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Numerical Simulation of Pulse-Tube Refrigerators: 1D model

I.A. Lyulina1, R.M.M. Mattheij1, A.S. Tijsseling1, A.T.A.M. de Waele2

1Department of Mathematics and Computer Science, 2Department of Applied Physics

Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands

Abstract A new numerical model has been introduced to study steady oscillatory heat and mass transfer in
the tube section of a pulse-tube refrigerator. Conservation equations describing compressible gas flow in the
tube are solved numerically, using high resolution schemes. The equation of conservation of momentum is
neglected because the pressure is justified to be uniform in space. The model reduces to solving the equations
of conservation of mass and energy. Using our numerical model, we can study the temperature dynamics in
the pulse tube, calculate the average enthalpy flow and estimate the refrigeration power.

Keywords: pulse-tube refrigerator, numerical simulation, high resolution scheme

1 Introduction

The pulse tube is a relatively new type of refrigerator. It was introduced in the early sixties. At that time the
pulse tube was abandoned as a useful cooler because of its inefficiency. The performance of these devices,
today known as basic pulse tubes was limited, typically reaching temperatures of about 120 K. A significant
improvement was made in 1984 by Mikulin [1], who introduced the orifice pulse tube. Due to this modifica-
tion the performance of pulse tubes increased and for the first time it became comparable to the performance
of practical coolers (Stirling cycle, Gifford-McMahon and Joule-Thomson cryocoolers). Since then the im-
provement in efficiency and in performance went fast. By the end of 1990s, temperatures below 2K had been
reached [2].

The development of pulse-tube cryocoolers is still at an early stage. Only few models are currently in pro-
duction. However, pulse-tube cryocoolers are beginning to replace the older types of cryocoolers in a wide
variety of military, aerospace, industrial and medical applications. Advantages such as simplicity, low cost
and reliability, combined with high performance, have resulted in an extensive study of pulse tubes in recent
years.

To predict the performance and optimise the operational conditions, various analytical and numerical mod-
els have been developed. Thermodynamical models [3], [4] use the laws of thermodynamics to analyse the
performance of the pulse tube. Such models are important for understanding the physical processes occur-
ring in the pulse tube. General relations between thermodynamical quantities can be derived. However, for
the accurate prediction of pulse tube performance, one has to analyse compressible oscillating gas flow using
fluid dynamics. Due to the non-linearity of the conservation equations, analytical solutions are essentially
impossible. This is why numerical models are of great importance. One of the earliest papers on numer-
ical modelling of the orifice pulse tubes was [5]. The one-dimensional system of conservation equations
was solved using the finite volume method. Several papers with two-dimensional modelling have appeared
recently, see [6, 7, 8]. In [9] results of three-dimensional computations are presented. These were obtained
using commercially available CFX package. Three-dimensional modelling appears to be time consuming and
therefore has not been applicable for real system optimisation until now. In this paper we base our numerical
simulations on a different mathematical model introduced in [10]. According to our approach the equation
for conservation of momentum can be neglected as the pressure is considered to be uniform in space. The
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Figure 1: A schematic picture of the Stirling-type pulse-tube refrigerators :(a) the basic pulse tube and (b) the
orifice pulse tube. From right to left the basic system consists of a piston, an aftercooler (AC), a regenerator, a
cold heat exchanger (CHX), a tube, a hot heat exchanger (HHX). In (b) the system is extended with an orifice
and a reservoir (buffer).

model is then based on the conservation of mass and energy equations. We validate this approach by com-
paring our results with results from three-dimensional [9] and harmonic [4] modelling. The main benefits
of our model are that it is not computationally expensive (as full three-dimensional models) and that it is not
restricted to the harmonic time dependence (as harmonic models).

The paper is built up as follows. The physical model is described in section 2. The mathematical model is
introduced and non-dimensionalised in Section 3. In the end of this section a reduced system suitable for
numerical solution is discussed. In Section 4, numerical methods for solving equations for temperature and
velocity are explained. In Section 5, the results of our computations are presented. Temperature, mass flow
and enthalpy flow for two different pressure variations are presented. Section 6 summarizes the main results
and proposes future work.

2 Physical model

The essential elements of a pulse-tube refrigerator are shown in Fig. 1. The pulse tube works by the cyclic
compression and expansion of a gas, usually helium. Due to heat exchange between gas, regenerator, tube
walls and the two heat exchangers, a temperature difference arises along the tube. The pressure oscillations
in the system are generated by a piston compressor or ,alternatively, by switching valves. The aftercooler
(AC), see Fig. 1a, removes the heat of compression so that the regenerator can work more efficiently. The
regenerator acts as a buffer: it absorbs heat from the gas on the compression part of the pressure cycle and it
returns heat to the gas on the expansion part. To achieve this, the regenerator is filled with a matrix - some
kind of solid material with a large heat capacity and a large heat exchanging surface. The cold heat exchanger
(CHX) is the coldest point of the system. Here the heat is extracted from the load to be cooled. In the tube, the
compressible gas oscillates. If there is a suitable phase relationship between the pressure and the gas flow,
heat will be transported from the cold end to the warm end. The hot heat exchanger (HHX) removes the
heat carried through the tube. The hot heat exchanger is maintained at ambient temperature. In the orifice
design, see Fig. 1b, the basic pulse tube is modified by adding a reservoir and an orifice. The reservoir is large
compared to the pulse tube volume so that the pressure inside is approximately constant. Gas flows through
the orifice due to a pressure difference. More gas is contributing now to the cooling power and this improves
the efficiency of the cooler.

Fig. 2 shows the energy flow in the pulse tube. At the hot heat exchanger heat Q̇H is extracted from the
system. At the cold heat exchanger heat Q̇C is put in to the system. There is a net enthalpy flow from the cold
heat exchanger to the hot heat exchanger. According to the first law of thermodynamics the average cooling
power is equal to the enthalpy flow in the pulse tube. As to study the energy transfer from the cold to the hot
end we will concentrate solely on the tube section of the pulse-tube refrigerator.
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Figure 2: Net heat and enthalpy flows in the tube.

3 Mathematical model

3.1 Governing equations

We consider a one-dimensional region 0 < x < L, where L is the length of the tube section of the cooler. We
assume that the fluid is Newtonian, the gas is ideal and the flow is laminar. Let us denote the density by
ρ(x, t), the velocity by u(x, t), the temperature by T(x, t),the pressure by p(x, t), the dynamic viscosity by µ,
the specific heat capacity of the gas at constant pressure by cp, the thermal conductivity of the gas by kg and
the specific ideal gas constant by Rm. The equations for mass, momentum and energy conservation and the
equation of state are

∂ρ
∂t

+
∂

∂x
(ρu) = 0, (1)

ρ

(
∂u
∂t

+ u
∂u
∂x

)
= −∂p

∂x
+

4
3

∂
∂x

(
µ

∂u
∂x

)
, (2)

ρcp

(
∂T
∂t

+ u
∂T
∂x

)
=

∂p
∂t

+ u
∂p
∂x

+
∂

∂x

(
kg

∂T
∂x

)
, (3)

p = ρRmT. (4)

Quasi-steady wall friction, which would give an additional term −32µu/D2 (D is the tube diameter) in the
momentum equation is considered to be part of two-dimensional modelling. To complete the system we need
initial and boundary conditions. These will be given in Section 3.3.

3.2 Non-dimensionalisation

The system of equations (1)-(4) will first be made dimensionless. The scaling parameters are chosen as fol-
lows: the shortest physical time-scale of importance is 1/ω (time for one piston oscillation multiplied by 2π),
where ω is the angular frequency of the piston movement. We introduce ū to be a representative value for
the velocity and therefore ū/ω to be a typical length-scale. Let p̄ be the amplitude of the pressure oscilla-
tions, pb the buffer pressure, Ta an ambient temperature, ρ̄ a typical density, µ̄ a typical viscosity and k̄g a
typical thermal conductivity of the gas. We take the pressure variation caused by the piston or valves to be
pp(t) = p0 + p̄ p̂(t), where p̂(t) is a known function of time. We introduce dimensionless variables (indicated
by a hat) via

ρ = ρ̄ρ̂, T = TaT̂, p = p0 + p̄ p̂, u = ūû,

x = (ū/ω)x̂, t = t̂/ω, µ = µ̄µ̂, kg = k̄g k̂g.
(5)

The governing equations (1)-(4) become (without ambiguity the hats on the dimensionless variables can be
omitted):

∂ρ
∂t

+
∂

∂x
(ρu) = 0, (6)
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ρ

(
∂u
∂t

+ u
∂u
∂x

)
= − 1

Ma2
∂p
∂x

+
4

3Re
∂

∂x

(
µ

∂u
∂x

)
, (7)

ρ

(
∂T
∂t

+ u
∂T
∂x

)
=

Ec
Ma2

(
∂p
∂t

+ u
∂p
∂x

)
+

1
Pe

∂
∂x

(
kg

∂T
∂x

)
, (8)

(A+ p)B = ρT. (9)

In our simulations we consider the pulse tube operating at 20Hz. For such tubes the typical velocity is 1.5
m/s. The average distance which gas particles travel in the tube (displacement length) is 0.012m. The length
of the tube is 0.2 m. All necessary physical data for a typical single-inlet pulse tube are given in Table 1. The
relevant dimensionless numbers are

Reynolds number Re =
ρ̄ū2

µ̄ω
∼ 4× 103,

Prandtl number Pr =
cpµ̄

k̄g
∼ 0.658,

Peclet number Pe = RePr =
ρ̄ū2cp

ωk̄g
∼ 2.6× 103,

Mach number Ma =
ū

( p̄/ρ̄)1/2
∼ 4.6× 10−3,

Eckert number Ec =
ū2

cpTa
∼ 4.5× 10−6.

The unsteady Reynolds number indicates how strong the inertia is with respect to the viscous effects. The
Prandtl number gives an indication for the diffusivity of heat with respect to the diffusivity of momentum.
Pr only depends on the properties of the fluid. The Peclet number shows the ratio of advection of heat to the
conduction of heat. The Mach number characterizes the compressibility of flow. The Eckert number gives the
kinetic energy against thermal energy.

The considerations above show that the basic equations (6)-(9) contain six dimentionless parameters: 1/Ma2,
1/Re, Ec/Ma2, 1/Pe, A and B. Typical values are given in Table 2.

3.3 Simplified system

The momentum equation (7) can be rewritten as follows

∂p
∂x

=
4Ma2

3Re
∂

∂x

(
µ

∂u
∂x

)
−Ma2ρ

(
∂u
∂t

+ u
∂u
∂x

)
. (10)

The first and second terms on the right hand side represent viscous and inertial forces. Dimensional analysis
reveals that the constants Ma2/Re and Ma2 are the order of 10−9 and 10−5, respectively. This means that the
inertial and viscous forces are too small to produce a significant pressure gradient; so the right-hand side of
equation (10) is approximately zero. Therefore the pressure is uniform in space and the momentum equation
can be neglected. The system (6)-(9) now simplifies to:

∂ρ
∂t

+
∂

∂x
(ρu) = 0, (11)

∂p
∂x

= 0, (12)

ρ

(
∂T
∂t

+ u
∂T
∂x

)
=

Ec
Ma2

dp
dt

+
1

Pe
∂

∂x

(
kg

∂T
∂x

)
, (13)
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(A+ p(t))B = ρT. (14)

Combining the equations (11) and (13) we derive:

∂(ρT)
∂t

+
∂(ρuT)

∂x
=

Ec
Ma2

dp
dt

+
1

Pe
∂

∂x

(
kg

∂T
∂x

)
. (15)

Now we substitute (14) in the left-hand side of (15):

d((A+ p(t))B)
dt

+
∂((A+ p(t))Bu)

∂x
=

Ec
Ma2

dp
dt

+
1

Pe
∂

∂x

(
kg

∂T
∂x

)
. (16)

We thus find the following equation for the velocity:

∂u
∂x

= (
Ec

Ma2 −B)
1

B(A+p(t))
dp
dt

+
1

B(A+p(t))
1

Pe
∂

∂x

(
kg

∂T
∂x

)
. (17)

In order to obtain the equation for the temperature, we eliminate the density in (8), using equation (9). Finally
the equations for the velocity and temperature are

∂u
∂x

= ε
∂

∂x

(
kg

∂T
∂x

)
+ s1(t), (18)

∂T
∂t

= εT
∂

∂x

(
kg

∂T
∂x

)
− u

∂T
∂x

+ s2(t)T, (19)

where
s1(t) = (

Ec
Ma2 −B)

1
B(A+p(t))

dp
dt

, (20)

s2(t) =
Ec

Ma2
1

B(A+p(t))
dp
dt

, (21)

ε =
1

B(A+p(t))
1

Pe
� 1. (22)

Assuming that the gas thermal conductivity kg is constant the equations (18), (19) can be simplified:

∂u
∂x

= ε
∂2T
∂x2 + s1(t), (23)

∂T
∂t

= εT
∂2T
∂x2 − u

∂T
∂x

+ s2(t)T. (24)

The temperature equation (24) is a nonlinear convection-diffusion equation with the presence of convection
by the variable velocity u(x, t) and diffusion through the diffusion coefficient ε, see (22). We denote the
diffusion coefficient by ε to emphasise that, according to our dimensional analysis, it has a small value. The
temperature equation is then mostly of a convective nature and therefore close to hyperbolic.

To complete the system of equations, we introduce boundary and initial conditions. We only need one bound-
ary condition for equation (23): velocity at the hot end uH(t). To find the velocity at the hot end we consider
the volume flow through the orifice. From [4] the volume flow in a linear approximation is given by

V̇H(t) = −Cor(pt(t)− pb(t)), (25)

where pt(t) is the tube pressure, pb(t) is the buffer pressure, Cor is the flow conductance of the orifice. The
velocity is then given by:

u(0, t) = uH(t) = −Cor

At
(pt(t)− pb(t)), (26)

where At the cross-sectional area of the tube. Special care has to be taken in determining the buffer pressure,
such that the net mass flow over the hot end is zero. The derivation of the time-dependent buffer pressure
is outlined in Appendix A. We perform the non-dimensionalisation of equation (26) just as in Section 3.2, by
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taking pt(t) = p0 + p̄ p̂(t) and pb(t) = p0 + p̄ p̂b(t). In dimensionless form (hats are omitted) the boundary
condition for the velocity is

uH(t) = −C(p(t)− pb(t)), (27)

C =
Cor

At

p̄
ū

, (28)

where p̄ and ū are typical values for pressure and velocity. We assume constant temperature at the bound-
aries:

T(0, t) = TH , T(L, t) = TC . (29)

As for the initial conditions, we only have to specify initial condition for the temperature:

T(x, 0) = T0(x). (30)

4 Numerical solution

To solve the problem numerically, the governing partial differential equations (23)-(24) are discretised in space
and time. We introduce computational grids {x j = jh, j = 0, ..., Nx, h = L̂/Nx} and {tn = nτn, n = 0, ..., Nt}.
Denote by un

j the velocity and by Tn
j the temperature at the grid point (x j, tn). We use the following formulae

for the velocity computation:

un
j = un

j−1 +
ε

h
(Tn

j−1 − 2Tn
j + Tn

j+1) + hs1(tn) j = 1, ..., Nx − 1,

un
Nx

= un
Nx−1 +

ε

h
(Tn

Nx
− 2Tn

Nx−1 + Tn
Nx−2) + hs1(tn) j = Nx,

un
0 = un

H j = 0,

(31)

for every time level n = 0, 1, 2, 3, ... with uH given by (27).

To solve the convection-dominated temperature equation we choose the following approach:

(i) Convection. Sharp resolution of discontinuities without excessive smearing: explicit time discretisation
and a high-resolution scheme.

(ii) Diffusion. Explicit schemes lead to stability conditions of the type τ = O(h) for the convection term and
τ = O(h2) for the diffusion term. The last condition is too severe. One of the possibilities to avoid this
restriction is to discretise the diffusion term implicitly.

The approximation of the convection term depends on the velocity sign,indicating the flow direction. If
un

j > 0, we use the following scheme for the temperature equation:

Tn+1
j = Tn

j +ετnTn
j

Tn+1
j−1 − 2Tn+1

j + Tn+1
j+1

h2 + τns2(tn+1)Tn+1
j

−cn
j

(
1 +

1
2

(1− cn
j )

(
Φn

j+ 1
2

rn
j+ 1

2

−Φn
j− 1

2

))
(Tn

j − Tn
j−1)

j = 1, ..., Nx − 1, n = 0, ..., Nt − 1.

(32)

If un
j < 0, then

Tn+1
j = Tn

j +ετnTn
j

Tn+1
j−1 − 2Tn+1

j + Tn+1
j+1

h2 + τns2(tn+1)Tn+1
j

−cn
j

(
1− 1

2
(1 + cn

j )

(
Φn

j+ 1
2
−
Φn

j− 1
2

rn
j− 1

2

))
(Tn

j+1 − Tn
j )

j = 1, ..., Nx − 1, n = 0, ..., Nt − 1,

(33)
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where cn
j is Courant number, cn

j = τnun
j /h. The ratio rn

j+ 1
2

is defined by

rn
j+ 1

2
=


Tn

j − Tn
j−1

Tn
j+1 − Tn

j‘
if un

j > 0,

Tn
j+2 − Tn

j+1

Tn
j+1 − Tn

j
if un

j < 0.

(34)

Φn
j+ 1

2
= Φ(rn

j+ 1
2
) is the flux limiter. We have chosen a smooth van Leer limiter

Φ(r) =
r + |r|
1 + |r| . (35)

For r ≤ 0 the limiter function Φ(r) = 0. This means that, in the vicinity of extrema, where rn
j+ 1

2
< 0, the high

resolution schemes (32) and (33) reduce to upwind schemes. If the CFL (Courant-Friedrichs-Lewy) stability
condition |cn

j | ≤ 1 or, equivalently,
τn ≤ h/max

j
|un

j | (36)

is satisfied, both schemes are second-order accurate in space away from discontinuities and first-order accu-
rate in time, see [11].

The algorithm for numerical solution can be summarized as follows. Assume the initial temperature T0
j and

velocity u0
j are given. At the beginning of each time step n + 1:

(1) Estimate max j |un
j | at the previous time level and define τn, according to the CFL condition (36).

(2) Compute the temperature Tn+1
j from (32) if un

j > 0 or from (33) if un
j < 0, using Tn

j and un
j .

(3) Compute the velocity un+1
j via (31), using Tn+1

j .

The time integration proceeds until the system reaches the periodic steady state. We require that the difference
in temperature between two consecutive cycles for all discretised points is less than a predefined tolerance.

5 Results and discussion

The parameter values for the typical single-inlet pulse tube we used in our simulation are given in Table 1.
In our numerical experiments, we considered sinusoidal and step-function pressure variations shown in Fig-
ure 3. They correspond to the two different types of pulse-tube refrigerators: with Stirling-type compressor
and with Gifford-McMahon-type compressor. However, a realistic pressure measurement can be accommo-
dated to our model.
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(a) sinusoidal function

0 1.57 3.14 4.71 6.28

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

(b) step function

Figure 3: Dimensionless pressure variation used in simulation.
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Figure 4: Temperature profiles for the diffrerent parts of the pressure cycle (h = 0.015).

5.1 Temperature dynamics

Our model allows us to study the temperature dynamics in the tube.

In Figure 4 temperature profiles are depictured at times t = 4π , 4.5π , 5π and 5.5π , which correspond to
the different parts of the pressure cycle: 4π - pressure increases, 4.5π - maximum pressure, 5π - pressure
decreases, 5.5π - minimum pressure. We used a sinusoidal pressure variation, boundary conditions TH =
300K, TC = 70K and a linear temperature profile as initial condition. In Figure 5 temperature profiles are
depictured on successively refined grids to show the convergence of our numerical solution. For comparison
purpose we also plot the solution, obtained on the finest grid (h = 0.015) without flux-limiter.

Concerning the periodicity, for h = 0.015, we need 9 cycles to achieve the cycle-steady state with the tolerance
tol = 10−4. Figure 6 shows the temperature near the cold and hot ends after the system reached the steady
state. For the sinusoidal pressure, we can compare the results of our calculations with the harmonic model
described in [4] and with the three-dimensional results from [9]. The temperatures at the cold and warm
ends for these two models are also depictured in Figure 6.

It is clear that all models show similar temperature dynamics. The numerical results differ slightly from
the harmonic results, which are first-order approximations. In our simulation and in the three-dimensional
simulation the initial temperature profile has been taken linear. We noticed that the temperature at both
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Figure 5: Temperature profiles at t = 4π obtained on successively refined grids ( h = 0.05, 0.025, 0.015).
Dashed line - solution on the finest grid (h = 0.015), obtained without flux-limiter.

ends is sensitive to the initial profile in the first cycles where thermal conductivity has negligible effect. To
study the influence of the initial conditions, we considered the following profiles (linear, exponential and step
function):

T0(x) = TC(x/L) + TH , (37)

T0(x) = TH(TC/TH)x/L, (38)

T0(x) =

{
TH if x ≤ L/2,
TC if x > L/2 .

(39)

The results of these simulations are shown in Figure 7. If the temperature near the boundaries is constant
(step-function initial conditions), the overshoot in the temperature at both ends disappears.

Figure 8 shows the temperature at the cold and hot ends in case of the step-function pressure and with linear
initial profile.

Using our model we can compute the position of the gas particles traveling with pressure oscillations inside
the pulse tube. Therefore, we can follow the tracks of the gas particles in the pulse tube. Figure 9 shows
the temperature of the gas versus position during one cycle for the two different pressure profiles. From
these two figures it is clearly seen that the distance traveled by the gas particle and the temperature variation
during the cycle are different at various pulse tube locations.
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Figure 6: Temperature at cold and hot ends after 9 cycles with h = 0.015 (sinusoidal pressure).
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Figure 7: Temperature at cold and hot ends for the different initial conditions with h = 0.015 (sinusoidal
pressure).
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Figure 8: Temperature at cold and hot ends after 9 cycles with h = 0.015 (pressure - step function).

5.2 Mass flow rate and enthalpy flow

If velocity, temperature and density are known, we can compute the mass flow rate and the time-averaged
enthalpy flow. The following formulas in dimensional form were used:

ṁ = Aρu , (40)

Ḣ =
cp

tc

∫ tc

0
ṁT dt, (41)

where tc is the cycle period.

Figure 10 shows the mass flow rate at the cold and hot ends for the sinusoidal and step-function pressure
variation after 9 cycles. Note that the net mass flow should be close to zero. We want to point out that
the mass flow is affected by the velocity boundary condition at the hot end. Even a small variation in this
boundary condition can cause drift in the mass flow. If there is a net mass flow then the cycle-steady state
can not be reached.

In Table 3, the values of the time-averaged enthalpy flow for different pressure profiles of the same amplitude
are presented. These results show that the shape of the pressure oscillations influences the enthalpy flow in
the tube and therefore affects the refrigeration power.
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(b) step-function pressure

Figure 9: Tracks of gas particles for different pressure profiles.
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Figure 10: Mass flow at cold and hot ends for two different pressure profiles with h = 0.015.

6 Conclusions

A one-dimensional model has been developed for simulating the oscillating gas flow in the tube section of a
pulse-tube refrigerator. Conservation equations have been solved numerically. The momentum equation can
be neglected as the pressure is considered to be a known function of time. Our analysis revealed that tem-
perature in the tube is described by a convection-dominated equation. The governing equations have been
solved with state-of-the-art flux-limiter schemes in an attempt to preserve the steep temperature gradients
that occur in the tube. The tube’s steady-state thermodynamic behaviour under sinusoidal and step-function
pressure variations, and with different initial conditions, has been investigated. We validate our approach by
comparing the results for sinusoidal pressure with the three-dimensional model and with the first-order har-
monic model. The present method turns out to be more accurate and versatile than the first-order harmonic
analysis and computationally less expensive than a three-dimensional simulation. With respect to refriger-
ation power our model can be used for calculating the optimal values of the system design parameters. In
our future work we plan to apply a similar approach to the two-dimensional model. It will allow us to study
many interesting phenomena, such as heat transfer between the gas and the tube walls, viscous effects and
acoustic streaming.
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Appendix A. Time dependent buffer pressure

This appendix outlines the derivation of the buffer pressure for the general form of the pressure oscillations.
The expansion and compression in the buffer volume can be considered as adiabatic. In that case, according
to the Poisson law, the volume flow through the orifice is

dVH

dt
= − cv

cp

Vb

pb(t)
dpb(t)

dt
. (A-1)

We also have (25)
dVH

dt
= −Cor(pt(t)− pb(t)). (A-2)

Combining these two equations we obtain the following ordinary differential equation for the buffer pressure

dpb

dt
=

Corcp

Vbcv
pb(t)(pt(t)− pb(t)) (A-3)

with initial condition pb(0) = p0. We perform non-dimensionalisation as in Section 3.2, taking pt(t) =
p0 + p̄ p̂(t) and pb(t) = p0 + p̄ p̂b(t). In dimensionless form equation (A-3) becomes

dp̂b

dt
= D( p̂b(t) +A)( p̂(t)− p̂b(t))

p̂b(0) = 0
(A-4)

where the dimensionless numbers A and D are defined as follows

A =
p0

p̄
, D =

Corcp

Vbcv

p̄
ω

. (A-5)

The nonlinear differential equation (A-4) is known as Ricatti’s equation.
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Symbol Definition Value

f frequency 20 Hz
ω angular frequency 125.66 s−1

ρ̄ gas density 4.7 kg m−3

ū gas velocity 1.5 m s−1

µ̄ viscosity 2.0× 10−5 Pa s
k̄g gas thermal conductivity 1.58× 10−1 W m−1 K−1

cp gas specific heat capacity 5.2× 103 J kg−1K−1

p̄ pressure oscillation amplitude 5× 105 Pa
p0 average pressure 3× 106 Pa
Ta ambient temperature 300 K
Rm specific gas constant 2.1× 103 J kg−1K−1

At cross-sectional area of tube 2× 10−3 m2

D tube diameter 7× 10−2 m
Cor flow conductance of the orifice 10−8 m3 Pa−1s−1

L length of tube 0.2m
TH hot end temperature 300K
TC cold end temperature 70K
Vb buffer volume 5× 10−3 m3

Table 1: Physical data for a typical single-inlet pulse tube (values at 300K )

Symbol Definition Typical Value

Re ρ̄ū2/µ̄ω 4× 103

Ma ū/( p̄/ρ̄)1/2 4.6× 10−3

Pr cpµ̄/k̄g 0.658
Pe RePr 2.6× 103

Ec ū2/cpTa 1.5× 10−6

1/Ma2 p̄/ρ̄ū2 4.7× 104

1/Re µ̄ω/ρ̄ū2 2.5× 10−4

Ec/Ma2 p̄/ρ̄cpTa 7× 10−2

1/Pe k̄gω/ρ̄cpū2 3.6× 10−4

A p0/ p̄ 6
B p̄/ρ̄RmTa 0.17
C Cor p̄/Atū 1.67
D Corcp p̄/VBcvω 1/24π

Table 2: Dimensionless parameters for a typical single-inlet pulse tube

harmonic step function

cold end 1258W 1969W
warm end 1259W 1963W

Table 3: Time-averaged results for enthalpy flow Ḣ with h = 0.015.
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Nomenclature

At cross-sectional area of tube Greek letters
Cor flow conductance of the orifice ρ gas density
cp constant pressure heat capacity µ viscosity
cv constant volume heat capacity ω angular frequency
D tube diameter
Ḣ enthalpy flow Dimensionless
kg gas thermal conductivity Ec Eckert number
L tube length Ma Mach number
ṁ mass flow Pe Peclet number
p0 average pressure Pr Prandtl number
p̄ pressure oscillation amplitude Re Reynolds number
pb buffer pressure A pressure ratio
pt tube pressure B constant
Q̇H heat extracted at hot end C constant
Q̇C heat loaded at cold end D constant
Rm specific gas constant
T gas temperature
Ta ambient temperature
TC cold end temperature
TH hot end temperature
tc period of one cycle
u gas velocity
Vb buffer volume
V̇H volume flow
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