

NCS calculation method for streaming applications

Citation for published version (APA):
Albu, M. A., Stok, van der, P. D. V., & Lukkien, J. J. (2004). NCS calculation method for streaming applications.
In Proceedings 5th PROGRESS Symposium on Embedded Systems (Nieuwegein, The Netherlands, October
20, 2004) (pp. 3-9). STW Technology Foundation.

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/eb5965b0-a627-4e91-988d-ce79b705f3e0

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

NCS Calculation Method for Streaming
Applications

M.A. Albu, P. v. d. Stok, J.J. Lukkien
Technische Universiteit Eindhoven, Philips Research Laboratories

 E-mail:m.a.albu@tue.nl, peter.van.der.stok@philips.com,
j.j.lukkien@tue.nl

Abstract – Our contribution in the context of the “Quality
of Service (QoS) in IN-home digital networks” project was
focused on the QoS provided by consumer electronics
terminals. In order to achieve a particular level of QoS
provided by a terminal, an important issue is resource
management supported by performance analysis. The
work we present in this article is highlighting ways of
predicting the necessary resources (e.g. CPU, memory, bus)
needed by a video streaming application to provide a given
level of QoS. We introduce a calculation method that
involves measuring in isolation the resource needs of each
of the individual streaming components, and also a
performance composition analysis, which takes into
account the Number of Context Switches (NCS) occurring
during the execution of the application. We based our
calculation for the NCS on the observation that running
streaming applications, eventually adopt a pattern of
execution that repeats after a specific interval of time
(hyperperiod). By finding the NCS induced during a
hyperperiod, we deduce the total NCS occurring during the
execution of the application. The article gives a
characterization of the streaming applications execution
and of the component model that lie at the basis of our
calculation.

Keywords – QoS; real-time embedded systems; streaming
applications; context switches

I. INTRODUCTION
The QoS in IN-home digital networks project aims at

providing an integrated approach for achieving levels of
Quality of Service (QoS) for systems consisting of a
number of consumer electronics devices (called
terminals) and a network that interconnects them. QoS,
according to a recommendation provided by the ITU-T

forum in Geneva 1994, is the collective effect of service
performances that determine the degree of satisfaction of
the user of that service. Our alternative definition of the
term indicates that QoS is a collection of (QoS)
parameters values related to functional and non-
functional characteristics of the service in question, and
an assessment with respect to the degree of quality
(unsatisfactory, good, excellent) derived from applying
assessment rules on the values of these (QoS)
parameters. Examples of QoS parameters in the context
of networks can be derived from the characteristics of the
network transmission: reliability, delay, jitter, or
bandwidth. In the context of the terminals, reliability and
performance are two fundamentally relevant parameters.

Our contribution to the QoS in IN-home digital
networks is focused on providing ways for enhancing the
QoS of consumer electronics terminals, which can be
categorized as real-time embedded systems. The
reliability and performance of such systems are strongly
related to their predictability, and as such, one way of
improving the afore-mentioned QoS parameters is to
improve the predictability of the systems in discussion.

Nevertheless, real-time embedded systems are
notorious for their challenge in achieving a predictable
execution. In our case the challenge is induced by the
scarcity of resources provided by the platforms on which
the real-time systems are implemented. The afore-
mentioned resource limitation leads to resource sharing
between the building components of the systems under
discussion. That, combined with requirements of high
level resource utilization raises difficult questions in
terms of knowing which component will hold the system
resources and until when, and whether all components
will finish their tasks before their deadlines. To make

3

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

matters worse, the complexity of the analysis grows with
the ever-increasing complexity of multi resource,
multiprocessing real-time systems [1]. If the challenges
above are not properly answered, the performance of the
entire system as well as its reliability may suffer to a
great extent.

A first answer to the above challenges is to
incorporate performance prediction and analysis in the
early stages of system architecture and design. That
insures that the design of the system is aware of the level
of performance to be expected on a particular platform
for each of the individual components as well as for the
system as a whole. Another advantage of using
performance analysis earlier on is that the design will be
based on strategies known to maximize performance that
implies a consolidated understanding of how the system
as a whole exploits the resources of the platform.

Research activities focusing on early performance
prediction of software architectures were conducted in
the context of the AIMES project [2] of Eindhoven
University of Technology. The proposed method
employs both structural and stochastic modeling
techniques to those parts of the system that remain
unchanged for a long time with a statistical approach and
those that evolve rapidly with an analytical approach.

Other approaches to performance prediction [3], [4]
use queuing network models derived from the structural
description of the architecture.

Nevertheless, using performance analysis in the early
phases of design is more difficult if a system is built of
independent components provided by other parties, as it
is progressively the case in the development of many
commercial applications. In such a situation one hardly
has any control over the design of the building
components. Although information regarding the
performance of these components can be obtained from
measurements performed on the components in isolation,
the most important aspect that needs to be controlled is
what the resource consumption is for the combined
execution of these components at any point in time
(performance composition analysis).

The present article will introduce our approach in
tackling this question while concentrating on the CPU as
a first step in a larger endeavor to find methods of
prediction for multiple resources (ex: CPU, memory,
bus).

We conducted our experimental studies by
considering streaming applications running on a
TriMedia device, which integrates a single VLIW
processor. The software architecture used for developing
the streaming applications chosen was the TriMedia
Streaming Software Architecture, described later. In this
setting, the major source of unpredictability comes from
the fact that multiple tasks are executed concurrently.

Each time that a task is stopped and another is allocated
to the CPU, a Context Switch (CS) occurs. Given the fact
that each CS introduces an overhead in terms of
processing time (related to cache utilization), being able
to predict the Number of Context Switches (NCS)
occurring during the execution of the application is
critically relevant for predicting the CPU needs for the
entire execution. Given the above reasoning, we focused
our efforts on developing a method for the calculation of
NCS.

A comparable work has been done in the context of
the RACA project of the Philips Research Laboratories
Eindhoven [5], [6] where an estimation of NCS was
provided. The difference between the RACA approach
and ours, is that in the context of the RACA project the
NCS is estimated based on the estimated number of
packets transmitted by each streaming component, and
our approach consists of a calculation method for NCS
based on a characterization of streaming applications
execution.

The article is structured to present first the TriMedia
Software Architecture (section 2), which lays out the
basics of our streaming model of execution, followed by
a characterization of streaming application executions in
section 3, from which we deduce our NCS calculation
method in section 4. We present an instance of our
experimental case studies that validates the method in
section 5 and we conclude our presentation in section 6.
The last section includes the complete list of documents
to which we refer in the text of this article.

II. TRIMEDIA STREAMING SOFTWARE
ARCHITECTURE

The TriMedia Streaming Software Architecture
(TSSA)[7], provides a framework for the development of
real time audio-video streaming applications executing
on a TriMedia chip. In general, a media processing
application can be described by means of a graph in
which the nodes are software components that process a
data stream, and the edges are finite buffers (queues) that
transport the data stream from one component to the next
component in the graph. Data travels in packets between
components and the packets are constructed according to
a format specified by the application. The TSSA
framework provides an Application Programmer
Interface (API), which allows constructing and
connecting components, as well as the accepted formats
for the data stream to be processed and transmitted.

The execution of the components is carried out
concurrently and is controlled by the streaming
application that instantiated the components (Figure 1).
Typically, following the instantiation, the application
starts the components, after which it enters a loop during
which the components involved in the streaming process

4

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

carry out their execution concurrently. According to this
scenario the components continue their execution as long
as there is input available, or as long as the condition for
ending the loop (for instance a stop command from the
user) is not fulfilled.

Figure 1. Streaming application controlling the execution
of the instantiated components.

The concurrent execution of the components is

accomplished by assigning a fixed priority to each task
associated with a component. At any given moment in
time the system will execute the task with the highest
priority that has enough input to run (is not blocked).

Another important aspect of the TSSA streaming
components is the memory recycling mechanism (Figure
2). According to this mechanism every connection
between the output of a component and the input of
another is implemented by means of two data queues.
One queue carries full packets containing the data to be
sent from one component to the next (called Full Queue),
while the second queue returns empty packets to the
sender component to recycle packet memory. The empty
packets are returned in order to signal that the data has
been received properly and that the memory associated
with the data packet may be reused.

A typical execution scenario of a TSSA component
(Figure 2) prescribes that the component first gets n full
packets from the input Full Queue , then gets 1 empty
packet from the input Empty Queue , performs the
processing , after which it will recycle the n input
packets by putting them in the output Empty Queue .
The last step is to use the packet received from the input
Empty Queue to store data to be transmitted to the next
component. The packet will be put in the output Full
Queue of the component . Steps 2, 3 and 5 are repeated
in this order for m times meaning that after getting n full
input packets and m empty input packets the component
will have produced m output full packets and n output
empty packets. The n to m relationship described above
is specific to each component.

 Get Full Packet Put Full Packet

Figure 2. A basic streaming component [7].

The important implication of this type of data
transmission management is the fact that any component
that has enough input full packets to execute cannot run
unless it also has enough empty packets (at least one) in
its input empty queue. As we will see in the next section,
this fact is highly relevant in calculating the NCS.

III. A CHARACTERIZATION OF STREAMING
APPLICATIONS EXECUTION

One of the first questions that comes to mind when
attempting to find an calculation method for the NCS is
what are the causes of a context switch? As we
emphasized above, the execution of the tasks on which
the TSSA components map is concurrent, and the
decision regarding which task will execute at a particular
point in time is determined by:

- the priority of the task and
- the availability of the required number of full

and empty packets in the input queues of the
component.

During the execution of a streaming application each
of the tasks involved will be in one of the following three
states: a blocked state if the task cannot execute due to
lack of input, a ready-to-run state when the task could
execute (has enough input) but it does not because there
exists a task with a higher priority that runs at the
moment, and the running state. Context switches occur
due to blocking, preemption, and due to task execution
end.

A second aspect that plays a significant role in finding
a method for the calculation of NCS is the nature of this
execution. In the present article we will focus on the case
of streaming applications consisting of a single linear
streaming chain (Figure 3) while later work will extend
to multiple chains composing a full graph.

Application

Controls Controls Controls

Component Component Component

Component

Empty Queue

Full Queue Full Queue

Processing

code

Empty Queue

Put Empty Packet Get Empty Packet

5

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

Figure 3. Application consisting of a single streaming
chain.

We based our NCS calculation method on the

observation that running streaming applications, after an
initialization phase adopt a pattern of execution that
repeats after a specific interval of time. We call this
interval hyperperiod and the execution of the application
according to a repetitive pattern the stable phase. The
execution of the application ends with a finalization
phase during which the last transactions in the queues
components are completed and the components are
stopped. Although we will not provide a generalized
proof for the above-described phenomenon, we will
present the explanation for the case presented below. For
simplicity we will consider that the priorities are
assigned from left to right in a descending order as
shown in Figure 4, and that all components consume 1
input full packet, and one input empty packet in order to
produce 1 output full packet and 1 output empty packet.

Figure 4. Priorities assigned to components in descending
order.

In the case of a chain composed of n components, in
the beginning of the execution of the application all full
packet queues are empty and all empty queues are filled
up. Component C1 makes the link between the
application and the source that provides the stream. As
an example C1 can be a component that reads the stream
from a storage facility. C1 is connected to the neighbor
component only by two queues and as such it can be
blocked if the FQ is filled or EQ is drained. Cn is the
component that outputs the processed stream. Usually the
output of Cn is sent to a video rendering device such as a
TV screen or a computer monitor. Cn is also connected
only by two queues to its neighbor which means that it
can be blocked is its input FQ is empty or output EQ is
filled.

The initialization phase of the streaming application
begins with the execution of C1. Given the fact that C1
has the highest priority in the chain it will run until it fills
up its output full queue (and drains its input empty
queue) when it becomes blocked. C2, which has the next
highest priority in the chain, will take over and execute
until it releases the empty packet, which de-blocks C1 .
C1 has a higher priority thus it executes again, produces 1

full packet which fills up the output full queue and
becomes blocked once again . Steps 1 and 2 repeat
until the output full queue of C2 is filled and C2 becomes
blocked.

FQ FQ

At this moment C1 and C2 are blocked and the only
component ready-to-run is C3. C3 will take over and
execute until it releases the empty packet, which de-
blocks C2 . C2 becomes the highest priority ready-to-
run component in the chain, so it will execute until it
releases the empty packet, which de-blocks C1 . As
explained at step 2 C1 has a higher priority thus it
executes again, produces again 1 full packet, which fills
up the output full queue and becomes blocked . Steps 3
to 5 will repeat until the output full queue of C3 is filled
and C3 becomes blocked. A more concise representation
of the execution presented above is illustrated in Figure
5.

Figure 5. Execution sequence during initialization and
stable phases.

The execution of the components continues in a

similar fashion with the rest of the components in the
chain until all components C1,…Cn-1 are blocked and Cn-1
depends on Cn to consume a full packet and deliver an
empty packet in order be able to resume its execution.

This type of dependency is propagated down the chain
with Cn-2 being dependent in the same way on Cn-1, Cn-3
dependent on Cn-2, to C1, being dependent on C2.

After this moment, the execution of the chain adopts
the following sequence: CnCn-1…C1, CnCn-1…C1,
Cn… As we can observe the execution of the chain
reaches the stable state where it adopted the repetitive
pattern CnCn-1…C1. The stable state lasts until the end of
the stream, that is until C1 can still produce data to be
transmitted to the subsequent components. After this
moment the components effectuate the last transactions
in the queues after which they are stopped.

EQ EQ

FQ

EQ

FQ
C1 C2 Cn

FQ

P(C1) > P(C2) > …> P(Cn)

…

Initialization phase:
 C1: executes until output FQ is filled
=> C1 - Blocked (B).

C2C1(B), C2C1(B), C2C1(B), until
C2(FQ filled => C2(B))C1(B),

C3C2(B)C1(B), C3C2(B)C1(B), until
C3(FQ filled => C3(B))C2(B)C1(B)
…

Cn-1Cn-2(B)…C1(B), Cn-1Cn-2(B)…C1(B) until
Cn-1(FQ filled => Cn-1(B))Cn-2(B)…C1(B)

Stable phase:
CnCn-1(B)…C1(B), CnCn-1(B)…C1(B), …

…
EQ EQEQ

C2

FQ
C1 Cn

6

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

A few important observations to make from the above
example are the following:
- When all queues are either filled or drained most

components will be dependent on others (to consume
or respectively produce packets) in order to resume
their execution. We call the components that de-block
others by providing them with the necessary packets
to resume their execution driving components.

- A driving component can be also dependent on
another component. Ex: in the case described above
(Figure 4) C2 is a driving component for C1 but it also
dependent on C3. The only component in the chain
that is driving and not also dependent is Cn.

- At the end of the initialization phase or beginning of
the stable phase (when all queues are either filled or
drained), the dependent components will be blocked
and the driving components that are not dependent,
will be ready-to-run. The driving component with the
highest priority will run.

 The importance of establishing the dependencies
between the components at the beginning of the stable
state has the purpose of identifying the states in which all
tasks are at that moment. Once that is known, finding out
the repetitive pattern of execution during the stable state
(and as a consequence the NCS during a hyperperiod) is
only a matter of applying the scheduling algorithm of the
operating system.

Having presented the most relevant information
regarding the phases characterizing the execution of
streaming applications we are ready to proceed with
explaining the NCS calculation method itself.

IV. NCS CALCULATION METHOD
The NCS Calculation Method is based on the property

of repeatability according to a pattern that characterizes
the execution of streaming applications. This property
simplifies significantly the complexity of the task of
calculating the NCS because it means that if we could
obtain the NCS occurring during one hyperperiod, then
we can deduce the entire NCS occurring during the
stable phase. By approximating the execution of the
streaming application with its execution during the stable
phase we obtain an approximation for the NCS occurring
during the entire execution of the application.

Step 1. Establish component models. The component
models must specify information that characterizes the
component:
- The priority assigned to the task associated with the

component,
- The execution scenario of the component,
- The average computation time (CT) of the

component when executing in isolation,

- The average computation time necessary for the
production of each full or empty packet when
executing in isolation,

- The relation between the number n of input packets
necessary in order to produce m output packets –
again an average.

Step 2. Determine the states of all component tasks
involved at the beginning of the stable phase.
Step 3. Apply the following algorithm for identifying the
NCS during a hyperperiod of the streaming application
execution.

a. Initially consider NCS_hyperperiod = 0.
b. Consider the three states in which a component

task can be during the execution of an
application: blocked, ready to run, or running. In
the beginning of the stable state all dependent
components will be blocked while the driving
components that are not dependent will be ready
to run.

c. Amongst the ready components the one with the
highest priority will be running.

d. Follow the execution scenario of the running
component specified in its model. After the
production of each packet – empty or full check
whether delivering the packet de-blocks one of
the neighbor components.
- If yes, that component will become ready to

run. Check if that component has a higher
priority than that of the currently running
component. If yes, the currently running
component will be preempted and NCS
must be incremented. The algorithm
resumes from point d.

- In not, the currently running component will
continue its execution and the algorithm
resumes from point d.

e. The algorithm ends when the initial situation
observed at the beginning of the algorithm is
repeated – the driving component will execute
again the same sequence as in the beginning.
This is the end of the hyperperiod.

In order to verify the correctness of the calculation we
will use the following steps:

Step 4. Determine through measurement the Length of
the Application Execution (LAE). LAE is the total
duration of the streaming application execution from the
beginning of the initialization phase to the end of the
finalization phase.
Step 5. Determine the number of hyperperiods (NH)
fitting in LAE:
 NH = ⎡LAE/HL⎤, where HL is the hyperperiod
length determined at the Step 3.

7

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

Step 6. Determine the total calculated NCS when
approximating the entire execution of the application
with the stable state:
 NCS_total = NH * NCS_hyperperiod.
Step 7. Compare measured NCS with NCS_total
obtained at Step 6.

Without including formulas, we will mention that in this
manner we can obtain not only the NCS occurring during
a hyperperiod but also more detailed information
regarding the NCS due to blocking, preemption or
normal end of execution. Additionally, given the fact that
the average times needed for producing a full or empty
packet are known from the model of the component we
can also give an account about the activation times of the
component tasks that are resumed as a result of the
production/consumption of a packet. Finally, in the same
fashion, we can calculate the response times of all the
components tasks executing during a hyperperiod.

V. EXPERIMENTAL VALIDATION
 In the following we will present one of the

experiments we performed in order to validate the
method explained previously. The case study we chose to
describe here consists of a streaming chain extracted
from a larger DVD player application. The components
involved are the following (Figure 6):
- A file reader (FRead), which reads information from

the disk and converts it into full packets having the
format specified by the application. The packets are
transmitted to the next component in the chain,

- A video decoder (VDec) that receives the full
packets from FRead, decodes them, and transmits
the decoded information as packets to the next
component in the chain,

- A sharpness enhancement (SSE) component that
processes the packets received from VDec such that
the final information displayed on the TV screen has
an appropriate contrast,

- A video renderer (VO) that displays the information
received from SSE on the screen of the TV and is
activated periodically. VO is a component with a
periodic execution.

Figure 6. Streaming chain performing video decoding,
sharpness enhancement and display on TV screen of
information read from storage disk.

 In the following we will present how we applied the
NCS calculation method for the case study shown above.
We will present the most relevant reference points that
lead to our results. As such:

 Step 1. We identified the values of all entities
mentioned in the previous section for this step. Important
to mention is the priority assignment of the tasks
associated with the components in the chain. In
descending order of priorities: FRead, VDec, SSE and
VO.
 Step 2. When considering priorities, we observe that
FRead during the initialization phase has the opportunity
to fill the FQ to VDec(the EQ becomes empty) before
VDec will have the opportunity to consume packets. As
such, after filling up the FQ to VDec, FRead becomes
dependent on VDec to consume from FQ and to place
one empty packet (EP) in the EQ to FRead. Which
implies that FRead becomes blocked and depends on
VDec to de-block it. A similar reasoning can be used for
all the other components due to the priority assignment
to the component tasks. The situation after all full packet
queues have been filled has been illustrated in Figure 7
(arrows indicate dependencies between components, ex:
FRead depends on VDec to de-block it when the FQ is
full, etc.).

Figure 7. Dependencies between components when
considering priorities.

The reasoning above implies that at the beginning of the
stable state all components but VO will be blocked
depending on the execution of VO to de-block SSE
which will de-block VDec, etc. According to the same
reasoning, at the beginning of the stable state VO will be
running.

 Step 3. Apply algorithm for identifying the NCS
during one hyperperiod and the hyperperiod length:
HL = 130.4 ms,
NCS_hyperperiod(FRead) = 5,
NCS_hyperperiod(VDec) = 9,
NCS_hyperperiod(SSE) = 8,
NCS_hyperperiod(Vo) = 8.
=> the total NCS_hyperperiod = 5+9+8+8 =30;
 Step 4. LAE = 5052.17 ms
 Step 5. NH = ⎡LAE/HL⎤ = 39.
 Step 6. NCS_total = 39*30 = 1170;
 Step7. NCS_totalMeasured = 1197;

The difference that we notice between the calculated
value and the measured one comes from the fact that we
approximated the entire execution of the application with
the stable state and because in our component models we
used averages for the processing rates of all components.
A further step of making the method even more exact

FQ

EQ

FQ
FRead VDec SSE VO

FQ

EQ EQ

VDec SSE VOFRead

P(FRead) > P(VDec) > P(SSE) > P(VO)

8

PROCEEDINGS OF THE 5TH PROGRESS SYMPOSIUM ON EMBEDDED SYSTEMS

© PROGRESS/STW 2004, ISBN 90-73461-41-3 OCTOBRE 20, 2004, NBC NIEUWEGEIN, NL

would be to consider distributions of processing rates
relative to time.

VI. CONCLUSIONS
In conclusion, our article introduced an approach to

tackling the predictability challenge that characterizes
real-time embedded systems. The approach concentrates
on predicting the CPU needs of a streaming application,
as a first step in a larger endeavor to find methods of
prediction for multiple resources (ex: CPU, memory,
bus). As such, we presented a method for calculating the
NCS occurring during the execution of the streaming
application, which allows us to predict the overhead
introduced by the context switches induced by the
combined execution of the components that make up the
application. The calculation method is based on the
property of streaming applications execution to adopt a
repetitive pattern after a short initialization phase. As a
result of determining the NCS during the repetitive
pattern, we can deduce the NCS during the stable phase.
By approximating the execution of the streaming
application with its execution during the stable phase we
obtain an approximation for the NCS occurring during
the entire execution of the application.

REFERENCES

[1] B.Thomas, L.Jo. Performance characterization and modeling.

Philips Research Technical Note PR-TN-2004/0000.
[2] E. Eskenazi, A. Fiukov, D.K. Hammer. Performance prediction

for software architectures. Proceedings of the 3rd PROGRESS
workshop on embedded systems.

[3] C. Smith and L. Williams. Performance Solutions: A Practical
Guide to Creating Responsive, Scalable Software. Addison-
Wesley, 2001.

[4] F. Aquilani, S. Balsamo, P. Inverardi. An Approach to
Performance Evaluation of Software Architectures. Research
Report, CS-2000-3, Dipartimento di Informatica Universita Ca'
Foscari di Venezia, Italy, March 2000.

[5] D.J.C. Lowet. Performance composition in TSSA. Philips
 Research Technical Note, PR-TN-2003/00255
[6] D.J.C Lowet. RACA Literature survey: Lierature survey about

resource aware component based design. Natlab Technical Note
2002/240

[7] Philips TriMedia Documentation Set. SDE, version2.1

9

