EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Classification and composition of delay-insensitive circuits

Citation for published version (APA):

Udding, J. T. (1984). Classification and composition of delay-insensitive circuits. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Technische Hogeschool Eindhoven.
https://doi.org/10.6100/IR25052

DOI:
10.6100/IR25052

Document status and date:
Published: 01/01/1984

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR25052
https://doi.org/10.6100/IR25052
https://research.tue.nl/en/publications/9543a554-6924-4c10-8a9d-b0afe758d355

CLASSIFICATION AND
COMPOSITION OF
DELAY-INSENSITIVE
CIRCUITS

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE
TECHNISCHE WETENSCHAPPEN AAN DE TECHNISCHE
HOGESCHOOL EINDHOVEN, OP GEZAG VAN DE RECTOR
MAGNIFICUS, PROF.DR. 5.T.M. ACKERMANS, VOOR
EEN COMMISSIE AANGEWEZEN DOOR HET COLLEGE
VAN DEKANEN IN HET OPENBAAR TE VERDEDIGEN OP
DINSDAG 25 SEPTEMBER 1984 TE 16.00 UUR

DOOR

JAN TIJMEN UDDING

GEBOREN TE DEN HELDER

Dit proefschrift is goedgekeurd
door de promotoren

Profdr. M. Rem
en

Prof.dr. E.W. Dijkstra

Druk: Dissertatie Drukkerij Wibro, Helmond, Telefoon 04920-23581.

you only grow by coming lo the end of
something and by beginning something new

from “The World according to Garp’
by John Irving

Contents

6,
7.

Introduction

. Trace theory

1.0. Traces and trace structures
1.1. A program notation

Classification of delay-insensitive trace structures

Independent alphabets and composition
3.0. Independent alphabets
3.1. Composition

Internal communications and external specification

4.0. An inforrnal mechanistic appreciation

4.1, Formalization of the mechanistic appreciation

4.2, Absence of transmission and computation interference
4.3. Blending as a composition operator

Closure properties

5.0. Shifting symbols in trace structures obtained by weaving
5.1. R; through R; for wrace structures obtained by weaving
5.2. R, through R for trace structures obtained by blending
5.3. Internal communications for a blend

5.4. The closure of C,

5.5. The closure of C,

5.6. The closure of C,

Suggestions for further study
Concluding remarks

References

Subject index

Samenvatting

Curriculum vitae

0

Introduction

VLSI technology appears to be a powerful medium to realize highly concurrent
computations. The fact that we can now fabricate systems that are more com-
plex and more parallel makes high demands, however, upon our ability to
design reliable systems. Our main concern in this monograph is to address the
problem of specifying components in such a way that, when a number of them Is
composed using 2 VLSI medium, the specification of the composite can be
deduced from knowledge of the specifications of the components and of the way
in which they are interconnected. We confine our attention to temporal and
sequential aspects of components and do not, for example, discuss their layouts.

For the specification and composition of components we use a discrete and
metric-free formalismn, which can be used for the design of concurrent algorithms
as well. Therefore, the separation of the design of concurrent algorithms from
their implementation as chips, which we have actually introduced in the
preceding paragraph, does not seem to move the two too far apart. In fact, we
believe that this formalism constitutes a good approach to a mechanical transla-
tion of algorithins into chips.

+ +
+

A typical VLSI circuit consists of a large number of active electronic ele-
ments. It distinguishes itself from LSI circuits by a significantly larger amount
of transistors. Unfortunately, existing layouts for circuits cannot simply be
mapped onto a smaller area as technology improves. The behaviour of a circuit
may change when it is scaled down, since assumptions made for 1SI are no
longer valid for VLSI. The reason is that parameters determining a circuit’s
behaviour do not scale in the same way, when the size of that circuit is scaled
down.

2 INTRODUCTION

Ags has been argued in [9], scaling down a circuit’s size by dividing all dimen-
sions by a factor a results in a transit time of the transistors that is o times
shorter. The propagation time for an electrical signal between two points on a
wire, however, is the same as the propagation time for an electrical signal
between the two corresponding points in the scaled circuit. In VLSI circuits the
relationship between delay and transit time becomes such that delays of signals
in connecting wires might not be neglected anymore,

From the above we conclude that, if we want circuit design to be independent
of the circuit’s size, we have w employ a method that relies neither upon the
speed with which a component or its environment responds nor upon the propa-
gation delay of a signal along a connecting wire. The resulting kind of com-
ponents we call delay-insensitive. Another advantage of delay-insensitive com-
ponents is that we have a greater layout freedom, since the lengths of connecting
wires are no longer relevant to correctness of operation.

Apart from the reasons mentioned above, there is yet another motive for the
design of delay-insensitive circuits, In a lot of concurrent computations a so-
called arbitration device is used. Basically, such a device grants one out of
several requests. Real-time interrupts are a typical example of the use of such a
device. In its simplest form it can be viewed as a bistable device. Consequently,
under some continuity assumptions [4], it has a metastable state. The closer its
initial state is to the metastable state the longer it takes before it settles down in
one of its stable states. Starting from the metastable state it even may never end
up in a stable state, :

In clocked systems, where all computational units are assumed to complete
each of their computations within a fixed and bounded amount of time, this so-
called glitch phenomenon may lead to malfunctioning. This problem was first
signalled in the late sixties [0,8]. The only way to guarantec fully correct com-
munications with an arbiwration device is to make the communicating parts
delay-insensitive. This is not the way, however, in which this problem is solved
in present-day computers, where the probability of correct communications is
made sufficiently large, by allowing, for example, on the average one failure of
this kind a year. This is achieved by reducing the clock rate and, hence, the
computation speed. From an industrial point of view this may be quite satisfac-
tory. From a theoretical point of view it certainly is not.

+ +
+

In this monograph the foundation of a theory on delay-insensitive circuits is
laid. The notion of delay-insensitivity is formally defined and a classification of
delay-insensitive components is given in an axiomatic way. Moreover, a compo-
sition operator for these components is introduced and its correctness is discussed.
Crucial to this discussion is that we do not want to assume anything about abso-
lute or relative delayz in wires that connect these components, except that delays

are non-negative. This leads to two conditions that should be complied with
upon composition.

First, in order to prevent a voltage level transition from interfering with
another one propagating along the same wire at most one transition is allowed
to be on its way along a wire, since successive voltage level transitons may pro-
pagate at different speeds. At best, this kind of interference leads to absorption of
transitions, which can be viewed as an infinite delay. At worst, however, it
causes the introduction of new transitions, which may lead to malfunctioning.
Therefore, absence of transmission interference is to be guaranteed upon compo-
sition.

Second, we have to guarantee absence of computation interference. Computa-
tion interference is the arrival of a voltage level transition at a circuit before that
circuit 15 ready - according io its specification - to receive it. In other words, an
input signal should not interfere with the computation that goes on before the
circuit is ready for that signal’s reception. Due to unknown wire delays, this
amounts to not sending a signal before the receiver is ready for it.

+ +
+

How to get delay-insensitive circuits in the first place is not a topic addressed
here. One can follow the method proposed by Seitz [11] and divide a chip into
so-called isochronic regions. These regions are so small that, within a region, the
wire delays are negligibly small. They are then interconnected by wires with
delays about which no assumptions are made. The smaller the regions are
chosen the less sensitive such circuits will be to scaling. Another method is the
one proposed by Fang and Molnar [3]. They model a circuit as a Huffman
asynchronous sequential circuit with certain of its inputs consisting of the fed-
back values of some of its outputs. Then it can be shown that the cireuit thus
obtained is delay-insensitive in its communications with the environment, pro-
vided that both the combinational c¢ircuit and the internal delays meet certain
conditions.

A comrnunication protocol that is often used for databuses [13] allows a
number of voltage level transitions to occur on a wire before the final level on
that wire represents a signal and can be inspected. The presence of such a final
level on a wire is then signalled by a so-called data valid signal, for which a
second wire is uged, For thiz kind of protocol, however, we need to know some-
thing about the relative wire detays, for which, for example, so-called bundling
constraints can be used. As pointed out above, we do not want to assume any-
thing about absolute or relative wire delays and, hence, we do not investigate
this kind of protocel. The approach that is advocated here is first to understand
the compsition of fully delay-insensitive circuits and next to decide whether and
how to incorporate items like bundling constraints. Consequently, we assume
transitions from one voliage level to another to be monctonic.

4 INTRODUCTION

+ o,

In the fist chapter we summarize trace theory and discuss a composition
operator, blending, in particular. A more comprehensive discussion can be found
in [12]. Trace theory is a discrete and metric-free formalism, in which we can
adequately define notions such as delay-inzensitivity and absence of computation
and transmission interference. In the subsequent chapter we define and classify
delay-insensitive components. This classification is illustrated by a number of
examples, The third chapter is devoted to partitioning the wires of these com-
ponents into independent groups via which compaosition is possible. In addition,
we state 2 number of conditions that must be satisfied if this composition is to be
allowed. In the subsequent chapter it is argued that, under these conditions,
there is no computation and transmission interference. Moreover, it turms out
that we can specify the compasite by means of the blend of the specifications of
the composing parts. The fifth chapter shows which of the classes introduced in
Chapter 2 are closed under this compesition operatar. Finally, in Chapter 6,
some clues are given to relax the composition conditions in order to incorporate
other, more general, kinds of compositions for delay-insensitive circuits than the
ones discussed here,

+
o

A slightly unconventional notation for variable-binding constructs is used. It
will be explained here informally. Universal quantification is denoted by

vi:D . E)

where ¥ is the quantifier, / is a list of bound variables, D is a predicate, and E
is the quantified expression. Both I} and £ will, in general, contain variables
from /. D delineates the domain of the bound variables. Expression £ is defined
for variable values that satisfy J). Existential quantification is denoted in a simi-
lar way with quantifier 3. In the case of set formation we write
{{:D:E}

to denote the set of all values of £ obtained by substituting for all variables in /
values that satisfy [3. The domain £ is omitted when obvious from the context.

For expressions £ and G, an expression of the form £ = G will often be
proved in a number of steps by the introduction of intermediate expressions. For
instance, we can prove £ = G by proving £ = F and # = G for some expres-

sion . In order not to be forced to write down expressions like F twice, expres-
sions that often require a lot of paper, we record proofs like this as [ollows.

E
= {hint why E = F }

F
= { hintwhy F = G }
G
We shall frequently use the hint calculus, viz. when appealing to everyday

mathermnatics, i.e. predicate calculus, arithmetics, and, above all, common sense.
These notions have been adapted from [2].

1

Trace theory

In order to define and classify delay-insensitive circuits we need a formalism for
their specification. For that purpose we use trace theory. In the present chapter
we give an overview of trace theory as far as we need it for this monograph. A
more thorough discussion can be found in [12].

1.0. Traces and trace structures

An alphabet is a finite set of symbols. Symbols are denoted by identifiers. For
each alphabet 4, 4° denotes the set of all finite-length sequences of elements of
4, including the empty sequence, which is denoted by ¢. Finite-length sequences
of symbols are called traces. A trace structure T is a pair < U,d >, in which
A is an alphabet and U a set of traces satisfying U C 4~. U is called the trace
set of T and A4 is called the alphabet of T. The elements of U are called traces
of T and the elements of 4 are called symbols of T.

We postulate operators ¢, a, i, and o on trace structures, For trace structure
T,tT and aT are the trace set of T and the alphabet of T respectively. iT
and o 7" are disjoint subsets of a T". i T is called the input alphabet of T and o T
the output alphabet. Notice that i7 U 07" need not be equal to a T".

An informal mechanistic appreciation of a trace structure is the following. A
trace structure is viewed as the specification of a2 mechanism communicating
with its environment. Symbols of the trace structure’s alphabet are the various
kinds of communication actions possible between mechanism and environment,
The input symbols of the trace structure are inputs with respect to the mechan-
ism and outputs with respect to the environment. The output symbols of the
trace structure are outputs with respect to the mechanism and inputs with
respect to the environment. A trace structure’s trace set is the set of all possible
sequences of communication actions that can take place between the mechanisin

6

1.0, TRACES AND TRACE STRUCTURES 7

and its environment.

With a mechanism in operation we associate a so-called trace thus far gen-
erated. This is a trace of the trace structure of that mechanism. Initially the
trace thus far generated is €, which apparently belongs to the trace structure,
Each act of communication corresponds to extending the trace thus far gen-
erated with the symbol associated with that act of communication.

This appreciation pertains to 2 mechanism more abstract than an electrical
circuit. It enables us to explore in the next two chapters properties that may be
associated with delay-insensitivity. In Chapter 4, finally, we are able to give a
mechanistic appreciation of trace structures that is (ailored to electrical circuits.

Example 1.0

A Wire is allowed to convey at most one voltage level transition. We assume
that there are two voltage levels, viz. low and high. Hence, we can view a wire
as a mechanism that is able to accept either a voltage level transition from low
to high, whereafter it produces the same transition at its output, or to accept a
voltage level transition from high to low, whereafter it produces that transition at
its output again. Since the two kinds of transitions alternate, we do not make a
distinction in our formalism between a high-going and a low-going transition.
Consequently, the specification of such a wire is a trace structure with input
alphabet {a }, output alphabet {4}, and trace set the set of all finite-length
alternations of @ and & that do not start with b,

(End of Example)

Note : Unless stated otherwise, small and capital letters near the end of the
Latin alphabet are used to denote traces and trace structures respectively. Small
and capital letters near the beginning of the Latin alphabet denote symbols and
alphabets respectively.

(End of Note)

The projection of trace ¢ on alphabet A, denoted by ¢[4, is defined as fol-
lows

ift =cthent[d = ¢
ft =us Aaed thnt[4 = (u[d)a
ft=urt Nag¢d thent[d = (u[d)

(concatenation is denoted by juxtaposition.)

8 TRACE THEORY

The projection of a trace set T on alphabet 4, denoted by T[4, is the trace set
{¢t:teT:t[A} and the projection of trace structure T on A4, dencted by
T[A, 1 the trace structure <<(tT)[4,aT N A > The input alphabet
i(T[A) and the output alphabet o{T[A4) of T[A are defined as iT N 4 and
oT N A respectively.

Property 1.0 : Projection distributes over concatenation, ie. for traces t and «,
and for alphabet A ()[4 = (t[AXu[A)

Property 1.1 : For trace ¢ and alphabets 4 and B t[A[B =t[(4 N B)

In order te save on parentheses we give unary operators the highest binding
power, and write tT [A4 instead of (t7)[A4. Moreover, concatenation has a
higher binding power than projection. As a consequence, we write & [4 instead
of (t)[A4.

For trace ¢ the length of { is denoted by 1¢. For trace ¢ and symbol ¢ #,¢
denotes the number of occurrences of ¢ in ¢, We call trace s a prefix of trace ¢
if (Ju::su = t). For trace set T, the trace set that contains all prefixes of traces
of T is called the prefix-closure of T, and is denoted by prefT. A trace set T is
called prefixclosed f T = prefT.

Property 1.2 : For prefix-closed trace set T and alphabet 4 T[A is prefix-
closed.

There are two composition operators that we shall frequently use. The first
one is weaving. It can, for the time being, be appreciated as the composition of
two mechanisms where each communication in the intersection of the two alpha-
bets is the same for both mechanisms. This leads to the [ollowing definition. The
weave of two trace structures S and T, denoted by § w T, is the trace structure

<{x:xe@SUaT) Ax[aSetS Ax[aTectT:x},aSUaT>

Input and output alphabet of S w T are defined as (i§ UiT)\ (a§ NaT} and
(oS UoT)\(a$§ NaT) respectively. Apparently, the type of non-commen
symbols does not change and common symbols loose their types.

1.0. TRACES AND TRACE STRUCTURES 9

Example 1.1

<{ab,abe,de } , {a,b,d,e) > w <{be,bec,fe), {b,ec,e,f)}> =
< {abc ,abec,dfe, fde } , {a,b,c,d, e, f } >

(End of Example)

Property 1.3 : For trace structures § and T, for traces s and ¢, and for symbols
aeaS\aTandbeaT\as

sabt e {SwT) = sbat e t(Sw T)

Proof :

sabt et{SwT)
= { definition of weaving }
smbte (@S UaT) Asabt[aSetS Asabt[aTetT
= { Property 1.0, the distribution of projection over concatenation, using
afaT =¢and b[a§ = ¢}
sabt € (aS UaT) Asat[aSetS Asbi[aTetT
= { Disuribution of projection over concatenation, using a2 [aT = ¢ and
blasS = ¢}
sbate (aS UaT) A sbat[aSetS NAsbat[aTetT
= { definition of weaving }
shat e t{SwT)

{End of Prool)
Property 1.4 : Weaving is chﬁc.

Property 1.5 : The trace set of the weave of two trace structures with prefix-
closed trace sets is prefix-closed.

The second aoperator that we discuss is blending. A weave still reflects the
compasite’s internal structure, By projection on the alphabets of the composing
trace structures, the individual traces from which the traces of the composite are
formed can be retrieved. After projection on the symmetric difference of the
alphabets of the composing trace structures the internal communications are hid-
den. This biend of two trace structures § and T, denoted by Sh 7, is the trace
structure '

10 TRACE THEORY

SwT)[(@aS+aT)

where + denotes symmetric set difference. Input and output alphabet of Sb T
are defined as i($ w 7') and o(§ w T') respectively.

Property 1.6 : Blending is symmetric.

Example 1.2 (cf. Example 1.1)

< {ab,abe,de },{a,b,de}>b <{be,bec,fo}, {be,e,f}> =
< {“:‘gf’fd} y {a"’d’f } =

{End of Example)

Property 1.7 : The trace set of the blend of two trace structures with prefix-
closed trace sets is prefix-closed.

Property 1.8 : For trace structures .5 and T and for trace 5
seSbT)=s[(@s\aT)etS[(asS\aT)

Proof :
set(SbLT)

= { definition of blending }
Asp:5pet{iSwT) A sp[(aS+aT) =s)

= { definition of weaving }
(3sg::5p[aS€tS Asp[(aS+aT) =y)

= { projection on a.$ \ aT and Property 1.1, using
aS§N@S\aT)=(aS+aT)N@S\aT)}
Qso::so[(@S+aT)[(aS\aT)etS[(@S\aT) A sy[(aS+aT) =)
= {calculus }
s[aSN\aT)etS[(asS\aT)
(End of Proof)

1.1. A PROGRAM NOTATION 11

l.1. A program notation

In this section we discuss a way to represent trace structures. Since trace sets are
often infinite, a representation by enumeration of its elements becomes rather
cumbersome. We use so-called commands with which we associate trace struc-
tures.

With command § trace structure TR S is associated in the following way.

- A symbol is a command. For symbola TRa = <{a},{a}>.

-If § and 7 are commands then (§ | T7') is a command.
TRE | T) = <t(TRSHIVLTRT),a(TRS) U a(TRT)>.

-If § and T are commands then (§; T) is a command. TR(S ; T) =
<{x,p :x€t(TRS) Ayet(TRT):p } ,a(TRS)Ua(TRT) >,

- If § and T are commands then {5, 7") is a command.
TRS,T) = (TRS)w (TRT)

-If§ is a command then §° is a command.

TR(S') = <@(TRS)) ,a(TRS)>

Furthermore, there are a few priority rules. The star has the highest priority, fol-
lowed by the comma, the sernicolon, and the bar. The trace sets thus obtained
are not prefix-closed. Since we are interested in prefix-closed trace sets only, as
will tun ocut in the next chapter, we associate with a command § the trace
structure <pref(t(TRS)},a(TRS)>>, when the command is used for the
specification of a mechanism.

Examgple 1.3

The specification of a Wire, as exemplified in Example 1.0 would be : input
alphabet { ¢ }, output alphabet { & }, and command (a ;)",

(End of Example)

Example 1.4

A Muller-C element, or C-clement for short [6], is an element with two inputs
and one output. It is supposed to synchronize the inputs, i.e. after having
received an input change on both input wires, it produces a change on the out-
put wire. Its specification is a trace structure with input alphabet { 4,4 }, output
alphabet {¢ }, and command (a,b ;¢)°.

{End of Example)

2

Classification of delay-insensitive trace
structures

With the trace theory as introduced in the preceding chapter we are now able to
define delay-insensitive trace structures formally. We reserve the term com-
ponent for a mechanism that is an abstraction of an electrical circuit. A trace
structure is the specification of the communications between a component and its
environment. Inputs of the trace structure are inputs with respect to the com-
ponent and outputs with respect to the environment. Qutputs of the trace struc-
ture are ocutputs with respect to the component and inputs with respect to the
environment.

The key to the definition of delay-insensitive trace structures is the component
and its environment being insensitdve to the speeds with which they operate and
to propagation delays in connecting wires. This is informally captured by view-
ing a component as being wrapped in some kind of foam box representing a
flexible and possibly time-varying boundary. The communication actions
between component and environment are specified at this boundary. The flexi-
bility of this boundary imposes certain restricdons that the specification of a
delay-insensitive circuit has to satisfy. As will tum out in the sequel, these
requirements basically amount to the absence of ordermg between certain sym-
bols : the presence of certain traces in a trace structure’s trace set irnplies the
presence of other traces in that trace set. It is not a priori obvious that the
requirements deduced in this chapter on account of this foarn rubber wrapper
principle are sufficient to guarantee proper communications. This will only turm
cut in Chapter 4.

The first restriction to be imposed upon a trace structure is that its alphabet
be partitioned into an input and an output alphabet. We do not, at this level of
abstraction at least, consider a communication means other than input or out-
put, nor de we consider ports that are input at one time and output at another

13

time. This means that we have for trace structure T the rule
Ry iTUoT =aT

Notice that iT Mo T = @ according to the definition of a trace structure.

Second, we impose the restriction that a trace set be prefix-closed and non-
empty. This rule is dictated by the fact that a system that can produce trace
is assumed to do so by first producing ¢ and then a. The symbols in a trace
structure’s alphabet are viewed as atomic actions. Moreover, a system must be
able to produce ¢ initially. This gives for trace structure T the rule

R;) tT is prefix-clased and non-empty

The basic idea of this monograph is that we do not make any assumptions on
absolute or relative wire delays. As we pointed out in the introduction, this leads
to the assumption of a transition being monotonic in order to enable a com-
ponent to recognize the signal that this transition represents. This means that we
have to guarantee transitions against interference and, therefore, have to limit
the number of transitions on a wire to at most one. In terms of trace structures,
where signals via the same wire are represented by the same symbol, this
amounts to the restriction that adjacent symbols be different. This gives for
trace structure T the following necessary condition.

R,) for trace s and symbola€aT ssae@tT

Signals are sent in either of two directions, viz. from a component to its
environment or the other way round. Due to unknown wire delays, two signals
being sent the one after the other in the same direction via different wires need
not be received in the order in which they are sent. In other words, we cannot
assume our communications to be order preserving. Consequently, a specification
of a delay-insensitive component does not depend on the order in which this
kind of concurrent signals is sent or received. Therefore, a trace structure con-
taining a trace with two adjacent symbols of the same type {input or output)
also contains the trace with these two symbols swapped. In fact, we conceive
adjacent symbols of the same type as not being ordered at all. (Their occurrence
as adjacent symbols in a trace is just a shortcoming of our writing in a lincar
way.) For trace structure T, this is expressed by the following restriction

Rs) for races s and ¢, and for symbols a €aT and § € a T of the same type
sabtetT = shat et T

Due to the foam rubber wrapper principle, signals in opposite directions are
subject to restrictions as well. As opposed to signals of the same type, they may

14 CLASSIFICATION OF DELAY INSENSITIVE TRACE STRUCTURES

have a causal relationship and, hence, have an order. If, however, in some phase
of the computation they are not ordered, meaning that for some trace 5 and
symbols g and & both sa €t T and sb €t T, then the traces that sab and sba can
be extended with, according to the component’s trace set, should not differ too
much. Obviously, we do justice to the foam rubber wrapper principle if the
order of this kind of concurrent symbols is of no importance at all. This results
for trace structure T in the rule

Ry) fortraces s and ¢, and for symbols e € a7 and 4 € a T of different types
saetT N sbatetT = sabtetT

Finally, we have to take into account that a signal, once sent, cannot be can-
celled. However long it takes, eventually it will reach its destination. Conse-
quently, a component ready to receive a certain signal from its environment,
which means that the trace thus far generated extended with that symbel
belongs to the trace set, must not change its readiness when sending a signal to
its environment. In other words, in the absence of an oracle informing either
side on signals that, though possible, will not be sent, we cannot allow in a
specification that a symbol disables a symbol of another type. Symbol a disables
symbol & in trace structure T if there is a trace 5 with

saetT NsbetT N sabetT

There is nothing wrong, however, with symbols that disable symbols of the
same type, If these symbols are input symbols then the environment has to make
a decision which output symbol(s) to send. If, on the contrary, the symbols are
output symbols then the component has to make that decision. Since a correct
use of arbitration devices is one of the important incentives to the study of
delay-insensitive circuits, the wvarious types of decisions are a key to the
classification. Three classes, each of them described by one of the following non-
disabling rules, can be distinguished now. For trace soucture T we have

Ry") for trace 5 and distinct symbolsacaT and beaT
sa€tT NshetT =>sabetT

R,"} for trace s and distinct symbols ¢ € aT and 6 € a T, not both input sym-
bols,saetT NsbetT = sabetT

R} for trace s and symbols a €a T and & € a T of different types
sactT ANsbetT = sabetT

All delay-insensitive trace structures satisfy R, through R3. The class satisfy-
ing Ry and Ry’ as well is called the synchronization class. It is also denoted by
C,. A specification in this class allows for synchronization only. Due to the

15

absence of decisions, no data transmission is possible. The class allowing for
input symbols to be disabled, satisfying therefore Ry’ and R;”, is called the data
communication class. It is also denoted by C,. Here the data is encoded by
means of the possible decisions. Finally, we have Cs, or the arbitration class,
which allows a component to choose between output symbols. Specifications in
this class satisfy, in addition to Rg through Rj; R, and R;". Obviously,

We could have distinguished the class in which decisions are made in the
component and not in the environment, which is G, with in its R;” the restric-
tion ‘not both inputs’ replaced by ‘not both cutputs’. We have not done so, how-
ever, since none of the classes thus obtained tumns out to be closed under the
composition operator proposed in the next chapter, a circumstance making none
of these classes very interesting. 4 has, arbiwrarily, been chosen to demonstrate
this phenomenon. ,

The reason that Cj is not closed under composition is that R, is too restric-
tive in the presence of decisions in the component, as is shown in Chapter 5. We
concluded the analysis for R," by observing that the foam rubber wrapper prin-
ciple would certainly be done justice if the order of concurrent symbols of
different types was of no importance. This situation, however, needs a mare care-
ful analysis.

The specification of a component must not depend on the place of the boun-
dary of the foam rubber wrapper. Consider two wrappers, the one contained in
the other one. If, at the outside boundary the order between two concurrent
input and output signals is input-before-output, then nothing can be said about
their order at the inside boundary. If, on the other hand, the order between such
signals is output-before-input at the outside boundary, then the same order
between these symbols is implied at the inside boundary.

The first situation, i.e. input-before-output at the outside boundary, gives rise
to a restriction to be imposed upon a component’s trace set. Assume that we
have traces s and ¢, input symbol a, output symbol &, and traces safit and sbat
in the component’s trace set. Trace sabt is the trace associated with the outside
boundary and trace stat is the one that is associated with the inside boundary.
Now if sabt can be extended -according to the component’s trace set- with an
input symbol ¢, which means a signal from the outside boundary towards the
inside boundary, then a necessary condition for absence of computation interfer-
ence at the inside boundary is the presence of trace sbak in the component’s
trace set.

A similar observation applies to an output-before-input order of concurrent
symbols at the inside boundary and an input-before-output order at the outside
boundary. In this case an output signal possible at the inside boundary should
be possible at the cuwside boundary as well. This results for trace structure T in
the following rule, which is less restrictive than R/,

16 CLASSIFICATION OF DELAY INSENSITIVE TRACE STRUCTURES

R,") for traces s and ¢, and for symbols acaT, #€a7,and ceaT with &
of ancther type thana and ¢ sablc et T A sbat etT = shatc et T

R, through R; together with R, and any of the three Ry’s constitute a class
of delay-insensitive trace structures. We give a name to the largest class only,
which is the one with R,” and R, We call it the class of delay-insensitive
trace structures and denote it by C,. Obviowly, C; C C,;. We do not attach
names to the other classes, since these classes neither provide more insight nor
have surprising properties,

Before exploring R,”, we illustrate this classification by a number of exam-
ples. In these examples we sometimes represent a trace structure by a state
graph instead of by a command. A state graph is a directed graph with one spe-
cial node, the start node, and arcs labelled with symbols of the trace structure’s
alphabet. Each path from the start node corresponds to a trace, viz. the one that
is brought about by the labels of the consecutive arcs in that path. A state graph
is said to represent a trace structure if it has the same trace set as that trace
structure. Rules Ra, Ry, and R, are usually more easily checked in a state
graph than in a command, Rule R,"” is hard to check in either representation.
In the figures the start nodes are drawn fat. Choosing ancther node as start node
means another initialization of the component. Components that only differ
from one another by different start nodes are given the same name, For clear-
ness’ sake we attach a question mark to arcs labelled with an input symbol and
an exclamation mark to arcs labelled with an output symbol.

Example 2.0

The Wire and the C-element of Examples 1.3 and 1.4 are C/’s. Interchanging
the roles of the input and the output alphabet yields C,’s again. The wire
remains a wire, now starting with an output however. The C-element becomes a
Fork, viz. a trace structure with input alphabet {¢ }, output alphabet {a,} },
and command (a,5;¢)’. By another initialization we also have the cornmand
(¢ ;a,b)" for a Fork.

{End of Example)

Example 2.1

Ancther very common element is the so-calied Merge. It is an clement with
input alphabet {a,5 }, output alphabet {¢ }, and command {(a | #);¢)". This
component is a C,, since inpuis 4 and # disable one another. Interchanging the
roles of input and output alphabet yields a Cy. This is the simplest form of an
arbiter,

{End of Example)

17

Example 2.2

A C-element with two outputs instead of one is another example of a G. It has
input alphabet {a,5 } and output alphabet {¢,d }. There are two essentially
different trace structures that synchronize the input signals. The first one is the
C-element with its output symbol replaced by two output symbols in any order.
This yields command (g, ;¢,d)". In this trace structure we can distinguish an
input and an output phase. Another command allows the two phases to overlap
a little bit, but still synchronizes the inputs. This is expressed in the command
a,b;((c;a),d;b) .

(End of Example)

Example 2.3

Consider a C-element with input alphabet {a,r }, output alphabet { }, and
command (a,r;p) and consider a Wire with input alphabet {¢ }, output
alphabet {4 }, and command (g ;4)". The Wire can be used to acknowledge
the reception of symbol p by the environment before a next input ¢ is allowed to
occur. The resulting component has input alphabet {a,¢,7 }, output alphabet
{b,p}, and command a;(p;(g ;b ;a),7)’. We have chosen this initialization,
since the component will be used in this form in Chapter 5. It is a C,.

(End of Example)

Example 2.4

Another component that will be used in Chapter 5 is a component that can be
thought of as consisting of three wires : two wires to convey a bit of information
and one wire for the acknowledgement of its arrival. A bit is encoded as sending
a signal on one of the two wires that are used for the data transmission, Its input
alphabet is {xq,x,,4 }, its output alphabet is {y9,7,,a }, and its command is
(xo370:% ;a | x1;21;6;a) . Because of the choice to be made between the
inputs x¢ and », this component is a C,.

(End of Example)

Example 2.5

A parity counter is a component that counts the parity of a number of consecu-
tive inputs. The parity can be retrieved on request an unbounded number of
times. The symbol whose occurrences we want to count is x. Its reception by the
component is acknowledged by symbol a. By means of symbol # we can retrieve
the parity of the oocurrences of x so far. Symbwol 3, represents an even number
and symbol y, an odd number of occurrences. The trace structure’s input

18 CLASSIFICATION OF DELAY INSENSITIVE TRACE STRUCTURES

alphabet is {x,b}, its output alphabet is {a,yq,5,}, and itz command is
((d ;90) ;x;a;(b;»,) ;x;a) . This component is a C,. There is a choice to
be made between inputs x and 4. To show that more clearly we draw a state
graph of this component.

& [rt— —————s
b? at x? b?

Any two arcs from the same node have labels of the same type, which implies
that R, is trivially satisfied. There are no two consecutive arcs with labels of the
same type, which implies that R, is satisfied. Any two arcs from the same node
have labels of type input that do disable one another. This does not meet
requirement R, but this is allowed according to R;"”. Consequentdy, this is a
C,.

(End of Example)

Example 2.6

An And-element with input alphabet {a,r } and output alphabet {¢ } is quite
often used in the following way. Both inputs go high in some order whereafter
the output follows the inputs. Next, both inputs go low again and the output fol-
lows the first low-going input transition. This is expressed by the command
{a,r;c;{a;(c,r)|r;(a,c)). This trace structure is not delay-insensitive, how-
ever. It contains, for instance, the trace arcreas, which violates R, It can be
made delay-insensitive by replicating both inputs. Then its input alphabet is
{a,r}, iz output alphabet {&,c,p} and a possible command (a;p;r;
byesaze,(pir;d). Input a is now acknowledged by p and r by 4. It is not
the most general command for a delay-insensitive And-element but one that
suffices for the sequel. The corresponding trace structure is a G.

(End of Example)

Example 2.7

A binary variable is a component that can store one bit of information, which
may be retrieved afterwards on request an inbounded number of times. The
component has input alphabet {xg,x,, }, output alphabet {y4,7;,a }, and
command (xq;a ;{5 ;y0) | x1;a;(8;51)") . Symbol a acknowledges the recep-
tion of a bit {either x; or x;), and & is the request for the currently stored value.
A state graph looks like

19

x?

%,?

In the start node a choice has to be made between x; and x| (it has no currently
stored value). Moreover, there are two nodes where a choice has to be made
between inputs b, xp, and x;. This makes it a C,.

{End of Example)

Example 2.8

A buffer is an element that allows us to store a series of values and to retrieve
them in the same order. Usually a buffer has a finite number of places for
storage, which bounds the number of values that can be stored simultaneously.
In this example we discuss a one-place one-bit buffer. The reception of one bit,
either xg or x|, is acknowledged by a. Symbols », and y, are used to return the
stored value. Symbol b signals the environment’s readiness (or request) for the
next value. Initially the environment is ready to receive a value. There exist less
complicated buffers, more similar to the variable of the preceding example. We
have chosen for this buffer and this initialization, since this buffer can easily be
composed with another one as will turn out in Chapters 3 and 5. The trace
structure of this component has input alphabet {x,,x;,5 }, output alphabet
{»0.71,8 }, and command

05 ({(a 5 20), (303 8)) 5 (8 i x1)s (303 8)3 (8 5%1), (715 8) " (85 x0), (313 6))" |
x5 (8 5%, 01380 5 (@5 20),(0158) (@@ 5 %), (703 8)) s (a5 x0), (303 8))
A state graph looks like

b
%42 1 Xg?
t x? Ky?
(e = -—2 9 1. 2 9 -0
Y
‘: Yo! '] e l
¥ Y ¥ ¥ ‘\ ¥
b? b?] ¥
2:{ o]
1 1 \ Y \ir 1
- P [-

20 CLASSIFICATION OF DELAY INSENSITIVE TRACE STRUGTURES

We have not labelled all arcs. Opposite sides of the parallelograms have equal
labels. Nodes that have been attached the same number are identical, Here we
see the existence of a node with cutgoing arcs with labels of different types. It is
easy to see that R,’ is still satisfied, since arcs with such labels make up a paral-
lelogram, which means that their order is of no importance. This component is a
(., the only decision to be made being the one between inpuis xj and x;.

(End of Example)

Example 2.9

An arbiter, in one of its simplest forms, grants one out of two requests. The
arbiter that we discuss in this example has a cyclic way of operation, i.¢. it needs
both requests before being able to deal with the next request. It has input alpha-
bet {a,5 } and output alphabet {¢,p,7 }. In every cycle exactly one of the out-
puts p and ¢ changes. A change in a precedes a change in ¢ and, likewise, a
change in g is preceded by a change in . The output ¢ signals the completion
of the cycle after reception of ¢ and &. Consequently, the command is
((a,b;¢),({a;)b | (6;5¢),a)) . A state graph is

.
p! /.\ q!
./ \ / \.

.'|'

o
\.

This component is a G, the choice to be made being the one between cutputs g
and 4. Notice that this specification does not exhibit a first come first serve prin-
ciple. In delay-insensitive trace structures such a principle cannot be expressed.
A realization of this component may exhibit a first come first serve bchawou.r,
however.

(End of Example)

Example 2.10

In the arbiter of this example an additional symbol r is introduced that signals
the reception by the environment of cither p or ¢. Moreover, ¢ is postponed
until after the reception of r. For reasons explained in the next chapter we some-
times prefer this arbiter to the one in Example 2.9. The input alphabet of this
component is {a,b,r }, the output alphabet is {¢,p,¢ }, and the command is

21

(a,b,r;¢) ,((a;p;r)b | (b;9;7),a) . A state graph, from which it can be
seen that this component is a Cj, is

o /.\ o

{End of Example)

Example 2.11

The arbiter in this example allows multiple requests of one kind of symbol, e.g.
a, without the need for the occurrence of the other symbol, & in this case. Its
input alphabet is { 2,4 } and its output alphabet { #,9 }. A request, for a shared
resource for example, is a high-going transition on one of the inputs a ar &, A
high-going wansition on # means that request 2 has been granted and, similarly,
a high-going transition on ¢ that & has been granted. At most one request will
be granted at a time. A low-going transition on the input whose request had
been granted signals the release of the shared resource whereafter a low-geing
transition on the output that granted this request makes the arbiter ready for a
next request of the same kind. The state graph, fram which it can be seen that
this component is a Ca, is

{End of Example)

22 CLASSIFICATION OF DELAY INSENSITIVE TRACE STRUGTURES

Example 2,12

The component of this example is used to demonstrate that C; is not closed
under the compaosition operator to be introduced in the next chapter. It has
input alphabet {a,d,¢ }, output alphabet { ,¢,f }, and command

((f58),(6:d)) 5 f sai(c;e;b;d) ;6;d)

A state graph of this component is

\/
/\k
\/

—
(End of Example)

We conclude this chapter with a number of lemmata. Lemmata 2.0 through
2.7 deal with a generalization of R4”. In Lemmata 2.8 through 2.11 we prove a
few properties of C5’s in particular with respect to the shifting of output symbols
to the right and input symbols to the left in traces of a C,.

Lemma 2,0 : For T a G, for wraces s and ¢, and for symbols 4 and & such that
b is of another type than ¢ and the symbols of ¢

sbetT NsabtetT = shat et T

Proof : By mathematical induction on the length of ¢,
Base : § = ¢
sbetT N sabtetT
= {t7T is prefix-closed }
sbetT NsaetT
= { R, using that a and & are of different types }
sbaetT
= {{=¢}
shatet T

Step : ¢ = tyc. Hence, we have

b is of another type than ¢ and the symbols of £,

shetT AsabtetT
= {t =ty andt T is prefix-closed }
shetT N sabtyetT N sabigc et T
= { induction hypothesis, using (0) }
shatoet T N sabte et T
= { Ry, using (0) }
shatye et T
= {t =1}
sbat et T

(End of Proof)

23

(0)

Lemma 2.1 : For T a C, for traces s and ¢, and for symbol 4 of another type

than the symbols of ¢
sbetT AstetT =>sbtetT

Proof : By mathematical induction on the length of ¢.
Base : ¢ = ¢. Obvious.

Step : ¢ = aty. Hence, we have

& 15 of another type than ¢ and the symbols of ¢,

sbetT AstetT
= {t = alygand t T is prefix-closed }
sbetT NsaetT N satgetT
= { Ry", using (0) }
sbetT AsabetT A satgertT
= { induction hypothesis, using (0) }
sbetT A sabtoer T
= { Lemma 2.0, using (0) }
shatyetT
= {t=ualy}

©

24 CLASSIFICATION OF DELAY INSENSITIVE TRACE STRUCTURES

stetT

(End of Proof)

Lemma 2.2 : For T a Cy, for traces s and ¢, and for symbol 4 such that b is of
another type than the symbols of ¢

sbetT NstetT = (Vwy,w,iwew, = {:swobw, et T)

Proof : By mathematical induction on the length of ¢.
Base : t = e. Obvious.

Step : ¢t = aty. Hence, we have
b is of another type than ¢ amnd the symbols of ¢, (0)

sbetT AsterT
= { Lemma 2.1. Moreover, ¢ = atg and t T is prefix-closed }
shetT NsbetT NsaetT NsatgetT
= (Ry", using (0) }
shtetT NsabetT NsatgetT
= { induction hypothesis, using (0) }
shtetT N (Vwg,wywew| = lg:sawgbw, et T)
= { calculus }
sitetT N (Vwg,w, jawgo, = aty: sawebw, €t T)
= {¢ = aly and replacing awy by wy }
shtetT N (Vwy,w) wew, = ¢ N wg 7 e:swobw,€tT)
= { calculus }
(Ywq,wwow, = ¢ swobw, €t T)

(End of Proof)

Lemma 2.3 : For T a C,, for traces s, ¢, and u, and for symbols a and ¢ such
that a and ¢ are of ancther type than the symbols of ¢

(Vwg,wy:wowy = ¢ cwpawou€tT) A satuc €t T
= (Vwg,w | 1wew; = {swoaw e €t 7T)

25

Proof : By mathematical induction on the length of ¢.
Base : ¢ = ¢ Obvious,

Step : t = bty Hence, we have
a and ¢ are of another type than 4 and the symbols of ¢, ()

(Vwg,w, 1wwgw) = ¢ iswemeu €tT) A satuc et T
= {t=bty}
(Vwg,wy ey = bty sweawu €tT) A sablquc et T
= { calculus }
(Vwg,wy iwge; = tg:sbwgaw u €t T) A shatgu 4T A sabtguc €t T
= { R,", using (0) }
(Vwp,wiwgw, = 1y shweawu €t TY A sbatgue €t T A sabtguc et T
= { induction hypothesis, using (0) }
(Vwg,w :togto; = iy shwgaw ue €t T) N sablguc €t T
= { calculus }
(Vwg,wyiwge; = bty A w7 e swoawue €t TY A sabtguc et T
= { calculus and ¢ = bty }
(Vwg,w) twow = ¢ tsweaw e €t7T)
(End of Prool)

In exactly the same way we derive

Lemma 2.4 : For T a C,, for traces s, ¢, and u, and for symbols 4 and ¢ such
that 4 is of ancther type than ¢ and the symbols of ¢

(Vwg,w) 1wgw) = L :swobww €t T) A sthuc et T
= (Vwg,w, iwawy; = ¢ :swpbw e et T) '

Lemma 2.5 ; For T a C,, for traces s, £, and u, and for symbol g such that ¢ is
of another type than the symbols of ¢

satu €t T A stan etT = (Vwg,w) iwew) = ¢ iswomeu et T)

Proof : By mathematical induction on the length of .

26 CLASSIFICATION OF DELAY INSENSITIVE TRACE STRUCGTURES

Base : u =«
satu etT A stan et T

= {tT is prefix-closed }
sactT AstetT

= { Lemma 2.2, since a is of another type than the symbeols of ¢ }
(Vwg,w, wow, = { swoaw, €1 T)

= {u=¢)

(Vwq,w, wow, = 1 swoaw i etT)

Step : v = mpb.
sate €tT N stauetT
= {u = uph and t T is prefix-closed }
satug €t T A staugetT N satuph €t T A stanghet T
= { induction hypothesis }
(Ywy,w, 1w, = {:swoar g€t T) A satugh et T N stoughetT
= { Lemma 2.3 if the types of @ and & are equal, Lemma 2.4 if they are not }
(Vwg,w, cwyw;, = ¢ iswosw ugb et T)
= {u = ueb }
(Vwy,w 1wgw, = ¢ iawgawrw et T)
(End of Proof)

Lemma 2.6 : For T a C,, for traces s, ¢, and u, and for symbols 2 and ¢ such
that the symbols of ¢ are of another type than a and ¢

satuc etT N slauetT = stauc et T

Proof:
satuc €t T A stanetT
= {tT is prefix-closed }
salu €tT N simuetT N satuc €t T
= { Lernma 2.5 }
(Ywy,w1wow, = {cswpswnu €t T) N satc et T
= { Lemma 2.3 }
(Vwg,wy i wew, = ¢ :swomuc €t T)

27

= { instantiation }
stauc €t T
(End of Proof)

In a similar way, applying Lemma 2.4 instead of 2.3, we derive

Lemma 2.7 : For T a C,, for traces s, ¢, and u, and for symbols 4 and ¢ such
that & is of another type than ¢ and the symbols of ¢

sthuc et T A sbluetT = shtuc et T

Finally we prove a few lemmata on the shifting of symbols in Cys.

Lemma 2.8 : For T a C,, for traces s and ¢, and for symbol a € 0 7 such that
i[{a}=c¢

sactT AstetT =saetT

Proof : By mathematical induction on the Iength of ¢,
Base : ¢t = ¢. Obvious.

Step : ¢ = {3, Hence, we have

to[{a}) =€ and a 5 b (0)

saetT AsteeT
= {t = tob and t T is prefix-closed }
saetT A stgetT NstghetT
= { induction hypothesis, using {0} }
sspetT AstgbetT
= {Rs", usingz€07 and a 5= b according to (0) }
stoba €t T
= {t =1b }
siaetT

(End of Proof)

28 CLASSIFICATION OF DELAY INSENSITIVE TRACE STRUCTURES

Lemma 29 : For T a C,, for traces 5, ¢, and u, and for symbol a €0 T such
thatt[{a} = ¢

sactT NstmuetT = sauectT

Proof : By mathematical induction on the length of ¢.
Base : ¢ = e Obvious.

Step : ¢ = ¢4h. Hence, we have

to[{a} =canda F#F ¥ (O

sa€tT AstmetT

= {t =ty and t T is prefix-clozed }
saetT AstgetT N stgbauetT

= { Lemma 2.8, using (0} andacoT }
sactT AstppetT AstogbmetT

= { R, ifa and & are of different types, R if they are of the same type }
saetT AstgabuectT

= { induction hypothesis, using (0} }
satghu €T

= {t =15h}
satuetT

(End of Proof)

Lemma 2.10 : For T a C,, for traces s, ¢, and ¢, and for symbol a € 0 T such
that ¢ [{a } = ¢

sactT N sty etT = (Vwg,w, wew, = ¢ ;swoawu et T)

Proof :
saetT NsamerT
= (1T is prefix—closed and calculus }
(Vwg,w iwgw, = t:sactT NswogetT N swopwawetT)

= {sincet[{a} = ¢ wehave, il wow; =, wo[{a} = ¢ Hence, we may
apply Lemma 2.8 }

(Vwg,wwew, = t:swea etT N swowau et T)

29

= { Lemma 29 }
(Vwy, w1 wew, = t iswpawwetT)
(End of Proof)

Lemma 2.11 : For T a C,, for traces s, ¢, and u, and for symbola €i T

(Vwg, w0y :wpe; = LiswpetT) A stmetT
= (Vwg,w, g, = ¢ weaw\ i €tT)

Proof : By mathematical induction on the length of ¢.
Base : ¢ = ¢ Straightforward.
Step : ¢ = ¢pb. Then we derive
(Vwg,wywee, = t:owpnetT) A stauetT
= {t=1p}
(Vwg,w twow, = toh iwpa et Ty A stpbau et T
= { calculus }
(Vwy,w, :wyte; = tg:sweaetT) AstpaetT A stphau et T
= {Rjifa and } are of the same type. R, if they are of different types }
Vg, wpe, = tg:swaetT) Astpabu etT N stphau et T
= { induction hypothesis }
(Vg wow; = ty: swoaw by et TY A sighau et T
= { calculus }
(Vwg,w, iwew, = b N w F e wpawuetT) N stghauetT
= { calculus and ¢ = tpd }
(Ywy,w, wew, = ¢ :woawu et T)
(End of Proof)

3

Independent alphabets and composition

In this chapter we introduce so-called independent alphabets. Informally speak-
ing, we partition the environment of a component in such a way that the suben-
vironments are mutually independent with respect to their communications with
that component. Such a partitioning is, for example, a justification for sometimes
conceiving the environment as being divided into a left and a rght environment.
In the last section a composition operator is defined using independent alpha-
bets.

3.0. Independent alphabets

Onutputs of the component are under control of the component and inputs of the
component are under control of the environment. The coruponent will operate
according to its specification by sending outputs as long as the environment
sends outputs that the component is able to receive according to that
specification, in other words as long as there is absence of computation interfer-
ence.

Composition of two electrical circuits usually involves the interconnection of
Just a subset of wires of the circuits to be composed. Communications via these
wires are the composite’s internal communications. The remaining wires are used
for the external communications, i.e. the communications of the composite with
its environment. Therefore, the environment of each component is partitioned,
upon compaosition, into an environment for the internal and an environment for
the external communications. This implies two so-called local specifications, viz.
the one obtained by projecting the original specification onto the symbols used
for the internal communications and the one obtained by projecting onto the
symbols used for the external communications. A nice property of this partition-
ing would be that the internal and external communications could be carmmed

3.0. INDEPENDENT ALPHABETS 31

out according to the rules of the preceding paragraph just with respect to their
local specifications, i.e. by lecally guaranteeing absence of computation interfer-
ence guaranteeing absence of computation Interference for the whole. This is
captured in the requirement that if an input symbol is allowed to occur accord-
ing to a local specification then it is also allowed to oceur accerding to the glo-
bal one. Formally this is defined as follows.

Definition 3.0 : For T a C,, alphabet C, € C a T, is independent with respect
to T il

(Vs,a:5€tT ANaeCNiT:sa[CetT[C =saetT) A
(Vs,a:s€tT ANaeCNiT:sa[CetT[C =sactT)

where the complement of € with respect to a 7" is denoted by C.
(End of Definition)

Notice that a7 itself is independent with respect to trace structure 7. The
equality could be replaced by an implication since sa et T = sa [C et T[C by
definition. Moreover, it can be seen that independence of C is the same as
independence of C.

One of the requirements for composition of two components will be that their
set of common symbols be independent with respect to both components. This is
sufficient to guarantee absence of compurtation interference as far as external
input symbols are concerned, as will be proved n Lemma 3.5. Additional
requirements are needed to guarantee absence of computation interference for
the internal inputs. First, however, we illustrate the definition of the notion of
independent alphabet using some examples of the preceding chapter.

Example 3.0

Consider a C-element with two output wires as in Example 2.2. The input
alphabet is {a,b }, the output alphabet is {¢,d }. The component with com-
mand a,b ;{(c;a),{d;4))" has independent alphabets {a,c} and {b,d }. Pro-
jection on {a,c } yields a trace structure with command (a ;¢)". The traces in
this trace structure that contain an equal number of a’s and ¢’s may be
extended with a. Traces of the original trace structure with an equal number of
a’s and ¢’s may be extended with a as well, as can easily be seen from the com-
mand. For reasons of symmetry, something similar holds for alphabet { 5,4 }.

Taking the component with command (a,b ;c,d)', however, one cannot find
independent alphabets other than the trivial ones. Trace abc in this trace struc-
ture, for instance, cannot be extended with &, although its projection on {a,¢ },

32 INDEPENDENT ALPHABETS AND COMPOSITION

being ac, may be extended with @ in the projection of the trace structure onto
{a,c}.
{End of Example)

Example 3.1

The C-wire element of Example 2.3 with input alphabet {a,q,r }, output
alphabet {4,p } and command a ; (¢ (g ; b ;a),7)" has independent alphabets
{a,b} and {p,q,r }. Projection on {a,b } yields a trace structure with com-
mand (a;4)" . As in the preceding example, the traces of this trace structure
that contain an equal number of a’s and #’s may be extended with input 2. The
same holds for the traces of the original trace structure as can be seen from the
command. Consequently, with respect to alphabet {a,6 } the first of the two
conditions of independence is met. Morcover, projection on {#,g,r } yields a
trace structure with command (¢ ;¢,r)" with output p and inpuws ¢ and r. The
traces of this trace structure that have a lead of # over ¢ may he extended with
g and traces that have a lead of ¢ over r may be extended with r. The same
holds for the traces in the original trace structure.

(End of Example}

Example 3.2

The three wires of Example 2.4 have independent alphabets as well, The input
alphabet is {x4,x;,b }, the output alphabet is { 34,7, }, and the command is
(%0i¥03b3a | x50 ;b5a)". The alphabets {xg,x),a} and {yg,y;,6} are
independent. Symbol ¢ may immediately be followed by either x; or x,, and
symbols yq or y, by 5. Notice that xy and x,, which are two input symbols that
disable one another, necessarily belong to the same independent alphabet. This
is one of the reasons that the partitioning into the three wires { xg,¥0), {1,001 },
and {a,é } does not yield independent alphabets. Notice also that, although the
component is a C,, the projection on independent alphahet { ¥4 ,7,,6 } is a C,.
Nevertheless, we prove in Chapter 5 that composing two Cj’s, using the compo-
sition operator that is defined in the next section, vields a C; again.

{End of Example).

Example 3.3

Consider the And-element of Example 2.6 with input alphabet {a,r }, output
alphahet {&4,c,#}, and command (a;p;r;b,c;a;¢,(p;7 14))°. It has
independent alphabets {a,8,¢ } and {#,7 }. In the trace structure that resuits
after projection on {a,b,r }, having cormmmand (a ;b,¢)", the traces with an
equal number of a’s, b’s, and ¢’s may be extended with input 2. The same holds

3.0. INDEPENDENT ALPHABETS 33

for traces with this property in the original trace structure. For alphabet {p,r }
it is even more clear that the requirements of independence are met.

{End of Example)

Example 3.4

The bufler of Example 2.8 has been constructed in such a way that data storage
and data retrieval can be performed simultaneously. For data storage x4 and x,
are used and the request for new data is passed by a. Outputs 3¢ and y, return
the stored value on request 5. Indeed, alphabets { x9,x,,e } and {3¢,7,,b } are
independent as can be seen from the state graph. After g either x; or x, is possi-
bie both in the original trace structure and in the trace structure with command
{xo | x1;@)", which results after projection on {xg,x;,e }. Projection on
{3071, } yields command (3o | »;4) . After 3, ar 3, both in this and in the
original trace structure # is possible.

(End of Example)

Example 3.5

The reason that the arbiter of Example 2.10 is sometimes preferred to the one of
Example 2.9 is that the former’s alphabet can be partitioned into independent
alphabets. The input alphabet is {a,b,r }, the output alphabet {¢,p,q }, and
the command (a,b,r;¢) ,({a;p ;r).b [(&;q ;r),a) . Independent alphabets
are {a,b,c} and {p,q,7 }. Projection on {a,b,c } yields command (a,6 ;¢)",
from which we infer that the traces in this trace structure that have an equal
number of a’s, &’s, and ¢’s may be extended with a and # in either order. The
traces in the original trace structure have the same property. Projection on
{2,q,r) vields command ((¢ | ¢);r)", where p and ¢ are outputs and r is an
input. A trace in this trace structure may be extended with r if the sum of the
numbers of p’s and ¢’s exceeds the number of r’s in that trace. The original
trace structure has the same property.

(End of Example)

Example 3.6

The component of Example 2.12 has independent alphabets {¢,¢} and
{a,b,d,f }. Notice that, as opposed to inputs, outputs that disable one another
may belong to diflerent independent alphabets (to which the fact that €3 is not
closed under compeosition can be attributed). The state graph that results after
projection on {a,b.d,f } is

34 INDEPENDENT ALPHARETS AND COMPOSITION

d?
v RO"’@’/ \K‘.‘/f/"/
bl dxl/f;‘,

Notice that this trace structure does not satsfy R, anymore. Traces /& and
Jabdbdh belong to the trace structure, whereas fbadbdb does not. Notice also that
{a,f)} and {b,d } are independent alphabets with respect to this trace struc-
ture. Projection on such an alphabet, however, yields a C, again.

(End of Example}

We conclude this section with a number of lemmata. We show that an input
symbol of an independent alphabet ¢ may be shifted ta the left over symbols of
C (and similarly cutput symbols to the right). Moreover, we prove that a Oy
projected on an independent alphabet is a C4 again.

Lemma 3.0 : For T a C, with independent alphabet €, for traces s and ¢, and
forsymbolsacaT andbeC NiT

sabl €tT N sbat [CetT[C = sbat et T

Proof : If a €1 T this lemma is a consequence of Rs. Therefore, assume
geoT (0)

We prove the lemma by mathematical induction on the length of 1.

Base : ¢t = ¢
sabt€tT A sbat [CetT[C

= { tT is prefix-closed and so is t 7 [€ according to Property 1.2 }
sactT AsetT Asb[CetT[C

= { C is independent with respect to T and 5 € NiT }
saetT AsbetT

= { R, wing b €iT and a € o T according to (0} }
shaetT

= {t=¢}

3.0. INDEPENDENT ALPHABETS 35

sbatetT
Step : t = {yc. Assume the left-hand side of the implication. Hence,
sabtetT and shat[CetT[C 1

Then we denve

true
= { (1), using ¢ = ¢ and the prefixclosedness of t T and t T'[C }
sabtoet T A shatg[CetT[C
= { induction hypothesis }
shatget T)

Next, we distinguish three cases : (i} c€oT, {(ii) c€C NiT, and (i)
ceiT\C. We prove that sbatye et 7T which yields the result desired, since
i = 306.

1) ¢ceoT
true

= {(1)and (2), using ¢t = ty¢ }
sabloc €t T A sbatpetT

= {R;" sincedeiT,acoT ac.:cordi.ng o0} andceoT }
shatpe et T

Gi) e CNiT
true

= { (1) and (2), using ¢ = ¢ }
shatge [C €t T[C A shatgetT

= { € is independent with respect to T andc e CNi T }
shatge et T

(iii) ceiT\C
true
= { (1), using ¢ = tg¢ and projecticn on a7 \ C, and (2) }
sabloe [(aT\C)etT[(aT\ C) N shatgetT

36 INDEPENDENT ALPHABETS AND COMPOSITION

= { distribution of projection over concatenation, using ¥ € C)
sbatge [QTN\CYetT[(aT \C) A shatget T

= {aT\C is independent with respect to T, since C is, and
ce(aT\C)NiT }

sbatye €t T
(End of Proof)

Lemma 3.1 : For T a C4 with independent alphabet C, for traces s, ¢, and u,
and for symbola € C NiT such that :[C = ¢

stouctT = sauetT

Proof : By mathematical induction on the length of ¢.
Base : ¢ = e Obvious.

Step : ¢ = tgb. Hence, we have

to[C =€ and beC (@)

stau et T
= {t = tyb and projection on C }
stohau €t T A\ stpbau [CetT[C
= { distribution of projection over concatenation, using # & C according to
©)}
stobau €t T N stpabu [CetT[C
= { Lemma 3.0,sinceaeC NiT }
stgpgbu et T
= { induction hypothesis, using (0) }
salglu et T
= {t=1th}
satu et T
{End of Proof)

In a similar way, using that a 7\ C is independent as well, we derive

3.0. INDEPENDENT ALPHABETS 37

Lemma 3.2 : For T a C, with independent alphabet €, for traces s, ¢, and u,
and for symbol e € € No T such that ¢t [C = ¢

satu €tT = st et T

Often we only want two symbols of the same type to be adjacent and we are not
interested in the direction of the shifting. Therefore, we combine the last two
lemmmata, which yields

Lemma 3.3 : For T a C, with independent alphabet C, for traces s, ¢, and &,
and for symbols 2 € C and b € C of the same type such that [C = ¢

satbuctT = sabtuctT V siabuctT

Lemma 3.4 : For 7 a G, with independent alphabet C, 7[C is a C4 again.

Proof : We have to prove the 6 rules of the definition of C4 to hold for T[C.
R, through R are fairly easy to prove, using for R, and R; Lemma 3.3. We
prove R} and Rs" only.

R, : for traces s and ¢, and for symbolsae C, € €, and ¢ € € such that 4 is
of another type than 4 and ¢

sabte et T[C Nsbat et T[C = shate et T[C

We distinguish two cases : (i) b€iT,and (i) beoT

0 beiT
sabte €t T[C A sbat exT[C
= { definition of projection, using that t T is prefix-closed }
(Fsg,5(,52::50285,bs55c €t T A shat et T[C
ANslC=5s Asi[C=eNsy[C=1)
= { Lemma 3.1, since € is independent with respect to T, renaming }
(Fsg,5,::5pabsicetT Asbat etT[C A sy[C =35 A ser =)

= { calculus, t T is prefix-closed, and distribution of projection over concate-
nation, usinga€ C and b €€ }

38 INDEPENDENT ALPHABETS AND COMFPOSITION

(s, 5y :50absyc €t T N sqabs; €t T A sgbas [CetT[C
Nsg[C =5 As[C =1)

= { Lemma 3.0,since 5 C NiT }

(Asg, 5115085 c €t T N spbasy €t T A sp[C =5 A5 [C = ¢t)
= {R,”}

(Fsg, 5y isphasic €tT A sg[C =5 A5 [C = 2)
= { projection, usingee C,beC,andceC }

shate et T[C

(iYbeoT
sable €t T[C A sbat et T[C
= { definition of projection }
(Fsg,51,5y::s5able et T[C A sypbsjas,etT
NsglC =35 A5 [C=eNsy[C=1)
= { Lemma 3.2, since C is independent with respect to T, renaming }
(Fsg, 5,1 :50bas; €tT A sable et T[C Nsp[C =5 A5 [C =1)

= { calculus, t T[C is prefix-closed, and distribution of projection over con-
catenation, usinga € C, b€ C,and ce C }

(Fsg,5y1:50bas €t T N soabs | [CetT[C N spabs;c [CetT[C
N sg[C =35 A5 JC =1)
= { Lemma 3.0, since a is of another type than # and, hence,a e C NiT }
(Fsp,5) 1 15pbas €t T A sgabs;etT A sgabsc [CetT[C
ANsg[C =35 A5y [C=1)
= { C is independent with respect to T and ¢ is of another type than and,
hence,e e CNiT }

(Fsg,51::5pbas1 €t T AsgabsicetT A 5o[C =5 A5y [C =t)
= {R"}

(Fsg,5 1 :s5pbasie €tT A sp[C =5 A5 [C = 1)
= { projection, usinga€ C,beC,andceC }

shate €t T[C

R;™ : for trace 5, and for symbols ¢ € C and b € C of different types
sa€tT[C AsbetT[C > sabetT[C

3.1. COMPOSITION 39

Assumning that e e C N iT and d € € N o T we derive

sactT[C NsbetT[C
= { definition of projection, using t T is prefix-closed and b € C }
(Asg::sactT[C A spetT AsghetT N 5p[C = 5}
= { calculus and distribution of projection over concatenation, using z € C }
(Asg::50a [CEtTIC N spetT AsphetT A s[C = 5)
=+ { C is independent with respect to T andae C NiT }
QsprispaetT AsghetT N 5o[C =)
= { RS}
(Asg::scab etT N sphactT A 59| C = 5)
= { projection, usingae C and b€ C }
sabetT[C NsbaetT[C

Hence, R;"” holdsforac C MNoT and 6 C NiT as well,
{End of Proof)

3.1. Composition

Using independent alphabets we can state a number of conditions that guaran-
tee absence of interference when composing two delay-insensitive trace structures.
As we have argued in the preceding section and as will be proved in Lemma
3.3, blending two components by means of a set of commen symbols that is
independent with respect to both components guarantees absence of computation
interference for the external communications with respect to the internal ones. In
addition we impose two restrictions upon the internal communications. The first
one is that each common symbol be an output symbol of the one and an input
symbol of the other component. Second, we require the projections of both
specifications on the set of common symbols to be equal. Formally this is ecap-
tured in the following way.

Definition 3,1 : Two C,’s § and T are connectable if
0) a§NaT =@SNITHVU({ISNoT)
1) aS M aT is independent with respect to both § and T
2 S[asSnaT)=T[(aSNaT)

(End of Definition)

40 INDEPENDENT ALPHABETS AND COMPOSITION

Notice that requirement 0) indeed states that each cornmon symbeol is an output
symbol in the one and an input symbol in the other component, since
iS$Nof =@ (and iTNoT =). Requirement 2) in particular is a very
stringent one. Even under these restrictions, however, it turns out to be quite del-
icate to prove absence of computation and transmission interference for the inter-
nal communications or to prove the various closure properties, Therefore, we
confine ourselves in this monograph to Definition 3.1, indicating in Chapter 6 a
number of ways to relax requirements 1} and 2).

As a preparation of the proof of absence of computation and transmisston
interference we conclude this section stating a few properties with regard to the
input and output alphabets of the blend of two connectable C,’s. They may be
proved using that

oSwT) =o(SbT) = (0§ UoT)\ (aS§NaT) and
(SwT) = iSbT) = (S UIT)\ @S NaT)

according to Chapter 1, and that the alphabet of a C, consists of input and out-
put symbols only according to Ry,

Property 3.0 : For connectable Cy’s § and T
() iSNiT =@ =eSNoT
(i) iS\oT =iS\aT andoS\iT =0S5\aT

(i) oSwT) = oSbT) = (0S\iT)U (0 T\ i$) and
i(SwT) =iSbT) = GS\eT)U (iT\oS)

(iv) oSwT)UISwT) = o(SbTYUKSHT) = aS+aT = a(SbT)
(End of Property)

Lemma 3.5 : For connectable C’s 8§ and T, for trace s € 4(Sw T'), and for sym-
bole ei(SwT)

sa[@S+aT)etSwT[(aS+aT)=sact(SwT)

Proof : Without loss of generality we assume a € 2§ and, hence, according to
Property 3.0 (i), (i1}, and (iii)

aeif\aT (0)

sact{(SwT)

3.1. coMPOSITION 41

= { projectionon aS+aT }
sa[(aS+aT)etSwT)[(a§+aT)

= { One of the premises is 5 € t(§ w 7). Property 1.8, using the definition of
blending }

setSwT) Asa[(a§+aT)[(a§\aT)etS[(aS\aT)

= { definition of weaving and distribution of projection over concatenation,
using Property 1.1 and a§\a7T CaS+aT andaS\aT Caf }

s[aSetS As[aTetT A([aSla[@S\aT)etS[(aS\aT)

= { a$\aT is independent with respect to §, since § and T are connect-
able, and 2 e (a§ \aT) M i§ according to (0) }

(s[aS)aetS As[aTetT
= { distribution of projection over concatenation, using (0) }
safaSet§ Asa[aTetT
= { definition of weaving, using s€(a§ UaT) andeeasS U aT }
sact(SwT)

(End of Proof)

4

Internal communications and external
specification

The main issue of this chapter is to show absence of transamission and computa-
tion interference under composition of connectable C,’s. Since interference is a
physical notion for mechanisms that send and receive signals, we begin this
chapter with the introduction of a mechanistic appreciation of composition. In
the last section it is argued that the blend is an operator for the specification of
the compasite that is in accordance with this mechanistic appreciation.

4.0. An informal mechanistic appreciation

We consider a mechanism and its environment that comununicate with one
another by sending and receiving signals, There are two types of signals : from
the environment to the mechanism, the so-called inputs, and from the mechan-
ism to the environment, which we call outputs. We assume that signals are con-
veyed via (finitely many) wires. With each wire we associate a symbol. A signal
via a wire is denoted by its associated symbeal.

A trace siructure is viewed as the specification of such a mechanism-
environment pair. Each symbol of the trace structure’s alphabet corresponds to
one wire. The alphabet is partitioned into an input and an output alphabet.

A lrace is conceived as a sequence of events. Due to the concwrrency of signals
and the dependency of observations upon the position, there might not exist a
unique sequence of events that describes the history of a mechanism-environment
pair in operation. This history is rather described, at any time during operation,
by a set, or equivalence class, of sequences of events. Traces that differ from one
another because of the concurrency of symbols belong to the same equivalence
class. Yet we associate, at any time during operation, one single trace, being a

4,0. AN INFORMAL MECHANISTIC APPRECIATION 43

sequence of events, with the operation of a mechanism-environment pair. This
trace is called the trace thus far generated. Since the discussion in the sequel
relates to an arbitrary trace thus far generated it pertains, in fact, to the
equivalence class of sequences of events.

Initially, the trace thus far generated is ¢, The operation of the mechanism-
environment pair corresponds to the generation of symbols. Each signal that the
mechanism and environment communicate with one another can be viewed as
the extension of the trace thus far generated with the symbol that is associated
with that signal. Notice that only those extensions are allowed that yield a trace
that belongs to the trace structure again.

We say that output symbols in the trace thus far generated have been sent
and input symbols have been received by the mechanism. Whenever more con-
venient, we say that these symbols have been sent ar received by the trace thus
far generated instead of by the mechanism.

Under composition of two mechanism, wires to which the same symbol
correspands are connected. A wire that conveys input signals to the one mechan-
ism should convey output signals from the other one. Accordingly, under compo-
sition of two trace structures, a cornmon symbol is an input symbol of the one
and an output symbol of the other trace structure. Composition can be viewed as
replacing (a part of) one mechanism’s environment by the other mechanism-
environment pair.

We assume the so-called causality rule for mechanisms, i.e. no input signal
can be received before the comresponding output signal has been sent. For the
mechanistic appreciation of composition this means the following. At any instant,
there are two traces thus far generated, one for each of the mechanism-
environment pairs. Each trace may be extended with a symbol in the way
described above, under the additional restriction that for each common symbol
the number of times it has been received by the one trace does not exceed the
number of times it has been sent by the other one,

A symbol sent by the one trace that has not been received by the other one is
said to be on its way. Any two traces that can be brought about observing the
restrictions above are called composable.

Absence of transmission and computation interference can be expressed in
terms of composable traces. There is absence of transmission interference if we
have for all pairs of composable traces : the number of occurrences of a cornmon
symbol sent by the one trace exceeds the number of oocurrences of that symbol
received by the other trace by at most one. There is absence of computation
interference if we have for all pairs of composable traces : a symbol on its way
from one trace to the other can be received by the latter, i.e. the extension of the
latter trace with this symbol belongs to the trace structure of the corresponding
mechanism.

We prove in the next sections that there is absence of computation and
transmission interference under compaosition of two connectable Cg%. Thercfore,

44 INTERNAL COMMUNICATIONS AND EXTERNAL SPECIFICATION

we believe that the formal properties of delay-insensitivity and connectability
provide a model that can be usefully applied to the problem of composing physi-
cal circuits and deriving the specification for the resultng circuit from the
specifications of the compasing circuits,

4.1. Formalization of the mechanistic appreciation

In this section we [ormalize the mechanistic appreciation as introduced above
and the proof obligations for showing absence of transmission and computation
interference.

Definition 4.0 : For connectable trace structures 7 and U, the composability of
traces t €t T and u et U/, denoted by ¢{¢,u), is defined by

t=ehu=¢V

(Qa,ip::¢ = tga Ac{ig,uy A{acol =H,u>H,4,)) V

(Fb,up::ue = ugh Ac{tug) A (deoT = H,t >Hug))
(End of Definition)

Notice that c(t,u) = c(u,¢). Notice also that a€ ol and { = ta implies
s€aT Nal and, hence, on account of the definition of connectahility, a€iT.
To cope with the various appearances of the arguments of ¢ we state the fol-
lowing properties, which can readily be derived from the definition of ¢. When
referring to the definition of ¢, one of the following properties may be meant.

Property 4.0 :

) cla,ub) =c(t,ub) AN {acol = H,ub>#,1) V
c{ta,u) AN{beoT = #,la >H,u)

(i) c{ia,u) =c{l,u) N{acol =&, u>H4t) V
(Ab,ug::u = ugh A c{ta,ug) A
(beoT = Hyta >H#,uy)

(i) c(t,€) = (¢t{oU = ¢
(End of Property)

The two theorems that we have to prove are

4.]l. FORMALIZATION OF THE MECHANISTIC APPRECIATION 45

Theorem 4.0 : (Absence of transmission interference) For connectable Cgos T
and U, for compasable traces t €t T and u €tlU, and for symbol a0 T N U
Ft —H,u =<1

Theorem 4.1 : (Absence of computation interference) For connectable C's T
and U, for composable traces t€tT and uetlU, and for symbolaco T NiU
such that #,¢t > #,u :uactlU,

These two theorems are proved in the next section. We conclude this section
with a few lemmata on composable traces.

Lemma 4.0 : For connectable C4’s T and U, for traces ¢ and u, and for symbol
asuchthatiecet7T anduectl

clta,u)y Naegill = c(t,u)

Proof : By mathematical induction on the length of .
Basc :u = ¢
c(ta,uy Nagil
= {u =¢}
c(ta,e)
= { definition of ¢ }
c(t,¢)
= {u=¢}
cft,u)
Step : v = uyb. Now we derive
c(ta,u) Naegil
= {u = ugh }
clta,uph) Naegill
= { definition of ¢ and calculus }
c{lugh) Nfacol = Hugh >H#H,t) Nagil V
c{taugy A (beoT = #yta >Hug) ANagill
= { calculus, using ¥ = ugh, and the induction hypothesis }
c(t,u) Velt,ug) AfpecoT =2 #Ha>Hug) Nagil/

46 INTERNAL COMMUNICATIONS AND EXTERNAL SPECIFICATION

=» { calculus, using that b € al/ and & € o T implies, by the connectahility of
Tand U, beil }
clt,) Vc(lug) ANbgoT V c(tup) A #yla >Hug Na 7=
= { definition of ¢, using ¥ = uph, and calculus }
c(t,u) V e(tup) A #,0 > #,u,
= { definition of ¢, using u = uph }
ct,u)

(End of Proof)

Lemma 4.1 : For connectable C,'s T and U, for traces ¢ and u, and for symbol
g suchthat s etT andu et U

clla,uy N#H e > u =c(t,u)

Proof : By mathematical induction on the length of u.
Base :u = ¢
c{ta,u) N #Hla >H#,u
= {u=¢}
¢ (la,€)
= { definition of ¢ }
c(t,e)
= {u=¢}
cft,u)
Step : u = ugh. Now we derive
c{la,u) N\ #H la >H#H,u
= {u = ugh}
c(ta,uph)y A #,la ># ugh
= { definition of ¢ and calculus }
c(t,ugdy A{acol =R,uph =, 4) A #la >#H,ush V
clia,ug) N (beoT = #Hta >Hug) A #Hla >H# ugh
=> { calculus, using u = ugb }
c{t,u) V
claug) N (beoT = e >Hug) N #Hla>#uph Na=b V
clla,ug) AN(beoT = Hla >HHug) N #Hla >H,uph Na b

4.1. FORMALIZATION OF THE. MECHANISTIC APFRECIATION 47

= { calculus }
c(t,u) V clla,ug) N#H t >H . ug Na =5V
c(ta,ug) N (beoT = #yt >Hyug) N # la >H,uy
= { induction hypothesis and calculus }
ety V e{tup) ANttt >ttuy Voe(tbug) A(beoT = H#yi >H#,uy)
= { definition of ¢, using u = ugd }
c(t,u)
(End of Proof)

Lemama 4.2 : For connectable G,’s T and U, for traces t€t7 and u €t U/, and
forsymbolaca7 Nal

c{t,u) AN#H,t>H#H,u=ac0T NiU

Proof : By mathematical induction an1¢ +1u.

Base : 1¢ +1u = 0. Then #,¢ = #,u.

Step : 12 +1u = £, for some k, k = 1. Now we derive
c(t,u) AN#,t >#,u

= { definition of ¢, using - (¢t = € A u = €) since £ 2 1. Calculus }
(Fb,tp::t = b ANe(lg,u) AN(beoll = HFyu >0 N #0d >H,u) V
(Fb,ug:e = uwgh Ac{tupg) A (beoT = #H,t >H,u) N H 1 >Huph)

= { Induction hypothesis applied to the secand disjunct. Calculus }
@Ab,tp::b =a N (beol = Hu>H8) A H g >H,u) V
@b,ty:1b Fa Nellp,u) N b >H#H,u)yV aecoTNIU

= { Induction hypothesis applied to the second disjunct. Calculus }
Big::{acol = H#H,u>H i) A#H L y=H#H,u) VacoeTNIU

= [calculus, using a € a7 N al and the connectability of 7 and U/ on
account of whichagol/ =aeoT Nil }

acoT NilU
(End of Proof)

From Lemma 4.2 we infer the following corollary, using the symmetry of ¢ and
T NiYNUNiIT) = @,

48 INTERNAL COMMUNICATIONS AND EXTERNAL SPECIFICATION

Corollary 4.0 : For connectable Cy’s T and U, for traces t€tT and v et U,
and for symbolacaT Naly

cit,uy NacoTNiU > #,1=H,u

4.2. Absence of transmission and computation interference

(This section may be skipped on first reading.) In this section we prove the
absence of transmission and computation interference. To that end we consider,
for connectable trace structures T and U and for composable traces ¢ €t 7T and
u ctl, symbols on their way from one trace to the other. Rather than consid-
ering these symbols individually, we cansider the zet of sequences of symbols,
called traces again, consisting of the symbols on their way in one direction.

Definition 4.1 : For connectable trace structures 7 and U, and for composable
traces { €t T and v € t U we define from (¢,u) as

{xixe(@T NIV A(Wa:acoT NiU :#,x = #,0—H,u):x}
(End of Definition)

Consequently, from (2,u) is the set of traces that are a permutation of all sym-
bols sent by ¢ and not received by «. Since #,t =#,u foracoT Ni¥V on
account of Corollary 4.0, from (¢,u) is non-empty. Since the lengths of the traces
in from(¢,u) are equal,” we define I{from(¢,u)) as the length of the traces in
from (2, u), which is the number of symbols on their way from ¢ to «.

The total number of symbols on their way between ¢ and u is called the
number of mismatches and is denoted by mm (¢, u).

Definition 4.2 : For connectable trace structures 7 and U, and for composable
taces tet7T andu et U

mm (¢,%) = l(from{(¢,u)) + I {from(x,!))
(End of Definition)

We shall frequently use the following properties of from and mm. Proof are
omitted but can be derived using the definitions and Lemmata 4.0 and 4.2,

4,2, ABSENGE OF TRANSMISSION AND COMPUTATION INTERFERENCE 49

Property 4.1 : For connectable trace structures T and U, and for composable
traceste€tT anduetl

(i) wgefrom(t,u) N wgetlU = c(t,uu)
(1) wgefrom{t,u) N upetl = from (f,uuy) = {e)

(i) w = wgu; A ulEoT‘ = mm(Z,up) = mm (¢,ugu,}+bu;

(iv) u
(v)
(End of Property)

g, Au€oT" A uyefrom(l,ugu,) = u,u,€ from(z,ug)

upy N uy[iT = € = from(ugu, ,¢) = from(u,,?)

In order to prove Theorems 4.0 and 4.1, the absence of transmission and compu-
tation inter{erence respectively, we prove the following lemma.

Lemma 4.3 : For connectable trace structures 7 and If such that aT = a U/,
and for composable traces t et T and u et ¥/

(Vug:tige from(t,u):uuge t U)

Theorems 4.0 and 4.1 are derived from this lernma in the following way. Let T
and U be connectable Cy’s and let t €t T and u € t U be composable traces,
Since aT N a U is independent with respect to both T and U, T[(aT Nal)
and U[(aT Nal) are Cy's as well according to Lemma 3.4. Moreover, their
alphabets are equal, viz. aT M al/, and they are connectable as [ollows from
the definition of connectability.

From the definition of composability it can be seen that the strings of common
symbols in ¢ and ¢ determine both the compesability of ¢ and u and the sym-
bols on their way from ¢ to u. Hence, from the composability of ¢ and u with
respect to T and U we infer the composability of t[(aT Nal/) and
u[(@aT Nal) withrespectto T[(aTNal)and U[(aT Nal). Letugbea
string of all symbols on their way from ¢ to u. Then u, is a string of all symbols
on their way from t[(aT Nal) to u[(@aT N all) as well. This implies that
(w[(aT Nal)upetU[(aT N al) according to Lemma 4.3. The symbols of
#g are input symbols to I/ and belong to aT Nal/. Since aT Nall is
independent with respect to U/ and since u €t/ we conclude, by applying
Definition 3.0 a number of times, that vuget U/,

50 INTERNAL COMMUNICATIONS AND EXTERNAL SFECIFICATION

Notice that ug is an arbitrary permutation of the symbols on their way from
T to U, ie. of symbols acoT Nil/ with #,¢ >#,u. First, aiget U then
implies that each symbol occurs at most once in ug, since, on account of Ry,
adjacent symbols are distinct. Hence, we have proved absence of transmission
interference. Second, again since ug is an arbitrary permutadon of symbols on
their way and, hence, may start with any symbol on its way from ¢ to =z, it
implies absence of computation interference, since t U/ is prefix-closed.

Lemma 4.3 is proved by mathematical induction. In order to reduce the
length of the proof we first prove two additional lemmata, in which we assume
the induction hypothesis for Lemma 4.3. Let, for the remainder of this section T
and U be connectable Cg’s such that a7 = alU. Consequently, iT = o U,
o7 =iU,and tT =t U.

Lemma 4.4 : Given integer £ and given that all composable traces 1€tT and
uetl withls +1uy +mm(t,u) <k satisfy

(Vug:uge from (¢, u} et Uy A (Wig:tge from(u,t): tgetT)

Then for traces 5, t, u, ¢, and w0, and for symbol a € 0T such that teolU",
veoT ,sewetT, and vavw et U

c{satw uame) A V(satw) + 1{uaow) + mm (saiw , uanp) < k
= staw et T N waw et N\ c(staw ,uvaw)

Proof : By mathematical induction on the length of w.
Base : w = ¢, We assume the left-hand side of the implication, hence,

c(sat,uav) and 1(sat)+1(uav)+ mm (sat ,ua)< k {0)
Let £y and ug be such that
to& from (uav ,sat) and ug € from (sef , uav) (N

Since t 7" is prefix-closed, and since a and the symbols of v are of the same type,
which makes R4 applicable, we have

sectT and waetlU (2)

Now we derive
true
= {(0)and (1} }
c{sat ,uav) N 1{sat) + {uav) + mm (sat ,uav) < k A\

4.2, ABSENCE OF TRANSMISSION AND COMPUTATION INTERFERENCE 51

¢y € from (uav ,sat) /\ uy€ from (sal, uav)

= { Lemma 4.0, Property 4.1 (iii), (iv), and (v), using t € 0 U" }
c(sa,uap) A l(se) +1(uar) + mm(sa,uap) <k A
iy e from (uav, sa) N\ up€ rom (sa,uaw)

= { Lemma 4.0, Corollary 4.0, and Property 4.1 (iii), (iv), and {v), using
aweoT" }

c(sa,u) N #,5a >#H,u ANl(sa)+1lu +t mm(sa,u)<k A
#y€ from(u,sa) A\ amg € from(sa,u)
= { Lemma 4.1, definition of mm and from, wsingacoT }
c(s,uy A ls+1lu +tmm(s,u)<k—2 A ttye from{u,s) A mge from(s,u)
= { premise }
stloetT N wowgetlU N ce(s,u) Nty from{(u,s) N vug € from(s,u)
= { Property 4.1 (i) and (v), using #yc oU" and mugco0 7" }
sttoetT NwougetlU A c(sitg,umug)
= {t7 and t U are prefixclosed, Lemma 4.0, using ¢{4€ o U” and uge 07" }
stetT ANwetld A c(st,uw)
= { Lemma 2.2, using (2) and the fact that a and the symbols of ¢ are of

different types }
stactT NuwaetU N c(st,w)

= { definition of ¢, using #,s¢ > #,w according to Corollary 4.0 }
stacetT NuactU N c(sta,ua)
= (w=¢)

staw etT A waw etU A c(staw , uwaw)
Step : w = wge. Assuming the left-hand side of the implication again, we have

c(satwqe, uamope) and
1(satwge) + 1 (mavwoe) + mm (satw ot , vavtoge) < k 3

Now we derive

true
= {3}
sawge €T A wanwge € t U A c(satw e, uavwoe } 7\
I(sakwge) + 1{uanwge) + mm (sahwge , uamwge) = k
= { Lemmata 4.0 and 4.1, Corollary 4.0, and the definition of mm }
satwge €t T N uwamwge € t U A c(salwg uavwg) /A

52 INTERNAL COMMUNICATIONS AND EXTERNAL SPECIFICATION

1(satwp) + 1 (uaviey) + mm (satwg , uamwg) <k —2
= { induction hypothesis and the definition of mm . Moreover, 2 and the sym-
bols of v are of the same type, which makes R; applicable }

sabwoe LT A stawoetT A wawye et A c(stawg,uvawy) A
1(staww) + 1 (wamw) + mm (staw; , wawp) < k —2 (4)

We distinguish two cases : (i) c €07 and (i) c€o0l/

(i) ccoT

true

{ (4), applying Lemma 2.6, using that the symbols of ¢ are of another type
than g and ¢; calculus }

stawge €t T Nwawge et U A cstawg , uvaw)

= { definition of ¢, using #, staw, = #, waw, according to Corollary 4.0 }
stawge €T A wawy e tU A ¢ (stawge , watvge)

= {we =w }
slaw €tT N waw e tU N c(staw , waw)

(i) ceol/
true

= { (4) and calculus }
stawget T A wawoe € t U A ¢ (stawy , uvatey) A\
1 (stawg) + 1 (waw)} + mm {staw , waw,) <k — 2

= { definition of ¢ and mm, using ¢ € 0 U/ and #, wawy = #, staiw, according
to Corollary 4.0 }

stawg et T N wawge et U A c{stawg , wwawge) A #,uvaw e > ¥, stawy A
1 (staze) + | (uvarwge) + mm (staw , smwge) <k
= { premise, using that t T is prefix-closed and that there is a trace in
from (waw ¢ , stawy) that begins with ¢ }
sawge €t T AN wawge et U A c(stawg, upawge) /N #,waw e > # stawg
= { definition of ¢, using c e o U }
stmoge 1T N wawy et U A ¢ (stawge , uvaw ge)
= {w = wy }
staw €t T N waw etU A e(staw , waw)

4.2, ABSENCE OF TRANSMISSION AND COMPUTATION INTERFERENCE 53

(End of Proof)

Lemma 4.5 : Given integer & and given that all composable traces t €t T and
uetl withle +lu + mm(f,u)<k satisfy

(Vugy:upe from(t,u)ruuget UY N (Wig:tge from{u,t):t,etT)
Then for composable traces t€t7 and setl with 11 +1lu = k—1 and
mm{t,u) = 0

(Ve:ceoT :wetT mwet) N (Weiceol et =2 ketT)

Proof : We observe, since a7 = alU, that the lengths of composable traces
tetT and 2 €tV with mm({¢,4) = 0 are equal. Morecver, if these traces are
non-empty, at least one of them contains a symbol that is an output symbol for
the trace structure to which that trace belongs.

We prove the theorem by mathematical induction on the length of the longest
common suffix of ¢ and u.

Base : The length of the longest common suffix of ¢ and u equals 1¢ and 1u,
Then ¢t = 1 and the lemma holds, since t 77 = ¢/, due to the connectability of
T and U.

Step :
t =tow and uw = uge with c(t,u), le+1u = £—1,
and mm{{,u) =0 (0)

Traces ¢y and 1y are nonempty and do not end in the same symbol. Notice that
we assume the lemma to hold for composable traces with a longest common
suffix that is longer than w. Applying Lemmata 4.0 and 4.1, using the definition
of from , we derive from (0) and the compaosability of ¢ and u

c{fp,ug) and mm({¢o,up) = 0 (1)
We define 7, {5, 5, and » in the following way.

to = rigand ug = s with fbeolU and vco T 2

r and » do not end in a symbol of o/ and o7 respectively (3)

Moreover we have, according to the observation made at the beginning of this
proof

I»r +1s>0 C))

54 INTERNAL COMMUNICATIONS AND EXTERNAL SPECIFICATION

Now we denve

true
= {(1) and (2))

clrty, Y AtyeolU NAveoT’
= { Lemma 4.0}

clr,5) 5)
= { definition of ¢, using (4) }

Ft,e:ir =tha Ne(t|)N (ecolU =2#,s>#,0) V

(Qup,a:is =uwa Aclru)y A(facoT =,r >#,u))

Without loss of generality we may, due to the symmetric formulation of this
lemma, assume the first disjunct to hold and, hence, ¢; and a to be defined.
Hence, we have

r=ta (6)
c(t(>9) O
acgoT (8)
c(tia,s) &)

{8} Iollows from (3) and (6), and (9) follows from (5) and {6). According to
Corollary 4.0 we infer from (7) and (8) that #,¢a >#,5. Hence, from (6), (1),
and (2) we conclude that » contains symbol ¢. Consequently, using (2}, we may
assume traces u; and u, to be defined such that

v = uou, and w07 (10)

Combining (0) through (10}, we infer

t = fiatpw and u = ujgusw (11)
acoT _ (12)
toeol’ and uyeol” (13)
c(tjalow ,ujauqsw) (14)

It atgw) + 1(u auow) = £ —1 and mm{{atow,uguw) =0 (15)
which allows us to apply Lemma 4.4 and derive

Lisaw etT and upusaw et and c({iaw,uyuaw) (16)

4,2, ABSENCE OF TRANSMISSION AND COMPUTATION INTERFERENCE 55

Now we may apply the induction hypothesis, since the longest common suffix of
tilqawy and wuqae is at least aw, which is longer than =, and, moreover,
1t tpaw Y+ 1 (uppaw) = £—1 and mm (e law,uuaw) = 0, due o (13)
Hence, we have
(Ve:ceoT ttawec et T = uusawe et) (17
(Ve:ceolU inpuawc et = tjlawcetT) (18)

from which we derive for anyceoT

ketT
{ (11) and (16) }
Liatostoe €tT A ttaaw et T

= { Lemma 2.6, since t,€ 0 /" according to (13), 2 € o T according to (12),
and ce0T)

Hizawc et T
= {(17)}
pugmpe et
= {Rg,sinceacoT and u;€ 0T according to (12) and (13} }
uyamgwe €t UV
{11}

uretl/

and for any ¢ co U

et

{(an}

uyauqux €t U

= { Ry, sincca €07 and u,€0T" according to (12) and (13))
uptqmwe et

= {(18)}
titsawe et T

= {(l)and tetT }
titqawe etT N tiat,w et T

= { Lemma 2.7, since € 0U* according to (13), 2 €0 T a.ccordmg to (12},
and ccol }

tatgwe €t T

56 INTERNAL COMMUNICATIONS AND EXTERNAL SPECIFICATION

= {1y}

wetl
(End of Proof)

Proof of Lemma 4.3 : We prove for composable traces tetT andu et U
(Vugruge from(t,n):uuge t UY A (Vg tpe from(u, 1) itgetT)
by mathematical induction on 1# +1u + mm{f,u).

Base : l¢+lu—+mm(t,u)=<1. Obvious, since for composable traces
1t +1lu + mm(¢,u) 7= 1, and since et T and et UV,

Step : We assume, given an integer &, £ = 1, that for composable traces tetT
and u €t with 14 +1u +mm (t,u) <k

(Vup:ug€ from(t,u):uget UY A (Ve tge from(u,t): gt T) (0)
Let t€tT and v € t UV be composable traces such that
b+l +mm(f,u) =k+1 1

As in the proof of Lemma 4.5, we may assume, due to the symmetric formula-
tion of this Jemma

! =gty and w = ppu; (2)
< (toat ,tquy) 3)
aeaT (4)
tyeolU’ and w07 (3)
c(ty,ug) (6)

From (1), (2), (3), and (5) we infer, using Lemma 4.0 and Property 4.1 (i)
1(tpa) +lug + mm (2ga ,up) = £+1 (7)
From (4), (6), and (7) we infer
I{tp) +lug + mm(tg,up) = £—1 (8)

We have to prove for traces {y€ from(u,?) and u; e from(¢,u) that t,etT
and e tl/. Let

trefrom(u,t) and wuj€from(!,u) (%)

4.2, ABSENCE OF TRANSMISSION AND COMPUTATION INTERFERENCE 57

Now we denive

true
= ((®and (9))
t, € from (upu , ot)
= { Property 4.1 (v), using u,€ 0 T" according to (5) }
15 € from {ug, foat,)
= { Property 4.1 (iv), using ¢, € o U" according to (5) }
4ty € from(ug, tpa) (10)
= { definition of from, using a € o T according to (4} and c(¢g,uy) according
to (6} }

1yt € from (ug, ¢p) (11)
= { induction hypothesis, using (6) and (8) }
dot £yt T (12)

= { (2), using the prefix-closedness of t T, and (4) and (11) }
tott2€tT AtgwetT AaeoT A titaeol)’
= { Lemma 2.2 }
tgattet T N igtda et T
= (@}
retT AdglaetT {13}
This rmeans that we have proved half of the lemma, viz. ##,etT.

In the same way as we derived {,¢, € from (1,292) (cf. (10}), we can also derive
yz € from (tga , o) (19)

The traces of from({#y,u,) contain one symbol a less than the traces of
from (t¢a,u;), since 2 € o T according to (4). Let

Uz E ﬁ'om(fn,ﬂﬂ) : (15)

Then we have that usae € from (292 ,up) and, hence, accarding to (14) and the
definition of from, that uu; is a permutation of uza. We have to prove
wis et/ or, equivalently by (2), uguu,et U/, By Ry it now suffices to prove
ugaa € t U/, since all symbols of usa are of the same type. We derive

tre
= {(15)}
uz € from (14, u0)

58 INTERNAL COMMUNICATIONS AND EXTERNAL SPECIFICATION

= { induction hypothesis, using (6) and (8) }
uz€ from{ty,up) N\ uguzetly

= {(11)and (12) }
us € from{ig,ug) N ugtise tU A i€ from{ug, o) A tgtl,etT

= { Property 4.1 (i), (ii), and (v}, using the definition of from }
ugis Et U A £fs € from (uglta, o) /N lotyds €t T A
from (tg,ugts) = {€} Nuz€0T A c(ty,uous)

= { Property 4.1 (i), (ii), and (v}, using the definitions of mm and from }
totytoct T Augugety N cltptita, ugis) /A mm{igh ity ugus) = 0 A
useoT” A tteol”

= { Lemma 4.5, using 1{¢¢¢,15) + 1{ugus) = £ —1, which we denve from (8)
and Property 4.1 (iii) }

(Ve:ceoT igtlsc €t T = uguse st U}

= { instandation, using 4 € 0 T according to (4), and t¢¢,¢2¢ €t T according
to (13} }

uguaa €t
{End of Proof)

4.3. Blending as a composition operator

In the previous section we have proved the absence of transmission and compu-
tation interference. In this section we argue that blending as a composition
operator is a proper abstraction of the mechanistic appreciation of composition
as discussed earlier. We consider this a sufficient justification for using blending
as a compaosition operator for composing Cy's by means of independent alpha-
bets.

In the remainder of this section T and U are connectable C4's. We define lor
two composable traces the set of resulting traces in the following way.

Definition 4.3 : For traces t et T, u €t U, and x we say that x is a resultant of
¢t and u, denoted by xr(f,u), if

x=eNt=eNu=¢V

(Qa,xq,t0::x = xq8 Nt = tga N xgr(tg,u) N\ (acol = H,u>#,4)) V

(Ja,xg,up::x = xga A u = uga N xgr(t,ug) N (2 €oT = #,t >H,uyp))
{End of Definition)

4.3. BLENDING AS A COMPOSITION OPERATCR 59

Compaosability of traces tetT and uetl equals (Ix ::xr(t,z)). In the
remainder of this section the set {x,f,u:tetT AuetU Axr(t,u):x} is
denoted by §. In view ol our mechanistic appreciation it scems reasonable to
define the specification of the compesite to be S [(aT+al). We shall prove
that this specification is equal to Th /. To that end we observe the following.

Any trace in Tw {7 in which all symbols commen to T and I/ are doubled
belongs to 8 as can be proved by induction. Therefore, ThU/C Sf(aT+aU).
Proving that S[(@a7+al/)C ThU is more elaborate. At several places it
involves induction. We choose for giving an outline of the proof rather than a
fully detailed argument, since the latter would in no way contribute to our
understanding of the theory developed in this monograph.

Occurrences of symbols in traces are counted from the left starting from 1.
Due to the absence of transmission interference, an odd occurrence of a symbol
from aT Nall in a trace of § originates from the trace structure where this
symbol is an output symbol. In the same way we infer that an even occurrence
of a common symbol stems from the trace structure where this symbol is an
input symbol. Therefore, since the origin of nen-common symbols is obvious, an
x €S can uniquely be unravelled into traces t €t7T and u €tl such that
xr{t,u). The unravelling can be effectuated by projecting on a compasing trace
structure’s alphabet and omitting the odd cocurrences of a common symbol if it
is an input symbol for this trace structure, and the even occurrences in case of
an output symbol.

We prove that an arbitrary trace x in § can be transformed, without affecting
its projection on aT<al/, into a trace in Twll As a consequence,
S{(aT+al) is a subset of Th ¥, which was the remaming proof obligation.
The first step in this transformation is extending x with the common symbols of
T and U/ that occur in x an odd number of times. The resulting trace belongs to
§ due to the ahsence of computation interference.

The next step is shifting to the left every even occurrence of a common sym-
bol until it is adjacent to the preceding occurrence of that symbol. In the next
paragraphs we show that the resulting trace still belongs to §. Assuming this to
hold, we first discuss the final step. Due to steps one and two, all common sym-
bols occur in pairs, Therefore, the unravelling discussed above is the same as
projecting on a composing trace structure’s alphabet after having replaced each
such pair by a single symbol. Hence, this replacement yields a trace in Tw [/,
In none of the steps have we tampered with the non-common symbols and,
hence, § [(a§ +aT) is unaffected. '

There remains one assumption to be proved, viz. that the trace after shifting
still belengs to §. Let xphax, €5 be such that acaS NaT, beaS UaT,
a 7= b, and such that this occurrence of a is even. We prove that xgabx, is an
element of S as well. By repeatedly applying this interchange for symbols to be
shifted to the left it can be seen that our assumption indeed holds. We distin-
guish two cases : (i) these occurrences of @ and b onginate from two distinct

60 INTERNAL COMMUNICATIONS AND EXTERNAL SPECIFICATION

trace structures, and (ii) they originate from the same trace structure.

(i) Without loss of generality we assume the unravelling to result in traces
toaly €t T and ugbu, €t U such that xgr{ip,ug). Since xpbe € §, we infer from
Definition 4.3 that 6 €07 = #;t,>#,uq and that a e o U = #_ugh > #,1,.
Since a £ b, we derive a eol/ = Huy>#,t; and b e o T = #,tpa > H,u,,
which implies xgabr (toa,ugh). Moreover, it can be seen from this definition that
the construction of x| depends on ¢, u;, and the number of times each symbol
occurs in xgbe only and, hence, not on the ordering of symbols in xgba. This
implies that also xgabx | € 5.

(i) Without loss of generality we assume the unravelling of xgbax| to result in
traces {gbat, € t T and ugu, € t U such that xgr(¢g,ug). It suffices to prove that
toabt, €t T, since this implies xg2b € § and since the construction of x; does not
depend on the ordering of symbols in xpba. This occurrence of 2 is even in xpba,
hence, a€iT Mol/. If b€iT then tyabt,; €t T on account of Rs. Therefore,
assume b €0T. From Definition 4.3 it can be seen that #,uy>#,1,6, which
implies #,ug>#,t;. Due to the absence of computation interference we con-
clude tgaetT and, applying R."™”, toub €tT. We prove tgabt, €t T for an
arbitrary prefix ¢, of ¢;. For t; = ¢ it is obvious. If ¢5¢ is a prefix of ¢, such that
toabto €t T then we distinguish the following three cases (using tobatyc €t T on
account of the prefix-closedness of t 7). If ¢ €0 T then tpabtoc €t T on account
of Ry". If eeiT\(aT MNal) then tpabte €t T, since aT\(aT Nall) is
independent with respect to T and agaT\(a7T Nal). Ifc€iT Nol then
toablye € t T on account of the absence of computation interference.

5

Closure properties

In this chapter we discuss the closure of the four classes under composition of
connectable trace structures. It turns out that all but C; are closed under com-
position. In a number of examples we apply the theory thus far developed and
derive specifications of the composite from the specifications of the compaosing
parts.

We begin this chapter with a section that contains a number of lernmata for
trace structures obtained by weaving. Most of these lemamata are counterparts of
lemmata in Chapters 2 and 3 on the shifting of symbols. In Section 5.1 we show
that a composite obtained by weaving satisfies the rules for delay-insensitivity,
provided that the composing parts do. The next section deals with Rq through
R for a composite obtained by blending. In order to prove the Ry’s and Ry’s,
which is done in Sectons 5.4, 5.5, and 5.6, we need a better understanding of
the relation between the weave and the blend of two trace structures. This is
explored in Section 5.3. By this exploration the crucial distinction between C,
and C3 becomes clear.

In the proofs of this chapter we frequently use the definition of weaving. Part
of this definition concerns the domain of the traces considered. For the sake of
brevity we omit these domain concerns, appealing to the willingness of the
reader to add them at the appropriate places.

3.0. Shifting symbols in trace structures obtained by weaving

The lemmmata in this section are counterparts of lemmata in Chapters 2 and 3 on
the shifting of symbols. Most of the proofs are merely applications of the
corresponding lemmata in these chapters. Therefore, we prove a few lernmata in
detail, assuming that this provides a sufficient clue for the derivation of the
remaining proof.

62 CLOSURE PROPERTIES

Lemma 5.0 : (cf. Lemma 3.1) For connectable C,s § and T, for traces s, ¢,
and u, and for symbol 2 €i(Sw T) such that ¢t [(aS +aT) = ¢

st et(SwT) = muet(SwT)

Proof : By Property 3.0 we assume without loss of generality
aeif\aT (0

Now we derive

stan et(SwT)
= { definition of weaving }
slan [aSetS N stau [aTerT
{ distribution of projection over concatenation, using (0) }
(s[aS)t[aS)a(u[aS)etS AsulaTetT
= {sincet[(aS+aT)=¢wehavet[aS[(aS\aT) = e Moreover,

aS\ a7 is independent with respect to S, due to the connectability of §
and T. Hence, we may apply Lemma 3.1 }

(s[aSy(t[aS)u[aS)etS Aswl[aTetT

= { distribution of projection over concatenation, using (0} }
satu [aSetS Nsau[aTetT

= {definition of weaving }
satu e t(SwT)

(End of Proof)

I

In exactly the same way we derive the next lemma.

Lemma 5.1 : (cf. Lemma 3.2) For connectable C s § and T, for traces s, ¢,
and u, and for symbol 2 € o(S w T) such that t [(aS+aT) = ¢

sauetSwT) =stanet(SwT)

From Lemmata 5.0 and 5.1 we denve

5.0. SHIFTING SYMBOLS IN TRACE STRUCTURES OBTAINED BY WEAVING 63

Lemma 5.2 : (cf. Lemma 3.3) For connectable C,’s § and T, for traces s, ¢,
and 1, and for symbols aea§+aT and bca§+aT of the same type such
that { [(aS§ +aT) = ¢

satbuet(SwT)=rabuctiSwT) V sabuct{(SwT)

Lemma 5.3 : {cf. Lemma 2.8) For connectable Cy’s § and T, for traces s and ¢,
and for symbolae€aS NaT suchthat¢[{a } = ¢

et SwT NAstet(§wT) =suet{(SwT)

Proof : Without loss of gencrality we assume
acoS NiT (0)

We prove that the left-hand side implies (i) sta [a§ €tS and (i) sia[aT et T,
which implies, by the definition of weaving, the right-hand side.

(i) sta[aSetS
sse{(SwT Astet(SwT)

= { calculus and definition of weaving }
sa[aSetS ANst[aSetS

= { distribution of projection over concatenation, using (0) }
(s[aS)aectS AN {s[aS}t[aS)etS

= {fromi[{e} = eweinfert[aS[{a } = ¢ Hence, since a € 0.5, we may
apply Lemma 2.8 }

(s[a8)(¢TaS)aets
= { distribution of projection over concatenation, using (0) }
sia[aSetS

(i) sia[aT erT
sact(SwT) NAstet(SwT)

= { calculus and definition of weaving, and (i) }
st[aTetT NAsta[aSets

= { distribution of projection over concatenation, using (0), and projection on
afnNaT}

s#[aTetT A(st[aS)a[(a§NaT)etS[(aSNaT)

64 CLOSURE PROPERTIES

Il

{ Property 1.1, usingaS NaT CaSandaSNaT CaT }
stfaTetT A(st[aT)a[(aSNaT)etS[(as§NaT)

= {tS[@@SNaT)=tT[(aS§NaT), since § and T are connectable }
stfaTetT A(st[aTu[(aSNaT)etT[(aSNaT)

= {a$§ NaT is independent with respect to T and e € (aS NaT}NiT
according to (0) }
(st[aT)aerT
= { distribution of projection over concatenation, using (0} }

sia[aTetT
(End of Proof)

Notice that we used here explicitly, as we will in the next proof as weli, the last
requirement for connectability, viz. S[(@§ NaT) = T[(@S NaT).

Lemma 5.4 : (cf. Lemma 2.9) For connectable Cy’s § and T, for traces s, ¢,
and #, and for symbolaeaS NaT suchthati[{a} = ¢

sme{SwT) Asanet(SwT) = satuet(SwT)

Proof : Without loss of generality we assume
ac€oSNiT @

Again we prove safu [aS €tS and satu [a T €T separately.

(i) satu[aSetS
saet(Swh) NsmetSwT)
= { definition of weaving and calculus }
sa[aSets A stau[aSets
= { distribution of projection over concatenation, using (0) }
(sjlafyets A(s[aS)t[aS)a(u[aS)ets

= {from{[{a} = eweinfer¢[aS[{a} = & Hence, since a €0S, we may
apply Lemma 2.10 }
(Vwg,w, :wow, = t[aS:(s[aS)womw (u[as)ets) n
= {instantiation }
(s[aS)at{aS)(u[aS)ets

5.0, SHIFTING SYMBOLS IN TRACE STRUCTURES OBTAINED BY WEAVING 65

= { distribution of projection over concatenation, using (0) }

satu [aS €tS

(i) satu [aT tT
saet(SwT) A stanectSwT)
= { definition of weaving, (1), and calculus }
stau [aTetT A (Vwg,w, wow, = t[a8:(s[aS weaw,(u[aS)etS)
= {15 is prefixclosed and projectionon a$§ NaT }
stau [aTetT A
(Vwy,w):wee, = t[aS:(s[aS)wm[(aS NaT)ctS[(@aS NaT))
= {tS[(asNaT)=1tT[(af§ NaT),since § and T are connectable; dis-
tribution of projection over concatenation, using (0) and Property 1.1 }
(s[aT)¢[aT)a(u[aT)etT A
(Vwg,w) iwgw; = t[aS:(s[(@SNaT)(we[(@aSNaT)
etT[(aSNaT))
= { the set {wq,wwow; = t[aS :wy[{aS NaT)} equals the set
{wo,w):wpw; =t[aT :we{(aSNaT)}}
slaTXt[aT)a(u[aT)etT A
(Vwy,w, :wpwy, = t[aT:(s[(@aS NaT)(we[(asS NaT)a
etT[@aSNaT))
= { distribution of projection over concatenation, using (0) and Property 1.1;
t T is prefix—closed }
(s[aTXt[aT)a(u[aT)etT A
(Vwy,w) wpey = t[aT:(s[aThweetT A
¢[aTywu[(aSNaT)etT[(aSNaT))
= {aS NaT is independent with respect to T, since § and T are connect-
able. Moreover, a € (aS NaT) NiT according to (0) }
(s[aT)¢t[aTa(u[aT)etT A '
Nwg,wywowy) = t[aT:(s[aTwuetT)
=> { Lemma 2.11, since 4 €i T according to (0) }
(Vwg,w :wow; = t{aT:(s{aT)wpaw,(u[aT)etT)
= { instantiation and distribution of projection over concatenation, using {0) }
satu [aT etT

(End of Proof)

66 ' CLOSURE PROPERTIES

On account of Lemmata 5.3 and 5.4 we may, given two connectable C5’s
S and T, symbol a€ a8 MaT, and traces sa and st in (S w T), shift the left-
most a in { to the left of #, or, il no such a exists, insert an a between s and ¢.
Therefore, the following corollary is a straightforward application of these two
lemmata.

Corollary 5.0 : For connectable C,’s § and T, for traces s, ¢, and u, and for
symbols ae a$ NaT and b such that & # a
SAESwTY Asthuet(SwT) =
(Qwg,w, : :sawpbw, et SwT) N wo[(@aS+aT)=1:[(aS+aT)
ANw [@S+aT)y=u[(@asS+aT) Alwg=<lt)

We conclude this section with two lemmata which are quite similar to Lemmata
5.3 and 5.4 but much easier to prove. The distinction is that symbeol a is an ele-
ment of oS w T) rather than ofaS N aT.

Lemma 5.5 : (cf. Lemma 2.8) For connectable C,’s § and T, for traces 5 and ¢,
and for symbol ac o(Sw T) such that t[{a } = ¢

saet(SwiAstetiSwT=>sset(SwT)

Lemma 5.6 : (c[. Lemma 2.9) For connectable Cy’s § and T, for traces s, ¢,
and u, and for symbol a € ofSw T) such that ¢t [{a } = ¢

sactiSwT) Aslauet(SwT) = auct(SwT)

5.1. R, through R; for trace structures obtained by weaving

In this section we show that R, through R, hold for the composite obtained by
weaving of connectable trace structures. Most of the proofs merely require a fre-
quent use of distribution of projection over concatenation and of the definitions
of weaving and the four classes. Therefore, we prove only some of the lemmata.

5.1. ®, THROUGH R; FOR TRACE STRUCTURES OBTAINED BY WEAVING 67

Lemma 5.7 : (cf. R;) For connectable C,’s § and 7, for trace s, ard for
symbol a

sea @ t{SwT)

Lemma 5.8 : (cf. R;) For connectable C4’s § and T, for traces s and £, and for
symbols a€a8-+aT and b €aS§ +aT of the same type

sabtet(SwT) =sbatet(SwT)

Proof : Without loss of generality we assume # € a$. We distinguish two cases
(YbeaS,and (i) 2 eal.

{i) SinceacaS+aT and $€af +aT we have in this case
acaS\aT and beasS\aT (0}

Now we derive

sabtet(SwT)

= { definition of weaving }
sabt [aS etS A sabt[aTetT

= { distribution of projection over concatenation, using (0} }
(s[a8)ab(tfaS)etS Ast[aTetT

= [Ry, since § isa C,; and 2 and 4 are of the same type }
(s[aS)ha(t[aS)etS Ast[aTetT

= { distribution of projection over concatenation, using (0) }
shat [aSetS Asbat[aTetT

= { definidon of weaving }
sbat et(Sw T}

(ii) In this case we have acaS\aT and b€aT\ a¥. Now Property 1.3
yields the result desired.

(End of Proof)

68 CLOSURE PROPERTIES

Lemma 5.9 ; {cf. R,") For connectable Cs’s § and T, for traces 5 and ¢, and for
symbolsa€aS+aT and beaS+aT of different types

saet(SwTYAsbatetiSwT)=sabtet(SwT)

Lemma 5.10 : (cf. R,”) For connectable Cys § and T, for traces 5 and ¢, and
for symbols acaS+aT, beaS+aT, and ceaS+aT such that & is of
another type than 2 and ¢

sabe e {SwT)Y A shat et{SwT) = sbatc et(SwT)

Proof : We distinguish three cases : (i) a, b, and ¢ belong to the same trace
structure, (ii) ¢ belongs to another wace structure than 2 and 4, and (iii) 2 and
b belong to different trace structures.

(1) a, b, and ¢ belong to the same trace structure. Without loss of generality we
assume this trace structure to be §. Hence,

acaS\aT, beaS\aT, and ceaS\aT (Y]

Now we derive
sabtlc et(SwT) N sbatet(SwT)
= { definition of weaving }
sable [aSetS A sabic[aTetT Nsbat[aSetS Asbat[aTetT
= { distribution of projection over concatenation, using (0); calculus }
(s[aS)ab(t[a8)cetS A (s[aS)ba(t [aS)etS Ast[aTetT
= {R)}
(s[aS)ba(t[aS)ctS ANst[aTerT
= { distribution of projection over concatenation, using {0} }
shatc [aS€tS A sbate [aT et T
= { definition of weaving }
shate et(SwT)

(ii) ¢ belongs to another trace structure rhan a and b. Without loss of generality
we assume ¢ € a 7. Hence,

acaS\aT, becaS\aT, and ceaT\a¥ ()

Now we derive

5.1. R, THROUGH R, FOR TRACE STRUCTURES OBTAINED BY WEAVING 69

sabte et(SwT)Y A shat et(SwT)
= { definition of weaving }
sabtc [aSetS Asabtc [aTetT Asbat[aSetS NAsbat[aTetT
= { calculus and distribution of projection over concatenation, using (1) }
shatc [aSetS A sbate [aT et T
= { definition of weaving }
shate € t(S w T')

(i) a and » belong to different trace structures. Then, according to Pro-
perty 1.3, sabte e t(Sw T) = sbate et(Sw T).

(End of Prool)

Lemma 5.11 : (cf. R,”) For connectable C,’s § and T, for traces s and ¢, and
for symbolsaco(SwT) bei(SwT),andceaSNaT

sabic et(SwT) A shatet(SwT) = shate et{SwT)

Proof : We distinguish two cases : (i) 4 and & belong to the same trace struc-
ture, and (ii) ¢ and & belong to different trace structures.

(i) a and & belong to the same trace structure. Without loss of generality we
assume this trace structure to be §. Hence,

acoS\aT and beiS\aT (0}

Next, we distinguish (a) c€i§ NoT,and (b)ceoS NiT

(a) c€iS NoT. Now we derive
sabte e t(SwTy A shatet(SwT)
= { definition of weaving }
sabte [aS €tS Nsabtc [aTetT Asbat[aSetS Nsbat[aTetT

= { distribution of projection over concatenation, using {0). Moreover, projec-
tion on a§ M a7, using Property 1.1, c€aS NaT,and (0} }

(s[aS)ba(t[aS) [(aSNaT)etS[(aSNaT)Asu[aTetT
A (s[aSYa(t[aS)etS

70 CLOSURE PROPERTIES

= { a8 NaT is independent with respect to S andcc(aSNaT)Nis }
(s[aSYa(t[aS)etS Asiw[aTetT

= { distnbution of projection over concatenation, using (0) and ¢ € a§ }
sbatc [aS €tS A sbatc [aT etT

= { definition of weaving }
shatc et(SwT)

(b) ceaS NiT
sabte et(SwT) A sbat et(SwT)
= { definition of weaving }
sabic [aS €tS N sable [aTetT NAsbat[aSetS NAsbat[aTerT
= { distribution of projection over concatenation, using {0) and c€ a§ }
GslaS)ab(t[aS)cetS ANsu[aTetT A(s[aS)ha(t[aS)ets
= [R,”, dnce a €0S and b €i5 according to (0), and c€ 0§ }
(s[aSYa(t[aS) ctS Asu[aTetT
{ distribution of projection over concatenation, using (0) and c€a§ }
shate [aS €tS A sbac[aTetT
{ definition of weaving }
shatc et(SwT)

(i) s and & belong to different trace structures. Then, according to Pro-
perty 1.3, sabte e t(SwT) = shac et(SwT).

(End of Proof)

Lemma 5.12 : (cf. R5") For connectable C,’s § and T, for trace s, and for dis-
tinct symholsecaS+aT and beaS+aT

sact{(SwTl Ashet(SwT)=>smbet{(SwT)

Lemma 5.13 : (cf. Ry"”) For connectable C,’s § and T, for trace s, and for dis-
tinct symbolse €af +a7 and b €af+aT, not hoth belonging to i(Sw T)

saEtSwAsbet(SwT)=sabet(SwT)

5.2. R, THROUGH R, FOR TRACE STRUGTURES OBTAINED BY BLENDING 71

Lemma 5.14 : (cf. Ry'"") For connectable C,’s § and T, for trace s, and for
symbolsac€aS+aT and bea§+aT of different types

sactSwTYAsbetSwT) = sabect(SwT)

5.2. R, through R, for trace structures obtained by blending

Using the lemmata derived in the preceding section it is easy to prove R,
through R, for the composite of two connectable C’s. The proofs are short and
straightforward and, therefore, all are omitted but one.

Lemma 5.15 : For connectable C,’s $ and T

0 SbTHUa(SbT)=a(§bT)
1) #SbT)is prefix-closed and non-empty
2) fortrace s and symbolaea(SbT) sezet(SbT)

3) for traces s and ¢, and for symbols e € a(Sb T) and b€ a(S§b T
of the same type sabt €t(SbT) = sbat et(Sb T)

Proof of 3) :

sabt €t(SbT)
= { definition of blending, using s €a(S§bT)and bca(SbhT) }
(Feg, by, ty:tpat blaet(SwT) A o[(@S+aT)=s A ¢ [(aS+aT)=¢
Aty[(aS+aT)=1)
= { Lemma 5.2, since ¢« and & are of the same type }
g,y te:(tgabtityet(SwT) V tptiabt, e t{Sw T A
tef@aS+aT)=s Ay [@aS+aT)=eAN[(af+aT)=1)
= { Lemma 5.8 }
(g, L1, 87 1 (lpbat it e t(SwT) V (ptdat, e t{SwT)) A
Wl@s+aT)y=s Ay[@S+aT)=ec N [(aS+aT) =1¢)
= { definition of blending, usinge ca(SbT)and b€a(SbhT))
shbat et(Sb T)
Hence, sabt € t(SbT) = sbat € t{Sb T) for symbols 4 and & of the same type.
Therefore, the implication may be replaced by equality.
(End of Proof)

72 CLOSURE PROPERTIES

5.3, Internal communications for a blend

The remaining rules to be proved for the blend of two connectable trace struc-
tures are less easily derived from those for the weave. The reason is that in the
left-hand sides of the implications in these rules the same trace occurs twice. By
the standard conversion from an expression in terms of the blend to an expres-
sion in terms of the weave, these occurrences convert to possibly distinct traces.
As a consequence, the lemmata derived in Section 5.] are not readily applicable.
Therefore, we prove in this section three lemmata that relate traces in the blend
to traces in the weave in such a way that we can apply the lemmata derived in
Section 5.1. Due to the absence of arbitration in the internal comrnunications,
we can prove for Cy’s a stronger lemma than for Cy’s.

Lemma 5.16 : For connectable C,’s § and T, for traces s, ¢, and u, and for
symbolsacaS+aT andbeaS+aT

sat e SbTY A shuet(SbT) =
(Fsg,51,52::5085 EHSWT) A sobss€t{(SwT) A sp[(aS+aT) =5
Asif@aS+aT) =t As[(aS+aT) = u)

Proof : We prove by mathematical induction on 17, + 1r; that for traces ry, 4,
¥, 74, and r4, such that

r[(as+aT) = rzj(aS+al) (0)
we have

rariara €t(SwT) A rgrabrycet{SwT) =

(sg,51,52:irpspas; €S wT) A rpsphs,et(SwT) A

sof[(@aS+aT)=r[@S+aT) A s [(aS+aT)=ry[(aS5+aT)
Nsy[(@aS+aT)y=r[(asS+aT)) {1

By choosing ry = ¢ we then have proved the theorem, since
S e SbTY A sbuet(SbT) =
Ary,ra,ra, i@, €t(SwT) A rbryet(SwT) A r[(a§+aT) =5
Arnf(aS+aTy=t Ar[@S+aT)y=s5s N f(a§+aT) =u)

Base : 1r; +1r5 = 0. (1) holds obviously in this case.

Step : Given integer £, & = 0. We assume (1) to hold for traces rg, 7/, 73, 73, and
r4 such that Ir) + Iry <k and (0). For traces 7y, 7y, 79, 3, and ry such that (0)

5.3. INTERNAL COMMUNICATIONS FOR A BLEND 73

and such that
Ir,+1rg = & (2)

we prove (1) in the following way.

We distinguish two cases : (i) r; and r5 start with the same symbol, and (i) ,
and r5 do not start with the same symbol.

{1} r; and r, start with the same symbol, say r; = a5 and r5 = ers. Then we
may apply (1) with its ry, 1, and r; replaced by rg¢, r5, and ry respectively,
since 1rg +1rg<<lry +1ry (= &), and since we infer from (0) and the distribu-
tion of projection over concatenation r5[(a8 +aT) = rg[(aS+aT). Now (1)
follows by a simple renaming.

(ii) r, and r3 do not start with the same symbol. Moreover, they are not beth
equal to € according to (2) and the fact that & = 0. Hence, at least one of them
starts with a symbol of aS M a7, since 7 [(aS§+aT) = r3[(aS +aT) accord-
ing to (0). Without loss of generality we assume r; to start with a symbel of
aSNaT,say

ry =eos and ceaSNaT (3)

Now we derive
rorara €t S wT) A rprabraet(SwT)
= { {3) and the prefix-closedness of t{Sw T") }
raersar et SwT) Arge et(SwT) A rgrsbryest(SwT)
= [Corollary 50, wingceaS NaT andbcaf+aT }
(Qug,w rpasara e t(SwT) A rgewpbw, et(SwT) A lwygslbrg A
wo[(aS+aT) =r[(aS+aT) Aw [(aS+aT) =rf(af+aT))
= {r3[(a§+aT) = rs[(aS+aT) on account of (0) and (3). Moreover, for
trace wq with lwy=1ry we derive livy + 175 <<k on account of (2) and
(3}
(Qzeg,wy irgosars € (S w T) A rpewpbw € (S w T) A bwg+Erg <<k A
wo[(@aS+aT)=rs[(aS+aT) Aw [(aS+aT)=rif(a§+aT))
= { (1), applicable on account of the induction hypothesis }
(Fawg,wy 55,5152 irgespas) EUS wT) A rgesphsoe t(SwT) A
sof(af+aT) = rs[(@aS+aT) A s[(@S+aT)y=rn[@S+aT) A

74 CLOSURE PROPERTIES

sfaS+aT)=w [@S+aTY A w [(@aS+aT)=r, (a8 +aT)
= { calculus and renaming &g, using (3) }
(Fsg,5,,80: 705088 ELSw T) N rspbspet{SwT) A
sof(@S+aT)=r[@S+aT)A s [(aS+aT)=r(a§+aT)
As[(aS+aT)=ryf[(aS+aT))
{End of Proof)

Lemma 5.17 : For connectable C,’s $ and T, for traces 5, sq, {, and {p, and for
symbols s €i(ShT) and beo(ShT) such that sp[(aS§+aT)=3s and
Hl(as~aT) =1

sobaty € t(S w T) A sabt € t(Sh T) = spabtoe t(Sw T)

Proof : By mathematical induction on the length of ¢;.
Base : t; = ¢. Now we derive

sobatgEt(SwT) A sabtet(ShT)
= {SwT)and 1(Sbh T} are prefix-closed }

sb et{SwTY Aspet(SwT) A seet(ShT)

= { distribution of projection over concatenation, using s = sg[(a$+aT)
andaca(ShT)}

sph et wTYN spet(SwT) Asga[(aS+aT)et(ShT)

= { Lemma 3.5, using a € i{(5 b T') and the definition of blending }
spet(SwT) AspactSwT)

= { Lemma 5.14, singa€i(SbT)and b €o{(SbT) }
spbet(SwT)

= {ta= ¢}
spabtget(SwT)

Step : ¢ty = t;¢. We distinguish two cases : (i) ceaS NaT and {ii)
cealShT).

(i) eeaS N aT. Hence,
tH[@@asS=aT) =1 ©}

Now we denive

5.3. INTERNAL COMMUNICATIONS FOR A BLEND 75

sohatget(SwTY A sabt et{(SbT)
= {tg = tyc, t{Sw T} is prefix-closed }
sphatic et(SwT) A sghat, e t{SwT) A sabt et(§bT)
= { induction hypothesis, using (0) }
sphatic €et(SwT) A spabt, e t{SwT)
= { Lemma 5.11 }
spabtic e t(SwT)
= {4 =1t}
soablpe t(SwT)

(i) cea(§bT). Since {([(aS+aT) =t we may assume trace ¢, to be such
that '

! =ty (1)
and, hence, since ¢y = {;¢
t(@aS+aT) =1t (2)
'Now we derive
sghatget(SwT) Asablet(SbT) .
= {{ = t¢,{1),and (S w T) and t{§b T) are prefix-closed }
sghatic € t{SwT) A sghat, e t(SwT) A sabtoe t(ShT) N sabtyc et{SbT)
= { induction hypothesis, using (2) }
sohatic ct(SwT) N spabt, ct(SwT) N sabloc et(SHT)
= {5o[(a8+aT) =75 and ¢;[(aS+aT) = ¢, according to (2). Distribution
of projection over concatenation, using e €aS+a7,becafS+aT, and
ceaS+aT}
sohatic et(SwT) N spabt, e t(Sw TY N spablyc [(aS+aT)ey(SbT)
= { Lemma 3.5, using the definition of blending, if ¢ € (S b 7). Lemma 5.10,
wingaci(SbT) and beo(SbT),ifceo(ShT))
spgblicet(SwT)
= {tp =1t}
soablge (S w T)

(End of Proof)

76 CLOSURE PROPERTIES

Lemma 5.18 : For connectable C,’s § and T, for traces s and ¢, and for sym-
bolsaci(SbT)and b€a(ShT)
saet(ShTY AN sbtet(SbT) =
(Fsg,51: 152 €W SwT) A sghs et(SwT) A
ss[(aS+aT)y=s A s [@S+~aT)=1¢)

Proof :
sact(ShT) Asbtet(SbT)
= { definition of blending. t{§ w T) is prefix—closed }
(Fsp,s, :csaet(ShTY A sget{SwT) A spbs, et(SwT)
Asp[(@aS+aT)=s As [(aS+aT)=1t)
= { calculus and distribution of projection over concatenation, using
acaS+aT}
(Fsg,5,::5a[(@SFaT)et(ShT) Nsget(SwT) A
sohs et(SwT) Asg[(aS+aT)=5 As[(aS+aT)=1)
= { Lemma 3.5, since a € i{S b T"), using the definition of blending }
(Bsg,5,::5paet(SwT) A spbset(SwT) N
so[(@aS+~aT)y=s As[(aS+aT)=1t)
(End of Proof)

Example 5.0

Consider trace structure S with input alphabet { x,3 }, output alphabet {a,5 },
and command x ;a |y ;6 and consider trace structure 7T with output alphabet
{ x,» }, input alphabet &, and command x |». Then § is, according to the
rules, a C; and T a Cj;. Alphabet {x,y } is independent with respect to both
trace structures. Moreover, aSNaT7T = (S NiITHYU{TNi§) and
S{{xy}=T[{x,p}, as a consequence of which § and T are connectable.
The trace set of SwT is {¢x,7,xa,70) and the trace set of Sh T equals
{¢,a,b }. Neither xb nor ya is an element of t{S w T). Therefore, taking for s, {,
u,a, and & in Lemma 5.16 ¢, ¢, ¢, a, and b respectively, there do not exist
traces sg, §;, and sy with the properties as in Lemma 35.16. Consequently,
Lemma 5.16 does not hold when replacing G, by C; (or C,).

{End of Example)

5.4. THE CLOSURE OF C, 77

5.4. The closure of C,

The blend of two connectable C,’s satisfies Ry through R, as has been proved
in Section 5.2. What remains are the proofs for Ry’ and R;". We prove R’ for
the compeosite of C,'s, which is sufficient since C, C C,,

Lemma 5.19 : For connectable C,’s § and T, for traces s and ¢, and for sym-
bols a €a(§bT) and b € a(SbT) of different types

saet{SbT) A sbat ef(SbT) = sabt et(SbT)

Proof :

saet{SbT)Y A sbatet(ShT)
= { Lemma 5.16, symbols 2 and & are distinct since they are of different
types }
(Fsg,51,52::50a5, €S wT) A spbs,et(SwT) A so[(aS+aT) =35
Asi[(aS+aT)=eA[(aS+aT)=a Naz£b)
= { t{SwT) is prefixclosed. Renaming and calculus, usinga €a§+aT }
(Asg,51.52::50a €t(SwT) N spbsjas, € t{SwT) A sp[(aS+aT) =3
As[@aS+aT)=cAs[(aS+aT) =1t Abs[{a} =¢

= {ifa€i(SwT) we apply Lemma 5.0 followed by Lemma 5.9. If not, then
a € o(SwT) and we apply Lemma 5.6 }

(3sg,51,50::50abs 5, tSwTY A sp[{(aS+aT)y =5 A
s\ffaS+aT)y=e¢AN s,[(aS8+aT)=¢)
= { definition of blending, using aca(SbT)and b a(SbT) }
sabt € (SbT)

(End of Proof)

Lemma 5.20 : For connectable C’s § and T, for trace s, and for distinct sym-
bolsaca(SbT)and b€a(S§bT)

saet(ShbTYNAsbet(SbT)=sabet{(SbT)

Proof :

saet(SbTY A sbet(SbT)
= { Lemma 5.16 }

78 CLOSURE PROPERTIES

(Fsg,51,59: 15025, €t SWwT) A sphsyet(SwT) Asg[(aS+aT) =35
As[{aS+aT)=eNsy[(aS+aT) =¢)
= { {8 w T} is prefix-closed }
@so::sppet(SwT) NAsgbet(SwTY N sp[(aS+aT) =s)
= { Lemma 5.12 }
(Fso:ispb et(SwT) N 5o (aS+aT) =)
= { definition of blending, using s €a(Sb7T)and b a(SbhT) }
sabet(SbT)

(End of Proof)
Now we have proved the following theorem.

Theorem 5.0 : C, is closed under compaosition of connectable C’s.

Example 5.1

Consider the C-wire element of Example 2.3 with input alphabet {a,q,r } and
output alphabet {5,p} with command a;(p;(g;6;a),7) and the And-
element as introduced in Example 2.6 with input alphabet {#,d }, output
alphabet {¢,¢,r), and command (p;6;d;q,r;p;(c;d;7),¢) . They are
both C’. Alphabet {p,¢,r } is independent with respect to both trace struc-
tures, as has been argued in Examples 3.1 and 3.3. Each common symbol is
input in the one and output in the other trace structure, and projected on
{£,9,r} both trace structures yield the trace structure with command
(¢ ;9,r). As a consequence, they are connectable and their composite is
specified by the blend, being a;(c;d ;b ;a;(b ;a),(c;a’))', which is a C,,
indeed. This element may be interpreted as a Quick Return Linkage (QRL)
(10]. It has a cyclic way of operation. In the first half of the cycle a2 component
informs another component via @ of the presence of input data, and is notified
via & that these data have been processed. The other component is notified of
these data via ¢ and informs the first component via d that these data have been
processed. The second half of the cycle, the return-to-zero phase, then proceeds
without any communications between both components.

(End of Example)

Example 5.2
Consider the C-element with two outputs of Example 2.2 with input alphabet

5.5. THE CLOSURE OF C, 79

{¢,5}, output alphabet {4,¢}, and command ¢,s ;((d ;¢),(¢ ;5))". Alphabets
{c,d} and {s,t} are independent with respect to this element as has been
argued in Example 3.0, This element may be composed with two QRL’s of the
preceding example. The first QRL is exactly the one derived in that example.
The other one is inttialized in a different state and its symbols are renamed. Its
input alphabet is {g,t}, its output alphabet {r,s}, and its command is
itsr;ps(rsp)(s ;t))'. Alphabet {¢,d } is independent with respect to the
first QRL, alphabet {s5,¢ } to the other QRL. The projections of the first QRL
and of the C-element on { ¢,d } yield the trace structure with command (¢ ;d)".
Since the input-in-the-one-and-output-in-the-other-one rule is obviously satisfied,
theze two components are connectabie. Alphabet { 5,¢ } tums out to be indepen-
dent with respect to the composite and the projections of the composite and the
other QRL on {s,t} yields the trace structure with command (s ;¢)". That
makes these two components connectable as well. The result of their blending is
a;{{b;a;b;a),(r;p;r;p))". This may be interpreted as a binary semaphore
[1]- Such a semaphore may be comnposed with another one, using { ¢,r } for the
one and {a,b } for the other one as independent alphabet by means of which
they are connected. The result is a ternary semaphore. In this way we can com-
pose k£ — 1 binary semaphores, which yields a k -ary semaphore,

(End of Example)

5.5. The closure of C,

According to Section 5.2 and Lemma 5.19 the only rule left to prove is Rg”.

Lemma 5.21 : For connectable Cy’s § and T, for trace 5, and for distinct sym-
bols 4 € a(Sb T) and 4 € a{$ b T), not both input symbols,

sact(SbT)Asbet(SbT) = sabet{Sb T)

Proof :
saet(SbTY A sbet(SbT)
= { Lemma 5.16 }
(350,851,527 :508 €S wT) A spbs, e t(SwT) A sg[(aS+aT) =5
As[@S+aT)=cAs;[(aS+aT) =¢
= { t(Sw T is prefix-closed }
Fsp::smetSwT) Asgbet(SwT) Asy[(aS+aT) =)
= { Lemma 5.13 }
(Fsp::sppbet(SwT) Asg[(aS+aT)=3s)

80 CLOSURE PROPERTIES

= {definition of blending, using a €a(SbT)and b €a(§bT) }
sab et(ShT)

(End of Proof)
This means that we have proved the following theorem.

Theorem 5.1 : C, is closed under composition of connectable Cy’s.

Example 5.3

Consider the Three-wire component of Example 2.4 with input alphabet
{xg,x,,8)}, output alphabet {yg,y;,2), and command (xy;¥p;b;a|
x1;7138;a) . We can ‘lengthen’ these wires by composing this element with,
apart from renaming, the same element. The latter is the component with input
alphabet {y¢,71,¢}, output alphabet {z9,2,,6}, and command
(voszo;¢ ;8 |p1;215¢;5) . Alphabet {34,5,,6 } is independent with respect to
both components as has been argued in Example 3.2, and the projections on
{30,71,b } vields for both trace structures the trace structure with command
((?0]71):4)". The blend of the two, being the specification of the composite, is
(x9;zg;¢;a | xqy;2y;¢;a) . This is, apart from renaming, the same component
as the ones that we started from.

(End of Example)

Example 5.4

Consider the buffer as introduced in Example 2.8 with input alphabet
{xp,x;,4 }, output alphabet { yo,7,,4 }, and state graph

L4
o

-
-
st

.

-

5.6. THE CLOSURE OF C, 81

Alphabets {x4,%,,6 } and {yq,7,,0} are independent. This buffer can be
composed with another buffer that is obtained from this one by replacing every
symbol by its alphabetical successor. The projections of both buffers onto the set
of common symbols, i.e. {y5,51,8} are the trace structure with command
((ro |#1);4)". The other requirements for connectability are satisfied as well
and, hence, we may compase these two buffers. A command for the specification
of the compasite, which is, of course, a two-place buffer, is hard to derive from
these two specifications. In fact, any command for the composite is monstrous.
Although 1t is clearly necessary to be able to reason about such a simple com-
ponent in an adequate way, we consider it outside the scope of this monograph,
Apparently, this is not the appropriate level of abstraction for deriving the
specification of a compasite. This is, as pointed out in the next chapter, one of
the topics of future research.

{End of Example)

5.6. The closure of C,

Leh to prove for the blend of two Cy’s are R” and R

Lemma 5.22 : For connectable C,’s § and T, for traces s and ¢, and for sym-
bols ¢ €a(§bT), bca(SbT), and ¢ € a(S§b T) such that b is of another type
thana and ¢

sabte € t(Sb T) A sbat € (Sb T) = shatec € t(Sb T
Proof : We distinguish two cases : (i) cei{(SbT) and (ii} c e{Sb T)

(i} c€i(SbT). Now we derive
sabte et{SbTY N sbat et(Sb T)
= { dehnition of blending, usinga € a(SbT) and b a(SbT) }
(Asg,s1,8p::5able e t(Sb TY A sphsjatyct(SwT) A sp[(aS+aT) =5
NAsi[(aS+aT)y=eNpl(asf+aT)=1)

= { Lemma 5.0, since the type of a, being the type of ¢, is input. Moreover,
t(S b T) is prefix-clogsed and renaming }

(Tsg,lo: i sable et(SbT) A sabt e t{(SbTY N sobatget(SwT) A
so[(af+aT)y =5 N [(a§+aT) =1¢)
= { Lemma 5.17, since a is input and & is of another type than 4 }
(Arg,tg: 1 sable (S b T) N spabtpe t{S w T) N sghatge t(Sw T) A

82 CLOSURE PROPERTIES

so[a$+aT) =35 A l@@as+aT)=1)
= { calculus and distribution of projection over concatenation, using
cca(§bT),becal§bT),andcea(ShT))

(Fsg,to: :spabtoc [(AS+aT)Iet(ShT) A spabloet(SwT) A
sobatge t{SwT) A sgf(aS+aT) =5 A [@aS§+aT)=1)
= { Lemma 3.5, using ¢ € (5 b T) and the definition of blending }
(Fsg, by :spabtgr et S wT) A spbatget(SwT) A
so[(aS+aT)y=s ANyl@S+aT)=1)
= { Lemma 5.10 }
(Bso.to:ispbatoc et(SwTY A sp[(@aS+aT) =5 Ap[@aS+aT) =1)
=> { definition of blending, using s € a(Sb7T), b €a(SbT),andc€a(ShT}}
sbatce et(SbT)

(i) c€o(§bT). In this case we derive
sable et(Sh TY N sbat et(Sb T)
= { definition of blending }
(Fsg,51 80505 blpc et SwT) A sbatet(SbT) A sog[(aS+aT) =5
Ns[(aS+aT)=eN t[(@aS+aT)=1t)

= { Lemma 5.1, since the type of 4, being the type of ¢, is output. Morcover,
t(S w T) is prefix-closed and renaming }

(Fso,tp:ispabtpe e SwT) A spablget(SwT) A sbat et{(SbT)
Nso[(aS+aT) =35 A[(@aS+aT)=1¢)
= { Lemma 5.17, since a is output and 4 of another type than a }
(5o, dg:ispablpe e (S wT) A spbatge t(SwT) A
so[(@aS+aT)=s N¢[(@S+aT) =1)
= { Lemma 5.10 }
s g spbatpc et(SwT) A spl{(@aS+aT) =s Ny[@@S+aT)=1)
= { definition of blending, usinga €a(SbT), bea(SbT),andcea(§bT) }
sbatc et(ShT)

(End of Proof)

5.6. THE CLOSURE OF C, B3

Lemma 5.23 : For connectable C,’s § and T, for trace s, and for symbols
acalS§bT)and b €a(ShT) of different types

sSaEt(SOTIN et SbT)=mbet(ShT)

Proof : We assume ¢ € i(Sb T') and, hence, have to prove
saet{SbTIANSet(SbT)=2>5mbet(SbTY A sbhact(SbT)

saet(SbT)Asbet(SbT)
= { Lemma 5.18, using that t(§ w T} is prefix-closed }
(Bsp: 58 €t SwTY A sgbet(SwT) Asg[(a§+aT)=ys)
= { Lemnma 5.14 }
(Qspiispab et{SwT) N sphaet(SwTY A spf[(@aS+aT) = 5)
= { definition of blending, wsinga€ a(Sb T} and b€ a(SbT) }
sbet(ShT)y Asbeet(§hT)

(End of Proof)
This completes the proof of
Theorem 5.2 : C, is closed under composition of connectable C,’s.

Example 5.5 _

Consider the C4 of Example 2.12 with input alphabet {a,d,e }, output alpha-
bet {b,¢,/ }, and command (((f ;a),(b;d)) 5/ ;a5 (c;e;65d) 5b;d) . As
argued in Example 3.6, alphabet {¢,¢ } is independent. Projection on {¢,¢ }
yields the trace structure with command (¢ ;¢)". The trace structure with com-
mand (¢ ;¢)°, input alphabet { ¢ }, and output alphabet { ¢} is a C,. These two
components are connectable. Composition of the two yields the projection of the
first trace structure onto { 2,5,d,f }, which is, according to Example 3.6, not a
C;.

(End of Example)

6

Suggestions for further study

The theory developed in this monograph provides a base for a theory on delay-
ingensitive circuits. In this chapter we point out a number of generalizations that
might be considered.

In Chapter 3 we noticed already that the requirements for connectability of
trace structures § and 7T are rather restrictive. The first relaxaton considered
relates to the requirement that their projections on the set of common symbols be
the same. This is, provided that the set of common symbols is independent with
respect to both trace structures, a sufficient condition to guarantee absence of
computation interference. There is nothing wrong, however, with a situation in
which the one component is able to receive an input that the other component is
never able to produce as cutput. An example of this kind is a variable, az we
have introduced in Example 2.7, that is composed with another component that
always retrieves a stored value twice before storing 2 next value in the variable.
It might be sufficient to require

(Va:acoSNiT:swetS[@aSNaT)=smectT[(aSNaT) A
(Va:acoT NiS:sactT[@SNaT)=mctS[@sNaT))

for all traces s €tS[(a8 NaT)NtT[(aS NaT) When taking delays into
account it is not obvious that this requirement is sufficient to guarantee absence
of computation interference. This should be proved again by means of composa-
bility of traces as we did in Chapter 4 for the more restrictive composition opera-
tor. Expressing requirements in terms of individual traces is undesirable, how-
ever. We would like to express this or a more suitable requirement in terms of
trace structures. How this should be done remains 1o be seen.

Connecting trace structures by means of independent alphabets seems too res-
trictive a requirement as well. Connecting two wires with one another in the
usual way, or connecting a C-element with a Fork to obtain a C-element with

85

two outputs is still impossible. We would like to be able to compose trace struc-
tures with a set of common symbols that is not independent with respect to each
of them, How to incorporate this kind of composition is not clear yet. The fol-
lowing might be a possible strategy.

Consider nwo components that are specified by wace structures § and T
respectively. Let C be the set of common symbols and let C be independent with
respect to neither § nor T. For trace structure $§ this means that there is a trace
tetS and a symbol a €C NiS such that ¢[{ClactS[C and w&tS (or
something similar with C replaced by a§ \ C). In other words, there are sall
communications to be performed by means of the symboks of the complement
with respect to a§ before input 2 can be received by the component. The two
environments that the environment of § is partitioned into by C and 2§\ C
cannot communicate with the component independent of one another. They
need additional information on each other’s progress. Therefor we could inuo-
duce an alphabet D of fresh symbols via which the two environments can
directly comumunicate. In order w reflect these comununications traces of §
should be interspersed with symbols of D in a suitable way. The component-
environment pair now becornes a triple :

C
e

Having done something similar with trace structure T, using the same set of
symbols D, we can blend the new § and T, provided that § [(C U D) and
T[(C U D) meet certain conditions, e.g. § [(C U D) = T[(C U D).

The problem of course is the interspersion of traces of § with symbols of D.
One of the questions is what requirements to impose upon the resulting trace
structure. A necessary, and possibly sufficient, condition seems to be that the
projections of the new trace structure onto C U D and (a8 \ C) U D be delay-
insensitive. A second question is how to find D and how to construct the desired
trace structure, A trivial way is to conceive one of the environments, £, say, as a
pass-through for all incoming signals. This means that there is a one-to-one
correspondence between input symbols of C and output symbols of D and
between output symbols of C and input symbols of D. (Input and output is

86 SUGGESTIONS FOR FURTHER STUDY

here with respect to E;.) Moreover, in the specification of the communications
via C and D every input is followed by its corresponding output and so repeat-
edly. The specification of the communications via D and a$ \ € is in this case
the same as the one via C and a§ \ C with every symbol of C replaced by its
corresponding symbol in D,

Once we have properly relaxed the requirements for connectability and have
proved the absence of transmission and computation interference we have to
answer the question whether and how to incorporate multiple transitions on a
wire in our formalism. As we have pointed out in the introduction, we can allow
multiple transitions on a wire in the presence of a data valid wire that signals
the validity of a voltage level on the first wire. This kind of protocol is often used
for data transmission. A high level on a wire represents a logical one and a low
level on that wire a logical zero. Having n data wires we can convey 2" different
values.

Not using a data valid wire we encode data by a so-called m out of n cod-
ing. Having n wires a transition on exactly m of them, 0 < m < n, represents a
value. In this way we can convey (}) different values. For fixed n the maximum
value of () is asymptotically 2"/+/n. Notice that we have used a 1 out of 2
coding for the data transmission in the examples.

The advantage of data transmission with a data valid wire is the smaller
number of wires needed and the availability of circuits that can handle data
enceded in this way, e.g. adders and multipliers. The number of wires used to
convey data, however, is typically 8, which makes, together with the data valid
wire, a total of 9 wires required. An m out of n coding requires 11 wires for 8
bits of information,which does not seein to be too large a difference. An interest-
ing question is how to build arithmatical circuits that can handle data encoded
in this way. It might just be that this encoding seems more difficult only because
we are used to the other one.

A question, which is often posed, is whether there exists a (finite} base for
delay-insensitive circuits, ie. a (finite) set of delay-insensitive circuits by means of
which we can obtain all delay-insensitive circuils by composition. Once we have
relaxed the requirements for compaosition of components this is a valid question.
It mught be that there exists a base consisting of just a few elements, which
would make a gate array approach for the implementation of a component as
chip very attractive. Closure properties of classes may be helpful in finding such
a set. Using, for instance, the composition operator as defined in Chapter 3 we
cannot obtain a C4 fram Cj’s. This means that an arbiterlike device necessarily
belongs to a base, It is very likely that the closure properties derived in Chapter
5 hold for less restrictive cownposition operators as well.

Trace theory as it is used here provides the first step towards a high level
specification language that we would like a silicon compiler, our ultimate goal,
to be able to accept, Specifying circuits at the current level of abstraction is a
nuisance. Another topic of research, therefore, is how to translate specifications

7

Concluding remarks

In this monograph we have discussed specifications of circuits when making no
assumptions on wire delays. This has led to a definition and a classification of
delay-insensitive circuits. Meoreover, we have proposed a composition operator
that we have shown to warrant internal communications that are free of
transmission and computation interference. Three of the four classes turn out to
be closed under this compesition operator. A few final remarks on the results
obtained seem to be apposite.

C |, C,;, and C, arose from an intuitive understanding of delay-insensitive cir-
cuits and of decisions that are to be made in the component and in the environ-
ment. Since €4 tumed out not to be closed under the composition operator pro-
posed, the need for a larger, still physically interpretable, class developed. C, is
a class that satisfies these requirements, which makes Cs, in fact, obsolete.

Petri nets [7] are frequently used for the specification of delay-insensitive cir-
cuits. They suffer, however, from a canonical form problem, i.e. distinct Petri
nets may specify the same circuit. This makes it hard to capture properties of
delay-insensitive circuits in terms of Petri nets. Trace structures do not suffer
from this canonical form problem and are, therefore, more suited to define and
classify delay-insensitive components. Petrl nets can, like our program texis or
state graphs, very well be used for the representation of trace structures. The
question whether there is a representation that should be preferred to the others
is not easily answered. Probably it depends on the circumstances under which
they are to be used and on the question by whom they are to be used.

We have confined our atention to components that satisfy the rules for
delay-insensitivity and we have defined for that class of components a composi-
tion operator, The advantage of this approach is that it is not necessary to take
wire delays into account when composing components : the blend has been
shown in Chapter 4, with some effort but we only have to do it once, to be a
proper compeosition operator for this kind of components. This is opposed to the

88

89

approach taken in [12] where a larger class of components is considered. When
composing this kind of components, however, one cannot simply use the blend
but one needs a much more complicated composition operator, called agglutina-
tion. The result of such an agglutination is not easily computed. Confining the
class of components to be considered seems to be a better approach for dealing
with wire delays.

90

References

[0]

(1]

[2]

(3]

[41

[3)

(6]
[7]
[8]
[9]

T.J. Chaney, C.E. Molnar, Anomalous Behavior of Synchronizer and
Arbiter Circuits, IEEE Transactions on Computers, Vol C-22, 1973,
pp 421-422.

Edsger W. Dijkstra, Cooperating Sequential Processes, in Programming
Languages (F. Genuys ed.), Academic Press, 1968, pp 43-112.

Edsger W. Dijkstra, Lecture Notes ‘Predicate Transformers’ {Draft), EWD
835, 1982

T.P. Fang, C.E. Molnar, Synthesis of Reliable Speed-independent Circut
Modules, Part 1 and 2, Technical Memoranda No. 297 and 298, Computer
Systems Laboratory, Institute for Biomedical Computing, Washington
University, St. Louis, Missouri, 1983.

L.R. Marino, General Theory of Metastable Operation, [EEE Transactions
on Computers, Vol C-30, No. 2, 1981, pp 107-115.

C. Mead, L. Conway, Introducticn to VLSI Systerns, Addison-Wesley,

1980,

Raymond E. Miller, Switching Theory, Wiley, 1965, Vol. 2, Chapter 10.
J.L. Peterson, Petri nets, Computing Surveys, Vol. 9, No. 3, 1977.
Science and the citizen, Scientific American, Vol. 228, 1973, pp 43-44.

C.L. Seitz, Self-timed VLSI Systerns, Procecdings of the Caltech Conlerence
on VLSI, 1979, pp 345-355.

[10] C.L. Seitz, Private Communication.
[11] CL. Seitz, System Timing, in [5], pp 218-262.
[12] Jan L.A. van de Snepscheut, Trace Theory and VLSI Design, Ph. D.

Thesis, Department of Cornputing Science, Eindhoven University of Tech-
nology, 1983.

[13] LE. Sutherland, C.E. Molnar, R.F. Sproull, J.C. Mudge, The Trimosbus,

Proceedings of the Cattech Conference on VLSI, 1979, pp 395-427.

Subject index

a
alphabet
And-clement
arbiter
arbitration
arbitration class

b
blending
buffer

C-element

command

component

composable

compaosition
comnputation interference
connectable

data communication class
data valid wire

decision

delay-insensitive
disabling

foam rubber wrapper
Fork

from

glitch

i

independent alphabet
initialization

input

isochronic region

1

mechanistic appreciation

91

18
20
2,14
15

19

14
15
15
16
11
11
12

8,39
343,45
39

15

14
2,16
14

12
16
48

K] |
16

6,42

92

Merge
mm
m out of n coding

o
output

parity counter
Petri net

pref

prefix
prefix-closure
projection

QRL

scrﬁaphom
state graph
symbol

synchronization class

t

TR

trace

trace structure

transmission interference

varniable
W
weaving
Wire

e -

- B wereo®T oo 5

— et
L3 Lo o

14,16

93

Samenvatting

In dit proefschrift wordt een definitie en een classificatie van en een compositie-
methode voor vertragingsongevoelige circuits besproken. Dit zijn circuits waar-
voor geen aannamen gemaakt worden omtrent vertragingen in verbindings-
draden of omtrent de snelheid waarmee zo een circuit reageert op input sig-
nalen. De reden voor de bestudering van dergelijke circuits is tweeerlel. Enerzijds
bestaan er circuits die niet altijd binnen cen bepaalde tijd een berekening heb-
ben uitgevoerd. Dit betekent dat er in de specificatie van een circuit dat met zo
¢en circuit wordt verbonden niet van uitgegaan mag worden dat input signalen
binnen een zekere tijd na de output signalen zullen kunnen worden ontvangen.
Anderzijds blijkt dat door het verkleinen van geintegreerde schakelingen de ver-
tragingstijden van elektrische signalen in verbindingsdraden toenemen ver-
geleken met de schakeltijden van transistoren, zodat vertragingen in draden niet
langer verwaarloosd mogen worden.

Een viertal klassen van vertragingsongevoelige circuits wordt op axiomatische
wijze gedefinieerd. Drie van deze klassen biijken gesloten te zijn onder de voor-
gestelde compositieoperator, terwijl de vierde dit niet is. Voor de specificatie en
compositie van circuits en voor de geslotenheidsstellingen wordt gebruik gemaakt
van trace theory. Dit is een theorie van symboolrijen en verzamelingen symbool-
rjen.

Bij het samenstellen van circuits dient aan twee voorwaarden te zijn voldaan.
Ten ecrste moet gegarandeerd zijn dat elektrische signalen op een verbindings-
draad niet met elkaar kunnen interfereren. Door geen aannamen te maken over
vertragingen betekent dit dat hooguit é&n signaal per draad is toegestaan, Daar-
naast mag een elektrisch signaal pas bij een circuit arriveren als dat circuit, vol-
gens zijn specificatie, in staat i8 tot de ontvangst van dat signaal. Van de in dit
proefschrift voorgestelde composiieoperator wordt aangetoond dat bij compositie
van vertragingsengevoelige circuits aan deze beide voorwaarden is voldaan.

94

Curriculum vitae

De schrijver van dit proefschrift is op 11 juni 1953 geboren te Den Helder. Na
het eindexamen Gymnasium-8 in 1971 te hebben algelegd aan het Drachtster
Lyceum te Drachten is een aanvang gemaakt met de studie wiskunde aan de
Technische Hogeschool Eindhoven, In februari 1980 wordt het diploma wiskun-
dig ingenieur behaald, na afstudeerwerk onder leiding van prof.dr. N.G. de
Bruijn. Tot april 1982 wordt daarna gewerkt als medewerker van de Sector
Informatica aan het Dr. Neher Laboratorium van de PTT in Leidschendam.
Sinds 15 april 1982 wordt als wetenschappelijk medewerker aan de Onderafdel-
ing der Wiskunde en Informatica van de Technische Hogeschool Eindhoven
gewerkt in de vakgroep Informatica onder leiding van profdr. M. Rem. Van
septernber tot en met november 1983 is bovendien als research fellow onderzoek
verricht op het gebied van vertragingsongevoelige systemen onder leiding van
prof.dr. C.E. Molnar aan de Washington University te St. Louis, Missouri.

STELLINGEN

behorende bij het proefschrift

Classification and composition of
delay-insensitive circuits

van

Jan Tijmen Udding

Eindhoven,
25 september 1984

Voor iedere natuurlijke ¢ en m waarvoor geldtm 55 1, g =2m + 1, ¢ =(1

of 3mod6) en m =(1 of 3mod6) bestaan er twee Steiner triple systems van

orde ¢ (op dezelfde verzameling punten) die precies een Steiner triple sys-

tem van orde m gemeen hebben,

lit : J.I. Hall and J.T. Udding, On the Intersection of Pairs of Steiner Tn-
ple Syatems, Proc. Kon. Akad. v. Wet., A80, 1977, pp 87-100.

Voor gegeven alfabet A en prefx—closed trace set U heefi de vergelijking

TCA" : T = UbsT precies één oplossing die ¢ bevat indien voor iedere

ue Ugeldt l{u[sd)<l(u[4).

it : J.T. Udding, On recursively defined sets of traces, Intern Memoran-
dum, JTUOa, 1983.

De klassen van vertragingsongevoelige trace structures die voldoen aan de
regels R, tot en met R,"” en aan ofwel Rs" dan wel Rs” zijn gesloten onder
compasitie van connectable trace structures.

lit : Dit proefchrif.

Het is opvallend en valt te betreuren dat in zo weinig boeken over tralie-
theorie aandacht wordt besteed aan eigenschappen van morfismen.

Het blijven uitbreiden van het relationele model draagt geenszins bij tot
een goede fundering van de theorie over informatiesystemen.

Imperatieve programmeertalen zijn een erfenis uit de tijd dat het doel van
een taal nog was het programmeren van een machine. Nu machines er zijn
om onze programma’s uit te voeren, dient aanmerkelijk meer aandacht te
worden besteed aan het gebruik van non-imperatieve programmeertalen
dan momenteel het geval is.

Bij het beschrijven van fysische objecten door middel van een wiskundig
model dienen objecten die in het model van elkaar verschillen te correspon-
deren met objecten die om fysische redenen van elkaar verschillen. Petri
netten dienen derhalve niet gebruikt te worden voor de specificatie van ver-

ragingsongevoelige systemen.

10.

il

Slechte ervaringen met inadequate formalismen hebben geleid tot een
schromelijke onderschatting van de mogelijke rol van formalismen.

Het idee dat bewijsvoering gereduceerd kan worden tot formulemanipulatie
geruigt van een schromelijke overschatting van de mogelilke rol van for-
malismen.

Onderzoek heeft bij uitstck een individueel karakter. De te ver door-
gevoerde demokratisering van het universitair bestel in Nederland is dan
ook funest voor het verrichten van goed en origineel onderzoek.

Gelukkig is, zoals de naam al zegr, temporele logica maar tijdelijk.

Binnenkort zal de zogenaamde ‘school met de computer’ zijn intrede doen
in de strijd om de gunst van de leerplichtige. De suggestie als zou een der-
gelijke school een streepje voor hebben op andere scholen is onjuist en dient
als misleiding te worden aangemerkt.

