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Abstract – Our contribution in the context of the “Quality 
of Service (QoS) in IN-home digital networks” project was 
focused on the QoS provided by consumer electronics 
terminals. In order to achieve a particular level of QoS 
provided by a terminal, an important issue is resource 
management supported by performance analysis. The 
work we present  in this article is highlighting ways of 
predicting the necessary resources (e.g. CPU, memory, bus) 
needed by a video streaming application to provide a given 
level of QoS. We introduce a calculation method that 
involves measuring in isolation the resource needs of each 
of the individual streaming components, and also a 
performance composition analysis, which takes into 
account the Number of Context Switches (NCS) occurring 
during the execution of the application. We based our 
calculation for the NCS on the observation that running 
streaming applications, eventually adopt a pattern of 
execution that repeats after a specific interval of time 
(hyperperiod). By finding the NCS induced during a 
hyperperiod, we deduce the total NCS occurring during the 
execution of the application. The article gives a 
characterization of the streaming applications execution 
and of the component model that lie at the basis of our 
calculation. 
 
Keywords – QoS; real-time embedded systems; streaming 
applications; context switches 
 

I.  INTRODUCTION 
The QoS in IN-home digital networks project aims at 

providing an integrated approach for achieving levels of 
Quality of Service (QoS) for systems consisting of a 
number of consumer electronics devices (called 
terminals) and a network that interconnects them. QoS, 
according to a recommendation provided by the ITU-T 

forum in Geneva 1994, is the collective effect of service 
performances that determine the degree of satisfaction of 
the user of that service. Our alternative definition of the 
term indicates that QoS is a collection of (QoS) 
parameters values related to functional and non-
functional characteristics of the service in question, and 
an assessment with respect to the degree of quality 
(unsatisfactory, good, excellent) derived from applying 
assessment rules on the values of these (QoS) 
parameters. Examples of QoS parameters in the context 
of networks can be derived from the characteristics of the 
network transmission: reliability, delay, jitter, or 
bandwidth. In the context of the terminals, reliability and 
performance are two fundamentally relevant parameters.  

Our contribution to the QoS in IN-home digital 
networks is focused on providing ways for enhancing the 
QoS of consumer electronics terminals, which can be 
categorized as real-time embedded systems. The 
reliability and performance of such systems are strongly 
related to their predictability, and as such, one way of 
improving the afore-mentioned QoS parameters is to 
improve the predictability of the systems in discussion. 

Nevertheless, real-time embedded systems are 
notorious for their challenge in achieving a predictable 
execution. In our case the challenge is induced by the 
scarcity of resources provided by the platforms on which 
the real-time systems are implemented. The afore-
mentioned resource limitation leads to resource sharing 
between the building components of the systems under 
discussion. That, combined with requirements of high 
level resource utilization raises difficult questions in 
terms of knowing which component will hold the system 
resources and until when, and whether all components 
will finish their tasks before their deadlines. To make 
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matters worse, the complexity of the analysis grows with 
the ever-increasing complexity of multi resource, 
multiprocessing real-time systems [1]. If the challenges 
above are not properly answered, the performance of the 
entire system as well as its reliability may suffer to a 
great extent.  

A first answer to the above challenges is to 
incorporate performance prediction and analysis in the 
early stages of system architecture and design. That 
insures that the design of the system is aware of the level 
of performance to be expected on a particular platform 
for each of the individual components as well as for the 
system as a whole. Another advantage of using 
performance analysis earlier on is that the design will be 
based on strategies known to maximize performance that 
implies a consolidated understanding of how the system 
as a whole exploits the resources of the platform.  

Research activities focusing on early performance 
prediction of software architectures were conducted in 
the context of the AIMES project [2] of Eindhoven 
University of Technology. The proposed method 
employs both structural and stochastic modeling 
techniques to those parts of the system that remain 
unchanged for a long time with a statistical approach and 
those that evolve rapidly with an analytical approach. 

Other approaches to performance prediction [3], [4] 
use queuing network models derived from the structural 
description of the architecture.  

Nevertheless, using performance analysis in the early 
phases of design is more difficult if a system is built of 
independent components provided by other parties, as it 
is progressively the case in the development of many 
commercial applications. In such a situation one hardly 
has any control over the design of the building 
components. Although information regarding the 
performance of these components can be obtained from 
measurements performed on the components in isolation, 
the most important aspect that needs to be controlled is 
what the resource consumption is for the combined 
execution of these components at any point in time 
(performance composition analysis).  

The present article will introduce our approach in 
tackling this question while concentrating on the CPU as 
a first step in a larger endeavor to find methods of 
prediction for multiple resources  (ex: CPU, memory, 
bus).  

We conducted our experimental studies by 
considering streaming applications running on a 
TriMedia device, which integrates a single VLIW 
processor. The software architecture used for developing 
the streaming applications chosen was the TriMedia 
Streaming Software Architecture, described later. In this 
setting, the major source of unpredictability comes from 
the fact that multiple tasks are executed concurrently. 

Each time that a task is stopped and another is allocated 
to the CPU, a Context Switch (CS) occurs. Given the fact 
that each CS introduces an overhead in terms of 
processing time (related to cache utilization), being able 
to predict the Number of Context Switches (NCS) 
occurring during the execution of the application is 
critically relevant for predicting the CPU needs for the 
entire execution. Given the above reasoning, we focused 
our efforts on developing a method for the calculation of 
NCS.  

A comparable work has been done in the context of 
the RACA project of the Philips Research Laboratories 
Eindhoven [5], [6] where an estimation of NCS was 
provided. The difference between the RACA approach 
and ours, is that in the context of the RACA project the 
NCS is estimated based on the estimated number of 
packets transmitted by each streaming component, and 
our approach consists of a calculation method for NCS 
based on a characterization of streaming applications 
execution.  

The article is structured to present first the TriMedia 
Software Architecture (section 2), which lays out the 
basics of our streaming model of execution, followed by 
a characterization of streaming application executions in 
section 3, from which we deduce our NCS calculation 
method in section 4. We present an instance of our 
experimental case studies that validates the method in 
section 5 and we conclude our presentation in section 6. 
The last section includes the complete list of documents 
to which we refer in the text of this article. 

II. TRIMEDIA STREAMING SOFTWARE 
ARCHITECTURE 

The TriMedia Streaming Software Architecture 
(TSSA)[7], provides a framework for the development of 
real time audio-video streaming applications executing 
on a TriMedia chip. In general, a media processing 
application can be described by means of a graph in 
which the nodes are software components that process a 
data stream, and the edges are finite buffers (queues) that 
transport the data stream from one component to the next 
component in the graph. Data travels in packets between 
components and the packets are constructed according to 
a format specified by the application. The TSSA 
framework provides an Application Programmer 
Interface (API), which allows constructing and 
connecting components, as well as the accepted formats 
for the data stream to be processed and transmitted.  

The execution of the components is carried out 
concurrently and is controlled by the streaming 
application that instantiated the components (Figure 1). 
Typically, following the instantiation, the application 
starts the components, after which it enters a loop during 
which the components involved in the streaming process 
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carry out their execution concurrently. According to this 
scenario the components continue their execution as long 
as there is input available, or as long as the condition for 
ending the loop (for instance a stop command from the 
user) is not fulfilled.  

 
 
 
 
 
 
 
 
 
 

Figure 1. Streaming application controlling the execution 
of the instantiated components. 

 
The concurrent execution of the components is 

accomplished by assigning a fixed priority to each task 
associated with a component. At any given moment in 
time the system will execute the task with the highest 
priority that has enough input to run (is not blocked).  

Another important aspect of the TSSA streaming 
components is the memory recycling mechanism (Figure 
2). According to this mechanism every connection 
between the output of a component and the input of 
another is implemented by means of two data queues. 
One queue carries full packets containing the data to be 
sent from one component to the next (called Full Queue), 
while the second queue returns empty packets to the 
sender component to recycle packet memory. The empty 
packets are returned in order to signal that the data has 
been received properly and that the memory associated 
with the data packet may be reused.  

A typical execution scenario of a TSSA component 
(Figure 2) prescribes that the component first gets n full 
packets from the input Full Queue , then gets 1 empty 
packet from the input Empty Queue , performs the 
processing , after which it will recycle the n input 
packets by putting them in the output Empty Queue . 
The last step is to use the packet received from the input 
Empty Queue to store data to be transmitted to the next 
component. The packet will be put in the output Full 
Queue of the component . Steps 2, 3 and 5 are repeated 
in this order for m times meaning that after getting n full 
input packets and m empty input packets the component 
will have produced m output full packets and n output 
empty packets. The n to m relationship described above 
is specific to each component. 

 
 
 
 
 

 Get Full Packet Put Full Packet 
 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 2. A basic streaming component [7]. 
 

The important implication of this type of data 
transmission management is the fact that any component 
that has enough input full packets to execute cannot run 
unless it also has enough empty packets (at least one) in 
its input empty queue. As we will see in the next section, 
this fact is highly relevant in calculating the NCS. 

III. A CHARACTERIZATION OF STREAMING 
APPLICATIONS EXECUTION 

One of the first questions that comes to mind when 
attempting to find an calculation method for the NCS is 
what are the causes of a context switch? As we 
emphasized above, the execution of the tasks on which 
the TSSA components map is concurrent, and the 
decision regarding which task will execute at a particular 
point in time is determined by:  

- the priority of the task and  
- the availability of the required number of full 

and empty packets in the input queues of the 
component.  

During the execution of a streaming application each 
of the tasks involved will be in one of the following three 
states: a blocked state if the task cannot execute due to 
lack of input, a ready-to-run state when the task could 
execute  (has enough input) but it does not because there 
exists a task with a higher priority that runs at the 
moment, and the running state. Context switches occur 
due to blocking, preemption, and due to task execution 
end.  

A second aspect that plays a significant role in finding 
a method for the calculation of NCS is the nature of this 
execution. In the present article we will focus on the case 
of streaming applications consisting of a single linear 
streaming chain (Figure 3) while later work will extend 
to multiple chains composing a full graph.  

 
 
 

 
Application 

Controls Controls Controls 

Component Component Component 

Component 

Empty Queue  

Full Queue   Full Queue  

 
Processing 

code 
 

Empty Queue  

Put Empty Packet Get Empty Packet
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Figure 3. Application consisting of a single streaming 
chain. 

 
We based our NCS calculation method on the 

observation that running streaming applications, after an 
initialization phase adopt a pattern of execution that 
repeats after a specific interval of time. We call this 
interval hyperperiod and the execution of the application 
according to a repetitive pattern the stable phase. The 
execution of the application ends with a finalization 
phase during which the last transactions in the queues 
components are completed and the components are 
stopped. Although we will not provide a generalized 
proof for the above-described phenomenon, we will 
present the explanation for the case presented below.  For 
simplicity we will consider that the priorities are 
assigned from left to right in a descending order as 
shown in Figure 4, and that all components consume 1 
input full packet, and one input empty packet in order to 
produce 1 output full packet and 1 output empty packet. 

 
 
 
 
 
Figure 4. Priorities assigned to components in descending 
order. 
 

In the case of a chain composed of n components, in 
the beginning of the execution of the application all full 
packet queues are empty and all empty queues are filled 
up. Component C1 makes the link between the 
application and the source that provides the stream. As 
an example C1 can be a component that reads the stream 
from a storage facility. C1 is connected to the neighbor 
component only by two queues and as such it can be 
blocked if the FQ is filled or EQ is drained. Cn is the 
component that outputs the processed stream. Usually the 
output of Cn is sent to a video rendering device such as a 
TV screen or a computer monitor. Cn is also connected 
only by two queues to its neighbor which means that it 
can be blocked is its input FQ is empty or output EQ is 
filled. 

The initialization phase of the streaming application 
begins with the execution of C1. Given the fact that C1 
has the highest priority in the chain it will run until it fills 
up its output full queue (and drains its input empty 
queue) when it becomes blocked. C2, which has the next 
highest priority in the chain, will take over and execute 
until it releases the empty packet, which de-blocks C1 . 
C1 has a higher priority thus it executes again, produces 1 

full packet which fills up the output full queue and 
becomes blocked once again .  Steps 1 and 2 repeat 
until the output full queue of C2 is filled and C2 becomes 
blocked. 

FQ FQ 

At this moment C1 and C2 are blocked and the only 
component ready-to-run is C3. C3 will take over and 
execute until it releases the empty packet, which de-
blocks C2 . C2 becomes the highest priority ready-to-
run component in the chain, so it will execute until it 
releases the empty packet, which de-blocks C1 . As 
explained at step 2 C1 has a higher priority thus it 
executes again, produces again 1 full packet, which fills 
up the output full queue and becomes blocked . Steps 3 
to 5 will repeat until the output full queue of C3 is filled 
and C3 becomes blocked. A more concise representation 
of the execution presented above is illustrated in Figure 
5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 5. Execution sequence during initialization and 
stable phases. 

 
The execution of the components continues in a 

similar fashion with the rest of the components in the 
chain until all components C1,…Cn-1 are blocked and Cn-1 
depends on Cn to consume a full packet and deliver an 
empty packet in order be able to resume its execution.  

This type of dependency is propagated down the chain 
with Cn-2 being dependent in the same way on Cn-1, Cn-3 
dependent on Cn-2, to C1, being dependent on C2.  

After this moment, the execution of the chain adopts 
the following sequence: CnCn-1…C1,       CnCn-1…C1, 
Cn… As we can observe the execution of the chain 
reaches the stable state where it adopted the repetitive 
pattern CnCn-1…C1. The stable state lasts until the end of 
the stream, that is until C1 can still produce data to be 
transmitted to the subsequent components. After this 
moment the components effectuate the last transactions 
in the queues after which they are stopped. 

EQ EQ 

FQ 

EQ 

FQ 
C1 C2 Cn

FQ

P(C1)           >            P(C2)               > …>           P(Cn) 

… 

Initialization phase: 
 C1: executes until output FQ is filled 
=> C1 - Blocked (B). 
 
C2C1(B), C2C1(B), C2C1(B), until  
C2(FQ filled => C2(B))C1(B), 
 
C3C2(B)C1(B), C3C2(B)C1(B), until  
C3(FQ filled => C3(B))C2(B)C1(B) 
… 
 
Cn-1Cn-2(B)…C1(B), Cn-1Cn-2(B)…C1(B) until 
Cn-1( FQ filled => Cn-1(B))Cn-2(B)…C1(B) 
 
 
Stable phase: 
CnCn-1(B)…C1(B), CnCn-1(B)…C1(B), … 

… 
EQ EQEQ 

C2

FQ
C1 Cn
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A few important observations to make from the above 
example are the following: 
- When all queues are either filled or drained most 

components will be dependent on others (to consume 
or respectively produce packets) in order to resume 
their execution. We call the components that de-block 
others by providing them with the necessary packets 
to resume their execution driving components. 

- A driving component can be also dependent on 
another component. Ex: in the case described above 
(Figure 4) C2 is a driving component for C1 but it also 
dependent on C3. The only component in the chain 
that is driving and not also dependent is Cn. 

- At the end of the initialization phase or beginning of 
the stable phase (when all queues are either filled or 
drained), the dependent components will be blocked 
and the driving components that are not dependent, 
will be ready-to-run. The driving component with the 
highest priority will run. 

 The importance of establishing the dependencies 
between the components at the beginning of the stable 
state has the purpose of identifying the states in which all 
tasks are at that moment. Once that is known, finding out 
the repetitive pattern of execution during the stable state 
(and as a consequence the NCS during a hyperperiod) is 
only a matter of applying the scheduling algorithm of the 
operating system.  

Having presented the most relevant information 
regarding the phases characterizing the execution of 
streaming applications we are ready to proceed with 
explaining the NCS calculation method itself. 

IV. NCS CALCULATION METHOD 
The NCS Calculation Method is based on the property 

of repeatability according to a pattern that characterizes 
the execution of streaming applications. This property 
simplifies significantly the complexity of the task of 
calculating the NCS because it means that if we could 
obtain the NCS occurring during one hyperperiod, then 
we can deduce the entire NCS occurring during the 
stable phase. By approximating the execution of the 
streaming application with its execution during the stable 
phase we obtain an approximation for the NCS occurring 
during the entire execution of the application. 

Step 1. Establish component models. The component 
models must specify information that characterizes the 
component:  
- The priority assigned to the task associated with the 

component,  
- The execution scenario of the component, 
- The average computation time (CT) of the 

component when executing in isolation,  

- The average computation time necessary for the 
production of each full or empty packet when 
executing in isolation,  

- The relation between the number n of input packets 
necessary in order to produce m output packets – 
again an average.  

Step 2. Determine the states of all component tasks 
involved at the beginning of the stable phase. 
Step 3.  Apply the following algorithm for identifying the 
NCS during a hyperperiod of the streaming application 
execution.  

a. Initially consider NCS_hyperperiod = 0. 
b. Consider the three states in which a component 

task can be during the execution of an 
application: blocked, ready to run, or running. In 
the beginning of the stable state all dependent 
components will be blocked while the driving 
components that are not dependent will be ready 
to run. 

c. Amongst the ready components the one with the 
highest priority will be running. 

d. Follow the execution scenario of the running 
component specified in its model. After the 
production of each packet – empty or full check 
whether delivering the packet de-blocks one of 
the neighbor components.  
- If yes, that component will become ready to 

run. Check if that component has a higher 
priority than that of the currently running 
component. If yes, the currently running 
component will be preempted and NCS 
must be incremented. The algorithm 
resumes from point d. 

- In not, the currently running component will 
continue its execution and the algorithm 
resumes from point d.   

e. The algorithm ends when the initial situation 
observed at the beginning of the algorithm is 
repeated – the driving component will execute 
again the same sequence as in the beginning.  
This is the end of the hyperperiod. 

 
In order to verify the correctness of the calculation we 
will use the following steps: 

Step  4. Determine through measurement the Length of 
the Application Execution (LAE). LAE is the total 
duration of the streaming application execution from the 
beginning of the initialization phase to the end of the 
finalization phase. 
Step 5. Determine the number of hyperperiods (NH) 
fitting in LAE: 
                NH = ⎡LAE/HL⎤, where HL is the hyperperiod 
length determined at the Step 3. 
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Step 6. Determine the total calculated NCS when 
approximating the entire execution of the application 
with the stable state: 
             NCS_total = NH * NCS_hyperperiod. 
Step 7. Compare measured NCS with NCS_total 
obtained at Step 6. 
 
Without including formulas, we will mention that in this 
manner we can obtain not only the NCS occurring during 
a hyperperiod but also more detailed information 
regarding the NCS due to blocking, preemption or 
normal end of execution. Additionally, given the fact that 
the average times needed for producing a full or empty 
packet are known from the model of the component we 
can also give an account about the activation times of the 
component tasks that are resumed as a result of the 
production/consumption of a packet. Finally, in the same 
fashion, we can calculate the response times of all the 
components tasks executing during a hyperperiod. 

V. EXPERIMENTAL VALIDATION 
 In the following we will present one of the 

experiments we performed in order to validate the 
method explained previously. The case study we chose to 
describe here consists of a streaming chain extracted 
from a larger DVD player application. The components 
involved are the following (Figure 6):   
- A file reader (FRead), which reads information from 

the disk and converts it into full packets having the 
format specified by the application. The packets are 
transmitted to the next component in the chain, 

- A video decoder (VDec) that receives the full 
packets from FRead, decodes them, and transmits 
the decoded information as packets to the next 
component in the chain, 

- A sharpness enhancement (SSE) component that 
processes the packets received from VDec such that 
the final information displayed on the TV screen has 
an appropriate contrast, 

- A video renderer (VO) that displays the information 
received from SSE on the screen of the TV and is 
activated periodically. VO is a component with a 
periodic execution.  

 
 
 
 
Figure 6. Streaming chain performing video decoding, 
sharpness enhancement and display on TV screen of 
information read from storage disk. 
 
 In the following we will present how we applied the 
NCS calculation method for the case study shown above. 
We will present the most relevant reference points that 
lead to our results. As such: 

 Step 1. We identified the values of all entities 
mentioned in the previous section for this step. Important 
to mention is the priority assignment of the tasks 
associated with the components in the chain. In 
descending order of priorities: FRead, VDec, SSE and 
VO. 
 Step 2.  When considering priorities, we observe that 
FRead during the initialization phase has the opportunity 
to fill the FQ to VDec(the EQ becomes empty) before 
VDec will have the opportunity to consume packets. As 
such, after filling up the FQ to VDec, FRead becomes 
dependent on VDec to consume from FQ and to place 
one empty packet (EP) in the EQ to FRead. Which 
implies that FRead becomes blocked and depends on 
VDec to de-block it. A similar reasoning can be used for 
all the other components due to the priority assignment 
to the component tasks. The situation after all full packet 
queues have been filled has been illustrated in Figure 7 
(arrows indicate dependencies between components, ex: 
FRead depends on VDec to de-block it when the FQ is 
full, etc.). 

 
 
 
 
 
Figure 7. Dependencies between components when 
considering priorities. 
 
The reasoning above implies that at the beginning of the 
stable state all components but VO will be blocked 
depending on the execution of VO to de-block SSE 
which will de-block VDec, etc. According to the same 
reasoning, at the beginning of the stable state VO will be 
running. 

 Step 3. Apply algorithm for identifying the NCS 
during one hyperperiod and the hyperperiod length:  
HL = 130.4 ms,  
NCS_hyperperiod(FRead) = 5,  
NCS_hyperperiod(VDec) = 9,  
NCS_hyperperiod(SSE) = 8, 
NCS_hyperperiod(Vo) = 8. 
=> the total NCS_hyperperiod = 5+9+8+8 =30; 
 Step 4.  LAE = 5052.17 ms 
 Step 5.  NH = ⎡LAE/HL⎤ = 39. 
 Step 6. NCS_total = 39*30 = 1170; 
 Step7. NCS_totalMeasured = 1197; 
 
The difference that we notice between the calculated 
value and the measured one comes from the fact that we 
approximated the entire execution of the application with 
the stable state and because in our component models we 
used averages for the processing rates of all components. 
A further step of making the method even more exact 

FQ 

EQ 

FQ 
FRead VDec SSE VO

FQ 

EQ EQ 

VDec SSE VOFRead 

P(FRead)      >    P(VDec)       >      P(SSE)    >     P(VO) 
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would be to consider distributions of processing rates 
relative to time. 

VI. CONCLUSIONS 
In conclusion, our article introduced an approach to 

tackling the predictability challenge that characterizes 
real-time embedded systems. The approach concentrates 
on predicting the CPU needs of a streaming application, 
as a first step in a larger endeavor to find methods of 
prediction for multiple resources  (ex: CPU, memory, 
bus). As such, we presented a method for calculating the 
NCS occurring during the execution of the streaming 
application, which allows us to predict the overhead 
introduced by the context switches induced by the 
combined execution of the components that make up the 
application.  The calculation method is based on the 
property of streaming applications execution to adopt a 
repetitive pattern after a short initialization phase. As a 
result of determining the NCS during the repetitive 
pattern, we can deduce the NCS during the stable phase. 
By approximating the execution of the streaming 
application with its execution during the stable phase we 
obtain an approximation for the NCS occurring during 
the entire execution of the application. 
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