EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Mismatch patterns in similar business processes

Citation for published version (APA):
Dijkman, R. M. (2007). Mismatch patterns in similar business processes. (BETA publicatie : working papers; Vol.
202). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2007

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/8b5e81b7-4f9d-4e45-925e-997418d598e1

Mismatch patterns in similar business

processes
Remco Dijkman
WP-202
BETA publicatie WP 202 (working
paper)
ISBN 978-90-386-0966-9
ISSN 1386-9213
NUR 982
Eindhoven Maart 2007

Mismatch Patterns in Similar Business Processes

Remco Dijkman

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
R.M.Dijkman@tue.nl

Abstract. To unify similar business processes, such as processes of similar
business units or similar organizations, the similarities and differences between
these business processes must be detected and the differences must be resolved.
This paper presents a collection of patterns that describe frequently occurring
mismatches between similar business processes.. These patterns are helpful in
the mismatch detection step. We discovered them in practice by comparing
processes that we obtained from different business units in two organizations.
The patterns help when merging processes in case of a merger between
organizations. They also help when merging processes to construct a
standardized process that allows organizations that adhere to the standard to
interact successfully.

Keywords. Business processes, Modeling, Model Analysis, Process Patterns

1 Introduction

There are many cases in which similar business processes need to be merged partly or
fully: when organizations merge it is likely that some of their business processes must
be merged as well; when different business units of the same organization start a
business unit for processes that they have in common (for example financial
processes) these processes must be merged; when a common information system is
developed, then the business units involved must at least resolve the differences
between the process logic that is implemented by the information system. In each of
these cases the similarities and the differences between (parts of) business processes
must be identified and the differences must be resolved.

To help identify the differences between business processes, this paper presents a
collection of patterns that describe frequently occurring mismatches between business
processes. A secondary goal of the paper, which will be pursued further in future
work, is to present a complete method to identify and resolve these differences. The
focus of this paper is on identifying mismatches between activities in business
processes, control-flow relations between these activities and authorization of people
to perform these activities.

We obtained our mismatch patterns by comparing the business processes of similar
business units. In one comparison we compared 2 business units that had different
processes, because they were originally part of different companies. In the other

2 Remco Dijkman

comparison we compared 3 business units that had different processes, because they
had separate operational management that made different decisions regarding the
processes. Details about the organizations that we investigated and the mismatches
that we discovered are given below.

The remainder of this paper is structured as follows. Section 2 explains how we
identify similarities between business processes. It also briefly explains the notation
that we use to represent business processes. Section 3 presents the mismatch patterns
that we discovered. Section 4 explains the case studies from which we derived our
mismatch patterns in detail and summarizes the mismatches that we found in each of
these case studies. Section 5 shows possible cases in which the mismatch patterns can
be used. Section 5 also shows a complete example in which mismatches between
similar business processes are detected based on the patterns from section 3. Section 6
presents related work and section 7 discusses our results and presents our conclusions,

2 Business Processes and Determining their Similarities

This section introduces the concepts and notation that we use to represent business
processes. It also explains how and why we identify similarities between business
processes before we determine their differences.

2.1 Business processes and notation

In this paper we focus on identifying the differences between activities in business

processes, between the control-flow relations that relate these activities and between

the authorization of people to perform these activities. We use a simplified form of

UML Activity Diagrams [19] to represent these aspects.

Figure 1 shows an example of a business process represented using our notation.
We use a filled circle to represent a trigger that starts a process. If there are multiple
start triggers then the process can start as a consequence of either one of them. A
bulls-eye represents the end of the process. When the process reaches an end there
should be no remaining active activities. A rounded rectangle represents an activity in
the process. Activities can be related by a control-flow, denoted by an arrow,
representing that the target activity (or the end of the process) can occur when the
source activity (or the start trigger) has completed. We also use an:

— AND-split, denoted by a vertical bar with one incoming and multiple outgoing
control-flows, that represent that all targets can occur when the source has
occurred;

~ AND-join, denoted by a vertical bar with one outgoing and multiple incoming
control-flows, that represent that the target can occur when all sources have
occurred;

— XOR-split, denoted by a diamond with one incoming and multiple outgoing
control-flows, that represent that represents a choice to allow the occurrence of
exactly one target when the source has occurred,;

Mismatch Patterns in Similar Business Processes 3

— XOR-join, denoted by a diamond with one outgoing and multiple incoming
control-flows, that represent that the target can occur when one of the sources has
occurred.

Roles, which represent a group of people with a certain authorization, are represented

by rectangles. An activity drawn in the ‘lane’ of a role denotes that (people in that)

role are authorized to perform the activity. Activities can be grouped by drawing a

dashed rounded rectangle around them (not part of the UML notation). We use this

construct to represent that an activity, which is the collection of activities in the
group, is performed by multiple people in different roles.

Check

e

Adm.
Worker

Print

Evaluate Check
Request Loans

STSTTe——ess

Team
Leader

Figure 1. Examples of a business process

2.2 Similarities between business processes

Before we can determine the differences between business processes, we must

identify some similarities. This is necessary, because we need some starting point to

be able to say more than that the processes are ‘totally different’. Therefore, we
require that the designer indicates which collections of activities are equivalent and
which roles are equivalent for the purpose of the integration.

The requirement that these activities or roles are equivalent for the purpose of the
integration is important, because depending on the purpose of the integration very
different decisions can be made on equivalence. For example, if the purpose of the
integration is to develop a common information system, then the activity of entering
personal information of a client in information system ‘A’ can be considered
equivalent to entering this information in information system ‘B’, because once the
common information system is in place, this activity will be exactly the same.
However, if the purpose of the system is to merge departments, but not information
systems, then the activities are different, because they will be different in the merged
process; an employee trained on one system cannot use the other without the proper
training and data stored in one system will not be available in the other.

To determine equivalence between activities in two processes, we check if the unit
of work that they represent is equivalent for the purpose of the integration. We use
two criteria to check whether or not two units of work are equivalent:

1. The effect that the units of work will have in the integrated process must be the
same (e.g. the same information must be recorded and the same people must be
informed of a decision).

2. The way in which the effect is achieved must be the same (e.g. the same
information system must be used to record the information and the same means
of communication must be used to inform the people).

4 Remco Dijkman

Depending on the purpose of the integration, either (1) or both (1) and (2) can be
used to determine equivalence of units of work.

It is possible that equivalence applies to collections of activities, rather than
individual activities. This is the case if two collections of activities represent the same
unit of work, while there are no parts of these collections that represent the same unit
of work. For example, the activity ‘enter client’s information’ is equivalent to the
collection that consists of the activities ‘enter name and address information’ and
‘enter client’s partner information’, if the unit of work represented by the single
activity is the same as the unit of work represented by the collection of activities.

To determine equivalence between roles in two processes, we check if they
represent the same authorization in the integrated process (informally: they represent
sets of people with the same duties). To perform this check we assume that the
organizational structure to which the integrated process applies has already been
aligned. Such an alignment requires complex organizational decisions that are outside
the scope of this paper. For example, to align the organizational structure, it can be
decided that after the integration there will be a single role ‘team leader’ and that
people that were previously authorized to perform the duties of a ‘team coach’ or a
‘unit manager’ will be authorized to perform the duties of a ‘team leader’. Hence,
‘team coaches’ and ‘unit managers’ have the same authorization in the integrated
process and, therefore, are equivalent for the purpose of the integration.

The equivalence relation that is established in between activities and between roles
in this way must be recorded, for example in the form of a table such as Table 1. In
this example, the ‘evaluate request’ activity from process ‘A’ is equivalent to the
‘evaluate client’s application’ activity from process ‘B’ (i.e. the units of work that
these activities represent are equivalent with respect to both criteria mentioned above)
even though the names of the activities differ. The ‘record request’ activity from
process ‘A’ has an equivalent effect to the ‘scan request’ activity from process ‘B’
(i.e. the units of work that these activities represent are only equivalent with respect to
the first criterion mentioned above). The collection of activities from process ‘A’
mentioned in the last row of the table is equivalent to the collection of activities from
process ‘B’.

For ease of reading we will use equivalent names to denote equivalent roles or
activities in the remainder of this paper. However, in realistic process models
equivalent roles or activities most likely do not have the same name, such that the use
of an explicit equivalence relation (such as Table 1) is required.

Table 1. Example of an equivalence relation between activities

Activities in process ‘A’ Form of equivalence Activities in process ‘B’
‘evaluate request’ equivalent to ‘gvaluate dient’s application’
‘record request’ equivalent effect o ‘scan request’

‘check credit bureau’,
‘gvaluate applications

‘evaluate loan application’,
‘evaluate insurance application’

equivalent collection fo

3 Mismatch Patterns

We differentiate between patterns that represent mismatches concerning the
authorization to perform an activity, patterns that represent mismatches concerning

Mismatch Patterns in Similar Business Processes 5

the correspondence between activities and patterns that represent mismatches
concerning the flow of contro} between activities.

3.1 Authorization Mismatch Patterns

A mismatch in the authorization to perform an activity exists if the activity is assigned
to different roles in two processes that have to be merged.

Different roles. An authorization mismatch exist if an activity is assigned to one
(aligned) role in one process and to another in the other. Figure 2.i shows an example
of this type of mismatch.

Single role vs. collection of roles. An authorization mismatch exists if an activity is
assigned to a single role in one process and assigned to multiple roles in the other.
Figure 2.ii shows an example of this type of mismatch.

Different collections of roles. An authorization mismatch exists if an activity is
performed by one collection of roles in ane process, to be performed as an interaction
between those roles, and to another collection of roles in the other process. Figure 2.iii
shows an example of this type of mismatch.

Evaluate Evaluate
Request Request

é Evaluate i
E Request

Evaluate
Request

S==sTITTeaces

Team [1¥ Adm.] Adm.
Leader { Worker | Worker
Leader | Worker | Worker
Leader | Worker | Worker
Leader | Worker | Worker

Leader | Worker | Worker

Team [1¥ Adm.| Adm.
Team [1¥ Adm] Adm.
Team [1¥ Adm.| Adm.
Team [1Adm] Adm.

Evaluate
Request

i. Different roles il. Single role vs. collection of roles iii. Different collections of rofes

Figure 2. Examples of authorization mismatch patterns

3.2 Activity Mismatch Patterns

A mismatch between activities exists if a unit of work that is represented by a certain
collection of activities in one process is represented by a different collection of
activities, or not at all, in the other process.

Skipped activity. A skipped activity exists if an activity (that represents a certain unit
of work) exists in one process, but no activity representing an equivalent unit of work
exists in the other process. Figure 3.i shows an example of this type of mismatch.

Interchanged activities. Interchanged activities exist if an activity exists in one
process and an activity that has the same effect (equivalence criteria (1) explained
above) but achieves that effect in a different way (equivalence criteria (2) explained
above) exists in the other process. This mismatch pattern is only relevant if both the

6 Remco Dijkman

equivalence criteria explained above determine equivalence, because if only
equivalence criteria (1) is used, the activities are equivalent by definition. Figure 3.ii
shows an example of this type of mismatch, if recording a request and scanning a
request form have the same effect (for example that the client’s request is stored in the
system).

Refined activity. A refined activity exists if an activity (that represents a certain unit
of work) exists in one process, but an equivalent unit of work is only represented by a
collection of activities in the other process. We say that the collection of activities
refines the single activity, because it represents the same unit of work at a different
level of granularity. Figure 3.iii shows an example of this type of mismatch, if both
the activity and the collection of activities represent the same unit of work.

Corresponding collections of activities. Two processes have corresponding
collections of activities, if a collection of activities in one process is equivalent to a
collection of activities in the other process (in the sense that they represent an
equivalent unit of work), while no subset of activities from one collection is
equivalent to a subset of activities from the other collection. Figure 3.iv shows an
example of this type of mismatch, if the same unit of work is performed by both
collections of activities (for example because the check with the credit bureau is part
of the evaluation of the loan application and because the remaining work of
evaluating the loan and insurance application corresponds to the work done in the
‘evaluate applications’ activity). We have not observed this pattern in practice, but we
claim that it follows logically from the approach of determining equivalence between
activities by comparing the units of work that they represent.

Record Check Evaluate Record Evaluate
Request Input Request Request Reguest

i. Skipped activity

Record Scan
Request Reguest

ii. Interchanged activities

Evaluate by
| Adm. Worker

Evaluate by
Team Leader

Determine
Gravity

Evaluate
Request

iii. Refined activity
Evaluate Evaluate Check Credit Evaluate
Loan Appi. insurance Appl. Bureau Applications
iv. Corresponding collections of i

Evaluate Check Credit Evaluate
Loan Appl. Bureau Applications

v. Partly correspanding collections of activities

Figure 3. Examples of activity mismatch patterns

Partly corresponding (collections of) activities. Two (collections of) activities are
partly equivalent if they partly represent the same unit of work and partly represent
different units of work and there is no possibility to re-arrange the activities into

Mismatch Patterns in Similar Business Processes 7

equivalent collections. Figure 3.v shows an example of this type of mismatch, if
‘evaluate loan application’ includes a check with the credit bureau and ‘evaluate
applications’ includes both the evaluation of a loan application and the evaluation of
an insurance application.

3.3 Control-flow Mismatch Patterns

A control-flow mismatch exists if (collections of) activities in one process have
different control-flow relations with each other than equivalent (collections of)
activities in the other process.

We determine control-flow mismatches, by determining the set of activities on
which the occurrence of an activity depends. We do that using the concepts of closest
preceding equivalent activities and closest succeeding equivalent activities. An
activity is preceded by a node if there is a path of control-flow relations from that
node to the activity. A node can either be another activity or a control node (AND-
split, AND-join, XOR-split, ...). The closest preceding activities of an activity are all
those activities that precede the activity, such that there is no other activity on the path
of control-flow relations. An equivalent activity is an activity for which there exists
an equivalent activity in the other process. The closest preceding equivalent activities
are all those equivalent activities that precede the activity, such that there is no other
equivalent activity on the path of control-flow relations. The closest succeeding
equivalent activities can be determined in a similar manner, An activity depends on
all its closest preceding activities (however, for the purpose of comparing processes
we should only look at its closest preceding equivalent activities). In addition to that,
if there is an XOR-split on the path from a closest preceding equivalent activity to the
activity itself, then the activity also depends all closest succeeding equivalent
activities of that XOR-split. The reason for this is that the activity can no longer occur
when one of these activities is performed, because that means that another path was
taken from the XOR split and therewith a choice not to perform the activity.

Figure 4 shows an example. If ‘check loans’, ‘reject request’ and ‘check
documents’ have equivalents in the other process, then {‘check loans’, ‘check
documents’} is the set of closest preceding equivalent activities for ‘evaluate request’.
‘determine gravity’ also precedes ‘evaluate request’, but it has no equivalent. In
addition to {‘check loans’, ‘check documents’}, ‘evaluate request’ depends on ‘reject
request’, because it is the closest succeeding equivalent activity of the XOR-split on
the path from ‘check loans’ to ‘evaluate request’.

Reject
Request

Determine
Gravity

Check Request
Documents|

Figure 4. Example of dependency between activities

Check
Loans

Different dependencies. We say that equivalent activities from two processes have
different dependencies with respect to each other, if the sets of activities on which

8 Remco Dijkman

they depend differ. Figure 5.1 shows an example of this type of mismatch. In the first
process ‘evaluate request’ depends on ‘check loans’ and ‘check documents’, while in
the second process it depends on ‘check credit bureau’ and ‘check documents.

Additional dependencies. A special case of having different dependencies is the case
in which one set of activities includes the other. In this case we say that the set that
includes the other has additional dependencies. Figure 5.ii shows an example of this
type of mismatch. In the first process ‘make changes’ depends only on ‘evaluate
request’, while in the second process it depends on both ‘evaluate request’ and
‘approve evaluation’. Hence, the second set of dependencies includes the first.

Activities occur at different moments in processes. Another special case of having
different dependencies is the case in which the sets of activities are disjoint. In this
case we say that the activities occur at different moments in their processes. Figure
5.iii shows an example of this type of mismatch. In the first process ‘evaluate request’
depends on ‘record request’, while in the second process it depends on ‘print’. Hence
the sets of dependencies are disjoint.

Iterative vs. once-off occurrence. Another special case of having different
dependencies is the case in which an activity is part of a loop in one process while it
is not in the other process. This means that in one process the activity must be
performed correctly in one go, while in the other process it can be performed
repeatedly until the result is satisfactory. Figure 5.iv shows an example of this type of
mismatch.

Different conditions for occurrence. In case the dependencies for two equivalent
activities are the same, the conditions for their occurrence may still differ.

We determine the condition for the occurrence of an activity by drawing a truth
table. A truth table specifies when an activity (listed in the last column) can occur as
a function of the occurrence of the activities on which it depends (listed in the other
columns). A “1” in a column represents that the activity in that column has occurred.
A ‘0’ represents that it has not. For each combination of ‘I’s and ‘0’s we determine
whether the activity in the last column can occur (represented by a ‘1’}), cannot occur
(represented by a ‘0°) or if the combination is impossible (represented by a ‘-*).

A condition is impossible, if it is the xor of two or more ‘1’s. This rule applies,
because in a well-formed process an XOR-join is always preceded by an XOR-split
that causes a choice between two paths, meaning the activities at the end of these
paths can never occur both. Considering that an XOR-join represents an xor-condition
between the incoming flows and an AND-join represents an and-condition between
the incoming flows, we can easily construct a truth table. Table 2 shows an example
of a truth table. It is the truth table for the first process from Figure 5.v. It shows that
‘evaluate request’ is allowed to occur if both ‘check documents’ and ‘check loans’
have occurred, but ‘check credit bureau’ has not. It also shows that the sitvation in
which ‘check credit bureau’ and ‘check loans’ have occurred is impossible, because
there is an XOR-~join on the occurrence of these two activities.

Figure 5.v shows an example of two processes in which the conditions for the
occurrence of ‘evaluate request’ differ. For example, in the first process ‘evaluate

Mismatch Patterns in Similar Business Processes 9

request’ can occur if ‘check loans’ and ‘check documents’ have occurred, while in the
second process this situation is impossible. We have not observed this pattern in
practice, but we claim that it is a logical superclass of mismatches for the next pattern.

Table 2, A truth table for the occurrence of 'Evaluate Request'

[Check Credit Bureau | Check Loans | Check D E Request
[0 0 0 0

0 0 1 [}

0 1 0 0

0 1 1 1

1 4] [0

1 0 1 1

1 1 0 -

1 1 1 -

Conditions for occurrence more strict. A special case of different occurrence
conditions is the case in which an activity can occur in all the cases that its equivalent
in another process can, and more. To test this we do not consider cases that are
impossible in either one of the processes, because these cases do not cause the
condition to be more or less strict. They merely restrict the cases for which the
condition has to be evaluated. We motivate this choice with experience from practice,
where people consider an AND-join to be more strict than an XOR-join, even though
an XOR-join restricts the set of possible cases. Figure 5.vi shows an example of two
processes for which the condition for the occurrence of ‘evaluate request’ is more
strict in the second process, because there it can only occur if both ‘check loans’ and
‘check documents’ have been performed, while in the first process it can occur if
either one of these have been performed.

Automated Choice. A choice can be made automatically in one process and made
manually in another process. A mismatch of this kind cannot be detected
automatically. However, an indication of this mismatch is that in one process a
skipped activity precedes an XOR-split control node, while in the other process this is
not the case. This activity represents making the choice, the result of which causes the
choice node to take one path or the other. If the choice is manual, this activity is
present; if the choice is automated, it is not, because then the activity of making the
choice is embedded in the XOR-split control node itself. Figure 5.vii shows an
example in which a choice between two options is performed manually in the first
case and automated in the second case.

Different start of process. In case one process allows an activity to be performed
from the start of the process, while the other process does not, we say that there is a
mismatch in the start of the process. Figure 5.viii shows an example in which the
activity ‘receive revision’ can only occur during the process in the first process, while
it can occur from the start of the process in the second process. This mismatch may be
caused by one of the processes having more triggers than the other for a particular
case. For example, one for the initial requests and one for revised requests.

This mismatch can occur in combination with the mismatch of skipped activities
(e.g. process P allows activity ¢ to occur from the start of the process, while the
process g requires that a and b occur before ¢ can occur. However, activities @ and b
are not mentioned in process P. They are skipped activities.). In this case it is

10 Remco Dijkman

advisable to check if the skipped activities appear in another process, because it can
be the case that a designer chose to split-up the processes at a different point. Figure
5.ix shows an example in which processes are split-up differently. In the first process
‘payout client’ and ‘payout intermediary’ are part of the acceptance process, while in

the second process they are part of a new process.
Check Credit
Bureau

Check Credit
Bureau
Check
Documents
i. Different dependencies
Evaluate Make Approve Evajuate Make Approve Make
Regquest Changes Evaluation Request Changes Evaluation Changes

ii. Additional dependencies

Evaluate
Request

Evaluate
Request

Record Evaluate . Record . Evaluate
Request Reguest Print Request Print Request

iii. Activities occur at different moments in processes

Evaluate Reject
Request ejec

iv. lterative vs. once-off occurrence

Check Credit
Bureau

Evaluate
Request

Receive
Revision

Evaluate
Request

vii. Automated choice
Evaluate . Racenve Receive
é Request O AN Reject ’ Revision] O"‘jewsmn

viii. Different start of process

Payout Payout Payout Payout
Accept Client intermediary . Intermediary|

ix. Different split of processes

Evaluate
Request

Reject

Figure 5. Examples of control-flow mismatch patterns

Mismatch Patterns in Similar Business Processes 11

4 Case Studies

We discovered the mismatch patterns in two case studies.

In the first case study we studied the planning processes at TNT Post, the largest
Dutch postal service provider. We studied 10 processes, each of which involved on
average 9 activities and 3 roles. The processes were studied in 3 (geographically)
different departments that had the same function for a different geographical area in
the Netherlands. The most strict notion of equivalence between activities (both effect
and means of the activity must be the same) was used. Table 3 summarizes how many
instances of each mismatch pattern were found during this case study. Of patterns that
are not shown, no instances were found. We counted these instances by using a
‘standardized’ process and comparing the processes from the departments to this
process.

Table 3. Instances of mismatch patterns found in case study 1

Mismatch pattem Number of instances found
Different roles 2
Single role vs. collection of roles 3
Different collections of roles 1
Skipped activity 11
Interchanged activities 2

In the second case study we studied some processes at a large internationally
operating financial services provider. We studied 5 processes, each of which involved
on average 10 activities and 2 roles. The processes were studied in 2 departments that
had the same function, but were originally parts of different organizations. The most
strict notion of equivalence between activities (both effect and means of the activity
must be the same) was used. Table 4 summarizes how many instances of each
mismatch pattern were found during this case study.

Table 4. Instances of mismatch patterns found in case study 2

I Mismatch pattern Number of Instances found
Ditferent roles 3
Skipped activity 13
Interchanged activities
Refined activity
Partly corresponding collections of activities
Different dependencies
Additional dependencies
Activities occur at different moments in processes
iterative vs. oncs-off occurrence
Conditions for occurrence more strict
Automated choice
Different start of process 2
Different split of process

LS1ES] B ES TR P V] BN

In addition to the patterns that we found in the case studies and that we could
classify, we found three mismatch patterns that we could not classify at this time.

Firstly, our technique for process modeling does not support representing the ‘4-
eyes’ principle, according to which information must be generated by a person and
then checked by another person. Therefore, mismatches with respect to this principle
cannot be detected. Arguably, mismatches with respect to this principle are usually
detected. Because if a ‘check’ activity does not exist in one process, while it does

12 Remco Dijkman

exist in another process, this appears as a ‘skipped activity’ and in case a ‘check’
activity exists in both processes it is performed by different people. However, we
found one case in which a ‘check’ activity had to be performed by two people, both
different from the person that generated the information. This mismatch could not be
detected.

Secondly, our technique for process modeling does not support representing that an
activity can be performed by people in one role or another role. Therefore, we cannot
detect mismatches with respect to this modeling construct, We encountered three
instances of this mismatch.

Thirdly, in case an activity in one process is refined by an activity in another
process, the behavior of the refined activity as it is determined by its control-flows
may differ from the behavior of the other activity. However, because, to compare it,
the refined activity it is treated as a single activity with incoming and outgoing flows,
such differences are not detected. Figure 6 illustrates this case. The refined activity
(comprising of ‘check loans’ and ‘check documents’) is treated as a single activity to
compare it with the activity ‘check’. However, checking loans may be skipped in the
refined activity, while this may not be an option in the ‘check’ activity. We
encountered one instance of this mismatch pattern.

Record Record Check
Request %’ Documents

Figure 6. Example of a control-flow mismatch in a refined activity

S Possible Uses and Example

The most obvious use for the mismatch patterns is to use them when merging
processes when different organizations or organizational units merge. The patterns
can help to precisely identify the differences between the processes and ultimately
resolve these differences.

As an example Figure 7 shows the loan application processes of two different
organizations. Although these processes concern the same work, there clearly are
differences. Both processes start with checking the completeness of a loan
application. If the application is complete the process continues, otherwise action is
taken. Subsequently the client’s information is looked up and entered into the system
and an offer is produced. Next the client’s creditworthiness with respect to the offer is
checked and in the first process some additional checks are performed. After all the
checks are performed a decision is made to either allow the administrative worker to
make changes to the offer, or to let the offer be approved (and possibly changed) by
fiat. In the first process this choice is made automatically. In the second process it is
made manually in an activity ‘decide mandate’. In that process, there is also the
possibility to proceed without making changes or letting the offer be approved by fiat.
However, in this case it may be necessary to perform an additional check on the
client’s existing loans, potentially leading to changes in the offer. After all the checks

Mismatch Patterns in Similar Business Processes 13

are performed and changes are made, the changes are checked, possibly leading to a
renewed integral check of the offer. Finally the offer is printed.

The processes differ with respect to the means they use to inform a client that his
application is incomplete. In one process the administration plans an appointment
with the client, while in the other process administration informs sales of the
incomplete application. Hence, these activities are interchangeable. Three skipped
activities exist: ‘checking module’, ‘decide mandate’ and ‘check loans’. ‘Decide
mandate’ not only is a skipped activity, but also part of a choice that is an automated
choice in the other process. The ‘check changes’ activity is performed by different
roles in both processes. The ‘enter client and offer details’ in the second process is
refined by ‘check existing’, ‘add client information’ and ‘produce offer’ in the other
process. Also, the ‘enter client and offer details’ activity has an additional
dependency on ‘fiat’ with respect to the activities that refine it. This additional
dependency is caused by the fact that in the second process the activity is performed
iteratively, versus once-off in the first process. Finally, ‘check changes’ has an
additional dependency on (the closest preceding equivalent activity) ‘check credit’.
Interestingly, this is the only control-flow mismatch in the seemingly complex
differences between the flows through ‘make changes’, ‘check loans’ and ‘fiat’
activities. This clearly illustrates the use of the patterns as an aid for identifying
differences between processes.

Pian Add client
appointment information

Check Check Produce Check Checking| Make Check Pant
complete| existing offer credit madule changes changes

Adminstrative

Frat

O—@

Notify sales

Admmistrative

Enter client and
offer dalails

Check
changes

Figure 7. Example of mismatches between processes of two organizations

Fuat

Other uses for the patterns include: using them to help identify (and resolve) the
differences between the views of different stakeholders in the same process, when a
mode! for that process is being constructed; and using them to help resolve
differences between processes for which a common enterprise information system
must be developed.

A less obvious use for the patterns is using them in standardization activities, in
which a standard process must be developed. In that case the mismatch patterns can
help identify and resolve the differences between different proposed standard
processes. They can also help to identify and resolve the differences between the
standard process and the process of a party that wants to conform to the standard.

14 Remco Dijkman

We consider the reference models proposed by the major ERP vendors (such as the
SAP reference model [5]) as de-facto standards. Hence, the development of these
reference models can benefit from the patterns. Also, the patterns can help to identify
the differences between the reference processes and the processes of a client that
wants to implement an ERP system. The differences then provide an indication of the
configuration that is needed for the implementation of the system.

6 Related Work

Other areas of research that address differences between business processes are:

— business process integration;

— equivalence of business process behavior;

business processes evolution; and

business process reference models.

Our work is closest to the work on business processes integration [12,14,18,20]
However, the work in that area focuses on the merging business processes in spite of
their differences. Our work focuses more on detecting the differences between the
processes. When it comes to detecting these differences, [20] does identify a few
mismatch patterns, which they call heterogeneities, between business processes.
[12,14] classify correspondences between business processes. Such a classification
also inspires the classification of mismatches.

The work on business process integration is based on the work on database view
integration [9,24], but database view integration focuses on merging information
aspects rather than behavioral aspects. Database view integration does address
mismatch patterns between (information) models in detail, as well as techniques to
solve these mismatches.

Another related area is that of determining equivalence of business process
behavior. A survey on different forms of behavioral equivalence if given in [13]. The
work on behavioral equivalence differs from ours, because our work focuses on
determining differences rather than equivalence. However, like with the work on
classifying correspondences, the classification of different forms of (non-jequivalence
inspires the classification of mismatches. More loose forms of (partial) equivalence,
such as behavioral compatibility [16,17] and behavior inheritance [2] have a similar
relation to our work. Moreover, [1] shows how behavior inheritance can be used to
detect mismatches between a prescribed process and a process as it is performed in an
organization. Mismatch patterns with respect to compatibility of processes are given
in [4,11].

The area of business process evolution [3,8,10,21,22] deals with evolutionary
changes in a business process specification. Such changes also result in mismatches
(between the original and the evolved business process). In fact some of these
mismatches can be recognized in the mismatch patterns above. However, the goal of
workflow evolution is to develop evolution approaches that keep the mismatches to a
minimum. We accept all possible mismatches that can arise.

Business process reference models [15] are standard business process models that
can be tailored to the needs of a specific company. It is useful to identify how

Mismatch Patterns in Similar Business Processes 15

reference models can be tailored to the client, which can be done by describing
configuration options for the reference models [23]. These options pre-define what
differences can exist between clients and are therefore related to our mismatch
patterns.

7 Conclusion, Discussion and Future Work

This paper presents patterns of mismatches between business processes of

(departments of) organizations that have the same function. The patterns were

developed by investigating organizations in practice. We have shown how frequently

the patterns occurred in the organizations we investigated. We have also shown how
the patterns can be used, for example, to resolve mismatches for the purpose of
merging organizations.

We do not claim to have discovered all possible mismatch patterns, because:

— we only investigated mismatches between departments in the same organization,
while mismatches between different organizations can be more complex;

— we only investigated patterns that appear in processes modeled with a simplified
modeling language (one that only allows for AND/XOR-splits and and/or joins),
limiting the set of patterns that can be expressed and therefore detected,;

— we only studied the mismatches in two organizations;

— we focused on authorization, activity and control-flow aspects of business
processes, while other aspects, such as the information aspect, can be considered as
well.

However, we do claim that, although the set of patterns is not complete, it is an
interestingly large set. Moreover, a set that is heipful when detecting and resolving
mismatches, regardless of other mismatches that may exist. These claims are
supported by our findings in the case study, because (focusing on the aspects
mentioned above), we only detected three mismatch patterns in practice that could not
be classified by the patterns from section 3. Also, although our case studies focus on
mismatches between processes within an organization, one of the organizations was a
merger of different organizations. Therefore, we claim that the patterns that we found
include a reasonably large subset of the patterns that can be found between different
organizations.

We made two important observations in the case study. Firstly, the ‘different
dependencies’ and ‘additional dependencies’ mismatch patterns represent a set of
diverse and complex mismatches. This can pose difficulties when trying to propose
uniform solutions for mismatches in each of these categories. We could investigate
mismatches in these categories to see if further classification of mismatches (and
corresponding solutions) is possible. Secondly, we discovered that some mismatches
imply that other mismatches exist as well. This means that, when we develop a tool
that detects mismatches, several mismatches concerning the same set of activities or
roles would be identified. This could confuse the designer using the tool and is also an
issue for further study.

One of our aims for future work is to investigate processes from more
organizations and to detect mismatches between those processes (possibly leading to

16 Remco Dijkman

more mismatch patterns). To support this activity and to improve the usability of the
patterns, we aim to develop techniques and tools to detect mismatches according to
the patterns above. Finally, we aim to develop to resolve mismatches between
business processes with the aim of developing standardized processes. Standardized
processes can be used as reference models in tools. They can also be used as a basis
for developing a collaboration between organizations, in which case we also refer to
the standardized processes as choreographies [6,7].

Acknowledgements

The author thanks Marthe Uitterhoeve for collecting the differences between the
processes at TNT Post. Also, the author thanks the organizations, as well as the
people from those organizations (in particular Frank Knot), that were kind enough to
provide information about their processes for this paper.

References

1. W. van der Aalst. Business Alignment: Using Process Mining as a Tool for Delta Analysis
and Conformance Testing. Requirements Engineering 10, 2005, pp. 198-211.

2. W. van der Aalst and T. Basten. Inheritance of Workflows: An Approach to Tackling
Problems Related to Change. Theoretical Computer Science 270(1-2), 2002, pp. 125-203.

3. W. van der Aalst, and S. Jablonski. Dealing with Workflow Change: Identification of
Issues and Solutions. International Journal of Computer Systems, Science, and
Engineering 15(5), 2000, pp. 267-276.

4. B. Benatallah, F. Casati, D. Grigori, H. R. Motahari Nezhad, and F. Toumani. Developing
Adapters for Web Services Integration. In: CAISE 2005, Springer-Verlag, Berlin,
Germany, 2005, pp. 415-429.

5. T. Curran, and G. Keller. SAP R/3 Business Blueprint. Prentice Hall, Upper Saddle River,
NIJ, USA, 1998.

6. R.M. Dijkman. Choreography-Based Design of Business Collaborations. BETA Working
Paper WP-181, Eindhoven University of Technology, Eindhoven, The Netherlands, 2006.

7. R.M. Dijkman, and M. Dumas. Service-oriented Design: a Multi-viewpoint Approach. In
J. Yang and C. Bussler (guest eds.): International Journal of Cooperative Information
Systems (LJCIS), Special Issue on Service Oriented Modeling 13(4), pp. 337-368, 2004.

8. C. Ellis, and K. Keddara. A Workflow Change is a Workflow. In: BPM 2000, LNCS
1806, Springer-Verlag, Berlin, Germany, 2000, pp. 516-534.

9. C. Batini, M. Lenzerini, and S.B. Navathe. A Comparative Analysis of Methodologies for
Database Schema Integration. ACM Computing Surveys 18(4): 323-364, December 1986.

10. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow Evolution. Data & Knowledge
Engineering 24, 1998, pp. 211-238.

11. M. Dumas, M. Spork, and K. Wang. Adapt or Perish: Algebra and Visual Notation for
Interface Adaptation. In: BPM 2006, LNCS 4102, Springer-Verlag, Berlin, Germany,
2006, pp. 65-80.

12. H. Frank, and J. Eder. Towards an Automatic Integration of Statecharts. In: ER /999,
LNCS 1728, Berlin, Germany, 1999, pp. 430-444.

20.

21.

22,

23.

24.

Mismatch Patterns in Similar Business Processes 17

. R. van Glabbeek. The Linear Time — Branching Time Spectrum I: The Semantics of

Concrete Sequential Processes. In: Handbook of Process Algebra. Elsevier, 2001, pp. 3-
99.

G. Grossmann, Y. Ren, M. Schrefl, and M. Stumptner. Behavior Based Integration of
Composite Business Processes. In: BPM 2005, LNCS 3649, Springer-Verlag, Berlin,
Germany, 2005, pp. 186-204.

. E. Kindler, and M. Niittgens (eds.). Workshop on Business Process Reference Models,

Nancy, France, September 2005.
A. Martens. On Compatibility of Web Services. Petri Net Newsletter 65, 2003, pp. 12-20.

. P. Massuthe, W. Reisig, K. Schmidt. An Operating Guideline Approach to the SOA.

Annals of Mathematics, Computing & Teleinformatics 1(3), 2005, pp. 35-43.

. J. Mendling, and C. Simon. Business Process Design by View Integration. In: BPM 2006

Workshops, LNCS 4103, Springer-Verlag, Berlin, Germany, 2006, pp. 55-64.

Object Management Group. UML 2.0 Superstructure Specification. Specification ptc/04-
10-02, 2004.

G. Preuner, S. Conrad, and M. Schrefl. View Integration of Behavior in Object-Oriented
Databases. Data & Knowledge Engineering 36(2), 2001, pp. 153-183.

M. Reichert, and P, Dadam. ADEPTflex-supporting dynamic changes of workflows
without losing control. JIIS 10(2), 1998, pp. 93-129.

S. Rinderle, M. Reichert, and P. Dadam. Correctness Criteria for Dynamic Changes in
Workflow Systems — a Survey. Data & Knowledge Engineering 50, 2004, pp. 9-34.

M. Rosemann, and W.M.P. van der Aalst. A Configurable Reference Modelling
Language. Information Systems 32(1), 2007, pp. 1-23.

S. Spaccapietra, C. Parent. View Integration: A Step Forward in Solving Structural
Conflicts. /EEE Transactions on Knowledge and Data Engineering 6(2): 258-274, April
1994.

