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lower flow velocities; at 0.6 mm s 1, their
lower than in the case of example 1.

2.3.4 Conclusion and Outlook

From the above results, we can draw the following conclusions:

• From theoretical considerations it follows that the maximum heat-powe
input by eddy currents happens near the wall of the crucible, whereas a
the axis of the cylinder (center of the crucible) the power input is zero.

• The simulations show that radiation and convective mass transport are
responsible for the heat transport in the interior of the hot glass.

• Furthermore, the simulations show that the profile of the power input
I (strongly increasing from the center towards the wall of the crucible) is

~ completely different from the resulting temperature field. Therefore, it is
.“ in general impossible to draw any conclusions from the temperature field

Iwith respect to the distribution of the power input!
• ,The material parameters for electrical conductivity, effective heat conduc

tivity (as an approximated parameter for the radiation transport), and
viscosity should be known up to the maximum temperature used; if not,

~ these parameters must be extrapolated for very high temperatures. The
i latter two parameters control whether the heat transport in the melt is
primarily due to radiation or convection.

The so-called skull crucible method can be applied to make glass melt “in
its own juice”. Here, the wall of the crucible is actively cooled, whereas the
temperature of the glass-melt interior is kept constant. To avoid cooling of the
melt interior, power input and heat loss are balanced over an average time.

a 50-L crucible, an electric power of 70 kW (without electric power
lt~ses) is necessary, which is instantaneously transferred to the cooling agent
an’d to the surroundings as a power loss. An additional amount of energy
i~ needed to heat up the glass from the starting temperature to a certain
rflaximum temperature.

~.4 Model-Based Glass Melter Control

,TO~Th Backs

Introduction

Glass industries, like most other process industries, have been confronted with
a9major change in the market during the past decades. Competition has dras
tically increased and environmental legislation has been tightened severely.
~he strong growth in production capacity in general, and in container-glass
~panufacturing in particular, has exceeded the growth in market demand. This
has resulted in a market that is largely customer-controlled and saturated.
In addition, the complexity and costs of production equipment have signif
iqantly increased owing to the tightening legislation on ecosphere load, and
operation of the processes within the ever-tightening constraints has become
increasingly more complex as well.

One of the major reasons for the changes is globalization of the market.
globalization is one of the results of the recent developments in the fields
of telecommunication, transportation, and advanced automation, which have
emerged from the rapid developments in electronics and computer and in
formation technology. As a consequence, the process industry is nowadays
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confronted with a strongly competitive market. The market has developed
from a supplier-driven market to a demand-driven market. These changes
have far-reaching consequences for producers. In this market, margins on
products are eroding rapidly. Good margins can only be obtained for prod
ucts that are scarce and in demand. Customer-dictated markets are capri
cious. Opportunity windows for ~good margin product sales are tightening.
This requires producers to respond quickly and reliably to product demands.
Products have to be delivered at short notice in strictly defined time windows
in the right quality and the requested volume.

These market changes enforce industries to flexibly produce small series
of a large variety of product types, preferably with existing production instal
lations. A further consequence of these changes in the market is a continuous
shortening of the life cycle of a significant part of supplied product types.
The innovative power to bring new products to the market quickly, in a pre
dictable and controlled way, is becoming a necessity for industries to improve
or even maintain their market position.

In order to prepare for these drastic changes, tight control of the pro
duction processes over a broad operating range is needed. Process operation
has to enable a completely predictable and reproducible operation at and
changeover between different operating points that correspond with the pro
duction of various product types under different economic objectives (min
imize costs, maximize production rate, minimize stock, benefit from fluctu
ating prices, etc.). The strategy yielding the most profitable conditions has
to be selected from a variety of potential operating scenarios to produce the
desired product type. This decision is based on a thorough understanding of
both process behavior and process operation. The freedom of choice offered
in process operation must be used to predictably produce precisely what
is required in terms of quality, volume, and time, with the best achievable
business result.

This section explains how process models and model-based control sys
tems can be used to support process operation in the most flexible way, in
accordance with market requirements and driving towards conditions that
maximize margins. The use of model-predictive control technology to push
processes closer to their physical limits in order to obtain a better economic
result is discussed. Because the performance of model-based process control
systems relates one-to-one to the accuracy of the models applied, we start
with a short introduction into modeling and model concepts.

2.4.1 Model Concepts

Detailed knowledge of process behavior and extensive use of this knowledge
are the key for obtaining the intended improvements in process operation.
Mathematical models are the vehicles for making knowledge on process be
havior accessible for automated process operation.

Glass-manufacturing processes consist of a sequence of manufacturing
steps. In each of these production steps specific processing conditions need
to be realized to guarantee ultimate product quality. The main steps are:

o preparation of batch and batch transport,
o charging of batch material in the melter,
o melting and fining of glass,
• conditioning of the glass for further processing,

manufacturing of the products,
o conditioning of the products,
• post-processing of the products.

Each of these processing steps needs to satisfy particular specifications.
The available operating envelopes of the processing units enable realization
of the specified processing conditions for high-performance manufacturing.
if they are appropriately designed. In each process step, a number of vari
ables determine the course of the process and consequently the characteris
tics of the resulting products (e.g., component separation, residence time and
residence-time distribution, temperature profile in the melter or forehearth,
hot-spot temperature, hot-spot location, boosting, bubbling, concentration,
homogeneity and purity of batch components, concentration of undesired
components, glass level, furnace pressure, exhaust gas oxygen excess. NOT,
temperature distribution in forehearth cross section, etc.). A selection of crit
ical processing variables and a number of product properties of the semi-
manufactured and final products have to be kept within specified tolerance
limits or have to be brought within these limits during a process changeover
to guarantee good ultimate product quality and to ensure high lifetime of the
manufacturing equipment. These process variables are the so-called process
outputs or CVs (controlled variables).

In order to keep the CVs in their predefined region, a set of process vari
ables are available for manipulation of the process behavior. These variables
have a predefined operating region within which they can be manipulated
by the operator or the control system. These variables, the so-called process
inputs or MVs (manipulated variables) are used to compensate for external
disturbances and changes in the observed process behavior. They have to
drive the process to the desired operating conditions along preferred paths.

The third category of process variables that affect the process behavior are
the so-called process disturbances or D Vs (disturbance variables). Examples
of these variables are impurities of the batch components, composition of the
batch, humidity of the batch and the combustion air, ambient temperature,
furnace wear, reversal of firing, Wobbe index, and so on. These variables
determine the process behavior in a manner similar to the MVs, but un
like them, DVs cannot be manipulated. Consequently, we have to accept the
presence of these disturbances and the resulting effects on the processing.
In the best case, the disturbances affecting processing are measurable. Their
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ultimate effect on product properties or on the process may be predictable
over a certain time horizon. In model-based control terminology these mea
sured disturbances are often referred to as DVs. Unmeasured disturbances
are then considered to be part of the process output noise. Figure 2.42 gives
a graphical representation of a process and the variables defined above.

As an example, a melting tank can be used. The most relevant variables
for control of a melting tank are:

a controlled variables (CVs)

o manipulated variables (MVs)
total fuel flow
fuel-flow distribution
air/fuel or oxygen(/air) /fuel
ratio for each burner
cooling air

• disturbance variables (DVs)
batch composition (unmeasured disturbance)
batch humidity (measured or unmeasured disturbance)
ambient temperature (measured or unmeasured disturbance)
draught (unmeasured disturbance)
furnace wear (unmeasured disturbance)
foaming (unmeasured or measured disturbance)
Wobbc index or fuel composition (measured or unmeasured disturbance)

In general, the process installations as well as the processes running in
the processing equipment exhibit inertia. When a variable is adjusted, for
example a gas flow, the process starts changing for a while. After the so-
called response time, it arrives at a new steady state that corresponds to
a new operating point. This dynamic behavior, where the process changes
over a characteristic time interval in response to a manipulation of a process
variable or a change in a disturbance variable, is called the dynamic behavior
of the process. A dynamic process model can describe the relevant dynamic
process behavior for the complete transition time interval. The step response
is a well-known example of such a dynamic model. The step response is
the response of process variables and product parameters on a unit step
adjustment of a manipulated variable.

Figure 2.43 gives an example. The step response in this figure shows how
the underlying process changes due to a step change at the input: it char
acterizes the changeover from one operating point as a function of time to
another operating point. Detailed analysis of the response in Fig. 2.43 shows
that the process output, after a short delay time of approximately 2 mm, ini
tially moves in the wrong direction for about 15 mm, after which the output
reaches its final value in around 80 mm.

The step response model is a specific model representation of the process
dynamics. Other model types that represent dynamic behavior are impulse re
sponses, transfer functions, differential-algebraic equations (DAEs), and state
space models. Each model type has its specific mathematical representation.

Process models can, within certain limits, be used for simulation and pre
diction of the expected process responses on arbitrary input signals applied
to manipulated variables and/or disturbance variables of the process. Con
sequently these models enable the prediction of the process outputs in the
near future on the basis of known adjustments on the manipulated variables
and known behavior of the measured disturbance variables in the recent past.
The process models can also be used to determine which manipulated variable
adjustments are to be applied to the process in order to bring it efficiently

Step response

0 20 40 60 80 100 120 Fig. 2.43. Step-response repre
Time 1mm sentation of a process transfer
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Fig. 2.42. General representation of a process and the defined variables
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to a desired state, i.e., in accordance with the business goals. The bottom
line is: IViodels make process behavior more predictable, controllable, and op
timizable. Model-based control systems explicitly use the knowledge of the
dynamic behavior of the process, as described by the models, to determine
the best possible control strategy under given market and production cir
cumstances. In the design of cla~ical PID control systems the model is only
implicitly applied for determination of the controller F, I, and D parameters.

2.4.2 Model-Predictive Control

A model-predictive control (MPC) system is an ideal tool for control of mul
tivariable processes. IViultivariable processes are processes whose inputs in
fluence more than just one process output simultaneously. Characteristic for
IvIPC is that the control strategy can be adjusted for each calculation of a
following control action. As a result, MPC is very flexible for changing condi
tions such as, for example, changing requirements, switching-off or failure of
sensors and actuators. Moreover. IVIPC can deal with constraint-type require
ments, i.e., it can keep both manipulated as well as, to some extent, controlled
variables in certain predefined ranges. MPC has been developed within the
industry, emerging from the need to operate processes tighter within oper
ational and physical constraints of the process and applied equipment, and
closer to the operating constraints that maximize margins. From its initial
development [2.163, 164], MPC has grown to a widely proven technology, es
pecially in oil refining. The dominant use of IVIPC in oil-refining applications
implies robustly pushing the controlled process to operating conditions that
maximize margins and minimize process variability. For most refinery appli
cations, this results in maximization of the throughput of a certain product
mix. In glass manufacturing, the benefits mostly stem from tight control of
product quality, increase of average furnace load, increase of efficiency, tight
control of emissions and minimization of energy consumption.

The success of IVIPC within industry is to a large extent due to the fact
that MPC meets industrial requirements. These requirements can be roughly
categorized into three groups.

• Operational requirements: processes have to be operated within a prede
fined region (safety, emissions, wear, etc.).

• Product-quality requirements: products have to be produced at specifica
tions (Cpk values, 6-sigma ranges, etc.).

• Economic requirements: products must be produced in such a way that
margins are maximized, without violating operating constraints.

Figure 2.44 shows a block diagram of an MPC control system. Initially,
fv’IPC did not explicitly take constraints into consideration. Refinements of
the technology developed at the end of the 1980s allow constraints on both
input and output variables to be considered in the formulation of the control
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Fig. 2.44. Schematic representation of a model-based process control system

strategy. A paper by Qin and Badgwell [2.165] gives a good overview of the
MPC technology that is currently applied in industry.

MPC Without Constraints

The basic principle of IVIPC can best be illustrated on the situation without
constraints. The finite impulse response (FIR) modeL describing the dynamic
behavior of a process with m inputs and p outputs, can be used to demon
strate how input manipulations u(t) applied to the process at discrete time
instances in the past t — k—i, influence the process output y(t) at the current
discrete time instance t k:

y(k) = ~AI~u(k i)

where the p x m matrix elements M~ are the so-called finite impulse response
(FIR) parameters or lVlarkov parameters.

Figure 2.45 shows the way the FIR model of the process is applied for
constructing the prediction of the process outputs. The input signal u(t) is
decomposed into a sequence of time-shifted “impulses” that compose the
original process input after summation. The bars with length a~ represent
the impulses with amplitude a~ that enter the process. They are the input
signal samples resulting from sampling of the continuous process input sig
nals. The process output signals ~j result from summation of all elements at
row i of the impulse response elements scaled by the sample amplitude of the
corresponding input signal sample.

Controlled
variables

(2.134)
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Construction of the prediction of process output signals with the FIR

Hence, the FIR model can be used to describe the process output y(t) at
discrete time instances t k i in the past. More interestingly, when the
input manipulations u(t) at the discrete time instances in the future t k
are known, the model can also be used to describe the evolution of the process
output y(k + i) at discrete time instances in the future:

the influence that future input manipulations over the time horizon [t, t + N~~]
have on the future outputs over the time horizon [t, t + Nf], the predicted fu
ture behavior at the process outputs at time instant t over the time horizon
[t, t + Nf], say Yf(t, Nf), is determined by

Yf (t, Nf) Yfp (t, Nf, N~) + Y1~ (t, Nf, N~) (2 136)
H (Nf, N~) U~ (t, N~) + T (Nf, N~) Uf (t, N~)

where H (Nf, N~) is the so-called Hankel matrix:

MN~ ..M2 M1
MN~+1 . . M3 M2

H (Nf, N~) = . . . . . . (2.137)

IllN +Nf 1 . . 1’4Nf 1 -1’4Nf

This Hankel matrix is the tool that enables prediction of future process output
responses on the basis of known past process input signals.

T (Nf, N~) is the so-called Toeplitz matrix:

M0 0 . . 0
M1 M0 0
M2 M1 M0

T (Nf, N~) . (2.138)
MN 1 Il/IN 2 Il/IN 3

‘~‘N Il/IN 1 2

1 1~1N1 2 MNf 3 MN~ N 1

This Toeplitz matrix is the tool that enables prediction of future process
output responses to future process input manipulations.

Three vectors, the vector containing the predicted future process output
responses, Yf (t, Nf) e ~ ~ the vector with past process input manipu
lations, U~ (t, N~) e ~(N~m)x1, and the vector with the future process input
manipulations, (I~ (t, N~) e ~p~(N m ~ are defined as

ZM~u(k —i)

YZM0u(k + 1—i)

~ZMu(k+2—i)

ZMu(k+3—i)

Z M0u(k+4—i)
tO

..M2M1M00 0

..M3M2M1M0 0

..M4M3M2M1M0

..M5M4M3M2M1

0..

0..
M0 0

y(t+1)
Yf(t,Nf) . , U(t,N~) = . and

Ey(t) 1 ~u(t—N~)1

(2.135) I y (t + Nf — 2) u (t — 2)
Lyt+Nf-1i u(t-1) j

The future behavior of the process outputs is therefore determined by both
the input manipulations applied to the process in the past (u(k — i)ji = ru(t) 1
1,2,...) and the future input manipulations (u(k + i)Ii = 0, 1,2,.. .). u (t + 1) I

By defining Yf~(t, NfN~) as the influence that the past input manipula- u (t, N~) I
tions over the horizon [t — N~, t — 11 have on the future outputs over the time (t + N~ 2) I
horizon t, t+N~j at time instant t and by defining in addition (Yff(t, Nf, N~) as u (t + N~ 1)]

2.139
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In MPC terminology, the horizon t to t + Nf — 1 is called the prediction
horizon. The control horizon equals the time horizon t to t+N~—1. The above
distinction between the influences of past and future input manipulations on
the predicted future behavior of the process outputs is visualized in Fig. 2.46.

The distinction between the influence of the past and future input ma
nipulations on the future outp~tts, respectively Yf~ (t) and Yff(t), is relevant
for MPC because

• past input manipulations have already been applied to the system and are
therefore fixed;

• future input manipulations have not yet been applied to the process and
are therefore still free to be chosen.

In MPG, these future input manipulations are chosen such that the future
behavior at both the process outputs and process inputs is close to the desired
behavior of these process variables. Hence the future input manipulations
are the degrees of freedom that can be used to optimize the future process
behavior. MPC uses a quadratic criterion function for the minimization of
deviations of the desired process output responses:

mm { IIWsp ~ (t, N~) — Yf (t. Nt))jI~ + Up~U (t, N~)II~ }
U ( N~)

u(t) u(t-1)
u(t+1) u(t)

AU (t, N~) = u (t + 2) — u (t + 1)

u(t±N~— 1) u(t±N~—2)

with

Fig. 2.46. Relation between the past and future process inputs and the future
process outputs

The above optimization problem is solved for each controller interval because
new information, i.e., new measurements from the process, becomes available
to refine the solution. This is called the receding horizon principle of the
controller. The input manipulations are determined over the complete control
horizon. However, only the first sample of the calculated control solution
vector u(t) is actually sent to the process. The matrix ~ is an output
weight that enables the control system designer to define the distribution of
the error between the desired output behavior Yret(t, Nf) and the actually
predicted future process output behavior Yt(t, Nf) over the different outputs.
In MPC, the matrix I47~~ generally is a diagonal matrix with a constant value
per output. This value is frequently specified by its inverse: the so-called
equal concern factor. The move weight p is also a diagonal matrix and is
specified by one parameter per input. This parameter is frequently called the
move suppression factor. The move suppression factor is used to trade-off fast
changes of the corresponding input against the other inputs and against the
outputs.

Observe the dominant role that the process model plays in the above
formulation of the control problem. It is clear that the attainable performance
of the controller is closely related to the quality of the applied process models:
Accurate models enable high-performance control.

In the prediction of the future output behavior it is easily possible to in
clude disturbance models, i.e., models describing the relation between mea
sured disturbances and the process outputs. Including the effect of these
disturbances on the future output behavior in the optimization criterion en
ables the optimization to account for these effects during the calculation of
the future input moves. In fact, this is a feed-forward control action, i.e., the
controller already starts compensating for the disturbance before it actually
becomes visible at the process output. This resembles the behavior of a person
who retracts when someone tries to hit him/her. Retracting minimizes the
pain of the offense. The incorporation of disturbance models in the controller
may drastically improve the controller performance: instead of waiting for
the negative effects of the disturbance to become fully visible at the process
outputs, they are anticipated already on the basis of predictions of process
outputs. But note that, because the model predicts the effect of the measured
disturbance at the output, the actual improvement is completely determined
by the quality of the predictions of the disturbance model.

MPC with Constraints

An essential extension of MPC with respect to the IVIPC described in the
previous section, is the optimization with constraints. The inclusion of con
straints gives the MPC the characteristics and flexibility desired by industry.
Constraints can be defined on process inputs, process outputs and additional
variables whose relation with the process inputs can be described by some
linear function:

(2.140)

Past

(2.141)

Future

Inputs

— — / ~ \__ /‘

Hankel matrix Toeplitz matrix

Outputs ~Y t /

~ ~ ~

Timek
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{ IWsp (Yref (t) Yf (t)) ~ + IIP~Jf (t)II~ } (2.142)

subject to
~L(i) <u(t+i) <_Ofu(i)
7L(1) <~u(t+i) ~U(i)
/3L(i) ~y(t+i) ~/3u(i)

Expressions cCL, ~3L, ~yL, and au, /3u, “u represent the respective lower
and upper limits defined on input variables, output variables, and the rate
of change in the input variables. The constraints not only give the control
system its desired flexibility, but also enable the implementation of complex
control strategies with control hierarchies, as discussed in the introduction to
this section. Constraints are, for example, frequently used to define the oper
ational requirements, i.e., the operational envelope within which the process
may be operated. Note that constraints in general will limit the attainable
performance of the process as soon as they become active. This is due to the
fact that each active constraint implies loss of a degree of freedom in pro
cess operation. Constraints usually originate from safety limits and operating
limits related to equipment constraints, which take priority over fulfilling the
criterion function. The criterion function usually represents process perfor
mance considerations. The process performance directly relates to process
economics.

2.4.3 Extensions of the MPC Technology

The generation of MPC systems widely applied to oil-refining processes has
a number of limitations that restrict broader industrial applicability. On the
one hand, the restrictions are caused by the way the criterion function is
minimized. On the other hand, the models applied in most of these MPC
systems have severe limitations.

The first restriction is related to the fact that the solution of the criterion
function, subject to constraints over the complete future horizon at each sub
sequent sampling instant, still requires significant computational power. The
actual optimization problem is therefore in general approximated by a sim
plified problem requiring less computer power. A generally applied approach
is to split the original formulation into two sub-problems: a steady-state prob
lem and a dynamic problem, which is successively solved. The steady-state
problem rigorously defines an optimal solution that fulfils all constraints and
minimizes the criterion function at steady-state conditions. The solution for
the input and output variables obtained from the steady-state optimization
is then used as a target for the dynamic optimization. The dynamic opti
mization defines the path that brings the process variables from their current
values to these steady-state targets. In particular the rigorous implementa
tion of the optimization of the dynamic control problem is computationally
demanding. A number of simplifications are applied especially in this step.

These simplifications may significantly deteriorate the dynamic performance
of the controller.

Another limit to the performance stems from the models applied in these
MPG systems and the identification techniques used to determine these mod
els. Nowadays, the most frequently applied types are

• finite step response (FSR) models,
• finite impulse response (FIR) models,
• low-order transfer function (TF) models, and
• low-order state space (SS) models.

These models are obtained from dedicated identification tests applied to
the process. In general they describe only the part of the process dynamics
that is relevant for control. The low-frequency behavior, i.e., the slow process
responses and the steady-state process behavior, is well described by these
models. The restricted validity of the dynamic model is directly determined
by the identification techniques used. The fact that the models do not accu
rately describe the faster process dynamics relevant for control can have a
direct impact on the performance of the MPG. The restricted validity of the
dynamic model limits the MPG operation to a reduction of the variance of the
slow variations of the process outputs only. The controller cannot compensate
for the faster variations of the process outputs.

The quality improvement of critical product properties to be obtained
with the current MPG generation is therefore restricted. This is important
for problems where quality control, i.e., control of the so-called Cpk value
of specified product and process parameters is an important objective (see
Fig. 2.47).

The application of process-identification techniques for determination of
the models for the MPG system generally requires on-line tests, which can
cause a temporary loss of production. The associated high costs severely re

1 4 Probability density function

1.2 Cpk = minl{tol÷,tor} — mu 3s

1.0

~0.8
tol— :tol~

0
~O.4

0.2 CPk = 0.67_V~i Cpk

0
01234

Fig. 2.47. Optimization of the “capability” Cpk) of important process variables
and product parameters using model-predictive control

378

fori=1,2,3,...
fori=1,2,3,...
or i = 1,2,3

1.22

Am Property value
9 10
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strict the application field of MPC technology. Current process-identification
techniques almost always result in linear dynamic models. Sometimes simple
static, nonlinear functions at the inputs and outputs are applied to approx
imately describe nonlinear process behavior. This type of MPC systems is
therefore restricted in its ability to control fast changeover between different
operating points of the process o~nd batch processes.

Hybrid models, i.e., models obtained from the integration of first-principle-
based process models (e.g., CFD-based simulation models of melters, refiners,
and forehearths) and models obtained with process identification techniques,
are applied in the latest MPC systems. Hybrid models can not only increase
the accuracy of predictions, they may also drastically reduce the costs asso
ciated with the modeling phase.

The latest generation of MPC systems copes with the above-discussed
problems. These systems enable operation of processes closer to their physico
chemical operating limits. In this way, the problems posed in the introduction
regarding the requirements on flexibility, predictability, and complete repro
ducibility of process operations in conformity with defined specifications be
come solvable.

2.4.4 Application of MPG in the Glass Industry

A typical application of MPC in the glass industry is the control of crown,
glass, and bottom temperatures in melters, refiners, and forehearths.

Melters have particularly slow dynamics, typically with response times of
several hours up to one day. This is where model-predictive control performs
very well. It consistently updates and keeps track of all applied changes in
heating/cooling adjustments, and the way they work out on all individual
glass temperatures taking into consideration the full history of process ma
nipulations over several shifts. IVloreover, the process of glass melting is a
highly interactive system with both spatial and temporal flow patterns that
connect glass temperatures and the related glass-processing conditions in a
dynamic way. Every change in heating/cooling simultaneously affects almost
all glass temperatures and therefore the processing conditions relevant for
glass quality. The desired temperature profiles are adjusted in such a way
that the average residence time and the residence-time distribution together
with the time temperature history of each small volume of glass meet speci
fications that link to product quality.

Finding an optimum for the operation of such a process is not a straight
forward task. In general, there are three optimization criteria that should be
satisfied with decreasing priority:

1. safety — constraint demands to protect the construction and the equip
ment from damage;

2. quality contro] to meet product specifications and imposed environmen
tal constraints;
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3. economic optimization of operation maximize efficiency and minimize
energy consumption.

To protect the furnace from unacceptable control solutions (e.g., chang
ing the heating/cooling too fast, damaging the construction), constraints on
heating/cooling levels and crown-temperature profiles and ranges are applied.
This means that the IVIPC will never violate these safety constraints in order
to satisfy a control objective of a lower priority: “Safety first!”

Most of the time, the process is controlled in a safe operating region,
with room to move the 1VIVs for the purpose of keeping quality variables on
target with minimum variability despite ever-present disturbances, such as
changing batch compositions and temperature disturbances.

A final optimization objective is minimization of the operating costs. In
the glass industry, this mostly means saving energy, maximizing throughput
at a given quality level, and maximizing efficiency. For each particular control
interval, the “cheapest” solution satisfying all constraints and quality require
ments is determined. The combined adjustments on all heating and cooling
flows is additionally chosen to minimize costs. In particular for melting fur
naces, which typically consume a lot of fuel, the potential for cost reduction
is considerable in general.

Normally, a refiner connects to a number of forehearths for the distri
bution of the glass melt to the forming equipment (e.g., a press for TV
panels/funnels, containers and equipment for drawing tubes). Production
problems or product changeover on one forehearth can severely degrade the
operation of the other forehearths in the form of (inlet) temperature distur
bances. Applying 1VIPC on the refiner can anticipate problems and minimize
the disturbing effects. Furthermore, the individual MPC of each forehearth
can compensate for the remaining disturbances, long before the effect is felt at
the forehearth exit, where the forming process takes place. Because normal
forehearths use both heating and cooling, conflicting simultaneous adjust
ments of heating and cooling flows can be avoided, thus saving some energy,
without degrading quality control.

Figure 2.48 shows the dynamic interaction matrix of a typical forehearth,
exhibiting the step responses from each IVIV to each CV and the corresponding
gains. As can be seen, almost all CVs are simultaneously influenced by almost
all MVs. This is called the “multivariable” character of the process.

A control objective for MPC control on a forehearth in general is to
drive glass-temperature distribution on a vertical cross section near the bowl
or gobber to a specified profile. The aim is to improve the temperature
distribution conditions of the glass to an optimum profile for further process-
ing.

Figure 2.49 shows a typical operator interface to an MPC-controlled fore
hearth (ProfileExpert®). Notice the graph, showing converging glass temper
atures, after the IVIPC was switched on.
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Fig. 2.48. The multivariable character of a typical forehearth model applied in a
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Figure 2.50 shows these converging temperatures in more detail. Fig
ure 2.51 shows a comparison of the behavior of model prediction versus the
actual behavior of one of the controlled temperatures. The actual tempera
ture changes match the prediction very closely.

An example of an industrial application of the model-predictive control
system is the control of a forehearth of a TV-panel production line intended
to stabilize temperature profiles and to minimize gob-weight variations.
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Fig. 2.49. Model-predictive controller applied to control glass-temperature homo
geneity

Fig. 2.51. Actual past and model-predicted future temperature during transition
control
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Figure 2.52 shows a comparison between the performance of a traditionally Conclusion and Outlook
controlled process and the results obtained with the model-predictive control An overview has been given of model-based control systems, which are more
system under similar conditions. .and more applied in process industry. The discussed MPC technology is

widely applied in oil-processing industries today. An extension of this proven
technology that is optimized for control of glass-manufacturing processes is
an emerging new technology in glass manufacturing. The bottom line driver
for applying this technology is its widely demonstrated capability to improve
business performance. The break-even point of investments in applications of
this technology is in general reached well within one year.

Dedicated product development based on the MPC technology is ongoing
to extend its applicability to a larger range of processes. The latest develop
ments of the MPC technology in this respect are:

• robust high-performance control of melters, refiners and forehearths. These
control systems stabilize temperature profiles at conditions that result in a
significant reduction of the variance of critical product parameters and pro
cess variables. This enables production at desired Cpk values for specified
product quality parameters thus maximizing the margins on the products.

• control of changeovers from one operating point to another along a trajec
tory in a completely predictable and reproducible way (maximum flexibility
with regard to color, puil, or product-type changes);

• realization of control systems that provide a good balance between devel
opment and maintenance costs on the one hand, and profitability on the
other hand.

The power of the latest MPC technology has been illustrated by a de
scription of typical MPC applications in the glass industry. MPC can cope
with safety, quality, and economic demands in the proper context. It is ideally
suited for application to typical glass processes with their dense interaction
matrices and extremely slow dynamics. MPC technology is currently rapidly
developing. Dedicated MPG-based applications for a broad range of glass-
manufacturing processes are just entering the market.
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Henry Eisermann, Ulrich Lange, Horst Loch, Giinter Weidmann

Introduction

Tracer particles in high-viscosity fluids, such as polymer or glass melts, ex
hibit complex kinematics during mixing processes. At first glance, this is sur
prising because high viscosities are usually associated with “simple” flows.
Nevertheless, a more thorough analysis shows that deterministic chaos is at
work and that this is synonymous with good mixing.

The purpose of this work is to present feasible mathematical methods for
a realistic assessment and improvement of the mixing effect of stirrers in glass
melts. This is important because platinum stirrer systems are very expensive,
and if they do not guarantee the desired homogeneity, the economic conse
quences for the production are serious. Of course, the same methods can also
be applied for the analysis of the mixing effect of melting and refining tanks.

Predicting the homogeneity of glass melts quantitatively after the mix
ing process is difficult if all parameters of influence, such as diffusion and
chemical reactions, are taken into account. However, statements about the
absolute mixing quality are not necessarily required in practical process de
velopment. It is usually more important to improve and standardize already
existing stirrers, and this can be achieved by comparing the mixing intensity
of different types of stirrers. In this chapter, we only discuss the most funda
mental mixing mechanism, namely the mechanically induced increase of the
interfacial area between striae and basic glass, which is called mixing in the
narrow sense.

3.1.1 Description and Quantification of Mixing Processes

The description and evaluation of the homogenization of glass melts is a
complex problem. In this introductory section, we will precisely define the
task and give an outline of a feasible working strategy.

The following considerations introduce the matter very briefly. They are
far from being complete. The purpose is simply to make the state-of-the-art


