

A class of Petri nets for modeling and analyzing business
processes
Citation for published version (APA):
Aalst, van der, W. M. P. (1995). A class of Petri nets for modeling and analyzing business processes.
(Computing science reports; Vol. 9526). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/76d57856-828b-49cd-ba84-7bfcd7042ee9

Eindhoven University of Technology
Depanment of Mathematics and Computing Science

ISSN 0926-4515

All rights reserved
editors: prof.dr. J.C.M. Baeten

prof.dr. M. Rem

A class of Petri nets for modeling
and analyzing business processes

by

W.M.P. van der Aalst

Computing Science Report 95(26
Eindhoven, August 1995

95(26

A class of Petri nets for modeling
and analyzing business processes
W.M.P. van def Aalst
Department of Mathematics and Computing Science. Eindhoven University of Technology.
P.O. Box 513. NL·5600 MB. Eindhoven. The Netherlands. telephone: -3140474295. e·
mail: wsinwa@win.tue.nl

More and more firms are marching to the drumbeat of Business Process Reengineering
(BPR) and Workflow Management (WPM). This trend exposes the need for techniques for
the construction and analysis of business procedures. In this paper we focus on a class of
Petri nets suitable for the representation. validation and verification of these procedures.
We will show that the correctness of a procedure represented by such a Petri net can be
verified in polynomial time. Based on this result we provide a comprehensive set of trans­
formation rules which can be used to construct and modify correct procedures.

Keywords: Petri nets; free-choice Petri nets; Business Process Reengineering; Workflow
Management; analysis of Petri nets.

1 Introduction

The flourish of trumpets surrounding the terms Business Process Reengineering
(BPR) and Workflow Management (WPM) signifies the focus on business processes.
Workflow management systems allow for the continuous improvement of the busi­
ness processes at hand. Business Process Reengineering efforts are aimed at dra­
matic improvements by a radical redesign of the business processes. Today's com­
petitive organizations are reshaping to the needs of their primary business processes.
Therefore. it is important to furnish business processes with a theoretical basis,
analysis techniques and tools. In this paper we focus on modeling and analyzing
the procedures underlying these business processes.

Business processes are centered round procedures. A procedure is the method of
operation used by a business process to process cases. Examples of cases are or­
ders, claims. travel expenses, tax declarations, etc. The procedure specifies the
set of tasks required to process these cases successfully. Moreover, the procedure
specifies the order in which these tasks have to be executed. The goal of a pro­
cedure is to handle cases efficiently and properly. To achieve this goal, the pro-

1

cedure should be tuned to the ever changing environment of the business process.
WFM and BPR are the keywords which herald a new era of frequent and/or radical
changes of existing procedures.

In this paper we focus on the use of Petri nets ([17, 18, 19]) as a tool for the rep­
resentation, validation and verification of business procedures. It is not difficult to
map a procedure onto a Petri net. As it turns out, we can even restrict ourselves to a
subclass of Petri nets. Representatives of this class are called Business-Procedure
nets (BP-nets). A BP-net is a free-choice Petri net (Desel and Esparza [12]) with
two special places: i and o. These places are used to mark the begin and the end
of a procedure, see figure I. The tasks are modeled by transitions and the partial
ordering of tasks is modeled by places connecting these transitions.

Figure 1: A procedure modeled by a BP-net.

The processing of a case starts the moment we put a token in place i and termi­
nates the moment a token appears in place o. One of the main properties a proper
procedure should satisfy is the following:

For any case, the procedure will terminate eventually and the moment
the procedure terminates there is a token in place 0 and all the other
places are empty.

This property is called the soundness property. In this paper we present a tech­
nique to verify this property in polynomial time. This technique is based on the
rich theory developed for free-choice Petri nets (cf. Best [61, Desel and Esparza
[12]).

BP-nets have some interesting properties. For example, it turns out that a BP-net
is sound if and only if a slightly modified version of this net is live and bounded!

2

We will use this property to show that there is a comprehensive set of transfor­
mation rules which preserve soundness. These transformation rules show how a
sound procedure can be transformed into another sound procedure. In the context
ofWFM and BPR, where procedures have to be modified frequently or radically,
these transformation rules are useful.

The remainder of this paper is organized as follows. In Section 2 we introduce
some of the basic notations for Petri nets. Section 3 deals with BP-nets. In this
section we also define the soundness property. In Section 4 we present a technique
to verify the soundness property. Some new results for free-choice Petri nets are
presented in Section 5. These results are used to prove that some extended sound­
ness property holds for sound BP-nets. A set of transformation rules that preserve
soundness is presented in Section 6.

2 Petri nets

Historically speaking, Petri nets originate from the early work of Carl Adam Petri
([19]). Since then the use and study of Petri nets has increased considerably. For
a review of the history of Petri nets and an extensive bibliography the reader is
referred to Murata [17].

The classical Petri net is a directed bipartite graph with two node types called places
and transitions. The nodes are connected via directed arcs. Connections between
two nodes of the same type are not allowed. Places are represented by circles and
transitions by rectangles.

Definition 1 (Petri net) A Petri net is a triplet (P, T, F);

P is a finite set of places,

- T is a finite set of transitions (P n T = "'),

F !:; (P x T) U (T x P) is a set of arcs (flow relation)

A place p is called an input place of a transition t iff there exists a directed arc from
p to t. Place p is called an output place of transition t iff there exists a directed
arc from t to p. We use et to denote the set of input places for a transition t. The
notations te, e p and pe have similar meanings, e.g. pe is the set of transitions
sharing p as an input place.

Places may contain zero or more tokens, drawn as black dots. The state, often re­
ferred to as marking, is the distribution of tokens over places. We will represent a

3

state as follows: 1 PI + 2 P2 + 1 P3 + 0 P4 is the state with one token in place Ph
two tokens in P2, one token in P3 and no tokens in P4. We can also represent this
state as follows: PI + 2P2 + P3.

The number of tokens may change during the execution of the net. Transitions are
the active components in a Petri net: they change the state of the net according to
the following firing rule:

(I) A transition t is said to be enabled iff each input place P of t contains at least
one token.

(2) An enabled transition may fire. If transition t fires, then t consumes one to­
ken from each input place P of t and produces one token for each output
place P of t.

Given a Petri net (P, T, F) and an initial state Mlo we have the following notations:

- Ml -.:.. M2: transition t is enabled in state Ml and firing t in Ml results in
state M2

- Ml -> M2: there is a transition t such that Ml -.:.. M2

- Ml ~ Mn: the firing sequence a = tlt2t3 ... tn-l leads from state Ml to

M . M 'I 12 1,_1 M state n,I.e. [-> M2 -> ". -> n

- Ml ~ Mn: there is a firing sequence which leads from Ml to Mn

A state Mn is called reachable from Ml (notation Ml ~ Mn) iff there is a firing

sequence a = tlt2'" tn-l such that Ml ~ M2 ~ ... ~ Mn.

Let a = t[t2 ••• tn be a firing sequence of length n. For k such that 1 ~ k ~ n, we
have the following notations:

- a(k) = tk

A state M is a dead state iff no transition is enabled in M. For a state M and a place
p, we use M(p) to denote the number of tokens in p in state M. For two states M
and N, M ~ N ifffor each place p: M(p) ~ N(p).

Let us define some properties.

4

Definition 2 (Conservative) A Petri net P N is conservative iff there is a positive
integer w(p) for every place p such that, given an arbitrary initial state M, the
weighted sum of tokens is constant for every reachable state M'.

Definition 3 (Live) A Petri net (P N, M) is live iff, for every reachable state M'
and every transition t there is a state Mil reachable from M' which enables t.

Definition 4 (Bounded) A Petri net (P N, M) is bounded iff, for every reachable
state and every place p the number of tokens in p is bounded.

Definition 5 (Strongly connected) A Petri net is strongly connected iff, for every
two places (transitions) x and y, there is a directed path leading from x to y.

In this paper we use a restricted class of Petri nets for modeling and analyzing busi­
ness procedures. As we will see in Section 3, it suffices to consider Petri nets sat­
isfying the so-called free-choice property.

Definition 6 (Free-choice) A Petri net is a free-choice Petri net iff, for every two
places PI and P2 either (PI - n P2-) = 0 or PI- = P2-·

Free-choice Petri nets have been studied extensively (cf. Best [6], Desel and Es­
parza [12, II, 13], Hack [14]) because they seem to be a good compromise between
expressive power and analyzability. It is a class of Petri nets for which strong the­
oretical results and efficient analysis techniques exist.

For reasons of simplicity we only consider classical Petri nets. (As a matter of fact
only free-choice Petri nets.) However, the results in this paper can be extended to
high-level Petri nets, i.e. Petri nets extended with (i) 'color' (tokens have a value),
(ii) 'time' (it is possible to model durations) and (iii) 'hierarchy' (a net may be com­
posed of subnets). In fact we are planning to incorporate the techniques presented
in this paper in the software package ExSpect ([10]). ExSpect is a tool based on
high-level Petri nets which has been used to model and analyze many industrial
systems ([3]). For more details about the model ExSpect is based on the reader is
referred to [I, 2, 15]. As a matter of fact, it is a model quite similar to the CPN­
model by Jensen (cf. [16]).

3 BP-nets

3.1 What is a procedure?

A common feature ofWorkfiow Management and Business Process Reengineering
is the focus on business processes. Workflow management systems are centered

5

round the definition of a business process, often referred to as workflow. Business
Process Reengineering involves the explicit reconsideration and redesign of busi­
ness processes.
The objective of a business process is the processing of cases (e.g. claims, orders,
travel expenses). To completely define a business process we have to specify two
things ([4, 5]):

(i) A procedure: a partially ordered set of tasks.

(ii) An allocation of resources to tasks.

The procedure specifies the set of tasks required to process cases successfully. (Syn­
onyms for task are process activity, step and node.) Moreover, the procedure spec­
ifies the order in which these tasks have to be executed. (Tasks may be optional
or mandatory and are executed in parallel or sequential order.) The allocation of
resources to tasks is required to decide who is going to execute a specific task for a
specific case. Each resource (e.g. a secretary) is able to perform certain functions
(e.g. typing a letter) and each task requires certain functions. A resource may be
allocated to a task, if the resource provides the required functions.
In this paper we concentrate on modeling (business) procedures, i.e. we abstract
from the resources required to execute these procedures.
To illustrate the term (business) procedure we will use the following example. Con­
sider an automobile insurance company. The business process procesLclaim takes
care of the processing of claims related to car damage. Each claim corresponds to
a case to be handled by process_claim. The business procedure that is used to han­
dle these cases can be described as follows. There are four tasks: checkJnsurance,
contact-garage,pay.damage and send_letter. The tasks check_insurance and con­
tact-garage may be executed in any order to determine whether the claim is justi­
fied. If the claim is justified, the damage is paid (taskpay..damage). Otherwise a
'letter of rejection' is sent to the claimant (task send.1etter).

3.2 Modeling a procedure

We use Petri nets for modeling and analyzing business procedures. Basically, a
procedure is a partially ordered set of tasks. Therefore, it is quite easy to map a
procedure onto a Petri net. Tasks are modeled by transitions and precedence re­
lations are modeled by places. Consider for example the business procedure pro­
cesLclaim, see figure 2. The tasks checkJnsurance, contact..garage, pay.damage
and send_letter are modeled by transitions. Since the two tasks check_insurance
and contact-garage may be executed in parallel, there are two additional transi­
tions: fork andjoin. The places pI, p2,p3, p4 and p5 are used to route a case
through the procedure in a proper manner.

6

check_insurance contacL.garage

Figure 2: The business procedure process-claim.

Cases are processed independently, i.e. a task executed for some case cannot influ­
ence a task executed for another task. Nevertheless, the throughput time of a case
may increase if there are many other cases competing for the same resources. In
this paper we abstract from resources: cases do not affect each other in any way.
Therefore, it suffices to consider one case at a time (cf. Section 5). The token in
place i in figure 2 corresponds to one case. During the processing of a case there
may be several tokens referring to the same case. (If transition/ark fires, then there
are two tokens, one in pJ and one in p2, referring to the same claim.) The process­
ing of the case is completed if there is a token in place a and there are no other
tokens also referring to the same case.

Petri nets which model business procedures have some typical properties. First of
all, they always have two special places i and a, which correspond to the begin­
ning and termination of the processing of a case respectively. Place i is a source
place and a is a sink place. Secondly, a Petri net which represents a business pro­
cedure is always a free-choice Petri net. Thirdly, for each transition t there should
be directed path from place i to a via t. A Petri net which satisfies these three re­
quirements is called a Business-Procedure net (BP-net), see figure 1.

7

Definition 7 (BP-net) A Petri net PN = (P. T. F) is a BP-net(Business-Procedure
net) if and only if:

(i) P N has two special places: i and o. Place i is a source place: .i = 0.
Place 0 is a sink place: o. = 0.

(ii) P N is a free-choice Petri net.

(iii) lfwe add a transition t* to P N which connects place 0 with i (i.e . • t* = (oj
and to. = Ii)). then the resulting Petri net is strongly connected.

The reason for restricting BP-nets to free-choice Petri nets is pragmatic: we simply
cannot think of a sensible business procedure which violates the free-choice prop­
erty (see definition 6). We can model parallelism. sequential routing. conditional
routing and iteration without violating the free-choice property (cf. Section 6). The
third requirement (the Petri net extended with t* should be strongly connected).
states that for each transition t there should be directed path from place i to 0 via
t. This requirement has been added to avoid 'dangling tasks'. i.e. tasks which do
not contribute to the processing of cases.

It is easy to verify that the Petri net shown in figure 2 is a BP-net.

3.3 Souud procedures

The three requirements stated in definition 7 can be verified statically. i.e. they only
relate to the structure of the Petri net. There is however a fourth property which
should be satisfied:

For any case, the procedure will tenninate eventually and the moment
the procedure tenninates there is a token in place 0 and all the other
places are empty.

This property is called the soundness property.

Definition 8 (Sound) A procedure modeled by a BP-net PN = (P, T, F) is sound
if and only if:

(i) For every state M reachable from state i. there exists ajiring sequence lead­
ing from state M to state o. Fonnally:

"fM (; ~ M) => (M ~ 0)

(ii) State 0 is the only state reachable from state i with at least one token in place
o. Fonnally:

8

Note that the soundness property relates to the dynamics of a BP-net. The first
requirement in definition 8 states that starting from the initial state (state i), it is
always possible to reach the state with one token in place 0 (state 0). (Note that
tbere is an overloading of notation: the symbol i is used to denote both the place i
and the state with only one token in place i (see Section 2).) If we assume fairness
(i.e. a transition that is enabled infinitely often will fire eventually), then the first
requirement implies that eventually state 0 is reached. The second requirement
states that the moment a token is put in place 0, all the other places should be empty.

For the BP-net shown in figure 2 it is easy to see that it is sound. However, for
complex business procedures it is far from trivial to check tbe soundness property.

4 Analysis of BP-nets

4.1 Introduction

In tbis section, we focus on analysis techniques that can be used to verify the sound­
ness property. The soundness property is a property which relates to the dynamics
of a BP-net. Therefore, the coverability graph (Peterson [18], Murata [17]) seems
to be an obvious technique to check whetber the BP-net is sound. Figure 3 shows
tbe coverability graph which corresponds to the Petri net shown in figure 2 (the
initial state is i). There are only 6 reachable states, therefore it is easy to verify the
two requirements stated in definition 8.

Figure 3: The coverability graph of the Petri net shown in figure 2.

In general the coverability graph can be used to decide whether a BP-net is sound.!
However, for complex procedures, the construction of tbe coverability graph may

! In Section 4.2 we show that a sound BP-net is bounded. If the coverability graph has an un­
bounded state (an 'w-state'), then the BP-net is not sound. Otherwise, we can use a simple algo­
rithm to check the two requirements stated in definition 8.

9

be very time consuming. The complexity of the algorithm to construct the cov­
erability graph can be worse than primitive recursive space. Even for free-choice
Petri nets the reachability problem is known to be EXPSPACE-hard (cf. Cheng,
Esparza and Palsberg [9]). Therefore, any 'brute-force approach' to check sound­
ness is bound to be intractable.
Fortunately, the problem of deciding whether a given BP-net is sound is tractable.
In the remainder of this section, we present a technique to decide soundness in
polynomial time. Along the way, we encounter some interesting properties of sound
BP-nets.

4.2 A necessary and sufficient condition for soundness

Given BP-net PN = (P, T, F), we wantto decide whether PN is sound. For this
purpose we define an extended net P N = (P, T, F). P N is the Petri net that we
obtain by adding an extra transition to which connects 0 and i. This extended Petri
net PN = (P, T, F) is defined as follows:

P=P

T = T U (to)

F = F U {(o, to), (to, i))

Figure 4 illustrates the relation between P N and P N.

Figure 4: PN = (P, T U{t°),F U{(o,tO), (to,i))).

For an arbitrary BP-net P N and the corresponding extended Petri net P N we will
prove the following result:

P N is sound if and only if (P N, i) is live and conservative.

10

First, we prove the 'if' direction.

Lemma 1 If (P N, i) is live and conservative, then P N is a sound BP-net.

Proof.
(P N, i) is live, i.e. for every reachable state M there is a firing sequence which
leads to a state in which t* is enabled. Since 0 is the input place of t*, we find that
for any state M reachable from state i it is possible to reach a state with at least
one token in place o. P N is conservative, therefore there is a semi-positive place
invariant with a support equal to P. The places i and 0 have the same positive
weight because t* may move a token from 0 to i. The only state with at least one
token in place 0 and reachable from state i is the state o.
So if (P N, i) is live and conservative, then P N satisfies the following properties:
(i) for every state M reachable from state i, there exists a firing sequence leading
from state M to state 0 and (ii) state 0 is the only state reachable from state i with
at least one token in place o. Hence, P N is a sound BP-net. D

To prove the 'only if' direction, we first show that the extended net is bounded.

Lemma 2 If P N is sound, then (P N, i) is bounded.

Proof.
Assume that PN is sound and (PN, i) not bounded. Since PN is not bounded
there are two states Mi and Mj such that i ~ Mi, Mi ~ Mj and Mj > Mi.
(See for example the proof that the coverability tree is finite in Peterson [18] (the­
orem 4.1).) However, since P N is sound we know that there is a firing sequence a

such that Mi ~ o. Therefore, there is a state M such that Mj ~ M and M > o.
Hence, it is not possible that P N is both sound and not bounded. So if P N is
sound, then (PN, i) is bounded.
Fromthefactthat PN is sound and (PN, i) is bounded we can deduce that (PN, i)
is bounded. If transition t* in P N fires, the net returns to the initial state i. D

Now we can prove that (P N, i) is live and conservative.

Lemma 3 If P N is sound, then (P N, i) is live and conservative.

Proof.
Assume PN is sound. By lemma 2 we know that (PN, i) is bounded. Because
P N is sound we know that state i is a so-called home-marking of P N. There­
fore (P N, i) is deadlock-free. Since (P N, i) is a deadlock-free, bounded, strongly
connected, free-choice Petri net, we deduce that (P N, i) is live (see theorem 4.31

11

in Desel and Esparza [12]). P N is a so-called well-formed net. Since every well­
formed free-choice Petri net has a positive place-invariant, we deduce that P N is
conservative. D

Theorem 1 A BP-net PN is sound ifand only if(PN, i) is live and conservative.

Proof.
It follows directly from lemma 1 and lemma 3. D

Since boundedness and 'conservativeness' coincide for live free-choice Petri nets,
we formulate the following corollary.

Corollary 1 A BP-net P N is sound if and only if (P N, i) is live and bounded.

Proof.
A live free-choice Petri net is bounded iff it is conservative (cf. Desel and Esparza
[12]). D

Perhaps surprisingly, the verification of the soundness property boils down to check­
ing whether the extended Petri net is live and bounded! As a direct result of the
Rank theorem ([8, 12]), it is possible to decide liveness and boundedness in poly­
nomial time. Therefore, the problem of checking whether a BP-net is sound can
be solved in polynomial time using standard techniques.

In Section 6 we will use theorem 1 to prove that there is a comprehensive set of
transformation rules which preserve soundness. However, first we consider the sit­
uation where we start with n tokens in place i of a sound BP-net.

5 Multiple cases

In Section 3 we stated that individual cases do not affect each other, since we ab­
stract from resources. Therefore, it suffices to consider one case at a time to verify
the correctness of a procedure. However, if we want to model a procedure that
is used to process multiple cases at the same time, we need to resort to a high­
level Petri net. This high-level Petri net is organized as follows. Each token has a
value which refers to the case it belongs to and transitions can only consume to­
kens which belong to the same case. It is easy to see that in this high-level Petri net
individual cases do not affect each other. Nevertheless, it is interesting to see what
happens if we abstract from color, i.e. we allow multiple indistinguishable cases.
In this section we will show that we can extend the soundness property for the sit-

12

uation where there are an arbitrary number of cases. As it turns out this extended
soundness property coincides with the soundness property defined in Section 3.3.

First we prove some preliminary results which hold for any free-choice Petri net.

5.1 Substate-ordering Lemma

One of the fundamental properties of a free-choice Petri net is the fact that it can
be partitioned into clusters.

Definition 9 (Cluster) Let t be a transition in afree-choice Petri net. The cluster
oft, denoted by [t], is the set et U {t' E Tie t' = et}. The cluster of a place p,
also denoted by [p], is the set p e U {pi E P I (pi e n pe) # 0}.

Note that a place p and a transition t belong to the same cluster (i.e. [p] = [tD iff
p E et. For free-choice Petri nets, we have the following property. If transition t
is enabled, then any transition in [t] is enabled. A cluster c is called enabled iff the
transitions in c are enabled.

The first result we present is the advance lemma. This lemma shows that given a
firing sequence it is possible to advance the firing of certain transitions.

Lemma 4 (Advance lemma) Let (I = tlt2 ... tk be a firing sequence of a free­
choice Petri net such that (I leads from state M to state M', i.e. M ~ M'. If a
cluster c is enabled in state M and tj is the first transition in (I such that tj E c,

then M ~ M' with (I' = tjtlt2 ... tj_Iti+1 ... tk.

Proof.
In state M each of the transitions in c is enabled, i.e. transition tj is enabled in state
M. The transitions tj with 1 ::: j < i are not disabled by the advanced firing of
tj, because they belong to different clusters. Therefore, the firing sequence (I' =
tjtlt2 ... ti_Itj+1 .. , tk is possible. Since (I' is a permutation of (I, we deduce that

M~M. 0

We use the advance lemma to prove the substate-ordering lemma. The substate­
ordering lemma is illustrated in figure 5.

Lemma 5 (Substate-ordering lemma) Let P N be afree-choice Petri net and N
and N' states of P N such that N ...:+ N' and N' is dead. For any substate M of N
(i.e. M ::: N), there is a dead state M' such that M ...:+ M' and M' + (N - M) ...:+
N'.

13

N ~ M
, , J " M'+(N-M)

~ , , M' , , ,

N'

Figure 5: The substate-ordering lemma.

Proof.
Let a = tlt2 ... tk be an arbitrary firing sequence leading from N to N' (N ~ N').
We use induction upon the length k of a .
If k = 0, then N = N'. Since N is dead (N = N') and M ::: N, M is also dead.
Hence, M' = M is a dead state such that M ~ M' and M' + (N - M) ~ N'.
Assume k > O. If M is dead, then for M' = M the lemma holds. Therefore, we
may assume that M is not dead. Let t; be the first transition in a which is enabled
in M, i.e. t; is enabled in M and for alii::: j < i: tj is not enabled in M. Note that
such a transition exists, because M ::: N, M is not dead and N' is dead. The cluster
[til is enabled in N and t; is the first transition in a which belongs to [t; J. We can use

lemma 4 to prove thatN ~ N' with a' = t;tlt2'" t;_lt;+1 ... tk. Let NI andMI be

states such that N !!. NI and M !!. MI. By the induction hypothesis we can show
that there is a dead state M' such that MI ~ M' and M' + (NI - M\) ~ N'. By
the definition of NI and MI we conclude that M ~ M' and M' + (N - M) ~ N'.
o

Note that these results hold for any free-choice Petri net. The substate-ordering
lemma will be used to prove theorem 2.

5.2 Sound BP-nets which handle multiple cases

Consider the BP-net shown in figure 6. Ifwe add a transition t* which connects 0

and i, then the resulting net is live and bounded. Therefore, the BP-net shown in
figure 6 is sound. If we put one token in place i, then eventually there will be one
token in 0 and at the same time all the other places will be empty. What happens if
we put 10 tokens in place i? Even for the small net shown in figure 6 it is not easy
to see whether some extended soundness property holds. In the following theorem
we demonstrate what happens if we take a sound BP-net and put n tokens in place
i.

14

· ;
p4

Figure 6: A sound BP-net.

Theorem 2 If P N is sound, then for every n E N:

(i) For every state M reachable from state ni,2 there exists a firing sequence
leading from state M to state no. Formally:

VM(ni -+ M) => (M -+ no)

(ii) State no is the only state reachable from state ni with at least n tokens in
place o. Formally:

VM(ni -+ M ;\ M ~ no) => (M = no)

Proof.
Assume P N is sound. By theorem I, we know that (P N, i) is live and conserva­
tive. Therefore, P N has a positive place invariant which assigns identical weights
to the places i and o. This invariant also holds for P N. Hence, the only reachable
state with at least n tokens in place 0 is the state no, i.e. (ii) holds.

Before we prove that (i) holds we prove that for any state M reachable from state ni

2Note that ni is used to denote the state with n tokens in place i; no is used to denote the state
with n tokens in place o.

15

(i.e. ni -:+ M), it is possible to reach a dead state N', i.e. (P N, M) is not deadlock­
free. Suppose that (P N, M) is deadlock-free. Since (P N, M) is bounded, there is
some recurrent state X such that M -:+ X and any infinite firing sequence starting
from X will visit X infinitely often. Consider all the firing sequences (1 such that
X ~ X. Let Px be the set of places "affected" by at least one of these firing
sequences. Since P N is a free-choice Petri net, it is easy to verify that Px is a
trap. Clearly, the places i and 0 are not in Px . Therefore, Px is also a trap of P N.
In state ni there are no tokens in trap Px. By using the Home marking theorem (cf.
Best, Desel and Esparza [7]), we deduce that ni is not a home marking of (P N, ni).
However, state i is a home marking of (PN, i) and ni is also a home marking of
(PN, ni). Based on this contradiction, we deduce that (PN, M) is not deadlock­
free.

Remains to prove that for any state M reachable from state ni, there is a firing
sequence leading from state M to state no (see (i)). We have just deduced that
(P N, M) is not deadlock-free, i.e. given a state M reachable from state ni it is
possible to reach some dead state N'.
It suffices to prove that state N' is equal no. We use induction to prove this.

e If n = 0 or n = I, this holds by definition. If n = 0 the only reachable state
is the state without tokens. (This state can be denoted by 00.) If n = I, the
only reachable dead state is 10 (see definition 8).

e Assume n > 1. By applying lemma 5 we find that there is a dead state M'
such that i -:+ M' and M' + (ni - i) -:+ N'. Since PN is sound we know
that the only state M' such that i -:+ M' is the state 0, i.e. M' = o. Hence,
0+ (n - l)i -:+ N'. Since 0 is a sink place (oe = 0), (n - 1)i -:+ N' - o.
The state N' - 0 is also dead. By the induction hypothesis we conclude that
state N' is equal to no.

Hence, (i) also holds. o

This theorem shows that if we extend the soundness property to the situation where
there are an arbitrary number of tokens in i (in a straightforward manner), then
this extended soundness property coincides with the soundness property defined
in Section 3.3.

16

6 Transformation rules

Workflow Management and Business Process Reengineering are marked by the
awareness that procedures should be subject to change. Therefore, it is interest­
ing to investigate which changes preserve soundness.

In our opinion there are eight basic transfonnation rules (T la, T lb, T2a, T2b,
T3a, T3b, T4a and T4b) which can be used to modify a sound business proce­
dure. These transformation rules are shown in figures 7, 8, 9 and 10 and elucidated
in the sequel.

Tla Task tl is replaced by two consecutive tasks t2 and t3. This transformation
rule corresponds to the division of a task: a complex task is divided into two
tasks which are less complicated. (See figure 7.)

Rule Tla •

Rule Tlb ..

Figure 7: Transformation rules: T la and T lb.

Tlb Two consecutive tasks t2 and t3 are replaced by one task t 1. This transforma­
tion rule is the opposite of T la and corresponds to the aggregation of tasks.
Two tasks are combined into one task. (See figure 7.)

na Task t 1 is replaced by two conditional tasks t2 and t3. This transformation
rule corresponds to the specialization of a task (e.g. handle..order) into two
more specialized tasks (e.g. handle-smalLorder and handle_large_order).
(See figure 8.)

17

Rule 12a •

Rule 12b ..

Figure 8: Transformation rules: T2a and T2b.

T2b Two conditional tasks t2 and t3 are replaced by one task t 1. This transfor­
mation rule is the opposite of T2a and corresponds to the generalization of
tasks. Two rather specific tasks are replaced by one more generic task. (See
figure 8.)

T3a Task tl is replaced by two parallel tasks t2 and t3. (See figure 9.) The effect
of the execution of t2 and t3 is identical to the effect of the execution of t 1.
The transitions c1 and c2 represent control activities to fork and join two
parallel threads.

T3b The opposite of transformation rule T3a: two parallel tasks t2 and t3 are
replaced by one task t 1. (See figure 9.)

T4a Task t I is replaced by an iteration of task t2. (See figure 10.) The execution
of task t 1 (e.g. type-letter) corresponds to zero or more executions of task
t2 (e.g. type-sentence). The transitions c1 and c2 represent control activities
that mark the begin and end of a sequence of • t2-tasks'. Typical examples of
situations where iteration is required are quality control and communication.

T4b The opposite of transformation rule T 4a: the iteration of t2 is replaced by
task t 1. (See figure 10.)

It is easy to see that if we take a sound BP-net and we apply one of these transfor­
mation rules, then the resulting Petri net is still a BP-net. Moreover, the resulting

18

Rule T3a •

Rule T3b ..

Figure 9: Transformation rules: T3a and T3b.

Rule T4a •

Rule T4b ..

Figure 10: Transformation rules: T4a and T4b.

19

BP-net is also sound.

Theorem 3 The transformation rules Tla, Tlb, T2a, T2b, T3a, T3b, T4a and
T4b preserve soundness, i.e. if a BP-net is sound, then the BP-net transformed by
one of these rules is also sound.

Proof.
We use theorem 1 to prove that the transformation rules preserve soundness. As­
sume thatthe net PN is sound. By theorem 1 we know that (PN, i) is live and con­
servative. The transformation rule transforms P N into P N'. P N' is the Petri net
P N' with an extra transition t* which connects place 0 and place i. By theorem 1
we also know that P N' is sound if and only if (P N', i) is live and conservative.
(i) (P N', i) is live
Each ofthe transformation rules Tla, Tlb, T2a, T2b, T3a, T3b, T4a and T4b
preserves liveness. It is easy to verify this for each transformation rule. Consider
the transformation rules shown in figure 7 and 8. Transition tl is live if and only if
t2 and t3 are live (i.e. Tla, Tlb, T2a and T2b preserve liveness). The transfor­
mation rules T3a and T3b (see figure 9) also preserve liveness: t 1 is live if and
only if el, c2, t2 and t3 are live. The transformation rules shown in figure 10 (i.e.
T 4a and T 4b) also preserve liveness: t 1 is live if and only if el, c2, and t2 are
live.
(ii) P N' is conservative
P N has a positive place-invariant. It is easy to see that this place-invariant can be
modified such that it is an invariant of P N'.
Hence, P N' is sound. o

The eight transformation rules shown in figures 7, 8, 9 and 10 preserve soundness.
We can use these basic transformation rules to construct more complex transfor­
mation rules. Figure II shows two of these rules: T5a and T5b.

TSa Two consecutive tasks are replaced by two parallel tasks.

TSb Two parallel tasks are replaced by two consecutive tasks.

The application of transformation rule T5a corresponds to the application of T Ib
followed by the application of T3a. Transformation rule T5b is a combination of
T3b and T la. Therefore, soundness is also preserved by the transformation rules
T5a and T5b. We use the term 'sound transformation rule' to refer to a transfor­
mation rules which preserves soundness.

The BP-net which comprises only one task t is sound. We can use this net as a
starting point for a sequence of sound transformations. By theorem 3 we know
that the resulting BP-net is sound.

20

Rule T5a •

Rule T5b ..

Figure II: Transformation rules: T5a and T5b.

Corollary 2 If the Petri net PN = ({i, 01, {t}, {(i, t), (t, o)}) is transformed into
a Petri net P N' by applying a sequence of sound transformation rules (e.g. T I a,
Tlb, T2a, T2b, T3a, T3b, T4a, T4b, T5a and T5b), then PN' is sound.

Consider for example the BP-net shown in figure 2. We can construct this net by
applying the transformation rules Tla, T2a and T3a, see figure 12.

Note that the converse of corollary 2 is not true. There are sound BP-nets which
cannot be constructed by the transformation rules defined in this section. Consider
for example the BP-net shown in figure 6: this net is sound but cannot be con­
structed by using the transformation rules.

7 Conclusion

In this paper we have presented a class of Petri nets, the so-called BP-nets, suitable
for the representation, validation and verification of procedures. One of the merits
of this class is that we can verify the soundness property in polynomial time. Even
though sound BP-nets have some nice properties from a theoretical point of view,
they are powerful enough to model any business procedure. Moreover, we have
shown that the plausible transformation rules encountered when reengineering a
business procedure preserve soundness.

21

Rule T1a .. Rule T2a .. Rule T3a ..

Figure 12: Construction of the BP-net shown in figure 2.

o

In this paper we focused on the procedure underlying a business process. To com­
pletely specify a business process we also have to specify the management of re­
sources: given a task that needs to be executed for a specific case we have to specify
the resource (person of machine) that is going to process the task (cf. Van der Aalst
and Van Hee [4, 5]). A direction for further research is to incorporate this dimen­
sion. We hope to find a necessary and sufficient condition for soundness given a
BP-net extended with some mechanism to allocate resources to tasks.

Acknowledgements

The author would like to thank Dr. M. Voorhoeve for his valuable contribution to
Section 5.1 and Ir. A.A. Basten for his useful suggestions.

References

[1] W.M.P. van der Aalst. Timed coloured Petri nets and their application to lo­
gistics. PhD thesis, Eindhoven University of Technology, Eindhoven, 1992.

[2] W.M.P. van der Aalst. Interval Timed Coloured Petri Nets and their Analysis.
In M. Ajmone Marsan, editor, Application and Theory of Petri Nets 1993,
volume 691 of Lecture Notes in Computer Science, pages 453-472. Springer­
Verlag, Berlin, 1993.

22

[3] W.M.P. van der Aalst. Putting Petri nets to work in industry. Computers in
Industry, 25(1):45-54,1994.

[4] W.M.P. van der Aalst and K.M. van Hee. Business Process Redesign: A Petri­
net-based approach. Computers in Industry, (to appear) 1995.

[5] W.M.P. van der Aalst and K.M. van Hee. Framework for Business Process
Redesign. In J.R. Callahan, editor, Proceedings of the fourth workshop on en­
abling technologies: infrastructure for collaborative enterprises (WETICE
95), Berkeley Springs, April 1995. IEEE Computer Society Press.

[6] E. Best. Structure theory of Petri nets: the free choice hiatus. In W. Brauer,
W. Reisig, and G. Rozenberg, editors, Advances in Petri Nets 1986 Part I:
Petri Nets, central models and their properties, volume 254 of Lecture Notes
in Computer Science, pages 168-206. Springer-Verlag, Berlin, 1987.

[7] E. Best, J. Desel, and J. Esparza. Traps characterize home states in free­
choice systems. Theoretical Computer Science, 101:161-176, 1992.

[8] J. Campos, G. Chiola, and M. Silva. Properties and performance bounds for
closed free choice synchronized monoclass queueing networks. IEEE Trans­
actions on Automatic Control, 36(12): 1368-1381, 1991.

[9] A. Cheng, J. Esparza, and J. Palsberg. Complexity results for I-safe nets. In
R.K. Shyamasundar, editor, Foundations of software technology and theoret­
ical computer science, volume 761 of Lecture Notes in Computer Science,
pages 326-337. Springer-Verlag, Berlin, 1993.

[10] Bakkenist Management Consultants. ExSpect 4.2 User Manual, 1994.

[11] J. Desel. A proof of the Rank theorem for extended free-choice nets. In
K. Jensen, editor,Application and Theory of Petri Nets 1992, volume 616 of
Lecture Notes in Computer Science, pages 134-153. Springer-Verlag, Berlin,
1992.

[12) J. Desel and J. Esparza. Free choice Petri nets, volume 40 of Cambridge
tracts in theoretical computer science. Cambridge University Press, Cam­
bridge, 1995.

[13] J. Esparza. Synthesis rules for Petri nets, and how they can lead to new re­
sults. In J.C.M. Baeten and J.w. KIop, editors, Proceedings of CONCUR
1990, volume 458 of Lecture Notes in Computer Science, pages 182-198.
Springer-Verlag, Berlin, 1990.

23

[14] M.H.T. Hack. Analysis production schemata by Petri nets. Master's thesis,
Massachusetts Institute of Technology, Cambridge, Mass., 1972.

[15] KM. van Hee. Information System Engineering: a Formal Approach. Cam­
bridge University Press, 1994.

[16] K Jensen. Coloured Petri Nets. Basic concepts, analysis methods and prac­
tical use. EATCS monographs on Theoretical Computer Science. Springer­
Verlag, Berlin, 1992.

[17] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings
of the IEEE, 77(4):541-580, April 1989.

[18] J.L. Peterson. Petri net theory and the modeling of systems. Prentice-Hall,
Englewood Cliffs, 1981.

[19] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut fUr instru­
mentelle Mathematik, Bonn, 1962.

24

Computing Science Reports

In this series appeared:

93/01

93/02

93/03

93/04

93/05

93/06

93/01

93/08

93/09

93/10

93/11

93/12

93/13

93/14

93/15

93/16

93/11

93/18

93/19

93/20

93/21

93/22

93/23

93/24

93/25

93/26

93/21

93/28

93/29

93/30

R. van Geldrop

T. Verhoeff

T. Verhoeff

E.H.L. Aut.
I.H.M. KOnit
P.l Zwietering

I.C.M Baeten
C. Verhoef

J ,P. Veltkamp

P.O. Moerland

J. Verhoosel

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

I.C.M. Baeten
I.A. Bergstra

I.C.M. Baeten
I.A. Bergstra
R,N, Dol

H. Schepers
I. Hooman

D. Alstein
P. van der Stok

C. Verhoef

G-J. Houben

F.S. de Boer

M. Codish
D. Dams
G. File
M. Bruynooghe

E. Poll

E. de Kogel

E. Poll and Paula Severi

H. Schepers and R. Gerth

W.M.P. van der Aalst

T. KIoks and D. Kratsch

F. Kamareddine and
R. Nederpelt

R. Post and P. De Bra

I. Deogun
T. KIoks
D. Kratsch
H. Muller

Department of Mathematics and Computing Science
Eindhoven University of Technology

Deriving the Aho-Corasick algorithms: a case study into the synergy of program­
ming methods, p. 36.

A continuous version of the Prisoner's Dilenuna. p. 17

Quicksort for linked lists, p. 8.

))etenniniatic and randomized local ICuch, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming. p. en
A Ponna! Detenninistic Scheduling Model for Hard Real-Time Executions in
DEDOS, p. 32.

Systems Engineering: a Fonnal Approach
Pa.rt I: System Concepts. p. 72

Systems Engineering: a Fonnal Approach
Part IT: Frameworks, p. 44.

Systems Engineering: a Fonna! Approach
Part m: Modeling Methods, p. 101.

Systems Engineering: a Fonnal Approach
Part N: Analysis Methods, p. 63.

Systems Engineering: a Fonnal Approach Part V: Specification Language, p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Rea1-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p.19.

A congruence theorem for structured operatiooal
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect. p.21.

A Process Algebra of Concurrent Constraint Prograrruning, p. 15.

Freeness Analysis for Logic Programs - And Conectness, p. 24

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real-Time Distributed Systems,
p.31.

Mulli-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. 11.

A Semantics for a fine l-ca1culus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Pennutation and Other Graphs.
p. II.

93/31 W. KOrver

93/32 H. ten Eikelder and
H. van Geldrop

93/33 L Loyens and 1. Moonen

93/34 I.C.M. Baeten and
I.A. Bergstra

93/35 W. Ferrer and
P. Severi

93/36 I.C.M. Baeten and
I.A. Bergstra

93/31 J. Bnmekreef
J-P. Katoen
R. Kayman.
S. Mauw

93/38 C. Verhoef

93/39 W.P.M. Nuijten
E.H.L. Aans
D.A.A. van Erp Taahnan Kip
K.M. van Hee

93/40 P.O. V. van dec Stok
M.M.M.P J. Qaessen
D. Alstein

93/41 A. Bij1sma

93/42 P.M.P. Rambags

93/43 B.W. Watson

93/44 B.W. Watson

93/45 E.!. Luit
I.M.M. Martin

93/46 T. Klok.
D. Kratsch
I, Spinrad

93/47 W. v.d. Aalst
P. De Bra
G.]. Houben
Y. Komatuy

93/48 R. Gerth

94/01 P. America
M. van der Kammen
R.P. NedcTpelt
0.5. van Roosmalen
H.C.M. de Swart

94/02 F. Kamareddine
R.P. Nederpelt

94/03 LB. Hartman
KM. van Hee

94/04 I.C.M. Baeten
I.A. Bergstra

94/05 P. Thou
J. Hooman

94/06 T. Basten
T. Kunz
J. Black
M. Coffm
D. Taylor

94/07 K.R. Apt
R. Bol

94/08 O.S. van RoosmaIen

94/09 I.C.M. Baeten
I.A. Bergstra

Derivation of delay msenslbvc and speed independent CMOS circuits, using
directed conunands and production rule sets, p. 40.

On the Correctnell of some Algorithms to generate Finite
Automata for Regular Expressions, p. 17.

IUAS, a sequential language for parallel matrix computations, p. 20.

Real Time Process Algebra with Infmitesimals, p.39.

Abstra~ Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcalt Network., p. 73.

A general conservative extension theorem in process algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction, p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transfonners, p. 11.

Automatic Verification of Regular Protocols in P(f Nets, p. 23.

A taxOlllomy of finite automata construction algorithms, p. 87.

A taxonomy of finite automata minimization algorithms, p. 23.

A precise dock synchronization protocol,p.

Trecwidth and Patwidth of Cooomparability graphs of
BOWlded Dimensioo, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refmement, p. 20.

The object-oriented paradigm, p. 28.

Canooica1 typing and IT-conversion, p. 51.

Application of Maroov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Fonnal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62.

A Hierarchical Diagrammatic Representation of Class Structure. p. 22.

Process Algebra with Partial Otoice, p. 16.

--"',')

94/10 T. verhoeff

94/11 1. Pcleska
C.Huizing
C. Petersohn

94/12 T. KIoks
D. Kratsch
H. Miiller

94/13 R. Selje.

94/14 W. Peremans

94/15 RJ.M. Vaessens
E.H.L Aarts
1.K. Lenslra

94/16 R.C. Backhouse
H. Doornbos

94/17 S.Mauw
M.A. Reniers

94/18 F. Kamareddlne
R. Nederpell

94119 B.W. WaliOO

94/20 R. Bl00
F. Kamareddine
R. Nederpelt

94/21 B.W. Watson

94/22 B.W. Watsoo

94/23 S. Mauw and M.A. Reniers

94/24 D. Dams
O. Grumberg
R. Genh

94/25 T. KIoks

94/26 R.R. Hoogerwoord

94/21 S. Mauw and H. Mulder

94/28 C.W.A.M. van Overveld
M. Verhoeven

94/29 J. Hooman

94/30 I.C.M. Baeten
I.A. Bergstra
Gb. ~anescu

94/31 B.W. Watson
R.E. Watson

94/32 J3. Vereijken

94/33 T. Laan

94/34 R. B100
F. Kamareddine
R. Nederpelt

94/35 J.C.M. Baeten
S. Mauw

94/36 F. Kamareddine
R. Nederpelt

94/31 T. Basten
R. Bol
M. Voorhoeve

94/38 A. Bijlsma
C.S. Scholten

The testing Paradigm Applied to Network Structure. p. 3l.

A Comparison of Ward & Mellor's Transfonnation
Schema with State- & Activitycharts, p. 30.

Dominoes. p. 14.

A New Method for Integrity Constraint checking in Deductive Databases, p. 34.

Ups and Downs of Type Theory, p. 9.

lob Shop &:heduling by Looa1 Search, p. 21.

Mathematical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Chan..s, p. 9.

Refming Reduction in the Lambda Calculus, p. 15.

The pcrfonnance of single-keyword and multiple-keyword pattem mat.ching
algorithms, p. 46.

Beyond p-Reduction in Church's A--+. p. 22.

An introduction to the Fire engine: A C++ toolkit for Finite automata and Regular
Expressions.

The design and implementation of the FIRE engine:
A C++ toolkit for Finite automata and regular Expressions.

An algebraic semantics of Message Sequence Charts, p. 43.

Abstract Interpretation of Reactive Systems:
Abstractions Preservina 'VCTt 3CTL'" and CIL"'. p. 28.

K),l-free and W.,free graphs, p. 10.

On the foundations of functional programming: a programmer's J).)int of view, p.
54.

Regularity of SPA-Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of finite and
transfinite techniques for surface modelling. p. 20.

Correctness of Real Time Systems by Construction, p. 22.

Process Algebra with Feedback, p. 22.

A Boyer-Moore type algorithm for regular expression
pattern matching. p. 22.

Fischer's Protocol in Timed Process Algebra, p. 38.

A fonnalization of the Ramified Type Theory, p.40.

The Barendregt Cube with Defmitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequenee Chan., p. IS.

Canonical typing and II--conversion in the Barendregt
Cuhe, p. 19.

Simulating and Analyzing Railway Interlockings in
ExSpect, p. 30.

Point-free substitution, p. 10.

94/39 A. Blokhuis
T. KIoks

94/40 D. Alstein

94/41 T. KIoks
D. Kratsch

94/42 J. Engelfriet
JJ. Vereijken

94/43 R.e. Backhouse
M. Bijsterveld

94/44 E. Brinksma 1. Davies
R Genh S. Graf
W. Ianssen B. Jonsson
S. Katz a.Lowe
M. Poe! A. Pnucli
C. Rump 1. Zwiers

94/45 GJ. Hooben

94/46 R. Bloo
F. Kamareddine
R. Nederpelt

94/47 R. 8100
F. Kamareddine
R Nede<peh

94/48 Mathematics of Program
Construction Group

94/49 I.C.M. Baelen
I.A. Bergstra

94/50 H. Geuvers

94/51 T. KIoks
D. Kratsch
H. MUller

94/52 W. Penczek
R. Kuiper

94/53 R Genh
R. Kuiper
D. Peled
W. Penczck

95J1l1 JJ. Lukkien

95J1l2 M. Bezern
R. Bol
I,F. Groote

95J1)3 I.c'M. Baeten
C. Verhoef

95J1l4 J. Hidders

95J1l5 P. Severi

95/06 T.W M. Vossen
M.G.A. Verhoeven
H.MM. ten Eikelder
E.H.L. Aarts

95J1l7 G.A.M. de Bruyn
O.S. van Roosmalen

95J1l8 R. 8100

95J1)9 I.C.M. Baeten
lA. Bergslra

95/10 R.C. Backhouse
R. Verhoeven
O. Weber

On the equivalence covering number of splitgraphs, p. 4.

Distributed Consensus and Hard Rea1·Time Systems, p.34.

Computing a pedect edge without vertex elimination
ordering of a chordal bipartite graph, p. 6.

Concatenation of Graphs, p. 7.

Category Theory as Coherently Constructive Lattice
Theory: An illustration, p. 35.

Verifying Sequentially Consistent Memory, p. 160

Tutorial voor de ExSpect-bibliotheek voor "Administratieve Logistiek", p. 43.

The A -cube with classes of tenns modulo conversion,
p.16.

On II-conversion in Type Theory, p. 12.

Fixed-Point Calculus, p. 11.

Process Algebra with Propositional Signals, p. 23.

A shan and flexible proof of Strong Nonnalazation
for the CalCldus of Constructions, p. 27.

Listing simplicial venices and recognizing
diamond-free graphs, p. 4.

Traces and Logic, p. 81

A Partial Order Approach to
Branching Time Logic Model Checking, p. 20.

The Construction of a small CommWlicationLibrary, p.16.

Fonnalizing Process Algebraic Verifications in the Calculus
of Constructions, p.49.

Concrete process algebra, p. 134.

An ISolopic Invariant for Planar Drawings of Connected Planar Graphs, p. 9.

A Type Inference Algoritlun for Pure Type Systems, p.20.

A Quantitative Analysis of Iterated Local Search, p.23.

Drawing Execution Graphs by Parsing, p. 10.

Preservation of Strong Nonnalisation for Explicit Substitution, p. 12.

Discrete Time Process Algebra, p. 20

MathJpad: A System for On-Line Prepararation of Mathematical
Documents, p. 15

95/H R. Selje.

95/12 S. Mauw and M. Reniers

95/13 B.W. Watson and G. Zwaan

95/14 A. Panse, C. Verhoef,
S.F.M Vlijmen (eds.)

95/15 P. Niebert and W. Penczek

95/16 D. Dams, O. Grumberg, R. Gerth

95/17 S. Mauw and E.A. van der Meulen

95/18 F. Kamareddine and T. Laan

95/19 I.C.M. Baeten and I.A. Bergstra

95{lO F. van Raamsdonk and P. Severi

95{ll A. van Deursen

95{l2 B. Amold, A. Y. Deunen, M. Res

95{l3 W.M.P. van der Aalst

95{l4 F.P.M. Dignum, W.P.M. Nuijten,
LM.A. Janssen

95{l5 L. Feijs

Deductive Database Systems and integrity constraint checking, p. 36.

Empty Interworkings and Refinement
Semantics of Interworkings Revised, p. 19.

A taxonomy of sublinear multiple keyword pattern matching algorithms, p. 26.

De proceedings: ACP'95, p.

On the Connection of Partial Order Logics and Partial Order Reduction Methods,
p. 12-

Abstract Interpretation of Reactive Systems: Preservation of CTL*, p. 27.

Specification of tools for Message Sequence Olarts, p. 36.

A Reflection on Russell's Ramified Types and Kripke's Hierarchy of Truths,
p.14.

Discrete Time Process Algebra with Abstraaion, p. 15.

Dn Normalisation, p. 33.

Axiomati:ling Early and Late Input by Variable Elimination, p. 44.

An Algebraic Specification of a Language for Describing Financial Products,
p. II.

Petri net based scheduling, p. 20.

Solving a Time Tabling Problem by Constraint Satisfaction, p. 14.

Synchronous Sequence Cham In Action, p. 36.

	1. Introduction
	2. Petri nets
	3. BP-nets
	3.1 What is a procedure?
	3.2 Modeling a procedure
	3.3 Sound procedures
	4. Analysis of BP-nets
	4.1 Introduction
	4.2 A necessary and sufficient condition for soundness
	5. Multiple cases
	5.1 Substate-ordering Lemma
	5.2 Sound BP-nets which handle multiple cases
	6. Transformation rules
	7. Conclusion
	Acknowledgements
	References

