7.7)). Using the computed
values of T k+1

p in Γk+1
g,p and T k+1

m in Γk+1
g,m (7.7) can be approximated as follows

cgρg

∫

Ωk+1
g

T k+1
g − T̂ k

g

∆t
φk+1

g,i r drdz +

∫

Ωk+1
g

kg(T̂
k
g )

(
∂T k+1

g

∂r

∂φk+1
g,i

∂r
+
∂T k+1

g

∂z

∂φk+1
g,i

∂z

)
rdrdz+

cgρg

∫

Ωk+1
g

(
uk+1

r

∂T k+1
g

∂r
+ uk+1

z

∂T k+1
g

∂z

)
φk+1

g,i r drdz +

∫

Γk+1

g,f

αg,f (T k+1
g − Text)φ

k+1
g,i r dγ+

(7.17)∫

Γk+1
g,p

αg,p(T
k+1
g − T k+1

p )φk+1
g,i r dγ +

∫

Γk+1
g,m

αg,m(T k+1
g − T k+1

m )φk+1
g,i r dγ =

∫

Ωk+1
g

Φ(uk+1
r , uk+1

z )φk+1
g,i r drdz.

Again, T̂ k
g is used in order to perform computations in Hk+1,g, where T k+1

g ∈
Hk+1,g. Both T k+1

p and T k+1
m are well defined on Γk+1

g,p and Γk+1
g,m

Hence, equations (7.11), (7.12), (7.14) - (7.17) define a transformation of func-
tions T k

i ∈ Hk,i to T k+1
i ∈ Hk+1,i, i = g, p,m. The above algorithm is of the first

order with respect to ∆t; we use domain decomposition and an implicit time
integration scheme in every of the subdomains. For the latter either the direct
method (LU decomposition) or an iterative procedure may be used.
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Chapter 8

Numerical Computation and
Results

In the previous chapters we derived and analyzed the theoretical aspects needed
for numerical simulation and its practical implementation. In this chapter we
assess the methods which have been implemented in a simulation tool. Thus
we show simulations of the pressing process, visualize velocity and pressure
fields, track the development of the glass flow, compute the motion of the
plunger and finally also the temperature briefly.

8.1 Constructing the System of Linear Equations

The geometry of the initial computational domain is defined by that of the glass
gob (see Section 1.1). A discussion about the actual values of the parameters
and shapes used by the simulation tool is beyond the scope of this thesis. We
start with some initial 2-D geometry and discretize it to obtain the computa-
tional mesh. The typical meshes (one for the bottle simulation, another one for
the jar simulation) are depicted in Figure 8.1. Clearly, as needed for the finite
element method, it is important to have a proper description of the topology of
the domain, i.e. which parts belong to the boundaries and which to the interior.

In order to construct the matrices of the system (3.54) we step through the ele-
ments τi,j,k (see Section 4.1) of the mesh and compute the local stiffness matri-
ces Aτi,j,k

. Using the global numeration of nodes, i.e. i, j, k, we modify the global
matrix A by adding the values of Aτi,j,k

. Analogously we construct the matrix B
and the right-hand side. The number of unknowns for the velocity is twice the
number of the mesh nodes N . Note that for every mesh node xi we have two
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(a) Jar simulation. (b) Bottle
simula-
tion.

Figure 8.1: Typical mesh for computations.

unknowns, i.e. velocities in r and z directions. Let u = (u1, . . . ,u2N )T denote
the vector of unknowns for the velocity such that (u2i−1,u2i)

T , i = 1, . . . , N cor-
responds to the velocity at the mesh point xi. The number of unknowns for the
pressure is equal to the number of elements of the mesh E. Let p = (p1, . . . ,pE)T

denote the vector of unknowns for the pressure.

The Dirichlet boundary conditions (3.33), (3.34) are given by

v · n = 0, (r, z) ∈ Γs ∪ Γm, (8.1)

v · n = Vpez · n, (r, z) ∈ Γp, (8.2)

where n = (nr, nz, 0)T . One can write (8.1) (8.2) in component form
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ur nr + uz nz = 0, (r, z) ∈ Γs ∪ Γm, (8.3)

ur nr + uz nz = Vpnz , (r, z) ∈ Γp. (8.4)

For Dirichlet boundary conditions some points of our domain need a special
treatment (this does not affect the Neumann boundary conditions which are
defined through the integrals in bilinear forms (see Section 3.4)). So we define

ur = 0, uz = 0, (r, z) ∈ Γs ∩ Γm,

ur = 0, uz = Vp, (r, z) ∈ Γs ∩ Γp.
(8.5)

This means that the motion of glass at these points is defined by the properties
of the boundary and does not depend on the flow as such. We assume that
the rest of the boundary is smooth. Now let us include the Dirichlet boundary
conditions in the system (3.54). One could simply replace the row (or column)
of the matrix using (8.3) and (8.4). However, this would destroy the symmetry
of the matrix and introduce some complications in the solution method. We
therefore modify the system in a way that keeps the symmetry and satisfies the
boundary conditions (8.3) and (8.4) at the same time. We define Am,l, Bm,n, Fm

to be the elements of the original matrices and vector, and Am,l, Bm,n, Fm to be
the elements of the modified matrices and vector respectively. First consider the
symmetry boundary. Let xi = (ri, zi)

T ∈ Γs be a node on the symmetry boundary
(ri ≡ 0). Let m = 2i − 1 ∈ {1, . . . , 2N} be the index in the global numeration of
nodes corresponding to the unknown u2i−1, i.e. um ≡ u2i−1. Then

Am,m = 1,

Am,n = 0, n = 1, . . . , 2N, n 6= m,

An,m = 0, n = 1, . . . , 2N, n 6= m,

Bm,e = 0, e = 1, . . . , E,

Fm = 0.

(8.6)

Here e = 1, . . . , E is the numeration of pressure unknowns.

Next consider Γm. The boundary condition (8.3) for the unknowns u2i−1, u2i at
the point xi ∈ Γm can be written as
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u2i = −u2i−1
nr

nz
. (8.7)

Let m1 = 2i−1, m2 = 2i. Multiply the m2-th equation of the system by nr/nz and
subtract it from the m1-th equation

2N∑

n=1

(
Am1,n −Am2,n

nr

nz

)
un +

E∑

e=1

(
Bm1,e −Bm2,e

nr

nz

)
pe = Fm1

− Fm2

nr

nz
. (8.8)

In n-th equation (n 6= m1,m2) we then consider the sum

Am1,num1
+Am2,num2

=

(
Am1,n −Am2,n

nr

nz

)
um1

+ 0 · um2
. (8.9)

For n = m1 we thus have

(
Am1,m1

−Am2,m1

nr

nz

)
um1

+

(
Am1,m2

−Am2,m2

nr

nz

)
um2

=

(
Am1,m1

− 2Am1,m2

nr

nz
+ (Am2,m2

+ 1)
n2

r

n2
z

)
um1

+
nr

nz
um2

. (8.10)

Hence the modified system can be obtained as follows (the rest of the elements
remains unchanged)
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Am1,n = An,m1
= Am1,n −Am2,n

nr

nz
, n = 1, . . . , 2N, n 6= m1,m2,

Am1,m1
= Am1,m1

− 2Am1,m2

nr

nz
+ (Am2,m2

+ 1)
n2

r

n2
z

,

Bm1,e = Bm1,e −Bm2,e
nr

nz
, e = 1, . . . , E,

Fm1
= Fm1

− Fm2

nr

nz
,

Am2,n = An,m2
= 0, n = 1, . . . , 2N, n 6= m1,m2,

Am2,m2
= 1, Am1,m2

= Am2,m1
=
nr

nz
,

Bm2,e = 0, e = 1, . . . , E,

Fm2
= 0.

(8.11)

Note, that we have assumed that nz 6= 0 in (8.7). In practice nz may be zero, in
which case one should use another form of boundary condition (8.3)

u2i−1 = −u2i
nz

nr
. (8.12)

This leads to exactly the same equations as (8.11), but with m1 and m2 inter-
changed. Finally consider Γp. The boundary condition (8.4) reads

u2i = −u2i−1
nr

nz
+ Vp. (8.13)

Define u′

2i := u2i − Vp. One can see that the system with the transformed un-
known u′

m2
= u′

2i has the same form, with the only difference that the right-
hand side is now Fn − An,m+1Vp. After having obtained the modified system (in
the same way as for Γm) we return to the original unknown um2

. Then for Ak,l,
Bk,l we have (8.11) and for the right-hand side we obtain
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Fn = Fn −An,m2
Vp, n = 1, . . . , 2N, l 6= m1,m2,

Fm1
= Fm1

− Fm2

nr

nz
+

(
Am1,m2

+ (Am2,m2
+ 1)

nr

nz

)
Vp,

Fm2
= Vp.

(8.14)

The above procedure completes the construction of the matrices for the system
of linear equations. In the next section we discuss the solution method for this
system.

8.2 Solving the Algebraic Saddle Point Problem

In this section we describe how the system of linear equations, which gives
the approximate solution of the Stokes equations (2.22), (2.23), is solved. At
this stage of the numerical simulation we have much freedom to choose some
approach. Clearly, the properties of (3.54) will be exploited in order to achieve
a good performance. Consider the system of linear equations (3.54)

(
A B
BT 0

)(
u

p

)
=

(
f1
f2

)
. (8.15)

As said before, the matrix A here is symmetric positive-definite. The whole
system is non-singular due to the Babushka-Brezzi condition (see Section 4.1).
There are various methods and techniques which can be used in order to solve
(8.15). We restrict ourselves to the Schur-complement method which elimi-
nates the unknowns u from (8.15) and results in a system of linear equations
for p. The method reads as follows (for a more detailed description see [37]).
Consider (8.15)





Au +Bp = f1,

BT u = f2.
(8.16)

From the first equation we obtain

u = A−1f1 −A−1Bp. (8.17)

Substitution of (8.17) into the second equation of (8.16) gives
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Rp = g, (8.18)

where

R := BTA−1B, g := BTA−1f1 − f2. (8.19)

Note that R is a symmetric positive-definite matrix. The system (8.18) can be
solved by the conjugate gradient method (see [23], [35], [28], [5], [21]). The
particular steps of the method are not presented here; however, we discuss the
problem in general. Solving the system by the conjugate gradient method in
every iteration we need to compute the matrix-vector product

b := Ra = BTA−1Ba, (8.20)

where a, b are vectors of the same size as p. One can see that (8.20) boils down
to solving the system

Ac = d, (8.21)

where d := Ba. The latter has to be solved for each iteration of the conjugate
gradients for (8.18). Here one can choose between two main possibilities: either
(8.21) should be solved by a direct method, or by an iterative method. Again,
we can use conjugate gradients; we can improve the convergence by employing
a preconditioner for A, etc. However, this would introduce two nested iterative
procedures which can decrease the performance with respect to the compu-
tational time. The preconditioning technique is not straightforward here, as
the matrix pattern is irregular (see Figure 8.2a) with no structured information
about its entries.

The system (8.18) can be solved by a direct method using Cholesky factorization
(see [45], [46]). After obtaining the Cholesky factor U (upper-triangular matrix)
of matrix A we have a system equivalent to (8.21)

UTUc = d. (8.22)

Clearly, the number of operations which has to be performed in order to solve
(8.22) is

O(NU ), (8.23)
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(a) Matrix A (49118 non-
zeros).

(b) Cholesky factor
(580399 non-zeros).

Figure 8.2: Matrix A (3741× 3741) of the system and its Cholesky factor.

where NU is the number of non-zeros in U . The efficiency of computing the
Cholesky factor depends on the number of non-zero entries in resulting matrix
(see Figure 8.2b). The sparsity pattern of the original matrix A does not lead
to the same pattern in the Cholesky factor U . So, in fact, a problem to store a
full matrix may arise in this approach (as is illustrated by Figure 8.2b). Also,
according to (8.23), the smaller number of entries in U will shorten the time to
solve the system. We therefore use a minimum degree reordering (see [36]) to
permute the matrix A, and perform a Cholesky factorization afterwards. Com-
paring Figures 8.2 and 8.3 one can see the benefits of the applied reordering.

(a) Matrix A (49118 non-
zeros).

(b) Cholesky factor
(124550 non-zeros).

Figure 8.3: Permuted matrix A (3741 × 3741) of the system and its Cholesky
factor.

After (8.18) has been solved with respect to p, we can compute u from (8.17).
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Again, the system with A is solved as described above.

8.3 Simulation Tool

In this section we briefly describe how the actual simulation is built up. Note
that the tool was designed to be used by glass engineers in order to under-
stand the process and to be used for design purposes. For example, before
employing a new geometry of the parison one can check the glass behaviour
during the pressing stage in this new configuration; having obtained the pres-
sure field during pressing it is possible to conclude which pressure should be
used in order to keep the mould closed (see Section 1.1), etc. In order to be able
to analyze the manufacturing process by using the numerical simulation (the
computer program), the latter must reflect the process parameters as they come
from practice. So, for example, the geometries of the mould and the plunger are
essential input for the simulation. As was described before, the computations
deal with the problem domains and the initial domain in particular. Clearly,
the initial domain is the result of distributing a certain volume of glass inside
of the mould. The parameters from the process that define this geometry are:
the weight of glass, the density of glass, and the position of the plunger. The
problem of constructing an initial domain in 2-D (axisymmetrical 3-D) based
on the simple scalar input parameters is a separate problem not considered
here.

Figure 8.4: Interactive simulation tool (screenshot).

A user needs a level of interactivity from the simulation program, especially
on the above matter of volume definition. An interactive tool (see Figure 8.4)
simplifies the definition of these parameters and allows to monitor the changes
in the physical problem with respect to the modified input parameters. The
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mould and the plunger geometries described by a set of lines and arcs (which
is similar to the drawings used by engineers in practice).

(a) Geometry view
(beer bottle neckring).

(b) Initial domain
definition (beer bot-
tle).

(c) Machine settings.

Figure 8.5: Interactive simulation tool (screenshot).

We do not describe the functionality of every component used in the simula-
tion tool; in Figure 8.5 we depict the screenshots of some them. As the result of
using this tool we can produce an input file which is used then by the computa-
tional program. The latter encapsulates the algorithms and methods described
in this thesis.

In the next section we present the results of numerical simulations for the
actual parisons, i.e. the bottles and the jars. Using the tool above one can
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compute and visualize the velocity field, the pressure, and the temperature in
the parison during the pressing stage.

8.4 Pressing Simulations

In this section we present the results of numerical simulations and visualiza-
tion for the pressing problem. We consider both the pressing of the jar and the
bottle parisons. The input parameters for simulations consist of the parison’s
geometries, i.e. the mould and the plunger descriptions (see Section 1.1), the
initial position of the plunger, the initial position of the computational (glass)
domain, and a number of parameters characterizing the properties of glass as
were used for the modelling in the previous chapters. The setup procedure as
well as the following computations are almost the same for the jar and the bot-
tle parisons. However, the results of the simulations are clearly different and
reflect the specific properties of the actual process.

(a) (b)

Figure 8.6: Meshes for the initial computational domain.

At each time step (see Chapter 5) we start by discretizing the computational
domain. Clearly, for the first time step this will be an initial domain, and for the
subsequent steps the domain is the result of integration. Although the problem
can be considered as a free-boundary problem, its geometry is constrained by
the mould and the plunger (the physical domain).
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In Figures 8.6, 8.7 we have depicted some typical meshes used for the com-
putations. In Figure 8.6a,b we have displayed possible discretizations of the
initial computational domain. In Figures 8.7a,b one can see meshes which are
used at the final stage of the pressing simulation when the neckring is filled by
glass.

(a) (b)

Figure 8.7: Mesh refinement for the neckring part.

The mesh size for a particular part of the domain should depend on to the ge-
ometries of the mould and the plunger. This is done within a simulation tool
(see Section 8.3). The importance of such an approach is illustrated in Fig-
ure 8.7a,b, where the neckring part of the parison is displayed. In Figure 8.7b
we see that the mesh size, not adjusted according to the neckring geometry, re-
sults in irrelevant discretization. This shows that mesh refinement is essential
for our simulation, especially at its final stage. Note that the neckring mesh
requires a relatively small scale in comparison with the rest of the mould and
the plunger.

The results of the simulations can be analyzed by means of visualization. A
number of figures illustrates both the jar and the bottle simulations.
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(a) (b)

(c) (d)

Figure 8.8: Pressing of jar parison setup.

Consider first a pressing simulation for the jar. The geometries of the mould
and the plunger for the jar are depicted in Figure 8.8a. An exact volume is
given by the mass and the density of the glass is placed in the mould-plunger
configuration as described in the previous section. One can experiment with
the initial position of the plunger and the initial boundaries of the glass domain.
In Figure 8.8b the initial position of the plunger is higher than it happens in
practice. Nevertheless, the simulation tool allows to adjust the initial glass
domain to allow a valid setup. The typical initial positions of the plunger and
the glass for the jar simulation is depicted in Figure 8.8d. This is similar to a
real-life situation when the gob of glass falls down into the mould and the baffle
closes.
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In Figure 8.9 we have visualized the velocity field in the glass during pressing.
The plunger moves upwards, forcing the glass to fill in the space between the
mould and the plunger. At certain point (see Figure 8.9c) the glass hits the
bottom of the mould (the baffle part) and gets closer to the neckring part (see
Figure 8.9d). At this point the pressure in glass increases.

0.0

30.60

61.20

91.80

122.4 mm/s

(a)

0.0

35.0

70.0

105.0

140.0 mm/s

(b)

0.0

25.13

50.25

75.38

100.5 mm/s

(c)

0.0

23.75

47.50

71.25

95.0 mm/s

(d)

Figure 8.9: Pressing of jar parison: velocity field.
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In Figure 8.10 we have displayed the pressure field in glass. Note that during
the pressing the parts of the mould stay together due to the pressure applied
from outside the mould. It is therefore important to know the maximum pres-
sure in the glass during pressing, so the outside pressure can be adjusted in
order to keep the mould closed.

1.0

1.05

1.1

1.15

1.2 Bar

(a)

1.0

1.09

1.18

1.26

1.35 Bar

(b)

1.0

1.18

1.36

1.54

1.72 Bar

(c)

1.0

1.21

1.43

1.64

1.85 Bar

(d)

Figure 8.10: Pressing of jar parison: pressure field.
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In Figure 8.11 we have depicted the velocity field in the glass at the final stage
of pressing when the neckring part of the mould is filled. Note that only the
velocity magnitude is depicted in Figure 8.11.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8.11: Pressing of jar parison (neckring part): velocity field.
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Yet another type of visualization can be used to obtain insight in the glass
behaiviour. In Figure 8.12 we have depicted a particle flow. This is done by
providing a dye source at a given position.

(a) (b)

(c) (d)

Figure 8.12: Particles in the glass (jar simulation).
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Consider now the pressing simulation for a bottle. The main difference with
the jar simulation is the different geometries of the mould and the plunger (see
Figure 8.13a). The initial position of the top of the plunger is typically close to
the neckring part of the mould. So when the gob of glass falls down into the
mould it almost reaches the neckring (see Figure 8.13d). Again, as illustrated in
Figures 8.13b,c, the simulation tool allows us to define various initial positions
of the plunger and adjust the glass boundaries to setup a correct simulation.

(a) (b)

(c) (d)

Figure 8.13: Pressing of bottle parison setup.
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In Figures 8.14, 8.15 we have visualized the velocity and the pressure fields in
glass during pressing of a bottle parison respectively. The results are similar to
the jar parison simulation. The motion of the plunger forces the glass to fill the
mould (its upper part) until it hits the baffle (see Figure 8.14c). At this point
the pressure in the glass increases (see Figure 8.15) and the neckring part is
filled.

0.0
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(a)

0.0
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24.18
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96.7 mm/s

(c)

0.0
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67.73

90.3 mm/s

(d)

Figure 8.14: Pressing of bottle parison: velocity field.
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Figure 8.15: Pressing of bottle parison: pressure field.
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In Figure 8.16 we have depicted the velocity field and the motion of glass during
the final stage of the pressing. In the same way as for the jar, the geometry of
the neckring leads to a complicated glass flow.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8.16: Pressing of bottle parison (neckring part): velocity field.
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Finally, we consider the temperature simulation in glass during the dwell time
(see Chapter 1). The temperature in the glass as was shown in Section 2.3
remains constant during pressing. During the dwell time (after the parison has
been formed) the glass is cooled down. In Figure 8.17 we have depicted the
temperature field in glass during this stage. The typical duration of the dwell
time is 1 s. Nevertheless in Figure 8.17c,d we have visualized the temperature
field at 1.5 and 2 s respectively. Note that at the latter temperature the parison
cannot be used for further processing, i.e. at the blowing stage (see Chapter 1).
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(a) t = 0.5 s
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(c) t = 1.5 s

850.0

875.0

900.0

925.0

950.0oC

(d) t = 2.0 s

Figure 8.17: Temperature distribution in glass.

As described in the previous section the simulation tool allows us to perform
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various simulations by changing the initial geometries of the mould and the
plunger, the initial positions of the glass and the plunger, etc. Giving the right
parameters (those used in practice) results in a simulation of a real-life process.
However, one may experiment with the initial settings and use the results in
order to improve the process.
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Chapter 9

Conclusions

We have managed to build a tool which can be used by glass engineers in order
to understand the behaviour of hot glass during the pressing process. Mathe-
matical modelling was used in order to describe the process. Using the results
from Chapters 4 ,5 ,6 we were able to overcome the mathematical problems
(mass conservation, stiffness phenomenon, etc.). The results of the simulation
give insight on the various process aspects, the particles in glass, for example.

From our point of view the most suitable technique for the numerical modelling
of incompressible fluid flow with a free boundary and with a small Reynolds
number is a solution to the stationary Stokes problem with the use of the finite
element method. We have considered the cylindrical axisymmetric 2D-problem.
The divergence-free finite element spaces were not used to implement the con-
strains and as a result we have obtained an algebraic saddle point problem.
The use of the modification of lumped mass method has allowed us to essen-
tially simplify the computation of the stiffness matrix.

The most difficult point while modelling the evolution of the free boundary was
the problem of numerical mass conservation due to the time integration. A
number of examples illustrates the efficiency of the new approach based on the
middle-point rule, which we used. Finally, a stable algorithm for the plunger
movement was obtained.

The results of this thesis allow us to construct a tool which can be used by
engineers in practice, including simulations of the pressing process, visualiza-
tion of the velocity and the pressure fields, tracking the development of the
glass flow, and finally computing the motion of the plunger. The corresponding
software gives a possibility to increase the efficiency of the bottle and jar man-
ufacturing from one hand side, and to study new mathematical models in glass
morphology from the other.
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coordinates
cylindrical, 17

affine functions, 90
annealing, 1
autonomous ODE, 75
axisymmetric

body, 10
coordinates, 19
problem, 17

Babushka-Brezzi condition, 31
baffle, 2
basis function, 28

on boundary edges, 50
with extra degrees of freedom, 50

bilinear form, 22
blank, 2
blowing, 1
bottle and jar manufacturing, 1
boundary conditions, 20

Dirichlet, 21
homogeneous, 23
kinematic, 59
Neumann, 26
no slip, 21
Robin, 21
slip, 21

cavity rate, 1
Cholesky factor, 80
clip algorithm, 61

modified, 63
computational mesh, 105
conductivity, 14
conjugate gradients, 111
conservation

mass, 11

momentum, 11
coordinates

axisymmetric, see axisymmetric
coordinates
Cartesian, 65

density, 11
difference scheme

explicit, 60
implicit, 63

diffusion coefficient, 15
dimensionless integral, 88
dimensionless temperature, 15
dimensionless viscosity, 12
divergence-free field, 66
domain

computational, 59
glass, 59
physical, 59
topology, 105

domain decomposition, 95
dwell time, 5

equation
energy, 14
Navier-Stokes, 11
Stokes, 13

in cylindrical coordinates, 17
Euler backward method, 75
Euler forward predictor, 68

fluid
incompressible, 11
Newtonian, 10

force
viscous, 13
volume, 13

Fourier’s law, 14
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free boundaries, 20
friction coefficient, 21
functional of right-hand side, 25

glass
flow, 10
gob, 10
gob geometry, 10
motion, 10
pressure, 10

Green’s formula, 23

Hamiltonian
form, 66
system, 67

heat exchange, 13
heat flux

conductive, 14
radiative, 14

interactive tool, 113
inverts, 3

lumping procedure, 45
modified, 45

machine settings, 2
melting, 1
midpoint rule, 65
mould, 2
moving boundary, 60

neckring, 2
nested iterative procedures, 111
nonmatching grids, 95
numerical instability, 89

parison, 1
piecewise constant functions, 27
piecewise linear functions, 27
plunger, 2

form, 84
mass, 83
movement, 83
profile, 85
velocity, 10, 85

preconditioner, 111
pressing, 1

time, 5

refractive index, 15
Reynolds number, 12
Rosseland

approximation, 15
parameter, 15

saddle point problem, 26
Schur complement, 80
stable spaces, 31
Stefan-Boltzmann constant, 15
stiffness matrix

global, 31
assembling, 31

local, 31
stiffness of ODE, 86
stream function, 65
stress tensor, 11

in cylindrical coordinates, 18
symplectic methods, 64

test function, 23
time step, 60

constant, 61
variable, 60

total force on plunger, 83

unit vectors
normal, 20
tangent, 20

variational formulation, 22
vector basis functions, 29
vector interpolation polynomial, 76
viscosity, 12
Vogel-Fulcher-Tammann relation, 13

weak formulation, see variational for-
mulation



Summary

The mathematical modelling in glass morphology problems is a complex prob-
lem which involves mathematical descriptions and numerical algorithms for
the processes from fluid dynamics, heat-mass transfer, elasticity problems and
others. The models of the pressing stage use the equations of motion for glass
and for the plunger velocity. Taking into account sufficiently large viscosity and
small velocities of the glass fluid good models should be based on the station-
ary Stokes problem, which gives the velocity and the pressure fields in time.
The dynamics of the pressing processes is defined by the motion of the plunger
and, as a result, by the motion of the free boundary of the glass gob. All these
aspects require special treatment with respect to the numerical algorithms and
program tool design.

In order to solve the Stokes problem using the finite element method we first
derive the variational form of the 2D equations in cylindrical coordinates with
the condition of axisymmetry. Taking into account the different types of the
boundary conditions (slip, no slip, free boundary, axisymmetry) this weak form
may be obtained with the use of the stress tensor. The finite element imple-
mentation is based on the couple of finite dimensional spaces, for which the
Babushka-Brezzi condition is satisfied. The main difficulty is in the approxi-
mation of the integrals in the variational equations, which have singularities.
The latter is the result of the coordinate system we use (cylindrical coordinates)
near the axis of symmetry. The modification of the lumped mass method gives
a way to eliminate the difficulties mentioned above. The solver for the resulting
algebraic saddle point system is based on the Schur complement method with
preconditioned conjugate gradients iterations.

Modelling the motion of the free boundary is related to a problem of numeri-
cal mass conservation. The way we treat the time-dependency in our problem
requires to perform integration steps for the points of the computational do-
main. The physical property of mass conservation can be easily violated due to
incorrect numerical implementation. There is a number of known (symplectic)
methods which may be used with this respect. Unfortunately all known tech-
niques can be applied to 2D problems only; i.e. the conservation of 2D volume
(area) can be achieved in a relatively simple way. For our problem we need to
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have the conservation of 3D volume (the initial volume of the glass). A num-
ber of examples of the solution to kinematic equations gives the illustrations of
efficiency of the clip algorithm modification based on the midpoint rule, which
we used.

As for the plunger velocity we deal with another problem arising due to the nu-
merical integration. In practice the plunger velocity is the result of a movement
caused by some external force on one hand and the counter force from the glass
on the other. It is shown that the Stokes equations and the derived ordinary
differential equation are coupled with respect to the plunger velocity. Taking
a closer look on ODE we show that the equation is stiff, i.e. should be solved
by an implicit method. However, as the velocity of the plunger is coupled with
the motion equations a straightforward implementation of the implicit scheme
is impossible. Our approach is based on the fact that the velocity and the pres-
sure fields in glass are linearly dependent on the velocity of the plunger. It
allows us to construct a stable explicit algorithm.

All these results allow to construct the program tool for the practical engineer-
ing implementation, including simulations of the pressing process, visualiza-
tion of the velocity and the pressure fields, tracking the development of the
glass flow, and finally computing the motion of the plunger. Corresponding
software gives a possibility to increase the efficiency of the process of the bottle
and jar manufacturing from one hand side, and to study new mathematical
models in glass morphology from the other.



Samenvatting

Het wiskundige modelleren van glasvormingsprocessen is een complex vraag-
stuk dat vraagt om wiskundige beschrijvingen en numerieke algoritmen voor
problemen op het gebied van onder meer vloeistofdynamica, warmte- en mas-
satransport en elasticiteitsleer. De modellen voor de pers-fase gebruiken de
vergelijkingen voor de verplaatsing van het glas en voor de snelheid van de
zogenaamde plunjer. Onder aanname van voldoende grote viscositeit en lage
snelheid van het glas vinden we dat goede modellen gebaseerd dienen te zijn
op de stationaire Stokes-vergelijkingen, die op ieder moment de snelheids-
en drukvelden beschrijven. Het dynamisch gedrag van het persproces wordt
bepaald door de beweging van de plunjer en de resulterende verplaatsing van
de vrije rand van de glasdruppel. Al deze aspecten vereisen een speciale behan-
deling met betrekking tot numerieke algoritmen en ontwerp van het computer-
programma.

Om het Stokes-probleem op te lossen met de eindige elementen methode lei-
den we een variationele formulering af van de axisymmetrische 2D vergelijkin-
gen in cylindercoördinaten. De zwakke formulering verkrijgen we met behulp
van de spanningstensor als we rekening houden met de verschillende rand-
voorwaarden (slip, no slip, vrije rand, axisymmetrie). De eindige elementen-
implementatie is gebaseerd op een paar eindigdimensionale vectorruimten waar-
voor de Babushka-Brezzi-conditie geldt. Het belangrijkste probleem is de be-
nadering van de integralen in de variationele formulering, aangezien deze in-
tegralen singulariteiten bevatten. Deze zijn het gevolg van het gebruikte coör-
dinatensysteem (cylindercoördinaten) in de buurt van de symmetrie-as. Aan-
passing van de lumped mass methode kan deze moeilijkheden verhelpen. De
oplosmethode voor het resulterende algebraı̈sche zadelpuntsysteem is gebaseerd
op de Schurcomplement methode met gepreconditioneerde geconjugeerde gradiënt
iteraties.

De modellering van de verplaatsing van de vrije rand leidt tot een probleem
van numeriek massabehoud. De methode voor de tijdsafhankelijkheid van
het probleem vereist namelijk integratiestappen voor de punten in het rek-
endomein. De fysische eigenschap van massabehoud wordt al snel geschonden
door een incorrecte numerieke implementatie. Er zijn zogenaamde symplec-
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tische methoden die discreet behoud vertonen. Alle bekende methoden zijn
echter alleen voor 2D problemen toepasbaar; dat wil zeggen dat behoud voor
2D volume (oppervlakte) relatief eenvoudig bewerkstelligd kan worden. Voor
ons probleem hebben we echter behoud van 3D volume (het startvolume van
het glas) nodig. Aan de hand van een aantal voorbeelden illustreren we de
efficiëntie van het clip algoritme gebaseerd op de midpuntregel.

Voor de snelheid van de plunjer hebben we te maken met een tweede prob-
leem door de numerieke integratie. In de praktijk is de snelheid van de plunjer
het gevolg van een verplaatsing die veroorzaakt wordt door enerzijds een ex-
terne kracht en anderzijds de reactiekracht van het glas. We laten zien dat
de Stokes-vergelijking en de afgeleide gewone differentiaalvergelijkingen gekop-
peld zijn door de snelheid van de plunjer. Een analyse van de gewone differen-
tiaalvergelijking toont dat deze stijf is, zodat deze met een impliciete methode
opgelost moet worden. Doordat de snelheid van de plunjer gekoppeld is met
de vergelijkingen voor de verplaatsing is een eenvoudige implementatie van een
impliciete methode onmogelijk. Onze aanpak is gebaseerd op het feit dat de
snelheids- en drukvelden in het glas lineair van de snelheid van de plunjer
afhangen. Dit stelt ons in staat een stabiel, expliciet algoritme te construeren.

Met bovenstaande resultaten kunnen we een programma te maken voor prak-
tische technische toepassingen, waaronder simulaties van het persproces, vi-
sualisatie van de snelheids- en drukvelden, het volgen van de ontwikkeling van
de stroming van het glas en tenslotte berekeningen van de verplaatsing van de
plunjer. De programmatuur geeft de mogelijkheid om zowel de efficiëntie van
het productieproces van flessen en potten te verhogen, als nieuwe wiskundige
modellen in glasvormingsprocessen te bestuderen.
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