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George 1. Nemhauser

Georgia Institute of Technology, Atlanta

Abstract

MINTO is a software system that solves mixed-integer linear programs by a branch-and
bound algorithm with linear programming relaxations. It also provides automatic constraint
classification, preprocessing, primal heuristics and constraint generation. Moreover, the user
can enrich the basic algorithm by providing a variety of specialized application routines that
can customize MINTO to achieve maximum efficiency for a problem class.

1 Introduction

MINTO (Mixed INTeger Optimizer) is a tool for solving mixed integer linear programming (MIP)
problems of the form:

max I: CjXj + I:CjXj +I: CjXj

jEB jEI jEC

L aijXj +I: aijXj +L aiixj "" bi
jEB jEI jEC

o~ Xi ~ 1

Lxj ~ Xj ~ Uxj

Xi E E
Xj E lR

where B is the set of binary variables, I is the set of integer variables, C is the set of continuous
variables, the sense"" of a constraint can be ~, ;:::, or =, and the lower and upper bounds may
be negative or positive infinity or any rational number. See Nemhauser and Wolsey [1988] for a
general treatment of this subject.

A great variety of problems of resource allocation, location, distribution, production, schedul
ing, reliability and design can be represented by MIP models. One reason for this rich modeling
capability is that various nonlinear and nonconvex optimization problems can be posed as MIP
problems.

Unfortunately this robust modeling capability is not supported by a comparable algorithmic
capability. Existing branch-and-bound codes for solving MIP problems are far too limited in the
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size of problems that can be solved reliably relative to the size of problems that need to be solved,
especially with respect to the number of integer variables; and they perform too slowly for many
real-time applications. To remedy this situation, special purpose codes have been developed for
particular applications, and in some cases experts have been able to stretch the capabilities of
the general codes with ad hoc approaches. But neither of these remedies is satisfactory. The
first is very expensive and time-consuming and the second should be necessary only for a very
limited number of instances.

Our idea of what is needed to solve large mixed-integer programs efficiently, without having
to develop a full-blown special purpose code in each case, is an effective general purpose mixed
integer optimizer that can be customized through the incorporation of application functions.
MINTO is such a system. Its strength is that it allows users to concentrate on problem specific
aspects rather than data structures and implementation details such as linear programming and
branch-and-bound.

The heart of MINTO is a linear programming based branch-and-bound algorithm. It can
be implemented on top of any LP-solver that provides capabilities to solve and modify linear
programs and interpret their solutions. The current version is build on top of the CPLEX (TM)
callable library, version 1.2 [1990].

To be as effective and efficient as possible when used as a general purpose mixed-integer
optimizer, MINTO attempts to:

• improve the formulation by preprocessing;

• construct feasible solutions;

• generate strong valid inequalities;

• perform variable fixing based on reduced prices;

• control the size of the linear programs by managing active constraints.

To be as flexible and powerful as possible when used to build a special purpose mixed-integer
optimizer, MINTO provides various mechanisms for incorporating problem specific knowledge.
Finally, to make future algorithmic developments easy to incorporate, MINTO's design is highly
modular.

This paper provides an introduction to MINTO. Much more detail is given in the functional
description of MINTO [Savelsbergh, Sigismondi and Nemhauser, 1991].

Section 2 presents the overall system design and Section 3 contains a description of the system
functions. The mechanisms for incorporating problem structure are discussed in Sections 4 and
5 under inquiry and application functions. Sections 6 gives results for a small set of test
problems. Finally, Section 7 contains some remarks on availability and future releases.

2 System design

It is well known that problem specific knowledge can be used advantageously to increase the
performance of the basic linear programmming branch-and-bound algorithm for mixed integer
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programming. MINTO attempts to use problem specific knowledge on two levels to strenghten
the LP-relaxation, to obtain better feasible solutions and to improve branching.

At the first level, system functions use general structures, and at the second level application
functions use problem specific structures. A call to an application function temporarily transfers
control to the application program, which can either accept control or decline control. If control
is accepted, the application program performs the associated task. If control is declined, MINTO
performs a default action, which in many cases will be "do nothing". The user can also exercise
control at the first level by selectively deactivating system functions.

Figure 1 gives a flow chart of the underlying algorithm. To differentiate between actions
carried out by the system and those carried out by the application program, there are different
"boxes". System actions are in solid line boxes and application program actions are in dotted
line boxes. A solid line box with a dotted line box enclosed is used whenever an action can be
performed by both the system and the application program. Finally, to indicate that an action
has to be performed by either the system or the application program, but not both, a box with
one half in solid lines and the other half in dotted lines is used. If an application program does not
carry out an action, but one is required, the system falls back to a default action. For instance,
if an application program does not provide a division scheme for the branching task, the system
will apply the default branching scheme.

Formulations
The concept of a formulation is fundamental in describing and understanding MINTO. MINTO is
constantly manipulating formulations: storing a formulation, retrieving a formulation, modifying
a formulation, duplicating a formulation, handing a formulation to the LP-solver, providing
information about the formulation to the application program, etc.

It is beneficial to distinguish four types of formulations. The original formulation is the for
mulation specified in the MPS-file. The initial formulation is the formulation associated with the
root node of the branch-and-bound tree. It may differ from the original formulation as MINTO
automatically tries to improve the initial formulation using various preprocessing techniques,
such as detection of redundant constraints and coefficient reduction. The current formulation is
an extension of the original formulation and contains all the variables and all the global and local
constraints associated with the node that is currently being evaluated. The active formulation is
the formulation currently loaded in the LP-solver. It may be smaller that the current formulation
due to management of inactive constraints.

It is very important that an application programmer realizes that the active formulation
does not necessarily coincide with his mental picture of the formulation, since MINTO may
have generated additional constraints, temporarily deactivated constraints, or fixed one or more
variables.

MINTO always works with a maximization problem. Therefore, if the original formulation
describes a minimization problem, MINTO will change the signs of all the objective function
coefficients. This is also reflected in the remainder of this functional description; everything is
written with maximization in mind.

Constraints
MINTO distinguishes various constraint classes as defined in Table 1. These constraint classes are
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motivated by the constraint generation done by MINTO and the branching scheme adopted by
MINTO. To present these constraint classes, it is convenient to distinguish the binary variables.
We do this by using the symbol Y to indicate integer and continuous variables. Each class is an
equivalence class with respect to complementing binary variables, Le., if a constraint with term
ajzj is in a given class then the constraint with ajzj replaced by aj(l- Zj) is also in the class.
For example LjEB+ Zj - LjEB- Zj ::::; 1 - IB-I is in the class BINSUMIDB, where we think of
B- as the set of complemented variables.

class constraint
MIXEDUB L,jEB ajxj + L,jE/ue ajYj ::::; aD
MIXEDEQ LjEB ajzj + LjE/ue ajYj =aD

NOBINARYUB LjE/ue ajYj $ aD
NOBINARYEQ LjEIUe ajYj =aD
ALLBINARYUB LjEB ajzj ::::; aD
ALLBINARYEQ L;€B ajxj =aD

SUMVARUB LjEl+uc+ ajYj - alezle $ 0
SUMVAREQ LjE1+ue+ ajYj - alexle =0

VARUB ajYj - alexle ::::; 0
VAREQ ajYj - akXk =0
VARLB a;y; - aleXk > 0

BINSUMVARUB I:jEB\{Ie} ajxj - alexle $ 0
BINSUMVAREQ LiEB\{kl ajxj - alexle =0
BINSUMIVARUB I:jEB\{k} Xj - akXk ::::; 0
BINSUMIVAREQ I:jEB\{k} Xj - aleXIe =0

BINSUMIUB I:jEB Xj ::::; 1
BINSUMIEQ I:;€B Xj =1

Table 1: Constraint classes

Besides constraint classes, MINTO also distinguishes two constraint types: global and local.
Global constraint are valid at any node of the branch-and-bound tree, whereas local constraints
are only valid in the subtree rooted at the node where the constraints are generated.

Constraints can be in one of three states: active, inactive, or deleted. Active constraints are
part of the active formulation. Inactive constraints have been deactivated but may be reactivated
at a later time. Deleted constraints have been removed altogether.

Variables
When solving a linear program MINTO allows for column generation. In other words, after
a linear program has been optimized, MINTO asks for the pricing' out of variables not in the
current formulation. If any such variables exists and price out favorably they are included in the
formulation and the linear program is reoptimized.
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Branching
The unevaluated nodes of the branch-and-bound tree are kept in a list and MINTO always
selects the node at the head of the list for processing. However, there is great flexibility here,
since MINTO provides a mechanism that allows an application program to order the nodes in
the list in any way. As a default MINTO always adds new nodes at the head of the list, Le., a
last-in first-out strategy which corresponds to a depth-first search of the branch-and-bound tree.

3 System Functions

MINTO's system functions are used to perform preprocessing, constraint generation and reduced
price variable fixing, to enhance branching, and to produce primal feasible solutions. They are
employed at every node of the branch-and-bound tree. However, their use, except for reduced
price variable fixing, is optional.

In preprocessing, MINTO attempts to identify redundant constraints, detect infeasibilities,
tighten bounds on variables and to fix variables using optimality and feasibility considerations.
For constraints with only 0-1 variables, it also improves the LP-relaxation by coefficient reduction.
For example a constraint of the form alXl + a2X2 + a3X3 ~ ao may be replaced by alXl + a2X2 +
(as - «5)X3 ~ ao - «5 for some «5 > 0 that preserves the set of feasible solutions [Hoffman and
Padberg, 1991]. MINTO also builds a 'clique' table for 0-1 variables by identifying relations of
the form Xi + Xj ~ 1, Xi ~ Xj, Xi ~ Xj and Xi + Xj ~ 1 between pairs of variables and then
extending them to larger sets of variables.

After a linear program is solved and a fractional solution is obtained, MINTO tries to exclude
these solutions by searching for violated lifted knapsack covers [Crowder, Johnson and Padberg,
1983] and violated generalized flow covers [Van Roy and Wolsey 1986], Lifted knapsack covers
are derived from pure 0-1 constraints and are of the form

I: Xj + I: IjXj + I: ajxj ~ IC11-l + I: Ij,
jEC1 jEC2 jEB\C jEC2

where C = C1 U C2 with C1 :/; 0 is a minimal set such that LjEC ajxj > ao. Generalized flow
covers are derived from

I: Yj - I: Yj ~ ao
jEN+ jEN-

< J' E N+ UN-Yj _ ajxj;

and are of the form

I: [Yj + (A - aj )+(1- Xj)] ~ ao + I: aj + I: min{yj, AXj},

jEC+ jEC- jEN-\C

where C = (C+, C-) ~ (N+, N-) is a minimal set such that LjEC~ aj - LjEC- aj =A> O.
After solving a linear program MINTO searches for nonbasic 0-1 variables whose values may

be fixed according to the magnitude of their reduced price, and trys to find feasible solutions
using recursive rounding of the optimal LP-solution.
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MINTO uses a hybrid branching scheme. Under certain conditions it will branch on a clique
constraint. If not, it chooses a variable to branch on based on a priority order it creates.

All system functions can be selectively deactivated by command line options when MINTO
is invoked.

4 Inquiry Functions

Information about the current formulation can be obtained through the inquiry functions: inq.J'orm,
inq-Obj, inq_constr, and inq_var, and their associated variables info_form, info_obj, info_constr,
and info_var.

Each of these inquiry functions updates its associated variable so that the information stored
in that variable reflects the current formulation. The application program can then access the
information by inspecting the fields of the variable.

The rationale behind this approach is that we want to keep memory management fully within
MINTO. (Note that since only nonzero coefficients are stored, the memory required to hold the
objective function and constraints varies.)

One more inquiry function is available to retrieve the name of the problem that is being
solved, i.e., the name found in the NAME section of the MPS-file.

As it is impossible for the application program to keep track of the indices of the active
constraints, due to constraint generation and constraint management done by MINTO, the only
fail-safe method for accessing constraint related information is to refer to constraints through
names rather than indices. However, in some cases, for instance when an application program
only wants to inspect constraints of the original formulation (which are not affected by constraint
generation and constraint management), using names would be rather cumbersome.

To overcome these difficulties, the following scheme has been adopted for MINTO. All in
formation access for variables and constraints is done through indices. For variables the valid
indices are in the range 0 up to the number of variables, and for constraints the valid indices are
in the range 0 up to the number of constraints. However, to provide a fail-safe access mechanism,
MINTO will have in future releases, besides the default no-names operating mode, a names op
erating mode, in which names are associated with each variable and each constraint.

inq_prob This function retrieves the name of the problem that is being solved, i.e., the name
found in the NAME section of the MPS-file that was read when MINTO was invoked.

inq.J'orm This function retrieves the number of variables and the number of constraints of the
current formulation.

inq_var This function retrieves the variable class, the objective function coefficient, the number
of constraints in which the variable appears with a nonzero coefficient, and for each of these
constraints the index of the constraint and the nonzero coefficient, the status of the variable, the
lower and upper bound associated with the variable, additional infor~ationon the bounds of the
variable, and, if the variable type is continuous and the variable appears in a variable lower or
upper bound constraint, the index of the associated binary variable and the associated bound.
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Variable class is one of: CONTINUOUS, INTEGER, and BINARY. Variable status is one
of ACTIVE, INACTIVE, or DELETED. Variable information is one of: ORIGINAL, MODI
FIED-BY-BRANCHING, MODIFIED-BY..MINTO, and MODIFIED-BY-APPL.

inq-abj This function retrieves the number of variables that appear in the objective function
with a nonzero coefficient, and for each of these variables the index of the variable and the nonzero
coefficient. The same information can be obtained by successive calls to inq_var, however using
inq-abj is much more efficient.

inq_constr This function retrieves the constraint class, the number of variables that appear in
the constraint with a nonzero coefficient, and for each of these variables the index of the variable
and the nonzero coefficient, the sense of the constraint, the right hand side of the constraint, the
status of the constraint, the type of the constraint, and additional information on the constraint.

Constraint classes were given in Table 1. Constraint status is one of: ACTIVE, INACTIVE,
or DELETED. Constraint type is one of: LOCAL or GLOBAL. Constraint information is one
of ORIGINAL, GENERATED..BY..BRANCHING, GENERATED_BY_MINTO, and GENER
ATED_BY-APPL.

Basic information about the LP-solution to the active formulation and information about the best
primal solution are available to the application, whenever appropriate, through the parameters
passed to the application functions.

Additional information about this LP-solution can be obtained through the inquiry functions
lp...slack, providing the slack or surplus of a constraint, lp_pi, the dual value of a constraint,
lp...rc, providing the reduced cost of a variable, and lp_base, the status of a variable, i.e., BASIC,
ATLOWER, ATUPPER, or NONBASIC.

5 Application Functions

A set of application functions (either the default or any other) has to be compiled and linked with
the MINTO library in order to produce an executable version of MINTO. These functions give
the application program the opportunity to incorporate problem specific knowledge and thereby
increase the overall performance. A default set of application functions is part of the distribution
of MINTO. The incorporation of these default functions turns MINTO into a general purpose
mixed integer optimizer.

appLinit This function provides the application with an entry point in the program to perform
some initial actions.

appLprep This function provides the application with an entry in the program to perform some
preprocessing based on the original formulation.

In general, MINTO only stores data in the information variables.associated with the inquiry
functions and never looks at them again, i.e., communication between MINTO and the applica
tion program is one-way only. However, in appLprep a set of modification functions can be used
by the application program to turn this one-way communication into a two-way communication.
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A call to one of the modification functions seLvar, seLobj and seLconstr signals that the
associated variable has been changed by the application and that MINTO should retrieve the
data and update its internal administration.

appLnode This function provides the application with an entry point in the program after
MINTO has selected a node from the set of unevaluated nodes of the branch-and-bound tree and
before MINTO starts processing the node.

appLexit This function provides the application with an entry point in the program to perform
some final actions.

appLquit This function provides the application with an entry point in the program to perform
some final actions if execution is terminated by a <ctrl>-C signal.

appLprimal This function allows the application to provide MINTO with a lower bound and
an associated primal solution.

appl...fathom This function allows the application to provide an optimality tolerance to termi
nate or prevent the processing of a node of the branch-and-bound tree even when the upper
bound value associated with the node is greater than the value of the primal solution.

appl...feasible This function allows the application to force MINTO to continue even if the so
lution to the active formulation satisfies the integrality conditions.

appLbounds This function allows the application to modify the bounds of one or more vari
ables.

appLvariables This function allows the application to generate one or more additional vari
ables.

appLconstraints This function allows the application to generate one or more violated con
straints.

appLdivide This function allows the application to provide a partition of the set of solutions
by either specifying bounds for one or more variables, or generating one or more constraints, or
both.

The default division scheme partitions the set of solutions into two sets by specifying bounds
for the integer variable with fractional part closest to 0.5. In the first set of the partition, the
selected variable is bounded from above by the round down of its value in the current LP-solution.
In the second set of the partition the selected variable is bounded from below by the round up of
its value in the current LP solution. Note that if the integer variable is binary, this corresponds
to fixing the variable to zero and one respectively.

Each node of the branch-and-bound tree also receives a (unique) identification. This identifi
cation consists of two numbers: depth and creation. Depth refers to the level of the node in the
branch-and-bound tree. Creation refers to the total number of nodes that have been created in
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the branch-and-bound process. The root node receives identification (0,1).

appLrank This function allows the application to specify the order in which the nodes of the
branch-and-bound tree are evaluated.

The unevaluated nodes of the branch-and-bound tree are kept in a list. The nodes in the
list are in order of increasing rank values. When new nodes are generated either by the default
division scheme or the division scheme specified by the appLdivide function, each of them
receives a rank value provided either by the default rank function or by the function provided
by the appl..rank function. The rank value of the node is used to insert it at the proper place
in the list of unevaluated nodes. When a new node has to be selected, MINTO will always take
the node at the head of the list.

The default rank function takes the node creation number as rank, which results in a depth
first search of the branch-and-bound tree.

6 Test problems

The current distribution of MINTO also contains a set of 10 test problems. The main purpose of
the test problems is to verify whether the installation of MINTO has been succesful. However,
MINTO's performance on this set of test problems also demonstrates its power as a general
purpose mixed integer optimizer. Table 3 shows the problem characteristics. Table 4 shows the
LP value, the IP value, and the number of evaluated nodes and total cpu time when MINTO is
run as a plain branch-and-bound code with all system functions deactivated, and when MINTO
is run in its default setting. These runs have been made on a SUN SPARCstation 1+. We
have observed substantial variation in performance when running the system under different
architectures because different branch-and-bound trees are generated.

7 Availability and Future Releases

Our current policy with respect to the distribution and use of MINTO is to make it available
for academic research purposes only. Commercial and educational use of MINTO is not allowed
without prior and explicit permission from the authors.

We regard MINTO 1.0 to be the beginning of an evolutionary process towards a robust and
flexible mixed integer programming solver. It's modular structure makes it easy to modify and
expand, especially with regard to the addition of new inquiry and application functions. Therefore
we encourage the users of this first release to provide us with comments and suggestions for future
releases.

We envision that future releases will incorporate other simplex LP-solvers such as IBM's
Optimization Subroutine Library (OSL) [1990] and possibly interior point LP-solvers such as
OBI. A names operating mode will be available to provide a fail-safe mechanism for keeping
track of variables and constraints that are added during the solution process.

Other developments in future releases may include more efficient cut generation routines, ad
ditional classes of cuts, explicit column generation routines, better primal heuristics and different
strategies for getting upper bounds, such as Lagrangian relaxation.
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NAME #cons #vars #nonzeros #cont #bin #int
DIAMOND 4 2 8 0 2 0
P0033 15 33 98 0 33 0
P0040 23 40 110 0 40 0
P0201 133 201 1923 0 201 0
BM23 20 27 478 0 27 0
LSEU 28 89 309 0 89 0
IN 29 100 200 0 100 0
GRAY2 34 48 96 24 24 0
GRAY9 62 96 192 48 48 0
EGOUT 98 141 282 86 55 0

Table 2: Characteristics of the test problems

NAME LP value IP value #nodes (-s) cpu secs (-s) #nodes cpu secs
DIAMOND 0.0 -.- 7 0 1 0
P0033 -2520.6 -3089.0 8291 126 5 1
P0040 -61796.545052 -62027.0 139 3 1 0
P0201 -6875.0 -7615.0 4900 1148 691 617
BM23 -20.570922 -34.0 1978 86 241 94
LSEU -834.68 -1120.0 63403 2080 193 98
IN -7253.49351 -7457.0 858 28 5 1
GRAY2 -185.55 -202.35 231 6 7 1
GRAY9 -256.016667 -280.95 891 37 84 33
EGOUT -149.588766 -568.1007 70220 2313 13 1

Table 3: Results for the test problems
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