
 

Proceedings of the 3rd Belgium Netherlands Workshop on
Software Evolution (BENEVOL), Eindhoven, The Netherlands,
May 26-27, 2005
Citation for published version (APA):
Lange, C. F. J., Chaudron, M. R. V., & Tourwé, T. (Eds.) (2006). Proceedings of the 3rd Belgium Netherlands
Workshop on Software Evolution (BENEVOL), Eindhoven, The Netherlands, May 26-27, 2005. (Computer
science reports; Vol. 0601). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/84c05192-2118-4791-a5c3-bdf46346004e


Table of Contents 
 
Table of Contents……………………………………………………………………….… 1 

Preface……………………………………………………………………………………..3 

List of Participants………………………………………………………………………... 5 

Presentations……………………………………………………………………………… 7 

A Qualitative Comparison of three Aspect-Mining Techniques (Kim Mens)…………..... 9 

Metadata and Aspect Evolution (Bram Adams)………………………………………… 15 

Effects of Defects in UML Models (Christian Lange)………………………………….. 23 

Assessing the Correspondence between Design and Implementation 
(Dennis van Opzeeland).....................................................................................................37 

MetricView Evolution (Martijn Wijns)…………………………………………………. 47 

Heuristics based on Reconstruction (Roel Wuyts)……………………………………… 57 

Challenges in Software Evolution (Tom Mens)………………………………………….61 

Software Evolution Case Studies (Filip van Rysselberghe)…………………………….. 71 

Analysing Refactorings with Graph-transformation Technques (Tom Mens)………….. 79 

Refactoring Architectural Style (Marc van Kempen)…………………………………… 89 

CVSscan – Visualization of Software Evolution (Lucian Voinea)……………….…….101 

Bad Smells and Refactorings (Peter Ebraert)…………………………………………...111 

Understanding Change – where do we look at? (Filip van Rysselberghe)……………...115 

1



2



Preface 
 
BENEVOL is a series of workshops for researches from Belgium and the Netherlands in 
the domain of software evolution. The BENEVOL workshop is a platform for researchers 
to present finished and ongoing research and to discuss with their colleagues. The goal of 
BENEVOL is to stimulate collaboration between the workshop participants. Previous 
editions of BENEVOL were held at the Centrum voor Wiskunde en Informatica (CWI) in 
Amsterdam (2003) and at the Universiteit Antwerpen (2004). 
 
The third edition of BENEVOL was held at the Technische Universiteit Eindhoven 
(TU/e) on May 26th and May 27th, 2005. Researches from various institutions in Belgium 
and the Netherlands participated in the workshop. The workshop was organized by 
Christian Lange and Michel Chaudron from the System Architecture and Networking 
group (SAN) at the TU/e and Tom Tourwé from the CWI.  
 
The program of the workshop contained 14 presentations that were grouped into sessions 
covering the following topics: 

• Aspect-Oriented Software Evolution, including evolution of aspect programs, 
identification of aspects, and extraction of aspects. (Session chair: Tom Tourwé) 

• Model-Driven Software Evolution, including model extraction, code generation, 
and co-evolution. (Session chair: Michel Chaudron) 

• Formal Foundations of Software Evolution, including formal refactorings, and 
models for evolution. (Session chair: Tom Verhoeff) 

• Understanding Evolution, including quality metrics, visualizing evolution, and 
studying change histories. (Session chair: Kim Mens) 

• Tool demonstrations. 
This report contains the slides of twelve of the presentations. Most presentations were 
revised after the workshop such that they cover the feedback from the discussions at 
BENEVOL. Contact information of the authors is provided in the presentations and 
additional information is available on the authors’ websites.  
 
We would like to thank all participants of the third edition of BENEVOL for their 
attendance, presentations and discussions, and Cecile Brouwer and Richard Verhoeven 
for their help during the organization, which made it a successful workshop. We would 
also like to thank the System Architecture and Networking group of the TU/e and the 
FWO WOG scientific research network on Foundations of Software Evolution for 
sponsoring the workshop.  
 

Eindhoven, January 2006 
 

Christian F. J. Lange 
Michel R.V. Chaudron 

Tom Tourwé 
 

3



 
 

4



Participants 
 
Bram Adams,    Universiteit Gent 
Michel Chaudron,   Technische Universiteit Eindhoven 
Serge Demeyer,   Universiteit Antwerpen 
Peter Ebraert,    Vrije Universiteit Brussel 
Andy Kellens,   Vrije Universiteit Brussel 
Marc van Kempen,   Technische Universiteit Eindhoven 
Christian Lange,   Technische Universiteit Eindhoven  
Kim Mens,    Université catholique de Louvain 
Tom Mens,    Université de Mons-Hainaut 
Dennis van Opzeeland,  Technische Universiteit Eindhoven 
Reinier Post,    Technische Universiteit Eindhoven 
Coen De Roover,   Vrije Universiteit Brussel 
Filip Van Rysselberghe,  Universiteit Antwerpen 
Hans Schippers,   Universiteit Antwerpen 
Tom Tourwe,    Centrum voor Wiskunde en Informatica 
Tom Verhoeff,   Technische Universiteit Eindhoven 
Lucian Voinea,   Technische Universiteit Eindhoven 
Martijn Wijns,   Technische Universiteit Eindhoven 
Roel Wuyts,    Université libre de Bruxelles 
 
 

5



 

6



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Presentations 
 

7



 

8



A Qualitative Comparison of 
Three Aspect Mining Techniques

M. Ceccato, M. Marin, K. Mens, 
L. Moonen, T. Tourwé, P. Tonella

Aspect mining

• Identification of crosscutting concerns in 
existing software systems
• Starting point for system exploration
• Support program comprehension, software 
maintenance and evolution

– e.g. migrating to an AOP solution

Goal: high degree of automation

9



Comparison and combination of 
mining techniques

• Understand what “assumptions” (about 
crosscutting concerns) the techniques rely on
• Evaluate strengths and weaknesses
• Mutual filtering / completion
• Enhance automation through a multi-technique 
approach and tool

Three aspect mining techniques
– Identifier Analysis –

Use FCA to group classes/methods with similar names

figure drawing request remove update change event …

drawingRequestUpdate(DrawingChangeEvent e) - X X - X - - …

figureRequestRemove(FigureChangeEvent e) X - X X - - - …

figureRequestUpdate(FigureChangeEvent e) X - X - X - - …

figureRequestRemove(FigureChangeEvent e) X - X X - - - …

figureRequestUpdate(FigureChangeEvent e) X - X - X - - …

… … … X … … … … …

10



Use FCA to associate methods with the most specific use 
case scenarios in which they are executed 

Three aspect mining techniques
– Dynamic Analysis –

FCA C1

Bottom

C2

Top

C3

C0

meth1 meth2 meth3 meth4

scen1 x x x

scen2 x x x

scen3 x x

Concept lattice with sparse labeling

Three aspect mining techniques
– Fan-in analysis –

Persistence concern

write(StorableOutput) 

StorableOutput.writeStorable(Storable) 

implementations

calls

Concerns

• Contract enforcement

• Consistent behavior

• Scattered implementation 
relying on common 
functionality

• Design patterns with 
specific structure

11



JHotDraw
– common benchmark for aspect mining –

• Framework for 2D graphics

• ~18,000NCLOC

• Open-source (jhotdraw.org)

• Good design – GoF patterns 
(Gamma et al.)

Comparison

Concern Fan-in 
analysis

Identifier 
Analysis

Dynamic 
Analysis

Observer + + +
Consistent Behavior / 
Contract Enforcement + - -

Command Execution + + -
Bring to front /
Send to back

- - +

Manage Handles - + +
Move Figures + (discarded) + +

12



Conclusions drawn from the 
results

• Limitations
– Dynamic analysis: misses functionalities exercised 
by all traces
– Fan-in: only crosscutting with large extent
– Identifier analysis: relies on naming conventions

• Combination (orthogonal properties) – enhance 
automation and improve individual results

Combination of techniques
• Increased coverage

- the union of discovered results (fan-in + dynamic)
• Improved completeness for the discovered aspect “seeds”

- more elements relevant to the aspect (+ identifier)
• Coarse-grained aspects

- grouping of identifier analysis concepts (fan-in/dynamic)
• Filtering

- Discard irrelevant concepts

13



Resources
• Detailed results

– Fan-in: swerl.tudelft.nl/amr
– Dynamic analysis: star.itc.it/dynamo/jhotdraw-
detailed-results.html
– Identifier analysis: ask me ☺

• JHotDraw as benchmark and AJHotDraw as 
showcase for aspect refactoring
• Tools: Dynamo, FanInTool, DelfSTof
• Collaborations

– AIRCo/AIRPort

14



© 2005, Software Engineering Lab. All rights reserved.

Experiences in Aspicere

Bram ADAMS
Software Engineering Lab, INTEC, UGent

Metadata and aspect 
evolution

2

•What’s in a name?
• aspicere ≡ “to look at” (Latin)
• Here: aspect language for C

•Characteristics:
• Prolog-based pointcut language
• Source code weaver
• Currently only statically determinable joinpoints
• Likewise no weaving within advices

•Future:
• Merging into GCC 4.0 (“heterogeneous AOP”)
• cflow, sequence, ...
• Weaving inside advices

Aspicere

15



Outline

1. Aspicere, a short introduction
2. Metadata
3. Demonstration

General architecture

Prolog

•Weaver ≡ Source-to-source transformer
≡ preprocessor for GCC

XML

16



More details

1. Parser:
• btyacc (backtracking): slowwwwwww ...
• Antlr: very fast + type-checking

2. Extraction:
• XSLT + XPath (cached)

3. Joinpoint matching (Prolog):
• Backward chaining
• Instantiate joinpoints as needed
• Bind weave-time properties

4. Weaving:
• Depends on joinpoint type
• Highly procedural

5. De-XMLify:
• XML to source code

WHY?

Even more details ...

int f(int* a,double b);
int main(void){

...
res=f(ptr,5.0);
...

}

int f_caller_proxy(int* a,double b){
...

}

void log(thisJoinPoint* jp){
...

}

void f_callee_proxy(thisJoinPoint* jp){
...

}

int advice log() on(Jp):
... { ... }

source code generated code

int f(int* a,double b){
...

}

17



Example
ReturnType advice tracing_nonvoid(ReturnType) on (Jp):      

call(Jp,_)                                                

&& type(Jp,ReturnType)                                    

&& !str_matches("void",ReturnType)                        

{                                                       

ReturnType i;                                           

/* Tracing code */                                      

i = proceed ();

/* Tracing code */ 

return i;                                               

}

BINDING

Prolog
predicates

“Templatized”
C

Aspect ≡ normal compilation unit enhanced with advice

Bindings

•What?
• Logic variables which are bound and can be used freely throughout

advice code
• ≈ C++ template parameter
• cf. Kris Gybels’ and Johan Brichau’s work, Cobble, LogicAJ, ...

•How?
• Consider tuple of bindings L=(L1,...,Ln)
• Instantiate advice once for all solutions for L

Why?
• Leverage power of Prolog reusable, robust pointcuts
• NECESSITY no Object-class, nor template parameters

generic aspect language

18



Outline

1. Aspicere, a short introduction
2. Metadata
3. Demonstration

Metadata

•What?
• “data about data”: semantics, design decisions, conventions, ...

•Why?
• automated (aspectized) evolution, aspect mining, ...

•How?
• Documentation Javadoc, Doxygen, ...
• Separate file property files, ...
• Language support Java 5 annotations, C# custom attributes
• AOP introduction AspectJ 5

•In Aspicere:
• Prolog facts & rules ≡ ... ∩ ...

•Future:
• What about annotations in C?

loose coupling

delocalized

no fixed metadata
source

19



Metadata supply and 
consumption

DB XML property-
file

Prolog-
facts

user 
input

ReturnType advice serialize(ReturnType) on (Jp):        

call(Jp,Name)                                         

&& type(Jp,ReturnType)                                

&& transaction(Name)

{/*...*/ }

Prolog interface

metadata

Outline

1. Aspicere, a short introduction
2. Metadata
3. Demonstration

20



Conclusion and questions

•Conclusion:
• Prolog facts and rules enable transparent 

storing of metadata
• Aspicere’s use of Prolog-like pointcuts allows 

easy exploitation of metadata
•Questions:

• Does direct language support for metadata 
(a.k.a. annotations) yield better evolution 
opportunities than other mechanisms?

• What about availability of metadata?

14

Brichau, J., Mens, K. and De Volder, K. (2002). Building composable aspect-
specific languages with logic metaprogramming. In GPCE ’02: The ACM 
SIGPLAN/SIGSOFT Conference on Generative Programming and Component 
Engineering, pages 110–127. Springer-Verlag.
Gybels, K. and Brichau, J. (2003). Arranging language features for more robust 

pattern-based crosscuts. In AOSD ’03: Proceedings of the 2nd international 
conference on Aspect-Oriented Software Development, pages 60–69. ACM 
Press.
Kniesel, G., Rho, T. and Hanenberg, S. (2004). Evolvable Pattern 

Implementations Need Generic Aspects. In ECOOP ‘04: Proceedings of 
Workshop on Reflection, AOP and Meta-Data for Software Evolution.
Laddad, R. (2005): “AOP and metadata: A perfect match, Part 1 and 2” (IBM 

developerWorks)
Lämmel, R. and De Schutter, K. (2005). What does aspect-oriented 

programming mean to Cobol? In AOSD ‘05: Proceedings of the 4th international 
conference on Aspect-Oriented Software Development, pages 99–110 . ACM 
Press.
Loughran, N. and Rashid (2003). Supporting Evolution in Software using Frame 

Technology and Aspect-Orientation. Workshop on Software Variability 
Management, Groningen, The Netherlands.

21



22



Effects of Defects
in UML Models

Christian Lange
C.F.J.Lange@TUE.nl

Michel Chaudron
M.R.V.Chaudron@TUE.nl

www.win.tue.nl/~clange
www.win.tue.nl/empanada

BENEVOL workshop, May 26th 2005

Christian Lange 2

Overview

Introduction and 
Motivation
Experimental Design
Results
Analysis
Conclusion

23



Christian Lange 3

Introduction: Empanada

EmpAnADa project
Empirical Analysis of Architecture and Design Quality

Early evaluation of quality attributes  
Metrics for Architecture and Design models

Improvement by Refactoring
Completeness and Consistency checking

Development of methods
Method validation by Empirical Studies

Direct feedback
Exploring problems in practice

Christian Lange 4

Introduction: UML issues

Unified Modeling Language
No formal semantics
Offers large degree of freedom

Extension Mechanisms
9 Diagram types (UML 2 has even 13!!)

Diagrams are overlapping!
UML is used in many different ways

UML Defects:
Completeness 
Consistency

24



Christian Lange 5

Introduction: Defects

Detection by checking rules
SAAT
RPA

Correct
Matching elements 
in overlapping 
parts of diagrams

Completeness defect
Missing element

Consistency defect
Mismatch
Conflicting 
elements

Christian Lange 6

Case Study Results

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

Messages without Name Messages without Method Messages between
unrelated Classes

A1
A2

B1
B2
C1

C2

81,74%81,90%43,14%77,73%79,37%71,94%
Messages between unrelated Classes

27,40%27,14%100,00%100,00%7,62%58,73%
Messages without Method

0,46%0,00%0,00%0,28%0,00%0,00%
Messages without Name

C2C1B2B1A2A1Consistency

Our case studies have shown 
large numbers of defects

How serious 
are defects?

25



Christian Lange 7

Purpose of Study

Defects occur in practice, but does it matter?
Are defects detected in practice?
If not, do defects lead to misunderstandings?

Goal (GQM)
Analyze defects in UML models
for the purpose of identifying issues and observations
with respect to misunderstandings and ambiguities
from the perspective of the researcher
in the context of TUE grad students and professionals.

Christian Lange 8

Experiment Design

Give UML models to subjects
Ask question about UML model

Two types
Which implementation matches the diagrams?
How do you interpret these diagrams?

Answer from the perspective of the developer.

Multiple-choice test
4 options
+ 1 option (“There’s something wrong, can’t give an answer”)

Background questions

Pilot run was performed

26



Christian Lange 9

Experimental Treatment

Treatment
one of 9 defects
no defect

Defects are injected in model
Each infected question is paired with a control question

All subjects receive all treatment levels
“same subject design”
by definition “balanced” 

all treatment groups have the same background

Christian Lange 10

Treatments: Defects

Message without Name
Message Name does not 
correspond to Method
Message in the wrong direction
Class from CD not in SD
Class from SD not in CD

Use Case without SD
Multiple definitions of Class with 
equal Name
Method from SD not in CD
Method from CD not in SD

27



Christian Lange 11

Example Question

Suppose you are developer in this banking software project. It is your task 
to implement class ATM. Please indicate how you would implement the 
ATM class given these two UML diagrams?

D)
Class ATM{
method 
getCardInserted(){

c.requestPIN();
dosomething;
a.validate()

}
…}

Something 
is 

wrong!

C)
Class ATM{
method 
getCardInserted(){

c.requestPIN();
dosomething;
a.acknowledge()

}
…}

B)
Class ATM{
Method

getCardInserted(){
c.requestPIN();
dosomething;
a.lock()

}
…}

A)
Class ATM{
Method

getCardInserted(){
c.requestPIN();
dosomething;
a.open()

}
…}

?

SD leading

CD leading

wrong

CD leading

Christian Lange 12

Results of Question

Inconsistency: 
Message Name does not correspond to Method

0

10

20

30

40

50

60

70

80

a b c d e(rror) multi

Message does not correspond to Method  - Controle (Q4)

0

20

40

60

80

100

120

a b c d e(rror) multi

28



Christian Lange 13

Subjects

110 Students
1st year MSc programme (TUE)
Course: Software Architecture (2II10)
Preparation

Lecture about UML
5 weeks assignment: designing and evaluating UML

Professionals
Completed online questionnaire
Emailed URL to contacts and newsgroups
45 answered Q1 - 24 answered Q10

Christian Lange 14

Subjects’ Experience

0

10

20

30

40

50

60

UML Design Implementing Code Review Design
Review

Inspections

1 2 3 4 5

0

2

4

6

8

10

12

14

16

18

UML Design Implementing Code Review Design
Review

Inspections

S
tu

de
nt

s
P

ro
fe

ss
io

na
ls

29



Christian Lange 15

Subjects’ Experience II
Degree

85%

10%
5%

BSc CS BSc Electrical Engineering other

Number of UML courses

0

5

10

15

20

25

30

35

1 2 3 4 or more

S
tu

de
nt

s

Years of working experience

0
1
2
3
4
5
6
7
8

3 6 9 12 15 18 21 24 27 MoreP
ro

fe
ss

io
na

ls

Christian Lange 16

Results: Detection

defected control
type of question

0,00

0,20

0,40

0,60

0,80

1,00

de
te

ct
io

n 
ra

te

30



Christian Lange 17

Results: Detection II

Defects
Sorted by detection 
rate (students)

0,110,10Min

0,960,95Max

0,250,26Std  Dev

0,500,46Average

0,330,10Multiple Class defs.

na0,14Method not in SD

0,110,18Class not in CD

0,380,39Message without Method

0,680,47Class not in SD

0,330,49Message without Method (symb.)

na0,49Method not in CD

0,520,50UC without SD

0,580,60Message in the wrong Direction

0,600,69Message without Name

0,960,95Class not in SD (symb.)

Prof.Stud.Defect

Christian Lange 18

Variability Measure (Entropy)

If a defect is not detected, 
does it lead to misinterpretation?

K = Number of options, N = Sum of all answers, 
ki = # of answers of option i (ki ‘s are ordered: ki ≤ ki+1)

Intuition: Measuring how discriminating a distribution is

)1(
21)..( 0

10 −
−= ∑ =

− KN
ik

kkVarM
K

i i
i

0

0,2

0,4

0,6

0,8

1

1,2

a b c d 0

0,2

0,4

0,6

0,8

1

1,2

a b c d

0

0,2

0,4

0,6

0,8

1

1,2

a b c d

0

0,2

0,4

0,6

0,8

1

1,2

a b c d
0

0,2

0,4

0,6

0,8

1

1,2

a b c d
0

0,2

0,4

0,6

0,8

1

1,2

a b c d

VarM=0 VarM=1

< < < <

31



Christian Lange 19

Results: Variability

Defect Control

0,00

0,20

0,40

0,60

0,80

1,00

Va
rM

40

28

Christian Lange 20

Results: Variability

Defects 
Sorted according to VarM

0,440,47Min

0,950,86Max

0,210,16Std  Dev

0,800,71Average

0,140,34Class not in SD (symb.)

0,440,47Message without Name

0,950,47Message in the wrong Direction

0,640,49Class not in SD

n/a0,67Method not in SD

n/a0,69Method not in CD

0,930,83Class not in CD (meth.)

0,440,83UC without SD

0,900,84Message without Method

0,940,86Message without Method (symb.)

0,680,92Multiple Class defs. (meth.)

Prof.Stud.Defect

32



Christian Lange 21

Severity

Product of
Detection rate
VarM

Combination of 
low detection rate and many 
different interpretations 
(low VarM) 

causes most 
misunderstandings

0,140,32Class not in SD (symb.)

0,230,01Multiple Class defs. 

0,210,03Class not in CD 

n/a0,05Method not in SD

0,340,06Message without Method

0,310,07Message without Method (symb.)

0,230,09UC without SD

n/a0,15Method not in CD

0,440,24Class not in SD

0,550,32Message in the wrong Direction

0,260,37Message without Name

Prof.Stud.Defect

Christian Lange 22

Domain Knowledge

“There are no defcts in UML models 
that IPA members create!”

Can defects be corrected by using context 
knowledge (domain knowledge) ?

We made equal questions
One version with “context” (Traincrossing, Sensor)
One version without (Class A, Method 3)

(Cultural background was taken into account)

33



Christian Lange 23

Domain Knowledge II

Classes from CD not in SD (Q5.2)

0

10

20

30

40

50

60

a b c d e(rror) mult i

Class from CD not in SD - Controle (Q5.1)

0

20

40

60

80

100

120

a b c d e(rror) mult i

Classes from CD not in SD (symbolic) (Q9.2)

0

10

20

30

40

50

60

70

80

a b c d e(rror) multi

Class from CD not in SD (symbolic) - Controle (Q9.1)

0

20

40

60

80

100

120

a b c d e(rror) multi

Domain Knowledge No Domain Knowledge

0.340.49VarM

0.950.47Detection Rate

Christian Lange 24

Generalizability

Is it valid to generalize 
the outcome of the students experiment?

Pearson Correlation
Between student results and professional results

For detection rate: 0.929 (p-value < 0,001)
For VarM: 0.643 (p-value < 0,004)

“significant” = p-value < 0,05

34



Christian Lange 25

Order of Diagrams

In most cases the sequence diagram was 
regarded as the leading diagram
To investigate order effects, 
we presented some questions in a second run 
with the diagrams in reversed order

Pearson Correlation
Professionals vs. reversed

Detection rate: 0.824 (p-value: 0.044)
VarM: 0.899 (p-value: 0.015)

Students vs. reversed
Detection rate: 0.913 (p-value: 0.011)
VarM: 0.638 (p-value: 0.173)

Christian Lange 26

Conclusions

It makes sense to detect defects!
Defects in UML models

are detected only to a rather low degree
do cause misunderstandings

We ordered defects according to severity
Domain knowledge matters!

But can cause misunderstandings
Order of models does not matter

Fault-injection in UML models

35



Christian Lange 27

Lessons learned

Experimenting is not as simple as it seems
Design

What is the question? Hypothesis?
What are the variables?
How to distribute the treatments over the subjects?

Preparation
Experiment Material

Carefully instructing the subjects
Analysis

Using the proper methods

Christian Lange 28

36



1/

/ faculty of Computer Science

eindhoven university of technology

Dennis van Opzeeland

d.j.a.v.opzeeland@student.tue.nl

Eindhoven University of Technology, 
The Netherlands

Assessing Correspondence between 
Design and Implementation

2

1/

/ faculty of Computer Science

eindhoven university of technology

Outline

• Introduction
• What is correspondence?
• Matching of implementation pieces to design 

elements
• Highlighting differences
• Case study
• Conclusion

37



3

1/

/ faculty of Computer Science

eindhoven university of technology

Introduction

• Correspondence:
– Similarity between design and implementation

• Correspondence vs. evolution
– Correspondence degrades if implementation evolves 

but design doesn’t

– Correspondence ↓
⇒ Maintainability ↓

⇒ Evolution effort  ↑

4

1/

/ faculty of Computer Science

eindhoven university of technology

What is correspondence?
• Expressed in terms of the model elements

– Design: classes, interfaces, ...
– Implementation: class declaration, interface 

specification,...
• Mapping between design elements and implementation 

elements
• Correspondence system =

∑
∈∈ ),|eq(,

),sim(
idIiDd

id

38



5

1/

/ faculty of Computer Science

eindhoven university of technology

Typical deviations from design
• Structural

– Easy to check
– Examples

• Introduction of new classifiers
• Differences in names
• Introduction of new operations and attributes
• Introduction of dependencies and associations

• Behavioral
– Hard to check
– Examples

• Incompatible message sequences
• Not all deviations are equally problematic

6

1/

/ faculty of Computer Science

eindhoven university of technology

Finding the matching
• Given:

– Set of design classifiers
– Set of implementation classifiers

• Problem:
– Find the design pieces and implementation pieces that 

were meant to be “the same”
• Different approaches

– Classifier names
– Structural properties
– Package information
– Metric profile

39



7

1/

/ faculty of Computer Science

eindhoven university of technology

Using package information
• Heuristic: 

– Existing relations between two 
packages predict other relations

• Requirements
– Development view in design
– Directory layout for source code
– Partial matching exists

• Purpose
– Limit search space of other 

methods 

8

1/

/ faculty of Computer Science

eindhoven university of technology

Matching with Metric profiles (1)
• There exist correlations between 

design metrics and implementation 
metrics of a system

• Correlating metrics define metric
profile of a class
– Let c be a class, then 

m(c)=(m1,c , ... , mn,c) 
– Pairwise correlations between metrics in 

design profile and implementation profile

40



9

1/

/ faculty of Computer Science

eindhoven university of technology

Matching with Metric Profiles (2)
• Let d be a design class and i an implementation 

class
• Given metric value for design predict value for 

implementation metric and compare with real value

• The implementation class that fits best matches 
to the design class

∑ −+=
n

nnnnn idid |)m()m(|),sim( ,1,0 ββρ

10

1/

/ faculty of Computer Science

eindhoven university of technology

Case study
• Characteristics

– Industrial case
• Firmware for DVD recorder

– Design
• UML 1.4 
• 346 classes

– Implementation
• C++
• 777 classes
• Lines of Code: 2,558,216

• Approach:
– Initial matching based on names
– Empirical analysis for metric profile approach

41



11

1/

/ faculty of Computer Science

eindhoven university of technology

Correlating metrics

0.816Data abstr. coupl.Coupl. objects

0.883Depth of Inh. treeDepth of inh. tree

0.184# Attributes# Attributes

0.223# Priv. operations# Priv. operations

0.829Depth of inh. tree# Ops. inherited

0.889# Protected ops.# Ops. inherited

0.924# Ops. inherited# Ops. inherited

Corr. CoefficientImplementationDesign

For all correlation coefficient measures, the significance level p < 0.01

12

1/

/ faculty of Computer Science

eindhoven university of technology

Case study results
• Classification of deviations from design found

– Introduction of (private/protected) 
attributes and operations

– Introduction of new classes 
(decomposition of design classes)

– Unused dependencies
– Changes in inheritance tree

42



13

1/

/ faculty of Computer Science

eindhoven university of technology

Conclusions

• Matching approaches
– Matching based on names: 

• 77 % of design matched
• ? % of implementation matched

– Matching based on Metric 
Profiles

• 0 % of design matched
• 0 % of implementation matched

– Metric Profile useful for highlighting deviations

14

1/

/ faculty of Computer Science

eindhoven university of technology

Combine strategies
• None of the approaches defines 

a complete  matching
• Find initial matching using a 

good approach
• Cluster classifiers using 

package information
• Apply other matching 

approaches on clusters
• If everything else fails: human 

intelligence

M atching on 
Classnam es

M atching on 
Package info

M atching on 
structure

M anual 
Im provem ent

Find 
differences

Visualize

M atching on 
M etric Profiles

43



15

1/

/ faculty of Computer Science

eindhoven university of technology

Visualization of differences

• Given a mapping, finding differences is quite 
straightforward

• Visualization using 
MetricView

• Overlay diagrams
A B

C D

I
A

1

*

B

«c
al

l»

J

16

1/

/ faculty of Computer Science

eindhoven university of technology

44



17

1/

/ faculty of Computer Science

eindhoven university of technology

Further work

• What can be done to prevent correspondence 
issues?

• How can correspondence be established?
• What is the impact of correspondence issues?
• How much correspondence is needed?
• What about clustering

45



46



MetricView EvolutionMetricView Evolution
- Monitoring Architectural Quality -

Martijn Wijns
M.A.M.Wijns@student.tue.nl

Within EmpAnADA project
Supervisors: Michel Chaudron & Christian Lange 

Technische Universiteit Eindhoven

2

Outline

Motivation & Context
User Profiles
Goals & Existing Tooling
Prototyped Ideas
Tool Demo
Findings
Future Work

47



3

Motivation & Context

Motivation
Metrics offer benefits but are hard to use
Metrics are often separated from model
Metrics offer a low abstraction level
Current Metric tooling focuses on single point in 
time

4

Motivation & Context

Context
Data:

UML/XMI standard, many dialects
External Metrics
Matching Data

Tooling:
CASE (Rose, Together, EA, …)
Reverse Engineering (Columbus, …)
Version Control (SVN, CVS, …)
Correspondence (DICT, …)
Analysis (SAAT, SDMetrics, …)

Version Control System

XMI 

MetricView 
Evolution

UML Reverse 
Engineering Tool

Model 
Matching 

Tools

UML CASE Tool

Product 
analysis 

tools

Source 
Code

Mod
el 

& La
yo

ut

ModelsModel

Mod
el

Model 
Matching

Product 
Attributes

48



5

User Profiles

Three types of user profiles
Software Architect

Monitor Quality over time
Identify Weak Points

Project Manager / Client
Monitor Quality from a high level perspective

Maintainer
Identify weak points with their cause
Estimate impact of needed changes

6

Goals & Existing Tooling

Main Goals
Monitor Quality

Support analysis for multiple versions

Provide Abstraction from Metrics
Aggregation on Multiple levels
Tailorable, using Custom Quality Model

Provide Easy access to Metrics
Fast and Accurate Navigation
Short feedback cycle

Keep Model and Metrics together
One tool to extract and visualize them

49



7

Goals & Existing Tooling

Existing UML Metrics Tooling
SAAT

Easy Metric Definition: Relational Database / SQL
Maintainability (Dialects…): XSLT / Perl parser
No Visual feedback
Hard to install: Dependencies

SDMetrics
Fast
Many metric definitions / Design rules
Visualization rather basic

MetricView
Integrated Model and Metrics
Visualization
No integrated Metric calculation

8

Prototyped Ideas

Layout-Adjustment
Correspondence Visualization
Metrics over time
Quality Tree
Timeline
Lange-Diagram
Context Diagram
Search & Highlight

50



9

Prototype - Correspondence

Secondary goal: Explore MetricView implementation

Quickly spot 
differences
Layout 
construction

10

Prototype – Metrics over Time

Metrics changing 
over time
Changes in 
structure less clear 
in case of many 
versions

51



11

Quality Tree

Tailorable
Aggregate metrics
Single point in time

12

Timeline

Visualizes the change of Metric or Quality Attribute 
values over Time
Also usable for higher abstraction levels
Does not scale well to multiple attributes

52



13

Lange-Diagram

System Overview, including inter-diagram relations
Layout Scalability

14

Context Diagram

Context in complete model, not just one diagram

53



15

Tool Demo

DEMO
DEMO

16

MetricView Evolution

Benefits:
Overview of relations between diagrams
Context-Diagram reveals obscured problems
Highlighting same element in multiple diagrams
Search by keyword for quick navigation

Disadvantage
Class level metrics give too much detail
Scalability for large models

54



17

Findings

Suggestions for usage
Pattern Detection (context diagram)
Impact Prediction (context diagram)
Implicit Relations (search & highlight)

Incomplete models
Design Decision not model everything

18

Future Work

Improve Visualizations
Higher Abstraction levels
Reports
Dynamic Layout
Design Smells

Multiple Version support
Specific Metrics?
Integrate with CVS-like tools

Validation
Integration
During development, rather than afterwards
Usability Testing

55



19

Questions

??

20

Introduction to Software Metrics

What are software metrics?
Specification for Quantification of Software 
Attributes

What can you do with them?
Understand
Control
Improve

Who wants them?
Anyone who wants to systematically understand, 
control or improve software quality

Why Architecture Metrics?
Early detection means easier/cheaper to fix

56



Based 
Type 

ReconstructionRoel Wuyts
Université Libre de Bruxelles

Benevol, May 26th 2005 (Eindhoven, The Netherlands)

2

Type Reconstruction

Context: program understanding in dynamically 
typed languages

e.g. extraction of class diagrams

Type Reconstruction

input: program without types

output: program with types

57



3

Trade-offs

Precision vs. efficiency

We chose efficiency for usage in a 
development browser

Use Heuristics as basis for the 
reconstruction

instead of full reconstruction

4

Heuristics
Direct sends to instance variable

Indirect sends to instance variables (getter 
methods)

Direct assignment expressions

Indirect assignment expressions (setter 
methods)

(Type snooping)

58



5

Implementations
Using LiCoR (Library for Code Reasoning) in 

SOUL

on the parse tree

average: 500 milliseconds / instance 
variable

more elaborate and easier to extend

Using partial evaluation on the byte code

average: 30 milliseconds / class

6

Demo

59



7

Conclusions & Future Work

Works

About 80% of correctness on built-in 
libraries

Better on domain-specific code

Future Work

Fix About

Will do this on (untyped) Java code and 
compare results

60



Challenges in Software Evolution

Tom Mens

http://w3.umh.ac.be/genlog
Software Engineering Lab

University of Mons-Hainaut
Belgium

© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 2

Challenges in Software Evolution

• The presented results are the outcome of the ChaSE 
2005 workshop

– Financed by ESF and ERCIM
– April 2005, Bern, Switzerland

• Scientific goals
– to discuss about and identify the main challenges in software 

evolution
– to address the above goal from different points of view

61



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 3

Classification of challenges

• Multidimensional classification
– Time dimension

• Short-term, medium-term, long-term research
– Type of software evolution research

• Managing software evolution
• Understanding software evolution
• Analysing software evolution

– Interested stakeholder
• Manager, end-user, developer, teacher, tool builder, software

engineer, …
– Type of artifact under study

• Formalism, tool, model, language, process, people, …
– Type of support provided

• Same list as before...

© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 4

Preserving and improving sw quality

• How can we provide tools and techniques that 
preserve or even improve the software 
quality, whatever its size, complexity, level of 
abstraction?

developer, project 
manager, end-user

stakeholder

tools, techniques, 
formalisms, processes

Software 
system

Controlling & 
supporting 
evolution

long

supportartifactresearch typetime

Michel Chaudron
Peter Ebraert

Kim Mens

62



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 5

Supporting model evolution

• Design and modeling tools provide little 
evolution support

• evolution techniques needed at higher level of 
abstraction

– A&D models, SW architectures, requirements, …
• Model-driven engineering makes this 
challenge very relevant

software engineer

stakeholder

tools, techniques, 
formalisms

modelscontrolling,
supporting

short

supportartifactresearch typetime

Christian Lange

© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 6

Supporting co-evolution

• We urgently need better techniques to achieve co-
evolution

– Synchronisation, consistency maintenance, inconsistency 
management, traceability, change propagation, … 

• between different types of software artifacts or 
different representations

– Programs and design models
– Software and the organisation
– Software and languages, tools, platforms

software 
engineer

stakeholder

tools, techniques,
formalisms

any pair of 
related artifacts

controlling,
supporting

medium

supportartifactresearch typetime

Christian Lange,
Dennis Van Opzeeland

63



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 7

Formal support for evolution

• Some formal methods not amenable for an 
evolutionary setting

– e.g., no incremental verification
• Formalisms for specific evolution activities 
needed

– e.g., for refactoring

researcher

stakeholder

formalismsformalismsallmedium -
long

supportartifactresearch typetime

Kim Mens,
Tom Mens

© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 8

Need for empirical research

• empirical and statistical studies needed to 
assess impact of process models, tools, 
languages, and people’s experience on 
software evolution

researcher

stakeholder

statistical models,
empirical studies

any evolving 
artifact

analysinglong

supportartifactresearch typetime

Christian Lange
Dennis Van Opzeeland

64



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 9

Need for evolution benchmarks

• Commonly agreed representative benchmark 
or case studies to compare the developed 
formalisms, tools, techniques on relevant and 
typical problems

• Getting data from industrial setting is not 
easy, but there are many open-source, long-
lived, industrial size projects

researcher

stakeholder

benchmarks, 
exemplars, cases

software 
system

understanding, 
comparing

short -
medium

supportartifactresearch typetime

Kim Mens

© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 10

Runtime evolution

• There is a need for proper support of runtime 
adaptations that allow systems to evolve while 
they are running, without needing to pause 
them or shut them down

– Reflective techniques, metadata

developer,
end-user

stakeholder

languages, execution
platforms, programs

languages, 
execution 
platforms

Controlling, 
supporting

short -
medium

supportartifactresearch typetime

Bram Adams

65



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 11

Challenge: Teaching software evolution

• How can we introduce the ideas and 
techniques of evolution into our educational 
system?

– What do we want to teach to our students?
– How can we teach this?
– Where does it fit in the CS curriculum?

teacher, 
student

stakeholder

slides, exercices, case 
studies, tools, books, …

anyteachingshort

supportartifactresearch typetime

© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 12

A common software evolution platform

• Proposed research solutions need to scale up 
to long-lived industrial-size software system

• Required tools are too complex to be built in 
isolation

• Need for a common platform, tool integration, 
exchange formats, standards and so on

• Candidates: MOOSE, Eclipse

researcher

stakeholder

tools, frameworks, 
platforms, standards, 
exchange formats

programsApplied 
research

medium

supportartifactresearch typetime

66



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 13

Evolution as a language construct

• Change should be a first-class entity in 
programming or modelling languages

• Evolution support is easier in dynamically 
typed languages with reflective capabilities

language designer, 
tool builder, 
researcher

stakeholder

languages and 
programs

languagescontrolling, 
supporting

short -
medium

supportartifactresearch typetime

© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 14

Supporting multi-language systems

• Many complex and large systems are built 
using 3 or more languages 

• Evolution techniques should be 
parameterisable on or independent of the 
language

tool builder

stakeholder

tools, standardslanguages, 
software 
systems

controlling,
supporting

medium 
- long

supportartifactresearch typetime

67



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 15

Integrating change into dev. process

• Change must be integrated into conventional 
development process models

• Some, like agile development, already embrace 
change as essential

• Others, like the staged life-cycle model, have 
explicit support for evolution

manager, software
engineer

stakeholder

software process
model

software
process model

managing,
controlling

medium

supportartifactresearch typetime

© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 16

Increasing manager’s awareness

• Managers have to realise the importance and 
inevitability of software evolution

• Teach them how to plan, organise and control 
projects to cope with change

manager, 
researcher

stakeholder

metaphorsmotivatingshort

supportartifactresearch typetime

68



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 17

Developing better versioning systems

• Many analyses of software evolution based on 
CVS or related tools

– these weren’t built for that purpose and don’t 
store enough information

• New techniques and tools needed for 
recording the evolution of a system

• SCM is related

tool builder

stakeholder

toolsversion control toolsanalysingshort

supportartifactresearch typetime

© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 18

Integrating and analysing evolutionary 
data
• Scattered information about system changes

– bug reports, source code, documentation, 
configuration files, …

• very large data sets, especially for long-lived 
systems

• Need efficient and heterogeneous techniques
• Extensible meta-models, data mining, and 
bioinformatics may be relevant

researcher

stakeholder

techniques, toolsall relevant info 
about sw system’s 
evolution

analysingmedium

supportartifactresearch typetime

69



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 19

A theory of software evolution

• Lehman has developed laws, but they need to be 
formalised and enriched

• May borrow ideas from evolutionary biology or 
linguistic evolution

• The what (noun) and how (verb) of evolution are still 
mostly disconnected

• How does the gathered data inform tools, techniques 
and formalisms?

researcher

stakeholder

theories, formalisms, 
laws, …

everythingunderstanding, 
analysing

long

supportartifactresearch typetime

70



Software Evolution Case Studies

Benevol 2005

Filip Van  Rysselberghe

“Aspect mining research results will have to be validated by 
means of a series of case studies.”

Case study

Technique

Case

Distribute

= illustrate the applicability on a concrete project

71



Examples

DocGen Ant

Gcc

a Perl
Program

Tomcat

Mozilla

ASML

CodeCrawler

LanSim

Linux Apache

Benevol

Icsm04

A case per group/technique

Are we really that different?

Comparison

• We can’t compare using a different basis!
• We can’t build on each other’s findings

• Understanding, quality of architectures, aspect mining,..  
• It’s all about Software Evolution!
⇒ Similar solutions?
⇒ Common problems?

72



LanSimulation
Which components are strongly coupled?

Lanza

Ratzinger

Rysselberghe

Representative

• Common evolution characteristics?
– What’s typical/common?
– Enough information about evolution?

• Characteristics of the case?
– How do we measure?
– Amount of info available?
– When?

73



Retrospective View
Common Case (Tomcat)

• Life-cycle

• Constant change

• Feature requests

• Large/Coarse

Retrospective View
Common Case (Tomcat)

• Life-cycle

• Constant change

• Feature requests

• Large/Coarse

• Build from previous product

• Constant change

• Implements specification

• Limited/Coarse

• Java

• Design docs/rationale

• Mailing Archives

74



Your characteristics

Is this typical?

450 LOC
19 000 LOC

90 000 LOC
170 000 LOC

C

Java

Perl

XP-methodology Tests integrated Ex-research. prototype

Literature characteristics

• System serves a user base
• User base has changing demands
• Generally grows
• Constant change (bugs/functional)

YES! NO!
I would…

75



Case Selection

• How do we select our cases?
–Based on measures? Which?
–Based on quality of information?

• Where do we search?
• How did you act in the past?

Maybe like this?

Popular projects (DLs/rankings)

State (#releases/Warnings/Beta?)

Size Evolution (age/normal trend)

User impact (reporting/#MRs)

Changes (change logs)

76



Conclusion

• Many open questions!
–Common Characteristics?
–Case Selection?

Discuss 
speak with others about it; 
talk it over in detail ;
have a discussion ; 

77



78



Analysing refactorings with
graph transformation theory

Tom Mens

http://w3.umh.ac.be/genlog
Software Engineering Lab

University of Mons-Hainaut
Belgium

© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 2

Introduction - Software Evolution

• More and better tool support needed for 
software evolution

– At all levels of abstraction (e.g. programs and
models)

– For a variety of different activities

79



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 3

Introduction - Software Evolution

• Formalisms can be helpful for such evolution
support

– Description logics
• For model inconsistency management

– collaboration with R. Van Der Straeten, VUB
– Graph transformation

• For supporting software refactoring
• Reasoning about preservation properties

– collaboration with D. Janssens and S. Demeyer, UA
• Analysing refactoring dependencies

– collaboration with G. Taentzer and O. Runge, TU Berlin

© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 4

Graph transformations

• GT theory theoretical results can help during analysis 
of model refactorings

– type graph, negative application conditions, parallel and 
sequential (in)dependence, confluence and critical pair 
analysis

• GT tools allow us to perform concrete experiments
– AGG (in collaboration with Berlin)

• Current focus
– Analysing dependencies between class diagram refactorings

80



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 5

Analysing refactoring dependencies

• Concrete Scenario: Suggest refactoring opportunities
– What are the alternatives of a selected refactoring?
– Which other refactorings need to be applied first in order to

make the selected refactoring applicable?
– Which other refactorings are still applicable after applying 

the selected refactoring?

• Goal: Automate the detection of
– mutual exclusion relationships between refactorings
– sequential dependencies between refactorings 

© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 6

Analysing refactoring dependencies

• Example

81



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 7

Analysing refactoring dependencies

• Refactoring opportunities
T1 Rename Method print in PrintServer to process
T2 Rename Method save in FileServer to process
T3 Create Superclass Server for PrintServer and FileServer
T4 Pull Up Method accept from PrintServer and FileServer to Server

© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 8

Analysing refactoring dependencies

• Refactoring opportunities
T5 Move Method accept from PrintServer to Packet
T6 Move Method accept from FileServer to Packet
T7 Encapsulate Variable receiver in Packet
T8 Add Parameter p of type Packet to method print in PrintServer
T9 Add Parameter p of type Packet to method save in FileServer

82



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 9

Analysing refactoring dependencies

×T9
××T8

←×T7
×××T6

××T5
×××T4

×←×T3
>>←×T2

>>←←×T1
T9T8T7T6T5T4T3T2T1

© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 10

Applying graph transformation theory

• Approach: Use critical pair analysis in AGG
– T1 and T2 form a critical pair if

• they can both be applied to the same initial graph G but
• applying T1 prohibits application of T2 and/or vice versa

G H1

H2

T1

T2

X

T2

X
T1

83



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 11

Applying graph transformation theory

Step 1: Express object-oriented metamodel as 
(attributed) type graph

© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 12

Interludium

• Type graphs versus metamodels

84



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 13

Applying graph transformation theory

Step 2: Express refactorings as (typed attributed)
graph transformations

© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 14

Applying graph transformation theory

Step 3: Detect critical pairs between refactoring
transformations

– Potential conflicts between refactorings

85



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 15

Applying graph transformation theory

Step 4: Fine-tune critical pairs in context of concrete input graph

© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 16

Applying graph transformation theory

86



© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 17

Applying graph transformation theory

• Step 5: Perform sequential dependency 
analysis

To identify dependencies between
refactorings that are applicable

© Tom Mens, 27/5/2005, Eindhoven, BENEVOL 2005 18

Conclusion

• Graph transformation theory is a suitable 
formalism for understanding software 
refactoring

Detecting mutual exclusionCritical pair analysis

Refactoring transformationparameterised graph production 
with NACs and context conditions 
mechanism

RefactoringGraph Transformation
wf-constraintstype graph, invariants

Detecting sequential dependenciesConfluence analysis

preconditionsnegative application conditions

87



88



Refactoring Architectural Style
using KWIC as a case-study

Marc van Kempen
Michel Chaudron

Outline

Introduction / Motivation

Case Study: KWIC

Basics of CSP

Pipe & Filter BlackBoard

Client-Server BlackBoard

Correspondence to implementation

Conclusions

89



What is Refactoring?

What is Architectural Style?

Codification of common recurring patterns of software 

design

Construction paradigms for (a set of) design 

dimensions

A vocabulary of components, connectors and 

constraints on these can be combined (structure).

Examples: Pipe and Filter, Client/Server, Blackboard

Introduction

Motivation/Contributions

Motivation:

Architecture-level refactoring

Useful for system migration, integration of large systems

Repair “mistakes” early in the development process

Understanding architectural styles

Relation between styles (commonalities/differences)

Research Separating Styles from Components

Exogeneous styles enhance component usability

Avoid architectural mismatch => ease evolution

90



Approach

Generic Model
of Arch. Style Y

Generic Model
of Arch. Style X

Generic
Refactoring

KWIC Model
of Arch. Style Y

KWIC Model
of Arch. Style X

KWIC
Refactoring

instantiate instantiate

Inspired by
Darwin & CSP

Connecting Connectors and Components

What is a connector?

Intermediates messages between components

Shields component from interaction protocol

What is a component?

Lots of definitions: “A unit of composition with clearly 

specified interfaces and explicit context dependencies 

only”

Aim: components should be reusable; hence unchanged by 

refactoring

Use (adapted) Darwin notation to describe connections between 

connectors and components.

91



Keyword In Context (KWIC)

Based on a paper by Parnas (1972)

Garlan & Shaw (1994) use KWIC to illustrate the influence of  

Architectural Styles on Architectural Design 

Good case to study refactoring between styles

KWIC (2)

What is KWIC?

Algorithm to generate alphabetically sorted permutations of 

an input sentence.

A permutation of a sentence is a sentence where the words 

are shifted one position to the right, the rightmost word is 

put at the beginning of the sentence. Repeat until the 

original sentence is reached.

92



KWIC(3)

Example input: 

“Refactoring architectural styles”

Permutations:
“Refactoring architectural styles”
“Styles refactoring architectural”
“Architectural styles refactoring”

KWIC(4)

Sorted this becomes

“Architectural styles refactoring”

“Styles refactoring architectural”

“Refactoring architectural styles”

Which is also the expected output of the kwic process

93



CSP
What is CSP? Communicating Sequential Processes

Process algebra

Main operators:

Prefix: a P

Parallel composition: ||

Communication actions: out!v and in?x

External choice: (a P) [] (b Q)

Why use CSP to describe the processes?

Formalization

Tools exist to prove properties of model

Pipe and Filter

What is pipe and filter?

94



Pipe and Filter architecture

CSP definition of Pipe and Filter

Define Filter = in?x out!f(x) Filter

IN = out!x IN

OUT = in?x OUT

Connector = C(<>)

C(<>) = in?x C(<x>)

C(s) = in?x C(s^<x>) <| x ≠ eof |> C’(s)
C’(<>) = SKIP

C’(s) = out!head(s) C’(tail(s))

Let Filter F1, F2

Connector C1

IN.out -- F1.in

F1.out -- C1.in

etc.

Then PF = IN || F1 || C1 || F2 || OUT

95



Blackboard Architecture Style

CSP definition of Blackboard

IN, OUT, Filter remain the same!

Define Connector = in?x ctrl!x out!x Connector

BB(<>) = in?x BB(<x>)

BB(s) = (in?x BB(s^<x>)) [] (out!head(s) BB(tail(s)))

Controller = c1?x Controller <| x ≠ eof |> Controller1

Controller1 = c2?x c3?x Controller1 <| x ≠ eof |> Controller2

Controller2 = c4?x Controller2 <| x ≠ eof |> SKIP

Let Filter F1, F2, F3 

Connector C1, C2, C3, C4

Controller Ctrl

BB BB1, BB2

Then Blackboard = IN || F1 || C1 || BB1 || C2 || F2 || C3 || BB 2 || C4 || OUT

96



KWIC in Pipe and Filter architecture style

Refactor P&F to BB

97



Refactor Client-Server to Blackboard

Client/Server refactored to Blackboard 

98



In Java

Java implementation is forthcoming, watch website.

Contributions

Conclusions/Contributions

Distinguish control-flow, data-flow, reference-flow

It is possible to design 'style-agnostic components‘

Styles are a means for glueing together components

99



100



Visit us @ www.win.tue.nl/vis/

Visualization of
Software Evolution

Lucian Voinea
Alex Telea

– Benevol 2005 –
Eindhoven, Netherlands

27.05.2005 

Visit us @ www.win.tue.nl/vis/

Maintenance costs / Total costs > 90%
Erlikh, L. (2000). “Leveraging legacy system dollars for E-business” (IEEE) IT Pro, 
May/June 2000, 17-23.

Code Analysis = 47 % time
Source: “Software Quality: Producing Practical, Consistent Software” Mordecai Ben-
Menachem & Garry S. Marliss, Thomson Computer Press, 1997.

Bug discovery = 70 – 90% time
Stephen G. Eick; “CH21: Maintenance of larger systems” in
“SV: Programming as a multimedia experience”, MIT Press, 1998, p. 315

Challenge

101



Visit us @ www.win.tue.nl/vis/

Challenge

Knowledge

Team A Team B

Knowledge

MaintenanceInitial development

CVSCVS

Doc DocSrc Src

Visit us @ www.win.tue.nl/vis/

Outline

Demo
Interpolated

position

Focus
version

Left bound
empty space

Right bound
empty space

Empty space size decrease

Interpolated
position

Focus
version

Left bound
empty space

Right bound
empty space

Empty space size decrease

 
 
 

first  
version 

last
versionline 

lifetime

102



Visit us @ www.win.tue.nl/vis/

 

File A File B
V1 V2 V3 V4 V5 

File A

 Line position in file

 Time 

 Line position in file 

Project files

while flag { 
  print b 
  if flag.b1{ 
    print c 
    print d+c 
    print e+d+c 
  } else if (flag.b2 
  and flag.b3 = b4) { 
    print f 
      // coment line 
    print g} 
} 
… 
… 
… 
… 
… 
… 
… 

File A

Text representation 

Line encoding

 

Comment

File
 Reference 

Block 
(nesting level 1)

Block
(nesting level 2)

Modified 

Constant

To be inserted

Deleted

Author A

Author B

Author C

Line colour encoding

Visit us @ www.win.tue.nl/vis/

Discrete time (versions)

Local
line position

Version layout – file based

Inserted 
lines

103



Visit us @ www.win.tue.nl/vis/

Global
line position

Version layout – line based
Discrete time (versions)

Local
line position

Inserted 
lines

Visit us @ www.win.tue.nl/vis/

Interpolated
position

Focus
version

Left bound
empty space

Right bound
empty space

Empty space size decrease

Version layout – interpolated 

Global
line position

Discrete time (versions)

Local
line position

Inserted 
lines

104



Visit us @ www.win.tue.nl/vis/

Discrete time (versions)

Compensated

Balanced

Version layout – interpolated 

Interpolated
position

Focus
version

Left bound
empty space

Right bound
empty space

Empty space size decrease

Global
line position

Discrete time (versions)

Local
line position

Inserted 
lines

Visit us @ www.win.tue.nl/vis/

Visual improvements 

Antialiasing : Position based (to preserve structure)

Stable block detection : Cushion based

105



Visit us @ www.win.tue.nl/vis/

Interaction

Navigation :

Zoom : Custom + predefined (fit to screen, fit to line)

Selection : Evolution interval selection

Filtering :

Selected
version 

Past Future 

Visit us @ www.win.tue.nl/vis/

Details on demand :

Interaction
?

106



Visit us @ www.win.tue.nl/vis/

Tool presentation

Metric

Bi-level code view

Evolution viewControl panel

Visit us @ www.win.tue.nl/vis/

Demo

107



Visit us @ www.win.tue.nl/vis/

• Conveys process information embedded in the 
source code evolution records

• Offers version centric views on the system for 
relative assessment

• Appropriate mechanisms to navigate and browse 
the representation

Conclusions

Visit us @ www.win.tue.nl/vis/

• Visualize the evolution of more files in parallel

• Enrich the information about file structure
- requires language specialization

Time

Project hierarchy

Future work

108



Visit us @ www.win.tue.nl/vis/

Thank you for your attention !
www.win.tue.nl/~lvoinea/vcn.html

109



110



Bad smells and 
Refactorings
Let’s answer 4 major questions

Peter Ebraert & Tom Mens

Peter Ebraert & Tom Mens 2 / 6

Answering 4 
questions

• Are there relations between bad smells?

• Are there relations between refactorings?

• Are there more relations between bad 
smells and refactorings?

• Do refactorings really take away bad 
smells?

111



Peter Ebraert & Tom Mens 3 / 6

Relations between 
bad smells?• Model each bad smell as an IV

• Mine for relations

• Find relations between bad smells

• Check why intuitive relations do not 
hold

• Fine-tune Bad smells Model

Peter Ebraert & Tom Mens 4 / 6

Relations between 
refactorings?

• Model the refactoring prerequisites as 
IVs

• Mine for relations on a SW application

• Find relations between refactorings

112



Peter Ebraert & Tom Mens 5 / 6

Relations between bad 
smells and refactorings?• Model each bad smell as an IV

• Model the different refac. prerequisites as 
IVs

• Mine for relations on a SW application

• Answers the question whether we really 
can apply all refactorings (Fowler 
suggested) for solving a bad smell

Peter Ebraert & Tom Mens 6 / 6

Do refactorings really 
take away bad smells?
• Model each bad smell as an IV

• Find all bad smells in all CVS versions of 
a SW application and establish a "bad 
smell occurrence curve"

• Check the CVS comments to see wether 
refactorings were carried out on which 
points

113



114



Understanding Change

Where do we look at?
Filip Van Rysselberghe

Benevol 2005

Background

which change operations (and sequences) are applied?

Many changes
–Which ones are relevant?

Relevant changes
–Changes to remove design problems
–Changes that influence the evolution
–Refactorings

115



Approaches

Problem-up
– Focus a change when it removes a problem

Evolution-up
– Focus a change when its evolution changes

Rationale-up
– Focus a change when the developer tags it

Problem-up

R1 R2 R3 R4 R5 R6
CookieTools.java 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
Ajp12ConnectionHandler.java 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0
IncludeGenerator.java 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0
EmbededServletOptions.java 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0
FileRealmTool.java 4 0 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0
SimpleTcpEndpoint.java 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
DefaultServlet.java 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
WarFileServlet.java 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
ForwardGenerator.java 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0
Parser.java 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0
PoolTcpEndpoint.java 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
CookieUtils.java 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
TagLibraryInfoImpl.java 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0
WebDescriptorFactoryImpl.java 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0
LocaleToCharsetMap.java 2 0 0 2 0 0 2 0 0 2 45 0 2 45 0 2 45 0
ApacheConfig.java 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 2 0 0
MimeMap.java 0 0 0 0 0 0 0 0 0 2 45 0 2 45 0 2 45 0
ContextManager.java 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
DefaultCMSetter.java 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
LocaleToCharsetMap.java 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MimeMap.java 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ApacheConfig.java 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JservConfig.java 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ErrorHandler.java 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TOTAL 18 8 0 18 8 0 18 8 0 18 90 0 18 90 0 18 92 2

Experimented with other code smells as well.

116



Problem-up experiences

• Manual validation
–Time intensive
–Need for a high level representation
→Can graphs help us out?

• Change rationale
• Why is not always as obvious
• Link with additional info! Developers!

Evolution-up

Tomcat

File

D
at

e

117



Evolution-up experiences

Can we put it in a number? 
– Change rate?
– Patterns?

Suitable to study the effect of …
– A change?
– A code smell/problem?
Links to the rationale
– Learns us more about the why!
Still have to study actual changes
– High-level change representation!

Rationale-up

Changes
DB

Refactor
Changes

Move
Changes

…

Quality
1. Easier
2. Move
3. Refactor

Amount
1. Move
2. Improve
3. Refactor
4. Clean

Tomcat:
• Refactor dependencies
• Move & Update

118



Rationale-up Experiences

Differences in CVSquality
–Quick assessment of messages

Branching is a problem
High level change view!
Rationale!

Conclusion

119


