

On proving communication closedness of distributed layers

Citation for published version (APA):
Gerth, R. T., & Shira, L. (1986). On proving communication closedness of distributed layers. (Computing science
notes; Vol. 8607). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1986

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/d3b1a704-4ab8-4ec1-9e68-6ec7dd2192a7

CSN
86.o'"=t

On Proving Communication Closedness
of Distributed Layers

Rob Gerth

Liuba Shira

August ,1986

On Proving Communication Closedness
of Distributed Layers

Rob Gerth

Liuba Shira

August ,1986

to appear in the 6th Conference on Foundations of Software Technology and Theoretical Computer
Science, New Delhi, India.

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing

Science Section of the Department of

Mathematics and Computing Science of

Eindhoven University of Technology.

Since many of these notes are preliminary

versions or may be published elsewhere, they

have a limited distribution only and are not

for review.

Copies of these notes ~re available from the

author or the editor.

Eindhoven University of Technology

Department ()f Mathematics and Computing ScL:uce

P.O. Box 513

5600 MB EINDHOVEN

The Netherlands

All rights reserved

editor: F.A.J. van Neerven

On Proving Communication Closedness of Distributed Layers*

Rob Gerth 1,2,3 and Liuba Shrira4 ,5

August, 1986

Abstract. The notion of communication closed layer has been introduced as a way
to define structured composition of distributed sy~tems. An interesting question
is how to verify the closedness of a layer. We formulate a proof rule proving
closed ness of a distributed layer. The rule is developed as an extension of the
Apt. Francez and de Roever proof system for CSP. The extension is proved to be
sound and relatively complete.

1. In trod ucti on

A recent paper of Elrad and Francez [EF82] introduces a novel methodology of
analysing distributed programs: decomposition into communication closed layers.
According to this methodology, parts of processes are grouped together into layers
so that there is interaction only between commands which are in the same layer.
Intuitively, an execution of such decomposed programs is equivalent to synchroniz­
ing all the processes in the distributed program at layer boundaries. This approach

*This research was carried out during the first author's stays at the Department of Computer
Science of the Technion in May 1985 and May 1986.

lDepartment of Mathematics and Computing Science, Eindhoven University of Technology,
P.O.Box 513, 5600 MB Eindhoven, the Netherlands. Electronic mail: mcvax!eutrc3!wsinrobg.UUCP.

2Supported in part by the Foundation for Computer Science Research in the Netherlands (SION)
with financial aid from the Netherlands Organization for Pure Scientific Research (ZWO).

3The author is working in and supported by ESPRIT project 937: "Debugging and Specification
of Ada Real-Time Embedded Systems (DESCARTES)".

4Laboratory for Computer Science, MIT, Cambridge MA 02139, USA and Department of Com­
puter Science, Technion, Haifa 32000, Israel. Electronic mail: liuba@mit-mc.ARPA.

sSupported in part by an HTI Postdoctoral Fellowship.

-}-

is helpful in analysis of distributed programs and also useful in systematic con­
struction of distributed programs.

An independent algorithmically oriented paper of [SFR831 uses automatically'
enforced communication closed layers in a transformational technique for recursive
distributed algorithm synthesis.

A sequel paper [SF85] also reasons with enforced communication closoo. layers
while converting the program transformation in [SFR83] into a transformation of
proofs.

The present paper suggests an optimization to the closed layer methodology
both at the program analysis and program construction levels. We consider the
following problem:

Assume given verified distributed programs designed for some fixed network.
These programs serve as building blocks in the construction of a larger program in
which they are combined in a layerwise manner, i.e. the corresponding processes
are composed sequentially. Such component programs are called layers. To make
the discussion concrete, we fix a specific notation. We adopt the notation and ter­
minology of CSP [H78], to keep a natural link with [EF82] and [SF85].

When automatically constructing a program with given layers, both [EF821
and [SF85] enforce communication closedness by including in the program a syn­
chronizing section the role of which is to prevent the interactions between com­
mands in distinct layers. This approach may lead to oversynchronization in the
resulting program: it might be the case that component layers have the property
that their constituent processes interact only with each other and do not interact
with other parts of the program. We are interested in formally verifying this
noninteraction property in order to omit the synchronizing part and thus to
improve the overall message complexity of the resulting program.

A straightforward approach to the formal proof of layer non-interaction, is to
consider the complete program without the synchronizing parts and to show that
no semantic matches occur between i/o actions belonging to different layers. This
implies in fact the construction of cooperating proof outlines. [EF82] and [SF85]
deal with proving layer communication closed ness in a composed program in the
above straightforward way.

The immediate problem with this approach is, that constructing such proof
outlipes is of the same order of complexity as verifying that the program as a
whole behaves properly. So, it does not make sense to concentrate on communica­
tion closed ness of the layers compriSing this program. The second problem is that
this approach only shows closedness with respect to a particular appended layer.
Tllis runs counter to the idea stated earlier of having such layers as "on-the-shelf"
building blocks: This clearly supposes ~a notion ofc16sednessthat is independent-of-­
its environment.

In this paper, we take an alternative approach to the noninteraction proof.
We localize this proof to the bodies of component layers only. I.e. instead of con­
sidering all possible interactions, we analyse the body of the layer and directly
identify the sources of potential interlayer interaction. Towards this end, we
strengthen the definition of a communication closed layer by defining "general"
closedness. A generally closed layer is defined as a layer not having interlayer

-2-

interactions in a sequential composition with an arbitrary other layer. This
defmition contrasts with the original defmition of closedness, which is relative to a
specific context. For this new definition, we suggest a sound and complete proof
rule for proving general closedness of a given layer. The proof rule is maximally
efficient in the sense that it makes use only of the correctness proof of the layer
itself. The only related work that we know of is [A85]. That paper introduces a
static, syntactic analysis of CSP programs so as to restrict a priori the set of pairs
of communication commands whose interaction have to be considered during pro­
gram Verification. No attempt is made, however, to connect this with a design
methodology such as using closed layers.

In view of the obtained results, we consider the question of communication
c10sedness enforcement and explore the conditions of performing this task
automatically.

We finish the introduction with a quick recapitulation of the version of the
language CSP [H78] as it is used here, and of the CSP proof system [AFR80].

(1) The basic command of CSP is [PIli' .. IIPn] expressing concurrent execution of
the sequential processes PI"'" Pn •

(2) Every Pi refers to a sequential statement Si by Pi ::Si' No Si contains vari­
ables subject to change in Sj (i ~ j).

(3) Communication between Pi and Pj Ci ~ j) is expressed by the rereive and
send primitives, Pj?x and Pi!t (t a term), respectively. Execution of Pj?x in
(Pi ::Si) and of Pi!t (in Pj ::Sj) is synchronized and results in the assignment
of the value of t to the variable x. Such a pair of i/o commands is called a
syntactically matching pair.

(4) In CSP conditional statements, a guard may be of the form b ;0:-, too, where 0:­

is an i/o command (see example 2). Such a mixed guard can be passed if the
boolean expression, b, evaluates to true, 0:- has a communication partner and
the communication has been performed Ci.e.,_ a semantic match occurred).
Apart from mixed guards, there are also pure boolean guards with obViOUS
meaning. A guard evaluates to true if its boolean part does. Guards of the
form true;o:- will often be written as 0:-.

(5) Our version of CSP does not make use of the distributed termination conven­

tion6

(6) To simplify matters, loops can only have pure boolean guards. Since we do
not make use of DTC, this does not restrict the generality of the language.

The CSP proof system of [AFR80] is based on the notion of cooperation of
proof outlines. First the sequential CSP-processes are proved correct, using the fol­
lowing axiom: {p }o:-{q }, where 0:- is any i/o command. Such a proof associates with
every sub-statement of a process, a pre and a post assertion; hence, associates a
proof outline with a eSP-process. The post assertions of i/o commands can be any­
thing and will contain assumptions about communications. These assumptions

6The distributed termination convention of CSP (DrC) is a mechanism that allows the remote
sensing of partner processes' termination and is used to disable communication guarded alternatives
and to exit communication guarded loops due to process termination.

-3-

have to be checked and this is the function of the cooperation test.

Basically, this test prescribes that for any two syntactically matching i/o
commands and associated pre and post assertions, say {Pi }Pi!e {qi} and
{Pj }Pj?x {qj }, if there is in fact a semantic match, then after the communication
the post assertions should hold: {Pi I\Pj }x :=e {qi Aqj }.

A problem is that Pi I\p j in general is too weak to express the non-occurrence
of semantic matches. Hence, the introduction of a global invariant, GI, auxiliary
variables and bracketed sections. Auxiliary variables are needed so that GJ can
express globally which communications occurred. Bracketed sections, <S 1;0:;S 2>'
are uniquely associated with i/o commands and restrict the updatings, S 1 and S 2,

of the (auxiliary) variables in GJ .

The cooperation test now prescribes that for any two syntactically matching
i/O commands with associated bracketed sections, say {Pi }<Si ;Pi!e ~ > {qi} and
{Pj }<Sj ;Pj?x;Sj > {qj }, the following formula holds:

{Pi I\p j I\GI lSi ;Sj ;X := e ;Si ;Sj {qi I\qj I\GI }

Given a set of proof outlines, {Pi }Pi ::Si {qi } i=1..n, that cooperate with respect
to some GI , the parallel composition rule allows the conclusion that

n n

{ 1\ Pi I\GI }[P1::S 111 ••• IIPn ::Sn]{ 1\ qi I\GJ }.
i= 1 i= 1

The reader is referred to [AFR80] for an exposition of the proof system and of
the ideas on which it is based.

The above discussion only makes sense relative to a fixed interpretation for
CSP and for the proof systems. Only then, is it possible to talk about semantics of
CSP and validity of partial correctness specifications. Although mostly left impli­
cit, we fix for the rest of the paper some interpretation I .

2. The notion of general tail communication c10sedness

In this section we introduce the definition of general communication closed­
ness and demonstrate the usefulness of the new notion.

Defmition 1:
A layer S = [S 111 ••• IISn] is a General Tail Communication Closed (GTCC)

layer w.r.t. a set of states r, GTCC]CS,r), iff for arbitrary layers
T = [TIll ... IITn] and for all I -executions starting in states from r of the distri­
buted program P = [S I;T 111 ••• IISn ;Tn], no synchronization occurs between a com­
munication command in a process of S and a communication command in a process
ofT.

In the sequel, we will often ignore Jhel -sllbscript ang. wr!t~ 9TC;((~):J_

Using the terminology of [AFR80], the definition requires that there are no
semantic matches between communication commands in Sand T. Observe that
any layer S is trivially GTCC (S,0). We now state the additional assumptions we

. make about programs. Remember that a layer S is just any concurrent n -process
program S = [S 111 ••• IISn]. We assume that S is given together with a (partial)
correctness proof of a specification for it. We are interested in exploring the pre­
cise conditions for the behaViour of S not to be affected by appending another layer

-4-

T to it. In order to concentrate on this aspect, we assume that layers do not admit
computations other than (properly) terminating ones. If he so wishes, the reader can
remove this restriction by substituting total correctness for partial correctness
throughout the paper and by adding a deadlock freedom proof as a premis of the
rule developed below.

Before going on, we give some examples of Gree layers and also demonstrate
that the above restrictions do not make this definition vacuous.

Example 1:

S= [P l ::P2!a IIP 2::Pl ?x]

Obviously, S is a Gree layer with respect to any set of initial states. I.e., for
no layer T appended to S, communication will occur between commands in Sand
T.

Example 2:

S'= [P 1::[P 2!a-+ skip Otrue -+ skip] II P 2::[P l ?x -+ skip Otrue -+skip]].

S' is a terminating layer when executed alone and does not use the DTC con­
vention of esp. Still, Gree(s',r) does not hold for any non empty L ConSider
for example S' composed with the layer S from example 1:

[P l ::[P2!a -+skip Olrue -+skip];P2!a II P2::[Pl ?x -+skip Otrue -+ skip];P 1?x].

Whenever P 2 from layer S' selects the local alternative, PI from layer S' can com­
municate with P 2 via a communication command from layer S, the result being a a
deadlock.

We now compare the new notion of GreC with the original definition from
[EF82] of communication closedness (ee). The original notion of CC layer con­
siders a specific distributed program P with a specification {p}S {q } and a given
decomposition into layers sj (j = 1 •.. d), s.t. sj = [Si II ... IIS~], and
P = [Si;'" ;st" .. ·IISn

l ; ... ;S:].

Definition 2 [EF82]:
A layer sj is a ee layer in {p }p {q } iff there is no execution of P starting in a

state satisfying p in which a communication occurs between a communication
command in a process of a layer sj and a communication command in a process of
some other layer Sk , k :;e j •

OUf new notion strengthens the original definition by considering closed.ness
with respect to an arbitrary layer T, but also restricts the original notion by
requiring tail closed ness only. In spite of the restriction, the new definition is able
to express the original notion of closedness:

Theorem 1:
Let SI , ... , Sd be layers such that {p i-I lSi {p i } i = 1 , .. ,d. Let P be the compo­

sition of the layers SI , ... , Sd, P = [S i ; ... ;st II ... IISn1; ••• ;S:]. If
GreeCS i ,pi-I) holds for i= l, •. ,d then the layers SI ,"', sa are also communica­
tion closed (ee) layers in {p O}P{p d } (according to Definition 2).

The proof of this theorem is postponed to the end of section 3.

-5-

3. Another definition of GTCC and the equivalence of the two definitions

In this section we take a closer look at the notion of GTCC , aiming at verify­
ing potential interlayer interactions inside a given layer. To be on firm ground, we
formulate a new definition of GTCC stated solely in terms of a given layer. The
definition exposes more closely the mechanics of the inter layer interaction and
gives the intuition behind the proof rule.

Let us consider a layer S that is not GTCC with respect to some t. By
definition there exist a layer T = [T}" ... "Tn]' such that when T is appended to
S, an interlayer communication occurs between a command in S and a command in
T. Remember that from our assumptions, S is a perfectly terminating CSP layer
when executed alone. To characterize this situation solely in terms of S, we have
to formally give a semantics to S. We make use of the denotational linear history

semantics of CSP following [FLP80F and bring briefly its main concepts into
remembrance. Since layers always terminate by assumption, we ignore those
aspects of the semantics that deal with non-termination and deadlock.

The semantics uses the notion of history of communications. By history is
meant a sequence of reoords of communications. A reoord is a triple (a ,i ,j) which
is associated with a communication between process Pi and P j : a is the value sent
by Pi to Pj • h is used to denote a history. h} "h 2 denotes concatenation of his­
tories h } and h 2' The i -restriction of h , h Ii, denotes the communication sequence
resulting from h by omitting all the communication records not involving process

Pi'

First the semantics of a single process is considered. Any computation deftned
by Si reaches a certain state T (which may equal.L denoting an incomplete or par­
tial computation) and produces a certain communication sequence h in order to get
there. Whether this (partial) computation is realizable in a given environment of
other processes depends on the ability and readiness of these processes to cooperate
in producing the corresponding communications on their side. Thus analysis of Pi

itself characterizes the correspondence between attainable states and the communi­
cation sequences required to achieve them. I.e., M (Pi) is a mapping from initial
state (J into a set of pairs < T ,h > representing the existence of computations
starting at state (J which reach a state 7 with communication history h. (For
technical reasons that do not concern us, M is extended in [FLP80] to an automor­
phism on sets of such pairs.) The meaning of a parallel program Map}1I .. , IIPn])

is obtained by merging the a priori meanings of the Pi'S. Only a priori computa­
tions that are compatible with the other processes in the environment will be
merged. Computations (Ti ,hi) respectively (7 j ,hj) from Pi respectively Pj are
compatible if hi I j = h j Ii'

Our semantics assigns to each statement andsUfrting state the set of partial----~­
and complete computations that the statement can perform. It does not include
any deadlock information.

Now we are ready to introduce the new definition of GTCC. For the sake of
simplicity, we first handle the case n = 2. The general case is treated afterwards.

'Note that the semantics as described in the final version ([FLP84]), slightly differs from the

one used here.

-6-

Deftnition 3:
A layer S = [S IllS 2] is GTCC (S,r) iff there are no a, T~ 1., h, i such that

aEr, <"',h> E M(S)(a), <"',hA~> E M(S)(a) and <T,h>E'

M(Simod2+I)(a), where ~ is a record of a communication between Sl and S2'

Paraphrasing this, if a layer violates the closedness condition, definition 3 pos­
tulates a (partial) layer computation « ... ,h » that leaves control in Si in
front of an i/o command «···,hA~», but allows Simod2+1 to terminate
(< T ,h ». The correspondence with definition 1 is obvious.

The extension of definition 3 to the general case (n > 2) is not completely
straightforward. We consider partial communication histories that are prefixes of
terminating ones, and whose corresponding i -restrictions relate the computation in
the jOint meaning with a computation in the a priori meaning of process Pi'

Deftnition 4:
A layer S = [S III ... IISn] is GTCC(S,r) iff there are no a, T~ 1., h, i and

j, such that a Er, < ... ,h > E M(S)(a), < ... ,h liA~> E M(Si)(a) and
<T,h I j > E M(Sj)(a) ,where ~ is a record of a communication between Si and
Sj.

We now prove that although this definition is stated solely in terms of the
layer S itself, the notion of GrCC defined by it is identical to the notion defined
by definition 1. Strictly speaking, we do not so much prove the equivalence of two
alternative definitions, as show that definition 4 indeed captures the intuition of
definition 1.

Theorem 2:
Fix any interpretation 1. A layer S is GTCC1 by deftnition 1 iff it is GTCC1

by definition 4.

For its proof, we need some notation and 2 auxiliary lemma's.

Deftnition 5:
Given layers Si = [S/II ... II S~] i = 1,2, a history h and state a such that

< ... ,h > E M([S l ;S til' .. IISn1;Sn2])(a). Let h =h' AotAh" and ot=(i ,j ,a) .

• ~ involves SkI iff < ... ,h' I k A ~ > EM (S,/)(a) (hence i or j equals k) .

• ~ involves Sk2 iff <T,h'lk>EM(S,/)(a) and otlk~A.8 for some T~1. and
prefix h' of h' .

Lemma 1:
Given layers Si = lsi II ... IIS~] i = 1,2, its composition

S=[Sl;Stll···IISn1;S/l. a state a and two histories h=h,AotArrh" and
h = h' A {3 A ot A h ".

If ot does not involve any S/ and (3 does not involve any Sf, then
< "',h>EM(S)(a) implies < "',h>EM(S)(a)andh li=hli fori=1..n.

Proof:
Since ot does not involve any S/' ot witnesses in fact a communication within

S2. Likewise, {3 witnesses a communication within Sl. Let ~= (i ,j ,a) and
{3 = (k ,l ,b). Then this implies that {i ,j } n {k ,I }= 0, since both S/ and S/ must

8the empty sequence

-7-

have terminated for (k' to occur, whereas neither SkI nor SZI can terminate before (3

occurs. Consequently, h 'i = h 'i for all i = loon and hence < ... ,ii> EM (S)(0).

Lemma 2:
Let si=[S1 II··· IIS~] i= 1,2 and <7,h > EM([Sl ;sl" '" IISn1;Sn2])(0) for

some states 0 ,7 and history h. Let {i l' ... , ik } be a set of indices of processes Si 2

for which there is an (k' in h involving S/.

Then, if there is no record (k' in h involving both some S/ and some S/ (Le., if
there is no intra-layer communication), there is a history h '=h 'Afi' such that
h"i=h Ii for i=1..n, < "',h'>EM(S1)(0) and for every iE{it>".,ik }

there is a 7 i ;z!: 1. such that < 7 i ,h ' , i > E M (Si 1
)(0) and <···,k' , i > E

M(S/)(7i).

This lemma has two interesting corollaries. Its full generality is needed in the
proofs of theorem 2 and theorem 1.

Corollary 1:
Let Si= lsi II ... "S~] i = 1,2. If GTCC (S1 ,r), then for all states 0 and 7

3h < 7,h > E M ([S l ;s 1 II ... II Sn1 ;Sr! D(0) iff 3h' < T ,h '> E M (S 1 ;S2)(a),
and the histories are related by h Ii = h '/ i i = 1 , .. ,n .

Proof:
EVident.

This corollary makes precise the idea that communication closed ness allows
layer composition to be treated as sequential composition. In fact, we have the fol­
lowing evident

Corollary 2:
The following rule is sound (same notation as above):

{p i lSi {q i } , q 1-+ P 2

GTCC (s1,p 1)

Proof of Lemma 2:
Repeatedly using lemma 1 yields a history h' for which h "i = h 'i i = loon

and on which no communication involving some S/ precedes any communication
involving some S/. Let h '=h ,Ajj', where h' is the longest prefix of h' containing
only communications involving some Szl. Then < ... ,h'>EM(Sl)(a). More­
over for every i E {i 1, ••• , ik }, Si 1 must terminate on h' since otherwise the associ­
ated communication could not occur: < 7 i,h" i > EM (S/)(o) and
< ... ,ii" i > EM (Si2)(7 i) (by definition 7 i;C 1).
Proof of Theorem 2:

Suppose Uie layer S = ts 111 •• 'U-Sn-] is not G-TCCrCS,£}-acoording--to---- ---I
definition 1. Then we can find another layer T = [T 111 ••• II Tn] and indices i and
j , i;c j , such that synchronization occurs between i/o commands in Si and Ti
during some execution of the program P = [SJ;T 111 ••• IISn ;Tn] that starts in a
state 0 E r. Hence, there is a history h and a record (k' such that
< .. , ,h A(k'> EM] (P)(o), < ... ,h ACX> (l M]eS)(o) and < ... ,ii 'i A(k'> E
Mj(Si)(O) ((k' witnesses a communication between Si and Tj). W.l.o.g., assume
that (k' is the only such record in h A (k' witnessing non-closedness. This implies that

-8-

there is no record in h that involves both some Sz and some Tk • Hence, lemma 2
can be used. This gives a history fi =fi,Afi" such that < ... ,Ii'> E M1(S)(a) and
<r,Ii'lj>EM1(Sj)(a) for some r~1-. Since, fili=hli' we also have
< ... ,fi 'I i A a> E MI (Si)(a). Hence, S is not GrCC1 (S,r) according to definition
4.

Finally, we can give the promised

Proof of Theorem 1:
Suppose we have a history h Aa on which communication c10sedness (CC) is

Violated for the the first time by a communication occuring between layers sj and
Sk, where j <k. Say, between sj and S:; Q'= (u,v ,a) witnesses this communica­
tion and is in fact the first such witness. DefIne S~ i = [S I ;oo.;si II ... IISn1;oo.;S~]
and define S>i and S<i analogously (S<I == A). Let r i == {a I appi}, i= l..n.

Violation of CC implies the existence of states r~ 1- and aEro and a split­
ting of h, h=h I

A h 2 , such that < .. ·,hAQ'>EM(S~k)(a), <r",h11,,>E
M (S" ~ j)(a) and < ... ,h I u A Q' > E M (Su ~j)(a). Since c10sedness is not violated
on h, lemma 2 gives a history h '= ii fi . such that h' I i = h Iii = loon, - ~. - - ~.
< ... ,h'>EM(S"<J)(a), h""=h 11,, and h"u=h 'u' Hence, GTCC(S""-J ,ro)
does not hold.

By defInition GTCC (S<j ,rO) does hold. Hence, corollary 1 implies that there
isah't forwhichh'1Ii=hIli i=l,oo,n and < ···,h'I>EM(S<j;Sj)(a). Split
h'1 as ii'I"'Ii'I such that <r,h'I> E M(S<j)(a) for some T~1-. By defInition
this is possible. Then, from the assumptions of theorem 1, T E r j -I, From this we
may conclude that GTCC (sj ,1:.1 -1) is violated, which proves the theorem.

4. The proof rule for GrCC

In this section we present a proof rule for proving the GTCC of a given layer.
The rule operates solely on the partial correctness proof of the layer itself. We
assume the proof is carried out in the CSP proof system proposed in [AFR80].
I.e., each process is given a proof outline (or alternatively a proof from assump­
tions see [A8S]) and the proofs cooperate with respect to some global invariant GI.
For the sake of simplicity, we first state the ru1e for the case of two processes and
extend it to the general case later. The proof ru1e for proving S to be GTCC is
given in Figure 1.

Discussion. First observe that an assertion attached to some point in a pro­
gram characterizes the states in which execution can arrive at this point. Hence,

1 m
for p = I, the formula q 2M I\GJ 1\ V g ' j 1\ V g'; characterizes those states in

k=I k k=I k

which execution is simultaneously (GJ·) at the front of an i/o guarded alternative in
S 1 (t) and at the end of S 2 (q 2) while S 1 has the option of doing an additional

1
communication (V g ' j). Since the i/o guarded alternative has an open local

k=I k

m
branch, too (V g';), S 1 need not engage in a communication at this point.

k= 1 k

Clearly satisfaction of this formula is a sufficient condition for failure of c1osed­
ness of a layer. We claim (and prove later on) that it is a suffiCient condition, too.

-9-

Let us now apply the rule to layers Sand S' from example 1: S satisnes the
requirements of the proof rule vacuously and can be shown CTCC (S,true), while
S' can only be shown CTCC (S,f alse).

The extension of the above rule to the general case of n > 2 processes is
straightforward. The rule for proving S to be CTCC is presented in Figure 2.

A natural question to consider next is wether the proposed CTCC rule takes
care of all the "sources" of potential interlayer interaction. The answer is given in
the next section where we prove soundness and completeness of the proposed rule.

5. The soundness and completeness of the proof rule for CTCC

Soundness and completeness of the CTCC -rule as formalized in theorems 3
and 4, is based on soundness and completeness of the [AFRBO] proof system as
proved in [AB3]. That paper assigns semantics to eSP-statements (actually to a

h h
superset of our dialect), using a transition relation, _ *: (S ,0) _ * (S ',0 ') means

n n

that starting from a state 0, the statement S can evolve into the statement S I in
n computation steps, producing a communication history h and transforming 0

into 0 I. Let A denote the "empty" statement. Without proof, we claim that the
following relation exists between our semantics and the one from [AB3] (r~..L):

For any statement (or program) S:
h

<r,h>EM(S)(o)iff 3n <S,O> _* (A,r)
n

construct proof outlines for {r l}S 1 {q I} and {r 2}S 2{q 2}
that cooperate w.r.t. CI (r=r 1 /\r2/\CI)
for p=1,2 do

for any command [Dgi _ Li] in Sp

do

od
od

with a pre-assertion t and at least one mixed
alternative and one local alternative, where
{g 'h' ... ,g 'j,} is the set of boolean parts of

the mixed guards and {g '; , ... , g'i }
1 m

is the set of pure boolean guards

1 m
show I F "'(Q3-p I\t /\CI/\ V g 'j /\ V g'i)

k=l k k=l k

Figure 1. The rule GTCC for n=2

-10-

construct proof ozalines for {r tlS dq d, ... , {rn }Sn {qn }
n

that cooperate w.r.t. CI (r= 1\ rk IICI)
k=l

for p=l .. n do
for any command [Ogi -+ L i] in Sp

do

od
od

with a pre-assertion t and at least one mixed
ai1ernative and one local ai1ernative, where
{g 'jl' ••• ,g 'h} is the set of boolean parts of the

mixed guards, referring to processes Sh' ... ,Sh

in their i/o parts, and {g 'ii' ... ,g '1
m

} is the set

of pure boolean guards

11m

show IF'" V (t /\qj IICIII V g '" II V g'i)
k=l k k=1 k k=l k

CTCC ([S 111 ., • IISn], r)

Figure 2. The rule GTCC

In other words, soundness and completeness of the CSP proof system still
holds if this paper's semantics is used.

5.1. Soundness of the rule.

With that out of the way, we prove that the proposed CTCC rule is sound in
the sense of the following theorem. Here,I ~GTCC denotes derivability within the
[AFR80] proof system augmented with the GTCC rule of Figure 2, and
I F CTCC (S,r) is defined by GTCC I (S, {T I I , T F r D. N denotes the standard
interpretation of Peano arithmetic. I.e., N consists of the natural numbers together
with the standard operations (+, *, Suc) on them and the constant O.

Theorem 1:
For any layer {r }S{q },

if N ~GTCC CTCC (S, r) then N F= CTCC (S, r)

Proof:
Non c10sedness can only occur if a layer can terminate regardless of whether it

performs a certain communication or not. Also, by assumption, layers terminate.
Now observe that the only way in which a layer can be both non closed and ter­
minating, is if at least one of its components contains an alternative statement of
the special form as considered in the CTCC rule. In other words, the set of syn­
tactic configurations as defined in the rule entails all potential sources of non
closedness.

-11-

Next assume that S = [S 111 ••• USn] is not GTee. First note, that the esp
proof system used for the partial corectnESS proof of the layer S is complete with
respect to 'expressive' interpretations such as N ([A83]). To derive the contradic­
tion, let qi , t and GJ be the assertions from the presumed proof outlines showing
G Tee, and q 'i, 1 ' and GJ " be the corresponding assertions used in the esp proof
system completeness proof [A83]. By definition of the above assertions:
N l= q I i At '/\GJ ' _ qi At /\GJ .

1 m
Choose any state T. By assumption N,T F .., (qi At /\GJ /\ V g ' j /\ V g'i),

k=l k k=l k
1 m

and hence the following holds: N,T l= .., (q 'i At '/\GJ '/\ V g ' j /\ V g'i). By
k=l k i=l k

1 m
definition of the completeness assertions, N, T l= q I i At '/\GJ'/\ V g I j /\ V g 'i)

k=l k i=l k

h
claims the existence of a transition (S,a) _ * (S',T') for some communication his-

n

tory h such that N,a F r, in S' the i-th component has terminated and the p-th
component is at a guarded statement of the required form, and T' coincides with T

on the variables of the i-th and p-th component. Now, since S is terminating,
w.1.o.g. we may assume that the above transition is such that only the p-th com­
ponent in S' has not terminated yet. By the correspondence with our semantics
this means that < T',h > E M(S)(a) and that < ... ,h Ii AQ')E M(Si)(a) for any
Q' corresponding to an i/o command addnssing the i-th process in one of the open
mixed guards. Hence, S is not G1TC with respect to r. The contradiction follows
from contraposition.

5.2. Completeness of the rule.

The proposed GTee rule is complete in the sense of the following theorem.

'Theorem 4:
For any layer S, if N F GTee (S,r) then N ~GTCC GTee (S,r)

Proof:
By contraposition. Since the post-assertion of a layer can be choosen freely in

a GTCC proof, cooperating proof outlines can always be constructed. So, NIf­
GTCC GTee (S,r) can only mean that the second premis of the GTCC-rule cannot
be made to hold. Assume that the completeness proof outlines and GI are used.
By assumption, there is at least some p and some t such that

1 1 m
Nt:.., V (t /\qj /\GJ /\ Y g ' j /\ Y g'i) (notation as in the GTCC rule). hence,

k=l k k=l k k=l k

1
there is a T such that N,TF V (...). The rest of the argument is as in the proof

k=I

of theorem 3.
- - - - ~ -

Example 3:

We demonstrate the usefulness of the GTeC rule by using it to complete the
formal reasoning in the transformational system of (M8S]. In [M8S] A .Moitra
proposes a novel method for the automatic construction of esp programs out of
sequential nondeterministic programs w.r.t. a given data distribution. The method
suggests translating each statement of the sequential program into an equivalent
esp fragment and then composing sequentialy the resulting fragments to form a

-12-

complete CSP program. The ability to transform each statement separately is an
important feature of the transformation based on the so called preservation of
sequencing, which is expressed as follows: Let T denote the transformation and S l'
S 2 denote statements in the sequential program. T preserves sequencing if

(*)

In [M85] it is claimed without proof that the suggested transformation preserves
sequencing. By using the GTCC rule, we are able to prove that for any sequential
statement S , the CSP fragment T [S 1, generated by the [M85] transformation, is a
GTCC layer and thus that (*) holds for T. The author in [M85] remarks that the
transformation generates a CC layer for each statement. Actually, in order to be
able to view translation of each statement in isolation, the notion of CC is not
suffident as it is defined relatively to a given context of the statement. The GTCC
notion captures precisely the required condition.

6. Automatic c10sedness enforcement, revisited

To fadlitate distributed program synthesis with communication closed layers,
[EF82] and [SF83] advocate the use of an automatic layer communication closed­
ness enforcement facility. We discuss here the feasability of such a fadlity in view
of our better understanding of the mechanism of communication closedness. The
proposed closedness enforcement facility should be used as follows: the program­
mer suplies code for component layers and spedfies their required composition
using a special syntactiC construct. The compiler generates code to be inserted
between the sup lied component layers and composes the resulting program from
the suplied and generated code, so that in the composed program communications
occur only between commands that belong to the same layer. Obviously, to make
the automation of the compiler task feasible, the generated synchro~izing code
should not depend on the contents of specific layers. Let us denote the synchroniz­
ing code generated for a n -process layer by Zn.

We show that, for any zn, it is in general impossible to prevent interaction
between commands in a programmer sup lied layer and commands in the synchro­
nyzing code. Let us conSider a specific non GTCC layer L and some synchronyzing
code Z2 as in example 4 below.

Example 4:
Z2= [2 11122]

L = [P1::[P2?x -+skip DP2!a_skip Dtrue_ skip] II
P2::[P1?x - skip OP2!a _skip Dtrue_skip]].

If the first communication suggested by 21 is an input, then, whenever PI
chooses a boolean alternative, this input command matches semantically the out­
put guard in P 2. Similarly, if the first suggested communication of 22 is an out­
put, it may semantically match the input guard of P 2• The above example should
be suffiCient to convince the reader that an automatic generation of a general syn­
chronyzing layer is impossible, unless an extra level of synchronization is intro­
duced. The tag fadlity of the CSP notation provides this required level. Tagging
the communications ensures that no command in S will syntactically match a
command in Zn. A t runtime, the use of tags results in ineffidency as additional
checks have to be performed.

-13-

On the other hand, if the user supplies layers together with their proofs, the
task of detecting that a layer is non GrCC can be performed automatically, and
thus, the compiler can in certain cases tailor the synchronizing code according to
the detected closed ness violation.

7. Conclusions and future work

We showed that closed ness of a layer can be formally proven in terms of the
layer itself. For this, we strengthened the original notion of closedness. The basic
strategy in devising the proof rille was the same as for formulating the deadlock
freedom test in [AFR80]: Find a syntactically determined set of program
configurations that include all potential c10sedness Violations, and show that none
of these configurations is semantically reachable. We did this for the language
esp. In the full paper we indicate how to do this for Ada, based on [GR84] and
for monitor based languages, based on [GR86].

The proof rule is meant as an extension of the [AFR80] proof system. A not­
able drawback is the non syntax directedness and non compositionality of that
proof system. It would be worthwhile to see whether c10sedness can be shown in
a compositional way that is closer to [ZRB85], possibly along the lines of [GR86].

Finally, GrCC is a suffident but by no means necessary condition for the safe
composition of two layers. Necessary is only that possible closedness violations of
a layer do not find a matching communication in an appended layer. We have for­
mulated a generalization of closedness which allows such conditions to be stated
but is nevertheless independent from a layer's environment. We are currently con­
structing proof rules for verifying such more general properties.

Acknowledgements

We would like to thank Nissim Francez, Orna Grumberg and Gadi Taubenfeld
for helpful discussions and Luc Bouge for pointing out a mistake in definition 4.
The first author thanks the Technion for its hospitality.

References

[A83] APT K.R. (1983) . Formal justification of a proof system for Communicating
Sequential Processes; 1. Assoc: Comput. Mach. 30; pp; 197-2-16~-- -- - - - - -- -----

[A85] APT K.R. (1984). PrOVing correctness of CSP programs - a tutorial. in "Control
Flow and Data Flow: Concepts of Distributed Programming (M. Broy. Ed.)". pp. 441-474.
NATO ASI Series. Vol. F14. Springer-Verlag. New York.

[AFR80] APT. K.R .. FRANCEZ. N .. DE ROEVER. W.P. (1980). A proof system for com­
municating sequential processes. ACM Trans. Programm. Lang. Systems 2-3. pp. 359-380.

[deB80] DE BAKKER. 1.W. (1980). Mathematical Theory of Program Correctness.
Prentice Hall.

-14-

[EF82] ELRAD. T .. FRANCEZ. N. (1982). Decomposition of distributed programs into
communication-closed layers. Science of Computer Programming 2. pp. 155-173.

[FLP80] FRANCEZ. N .. LEHMANN. D .. PNUELI. A. (1980). A linear-history semantics
for CSP. in "Proceedings 21st IEEE Confer. Foundat. of Comput. Science".

[FLP84] FRANCEZ. N .. LEHMANN. D .. PNUELI. A. (1984). A linear-history semantics
for languages for distributed programming. Theoretical Computer Science 32. pp. 25-46.

[GR84] GERTH. R .. DE ROEVER. W.P. (1984). A proof system for concurrent Ada pro­
grams. Science of Computer Programming. 4-2. pp. 159-204.

[GR86] GERTH. R .. DE ROEVER. W.P. (1986). Proving monitors revisited: a first step
towards verifying object oriented systems. Fundamenta lnformaticae IX-4. North-Holland.
to appear.

[H78] HOARE. C.A.R. (1987). Communicating Sequential Processes. Communications ACM
21-8. pp. 666-677.

[M85] MOITRA. A. (1985). Automatic construction of CSP programs from sequential
non-deterministic programs. Science of Computer Programming S. pp. 277-307.

[SF85] SHRIRA. L.. FRANCEZ. N. (1985). "A program transformation regarded as a proof
transformation". Report TR-371. Department of Computer Science. Technion. Haifa 32000.
Israel.

[SFR83] SHRIRA. L.. FRANCEZ. N .. RODEH. M. (1983). Distributed k-selection: from a
sequential to a distributed algorithm. in "Proceedings 2nd ACM Confer. Principles of Dis­
tributed Computing".

[ZRB85] ZWIERS. J .. DE ROEVER. W.P .. VAN EMDE BOAS. P. (1985). Compositionality
and Concurrent Networks: Soundness and Completeness of a Proofsystem. in "Proceedings
12th ICALP". LNCS 194. pp. 509-520. Springer-Verlag. New York.

COMPUTING SCIENCE NOTES

In this series appeared

No.
85/01

85/02

85/03

85/04

86/01

86/02

86/03

86/04

86/05

86/06

86/07

Author(s)
R.H. Mak

W.M.C.J. van Overveld

W.J.M. Lemmens

T. Verhoeff
H.M.J.L. Schols

R. Koymans

G.A. Bussing
K.M. van Hee
M. Voorhoeve

Rob Hoogerwoord

G.J. Houben
J. Paredaens
K.M. van Hee

Jan L.G. Dietz
Kees M. van Hee

Tom Verhoeff

R. Gerth
L. Shira

Title
The formal specification and
derivation of CMOS-circuits

On arithmetic operations with
M-out-of-N-codes

Use of a computer for evaluation
of flow films

Delay insensitive directed trace
structures satisfy the foam
rubber wrapper postulate

Specifying message passing and
real-time systems

ELISA, A language for formal
specifications of information
systems

Some reflections on the implementation
of trace structures

The partition of an information
system in several parallel systems

A framework for the conceptual
modeling of discrete dynamic systems

Nondeterminism and divergence
created by concealment in CSP

On proving communication

. ~closedness of distributed layers _. __ ~ __

86/08

86/09

86 /10

86/11

86/12

86/13

86/14

87/01

87/02

87/03

87/04

R. Koymans
R..K. Shyamasundar
w.P. de Roever
R. Gerth
S. Arun Kumar

C. Huizing
R. Gerth
W.P. de Roever

J. Hooman

w.P. de Roever

A. Boucher
R. G~rth

R.. Gerth
W.P. de Roever

R.. Koymans

R.. Gerth

Simon J. Klaver
Chris F.M. Verberne

G.J. Houben
J.Paredaens

T.Verhoeff

Compositional semantics for
real-time distributed
computing (Inf.&Control 1987)

Full abstraction of a real-time
denotational semantics for an
OCCAM-like language

A compositional proof theory
for real-time distributed
message passing

Questions to Robin Milner - A
responder's commentary (IFIP86)

A timed failure semantics for
communicating processes

Proving monitors revisited: a
first step towards verifying
object oriented systems (Fund.
Informatica IX-4)

Specifying passing systems
requires extending temporal logic

On the existence of sound and
complete axiomatizations of
the monitor concept

Federatieve Databases

A formal approach distri­
buted information systems

Delay-insensitive codes -
An overview

A vailable Reports from the Theoretical Computing Science Group

Author(s)

TIR83.1 R. Koyrnans,

J. Vytopil,

W.P. de Roever

TIR84.1 R. Gerth,

W.P. (fe Roever

TIR84.2 R. Gerth

TIR85.1 W.P. de Roever

TIR85.2 O. Griinberg,

N. Francez,

J. Makowsky,

W.P. de Roever

TIR85.3 EA. Stomp,

W.P. de Roever,

R. Gerth

TIR85,4 R. Koyrnans,

W.P. de Roever

TIR86.1 R. Koyrnans

TIR86.2 J. Hooman,

W.P. de Roever

Title

Real-Time Programming and Synchronous

Message passing (2nd ACM PODC)

A Proof System for Concurrent Ada Pr0-
grams (SCP4)

Transition Logic - how to reason about tem­

poral properties in a compositional way

(16th ACM FOCS)

The Quest for Compositionality - a survey

of assertion-based proof systems for con­

current progams, Part I: Concurrency based
on shared variables (lFlP85)

A proof-rule for fair termination of guarded

commands (Inf.& Control 1986)

The J.1-calculus as an assertion language for

fairness arguments (Inf.& Control 1987)

Examples of a Real-Time Temporal Logic

Specification (LNCS207)

Classification
EUT DESCARTES

Specifying Message Passing and Real-Time CSN86/01

Systems (extended abstract)

The Quest goes on: A Survey of Proof Sys­

tems for Partial Correctness of CSP

(LNCS227)

EUT-Report

86-WSK-Ol

TIR86.3 R. Genh,
L. Shira

TIR86.4 R. Koyrnans,
R.K. Shyamasundar,
W 1'. de Roever,
R. Genh,
S. Arun Kumar

TIR86.5 C. Huizing.
R. Genh,
W 1'. de Roever

TIR86.6 J. Hooman

TIR86.7 W1'. de Roever

TIR86.8 A. Boucher,
R. Gerth

TIR86.9 R. Gerth,
W 1'. de Roever

TIR86.10 R.Koymans

TIR87.1 R. Genh

On Proving Communication Closedness of CSN86107
Distributed Layers (LNCS236)

Compositional Semantics for ReaJ-Time
Distributed Computing (Inf.&Control 1987)

CSN86r08

Full Abstraction of a Real-Time Denota- CSN86109 PE.OI
tional Semantics for an OCCAM-like
Language

A Compositional Proof Theory for ReaJ- CSN86/l0 TR.4-I-I(J)
Time Distributed Message Passing

Questions to Robin Milner· A Responder's CSN86/11
Commentary (IFlP86)

A Timed Failure Semantics for Communi- CSN86/12
eating Processes

Proving Monitors Revisited: a first step CSN86!13
towards verifying object oriented syste!Ds
(Fund Infonnatiea 1X4)

Specifying Message Passing Systems CSN86/14
Requires Extending Tempora1 Logic

On abe existence of sound and complete CSN87ft)1
axiomatizations of the monitor concepl

TR.4-4(1)

PE.02

