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Chapter1
General introduction

The world’s energy demand has increased enormously in the past decades. Com-
bustion processes play a major role in the conversion of energy, which is needed for
transport, the generation of electrical energy, and heating devices. Recently, com-
puter simulations of complex burner systems have become an important tool in the
design process of modern combustion applications. Therefore, much effort is put in
the development of models, which are both accurate and efficient. The subject of this
thesis is the development and application of methods that are used to make combus-
tion models more efficient, which means that the computational effort to solve these
models is reduced without losing too much accuracy with respect to the original
models. Special attention is paid to the coupling between chemical and transport
processes, such as diffusion and convection, which plays an important role in an
accurate description of combustion processes.

This chapter starts with a description of the research objectives and motivation.
In the subsequent section, a general introduction to combustion is given. In the final
section, an overview of the thesis is presented.

1.1 Research motivation and background

In this section, a motivation for the research is given. Firstly, the importance of
combustion in our daily lives is placed in a historical perspective. Secondly, a num-
ber of problems, encountered in current combustion modelling is briefly discussed.
Finally, the research objectives are presented.

1.1.1 Historical background

Since the early years of human civilisation, people were fascinated by fire. From the
moment people were able to control fire, it has played an increasingly important role
in our lives. Initially, fire was used directly, for instance for domestic heating, cook-
ing, the creation of new arable land or as a weapon of destruction in wars. Over the
years, as tools became more sophisticated, fire was used more and more indirectly.
The generated heat is converted into kinetic energy, for instance in internal combus-
tion engines, gas turbines or for the propulsion of rockets. Nowadays, our daily life
strongly depends on combustion of fossil fuels. With the increasing energy demand,
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also the need for fuels increased. However, the negative side effects of combustion,
such as the emission of pollutant exhaust gases, soot, and unburnt hydrocarbons,
have become more and more evident. Pollutant gases are for instance nitric oxides
(NOx), sulfur oxides (SOx), and carbon dioxide (CO). Furthermore, the resources
of fossil fuels are running out, even though it is expected that they will last for the
next 50-100 years [41].

Since a few decades, the search for alternative sources of energy that are not
based on combustion, like e.g. solar and wind energy has emerged. However, it is
expected that combustion will play a key role in the energy conversion in the next
decades, for instance with the advent of biomass and hydrogen combustion. To in-
crease the efficiency of current and future combustion systems, severe legislations
are introduced to restrict the amount of pollutant exhaust gases. These legislations
put high demands on the design of new combustion systems. Advanced combus-
tion models play a key role in the design processes of new combustion systems.
Detailed information is needed to predict e.g. pollutant exhaust gases, flame stabil-
ity, and temperature profiles. However, the currently available advanced models
are too complex to be used in the simulation of practical burner systems. To enable
the modelling of complex burner systems, much effort is put in the development of
simplified models, while maintaining the accuracy.

1.1.2 Problem definition

Combustion has been an important research topic for hundreds of years. Initially,
the studies were focused on the understanding of the basic principles of fire. Most of
the studies were experimental or analytical. The analytical studies were restricted
to strongly simplified models. With the introduction of modern computers, more
sophisticated models were introduced, which incorporate detailed descriptions of
chemical kinetics and molecular transport. However, due to the complexity of these
systems, detailed studies of practical combustion systems are still prohibited. For
example, a detailed reaction mechanism may contain hundreds of species and even
more reactions. For each species a differential equation must be solved. In addition,
these equations are strongly coupled and highly non-linear, which make them hard
to solve [58].

To be able to do simulations of more complex burner systems, several strate-
gies can be followed. Besides using sophisticated and effective numerical methods,
specific modelling strategies are introduced. Two important categories are the so-
called chemical reduction techniques and flamelet techniques. The main purpose of
these techniques is to simplify the three-dimensional detailed combustion models,
without significantly harming the accuracy. Both techniques are based on the ob-
servation that the general behaviour of a flame is characterised by a wide range of
time and length scales. In chemical reduction techniques, it is assumed that a large
number of fast chemical processes can be considered in steady-state. The identity
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and the number of processes, which are taken in steady-state, depend on the re-
duction method chosen. In flamelet methods, a flame is considered as a thin front,
which can be considered as quasi one-dimensional. The internal structure of the
flame front can be described by a set of one-dimensional equations, i.e. the flamelet
equations [39, 76].

A number of reduction methods has been introduced in the past, e.g. [54, 55, 58,
75]. In chapter 3, an overview of the basic principles of reduction methods is given,
in which these methods are explained briefly. The Intrinsic Low-Dimensional Mani-
fold reduction method [58] is treated in more detail, as its theory is used in the
remainder of the thesis. In general, a chemical reduction method is used to decrease
the size of the original reaction mechanism in a pre-processing step. The reduction
methods have been used successfully in numerous applications. However, during
the construction of the reduced mechanism, only the chemical processes are taken
into account. Nonetheless, the complete combustion process is a combination of
chemical, convective and diffusive processes. The evaluation of the fast time scales
from chemistry alone and the disregard of transport in the construction of the re-
duced mechanism may lead to inaccuracies in the model. These inaccuracies gen-
erally occur in colder parts of the flame, where chemical and transport scales are of
the same order.

A solution to this problem was introduced by Van Oijen and De Goey [69], who
introduced the Flamelet-Generated Manifold (FGM) method. The FGM method
shares the idea with flamelet methods, that a flame can be seen as an ensemble of
one-dimensional flames. The reduced mechanism obtained with FGM is based on
the solution of premixed laminar flames, so both transport and chemical processes
are taken into account. The FGM method has been used with success in a number of
simulations [37,69–72]. However, the mathematical foundations of the FGM method
are less strong than in some of the reduction methods, like for instance the Intrinsic-
Low Dimensional Manifold (ILDM) method. Furthermore, as the FGM method is
based on the solution of premixed flames, its applicability to flames, which are non-
premixed and partially-premixed, is questionable.

Summarising, the general issue of this thesis is twofold. Firstly, even in reduced
models, an accurate description of the coupling between chemical and transport
processes is necessary for an accurate prediction of the flame behaviour. Secondly,
even though the FGM reduction method, which incorporates this coupling, has
proven to be very accurate, its mathematical background is less strong than in some
other reduction methods, like for instance the ILDM method.

1.1.3 Research objectives

The main purpose of this research is the further testing of existing reduction tech-
niques and the development of new reduction techniques, with respect to the prob-
lems mentioned in the previous section. The study of the reduction methods fo-
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cuses on two methods, which have been introduced in the past, i.e. the Intrinsic
Low-Dimensional Manifold (ILDM) method [58] and the Flamelet-Generated Mani-
fold (FGM) method [69]. The general theme in this study is the coupling between
chemical and transport processes and its effect on the flame behaviour. Firstly, to
investigate the importance of an accurate description of molecular transport, sev-
eral transport models are tested in a one-dimensional premixed flame configuration.
Secondly, the major advantages and disadvantages of the FGM and ILDM method
are studied. For example, the applicability of the FGM method, which was orig-
inally designed for premixed combustion, is tested in an environment that is not
purely premixed. Finally, the possibility of the creation of a new reduction method,
which combines the benefits of both the studied methods is investigated. This re-
duction method is referred to as Phase Space ILDM (PS-ILDM). This new method
should be a reduction method, which takes transport processes into account and has
a strong mathematical foundation.

1.2 Combustion: general principles

At first, it must be pointed out that several flame types can be distinguished. Gen-
erally, combustion can be described as an exothermic reaction between a fuel and
an oxidiser, but each different flame type is characterised by different processes. For
instance, in combustion of solid fuels (e.g. wood and coal) and liquid fuels (e.g. kero-
sine and gasoline), melting and vaporisation processes are important for the flame
behaviour. These processes are absent in gaseous combustion. It should be noticed
that most of the combustion chemistry normally takes place in the gaseous phase.
The identity of gaseous flames strongly depends on the extent of premixing of fuel
and oxidiser. Two limiting cases can be identified: a purely premixed flame and a
purely non-premixed flame.

In general, a flame front can be seen as a thin layer in which the chemical conver-
sion of fuel into products takes place. Figure 1.1 shows an example of a thin flame
front surrounded by non-reacting gases. In case of a premixed flame, the gases on
one side of the flame front are the fuel and the oxidiser. In the flame front, the fuel
and oxidiser react and the burnt gases are found on the other side of the flame front.
In case of a non-premixed flame, the flame front separates the fuel from the prod-
ucts. In the figures 1.2 and 1.3, the internal structure of the flame front is presented
schematically for a premixed flame and a non-premixed flame, respectively.

A typical premixed flame structure is shown in figure 1.2a. A premixed flame
is defined as a region in space, where a typical flame variable Y varies between
its unburnt value Yu and its burnt value Yb. This flame variable can be, for in-
stance, the temperature, the density, or a species mass fraction. In the flame front,
flame surfaces are defined as iso-contours of the variable Y . Figure 1.2b shows pro-
files of a number of flame variables as a function of the coordinate perpendicular
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non-reacting gases

thin flame front

non-reacting gases

Figure 1.1 : A schematic example of a thin reacting flame front surrounded by non-reacting
gases.

to the iso-contours of Y . Characteristic for a premixed flame is that the flame is
self-propagating. The propagation velocity is strongly determined by the laminar
burning velocity sL. Based on the ratio between sL and the speed of sound c, pre-
mixed flames can be separated into detonations (sL ≥ c) and deflagarations (sL < c).
As most flames in practical applications are deflagarations, the flames studied in
this thesis are restricted to deflagarations.

A non-premixed flame is defined as a region in space, where a typical flame vari-
able varies between its value in the fuel stream and its value in the oxidiser stream.
Figure 1.3a shows a typical non-premixed flame structure. For non-premixed flames,
the mixture fraction Z, which is a measure for the mixing of fuel and oxidiser, is of-
ten used as flame variable. Products are transported along the iso-contours of Z.
The internal structure of a non-premixed flame is shown in figure 1.3b. The figure
shows typical flame variables as a function of the coordinate s, which is in this case
the coordinate locally perpendicular to the iso-contours of Z.

In practice, many combustion systems are neither purely non-premixed, nor
purely premixed. Therefore, the so-called partially-premixed flames are a special
field of interest. Figure 1.4 shows a schematic example of three different counter-
flow flame configurations. A counterflow flame is formed by two opposed jets,
which impinge and form a stagnation plane. If both jets are equal mixtures of fuel
and oxidiser, and the mixture fraction of the flows are within the flammability lim-
its, a so-called twin flame with two premixed flame fronts appears (figure 1.4a). If
one of the flows contains no fuel and the other flow contains no oxidiser, a single
diffusion flame appears around the position where the mixture fraction is equal to
its stoichiometric value (figure 1.4c). All other combinations of fuel and oxidiser can
be considered as partially-premixed flames (figure 1.4b). The partially-premixed
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Y(x, t) = Y

Y(x, t) = Y

oxidiser

fuel &

products

Y(x, t) = Y

s

(a)

preheat zone

oxidiser

fuel

intermediates

temperature

products

s

reaction layer
oxidation layer

(b)

Figure 1.2 : A schematic representation of a premixed flame. The left figure shows
a schematic example of a premixed flame front, whereas the right figure
schematically shows the internal structure of the premixed flame, as a func-
tion of the coordinate s.

flame shown in figure 1.4b is formed by a rich premixed and a lean premixed jet. In
this case, both the inlet mixtures are within the flammability limit, so two premixed
flame fronts appear. Between the premixed flame fronts, a diffusion flame front ap-
pears, where the remaining fuel from the rich premixed flame reacts with remaining
oxidiser from the lean premixed flame. In chapter 4, the counterflow configuration
is used to test the FGM method, which is based on the solution of premixed flames,
in a partially-premixed system. The major benefit of testing the FGM method in
this configuration, is that the gradient of the mixture fraction Z can be controlled
directly.

1.3 Outline of this thesis

In chapter 2, the equations that are used to model combuston processes are pre-
sented. The general conservation laws are derived. In addition, several closure
models that are needed to complete the system of equations are given. Furthermore,
a number of transport models is tested in a flame configuration, which is premixed
and one-dimensional.

In chapter 3, the general principles of chemical reduction methods are presented.
As reduction methods are generally based on steady-state assumptions of fast chem-
ical processes, a time scale analysis of transport and chemical processes in flames is
presented. Furthermore, a number of reduction methods is highlighted briefly. The



1.3 Outline of this thesis 7
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temperature
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Figure 1.3 : A schematic representation of a non-premixed flame. The left figure shows
a schematic example of a non-premixed flame front, whereas the right fig-
ure schematically shows the internal structure of the non-premixed flame, as a
function of the coordinate s.

ILDM method and the FGM method are treated in more detail, as these methods are
used in the remainder of the thesis.

In chapter 4, the FGM method is applied to a one-dimensional counterflow flame
configuration, which is partially-premixed (see figure 1.4). A comparison is made
with detailed computations and a standard non-premixed flamelet model. The ac-
curacy of the FGM method is evaluated by means of a time scale analysis of the
chemical and transport processes.

In chapter 5, a new reduction method is introduced, which will be referred to
as the Phase-Space Intrinsic Low-Dimensional Manifold (PS-ILDM) method. As
stated in the first section of this chapter, one of the objectives of this research is the
possibility to combine the benefits of the ILDM and the FGM method in a new re-
duction method. First, the equations that are used to define a PS-ILDM are derived.
The principles of the method are demonstrated by means of a simple but illustra-
tive example. In addition, manifolds are computed for several fuels and applied
in a simple flame configuration. Finally, in chapter 6, a number of conclusions is
drawn.
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ZRxZLZRxZL ZRxZL

y y y

non-premixed non-premixed
premixedpremixedpremixedpremixed

(b) (c)(a)

Figure 1.4 : A schematic representation of three counterflow flames. The arrows indicate
the flow direction and the flame fronts are represented by the grey regions. The
left figure shows a twin flame with two premixed flame fronts. The right figure
is an example of a non-premixed flame. The counterflow flame in the middle is
an example of a partially-premixed counterflow flame with three flame fronts.



Chapter2
Chemically reacting flows

This chapter presents the transport equations that are used to describe chemically
reacting flows. The analyses in the subsequent chapters are based on the equations
presented in this chapter. In the first section, the general conservation equations of
mass, momentum, energy and chemical components are given together with clo-
sure models for the pressure, the enthalpy and the flux terms. In section 2.2, an
expression is derived for the chemical source term. In the third section, a number of
transport models is discussed and tested, respectively. Finally in section 2.4, a short
summary is given of the models that are used in the remainder of this thesis.

2.1 Governing equations

Chemically reacting flows can generally be described by a set of differential equa-
tions, representing the conservation of mass, momentum, species mass fractions and
energy. The derivation of these equations can be found in, for instance, [96,99]. This
section only presents the resulting equations.

2.1.1 General conservation equations

The continuity of mass is expressed by the continuity equation

∂ρ
∂t

+ ∇· (ρu) = , (2.1)

where ρ is the mass density and u = (u, v, w)T is the mixture velocity. The momen-
tum equation yields

∂ρu
∂t

+ ∇ · (ρuu) = ∇ ·Π +

Ns∑

i=

ρYibi, (2.2)

with Π the stress tensor, Yi the mass fraction of species i and bi the external force
per unit mass acting on the ith species. The mass fractions Yi are defined as Yi = ρi

ρ
,

where ρi is the mass density of species i. The stress tensor Π can be divided into a
hydrostatic part and a viscous part according toΠ = −pI +τ , where p, I, and τ are
the hydrostatic pressure, the unit tensor and the viscous stress tensor, respectively.
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For each chemical component i ∈ [, Ns], which is present in the mixture, a con-
servation equation can be formulated, yielding

∂ρYi

∂t
+ ∇ · (ρuiYi) = si, i ∈ [, Ns] , (2.3)

with ui the specific velocity of species i. The chemical source term si represents
the change of mass due to chemical reactions. The specific velocity is defined as
ui = u + U i, with U i the diffusion velocity of species i. The combination of (2.3) and
the definition of ui results in the general equation for the species mass fractions,

∂ρYi

∂t
+ ∇ · (ρuYi) + ∇ · (ρU iYi) = si, i ∈ [, Ns] . (2.4)

Finally, the conservation of enthalpy h can be written as,

∂ρh
∂t

+ ∇ · (ρhu) =
Dp
Dt

+τ : (∇u) − ∇ · q +

Ns∑

i=

ρYi(u + U i) · bi, (2.5)

with q the heat flux vector. The convective derivative of the pressure is given by
Dp
Dt =

∂p
∂t + u · ∇p.

2.1.2 State equations

The total enthalpy h is defined as the mass-weighted sum of the specific enthalpies
hi, which follow from the caloric equation of state, i.e.

h =

Ns∑

i=

Yihi, hi(T) = href
i +

∫ T

Tref
cp,idτ , i ∈ [, Ns] , (2.6)

with cp,i and href
i being the specific heat and the enthalpy of formation of species

i at reference temperature Tref, respectively. The overall heat capacity at constant
pressure cp is given by

cp =

Ns∑

i=

Yicp,i. (2.7)

The specific heat cp,i and enthalpy hi can be obtained from well tabulated polynomial
fits [51].

The partial pressure of species i follows from the thermal equation of state. It is
assumed that all chemical components in the flame behave like an ideal gas. In that
case, the thermal equation of state is given by,

pi = niRT = nXiRT, i ∈ [, Ns] , (2.8)

with R and n the universal gas constant and the total molar concentration, respec-
tively. In addition, pi, ni, and Xi are the pressure, the molar concentration and the
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mole fraction of species i, respectively. The mole fractions are defined as Xi = ni
n and

are related to the mass fractions Yi, according to

Xi

M̄
=

Yi

Mi
= φi , i ∈ [, Ns] , (2.9)

with φi, Mi, and M̄ =
∑Ns

i= Xi Mi being the specific mole number, the molar mass of
species i and the average molar mass of the mixture, respectively. Combination of
Eqs. (2.8) and (2.9), while using ρ = nM̄, leads to

pi = ρRTφi , i ∈ [, Ns] . (2.10)

The total pressure is equal to sum of the partial pressures of all species, thus given
by

p =

Ns∑

i=

pi =

Ns∑

i=

ρRTφi . (2.11)

2.1.3 Transport fluxes

To be able to solve the conservation equations, expressions for the flux terms U i, q
and τ are needed. A complete description of the diffusion velocities U i , following
from the kinetic theory of gases [30], is given by

U i = −

Ns∑

j=

Dijd j − DT
i ∇ log T i ∈ [, Ns] , (2.12)

where Dij are the multicomponent diffusion coefficients of species i in species j and
DT

i are the thermal diffusion coefficients of species i. The second term on the right-
hand side of equation (2.12) is known as the Soret effect or the thermal diffusion
effect. Thermal diffusion tends to drive light species towards the hotter parts and
heavy species towards colder parts of the mixture [99]. The vectors d i incorporate
the effects of various state variable gradients and external body forces [98] and are
given by

di = ∇Xi + (Xi − Yi) ∇ log p +
ρ

p

Ns∑

j=

YiYj(b j − bi), i ∈ [, Ns] . (2.13)

Pioneering work on multicomponent transport modelling in flames was presented
by Dixon-Lewis [19]. He showed that thermal diffusion especially effects the pro-
files of light species. On the other hand, Rosner et al. [82] showed that the Soret
effect related to heavy species plays an important role in soot formation and during
the vaporisation process in spray combustion. Furthermore, previous studies have
shown that thermal diffusion has an important effect on the flame structure in two-
dimensional simulations of hydrogen/air and methane/air Bunsen flames [32] and
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hydrogen jet diffusion flames [45]. In addition, an accurate description of the heat
fluxes is necessary in the modelling of flames near a wall [80]. Unfortunately, the
evaluation of the diffusion coefficients Dij and the thermal diffusion coefficients DT

i

is a CPU-intensive task, because a matrix inversion is required. Therefore, in many
applications simpler expressions for the diffusion velocities are used. Some of these
expressions will be discussed in section 2.3.3 and tested in section 2.3.4.

The heat flux vector q is given by

q = ρ

Ns∑

i=

U iYihi − λ
′∇T + p

Ns∑

i=

DT
i di + qR, (2.14)

with λ ′, and qR being the partial thermal conductivity and the radiative flux vec-
tor, respectively. In the flames studied in this thesis, radiation is neglected. The
term with DT

i in equation (2.14) is known as the Dufour effect, which is in fact the
counterpart of the Soret effect in equation (2.12).

The last unknown flux term in the conservation equations is the stress tensor τ .
An expression for τ follows from the kinetic theory

τ = (κ −



η)(∇ · u)I − η(∇u + (∇uT)) , (2.15)

with p, κ and η being the hydrostatic pressure, the volume viscosity and the shear
viscosity respectively. Generally in flame simulations, the volume viscosity is neg-
lected [96].

2.2 Chemical reactions

This section presents the derivation of the chemical source term si, introduced in
equation (2.3). The chemical source term describes the rate of change of chemical
components due to chemical reactions. The conversion of a general hydrocarbon
CaHbOc, which is completely converted, can be described by the global reaction

CaHbOc + νO → aCO +
b


HO, (2.16)

with ν the stoichiometric fraction, which is specific for each hydrocarbon. For ex-
ample, the global reaction for the conversion of methane is given by

CH + O → CO + HO. (2.17)

The global reaction is the result of a large number of elementary reactions. Each
elementary reaction k ∈ [, Nr] can be written as

ν ′
kAi + · · ·+ ν ′

NskANs � ν ′′
kA + · · ·+ν ′′

NskANs , (2.18)
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where Ai, ν ′
ik, and ν ′′

ik denote a chemical component and the number of molecules
of type i that are consumed and produced during reaction k, respectively. A typical
elementary reaction is, e.g.

H + O � OH + O. (2.19)

It is assumed that the reaction rate rf of the forward reaction, i.e. from left to right,
is proportional to the concentration of the reactants, hence,

rf = kf[H][O], (2.20)

where the reaction rate coefficient kf is generally given by a modified Arrhenius
equation [96],

kf = ATβ exp
(

−Ea

RT

)
. (2.21)

In this equation, A, β, and Ea are reaction constants and the activation energy, re-
spectively. The rate of change of the species, which are involved in the forward
reaction of (2.19), is given by

d[H]

dt
=

d[O]

dt
= −

d[OH]

dt
= −

d[O]

dt
= −rf. (2.22)

The rate of change caused by the reverse reaction is analogous. The resulting reac-
tion rate r of this reaction is given by the difference between the forward and the
backward reaction rate, i.e.

r = rf − rb = kf[O][H] − kb[OH][O]. (2.23)

For a general reaction (2.18) with index k, the reaction rate is thus given by

rk = kf
k

Ns∏

i=

(ni)
ν ′

ik − kb
k

Ns∏

i=

(ni)
ν ′′

ik , k ∈ [, Nr]. (2.24)

The reaction rate coefficient kb of the backward reaction can be obtained using the
equilibrium constant keq = kf/kb, which is a function of the thermodynamic prop-
erties of the chemical components that are involved in the reaction. Finally, the
chemical source term si of species i is given by

si = Mi

Nr∑

k=

(νik ′′ − νik ′) rk, i ∈ [, Ns]. (2.25)

2.3 Evaluation of transport coefficients

The transport coefficients that arise in the conservation equations (2.12), (2.14), and
(2.15) are the diffusion coefficients Dij, the thermal diffusion coefficients DT

i , the
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partial thermal conductivity λ ′, and shear viscosity η. The evaluation of these coef-
ficients is an expensive and difficult task. Therefore, approximations of these coeffi-
cients are often used in practical applications. This section presents an overview
of several transport models, starting from detailed transport models, which are
obtained from the kinetic theory. Furthermore, the models are tested in a one-
dimensional premixed flame configuration.

2.3.1 Multi-component diffusion

The kinetic theory does not provide explicit expressions for the transport coeffi-
cients. To obtain the transport coefficients, a linear system must be solved. These
linear systems are usually referred to as transport linear systems (TLS) [29]. The
multi-component diffusion equation, derived from the kinetic theory is given by

di =

Ns∑

j=

XiX j

Dij
(U j − U i) +

Ns∑

j=

[(
XiX j

ρDij

)(DT
j

Yj
−

DT
i

Yi

)]
∇ log T, i ∈ [, Ns], (2.26)

where Dij are the binary diffusion coefficients [48]. As most combustion processes
take place at a velocity which is much lower than the speed of sound, pressure
is often assumed to be constant. Furthermore, the body-forces are assumed to be
equal for all species and thermal diffusion is neglected [99]. With these assumptions,
the multi-component diffusion equation reduces to the well-known Stefan-Maxwell
equation [63, 64],

∇Xi =

Ns∑

j=

XiX j

Dij
(U j − U i), i ∈ [, Ns]. (2.27)

To find the solution of (2.26) is a complicated and CPU-intensive task, because
a matrix has to be inverted. In addition, the system is singular. To remove the sin-
gularity, Hirschfelder et al. [48] proposed to take the diagonal elements Dii of the
diffusion matrix equal to zero. However, this assumption leads to a non-symmetric
diffusion matrix, which is incompatible with Onsagers reciprocity relations for ir-
reversible thermodynamics and therefore less useful in chemically reacting flows
[18, 94]. The coefficients used here, are the diffusion coefficients proposed by Wald-
mann and Trübenbacher [95]. These coefficients meet the Onsagers reciprocity re-
lations, leading to a symmetrical diffusion coefficient matrix with positive diagonal
terms. The diffusion coefficients are computed with the transport library EGLIB by
Ern and Giovangigli [31]. The diffusion matrix computed by EGLIB is symmetric.
Furthermore, it satisfies the constraint

∑Ns
i= YiDij =  such that

∑Ns
i= YiU i = .
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In the EGLIB library, the TLS is solved in a computationally efficient manner,
using a conjugated gradient method, cf. [42]. This method resulted in a new expres-
sion for the diffusion matrix D. The procedure has lead to a new expression for the
diffusion coefficients Dij. Ern and Giovangigli showed that the diffusion matrix can
be approximated by a convergent series expansion

D[k] =

k∑

l=

(P(I −Υ∆))lPΥPT, (2.28)

where P is a projection matrix, given by Pij = δij − Yj for i, j ∈ [, Ns], with δij the
Kronecker delta. The matrix ∆ is given by

∆ii =

Ns∑

j=, j 6=i

XiX j

Dij
, i ∈ [, Ns], (2.29)

∆ij =
XiX j

Dij
, i, j ∈ [, Ns], i 6= j. (2.30)

Finally, Υ is a diagonal matrix given by Υ = diag (Dm/X, . . . , DNsm/XNs), where
Dim are the mixture-averaged diffusion coefficients [47], obtained from

Dim =
 − Yi

∑N
j 6=i X j/Dij

, i ∈ [, Ns]. (2.31)

The diffusion coefficient Dim denotes the diffusion of species i into the mixture. The
binary diffusion coefficients Dij are obtained from fitted polynomials [51].

The first term in the series expansion, i.e. D[], corresponds to a mixture-averaged
diffusion model [47], with a corrected diffusion velocity [49, 73]. This model will
be discussed briefly later in this section. The second term in the series expansion
corresponds to a new expression for the diffusion matrix, first introduced by Ern
and Giovangigli, cf. [29].

2.3.2 Other transport coefficients

In addition to the diffusion coefficients Dij and the thermal diffusion coefficients DT
i ,

the shear viscosity η and the partial thermal conductivity λ ′ can also be obtained by
solving the transport linear system, hence with the EGLIB library. However, this is
a CPU intensive operation. In literature, several expressions for the shear viscosity
are found. For instance, the mixture-averaged shear viscosity η according Wilke’s
approximation is given by [97]

η =

N∑

i=

Xiηi
∑N

j= X jΦij
, (2.32)
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with ηi the viscosity of species i. The parameterΦij is given by

Φij =
√


(
 +

(
Mi

M j

)− 


)(
 +

(
ηi

η j

)− 

(

M j

Mi

)− 


)

. (2.33)

In the calculations with simplified diffusion models, an approximation for the par-
tial thermal conductivity coefficients λ ′ is used [61].

λ ′ ≈ 






Ns∑

i=

Xiλi +

(
Ns∑

i=

Xi/λi

)−

 , (2.34)

with λi the conductivity of species i. This approximation has hardly any effect on
the burning velocity, so it can be used without further consequences. The values of
the viscosities ηi and conductivities λi are obtained from fitted polynomials [51].

A more simple relation for η and λ ′ is obtained by a fitted exponential function
[86],

η

cp
= α

(
T

Tref

)β

, (2.35)

and
λ ′

cp
= α

(
T

Tref

)β

, (2.36)

with Tref =  K. The fit parameters α, α, β, and β are obtained from de-
tailed computations. Smooke and Giovangigli [86] found that η/cp and λ ′/cp do
not strongly depend on pressure, neither do they strongly depend on the stoichio-
metry of the mixture, at least for lean methane/air mixtures. In section 2.3.4, the fit
parameters for several flames are presented.

2.3.3 Approximating diffusion models

This section gives an overview of several empirical diffusion models, which are
used to save computing time. First, a so-called mixture-averaged model with dif-
ferent flux corrections is presented. Subsequently, a model with constant non-unit
Lewis numbers and a model with unit Lewis numbers is given. The user manual of
CHEMKIN [51] also presents an overview of several approximating models, but in
this work the number of empirical models is restricted. An overview of a number
of approximating models is given by Coffee and Heimerl [16, 17].

The first term in the series expansion (2.28) is given by

D[] = PΥPT. (2.37)

This expression corresponds to a mixture-averaged diffusion model [47], with a
mass correction diffusion velocity. The symmetric projection with P ensures sym-
metry of the diffusion matrix, so that it satisfies Onsagers reciprocity conditions.
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Another often used approximation for the diffusion matrix can be written as

D = PΥ . (2.38)

This corresponds with a mixture-averaged diffusion velocity with a constant correc-
tion velocity for all species. The corrected velocity is given by U c

i = U i −
∑Ns

j= YjU j

[78], where the diffusion velocity is given by

U i = −
Dim

Xi
∇Xi −

DT
i

T
∇T, i ∈ [, Ns] . (2.39)

However, this method leads to a non-symmetric diffusion matrix. Finally, it is pos-
sible to use Eq. (2.39) to calculate the diffusion velocities and to obtain mass conser-
vation by applying a correction only to the species with the largest mole fraction,
i.e. YNs =  −

∑Ns−
i= Yi. It can be shown that this correction may induce counter gra-

dient diffusion of the Ns-th species [78]. However, this effect is negligible if the
concentration of this species is large.

In many occasions the fluctuation of the mean mass M̄ is neglected, so the ex-
pression (2.39) for the diffusion velocity can then be written as [87]

U i = −
Dim

Yi
∇Yi −

DT
i

T
∇T, i ∈ [, Ns] . (2.40)

The advantage of this expression, is that the conservation equation for the species
mass fractions is now entirely written in terms of Yi. However, because the mixture-
averaged model is mainly used in numerical studies, it is preferable to include the
fluctuation of M̄.

For analytical purposes, Eq. (2.40) can be rewritten according to

U i = −


Lei

λ ′

ρYicp
∇Yi −

DT
i

T
∇T, i ∈ [, Ns] , (2.41)

where the Lewis number is introduced as Lei = λ ′

cpρDim
. The Lewis numbers can not

be chosen independently for all species. To preserve mass conservation, a correction
must be applied. For instance, the last Lewis number can be obtained from the
condition

∑Ns
i= YiU i = . In most evaluations, the Lewis number of the last species

LeNs is undefined and YNs is evaluated from the condition
∑Ns

i= Yi = . In a first
approximation, the Lewis numbers are assumed to be constant. This assumption is
based on the fact that variations of the Lewis numbers are small in a large part of the
flame. For methane/air flames, this is shown in [86] and [78]. For the other flame
types studied in this work, the variations in the Lewis numbers are larger, which
leads to larger deviations in the burning velocity. In an even more simplified model,
the mass flux and heat flux are assumed to be equal, i.e. Lei = . This model is
often used in theoretical studies. It has the advantage that the enthalpy and element
fractions are constant in premixed flames, since preferential diffusion does not occur.
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2.3.4 Test results

This section presents test results of several transport models. First, different expres-
sions for the diffusion velocities are tested in one-dimensional methane and hydro-
gen flames. Subsequently, the effect of thermal diffusion is investigated and finally
different fits for the partial thermal conductivity and the viscosity are presented.
All computations are performed with CHEM1D [12]. Note that in the analysis pre-
sented below, only an impression is given of the accuracy of the approximating mod-
els. The final choice for a transport model depends on the application, for which the
model is used.

The effect of simplified diffusion models

The effect of simplified diffusion models will be compared for the different flames
(Fig. 2.1). The models are tested on 1D adiabatic CH/air, CH/O, H/air and
H/O flames, with an inlet temperature of 298 K and pressure of 1 atm. The flames
are simulated with the GRI 2.11 reaction mechanism containing 49 species and 279
reactions [8]. A similar study has been performed by Coffee and Heimerl [16, 17].
However, in this thesis, the research is extended to a wide range of the equivalence
ratio and to CH/O-flames. The following models are considered:

1. Detailed multi-component diffusion model: D[], i.e. equation (2.28).

2. Mixture-averaged model with a symmetric correction velocity: D[] = PΥPT,
i.e. equation (2.37).

3. Constant non-unit Lewis numbers, i.e. equation (2.41). The Lewis numbers are
obtained from the second model atϕ = .

4. Unit Lewis numbers.

In all these models, the Soret and Dufour effect is neglected. The last model is crude
but included here, because it is used in many analytical studies. In the figures here,
the burning velocity sL is presented for a varying equivalence ratioϕ.

For all flame types, it can be observed that for low values ofϕ, the choice of the
diffusion model is insignificant. For larger values of ϕ, however, the effect of the
simplified diffusion models becomes more important. In most cases the simplest
model, i.e. unit Lewis numbers, results in a poor prediction of the burning velocity.
As stated above, this model is included as it is used in many analytical studies. The
results show that one has be cautious with the results obtained with this assumption,
if sL is an important parameter in the analysis. In the following, the other three
models will be compared.

For CH/air flames, the simple models 2 and 3 perform quite well. Even the
model with constant Lewis numbers gives a good prediction of the burning veloc-
ity. Similar results (model 2) were obtained by Ern and Giovangigli [33]. However,
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Table 2.1 : Burning velocity sL [cm/s] at ϕ =  obtained with a mixture-averaged diffu-
sion model and different correction methods.

Correction/flame CH/air CH/O H/air H/O

D[] = PΥPT . . . 

D = PΥ . . . 

Corr. on YNs only . . . 

D=PΥ and ∇M̄ negl. . . . 

the absolute values of sL are different, probably caused by using a different reaction
mechanism. For the other flame types, model 3 may lead to larger errors. As men-
tioned earlier, this is caused by the fact that the variations in the Lewis numbers are
much larger for these flame types (in the order of 50 % for some species in hydro-
gen flames). The effect of the approximations is most dramatically shown by the
H/O flame. Even a mixture-averaged transport model can induce an error in the
prediction of the burning velocity of up to 10%.

It should be noticed that part of the error in the results obtained with model 3 is
induced by the neglect of the variation of the mean molar mass. To give an indica-
tion of the effect of this neglect, burning velocities obtained with a mixture-averaged
diffusion model including the variation of M̄ (2.39) are compared with results ob-
tained without the variation of M̄ taken into account (2.40). Table 2.1 shows that
neglecting the fluctuation of M̄ may lead to errors of 2-3%.

Finally, table 2.1 also shows that the effect of the three different flux corrections
(2.37), (2.38) and the correction on YNs only) on the burning velocity is negligible
compared to deviations induced by the choice of the diffusion model. Therefore,
the burning velocities obtained with the several correction methods are not shown
in the figures.

The effect of thermal diffusion

In the second test case, the effect of thermal diffusion on the burning velocity
is tested. Even though it makes no sense to neglect the Soret effect during multi-
component transport computations since the additional computing time is negligi-
ble. However, it is interesting to study the influence of this effect separately on the
burning velocity. The influence of thermal diffusion is studied with the following
models (Fig. 2.2):

1. Soret and Dufour effect neglected.

2. Soret effect taken into account and Dufour effect neglected.

3. Soret and Dufour effect taken into account.
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Table 2.2 : Fit parameters for η/cp and λ ′/cp for different flames.

CH/air CH/air
Parameters Smooke [86] atmospheric gas turb. atmospheric gas turb.
α ×  − . . . .

β − . . . .

α ×  . . . . .

β . . . . .

The models are tested on the same flames (CH/air, CH/O, H/air and H/O)
as the diffusion models. In all these models, mass diffusion is described with the
detailed multi-component diffusion model. The results show that the Dufour effect
has hardly any effect on the burning velocity. The impact of the Soret effect can
be much larger. The results show that for small values of ϕ, the effect of thermal
diffusion is small. For larger values of ϕ, the Soret effect becomes more important.
The influence of this effect is especially large for rich H/air flames. This result is in
correspondence with earlier obtained results [43]. Neglecting thermal diffusion can
lead to an increase of the burning velocity by almost 10%.

Fit parameters for the viscosity and the partial conductivity

In the third test, different fits for the partial thermal conductivity λ ′ and the vis-
cosity are presented. The models are tested for different flame types, with different
fuels and at different conditions. The fit parameters for the λ ′/cp relation (2.36),
which are presented in [86] are fitted on a stoichiometric methane/air flame, at at-
mospheric conditions with an initial temperature of  K. To verify the fits pre-
sented here, the fit by Smooke and Giovangigli is reproduced. The fit parameters
found for this flame type are presented in table 2.2. From the table, it can be con-
cluded that the new fit parameters are in correspondence with the results of Smooke
and Giovangigli, which are also given in table 2.2. The small deviation may be
caused by a different distribution of the data points. A second fit is obtained from
a methane/air flame at typical gas turbine conditions, i.e. at a pressure of  bar
and with an initial temperature of  K and an equivalence ratio ofϕ = .. For
these conditions, the fit parameters for λ ′/cp and η only slightly deviate from the fit
parameters at atmospheric conditions. This is also in correspondence with Smooke
and Giovangigli, who also presented results for methane/air flames at higher pres-
sures.

In a third and a fourth fit, a dodecane/air flame is evaluated. The flames are
modelled with a reaction mechanism, which contains  species and  reactions
[1]. In the third fit, a stoichiometric dodecane/air flame is used, at atmospheric
conditions with an initial temperature of  K. In the fourth test, the parameters
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are obtained from a dodecane/air flame with an equivalence ratio of ϕ = . at a
pressure of  bar with an initial temperature of  K. The results for these tests
are presented in table 2.2. From the table, it can be observed that for a dodecane/air
flame, the η/cp relation is more sensitive to the conditions, so one has to be careful
using using the fitted expressions for dodecane flames.

2.4 Equations to be used in the remainder of this thesis

The conservation equations that are presented in the previous sections, contain a
number of terms which are often neglected in combustion modelling. This section
presents the equations that are used in the remainder of this thesis. Specifically,
the terms that are neglected are: the body forces bi, the Soret and Dufour effects,
pressure gradient diffusion (the second term on the right-hand side of equation
(2.13)), the bulk viscosity κ and the radiant heat flux. An explanation for the ne-
glect of these terms can be found in, e.g. [99]. In the subsequent chapters, the com-
bustion model will be used to analyse chemical reduction methods. As stated in
section 1.1.2, the main purpose of chemical reduction techniques is to reduce the
computational costs of the combustion model, without losing too much accuracy.
However, it is inevitable that some of the detailed information is lost if the model is
reduced. Therefore, it is not useful to use a highly detailed diffusion model in the
subsequent chapters. Furthermore, in section 2.3.4, it was shown that for fuel/air
flames, the transport model with constant Lewis numbers gives relatively accurate
results, at low computational costs. Therefore, this model is chosen for the remain-
der of this thesis. Hence, the diffusion velocity is given by

U i = −


Lei

λ ′

ρYicp
∇Yi i ∈ [, Ns − ] . (2.42)

An expression for UNs can be obtained from the condition
∑Ns

i= YiU i = . With the
combination of (2.42), (2.6), and (2.7), the heat flux vector q can be written as

q = −
λ ′

cp
∇h −

λ ′

cp

Ns−∑

i=

(


Lei
− 

)
h∗

i ∇Yi. (2.43)
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with h∗
i = hi − hNs [90]. With these expressions, the conservation equations can be

written in the form as they are used in the remainder of this thesis,

∂ρ
∂t

+ ∇· (ρu) = , (2.44)

∂ρu
∂t

+ ∇ · (ρuu) = ∇ ·Π , (2.45)

∂ρYi

∂t
+ ∇ · (ρuYi) − ∇ ·

(
λ ′

Leicp
∇Yi

)
= si, i ∈ [, Ns − ] , (2.46)

Ns∑

i=

YiU i = , (2.47)

Ns∑

i=

Yi = , (2.48)

(2.49)

and

∂ρh
∂t

+ ∇ · (ρhu) − ∇ ·
(
λ ′

cp
∇h
)

= ∇ ·
(
λ ′

cp

Ns−∑

i=

(


Lei
− 

)
h∗

i ∇Yi

)
, (2.50)

where it should be noticed that the pressure term and the viscous term are neglected
in the enthalpy equation [81].
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Figure 2.1 : The influence of different diffusion models on the burning velocity (solid:
multi-component diff., dashed: mixture-averaged, solid circles: non-unit
Lewis numbers, open circles: unit Lewis numbers)
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Figure 2.2 : The influence of the Soret and Dufour effect on the burning velocity (solid: No
thermal diffusion, dashed: Soret effect taken into account, circles: Soret and
Dufour effect taken into account)



Chapter3
Reduced chemistry

For the simulation of flames, the conservation equations for mass, momentum, en-
thalpy and chemical components need to be solved, i.e. equations (2.44), (2.45),
(2.46), and (2.50). In general, chemical reaction mechanisms, which are needed to
describe the chemical behaviour of flames, contain a large number of chemical com-
ponents. For each component, a conservation equation has to be solved. As shown
by equations (2.4) and (2.25), the conservation equations for the species are coupled
by the highly nonlinear chemical source terms. In addition, the chemical source
terms typically cover a wide range of time scales, which makes the set of conser-
vation equations stiff [58]. To solve the system, advanced numerical methods or
simpler methods with very small time steps are required. Even though two and
three-dimensional simulations have been performed with detailed reaction mecha-
nisms, see e.g. [13, 25, 66], their use in practical combustion simulations with com-
plex geometries is still prohibited due to the long computation times. Part of the
problems can be overcome by using advanced numerical methods, such as parallel
computing [91], multi-grid methods [23] and local grid refinement [2, 3].

An alternative for the simulation of practical combustion applications, is the in-
troduction of simplifications. In the past decades, two main approaches have been
introduced: laminar flamelet models and chemical reduction techniques. Laminar
flamelet models are based on the assumption that the flame front is much thinner
than most of the flow length scales [74]. For that reason, the internal structure of
the flame is almost frozen. During a CFD computation of a flame, the movement
and the propagation of the flame front can be predicted by using the so-called G-
equation for premixed flames and the mixture fraction equation for non-premixed
flames. The internal structure of the flame is obtained from a laminar flamelet li-
brary, which is defined in a preprocessing step.

Since most of the difficulties are caused by the chemical source term, it is most
interesting to simplify the chemistry, by means of chemical reduction techniques.
However, the accuracy should not be affected significantly. Generally, the reduction
is achieved by reducing the number of unknown variables in the system, which
results in a smaller set of equations that needs to be solved. In addition, much of
the stiffness of system can be removed by applying steady-state assumptions for the
fast processes. A straightforward method to reduce the size of the chemical system
is achieved by replacing the detailed reaction mechanism by a small set of global
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reactions. For instance, the set of detailed reactions can be replaced by a single
global reaction, describing the conversion of fuel into products,

Fuel + Oxidiser → Products. (3.1)

The reaction constants are obtained by fitting the results to experimental data, or
data obtained by detailed computations. Due to the fitting, the global reaction mech-
anisms are only applicable to combustion simulations, which are closely related to
the situation that was used during the fitting procedure. In addition, detailed infor-
mation about radical profiles, which is needed to predict the amount of pollutant
exhaust gases accurately, is not available.

More systematic reduction techniques that are used to simplify the chemistry
are the so-called chemical reduction methods. In the past decades, a number of re-
duction methods has been introduced. Several of these methods will be discussed
in the remainder of this chapter. In general, the reduction is achieved by applying
steady-state assumptions for the fast processes. It is assumed that the chemical pro-
cesses are dominated by a small number of slow processes and that it is sufficient to
describe these slow processes accurately, since the fast processes adapt very rapidly
to the slow processes.

This thesis focusses mainly on the further development of chemical reduction
techniques. For further information on the principles of laminar flamelet techniques,
the reader is referred to, e.g. [76]. This chapter presents the basic principles of chem-
ical reduction methods. Furthermore, a number of methods is treated in more detail,
as they are used in the remainder of this thesis. In the first section, the chemical pro-
cesses that take place are analysed in a geometrical manner. Furthermore, the flow
and chemical time scales of a premixed and a non-premixed flame are analysed. In
the subsequent sections, the basic principles of chemical reduction techniques are
treated. In the third and fourth section, the Intrinsic Low-Dimensional Manifold
(ILDM) method and the Flamelet-Generated Manifold (FGM) method are treated
in more detail, respectively. The FGM method can be seen as a combination of the
laminar flamelet concept and chemical reduction techniques. In the final section, the
ILDM method is compared with the FGM method.

3.1 Geometrical representation of the chemical system

The fundamentals of chemical reduction methods are more clear, if the chemical
processes are described geometrically. Therefore, this section gives a geometrical
representation of the chemical system. Consider a homogeneous system, which is
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adiabatic and isobaric,

ρ
dφi

dt
= ωi, i ∈ [, Ns], (3.2)

dh
dt

= , (3.3)

dp
dt

= , (3.4)

with ωi = si/Mi the chemical source terms. The initial conditions of this system
are given by φi() = φ

i , h() = h and p() = p. At a certain time t, system (3.2-
3.4) is completely determined by the state variables, i.e. the enthalpy h, the pressure
p and the species mole numbers φi. The state of the mixture can be represented
geometrically by a vector in the so-called Nst-dimensional state space S , with Nst =

Ns + . Therefore, equation system (3.2)-(3.4) can be written as

dΨ
dt

= F(Ψ ), (3.5)

where Ψ = (φ, . . . ,φNs , h, p)T is a vector in the state space and the corresponding
source terms are given by the vector F(Ψ ) = (ω/ρ, . . . ,ωNs/ρ, , )T. As the system
is isobaric and adiabatic, it is sufficient to represent the evolution of the system in
the Ns-dimensional composition space C, in which h and p are conserved quantities.
At a certain time t, the chemical composition is described by the vector

φ = (φ, . . . ,φNs)
T (3.6)

in the composition space C. The chemical source terms ωi can also be represented
by a vector in the composition space, i.e.ω = (ω/ρ, . . . ,ωNs/ρ)

T.
Chemical elements are conserved during a chemical reaction, which means that

also the element mass fractions are conserved. The element mass fraction z j of ele-
ment j is defined as

z j =

Ns∑

i=

ηjiYi, j ∈ [, Ne], (3.7)

where ηji is the mass fraction of element j in species i. In addition, the element mole
number is defined as

χ j =
z j

Me
j

=

Ns∑

i=

µjiφi = µ j ·φ j ∈ [, Ne], (3.8)

with µji the mole fraction of element j in species i and Me
j is the molar mass of el-

ement j. The vector µ j can be seen as a normal vector to the (Ns − )-dimensional
hyper-plane on which the element j is constant. The intersection of the Ne hyper-
planes is the (Ns − Ne)-dimensional reaction space R, in which all elements are con-
served.
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Figure 3.1 : A schematic representation of a 3-dimensional composition space.

3.1.1 Example

A simple but illustrative reactive system consists of one element O, three chemical
components, O∗, O∗∗, and O∗∗∗, and three reactions

O∗ → O∗∗ O∗∗ → O∗∗∗ O∗∗∗ → O∗∗.

Figure 3.1 shows the three-dimensional composition space C of this system. The
trajectory that starts from the initial pointφ and ends in the equilibrium pointφeq

represents a solution of (.)-(.) for this system for  ≤ t ≤ ∞. The element vector
µ of the element O, which is the only element present in the mixture, is given by

µ = (µO∗ ,µO∗∗ ,µO∗∗∗)T = (, , )T. (3.9)

The vector µ is directed normal to the plane given by the parameterisation

µO∗φO∗ +µO∗∗φO∗∗ +µO∗∗∗φO∗∗∗ = constant, (3.10)

which means that the mass of element O is conserved in the plane described by
(3.10). The chemical elements are conserved during chemical reactions, which im-
plies that the vectorω lies in the plane described by (3.10), or

ω ·µ = . (3.11)

Furthermore, the vector representing the source terms is the local tangential vector
to the solution of (3.2)-(3.4), i.e. the trajectory betweenφ andφeq. In this example,
the reaction space R is a (Ns − Ne)-dimensional space described by (3.10).
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3.1.2 Attracting manifolds in the composition space

As stated in the introduction of this chapter, combustion processes are characterised
by a wide range of time scales. In chemical reduction techniques, it is assumed
that the chemistry of a flame can be described by small number of slow processes,
while assuming the fast processes in steady-state. The idea behind this assumption
is illustrated by figure 3.2, which presents a projection of a Ns-dimensional compo-
sition space on a three-dimensional subspace of the composition space. The figure
shows several flame trajectories in the composition space starting from the initial
compositionsφ

i , which are typical for a flame. These initial compositions all have
the same enthalpy h and element fractions χ j. Therefore, the initial points lie in the
same reaction space R and all trajectories eventually end up in the same point in
the composition space, i.e. the chemical equilibrium composition denoted by φeq.
The equilibrium point can be seen as a zero-dimensional manifold, where all flame
trajectories are attracted to. Close to the chemical equilibrium point, the trajectories
collapse on a single line, or a one-dimensional manifold. On this line, the chemi-
cal processes are dominated by a single slow process. All other processes are much
faster and can be assumed in steady-state. In general, the dimension of the manifold
to which the flame trajectories collapse increases while going further away fromφeq

(as shown by figure 3.2). Note that the steady-state assumption for a fast process is
only valid if this process is much faster than all other processes in the flame.

In a chemical reduction method, it is assumed that the chemistry can effectively
be described by a low number of slow processes, by applying steady-state assump-
tions to the fast processes. This means that the chemical compositions are restricted
to a low-dimensional manifold, schematically shown in figure 3.2. Furthermore, it
implies that the stiffness, which is caused by the large variation in time scales, and
the dimension of the system, i.e. the number of differential equations that needs to
be solved, can be reduced as well. A mathematical background for the reduction
of a system of ODEs (ODE: Ordinary Differential Equation), which is based on sin-
gular perturbation theory, can be found in e.g. [92] and [34]. Several approaches to
reduce reaction mechanisms have been introduced in the past. A concise overview
of a number of these methods is given in section 3.2.

3.1.3 Time scales in flames

The analysis presented so far was based on the chemistry as it is found in a ho-
mogeneous system (3.2)-(3.4). In this system, the enthalpy h and element numbers
χ j are conserved variables. Hence, the chemical compositions are restricted to the
(Ns − Ne)-dimensional reaction space R. In real flames, this is generally not the case.
Due to preferential diffusion, mixing processes, heat loss and pressure variations
(e.g. in detonations), the chemical composition is not restricted to the reaction space
R. As stated in section 3.1.2, chemical reduction methods are based on steady-state
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Figure 3.2 : A schematic example of an attracting manifold in the composition space. The
points φ

i denote several initial compositions, whereas the chemical equilib-
rium is denoted byφeq.

assumptions for the fast chemical processes. To be able to decouple the fast pro-
cesses from the slow processes, all time scales in the flame must be evaluated. This
means that also the time scales which involve mixing, heat loss and pressure varia-
tions must be investigated. In addition, as general combustion is not homogeneous,
diffusion time scales must be taken into account as well.

A time scale for the chemistry can be obtained from the chemical source term
of the reaction progress variable Y , which was introduced in chapter 1 (see figure
1.2a). Here, it is assumed that the reaction progress variable is defined as a species
mass fraction, or a linear combination of species mass fractions. The chemical source
term sY represents the nett effect of two contributions, i.e. the production and the
consumption of Y . To give a fair analysis of the chemical time scales, the production
and consumption terms should be treated separately. For this purpose, the source
term of Y is written as

sY = s+
Y + s−

Y , (3.12)

where the superscripts ’+’ and ’-’ stand for the production rate and the consumption
rate of the progress variable Y , respectively. The overall time scale of the chemical
source term sY is given by

τc =
ρ

|sY |
. (3.13)

From equation (3.12), it can be concluded that the chemical time scales correspond-
ing to the production and the consumption of Y are given by

τ+
c =

ρ

|s+
Y |

and τ−
c =

ρ

|s−
Y |

. (3.14)
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It should be noted that these chemical time scales represent global chemistry. Other
chemical time scales can be much faster. The time scales presented here can be used
to compare the time scale of chemical processes in general with other time scales in
the flame, which will be introduced below.

An expression for the mixture fraction is given by [4],

Z =
Z∗ − Z∗

ox

Z∗
fu − Z∗

ox
, (3.15)

where Z∗ is given by
Z∗ = χC +




χH − χO, (3.16)

and the subscripts ’fu’ and ’ox’ stand for pure fuel and pure oxidiser, respectively. In
a premixed flame, the mixture fraction is a conserved variable and it can only change
locally due to preferential diffusion. In non-premixed and partially-premixed flames,
the mixture varies between a fuel rich value Z and a lean value Z. In case of a
fully non-premixed flame, these values are Z =  and Z = , respectively. As in
a non-premixed flame, the mixing of fuel and oxidiser is mainly driven by diffusive
processes, a time scale for the mixing of fuel and oxidiser can be defined as

τZst =
δ

m

DZ
, (3.17)

with DZ the diffusion coefficient of Z, Zst the stoichiometric value of the mixture
fraction, and δm the mixing length, which is defined as

δm = (Z − Z) (‖∇Z‖Z=Zst)
− . (3.18)

Note that τZst is related to the scalar dissipation rate χ, which is usually defined as
χ = DZ‖∇Z‖, according to

χst = DZ‖∇Z‖
Z=Zst

= (Z − Z)
τ−

Zst
. (3.19)

Note that the scalar dissipation rate is a local value, whereas τZst is defined at stoichio-
metry. Analogous to the scalar dissipation rate, a local mixing time scale can be
defined as

τ−
Z =

χ

(Z − Z)
. (3.20)

In premixed flames, the mixing time τZ is infinite. Therefore, the effect of a gradient
in Z on the chemistry does not need to be taken into account in a reduction method,
which is used to model premixed flames. However, in non-premixed flames, the
gradient of Z is non-zero and the mixing time scale τZ may be of the same order
as other time scales. In that case, it may be necessary to take the effect of the Z-
gradient on the chemistry into account in the reduction method. A similar relation
can be derived for the time scale of the heat flux, for instance near a wall, i.e.

τh =
cpδ


h

λ ′ , (3.21)
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where δh is defined as
δh = (h − h) (‖∇h‖h=hwall)

− , (3.22)

with h and h are enthalpy values in the flow and close to the wall, respectively.
Pressure variations typically travel with the speed of sound. Since, in general

combustion situations, the velocities involved with combustion are much smaller
than the speed of sound (i.e. the Mach number Ma � ), the pressure is often as-
sumed to be locally constant. Therefore, the effect of pressure variations on the
chemical behaviour does not have to be taken into account in the reduction method.
However, in detonations, the typical flame velocities are in the same order of the lo-
cal speed of sound and the pressure may not assumed to be locally constant, so the
effect of pressure variations on the chemistry needs to be taken into account in the
reduction method. As the flames studied in this thesis are deflagarations, the pres-
sure gradients are not taken into account in the reduction methods in the remainder
of this thesis.

Finally, also diffusion effects may lead to deviations from a homogeneous sys-
tem, which means that also diffusion time scales need to be taken into account. A
distinction is made between mixing of fuel and air (described by the mixture fraction
Z) and diffusion of individual species, since in a purely premixed system, where Z is
constant, diffusion of individual chemical components still plays an important role
in the combustion process. A typical diffusion time scale of the reaction progress
variable Y can be expressed as

τ−
DY

= |RDY | =


ρY

∣∣∣∣∇ ·
(

λ ′

cpLeY
∇Y

)∣∣∣∣ , i ∈ [, Ns], (3.23)

with RDY the diffusion rate of Y in the conservation equation for species (2.46). In
the hot regions of a flame, diffusion is generally much slower than chemistry, so the
effect of diffusion on the chemical behaviour can be ignored. However, in colder
parts diffusion time scales and chemical time scales can be of the same order.

Finally, also a convection time scale can be defined according to

τ−
CY

= |RCY | =


ρY |∇ · (ρuY)| , (3.24)

with RCY the convection rate of Y .

3.1.4 Time scales in a non-premixed flame

This section presents the time scales, which are introduced in the previous section,
in a typical non-premixed flame configuration, i.e. a methane/air counterflow dif-
fusion flame (see figure 1.4). The flame is modelled with the GRI-mech 3.0 reaction
mechanism [85], at atmospheric conditions. The applied strain rate is a =  s−

and the inlet temperatures are  K. Previous work, in which the chemical time
scales of different species are compared in this way was presented in [11]. Figure
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3.3a shows profiles of the temperature, the mixture fraction, and the mass fractions
of methane, oxygen, and the progress variable Y , as a function of the spatial coor-
dinate s. A progress variable is introduced to parameterise the reaction progress.
The chemical time scale that is presented here is derived from the source term of the
progress variable, which is defined as

Y = YH + YHO + YCO . (3.25)

Generally, the chemistry is relatively fast in regions where the temperature is
high. In colder regions, the chemical time scales can be of the same order as other
time scales in the flame. In figure 3.3b, the different time scales are presented as a
function of temperature. The figure shows the inverse of the time scales τc, τ+

c , and
τ−

c and the rates RDY and RCY . In figure 3.4, the chemical time scales are compared
with the mixing rate RZ for two different values of the strain rate. Figure 3.4a shows
the time scales for a counterflow diffusion flame with a strain rate of a =  s−,
whereas figure 3.4b shows results for a =  s−. From the figures 3.3 and 3.4, it
can be concluded that chemistry is significant in a small region of the flame, i.e. the
reaction layer. Furthermore, in regions of high temperature, the behaviour of the
flame is mainly determined by chemical production and consumption. In addition,
it can be concluded that the mixing time scale τZ, is much larger than the chemical
time scale τc. For higher values of the applied strain rate, τZ decreases and τ+

c and
τ−

c increase, hence the effect of mixing on the chemical behaviour increases.

3.1.5 Time scales in a premixed flame

Figure 3.5a shows profiles for a stoichiometric methane/air flame at atmospheric
conditions, as a function of the coordinate perpendicular to the premixed flame
front. The flame is simulated with the GRI-mech 3.0 reaction mechanism. The
initial temperature is  K and the pressure is  atm. The typical time scales in
this flame are presented in figure 3.5b. Similar to the non-premixed flame, the figure
shows that at high temperatures, the flame behaviour is mainly dominated by chem-
ical production and consumption processes. However, at lower temperatures, the
chemical and transport time scales are of the same order. In this region, the flame
behaviour is determined by a balance between chemical and transport processes,
which is typical for a premixed flame.

3.2 Reduction Methods

In this section, an overview of approaches to reduce the chemistry is given. It should
be noted that an accurate description of the chemistry is especially needed in regions
of the flame, where chemistry is important, which means in the reaction layer (see
figures 1.2b and 1.3b). As stated in the introduction of this chapter, the processes
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Figure 3.3 : Several profiles and time scales of a typical a one-dimensional non-premixed
flame at a strain rate of a =  s−. Left figure: the temperature T (solid
line), the mixture fraction Z (dash-dotted line), the progress variableY (dashed
line), the mass fraction of methane YCH (closed symbols) and the mass fraction
of oxygen YO

(open symbols). Right figure: τ+

c (solid line), τ−

c (long-dashed
line), τc (dash-dotted line), RDY (short-dashed line) and RCY (dotted line) as a
function of the temperature. Note that the temperature axis is mirrored with
respect to the maximum value, which is approximately  K. Temperatures
on the left hand side correspond to the fuel side, whereas temperatures on the
right hand side correspond to the oxidiser side.

that take place in a flame are characterised by a wide range of time scales. In the
derivation of most chemical reduction techniques, it is assumed that many chemi-
cal processes are much faster than transport processes. Based on this assumption,
steady-state assumptions are applied to the fast chemical processes.

A number of reduction methods has been introduced in the past few decades.
The major difference of the several reduction methods is the procedure, which is
used to decouple and identify the fast processes from the slow processes. Another
difference arises in the application of the reduced mechanism. In a number of meth-
ods, the size of the reaction mechanism is reduced in a pre-processing step. During
the application, the reduced mechanism is used in a similar fashion as the original
mechanism. These methods are referred to as global reduction methods. Other re-
duction methods generate a database in a pre-processing step, in which the local
chemical behaviour is stored. The reaction progress is parameterised by Nr

c control-
ling variables, which are typically (linear combinations of) species mass fractions.
If necessary, additional dimensions are added to the database, to be able to capture
for instance enthalpy variations due to heat-loss. The additional dimensions are
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Figure 3.4 : Several time scales of a typical a one-dimensional non-premixed flame at a
strain rate of a =  s− (left figure) and a =  s− (right figure). The in-
verse of the chemical time scales of the reaction progress variable Y , τ+

c (solid
line), τ−

c (long-dashed line), τc (dash-dotted line), and the inverse of the mix-
ing time scale τZ (dashed line) as a function of the temperature. Note that the
temperature axis is mirrored with respect to the maximum value, which is ap-
proximately  K. Temperatures on the left hand side correspond to the fuel
side, whereas temperatures on the right hand side correspond to the oxidiser
side. Note the scale change along the vertical axes of figure a and b.

parameterised with Nnr
c so-called non-reacting controlling variables. During the ap-

plication of the reduction method, only equations for the Nc = Nr
c + Nnr

c controlling
variables are solved, in stead of solving the full set of equations. Other flame vari-
ables are retrieved from the database in a post-processing step. This section presents
the basic principles of the most prominent reduction methods. However, the In-
trinsic Low-Dimensional Manifold (ILDM) method by Maas and Pope [58] and the
Flamelet-Generated Manifold (FGM) method by Van Oijen and De Goey [69] will
be discussed in more detail in the subsequent sections, as these methods are used in
the remainder of this thesis.

In the conventional reduction technique [75], steady-state assumptions are ap-
plied to intermediate species and partial equilibrium assumptions for fast reactions.
A steady-state assumption for a chemical component i means that the production
and the consumption of this component balance, or

ωi

ρ
= v j · F =

Nr∑

k=

(νik ′′ − νik ′) (rkf − rkb) = , j ∈ [, Nss], (3.26)

with Nss the number of species that are assumed in steady-state. The vector v j is
for this method given by vij = δij, with δij the Kronecker delta. In the homogeneous
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Figure 3.5 : The time scales in a stoichiometric premixed flame. Left figure: the temper-
ature T (solid line), the progress variable Y (dashed line), the mass fraction
of methane YCH (closed symbols) and the mass fraction of oxygen YO

(open
symbols) as a function of the coordinate perpendicular to the flame front. Right
figure: τ+

c (solid line), τ−

c (long-dashed line), τc (dash-dotted line), RDY (short-
dashed line) and RCY (dotted line) as a function of temperature.

system (3.2)-(3.4), a steady-state assumption for species i implies that the original
differential equation for species i is replaced by the algebraic equation (3.26). In a
flame, chemical reactions are balanced by convection and diffusion. Therefore, (3.26)
implies that the chemical processes related to the consumption and production of
species i are much faster than transport processes. The full set of species equations
(2.46) is replaced by

 = si, i ∈ [, Nss], (3.27)
∂ρYi

∂t
+ ∇ · (ρuYi) − ∇ ·

(
λ

cpLei
∇Yi

)
= si, i ∈ [Nss + , Ns − ]. (3.28)

The introduction of steady-state relations for the fast species not only reduces the
number of differential equations that needs to be solved, it also reduces the stiffness
of the set of differential equations. However, in stead of the full set of differential
equations, a large set of non-linear and strongly coupled algebraic equations needs
to be solved. The stiffness of these algebraic equations can be reduced by obtaining
explicit relations for the steady-state species. Explicit relations can be obtained by a
truncation of the summation in (3.26), in which only the largest terms in (3.26) are
considered.

The selection of steady-state species is done manually, which requires deep in-
sight in the chemical behaviour of the flame. For large reaction mechanisms, which



3.2 Reduction Methods 37

contain hundreds of species and reactions, this is a complicated task. In addition,
the steady-state relations for the species are assumed to be valid in the complete
domain, hence v j is fixed, which is generally not the case. Consequently, the re-
duced reaction mechanism is inaccurate in parts of the domain, which may lead to
an inaccurate description of the flame behaviour. A solution to this problem has
been proposed by Løwås et al. [55]. In this method, a so-called level of importance
(LOI) index is introduced, which indicates whether a species may be considered in
steady-state. The LOI values correspond to the sensitivity of a chemical component
on the accuracy of the result. If the LOI value of a certain species is below a certain
threshold, it may be assumed in steady-state.

The CSP (Computational Singular Perturbation) algorithm, introduced by Lam
and Goussis [54], uses a singular perturbation technique to distinguish between
slow and fast processes. In contrast to the conventional reduction technique, the
time-scale analysis is done locally and the number and the identity of processes
which are assumed in steady-state are not constant. Even though this method is
very accurate, its direct applicability as a reduction technique in complex simula-
tions is questionable because of the high computational costs. On the other hand,
the CSP method can be used to construct a globally reduced mechanism, by averag-
ing the CSP results over the entire domain of a simple flame configuration [60]. In
this manner, a reduced mechanism is obtained which can be used globally. How-
ever, the local accuracy of the original CSP method is lost.

The last reduction method, which is treated in this section, is the so-called Rate-
Controlled Constraint Equilibrium (RCCE) method [50, 88], which is based purely
on thermodynamics. A manifold is constructed, based on maximum entropy or
minimum free energy conditions of the gas mixture, subject to specified constraints.
The so-called constraint equilibrium manifolds (CEMs), which are obtained with
the RCCE method, have a number of mathematical properties, which are generally
not present in other reduction methods [88]. A manifold point is always uniquely
defined. Furthermore, the manifold is infinitely differentiable, which stabilises the
reduced computation.

Reduction techniques, in which a database is used to store the chemical be-
haviour, can be optimised further by using efficient storage techniques. The most
important criteria for the efficiency of the retrieval of data from a database are the
required memory needed for the storage of the database, the CPU time needed to
retrieve a value from the database, and the accuracy of the retrieved value. Sev-
eral methods to make the storage and retrieval more efficient have been introduced
in literature. In [93], the database is replaced by a set of orthogonal polynomials.
Another possibility is the use of so-called neural networks for the storage and appli-
cation of the database [15]. In the so-called in situ Adaptive Tabulation (ISAT) [79],
a database is created during run time. The ISAT method has two major advan-
tages. Firstly, the size of the database is restricted to the actually accessed part of
the composition space. In many reduction methods, the database is generated in
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a pre-processing step. This means that it is not a priori known which part of the
composition space is accessed during the application, so the size of the database can
not be optimised. Secondly, the accuracy of the reduced mechanism is directly con-
trolled by a so-called error control. Based on this error control, it is decided whether
a newly obtained point in the composition space must be added to the database. In
this manner, the size of the database can also be optimised for a designed accuracy.

3.3 Intrinsic-Low Dimensional Manifolds (ILDM)

Another very popular reduction method, the Intrinsic Low-Dimensional Manifold
(ILDM) method [58, 59] will be treated in more detail, as its theory is used in the
remainder of this thesis. Here, only the general principles are presented. For a more
extensive study of the ILDM method, the reader is referred to, e.g. [6, 27, 58]. It
is assumed that the chemical composition is restricted to a so-called intrinsic low-
dimensional manifold (see figure 3.2) in the composition space. The purpose of
the ILDM method is to find this low-dimensional manifold, parameterise it with
so-called controlling variables, and store it in a database. The manifold is found by
means of an eigenvalue analysis of the chemical source term. The ILDM method has
been applied successfully in a number of applications, cf. [38,67,100]. An improved
version of the ILDM method has recently been introduced by Nafe and Maas [65]. In
this method, the original ILDM is used as an initial guess. During a post-processing
step, a time dependent solver is used to remove the effect of mixing of slow and fast
time-scales, which results in a more accurate database.

The method basically consists of three steps: the definition of the manifold, the
procedure to obtain the manifold and the application of the manifold. In this sec-
tion, the basics of the ILDM method are explained. First, it is described how the
steady-state assumptions are made by means of a time scale analysis of the chemical
source term. Secondly, the equations that define the manifold are derived. Subse-
quently, the computational strategy to compute the manifold is presented. Next, it
is described how a manifold is used in a flame simulation. Finally, the theory of
so-called slow manifolds is described generally.

3.3.1 Time scale analysis of the chemical source term

Since the ILDM method is a chemical reduction technique, only the chemical system
is analysed, i.e. equation (3.5). This implies that it is assumed that the chemical pro-
cesses are much faster than convective and diffusive processes in a flame. The ho-
mogeneous system considered here is a system in which the enthalpy h is constant.
If, however, a reduced chemical model is developed for non-isobaric combustion
processes, it can be convenient to start the analysis with a constant volume model,
hence a model with a constant internal energy could be used then [26].
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To perform a time scale analysis of the homogeneous system (3.5), the source
term F(Ψ ) is linearised around a reference stateΨ ,

F(Ψ ) ≈ F (Ψ ) + J (Ψ ) (Ψ −Ψ ) , (3.29)

where J is the Jacobi matrix, which is defined as Jij = ∂Fi/∂Ψ j. After combining (3.5)
and (3.29), the evolution of Ψ (t) is described by

dΨ
dt

≈ F (Ψ ) + J (Ψ ) (Ψ −Ψ ) . (3.30)

By introducing ε(t) as the difference between the reference stateΨ (t) andΨ (t), i.e.

ε(t) = Ψ (t) −Ψ (t), (3.31)

the following expression is obtained

dε
dt

= J (Ψ )ε, (3.32)

with initial condition ε() = Ψ () −Ψ (). If it is assumed that the Jacobi matrix
can be diagonalised, the time scales of the system (3.32) can be separated by means
of an eigenvalue analysis,

dε
dt

= UΛU−ε, (3.33)

with Λ a diagonal matrix containing the eigenvalues λJ
i , for i ∈ [, Nst] of the Jacobi

matrix J. The columns of the matrix U are the right eigenvectors uJ
i , for i ∈ [, Nst].

Note that the left eigenvectors vJ
i are given by the rows of U−. In general, the eigen-

values and eigenvectors may be complex. In [27], it can be found how a modi-
fied basis of eigenvectors, which consists of real valued vectors, can be constructed.
Equation (3.33) can be rewritten in the basis of eigenvectors

dε̂
dt

= Λε̂, (3.34)

where the transformation ε = Uε̂ is used.
The evolution of ε̂i(t) is schematically presented by figure 3.6. The figure shows

the trajectories of Ψ̂ 
i (t) and Ψ̂i(t). The general solution of (3.34) is given by

ε̂i(t) = ε̂
i exp(λit), i ∈ [, Nst], (3.35)

with ε̂
i = ε̂i(). The behaviour of ε̂i(t) is determined by the corresponding eigen-

value λJ
i . In general, three groups of eigenvalues can be distinguished, depending

on the value of the real part of the eigenvalue. If Re(λ
J
i ) > , then |ε̂i(t)| will grow,

hence the eigenmodes corresponding with eigenvalues with a positive real part are
called growing modes. Secondly, the real part of the eigenvalue can be equal to zero,
i.e. Re(λJ

i ) = . It can be shown that eigenmodes with these eigenvalues correspond
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Figure 3.6 : A schematic example of the evolution of the perturbation ε̂i(t) = Ψ̂i(t) − Ψ̂ 
i (t)

for different values of λJ
i . Note that in this example a manifold only exists if

λ
J
i < .

to conserved variables, e.g. element numbers χ j, j ∈ [, Ne] [27]. Finally, the real
part of the eigenvalue can be negative, or Re(λJ

i ) < . Eigenmodes corresponding
to these eigenvalues are called damping modes. In that case, the trajectory of Ψ̂i(t)
is attracted to the trajectory of Ψ̂ 

i (t). The time scale involved with the attraction
depends on |λ

J
i |. If |λ

J
i | is small, then the attraction is slow. On the other hand, if |λ

J
i |

is large, then ε̂i(t) will rapidly decay.
To be able to assume a process Ψ̂i(t) in steady-state, two conditions must be sat-

isfied. The first condition is obtained from the eigenvalues λJ
i . The second condition

can be derived from the differential equation for Ψ̂i(t), which is given by

dΨ̂i

dt
= F̂

i + λ
J
i

(
Ψ̂i − Ψ̂


i

)
, i ∈ [, Nst], (3.36)

with F̂
i = F̂i(Ψ̂


). The path length that is involved with the decay of ε̂i(t) not only

depends on |λ
J
i |, it also depends on the time scale

(
F̂

i

)−

. If |λ
J
i | is large compared

to
(

F̂
i

)−

, then the trajectory of Ψ̂i(t) will rapidly collapse on the trajectory of Ψ̂ 
i (t),

i.e. close to the reference point Ψ̂ 
i (). However, if |λ

J
i | is small compared to

(
F̂

i

)−

,
then the trajectory of ε̂i(t) will be longer before ε̂i(t) ≈ . In other words, there
must be a clear separation between slow modes (evolution on the manifold) and
fast modes (evolution towards the manifold). In the ILDM method, it is assumed
that fast processes are in steady-state, so the chemical compositions are restricted
to a low-dimensional manifold. From the analysis presented above, it can be con-
cluded that a process may be assumed in steady-state if, both Re(λ

J
i ) �  and

|Re(λ
J
i )| � |

(
F̂

i

)−

|. The steady-state assumption for a process with a correspond-
ing eigenvalue that satisfies these conditions, is given by

dΨ̂i

dt
= , i ∈ [, Nss]. (3.37)

In figure 3.6, it is assumed that Ψ () is on the manifold, so the trajectory of Ψ (t)
is a trajectory on the manifold. The eigenmode Ψ̂i(t), relaxes rapidly towards the
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manifold only if the corresponding eigenvalue satisfies both steady-state conditions.
On the other hand, if the steady-state conditions are not satisfied for a mode corre-
sponding to Ψ̂ 

i , than this mode may not be assumed in steady-state. Hence, this
mode also describes a motion over the manifold. The dimension of the manifold
is determined by the number of eigenmodes, which can not be assumed in steady-
state.

3.3.2 Equations that define the manifold

In this section, the equations that define the manifold are described. To find a mani-
fold pointΨ , a set of Nst equations must be solved. Firstly, Nss steady-state relations
are defined, based on the size of the real part of the eigenvalues. Secondly, a num-
ber of equations is needed to parameterise the manifold in terms of the conserved
variables. Finally, the system is closed with so-called parameterisation equations,
which parameterise the reaction progress.

On the manifold, the eigenvalues λJ can be separated into three groups. First
a group of Nss eigenvalues has a large negative real part. These eigenvalues cor-
respond to processes which are assumed in steady-state. Using the transformation
Ψ̂ = U−Ψ , the steady-state assumptions (3.37) can be rewritten as

F̂i = vJ
i · F = , i ∈ [, Nss], (3.38)

with vJ
i the left eigenvectors of the Jacobi-matrix J. Note the analogy between this

expression for the steady-state processes and equation (3.26) in the conventional
reduction method. Equation (3.38) implies that on the manifold, the chemical source
term has no component in the direction corresponding to the fast damping modes.

The remaining eigenvalues can be divided into two groups. First, a group of
Nnr

c = Ne +  eigenvalues is equal to zero, corresponding to conserved variables. In
general, for the conserved variables, a set of parameterisation equations is solved.
Suppose that the point Ψm is already on the manifold. This can be, for example,
the chemical equilibrium pointΨ e, which always lies on the low-dimensional mani-
fold. AsΨm is on the manifold, the composition in this point satisfies the equations,
which define the conserved variables, e.g. equation (3.8) for the element fractions χ j.
Therefore, this point can be used as a reference for the new point Ψ . The equations
that fix the conserved variables can be written as

Pnr (Ψ −Ψm) = , (3.39)

where Pnr is a (Nnr
c × Nst)-dimensional matrix.

Finally, a group of Nr
c = Nst − Nnr

c − Nss eigenvalues corresponds to slow damp-
ing modes and growing modes. As these processes are not assumed in steady-state,
they correspond to processes in the manifold. The parameterisation equations that
are solved for these processes describe the reaction progress,

Pr (Ψ −Ψm) = β, (3.40)



42 Reduced chemistry

where Pr is a (Nr
c × Nst)-matrix, and β is a vector which contains the step size.

The equations above are derived for a manifold with constant pressure, element
fractions and enthalpy. However, in many combustion systems, at least some of
these variables are not constant. To be able to capture variations in the enthalpy,
pressure, and element fractions, these variables can be added as additional dimen-
sions to the manifold. The controlling variables that parameterise the manifold in
the direction of the conserved variables are referred to as non-reacting progress vari-
ables. In that case, the right hand side of (3.39) is replaced by the vector α, which
contains the step sizes for variations in the conserved variables. The complete set of
equations, which define a manifold pointΨ , is given by

Pnr (Ψ −Ψm) = α (3.41)

Pr (Ψ −Ψm) = β (3.42)

vJ
i · F = , i ∈ [, Nss]. (3.43)

The set of equations (3.41-3.43) can be solved on a pre-defined fixed grid, for
the reacting and non-reacting controlling variables (e.g. an equidistant grid). In this
case, the number and the identity of the controlling variables are chosen in advance.
Hence, both Pnr and Pr are pre-defined and kept constant during the construction
of the manifold. However, if the parameterisation matrix Pr is allowed to change
during the construction of the manifold, a continuation algorithm, which is multi-
dimensional can be used [56, 84]. In this case, only the number of controlling vari-
ables and the identity of the non-reacting controlling variables is chosen in advance.
The identity of the reacting controlling variables is chosen afterwards. A fixed pa-
rameterisation has a number of advantages [5]:

1. The ILDM database is well-structured and can be stored directly as a function
of the controlling variables (a post-processing step is not needed).

2. The equations that parameterise the reaction progress, i.e. (3.40) are relatively
simple and constant.

3. The implementation of the ILDM in a CFD code is straightforward.

On the other hand, a number of problems may occur:

1. Wrongly chosen controlling variables may lead to a bad parameterisation of
the manifold and so-called turning points can not be identified.

2. The choice of parameterisation requires experience of the user.

3. The edges of the manifold can not be detected automatically.

These disadvantages can be overcome by using a multi-dimensional continuation
method. The general concept of this method is discussed in the next section.
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K

boundary

Figure 3.7 : A schematic example of the built up of a two-dimensional mesh [56]. First, the
cell K is created. Subsequently, the neighbouring cells are created. Outside
the domain where a solution can be found, no new cells are created.

3.3.3 Computational strategy

The major ingredients in the solution procedure are [56]:

• The generation of a mesh.

• The parameterisation of the manifold.

• A predictor-corrector algorithm for the computation of the manifold points.

Figure 3.7 schematically shows the built-up of a two-dimensional mesh. The mesh
consists of Nc-dimensional cells, with Nc = Nr

c + Nnr
c . The computation is started in

grid cell K. First the vertices of this cell are computed. Successively, new grid cells
are created at the boundaries of cell K. In this manner, the number of grid cells is
extended until the boundaries of the domain, in which a manifold can be defined,
are reached. For more details about the mesh generation, for example the treatment
of boundaries, the reader is referred to [56].

The set of equations (3.41)-(3.43) is solved with a multi-dimensional continua-
tion algorithm. Therefore, the equations (3.41)-(3.43) are rewritten to yield a one-
dimensional continuation process in the direction of d = (α,β)T,

P (Ψ −Ψm) −ζd = , (3.44)

vJ
i · F = , i ∈ [, Nss], (3.45)

with ζ the local continuation parameter and P the local parameterisation matrix,
which contains the matrices Pnr, and Pr. Even though the continuation algorithm is
used to obtain multi-dimensional manifolds, it is one-dimensional in the sense that
for each new manifold point, a step in only one direction is taken. Hence, in each
step, only one element of the vector d is non-zero.
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Figure 3.8 : A schematic one-dimensional example of a fixed parameterisation. The pa-
rameterisation matrix of the reaction progress Pr is kept fixed. The matrix T
contains the tangential direction vectors, which are used to compute the initial
guess Ψ̃ .

The projection matrix P can be predefined, if all progress variables are chosen
in advance. If, furthermore, also the step sizes are predefined, the parameterisation
method is similar to the method in which the grid is predefined. Note that in this
case, the parameter ζ must be kept constant. Figure 3.8 schematically shows how
the parameterisation matrix Pr is kept fixed during the creation of cell Ki+, in case
of a one-dimensional manifold. The initial guess Ψ̃ and the matrix T̃i+ correspond
to the predictor-corrector algorithm, which will be explained later.

On the other hand, the parameterisation of the reaction progress, i.e. Pr, can be
adapted locally to the manifold. Figure 3.9 shows how the parameterisation is up-
dated after the creation of cell Ki+. First the parameterisation Pr

i of neighbour-
ing cell Ki is copied to cell Ki+. The initial parameterisation of cell Ki+ is called
P̃r

i+ (see figure 3.9a). During the creation of the new cell, the parameterisation is
kept constant. Once the new point Ψ is found, the parameterisation of the reaction
progress for cell Ki+ can be updated to Pr

i+ (figure 3.9b). Note that only the reac-
tive part of the parameterisation is updated. The adaptive parameterisation works
similar in case of a multi-dimensional grid.

The algorithm to compute a manifold point generally consists of two steps. First
an initial guess Ψ̃ is created in a predictor step. Subsequently, the manifold point
Ψ is obtained in a corrector step. As stated in equations (3.44)-(3.45), the solution
procedure is started from a pointψm, which is on the manifold. The initial guess Ψ̃
is obtained from the predictor step, which is defined as

ψ̃ = ψm +ζT̃i+

(
P̃i+T̃i+

)− d, (3.46)

where T̃i+ is a matrix containing Nc vectors, which are tangential to the manifold
at cell Ki. Note that T̃i+ = P̃i+ = Pi in case of the adaptive parameterisation.
Figures 3.8 and 3.9 schematically show how the initial guess is made in case of a one-
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Figure 3.9 : A schematic one-dimensional example of an adaptive parameterisation. (a):
First the parameterisation of cell Ki is copied to the new cell Ki+ and an initial
guess is made in a predictor step. (b): Subsequently, the new manifold point is
obtained in the corrector step and the parameterisation of cell Ki+ is updated.

dimensional manifold. The point Ψ̃ will not be exactly on the manifold. Therefore,
a correction must be applied. The corrector step is given by

P̃i+ (Ψ −Ψm) −ζd = , (3.47)

vJ
i · F = , i ∈ [, Nss]. (3.48)

This set of equations can be solved using for example a damped Newton-solver or a
pseudo-time stepping technique [89]. Once the new manifold point is obtained, the
matrix T̃i+ is updated to Ti+ and, in case of an adaptive parameterisation P̃r

i+ is
updated to Pr

i+.
The continuation parameter ζ is used to adjust the cell size of the manifold. The

value of ζ is obtained from

ζ =


‖d‖
√(
δ − ‖Ψ − Ψ̃‖

)
, (3.49)

with δ the (pre-set) arc-length between the new manifold pointΨ and the old mani-
fold point Ψm.

3.3.4 The application of ILDM

Once the manifold is computed, it is stored as a function of the reacting control-
ling variables Y = (Y, . . . ,YNr

c
)T and the non-reacting controlling variables c =

(c, . . . , cNnr
c
)T. If an adaptive parameterisation is used to obtain the manifold, the

controlling variables that are used to parameterise the manifold are determined af-
terwards. The controlling variables are defined as,

Ψ c = PpΨ =

(
Pr

p

Pnr
p

)
Ψ , (3.50)
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with Ψ c = (YT, cT)T and Pp, Pr
p, and Pnr

p are matrices which parameterise the mani-
fold globally. Note that Pr

p = Pr and Pnr
p = Pnr if the manifold is obtained with

a fixed parameterisation. During the application, not all the data from the mani-
fold is needed. In general, it is sufficient to store Fc = PpF, ρ, T and cp in a small
database, which is used during the CFD computation. In a post processing step,
other variables like for instance the species mass fractions of other species, can be
retrieved from another database, where the rest of the manifold data is stored. In
the CFD computation, only conservation equations for the controlling variables are
solved. These conservation equations are obtained by projecting the complete set of
equations on the manifold, using the eigenvectors of the Jacobi matrix J [57]. The
conservation equations for the state variables can generally be written as

∂Ψ
∂t

= F(Ψ ) +Σ (Ψ ), (3.51)

where the term Σ (Ψ ) represents the perturbations due to physical processes. Using
the eigenvectors corresponding to the fast processes, the set of equations (3.51) is
projected on the manifold according to

∂Ψ c

∂t
= Fc(Ψ c) + Pp (I − UfVf)Σ (Ψ ), (3.52)

where I is the (Nst × Nst)-identity matrix, Uf is a (Nst × Nss) matrix, which con-
tains the right eigenvectors corresponding to the steady-state processes, and Vf is
a (Nss × Nst) matrix that contains the corresponding left eigenvectors. With this pro-
jection method, the eigenvectors are needed during the CFD computation, which
requires in a large database. On the other hand, also a simpler projection method
has been proposed, using tangential direction vectors [28, 38]. This projection is
formally not correct, but the errors caused by this projection method are relatively
small compared to the errors induced by the reduced mechanism.

3.3.5 Slow Manifolds

A major assumption in the ILDM method, is that the fast chemical time scales are
well separated from the slow chemical time scales. In practice, this is not neces-
sarily the case. In figure 3.10, a one-dimensional hydrogen/air flame is compared
with a homogeneous solution (3.2)-(3.4) and a one-dimensional ILDM approxima-
tion of the homogeneous solution. The initial mixture is a stoichiometric hydro-
gen/air mixture at a temperature of  K and a pressure of  atm. The figure
shows that close to chemical equilibrium, the three solutions are equal. This implies
that, a) chemistry is faster than diffusion time-scales, and b) that the chemistry can
accurately be described with a one-dimensional manifold.

Further towards the unburnt side (. < YHO < .), the ILDM deviates from
both the homogeneous solution and the flame solution. From this observation, it can
be concluded that diffusion time scales can not be neglected (difference between the
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Figure 3.10 : A one-dimensional ILDM (solid line) of a stoichiometric H/air mixture at at-
mospheric conditions, with an initial temperature of  K, compared with a
homogeneous solution (long dashed line) and a one-dimensional flame (short
dashed line). Note that the flame is modelled with all Lewis numbers equal to
unity.

homogeneous solution and the flame solution) and that a one-dimensional manifold
is not sufficient to describe the chemistry (difference between the ILDM and the ho-
mogeneous solution). The over prediction of the hydrogen peak, with respect to
the homogeneous solution, is caused by the mixing of chemical time-scales. In this
region, the slowest and the second slowest eigenvalue are not well separated. How-
ever, the second slowest eigenvalue corresponds to a process which is also assumed
in steady-state. Hence, the manifold is inaccurate in this region. Furthermore, the
manifold is not inert, which means that if a manifold point would be used as an ini-
tial point in the homogeneous problem (3.2)-(3.4), the solution trajectory will deviate
from the manifold.

Recently, a solution to this problem has been introduced by Nafe and Maas [65].
In this method, which is referred to as the method of Slow Manifolds, the original
ILDM is used as an initial guess. In a post-processing step, a time-stepper is used
to find the steady-state solution of the manifold. To prevent that all initial manifold
points end up in the chemical equilibrium point, only movements perpendicular
to the manifold are allowed. The resulting slow manifold is inert and, in addition,
more accurate than the original ILDM.

Returning to figure 3.10, further upstream, (YHO < .) the chemical time
scales seem to be well separated again, as the ILDM is nearly equal to homogeneous
solution. However, the temperature in this region is relatively low, and diffusion
and chemical time scales are of the same order. Therefore, the homogeneous solu-
tion and the ILDM deviate from the flame solution, as diffusion processes are not
included in the first two. A method to capture diffusion processes in the manifold
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is discussed in the next section, which discusses the so-called Flamelet-Generated
Manifold method.

3.4 Flamelet-Generated Manifolds for premixed flames

All the reduction methods presented so far are based on the chemical system only.
In flames, and especially in premixed flames, the behaviour of the system is deter-
mined by a balance between convection, diffusion, and chemical reactions, as shown
in figure 3.3 and 3.5. As the transport processes are ignored during the construction
of the reduced mechanisms, it may lead to inaccuracies in colder parts of the flame,
where the time scales of diffusion and chemistry are of the same order. A solu-
tion to this problem is offered by the Flamelet-Generated Manifold (FGM) method,
which was introduced by Van Oijen [69]. Based on the observation that the internal
structure of a propagating three-dimensional flame is very similar to the internal
structure of a one-dimensional flame, it is assumed that also the chemistry in the
three-dimensional flame is very close to the chemistry of a one-dimensional flame.
This implies that one can use the solution of one-dimensional premixed flames to
construct a chemical database, which can be used in two and three-dimensional
flame simulations. This idea was first proposed by Bradley et al. [9] for turbulent
flames. Van Oijen managed to improve the accuracy of the method by increasing
the dimension of the database. In this case, the number of slow time-scales that are
included in the manifold is increased. He also proposed methods to include en-
thalpy and mixture fraction variations in the manifold. A similar approach called
Flame Prolongation of ILDM (FPI) has been introduced by Gicquel et al. [37]. In
this section, the laminar flamelet equations, which are used to construct the FGM
database are presented. Furthermore, the construction and the application of an
FGM is discussed.

3.4.1 The flamelet description of laminar flames

The derivation of the equations, which define a FGM is analogous to the deriva-
tion of a flamelet description of a laminar premixed flame, following the ideas of
De Goey and Ten Thije Boonkkamp [39, 40]. The reader is referred to their work
for detailed information on the derivation of the flamelet analysis. In the following,
only the major steps are presented. The flamelet description generally consists of
two parts: a set of quasi one-dimensional equations, which describes the internal
structure of the flame in a flame adapted coordinate system, and a kinematic equa-
tion, which couples the set of one-dimensional equations to the flow equations in
the original coordinate system.

As stated in chapter 1, a premixed flame is defined as a region in space, where a
typical flame variable Y varies between its unburnt value Yu and its burnt value Yb.
This so-called progress variable can be the density, the temperature or any linear
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Figure 3.11 : A two-dimensional example of a flamelet coordinate system η adapted to the
iso-contours of Y .

combination of chemical components, which satisfies the condition ∇Y 6= . A
flame surface is defined as an iso-contour of Y , which means that Y is constant on
such a surface. The motion of an iso-contour is given by the kinematic equation

∂Y
∂t

+ uf ·∇Y = , (3.53)

where uf is the propagation velocity of the iso-surface, or the flame velocity.
With the introduction of the iso-contours, the conservation equations for mass

(2.1), species mass fractions (2.4) and enthalpy (2.5) can be rewritten in a so-called
flame adapted coordinate system. Figure 3.11 shows a schematic example of a
flame in the original coordinate system x = (x, y), which is two-dimensional. A
two-dimensional example is chosen for convenience. The extension to the three-
dimensional case is analogous [39]. In this example, the flame adapted orthogo-
nal coordinate system η = (η,ξ) is introduced. The unit vectors corresponding to
the new coordinate system are eη = (/hη)∂x/∂η and eξ = (/hξ)∂x/∂ξ, respec-
tively. In the definition of the unit vectors, the scale vectors hη and hξ are defined
as hη = ‖∂x/∂η‖ and hξ = ‖∂x/∂ξ‖, respectively. Furthermore, η is the coordinate
locally perpendicular to the iso-contours, i.e. eη = sign(Yb −Yu) ∇Y/‖∇Y‖, and ξ
is the coordinate locally tangential to the iso-surfaces.

The flame velocity uf is given by the sum of the gas velocity u and the laminar
burning velocity sL, which is directed normal to the iso-surfaces,

uf = u − sLeη. (3.54)

Notice that the burning velocity is directed towards the unburnt mixture, which
results in the minus sign in (3.54). The combination of (3.53) and (3.54) leads to the
kinematic equation

∂Y
∂t

+ u ·∇Y = sLeη ·∇Y = sL‖∇Y‖. (3.55)
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Equation (3.55) is related to the well-known G-equation [99]. However, in the G-
equation approach only the single iso-contour G = G, is followed. Equation (3.55)
is valid for each iso-contour of Y ∈ [Yu,Yb]. In addition, the burning velocity sL is a
field quantity, whereas in the G-equation approach, it is only defined at G = G.

The kinematic equation (3.55) is used to rewrite the three-dimensional conserva-
tion equations in a set of quasi one-dimensional conservation equations, describing
the processes in the direction perpendicular to the iso-contours in a flame adapted
coordinate system. Combination of the continuity equation (2.1) and the expression
for the flame velocity (3.54) leads to

∂ρ
∂t

+ ∇ · (ρuf) = −∇ · (ρsLeη). (3.56)

The transport locally perpendicular to the iso-contour is gathered in the right-hand
side of equation (3.56). The terms on the left-hand side can be considered as the
amount of mass that is transported along the iso-contours. This phenomenon is also
known as flame stretch, which is described by the stretch rate K. In [39], the stretch
rate is defined as the change of mass M(t), which is defined as

M(t) =

∫

V(t)
ρdV, (3.57)

in an infinitesimal volume V(t) that moves with a velocity uf:

K =


M
dM
dt

. (3.58)

Using the Reynolds transport theorem, the following expression for K is obtained

ρK =
∂ρ
∂t

+ ∇ · (ρuf). (3.59)

Combination of (3.56) and (3.59) leads to

∇ · (ρsLeη) = −ρK. (3.60)

The conservation equation for Y in the original coordinate system is given by

∂Y
∂t

+ ∇ · (ρuY) − ∇ ·
(

λ ′

cpLeY
∇Y

)
= sY . (3.61)

Together with (3.53), (3.54), and (3.59), equation (3.61) can be written as

∇ · (ρsLYeη) − ∇ ·
(

λ ′

cpLeY
∇Y

)
= sY − ρKY . (3.62)

Analogous to equation (3.60), the transport processes along the iso-contours are
gathered in the perturbation term ρKY . With the introduction of the mass-burning
rate m = ρsL and σ , which is a measure of the area through which the transport
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takes place, the three-dimensional conservation equations for mass, species mass
fractions and enthalpy can be rewritten in a one-dimensional form,

d
ds

(σm) = −σρK, (3.63)

d
ds

(σmYi) −
d
ds

(
σ
λ ′

cpLei

dYi

ds

)
−σsi = −σρKYi + Qi, i ∈ [, Ns − ], (3.64)

and

d
ds

(σmh)−
d
ds

(
σ
λ ′

cp

dh
ds

)
−

d
ds

(
σ
λ ′

cp

Ns∑

i=

h∗
i

(


Lei
− 

)
dYi

ds

)
= −σρKh + Qh . (3.65)

The equations are parameterised with the spatial coordinate s, which is the arc-
length perpendicular to the iso-surfaces, i.e. ds = hηdη. The perturbation terms
Qi and Qh describe instationary terms within the moving frame, and diffusion of
Yi and h along the iso-contours of Y , which originate from the fact that the iso-
contours of the progress variable generally do not coincide with the iso-contours of
Yi and Yh. The set of equations (3.63)-(3.65) are also known as the flamelet equa-
tions, which completely describe the internal structure of a flame. Together with the
kinematic equation for the flame front (3.53), the flamelet equations fully represent
the three-dimensional conservation equations for mass, species mass fractions, and
the enthalpy. The only assumption that is made in this analysis, is the presence of a
flame front, which means that ignition and extinction phenomena are not taken into
account.

3.4.2 Manifold method

In this section, the FGM reduction method is explained. Only the general princi-
ples will be presented. For more details, the reader is referred to [68]. In the FGM
method, the solution of one-dimensional premixed flames, i.e the solution of (3.63)-
(3.65) for the case that K = Qi = Qh =  and σ = , is used to construct a manifold.
It is assumed that the effect of the perturbation terms K, Qi, Qh, and σ on the chem-
istry is small. This implies that, even though the result of a three-dimensional flame
may be quite different from a one-dimensional flame in the spatial domain, the dif-
ference in the composition space is small. This assumption has been confirmed by
numerical tests of two-dimensional flames in [68].

Like in the ILDM method, a distinction is made between reacting controlling
variables Y and non-reacting controlling variables c. The reacting controlling vari-
ables describe the reaction progress for a given value of the non-reacting control-
ling variables. The non-reacting controlling variables describe the variation of the
conserved variables. For convenience, the FGM procedure is first explained for a
one-dimensional manifold, i.e. a manifold with a single controlling variable Y .
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A one-dimensional FGM is obtained from the solution of the flamelet equations
for the case of a freely propagating adiabatic flame. Hence, boundary conditions at
the unburnt side are given by

Y(s → −∞) = Y ref, (3.66)

h(s → −∞) = href. (3.67)

The boundary conditions at the burnt side are given by

dY
ds

(s → ∞) = , (3.68)

dh
ds

(s → ∞) = . (3.69)

In addition, the flame is one-dimensional, which implies that K = Qi = Qh =  and
σ = .

The solution of the flamelet equations is a trajectory in the composition space.
This trajectory can be parameterised by a controlling variable Y . An example of
such a one-dimensional FGM is shown in figure 3.10, which shows the solution of
the flamelet equations for a hydrogen/air system.

Once the manifold is obtained, it is stored in a database. During the applica-
tion, only the conservation equation for the controlling variable is solved, together
with conservation equations for mass and momentum. The dependent variables,
such as e.g. the chemical source term of the controlling variable, the density and
the temperature are retrieved from the database. Similar to the ILDM method, per-
turbations which cause deviations from the manifold should be projected on the
manifold. However, in the ILDM method, the perturbation terms are projected on
the manifold, using the eigenvectors of the Jacobian. On the other hand, in the
FGM method, these eigenvectors are not available and projection is not straight-
forward, as the result depends on the choice of the controlling variable. However,
in case of ILDM, the major perturbations are caused by diffusion. In the FGM, dif-
fusive processes are included in the manifold and perturbations mainly originate
from multi-dimensional effects. If the multi-dimensional perturbations are small,
the differences caused by the choice of the controlling variable will also be small
and projection is obtained by taking only the component of the perturbations that is
in the manifold into account [68].

Analogous to the ILDM method, the dimension of the manifold can be increased
to capture more time scales. However, the procedure to increase the dimension
of the manifold is not straight-forward. In this case, a series of one-dimensional
flamelets is computed, with a varying inlet composition. The inlet composition is
varied in such a manner that the chemical equilibrium composition remains un-
changed, i.e. the enthalpy, element fractions and the pressure of the inlet mixtures
are unchanged. Unlike an ILDM, the shape of the manifold depends on the choice
of the additional controlling variable(s), so the choice of the additional controlling
variables depends on the insight and experience of the user.
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Equivalent to the ILDM method, extra dimensions can be added to the manifold
to capture variations in the enthalpy, element fractions, and the pressure. For exam-
ple, to be able to model a flame, which is partially premixed, the mixture fraction
can be added as an additional degree of freedom to the manifold. In this case, a
series of flamelets is computed with different mixture fractions at the inlet. In Van
Oijen and De Goey [71], a two-dimensional FGM, with the mixture fraction as ad-
ditional controlling variable, is used to model a so-called triple flame successfully.
Similarly, the enthalpy can be added as an additional controlling variable to model
flames with heat-losses [69, 72].

3.5 Comparison of ILDM and FGM

In this chapter, a number of chemical reduction methods are briefly discussed. Fur-
thermore, the ILDM method and the FGM method are discussed in more detail.
The chapter is concluded with a qualitative comparison between the ILDM and the
FGM method, as both methods have a number of advantages and disadvantages.
Two major distinctions can be made between the ILDM and the FGM method. The
first difference is found in the way the manifold is obtained. In the ILDM analy-
sis, the choice of which processes are assumed in steady-state is based on a time
scale analysis of the chemical source term, whereas such a time scale analysis is not
performed in the FGM method. Secondly, as the FGM method is based on one-
dimensional flamelet equations, transport processes are included in the manifold,
whereas the ILDM manifold is based on an analysis of the chemical system, without
transport processes. From these two major differences, a number of advantages and
disadvantages arise, which are summarised in table 3.1.

The major advantage of the time scale analysis that is performed in the ILDM
method, is that information about the attractiveness of the manifold is available. On
the other hand, if the fast and slow time scales are badly separated, the ILDM will
be inaccurate. Furthermore, if eigenvalues cross, it can be a problem to obtain a
solution.

The inclusion of transport processes in the FGM, results in a high accuracy with
only a few controlling variables. To obtain a comparable accuracy with ILDM, the
number of controlling variables is increased, which results in a large database and
a less efficient reduction. Furthermore, especially a one-dimensional FGM is rela-
tively easy to obtain. On the other hand, the extension to more dimensions is less
straight-forward than in case of an ILDM. As an FGM is based on the solution of
premixed flames, the manifold is only applicable to (partially-) premixed systems,
whereas the ILDM is applicable to both premixed and non-premixed flames. The
applicability of FGM to partially-premixed systems will be investigated further in
chapter 4.

In chapter 5, the Phase Space ILDM method is introduced [7]. This method is
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Table 3.1 : The advantages and disadvantages of ILDM and FGM.

ILDM FGM
Advantages: Manifold based on time scale accurate

analysis

suited for premixed and few progress variables
non-premixed systems are sufficient

- relatively simple to obtain

- no projection needed

Disadvantages: difficult to obtain solution no time scale analysis: no
in entire domain (crossing information about
eigenvalues) attractiveness

more dimensions needed not straight-forward to
to obtain high accuracy extend to more dimensions

transport processes not developed for premixed
included systems

basically a combination of the ILDM and the FGM method. It combines the time
scale analysis of the ILDM method with the flamelet equations, which are used to
construct a FGM.



Chapter4
The Flamelet-Generated
Manifold method applied to
partially-premixed
counterflow flames

As stated in the previous chapter, the FGM method is originally designed for pre-
mixed flames. Therefore, its applicability to systems, which are not purely premixed
is questionable. In this chapter, the FGM method is tested in a counterflow config-
uration that is not purely premixed. The accuracy of the reduced computations is
analysed by means of a time scale analysis of the terms that cause deviations from
a purely premixed flame, which is one-dimensional. Furthermore, the results are
compared with computations, performed with a flamelet database, which is based
on non-premixed flamelets.

The chapter starts with a motivation of this study in section 4.1. In the subse-
quent section 4.2, the research strategy is defined. First, the counterflow configura-
tion is discussed. Subsequently, it is specified how the FGM method can be used
in a system, which is not purely premixed. In the third section, an overview of
the results is given. The results are analysed in section 4.4. In subsequent section
4.5, a comparison with results obtained with a non-premixed database is presented.
Finally, a number of conclusions is drawn in section 4.6.

4.1 Introduction

Partially-premixed flames constitute a special field of interest, as they are found in
a wide range of practical applications, varying from gas turbines, reciprocating en-
gines, and industrial and domestic burners. It is well known that purely premixed
flames and purely non-premixed flames can be modelled by using one-dimensional
premixed and non-premixed flamelets, respectively. For partially-premixed flames,
however, it is unclear which model to use. A combination between premixed and
non-premixed flamelets to model partially premixed flames was proposed by Müller
et al. [62] and Chen et al. [14]. In this method, the G-equation approach was used to
describe the position and the propagation of the premixed flame front, whereas a li-
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brary based on counterflow diffusion flames was used to predict the concentrations
of the chemical components. However, as the premixed character of the combus-
tion processes has been identified as the most dominant part [14, 77], the use of
non-premixed flamelets is questionable and using premixed flamelets to construct a
database seems to be more appropriate. A number of references in which the FGM
method has been used to model partially-premixed flames can be found in litera-
ture. Accurate reproduction of detailed results of temperature and species profiles
are obtained in a two-dimensional triple flame [71] and a two-dimensional Bunsen
flame [35]. Notice that in the second example, the FPI method was used. However,
this method is similar to the FGM method. In this chapter, the FGM method, which
is based on premixed flamelets, is tested in a system that is partially-premixed. Fur-
thermore, the FGM results are compared with results obtained with a non-premixed
flamelet library.

A typical example of a partially-premixed flame is a so-called triple flame. Triple
flames are found in e.g. lifted-jet diffusion flames. Furthermore, triple flames play
an important role in the stabilisation of turbulent diffusion flames [22]. Figure 4.1
shows a schematic picture of a triple flame structure propagating in a non-uniform
mixture. Several areas can be distinguished in this flame. First, the triple point is
situated at the position on the premixed flame front, where the mixture fraction Z
equals its stoichiometric value Zst. Furthermore, two premixed flames can be seen:
a lean premixed flame at the fuel lean side of the mixture (Z < Zst) and a rich
premixed flame at the fuel rich side of the mixture (Z > Zst). Finally, a diffusion
flame is found in the tail of the triple, or tri-brachial flame structure. The behaviour
and characteristics of triple flames are not studied here. For experimental studies of
a triple flame, the reader is referred to e.g. [44, 52, 53, 77]. Furthermore, theoretical
studies of triple flames are reported in, for example, [10,21,46] and numerical studies
can be found in, for instance, [22,24,83]. In this chapter, it is analysed to what extent
the FGM method, which is based on premixed flamelets, can be used in triple flame
systems. By means of a time scale analysis of chemical and physical processes, it is
analysed which processes lead to inaccuracies in the reduced computation.

In a triple flame, a number of features, which are not present in one-dimensional
premixed flames, can be distinguished:

1. Curvature and stretching due to the non-uniform velocity field and the curved
flame front.

2. A rich and a lean premixed flame front, in which the mixture fraction Z is not
constant, unlike in purely premixed flames.

3. A diffusion flame front, in which CO and H, which are left over from the
rich premixed flame, react with O, which is left over from the lean premixed
flame.

As none of these processes are taken into account during the generation of an FGM,
all may cause inaccuracies in the reduced computation with FGM. Unfortunately,



4.1 Introduction 57

un
bu

rn
tm

ix
tu

re

bu
rn

tm
ix

tu
re

triple point

Z = Zst

Z > Zst

Z < Zst
O

lean premixed flame

diffusion flame

CO, H

rich premixed flame

Figure 4.1 : A schematic example of a triple flame structure. The flame structure in the grey
box is similar to the structure in a one-dimensional counterflow system, which
is partially-premixed. The flame propagates towards the left.

in the triple flame structure, these features can not be isolated to investigate the
individual contributions to the inaccuracies in the reduced computations.

As stated earlier, the results of FGM are also compared with results obtained with
a non-premixed flamelet library. In the non-premixed counterflow flames, which are
used to construct a non-premixed flamelet library, especially the premixed flame
structure is not present. Therefore, it is expected that the largest deviations from
detailed results are found in the premixed parts of the partially-premixed flame.

The effect of stretch and curvature on the accuracy of computations with the
FGM method has already been investigated [68]. It is expected that the main devi-
ation from one-dimensional premixed behaviour is caused by the gradients in the
mixture fraction. In a two or three-dimensional triple flame simulation, it is difficult
to control the gradient of the mixture fraction directly. The gradient of the mixture
fraction is supplied at the left boundary of the domain in figure 4.1. However, due
to diffusion processes, the mixture fraction gradient diminishes in the stream-wise
direction. Hence, it is hard to find a relation between the gradient of the mixture
fraction and the accuracy of the FGM computation. The tail of the triple flame (the
box in figure 4.1) can be simulated with a one-dimensional counterflow flame, which
is partially-premixed.

The one-dimensional counterflow setup can be considered as a one-dimensional
triple flame, in which it is possible to change the local strain rate and the mixture
fraction gradient more or less independently. It is assumed that all Lewis numbers
are equal to one (i.e. Lei =  for i ∈ [, Ns]) to eliminate the effects of preferential dif-
fusion. In this manner, the individual contributions of straining and a gradient of the
mixture fraction to inaccuracies of the reduced computations can be analysed. The
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Figure 4.2 : A schematic example of a planar counterflow flame, which is partially-
premixed. In this example, it is assumed that ZL > Zst and ZR < Zst. Note that
the location of the non-premixed flame depends on position, where Z = Zst.

accuracy of the reduced computation is analysed by means of a time scale analysis
of the terms, which cause perturbations from one-dimensional premixed behaviour.
Recently, in Fiorina et al. [36] counterflow flames that are partially-premixed are
used to study the accuracy of the FGM/FPI method. However, in their work, the
main focus was not on the individual contributions of the perturbation terms, but on
how a database generated with premixed flamelets can be combined with a database
generated with non-premixed flamelets to model partially-premixed flames with a
large mixture fraction gradient.

4.2 Partially-premixed counterflow flames

The one-dimensional counterflow flame that is studied, is formed by two opposed
methane/air jets with mixture fractions ZL and ZR, respectively, which impinge and
form a stagnation plane (see figure 4.2). If ZL and ZR are both within the flamma-
bility limits and ZL = ZR, a so-called twin flame with two premixed flame fronts
appears. If ZL =  and ZR = , a single diffusion flame front appears around
the position where Z = Zst. If the mixture fraction on one side is larger than the
stoichiometric value and on the other side, the mixture fraction is smaller than the
stoichiometric value, then the counterflow flame can be considered as a partially-
premixed flame. Figure 4.2 shows an example of a partially-premixed counterflow
flame, with two premixed flame fronts and a non-premixed flame front in between.
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4.2.1 One-dimensional counterflow flames

A derivation of the set of steady one-dimensional equations that describes the coun-
terflow flame can be found in, e.g. [20, 70]. Here only the resulting equations are
presented. As the counterflow flames are considered to be flat and stationary, the
variables ρ, T, Yi, and h only depend on the coordinate x, which is the coordinate
perpendicular to the flame front(s). The pressure and v, which is the y-component
of the velocity, depend both on x and y. As the flame is steady, the velocity of the
flame surfaces is given by uf = vey. Combining this expression with equation (3.59)
leads to

K =
∂v
∂y

. (4.1)

Together with this expression for the stretch rate, the conservation equations for
mass, species mass fractions, and enthalpy can be written as,

dm
dx

= −ρK, (4.2)

d
dx

(mYi) −
d

dx

(
λ ′

cpLei

dYi

dx

)
− si = −ρKYi , i ∈ [, Ns − ], (4.3)

and
d

dx
(mh) −

d
dx

(
λ ′

cp

dh
dx

)
=

d
dx

(
λ ′

cp

Ns−∑

i=

h∗
i

(


Lei
− 

)
dYi

dx

)
− ρKh. (4.4)

It should be noticed that this set of equations is equal to the flamelet equations (3.63)-
(3.65) for the case that σ =  (no curvature) and Qi = Qh =  (all flame variables
are a function of x only). As the iso-contours of the progress variable Y are flat and
parallel, the spatial coordinate x is analogous to the coordinate s, which is used in
the flamelet equations.

In this flame configuration, two perturbations from one-dimensional unstretched
premixed flames are significant. Firstly, straining of the flame front, expressed by the
stretch rate K, influences the mass burning rate m. Even though it has been shown
in [37, 70] that this effect on the chemistry is relatively small for premixed flames,
this is uncertain for partially-premixed flames. Secondly, if ZL 6= ZR, the gradient of
the mixture fraction may lead to deviations from purely one-dimensional behaviour.
An expression for the stretch rate K can be derived from the conservation equations
for momentum [20]. The equation that is solved for the stretch rate K yields,

m
dK
dx

−
d

dx

(
µ

dK
dx

)
= ρRa − ρK, (4.5)

where a is the applied strain at the right boundary. In this equation, it is assumed
that the flow in the unburnt mixture behaves as a potential flow. Since it is assumed
that Lei =  for all species, the conservation equation for the mixture fraction is
given by,

d
dx

(mZ) −
d

dx

(
λ ′

cp

dZ
dx

)
= −ρKZ. (4.6)



60 FGM for partially-premixed flames

where Z is given by equation (3.15) In addition, a scaled mixture fraction Z̃ can be
defined, which varies between  at the left-hand (rich) side and  at the right-hand
(lean) side, according to Z̃ = (Z − ZR)/(ZL − ZR), provided that ZL 6= ZR.

The system of equations is solved with the one-dimensional flame code CHEM1D
[12], with the following boundary conditions,

m() = ,

Yi(x → −∞) = YL
i , Yi(x → +∞) = YR

i , i ∈ [, Ns],
h(x → −∞) = hL, h(x → +∞) = hR,

K(x → −∞) = a
√

ρR

ρL , K(x → +∞) = a,

Z(x → −∞) = ZL, Z(x → +∞) = ZR.

(4.7)

4.2.2 FGM for partially-premixed flames

In order to capture mixture fraction variations, a two-dimensional FGM is con-
structed. The manifold consists of a series of premixed flamelets, with different inlet
mixture fractions, parameterised with the progress variables Z and Y . The mixture
fraction represents the mixing between fuel and oxidiser, whereas Y parameterises
the reaction progress. To obtain a higher accuracy, additional reaction progress vari-
ables can be added to the manifold. However, this is not done here. The reaction
progress variable Y is defined as

Y =
YCO

MCO

+
YHO

MHO
+

YH

MH

, (4.8)

with Mi the molar mass of species i [71]. This progress variable is continuously in-
creasing for both rich and lean premixed flames. Note that the choice of the control-
ling variable is not arbitrary. Firstly, one must guarantee a unique parameterisation
of the manifold. Secondly, the controlling variable must be suited for non-premixed
and partially-premixed flames. It should be noted that the main purpose is an accu-
rate prediction of the reaction layer (see figure 1.2). However, an accurate prediction
of the density profile is essential for a correct prediction of the flow and hence also
the flame behaviour.

A series of  premixed adiabatic unstrained flamelets has been computed of
methane/air mixtures with the inlet mixture fraction varying between Z = .

(which is equivalent to an equivalence ratio of ϕ ≈ .) for the leanest flamelet
and Z = Zst ≈ . (or ϕ ≈ .) for the richest flamelet. The inlet mixture frac-
tion is modified by adjusting the ratio between fuel and air. Since the Lewis num-
bers are equal to one, the mixture fraction is constant in each flamelet. A projection
of the computed manifold onto the (Y , Z)-plane is shown in figure 4.3. Points at
intermediate values of Z can be obtained by interpolation.

The values of the mixture fraction that can be chosen to compute a premixed
flamelet, are restricted to the flammability limits. If the value of Z reaches values
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Figure 4.3 : The FGM manifold projected on the (Y , Z)-plane. Notice that the scale changes
on the vertical axis at Z = .. The thick solid line represents the stoichiometric
flamelet. Furthermore, only 17 of the 80 flamelets are shown.

outside the flammability limits during the application of the FGM, an extrapolation
of the dependent variables like T and ρ must be used. Since the chemical source
terms are very small outside the flammability limits, a reasonable approximation
for the solution of Yi is proportional to the solution of Z, i.e. Yi ∼ ZLei . Since the
Lewis numbers are assumed to be equal to one, the enthalpy is also a linear function
of Z. Once the species mass fractions and the enthalpy are known, the temperature
can be calculated with the caloric equation of state (2.6). Finally, the density is ob-
tained from the thermal equation of state (2.11). A more detailed description of data
retrieval from the database is given in appendix B.

4.2.3 Non-premixed flamelets

Instead of using premixed flamelets to model a partially-premixed flame, it is also
possible to construct a database with non-premixed flamelets. A database is con-
structed with the solution of non-premixed counterflow flames (i.e. counterflow
flames with ZL =  and ZR = ), with a varying strain rate a. A series of 52 flamelets
is computed with a strain rate varying between a = . s− and a =  s−. The
database is completed with a chemical equilibrium flamelet, which represents the
limit a → . In this equilibrium flamelet, the composition is determined by the
chemical equilibrium values as a function of Z.

The manifold is parameterised by the mixture fraction Z and the scalar dissi-
pation rate χ. Analogous to the FGM method, the mixture fraction represents the
mixing between fuel and oxidiser. A second controlling variable is added to capture
finite rate chemistry effects. Similar to the FGM method, this can be a (linear com-
bination of) species mass fractions. However, in standard non-premixed flamelet
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Figure 4.4 : The diffusion flamelet database, projected on the (Z, χ)-plane. Note that not all
the flamelets are shown.

techniques, the scalar dissipation rate is usually chosen as additional controlling
variable [76]. A projection of the manifold on the (Z, χ)-plane is shown in figure 4.4.

In most flamelet libraries, the flamelets are computed in Z-space rather than in
x-space [76]. In that case, spatial information of the flame is not available. It is
assumed that the χ-profile can be approximated with an analytical function. Here,
the diffusion flame is computed in the spatial domain, so no assumptions for the
χ-profile are needed, and the solutions of Z and χ can be used to parameterise the
database.

During the application of the database, Z and χ are used as controlling vari-
ables. This means that equation (4.6) is solved for the mixture fraction and the value
of χ is retrieved from the definition of χ, i.e. χ = DZ‖∇Z‖. The data is retrieved
from the database in a similar fashion as in the FGM method, i.e. by means of lin-
ear interpolation between the available manifold data. As the manifold grid is not
rectangular, linearly interpolating may lead to errors. However, if the number of
points in each flamelet is significantly large, the error induced by interpolation will
be small. The flamelets, which are used to construct the database, contain  grid
points per flamelet.

4.3 Results with FGM

In this section, results are presented for partially-premixed counterflow flames that
are computed with the FGM. The results are compared with the results of detailed
computations. In section 4.5, the results which are obtained with the FGM method
are compared with results obtained with non-premixed flamelets.

As stated in the previous section, there are two effects that contribute to errors
using FGM in the simulations of partially-premixed counterflow flames, i.e. strain
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and a gradient in Z, which can be expressed by the stretch rate K and the scalar
dissipation rate χ, respectively. However, as effects due to the gradients of Z are of
interest, a more appropriate mixing time scale in terms of the local dissipation rate
is introduced according to

χ̃ =
χ

(Zr − Zl)
, (4.9)

which is a rescaled dissipation rate. The subscripts ’r’ and ’l’ stand for the rich and
the lean flammability limits of the premixed CH/air flames. In this analysis, the
values for Zr and Zl are given by Zr = . and Zl = .. The two effects that
cause deviations from premixed behaviour can be controlled in two ways:

1. The stretch rate K can be influenced by changing the strain rate at the oxidiser
boundary a. Unfortunately, when a is changed, the dissipation rate χ̃ changes
as well.

2. The mixture fractions at the boundaries, i.e. ZL and ZR, can be changed. In
order to keep the value of K constant or nearly constant at Z = Zst, ZL and ZR

are changed symmetrically with respect to Zst ≈ ., such that ZL + ZR =

Zst. The limits of the Z-range are given by the twin flame, i.e. by ZL = ZR =

Zst and a flame with ZL = Zst and ZR = . In the second limiting case, a
rich premixed flame front appears together with a non-premixed flame front,
in which the remaining CO and H react with the oxygen that is coming from
the lean side. In the other cases, a triple flame appears as shown in figure 4.2.

Figure 4.5 shows the test data as a function of K and χ̃, evaluated at Z = Zst. Each
point represents a different flame configuration, in which open symbols correspond
to steps in the applied strain a and closed symbols correspond to steps in ZL and ZR.
From the test data, the effects of straining and mixing are extracted. First the effect
of strain is evaluated. Subsequently, the effect of a gradient of Z is studied. Further-
more, the combined effect of strain and mixing is presented. In addition, the profiles
of a number of variables are given. Finally, the results are briefly summarised.

4.3.1 Straining of the flow

To show the effect of straining of the flow, the results of two flames with different
strain rates are evaluated. The values of ZL and ZR are chosen in such a manner that
the profile of the scalar dissipation rate is approximately the same for both flames,
so the effect of mixing is also almost the same for both flames. Figure 4.6a shows
profiles of K and χ̃ as a function of the mixture fraction for the two different flames.
The first flame has a strain rate a =  s− and inlet mixture fractions ZL = Zst ≈
. and ZR = ., respectively. The second flame has a strain rate of a =  s−

and inlet mixture fractions ZL = . and ZR = ., respectively. Notice
that the mixture fraction is scaled with the values at the boundaries, so it varies
between  ≤ Z̃ ≤ . Figure 4.6a shows that the dissipation rate of both flames are
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Figure 4.5 : The tested flame configurations as a function of Kst and χ̃st. The open circles
represent steps in the applied strain, and the closed circles represent steps in
ZL and ZR.

comparable, whereas the strain rate is completely different. Figure 4.6b shows the
profiles of the progress variable Y , as a function of the (unscaled) mixture fraction
Z. The profiles of the detailed simulations are compared with the FGM solutions.
To quantify the error of the FGM simulation, the following expression is used

εY =

∫ZL

ZR |Ydet − YFGM|dZ
∫ZL

ZR YdetdZ
, (4.10)

where Ydet and YFGM are the profiles of the progress variable of the detailed solution
and the profile of the FGM solution, respectively. The error for the flame with a =

 s− is εY ≈ .% and for the flame with a =  s−, the error is εY ≈ .%.
From this observation, it can be concluded that, for a given value of the gradient of
Z, strain has only little effect on the accuracy of the reduced computation.

At high strain rates, the flame fronts are pressed against each other. This leads
to an extra deviation from one-dimensional premixed behaviour, because radicals
like H, OH, and O, which are present in the burnt gases, diffuse from one flame
front to the other. Figure 4.7 shows the overall chemical time scale τc, as defined in
equation (3.13), for two flames with ZL = Zst and ZR = , and strain rates a = 

s− and a =  s− , respectively. The flame with a =  s− clearly has two flame
fronts: a rich premixed flame front at the right-hand side and a diffusion flame
front around Z = Zst ≈ .. In the flame with a =  s−, the two separate
flame fronts can not be distinguished. Note that the time scales in both flames are
different. This phenomenon will be analysed later in this chapter. The merging of
the flame fronts also occurs in flames with other mixture fraction at the boundaries.
In the FGM computation, the diffusion that is caused by the merging of the flame
fronts can not be reproduced, as it is not taken into account in the construction of
the database. This result is analogous to earlier results found for purely premixed
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Figure 4.6 : The effect of straining on the FGM solution. The left figure shows the χ̃-profile
(solid line) and the K-profile (dashed line) for a =  s− and the χ̃-profile
(closed symbols) and the K-profile (open symbols) for a =  s−. Note that
the profiles are plotted as function of Z̃. The right figure shows the profiles
of Y for both flames: the detailed (solid line) and the FGM (closed symbols)
solution for a =  s− and the detailed (dashed line) and the FGM (open
symbols) solution for a =  s−.

counterflow flames [70]. The effect of the merging of the flame fronts is not very
large in figure 4.6b. In the flame with a =  s−, both ZL and ZR are within
the flammability limits, so most of the chemistry takes place in the premixed flame
fronts, which are relatively far apart.

4.3.2 The effect of mixing

In the second test case, the strain rate a is kept constant and the inlet mixture frac-
tions are changed, corresponding to the closed symbols in figure 4.5. The inlet mix-
ture fraction on the left hand side changes from ZL ∈ [Zst, Zst], whereas the mixture
fraction on the right-hand side varies from ZR ∈ [Zst, ]. Furthermore, ZL and ZR

satisfy the condition ZL + ZR = Zst. The test is done for three different strain rates,
i.e. a =  s−, a =  s−, and a =  s−, respectively. Figure 4.8 shows the
error as a function of χ̃st. The corresponding strain rates can be obtained from fig-
ure 4.5. The error grows for increasing χ̃st, as expected. Note that εY >  for χ̃st → ,
since Kst is still positive (see figure 4.5).

However, at a certain value of χ̃st, the error increases less or even decreases, de-
pending on the applied strain. The cause of this phenomenon is shown in figure 4.9,
which shows profiles of Y and τc of two flames at a strain rate of a =  s− with
different mixture fractions at the inlet. The profile in figure 4.9b, with χ̃st ≈  s−,
results in a lower value of εY than the profile of figure 4.9a, with χ̃st ≈  s−. The
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Figure 4.7 : The merging of two flame fronts at higher strain rates, shown by the chemical
time scales as a function of the mixture fraction. Solid line: a =  s−, dashed
line: a =  s−.

main difference between the two flames is shown by the profile of τc. The flame in
the left figure has two premixed flame fronts with a non-premixed flame in between.
The decrease in the error is mainly caused by the extinction of the lean premixed
flame in figure 4.9b, because the inlet mixture fraction on the lean side reaches val-
ues below the lean flammability limit. The reproduction by FGM of the diffusion
flame is clearly more accurate than the lean premixed flame. This will be explained
in detail in section 4.4.

4.3.3 The combined effect of strain and mixing

Finally, the inlet mixtures are kept constant, but the strain rate is varied, i.e. the
lines with open symbols in figure 4.5. The strain rate varies between a =  s−

and a =  s−. The test is repeated with five different inlet mixture fractions,
i.e. ZL = ., ., ., ., and ., while ZR is changed according to ZL +

ZR = Zst. Figure 4.10 shows the error of the FGM computation as a function of
Kst. The crossing of the lines at low strain rates can be explained by the decrease in
the growth of the error shown in figure. 4.8. Also the slower increase of the error
for computations with higher values of χ̃st can be subscribed to this phenomenon.
Note that for higher strain rates and relatively low values of χ̃st, the error increases
linearly with Kst.

4.3.4 Profiles of retrieved variables

In this section, temperature, density, and species profiles of the reduced compu-
tations are compared with corresponding profiles of detailed computations. The
profiles are evaluated for flames with ZL = Zst and ZR = . Note that in this con-
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Figure 4.8 : The error as a function of χ̃st at three different strain rates: a =  s− (solid
line), a =  s− (long dashes), and a =  s− (short dashes).
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(b)

Figure 4.9 : The profiles of the controlling variable Y and the chemical time scale τ as a
function of Z at a strain of  s−. The left figure has the inlet mixture frac-
tions ZL = . and ZR = ., whereas the right figure has the inlet mixture
fractions ZL = . and ZR = .. The solid lines represent the detailed solu-
tions and symbols the FGM solutions of Y . The dashed lines represent τ−

c of
the detailed solutions.
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Figure 4.10 : The figure shows the error as a function of Kst for five different inlet composi-
tions varying between: ZL = Zst and ZR =  (solid line), ZL = . and
ZR = . (long dashes).

figuration two instead of three flame fronts appear: a rich premixed flame front and
a non-premixed flame front, in which remaining CO and H react with the oxidiser
from the right-hand side. The figures 4.11, 4.12 and 4.13 show profiles for a = 

s− (left figures) and a =  s− (right figures), respectively.
Firstly, the density and temperature profiles are evaluated. The density plays an

important role in the prediction of the mixture fraction profile. An inaccurate pre-
diction of the Z-profile will lead to large errors in the spatial domain in the profiles
of the other dependent variables. Figure 4.11a shows that the density and temper-
ature profiles are accurately predicted by FGM for the flame with a =  s−. On
the other hand, for the flame with a =  s−, which is shown in 4.11b, the FGM
profile significantly deviates from the detailed solution (errors up to %). In both
figures, the largest errors are found at the left-hand side of the domain, i.e. in the
rich premixed flame structure. The error in the diffusion flame, at the right-hand
side of the domain is much smaller. This result is in correspondence with the results
shown in figure 4.9.

Furthermore, it can be concluded that the extrapolation outside the flammability
limits of the FGM leads to an accurate prediction of the temperature and density
profiles. In the flames studied in this section, extrapolation is needed only at the
lean side of the flame, i.e. the right-hand side of the flame, where Z < .. The
accuracy of the extrapolation is e.g. shown in figures 4.11a and b. In these figures,
an extrapolation is used at the right hand side, where T .  K.

Figure 4.12 shows profiles of O, HO, and H. Especially, the profiles of O

and HO are predicted accurately for a =  s−. The error of the H error is
somewhat larger. For a =  s−, also the errors in the profiles of O and HO are
larger. Figure 4.11b also shows that O is not fully consumed by the rich premixed
flame at the left hand side. Due to the high strain rate, the premixed flame and
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(b)

Figure 4.11 : Density and temperature profiles for a counterflow flame with ZL = Zst, ZR =

, a =  s− (left figure), and a =  s− (right figure). Temperature T
(detailed: solid lines, reduced: crosses), and density ρ (detailed: short dashed
lines, reduced: solid circles).

the non-premixed flame (at the left-hand side) are pressed against each other, as
already shown in figure 4.7. Diffusion of radicals from one flame front into the
other leads to additional inaccuracies from one-dimensional premixed behaviour.
This phenomenon was already observed for counterflow premixed flames [70].

Finally, profiles of the H-radical and CHOH (methanol) are shown in figure 4.13,
because these are often very hard to predict using reduction techniques like ILDM.
Even though the error in the profiles of the temperature, density, and the major
species is relatively small, the errors in intermediate species is significantly larger.
Especially in the flame with a =  s−, this difference is significant. This phe-
nomenon is probably caused by by the high sensitivity of intermediates to small
changes in the species concentrations and temperature.

4.3.5 Brief summary of the results

In general, it can be concluded that the important features of the one-dimensional
counterflow flames, which are partially-premixed, are reproduced with the FGM
method. However, a number of deviations from the detailed results are observed.
The main results that are presented in this section can be summarised in a few
points:

1. Flow straining has only little effect on the chemistry. However, at higher strain
rates, merging of the flame fronts may lead to errors.

2. Mixing processes, which are caused by a gradient in the mixture fraction Z
lead to errors especially in the premixed flame fronts. The largest errors are
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(b)

Figure 4.12 : Species profiles for a counterflow flame with ZL = Zst, ZR = , a = 
s− (left figure), and a =  s− (right figure). φO

(detailed: solid lines,
reduced: crosses), φHO (detailed: long dashed lines, reduced: open circles),
and φH (detailed: short dashed lines, reduced: solid circles).
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Figure 4.13 : Species profiles for a counterflow flame with ZL = Zst, ZR = , a =  s−

(left figure), and a =  s− (right figure). φH/ (detailed: short dashed
lines, reduced: thin solid line and solid circles) and φCHOH (detailed: solid
lines, reduced: thin solid line and crosses).
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Table 4.1 : The order of the error εY of the FGM computation (in %) as a function of
τFGM/τf and τFGM/τm. Note that the error can not be given for all combinations
of τFGM/τf and τFGM/τm, because data is not available for all combinations.

τFGM/τf [-]
τFGM/τm[-] . . . . .
. . . . . .
. - . . . .
. - - . . .
. - - - . .
. - - - - .

found in the rich premixed flame structure.

3. The profiles of major species and temperature are predicted accurately, espe-
cially if the gradients in Z are small. On the other hand, the errors in the radical
profiles are larger.

4.4 Analysis of the FGM results

In the previous section, results showed that the largest errors of the reduced com-
putations with FGM were found in the premixed flame structures, instead of the
non-premixed flame structures. At first, this seems rather strange, because the FGM
is based on the solutions of premixed flames. However, this can be clarified by a
comparison of time scales of the different processes in the flame with the general
time scale of the FGM flamelets. The flow and mixing time scale of the counterflow
flame, and a general time scale of the FGM database can be defined as

τf = K−
st , τm = χ̃−

st , and τFGM =
δf,st

sL,st
, (4.11)

respectively. In τFGM, δf,st and sL,st are the flame thickness and the laminar burning
velocity of the stoichiometric flamelet, respectively. The burning velocity of the sto-
ichiometric flamelet is sL,st ≈  cm/s and the flame thickness is δf,st ≈ . mm, so
the FGM time scale yields τFGM ≈ . × − s.

In Table 4.1, the error εY is shown as a function of τFGM/τf and τFGM/τm. Note
that the errors are somewhat over-predicted, becauseεY is based on the whole flame
structure, while the purpose of FGM is to model the chemical processes accurately,
which are non-zero in only a part of the flame. In general, it is observed that FGM
leads to a small error of a few percent when flow and mixing time scales are larger
than the FGM time scale and this error still remains relatively small (≈  %) for
faster mixing and flow processes. Especially straining of the flow has only a small
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Figure 4.14 : The flame trajectories of two counterflow flames with ZL = Zst and ZR =  at
different strain rates (thick solid line: a =  s−, thick dashed line: a = 
s−). The thin lines represent the flamelets from the FGM database, and the
dotted lines represent the flamelets with Z = .Zst, Z = Zst, and Z = .Zst,
respectively.

effect on the accuracy. However, at high strain rates, the flame fronts are pressed
against each other, which leads to additional inaccuracies. It is more appropriate
to compare the physical time scales (i.e. τm and τf) with chemical time scales inside
the counterflow flame. The analysis in this section is separated in two parts. Firstly,
the accuracy of the non-premixed part is analysed. Secondly, the time scales in the
premixed structures are evaluated.

4.4.1 Analysis of the non-premixed flame structure

In figure 4.14, two (Z,Y)-trajectories are shown for flames with a =  s− and
a =  s−, respectively. In both flames, the boundary mixture fractions are given
by ZL = Zst and ZR = . In the figure, also a number of premixed flamelets from
the FGM are shown. The three dashed FGM flamelets correspond to flamelets with
Z = .Zst, Z = Zst, and Z = .Zst. In addition, the thin solid line, which connects
the premixed flamelets on the right-hand side represents the chemical equilibrium
solutions. In this figure, it can be observed that the values of Y in the non-premixed
flame (around Z = Zst) are relatively close to the local chemical equilibrium values,
even for flames with a high strain rate. Close to chemical equilibrium, chemical pro-
cesses are much faster than other processes in the flame. In addition, the chemical
processes can be accurately described by a two-dimensional FGM, with Z and Y as
controlling variables. This was also shown for example in figure 3.10, where a one-
dimensional FGM is compared with a one-dimensional ILDM and a homogeneous
solution of a H/air mixture. Close to chemical equilibrium, all solutions are equal,
which implies that the behaviour is dominated by chemical processes. In addition,
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Figure 4.15 : The (inverse of the) time scales in a counterflow flame with a =  s− (left
figure) and a =  s− (right figure), ZL = Zst, and ZR =  (both figures:
/τ−

c (solid line), /τ+

c (solid symbols), /τc (long dashes). In the left figure:
 × /τm (short dashed line) and  × /τf (open symbols) and in the
right figure:  × /τm (short dashed line) and  × /τf (open symbols))

the behaviour can be described by a single reaction progress variable Y .

By means of a time scale analysis of the chemical and physical processes in the
flame, it can be shown that the non-premixed part of the flame is dominated by
chemical processes. Figure 4.15 shows the inverse of chemical and physical time
scales for the two flame trajectories shown in figure 4.14. Note that in the left figure,
the mixing and flow time scale are multiplied by , whereas these time scales are
multiplied by  in the right figure. Close to equilibrium, the chemical production
and consumption rates are very large, but the overall chemical rate is small. Since
the chemical consumption and production time scales are very small compared to
the flow and mixing time scale in figure 4.15a (note that the figure shows the inverse
of the time scales), it can be concluded that the behaviour is mainly determined by
chemistry around Z = Zst. Furthermore, as the chemistry is close to equilibrium, it
can be reproduced accurately by the FGM, so the error in the reduced computation
is small. In figure 4.15b, the time scales are not so clearly separated as in figure 4.15a.
However, in the region around Z = Zst, the chemical production and consumption
rate are much faster then the overall chemistry rate. Hence, the error in the non-
premixed flame structure is still relatively small in the FGM computation (see e.g.
figure 4.11b).



74 FGM for partially-premixed flames

4.4.2 Analysis of the premixed flame structures

A significant part of the error in the reduced computations arises in the premixed
parts of the partially-premixed counterflow flames. For example in figure 4.9, it was
shown that the decrease of the error for increasing strain rate was mainly caused
by the extinction of the lean premixed flame. Furthermore, in the species and tem-
perature profiles shown in figures 4.11 and 4.12, the largest differences between the
detailed and the FGM solution were observed in the rich premixed part of the flame.
Apparently, the gradient in Z has quite some effect on the flame response. In figures
4.15a, the rich premixed flame front is located around Z = .. In the figure, it can
be observed that the chemical production and consumption rates are in the same
order as the overall chemical rate at Z = .. Furthermore, the overall chemical
reaction rate is in the same order as the mixing scale.

As stated earlier in this section, especially close to chemical equilibrium, the
chemical processes are much faster than other processes in the flame. On the other
hand, in lower temperature regions, chemical and physical time scales are in the
same order. Therefore, especially in the rich premixed flame structure, errors are ex-
pected, because in the rich branch, the compositions are further away from chemical
equilibrium (see figures 4.15 and 4.14).

To show that the largest errors are obtained in the rich branch of the partially-
premixed counterflow flames, the temperature profiles of premixed flamelets are
compared with temperatures of the counterflow flames. Figure 4.16 shows the tem-
perature T as a function of the progress variable Y for three different premixed
flamelets with Z = .Zst, Z = Zst, and Z = .Zst (lines) and the data obtained from
the counterflow flames at the corresponding Z-values (symbols), with ZL = Zst,
ZR = , and a ∈ [, ]. The figure clearly shows that the errors are larger and
that compositions are further removed from chemical equilibrium at the rich branch.

4.5 Comparison with non-premixed flamelets

In this section, a non-premixed flamelet library is used to model partially-premixed
counterflow flames. Not the complete analysis of the previous sections is repeated,
only a few illustrative example are discussed. Figure 4.17 shows results of a detailed
computation and reduced computations, obtained with a non-premixed flamelet
database and a FGM, for a flame with ZL = Zst, ZR = , and a =  s−. The left
figure shows profiles of the controlling variables Z and χ as a function of the spatial
coordinate. Especially at the premixed part (at the left-hand side of the domain) the
differences between the detailed computation and the solution obtained with the
non-premixed database are large. The cause of the large error is clarified in the right
figure, which shows the corresponding temperature profiles and the profiles of Y as
a function of the mixture fraction. In the non-premixed flames, which are used to
construct the database, the mixture fraction Z varies between  at the oxidiser side
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Figure 4.16 : The temperature obtained from counterflow flames, with a ∈ [, ] s−,
ZL = Zst and ZR = , compared with the data obtained from the FGM, for
three different values of Z. The lines represent premixed flamelets with Z =

.Zst (long dashes), Z = Zst (solid line), and Z = .Zst (short dashes). The
open symbols represent the data obtained from the counterflow flames, with
Z = .Zst (open circles), Z = Zst (solid circles) and Z = .Zst (addition signs)
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(b)

Figure 4.17 : Profiles of a partially-premixed counterflow flame with ZL = Zst, ZR = ,
and a =  s−. The thick lines represent the detailed solutions, the thin lines
with squares represent the FGM solution, and the thin dashed lines with cir-
cles represent the solution obtained with non-premixed flamelets. The left fig-
ure shows profiles of the controlling variables Z (detailed: solid line, reduced:
closed symbols) and χ̃ (detailed: dashed line, reduced: open symbols). The
right figure shows profiles of the temperature T (detailed: solid line, reduced:
closed symbols) and the temperature Y (detailed: dashed line, reduced: open
symbols).
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Figure 4.18 : Species profiles of φO
(detailed: thick solid line, FGM: thin line with solid

squares, and non-premixed flamelet solution: thin line with solid circles) and
φCO (detailed: thick dashed line, FGM: thin line with open squares, and
non-premixed flamelet solution: thin line with open circles). in a partially-
premixed counterflow flame with ZL = Zst, ZR = , and a =  s−.

and  at the fuel side. In the partially-premixed flame of figure 4.17, however, the
boundaries are different. Hence, the corresponding variables, like e.g. T and Y , at
ZL correspond to values inside the non-premixed flame front. The over-prediction
of the temperature at the rich side leads to an incorrect density profile, which causes
the large deviations in the Z(x)-profile. It can be concluded that it is not possible
to reproduce the premixed flame structures in a partially-premixed flame with a
database that is based on purely non-premixed flamelets (a similar behaviour would
be observed at the lean side if ZR 6= ). The errors decrease if the values of ZL and
ZR approach  and , respectively.

Since the flamelet database is based on non-premixed flamelets, it is interest-
ing to investigate the non-premixed flame structure in the partially-premixed flame.
Figure 4.18 shows profiles of φO and φCO . In the region where the non-premixed
flame front is situated (. . Z . .), the difference between the detailed solu-
tions and the reduced solution obtained with the non-premixed flamelets are in the
same order as the difference between the detailed and the FGM solution. The inac-
curate prediction of the premixed flame front also affects the accuracy of the profiles
of the non-premixed flame front.

4.6 Discussion

In this chapter, the Flamelet-Generated Manifold method, which is based on the
solution of premixed flames, is used to describe partially-premixed counterflow
flames. In the tested flames, two parameters describe the deviation from the one-
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dimensional premixed flame structure, i.e. the strain rate K and the scalar dissipa-
tion rate χ̃. The flamelet equations (3.63-3.65) are derived, by assuming that the time
and length scales of the processes along the iso-contours of Y are much larger than
the scales of the processes perpendicular to the iso-surfaces. The results show that,
as already observed in [70], even though the flow time scale τf is in the same or-
der as the premixed flame time scale τFGM, the effect on the chemistry is relatively
small. However at higher strain rates, the flame fronts merge, which leads to some
inaccuracies.

As the solutions of premixed flames are used to construct the FGM, intuitively
one would expect that the largest problems are found in the reproduction of the non-
premixed flame structure. However in the non-premixed flame front, the tempera-
tures are so high that the flame behaviour is mostly determined by chemistry. Since
the chemical compositions are close to chemical equilibrium, they can accurately be
described by the FGM. It should be noted that the maximum scalar dissipation rate
χ̃st in this study was rather large: χ̃st =  s−. For comparison, the extinction
dissipation rate of a fully non-premixed methane/air flame is χ̃st =  s− [11].

On the other hand, the largest difficulties are observed in the premixed flame
fronts. Part of the difficulties are caused by the effect of the gradient in Z on the
chemistry. For low values of χ̃st, detailed temperature, density, and major species
profiles are reproduced accurately, whereas the errors in the radical profiles are
much larger. These errors are probably caused by the sensitivity of radicals to small
deviations in the major species and temperature profiles. On the other hand, at
higher values of the scalar dissipation rate, also the temperature, density, and major
species profiles contain errors up to %. The largest deviations from the detailed
solutions were obtained at the rich branch of the counterflow flame. In this part
of the flame the species concentrations are further away from chemical equilibrium
than at the lean branch.

The accuracy of the FGM computation could be enhanced by adding a third di-
mension to the manifold. By the inclusion of a second reacting controlling variable,
additional chemical time scales are added to the manifold. Especially at the rich
branch of the partially-premixed triple flame, the errors are caused by the fact that
only one reacting progress variable was used. However, as the FGM manifolds are
always based on the solution of premixed flames, the effect of mixing on the chem-
istry is still not taken into account in the manifold. Even though the inclusion of
an extra controlling variable leads to additional degrees of freedom, in parts of the
flame where both mixing and chemistry are important (especially the colder parts of
the premixed flame structures) it will probably still be difficult to reproduce detailed
profiles accurately.

In section 4.5, the FGM results are compared with results that are obtained with
a non-premixed database. The results show that it is not possible to reproduce infor-
mation of the premixed flame fronts in a laminar partially-premixed flame. In [14],
a non-premixed flamelet database was used to model triple flames and the results
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show a rich and a lean premixed flame front, and a non-premixed flame in the tail.
However, in that case, the premixed flame front was modelled with the G-equation
approach in combination with a non-premixed database, in a turbulent environ-
ment. In that case, the species and temperature profiles in the premixed flame front
are determined by the turbulence and do not correspond to profiles of a laminar
premixed flamelet. Furthermore, the results in this chapter also show that the errors
in the non-premixed part were in the same order as the errors in the results obtained
with FGM.

The counterflow triple flame is a simple and effective test case to evaluate the
applicability of FGM in partially-premixed systems, although it does not account for
all effects in practical systems. For instance, diffusion along the iso-contours of Y is
not present, because the contours of Y and Z are parallel. On the other hand, it is the
gradient in Z that causes the main deviation from the premixed flame structure. In
addition, all Lewis numbers were assumed to be equal to one, so higher order effects
caused by preferential diffusion have not been taken into account yet. However, the
results show that even though mixing times are in the same order as time scales of
the FGM database, it is still possible to simulate the processes accurately. Therefore,
it is reasonable to expect that preferential diffusion will not significantly influence
the accuracy.

To conclude, the FGM method is a suitable method to model partially-premixed
flames efficiently and accurately. With only two controlling variables, i.e. the mix-
ture fraction Z and a reaction progress variable Y , accurate results are obtained for
the major species, temperature, and density, which is not expected for standard re-
duction techniques. On the other hand, errors in the radical profiles are significantly
larger. Especially, the premixed part of the partially-premixed system is difficult to
reproduce accurately if the gradients in Z become large. In that case, mixing time
scales and chemical time scales are of the same order in the premixed parts of the
partially-premixed flame. The non-premixed part of the flame is modelled accu-
rately, because the chemistry in the diffusion part of the partially-premixed flames
is close to chemical equilibrium, where the ILDM and FGM manifolds are nearly
identical.



Chapter5
Phase Space ILDM

In section 3.5, a number of advantages and disadvantages of the ILDM and FGM
method was listed. These disadvantages and advantages can be summarised in two
categories. Firstly, as diffusion processes are not included in an ILDM, the ILDM
method may lead to inaccuracies during the application of the manifold. Secondly,
the mathematical background of the FGM method is less strong than in the ILDM
method. Therefore, it is not trivial to extend the FGM to more dimensions. In this
chapter, a new method is proposed, which can be regarded as a combination of the
ILDM method and the FGM method: it combines the mathematical procedure of
the ILDM method with the equations that are used to construct an FGM. This new
method will be referred to as the Phase Space ILDM (PS-ILDM) method. Firstly,
an introduction to the general idea of PS-ILDM is given. Secondly, the equations
that are used for the construction of a PS-ILDM are derived. In the subsequent
sections 5.3 and 5.4, the PS-ILDM method is illustrated with simple but illustrative
examples. In sections 5.5 and 5.6, the PS-ILDM method is applied to a hydrogen/air-
mechanism and syngas/air-mechanism, respectively. Finally in section 5.7, the PS-
ILDM method is evaluated.

5.1 Introduction

The FGM method has proven to be an efficient method to compute premixed and
partially-premixed flames. As already suggested in section 4.6, the accuracy of the
method can be enhanced by increasing the dimension of the manifold. In this man-
ner, more time scales are captured in the manifold. As stated in chapter 3, the exten-
sion of the manifold to more dimensions is not straightforward in the FGM method.
In [70], a second dimension was added to the FGM by changing the inlet compo-
sition, while keeping the enthalpy and the element mass fractions constant. It re-
quires experience of the user to define how the inlet mixture should be changed. For
comparison, the ILDM method is based on a time scale analysis, to ensure that the
slowest time scales are taken into account. All fast processes are assumed in steady-
state. To capture more time scales, a higher dimensional ILDM can be constructed
by relaxing one or more steady-state relations. However, the ILDM method may be
inaccurate, because diffusion is not taken into account during the construction of
the database.
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The PS-ILDM method can be seen as a combination of the ILDM method and
the FGM method. To include information about diffusion processes in the mani-
fold, a PS-ILDM is based on the flamelet equations (3.63)-(3.65), which are used to
construct a FGM. However, instead of directly solving the flamelet equations, the
ILDM strategy is used to decouple the fast and slow processes. The purpose of the
PS-ILDM method is twofold. Firstly, the possibility of developing a mathematical
reduction technique, which includes transport processes is investigated. Secondly,
the PS-ILDM method can be seen as a theoretical test case for the FGM method.
Since a time scale analysis is not performed during the construction of a FGM, it is
uncertain whether the manifold is attractive. In other words, it is unknown if small
perturbations from the manifold are attracted back to the manifold rapidly. In the
PS-ILDM method, a time scale analysis of the flamelet equations is performed. To
be able to do a time scale analysis, which is analogous to the ILDM method, the set
of flamelet equations, which are second-order ODEs, is rewritten into a set of first-
order ODEs. The set of first-order equations describes processes in the so-called
combustion phase-space P . In this operation, the size of the system, i.e. the num-
ber of equations, is enlarged with a factor of two compared to the ILDM method.
Hence, also the number of eigenvalues is twice as large. An illustration of a com-
bustion process in the combustion phase space is given in section 5.2.2.

In section 3.3.1, it was discussed how the eigenvalues of the Jacobi matrix J are
used to decouple the fast and slow processes in the ILDM method. In the PS-ILDM
method, a similar procedure is followed. Generally, the eigenvalues of the ILDM
system reappear in pairs of positive and negative eigenvalues. In the original ILDM
method, the processes only depend on the time t. Therefore, positive eigenvalues
are associated with growing modes, so these eigenvalues may not be assumed in
steady-state (see figure 3.6). On the other hand in the FGM method, hence also in the
PS-ILDM method, the processes are described in the spatial domain. The positive
eigenvalues may correspond to damping modes in the direction of -s (upstream),
so in that case they may be assumed in steady-state. Diffusion processes proceed
in the positive and negative s-direction, called the s+-direction and the s−-direction
in the following. In figure 5.1, a schematic example is given of the solution of a
convection-diffusion-reaction problem, which is one-dimensional. In this example,
it is assumed that a source of Yi is located at s = s. Due to diffusion, Yi is transported
in the s+ and the s−-direction. The processes in the s+-direction are dominated by the
negative eigenvalue λ−, like exp(λ+s), whereas the processes in the s−-direction are
dominated by the positive eigenvalue λ+, like exp(λ+s). A more detailed description
of the eigenvalue spectrum is given in sections 5.2 and 5.3. A PS-ILDM is a manifold,
which describes the slowest processes accurately, both upstream and downstream.
All fast processes are assumed in steady-state. Note that on the manifold, one is
interested in the correlation between the chemical components. It is insignificant
whether the processes on the manifold are parameterised by time t or position s. The
procedure to compute a manifold is similar to the ILDM method, with the difference
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Yi ∼ exp(λ+s) Yi ∼ exp(λ−s)

Yi

ss

Figure 5.1 : A schematic example of a typical diffusion process. This can be, e.g. a station-
ary solution of a convection-diffusion-reaction problem, with a source at s = s.
Processes in the direction of s− are dominated by λ+, whereas processes in the
direction of s+ are dominated by λ−.

that processes that proceed in space are taken into account. A complete description
of the PS-ILDM procedure is given in the next section.

The application of a PS-ILDM is similar to the application of a FGM and a ILDM.
The manifold is parameterised by controlling variables and stored in a database.
During a CFD application, equations are solved for the controlling variables and
the other variables are retrieved from the database.

5.2 Phase Space ILDM theory

In this section, the PS-ILDM algorithm is discussed. The derivation is started with
the quasi one-dimensional equations for species and enthalpy that are used to con-
struct an FGM, i.e. equation (3.64)-(3.65). To be able to compare the flamelet equa-
tions with the ILDM equations, the flamelet equations are written in terms of specific
mole numbers. In that case, the species equations become

m
dφi

ds
−

d
ds

(
λ ′

cpLei

dφi

ds

)
= ωi, i ∈ [, Ns − ], (5.1)

Ns∑

i=

Miφi = . (5.2)

Note that the mass burning rate m is constant, since it is assumed that the premixed
flame is flat, i.e. K = Qi = Qh =  and σ = . With this assumption, the enthalpy
equation can be written as

m
dh
ds

−
d
ds

(
λ ′

cp

dh
ds

)
=

d
ds

(
λ ′

cp

Ns−∑

i=

Mih∗
i

(


Lei
− 

)
dφi

ds

)
. (5.3)

In the remainder of this section, the PS-ILDM method is derived in a number of
steps. In sections 5.3 and 5.4, the basic ideas of the method are illustrated with sim-
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ple analytical examples. To be able to use the ILDM algorithm, the second-order
differential equations are transformed into a system of first-order differential equa-
tions, which has twice the dimension of the original system. The new set of equa-
tions describes the combustion process in the composition phase space. To identify
the low-dimensional manifold in the phase space, the ILDM algorithm is applied to
this system of first-order equations.

5.2.1 Transformation into a system of first-order equations

To transform the FGM equations into a set of first order equations, the diffusive flux
terms of species i and the enthalpy h are introduced according to

ψi =
λ ′

cpLei

dφi

ds
, i ∈ [, Ns − ], (5.4)

and

ψh =
λ ′

cp

dh
ds

+
λ ′

cp

Ns−∑

i=

h∗
i Mi

(


Lei
− 

)
dφi

ds
, (5.5)

respectively. As the Lewis numbers are only defined for i ∈ [, Ns − ], the set of
equations for the species fluxes is completed with

Ns∑

i=

Miψi = . (5.6)

Together with the expressions for the diffusive fluxes and after reorganising, the
flamelet equations (5.1) and (5.3) can be written as

mLei
cp

λ ′ψi −
dψi

ds
= ωi, i ∈ [, Ns − ], (5.7)

m
cp

λ ′ψh −
dψh

ds
= m

cp

λ ′

Ns−∑

i=

Mih∗
i ( − Lei)ψi. (5.8)

Equations (5.2), and (5.4)-(5.8) describe the combustion process in the so-called com-
position phase-space, which is (Ns +)-dimensional. Combination of equations (5.4)
and (5.7) leads to a set of first-order differential equations,

dφi

ds
= Lei

cp

λ ′ψi, i ∈ [, Ns − ], (5.9)

dψi

ds
= mLei

cp

λ ′ψi −ωi, i ∈ [, Ns − ]. (5.10)

Furthermore, the constraints (5.2) and (5.6) can be written as

dφNs

ds
= −

Ns−∑

i=

Mi

MNs

Lei
cp

λ ′ψi, (5.11)

dψNs

ds
= −m

Ns−∑
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Mi

MNs

Lei
cp

λ ′ψi −ωNs . (5.12)
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Due to preferential diffusion effects, the enthalpy is not necessarily constant in a
flame. Therefore, also enthalpy variations must be taken into account in the PS-
ILDM method. Note that the system of ILDM equations (3.32) was derived for con-
stant enthalpy. For the enthalpy equation a similar set of equations can be derived,

dh
ds

=
cp

λ ′ψh +
cp

λ ′

Ns−∑

i=

Mih∗
i (Lei − )ψi, (5.13)

dψh

ds
= m

cp

λ ′ψh + m
cp

λ ′

Ns−∑

i=

Mih∗
i (Lei − )ψi. (5.14)

The complete system of equations can be written as

dΘ
ds

= Ω (Θ) (5.15)

where the vector Θ = (φ, . . . ,φNs , h,ψ, . . . ,ψNs ,ψh)
T is a vector in the Nph =

(Ns + )-dimensional composition phase space andΩ (Θ) is a vector that contains
the source terms presented in equations (5.9)-(5.14). Note that the form of this equa-
tion is identical to the form of equation (3.5), which was the starting point of the
ILDM algorithm. In equation (5.15), the derivative is a spatial derivative instead of
a time derivative. The description of the processes as a function of the spatial coor-
dinate s has a number of consequences for the steady-state assumptions, which will
be discussed later in this section. As the pressure is constant in the flames studied
in this thesis, the pressure is not included in the vectorΘ .

5.2.2 An example of combustion in the phase space

Like the state space S , the composition phase space P is multi-dimensional. There-
fore, it is relatively difficult to visualise a combustion process in the phase-space.
To illustrate the behaviour of combustion processes in the phase-space, this section
presents a number hydrogen/air flame trajectories in the phase space. The trajecto-
ries show the typical chemical and diffusive behaviour of the flames, which forms
the basis for the development of the PS-ILDM method. Figure 5.2a and b show tra-
jectories of a number of hydrogen/air flames projected on the (φHO,φH)-plane and
the (φHO,ψH)-plane, respectively. The thick solid line represents a stoichiometric
flame at atmospheric conditions, with an initial temperature of  K. The other
lines represent trajectories of flames with different inlet compositions. The inlet
compositions are modified by replacing part of the hydrogen and oxygen by water,
in such a manner that the element fractions of H and O remain unchanged. The ini-
tial temperature is modified such that the equilibrium state equals the equilibrium
state of the stoichiometric flame.

Even though not all dimensions are shown, it can be observed in the figures
that the trajectories converge towards a lower-dimensional manifold in the compo-
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Figure 5.2 : An example of profiles in the combustion phase space P , as a function of vari-
ous inlet compositions. The left and right figure show profiles projected on the
(φHO,φH)-plane and the (φHO,ψH)-plane, respectively. The thick solid line
represents the solution of the stoichiometric H/air flame.

sition phase space. The purpose of the PS-ILDM method is to identify this low-
dimensional manifold by means of a time scale analysis, which is similar to the time
scale analysis of the ILDM method. This time scale analysis is treated in the next
section.

5.2.3 Time scale analysis ofΩ

Analogous to the ILDM method, a time scale analysis is applied to source term
Ω (Θ). After linearising the source term Ω (Θ) around a reference composition
Θ , the evolution ofΘ(s) is described by

dΘ
ds

≈ Ω (Θ ) + A (Θ −Θ ) , (5.16)

where the Jacobi matrix A is introduced according to

A =

(
O L

−mJ∗ mL

)
. (5.17)

The structure of the matrix L is given in Appendix C. The matrix J∗ is a scaled sub-
matrix of the Jacobi matrix J, which appeared in equation (3.29) in the derivation of
the ILDM method. The Jacobi matrix J is (Nst × Nst)-dimensional, with Nst = Ns + .
As the pressure is not taken into account in the derivation of the PS-ILDM method,
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the (Nph/ × Nph/)-matrix J∗ is given by J∗ij = Jij ρ/m, with i, j ∈ [, Nph/]. In
the FGM method, the parameter m represents the mass burning rate. In a general
flame, m can be seen as the mass flow locally perpendicular to the iso-contours of the
controlling variable Y . In the PS-ILDM method, the parameter m is an indication for
the ratio between diffusion and chemical processes. In contrast to the FGM method,
this parameter can be chosen independently, so it adds an extra dimension to the
manifold. The usage of m as an additional controlling variable will be discussed in
section 5.2.4.

After introducing ϑ(s) as the difference between Θ(s) and the reference state
Θ (s), the following expression can be obtained

dϑ
ds

= Aϑ. (5.18)

Similar to the ILDM method, it is assumed that the Jacobi-matrix A can be diago-
nalised

dϑ
ds

= UAΛAUA
−ϑ, (5.19)

with ΛA a matrix which contains the eigenvalues λA
i , for i ∈ [, Nph]. Similar to the

ILDM method, the columns of the matrix UA are the right eigenvectors uA
i of matrix

A with i ∈ [, Nph]. In addition, the left eigenvectors vA
i of A with i ∈ [, Nph], are

given by the rows of UA
−. Using the transformation ϑ = UAϑ̂, equation (5.19) can

be written in the basis of eigenvectors, i.e.

dϑ̂
ds

= ΛAϑ̂. (5.20)

The A-matrix has Ns +  pairs of eigenvalues, corresponding to the solution of
the second-order problem (5.1)-(5.3). For each eigenvalue of the Jacobi-matrix J,
a pair of eigenvalues appears from the A-matrix (except for the eigenvalue that is
equal to zero corresponding to the pressure). In the ILDM method, the processes are
a function of time. In that case, the processes evolve only in the direction of t+. In
the PS-ILDM method, the processes are a function of the spatial coordinate s. This
means that processes evolve in the direction of s+ and s−. Typically, diffusion pro-
cesses proceed in two directions, whereas the direction of convection is determined
by the sign of the mass flow m.

As the chemical nature of the ILDM system and the PS-ILDM system are closely
related, also the eigenvalues are related. The eigenvalues of matrix A, which cor-
respond to the eigenvalues λJ

i of matrix J will be referred to as λA
a,i. In most cases,

these eigenvalues are negative. Their counterpart will be referred to as λA
b,i. In gen-

eral, these eigenvalues are positive. The eigenvalues λA
a,i correspond to processes

in the s+-direction. The other eigenvalues are responsible for the transport in the
s−-direction. In general, the Nph/ = Ns +  pairs of eigenvalues that appear in the
PS-ILDM method can be separated roughly in two groups:



86 Phase Space ILDM

1. A first pair of eigenvalues corresponds to the conservation of mass and fluxes,
given by equations (5.2) and (5.6). These eigenvalues are equal to zero, i.e.
λA

a, = λA
b, = .

2. The remaining eigenvalues appear in pairs λA
a,i and λA

b,i, corresponding to the
solution of the second-order ODEs (5.1) and (5.3). It can be shown that the
relation between a pair of eigenvalues is given by

λA
a,i + λ

A
b,i =



δi
, i ∈ [, Nph/], (5.21)

where δi can be regarded as an expression for the flame thickness. For Lei = 

for all species, δi is given by δi = δ = λ ′
mcp

. The pairs of eigenvalues in this
second group can be subdivided into two groups. Analogous to the ILDM
method, as described in section 3.3.1:

(a) a number of eigenvalues is equal to zero, corresponding to element (Ne −

 eigenvalues) and enthalpy (one eigenvalue) conservation: λA
a,i = , for

i ∈ [, Ne + ]. In that case, the positive counterpart is given by λA
b,i = /δi.

(b) a number of eigenvalues corresponds to the reaction progress. The cor-
responding eigenvalues in the ILDM method represent processes in the
reaction space R.

The absolute values of the eigenvalues λA
a,i and λJ

i can not be compared directly,
because the eigenvalues of the ILDM method correspond to processes in time,
whereas the eigenvalues of the PS-ILDM method correspond to processes in
space. In the following, the nature of the eigenvalues of (a) and (b) is explained
further.

Conserved variables

To illustrate that a pair of eigenvalues is found corresponding to element and
enthalpy conservation, an analytical expression for the eigenvalues is derived for
the case that all Lewis numbers are equal to one. In that case, the conservation
equation for enthalpy (5.3) reduces to

m
dh
ds

−
d
ds

(
λ ′

cp

dh
ds

)
= . (5.22)

If it is also assumed that λ
′

cp
is constant, the eigenvalues for this equation are given by

λa =  and λb = /δ = mcp/λ ′. Similar expressions can be obtained for the element
numbers χ j. For the case that λ

′
cp

is not constant and the Lewis numbers are not equal
to one, the expression for λb can not be given analytically. The eigenvalues that
are equal to zero correspond to the conservation of elements and enthalpy. As the
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flamelet equations are derived for premixed flames, enthalpy and element fractions
are conserved, but due to preferential diffusion (if the Lewis numbers are not equal
to one), the local values of h and χ j may vary. However, they should always satisfy
the conditions

m
dh
ds

−
dψh

ds
= , (5.23)

and
Ns∑

i=

µij

(
m

dφi

ds
−

dψi

ds

)
= , j ∈ [, Ne − ]. (5.24)

The corresponding positive eigenvalues λA
b,i, with i ∈ [, Ne + ], can be associated

with local mixing processes, like for instance in a partially-premixed flame, or en-
thalpy variations due to heat-loss. If the time scales involved with these processes
are smaller than the time scales corresponding to the reaction progress, these pro-
cesses may not be assumed in steady-state. However, to be able to study to what
extent the PS-ILDM method correctly predicts the coupling between chemical and
diffusion processes, the enthalpy and the element fractions are considered as con-
served variables. Therefore, the equations that are solved for the processes corre-
sponding to the positive eigenvalues λA

b,i, with i ∈ [, Ne + ], can be written as a
steady-state relation, or

dΘ̂b,i

ds
= , i ∈ [, Ne + ], (5.25)

with Θ̂b,i = vA
b,i ·Θ , where the left eigenvectors vA

b,i corresponds to the eigenvalues
λA

b,i.

Remaining eigenvalues

The remaining eigenvalues generally appear in pairs of positive and negative
counterparts. Note that in some occasions, positive eigenvalues are observed in the
ILDM method. The corresponding eigenvalues λA

a,i in PS-ILDM can also be positive.
In that case, the counterparts λA

b,i of these eigenvalues can be negative, because a pair
of eigenvalues satisfies the condition given in equation (5.21). In the ILDM method,
positive eigenvalues are associated with growing modes. Hence, they may not be
assumed in steady-state. The same holds for the eigenvalues λA

a,i, which are positive.
The positive eigenvalues λA

b,i, however, correspond to damping modes upstream.
Therefore, these eigenvalues are treated differently.

In general, two approaches to define the steady-state relations can be distin-
guished. In the first approach, which will be referred to as PS-ILDM I, all fast pro-
cesses are assumed in steady-state, i.e. for the downstream processes

dΘ̂a,i

ds
= , ∀ i, Re(λA

a,i) � , (5.26)
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and for the upstream processes

dΘ̂b,i

ds
= , ∀ i, Re(λA

b,i) � . (5.27)

The other eigenvalues, i.e. eigenvalues with a small real part, correspond to slowly
damping processes. The processes describe motions in the manifold and may not
be assumed in steady-state. Alternatively, only damping modes downstream can be
taken into account in the manifold. The processes with positive eigenvalues, which
correspond to the reaction progress, i.e. λA

b,i with i ∈ [Ne + , Nph/], are assumed
in steady-state. This approach, which will be referred to as PS-ILDM II, is closer
related to the ILDM method, where only processes in the t+-direction are present.
In that case, the steady-state relations become

dΘ̂a,i

ds
= , ∀ i, Re(λA

a,i) � , (5.28)

and
dΘ̂b,i

ds
= , i ∈ [Ne + , Nph/]. (5.29)

5.2.4 Manifold computation and application

The equations that define a manifold pointΘ are similar to the ILDM equations (3.41)-
(3.43). Firstly, a number of steady-state equations must be solved. Secondly, a num-
ber of equations describe a manifold point in terms of the conserved variables. Fi-
nally, parameterisation equations are needed to describe the reaction progress. The
steady-state relations (5.25), (5.26) and (5.27) (or equivalently equations (5.25), (5.28)
and (5.29)) can be written as

Ω̂i = vA
i ·Ω = , i ∈ [, Nss], (5.30)

where the transformation Ω̂ = U−
A Ω is used. The conserved variables can be pa-

rameterised by
Pnr

A (Θ −Θm) = α, (5.31)

with Pnr
A a (Nnr

c × Nph)-dimensional matrix and Θm a point that is already on the
manifold. Note that the right hand side of equation (5.31) is not necessarily equal to
zero. To capture enthalpy variations due to heat-loss and mixture fraction variations
in a non-premixed or partially-premixed system, also steps in the direction of the
conserved variables can be taken. However, this will not be done in this thesis.
Finally, the parameterisation of the reaction progress is given by

Pr
A (Θ −Θm) = β, (5.32)

where Pr
A is a (Nr

c × Nph)-dimensional matrix.
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The procedure to compute the manifold is similar to the method described in
section 3.3.3, so it will not be discussed here. Due to the positive eigenvalues, the
sorting of eigenvalues is more complicated than in the ILDM method. A detailed
description of the selection of the eigenvalues is given in appendix C. The database
is parameterised by controlling variablesΘ c, which is given by

Θ c = Pp,AΘ =

(
Pr

p,A

Pnr
p,A

)
Θ , (5.33)

and the parameter m, which is an additional controlling variable.
In the CFD computation, only equations for the controlling variables are solved.

The parameter m, which represents the mass flow locally perpendicular to the flame
surface, is constant in a one-dimensional premixed flame, which is flat. However,
in a CFD computation the local mass burning rate may change for instance due to
stretch. Hence, m is evaluated every time step. Subsequently, it is used in combi-
nation with the other controlling variables as a look-up parameter for the manifold.
The conservation equations are projected on the manifold with the eigenvectors.
For the ILDM method, the general system of equations can be written as in equa-
tion (3.51). For the PS-ILDM method, the flamelet equations (3.63)-(3.65) are written
as,

dΘ
ds

= Ω (Θ) + T(Θ), (5.34)

where the vector T represents the multi-dimensional perturbations like flame stretch
and flame curvature. Together with the kinematic equation (3.55), which describes
the motion of the flame front, equation (5.34) fully represents the complete sys-
tem (3.51). Analogous to the ILDM method, the system of equations is projected
on the manifold.

∂Θ c

∂t
= Ω c(Θ c) + Pp,A (I − UA,fVA,f) T(Θ), (5.35)

where I is the (Nph × Nph)-identity matrix, UA,f is a (Nph × Nss) matrix, which con-
tains the right eigenvectors corresponding to the steady-state processes, and VA,f is
a (Nss × Nph) matrix that contains the corresponding left eigenvectors.

Figure 5.3 shows a schematic example of the projection of the transport terms
in the ILDM method (figure 5.3a) and the PS-ILDM method (figure 5.3b). In the
ILDM method, the convection and the diffusion terms are projected on the manifold.
It can be shown that only the diffusion terms are not necessarily tangential to the
manifold [27]. In a large part of the reaction layer of a premixed flame, the diffusion
term is in the same order as the chemical source term (cf. figure 3.5). In that case, an
inaccurate projection method may lead to significant errors during the application
of an ILDM (even though it is expected that these errors are less significant than
the inaccuracies in the reduced mechanism itself). In the PS-ILDM method, it is
assumed that most of the transport terms are included in the manifold. The terms
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Manifold

Pp(I − UfVf)Σ (Ψ )

Fc(Ψ c)

Σ (Ψ )

(a) ILDM

Manifold

Ω c(Θ c)

T(Θ )
PA,p(I − UA,fVA,f)T(Θ)

(b) PS-ILDM

Figure 5.3 : A geometrical representation of the projection method in the ILDM method
(figure a) and the PS-ILDM method (figure b). The transport terms Σ (Ψ ) and
T(Θ ) that are not tangential to the manifold are projected on the manifold by
means of an eigenvector projection. Note that the projection is not necessarily
orthogonal, because the eigenvectors corresponding to the fast and the slow
processes are not necessarily orthogonal.

that are neglected during the construction of a manifold are perturbations caused by
the multi-dimensional effects T(Θ). In general, these terms are much smaller than
the terms perpendicular to the flame, which are gathered in the source termΩ c(Θ c).
Only if the one-dimensional flame structure is strongly distorted, which happens for
example in highly turbulent flames, T(Θ) can not be neglected. However, in case
T(Θ) is small, equation (5.35) can be approximated by

∂Θ c

∂t
= Ω c(Θ c) + Tc(Θ c), (5.36)

with Tc(Θ c) = Pp,AT(Θ). If it is possible to parameterise the manifold uniquely by
using only the species concentrations and the enthalpy as controlling variables, the
flux terms ψi and ψh are not needed during the application of a PS-ILDM. In that
case, only the species concentrations and enthalpy are stored in the database. Note
that in the derivation of equation (5.36), it is assumed that diffusion processes are
taken into account in the manifold.
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5.3 Analysis of the eigenvalues and eigenvectors of the
PS-ILDM method

In this section, the PS-ILDM method is analysed further. The eigenvalues and eigen-
vectors are analysed by means of a basic example, in which it is assumed that all
Lewis numbers are equal to one. For this purpose, the ILDM system (3.32) can be
written as

m
dε
ds

= mJ∗ε, (5.37)

where for simplicity the pressure is omitted from the vector ε. The Jacobi matrix
J∗ can be diagonalised according to J∗ = U∗Λ∗U∗−. Using the transformation ε̂ =

U∗−ε, the diagonalised system yields

m
dε̂
ds

= mΛ∗ε̂. (5.38)

To make a fair comparison with an ILDM, the PS-ILDM method is evaluated for the
case that Lei = , for i ∈ [, Ns]. In that case, the conservation equations of species
can be written as

m
dφi

ds
−

d
ds

(
λ

cp

dφi

ds

)
=ωi, i ∈ [, Ns] (5.39)

and the fluxes ψi are defined according to (5.4) for all species. In addition, the en-
thalpy equation is given by

m
dh
ds

−
d
ds

(
λ

cp

dh
ds

)
=  (5.40)

and the enthalpy flux yields ψh = λ
cp

dh
ds . The matrix A of equation (5.17) for this

system is given by

A =

(
O cp

λ
I

−mJ∗ m cp

λ
I

)
. (5.41)

The PS-ILDM system (5.18) can be transformed according to

dϑ̃
ds

= Ãϑ̃, (5.42)

where the transformation ϑ̃ = Ũ−ϑ has been used. The transformation matrix Ũ is
given by

Ũ =

(
U∗ O
O U∗

)
. (5.43)

In addition, the matrix Ã is given by

Ã = Ũ−AŨ =

(
O cp

λ
I

−mΛ∗ m cp

λ
I

)
. (5.44)
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The eigenvalues of Ã are given by

λÃ
a,i =




mL
(

 −

√
 − λJ∗

i /mL
)

, i ∈ [, Nph/], (5.45)

λÃ
b,i =




mL
(

 +

√
 − λJ∗

i /mL
)

, i ∈ [, Nph/], (5.46)

where the parameter L is given by L = cp/λ ′. Note that the pair of eigenvalues equal
to zero, which was presented in section 5.2.3, does not appear from Ã, because the
Lewis numbers are defined for all species.

The difference between the ILDM system and the PS-ILDM system can be de-
scribed by the parameter m. Therefore, it is interesting to investigate the limits
m →  and m → ∞. For the limit m → ∞, the flamelet equations (5.39) and (5.40)
reduce to the homogeneous system (3.2)-(3.3). This behaviour is also shown by the
limit of the eigenvalues λA

a,i and λA
a,i, i.e.

lim
m→∞

λA
a,i = λ

J
i
∗
, i ∈ [, Nph/], (5.47)

lim
m→∞

λA
b,i = mL − λ

J
i
∗

=
Le
δ

− λ
J
i
∗
, i ∈ [, Nph/]. (5.48)

On the other hand, for the limit m → , the equations (5.39)-(5.40) reduce to a dif-
fusion reaction system, which is symmetrical. In that case, also the eigenvalues are
symmetrical, with respect to zero:

lim
m→

λA
a,i = −

√
−mLλJ

i
∗

= −

√
−

Le
δ
λ

J
i
∗
, i ∈ [, Nph/], (5.49)

lim
m→

λA
b,i = +

√
−mLλJ

i
∗

= +

√
−

Le
δ
λ

J
i
∗
, i ∈ [, Nph/]. (5.50)

In addition, the right eigenvectors of Ã are given by

uÃ
a,i =

(
ε̂

ε̂λÃ
a,i/L

)
, i ∈ [, Nph/], (5.51)

uÃ
b,i =

(
ε̂

ε̂λÃ
b,i/L

)
, i ∈ [, Nph/]. (5.52)

This analysis shows that the part ε̂ of the PS-ILDM eigenvectors, which corre-
sponds to the composition space C is equal to the ILDM eigenvectors, even though
the corresponding eigenvalues are different. Therefore, the PS-ILDM manifold in-
cludes no extra information of diffusion processes for the case that all Lewis num-
bers are equal to one. However, if the Lewis numbers are not equal to one, the eigen-
vectors U can not be used to diagonalise the Jacobi matrix J∗ in the transformation
of equation (5.44). Subsequently, the composition part of the PS-ILDM eigenvec-
tors corresponding to the composition space is not equal, so the resulting manifold
will be different. In the remaining part of this chapter, only PS-ILDMs with Lewis
numbers unequal to one are evaluated.
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5.4 A reactive system with three components

In this section, the PS-ILDM and ILDM methods are applied to the simple system
with three species, which was introduced in section 3.1.1. Both an ILDM and a
PS-ILDM are computed and compared to the exact solution of the flamelet equa-
tions (5.1)-(5.3). In this example, only a one-dimensional PS-ILDM is computed, as
the example is only meant to show that a PS-ILDM can incorporate diffusion effects.
As already introduced in section 3.1.1, the system consists of three species, O∗, O∗∗,
and O∗∗∗, and three reversible reactions,

O∗ k−→ O∗∗, O∗∗ k−→ O∗∗∗ and O∗∗∗ k−→ O∗∗, (5.53)

with k j, j ∈ [, Nr] the elementary reaction rates (with dimension 1/s). For simplicity
it is assumed that the heat release of the reactions is zero, so the temperature remains
constant. The evolution of the system in that case is only described by the equations
for the species. Furthermore, the enthalpy and the pressure can be omitted from the
state space vector Ψ and the phase space vectorΘ .

5.4.1 The ILDM system

This simple example has been used earlier to explain the ILDM method [27]. There-
fore, only the main steps are presented here. With equations (2.24) and (2.25), the set
of equations (3.2)-(3.4), which describes the chemical evolution of the system can be
written as

ρ
dφO∗

dt
= −ρkφO∗ , (5.54)

ρ
dφO∗∗

dt
= ρkφO∗ − ρkφO∗∗ + ρkφO∗∗∗ , (5.55)

ρ
dφO∗∗∗

dt
= ρkφO∗∗ − ρkφO∗∗∗ . (5.56)

Due to the linearity of the source terms, the system of equations can be put in the
form of equation (3.32) directly, where the Jacobi matrix J is given by

J =




−k  

k −k k

 k −k


 . (5.57)

The Ns eigenvalues of the ILDM method are λJ
 = , λJ

 = −k and λJ
 = −(k + k).
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5.4.2 The PS-ILDM system

The set of flamelet equations for this system is given by

m
dφO∗

ds
−

d
ds

(
λ ′

cpLeO∗

dφO∗

ds

)
= −ρkφO∗ , (5.58)

m
dφO∗∗

ds
−

d
ds

(
λ ′

cpLeO∗∗

dφO∗∗

ds

)
= ρkφO∗ − ρkφO∗∗ + ρkφO∗∗∗ , (5.59)

MφO∗φO∗ + MφO∗∗φO∗∗ + MφO∗∗∗φO∗∗∗ = . (5.60)

After introducing the fluxes ψi according to equation (5.4), the conservation equa-
tions can be written in the form of equation (5.15). Due to the simplicity of the
chemical reaction mechanism, the source termΩ (Θ) is already a linear function of
φi and ψi, so the conservation equations can directly be put in the form of equa-
tion (5.18), where the matrix L is given by

L =




LeO∗L  

 LeO∗∗L 

−LeO∗ L −LeO∗∗L 


 , (5.61)

Θ = (φO∗ ,φO∗∗ ,φO∗∗∗ ,ψO∗ ,ψO∗∗ ,ψO∗∗∗)T is a vector in the composition phase space
and L = cp/λ. The 2Ns eigenvalues of the PS-ILDM system yield

λA
a, = λA

b, = , (5.62)

λA
a, =




mLeO∗ L

(
 −

√
( + ρk/LeO∗Lm

)
, (5.63)

λA
b, =




mLeO∗ L

(
 +

√
( + ρk/LeO∗Lm

)
, (5.64)

λA
a, =




mLeO∗∗L

(
 −

√
 + ρ(k + k)/LeO∗∗Lm

)
, (5.65)

λA
b, =




mLeO∗∗L

(
 +

√
 + ρ(k + k)/LeO∗∗Lm

)
. (5.66)

As described earlier, the eigenvalues found in the ILDM analysis reappear in pairs
in case of PS-ILDM. Note that the dimensions of the eigenvalues are different in
case of the PS-ILDM method. Therefore, the absolute values of λJ

i and λA
i can not be

compared.

5.4.3 Results

At s = , the initial mixture is defined asφO∗ =  mol/g andφO∗∗ = φO∗∗∗ =  mol/g.
The boundary conditions at s → ∞ describe the fact that the system reaches chem-
ical equilibrium, so the fluxes become zero, i.e. ψO∗ = ψO∗∗ = ψO∗∗∗ =  mol/cm s.
In this particular system, the mass flow rate m is not an eigenvalue of the system.
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Figure 5.4 : The exact solution of the flamelet equations (solid line: φO∗ , long-dashed line:
φO∗∗ , and the short-dashed line: φO∗∗∗ ).

Due to the boundary conditions and the linearity of the source term, the system can
be solved for different values of m. In the following analysis, m, ρ, and L are chosen
as m =  g/cm s, ρ =  g/cm, and L =  cm s/g, respectively. Furthermore, the
molar masses of the species are defined as Mi =  g/mol, for i ∈ [, Ns].

The reaction rates k j are chosen in such a manner that λJ
 � λJ

, i.e. k = .
s−, k = . s−, and k = . s−. In that case, the evolution of the chemical sys-
tem is mainly determined by one slow process, corresponding to λJ

. Equivalently,
a suitable choice is made for the Lewis numbers, so the complete system is also
determined by one slowly damping mode, associated with λA

a,. To make sure that
diffusion is important, the Lewis numbers are chosen small compared to the reaction
rates. Considering these arguments the Lewis numbers are chosen as LeO∗ = .

and LeO∗∗ = .. The exact solution of equations (5.58)-(5.60) is shown in figure 5.4.

For this problem, a one-dimensional manifold is computed with φO∗ as control-
ling variable. For the ILDM method, this means that the process associated with λJ



is assumed in steady state, or vJ
 · F = . In case of the PS-ILDM method, the pro-

cesses corresponding to λA
b,, λA

a,, and λA
b, are assumed in steady-state, or vA

i ·Ω = ,
for the corresponding left eigenvectors. In figure 5.5a, the profile ofφO∗∗ of the exact
solution of equations (5.1)-(5.3) is compared to the one-dimensional ILDM and PS-
ILDM. Close to the equilibrium, i.e.φO∗ = , both the ILDM and the PS-ILDM are in
good agreement with the exact solution. Further upstream the ILDM deviates from
the exact solution, whereas the error of the PS-ILDM is still very small. Close to the
unburnt mixture both the ILDM and the PS-ILDM give poor results. In figure 5.5b,
the error εφO∗∗ of the manifolds is plotted as a function of φO∗ . The error is defined
as the difference between the manifold values ofφO∗∗ and the exact solution ofφO∗∗ .
Figure 5.5b clearly shows that the neglect of diffusion in the ILDM leads to a large
error. The PS-ILDM performs much better, because diffusion is taken into account.
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Figure 5.5 : Results for the analytical example. The left figure shows φO∗∗ as a function
of the controlling variable φO∗ compared to the exact solution. The solid line
represents the exact solution, the long-dashed line corresponds to the ILDM
and the short-dashed line represents the PS-ILDM. The right figure shows
the error in the profile of φO∗∗ of the PS-ILDM and the ILDM as a function of
φO∗ . The long-dashed line corresponds to the ILDM and the short-dashed line
represents the PS-ILDM.
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5.5 The PS-ILDM method applied to H/air-flames

In the previous section, the general operation of the PS-ILDM method was illus-
trated by means of a simple analytical example. In this section, other features of the
PS-ILDM method are studied by applying the PS-ILDM method to a simple hydro-
gen/air mechanism. The reaction mechanism consists of  species and  reversible
reactions and is listed in appendix A. The computations are presented for a stoichio-
metric hydrogen/air mixture with an initial temperature of  K at atmospheric
conditions. This simple reaction mechanism is chosen, because it is possible to ob-
tain a one-dimensional ILDM, which covers the complete domain from the unburnt
mixture to the chemical equilibrium composition.

To illustrate the typical nature of the eigenvalues of a PS-ILDM, the eigenvalue
spectrum of a one-dimensional PS-ILDM is analysed first. Subsequently, the PS-
ILDM method is analysed for the case that the Lewis numbers are not equal to one.
Finally, the effect of the parameter m is elaborated further.

5.5.1 The eigenvalue spectrum of a one-dimensional manifold

This section presents the eigenvalue spectra of one-dimensional PS-ILDMs, to illus-
trate the nature of the eigenvalue spectrum, discussed in section 5.2.3 The eigen-
value spectra of the one-dimensional PS-ILDMs are compared with the eigenvalue
spectrum of a one-dimensional ILDM. Figure 5.6 shows the eigenvalue spectrum of
the one-dimensional ILDM, which was shown in figure 3.10. The eigenvalue spec-
trum of the ILDM is compared with the spectrum of one-dimensional PS-ILDMs,
where the processes associated to smallest negative eigenvalue correspond to pro-
cesses in the manifold (figure 5.7). The parameter m was chosen to be equal to the
mass burning rate of the FGM, i.e. m = . × − g/cm s. To be able to compare
the eigenvalues of the Jacobi matrix J with the eigenvalues of the matrix A, the eigen-
values λA

i are multiplied by m/ρ. Figure 5.7a shows the PS-ILDM eigenvalues for
the case that Lei = , for i ∈ [, Ns], whereas figure 5.7b shows the eigenvalues from
a PS-ILDM obtained with the Lewis numbers from table A.3. The corresponding
manifolds are treated in section 5.5.2. Problems of practical nature make it impossi-
ble to obtain a manifold for the entire domain. Due to the crossing of eigenvalues, it
was not possible to find a solution close to the unburnt mixture.

The figures show that pairs of eigenvalues appear from matrix A. Furthermore,
Ne eigenvalues appear, which are the positive counterpart of the eigenvalues that
correspond to element (Ne − ) and enthalpy conservation (eigenvalues that are
equal to zero are not shown in the figure). For the case that all Lewis numbers
are equal to one, the so-called /δi-eigenvalues that correspond to element and en-
thalpy conservation are equal, i.e. λA

b,i =
cp

mλ ′ with i ∈ [, Ne + ]. As δi = δ, for the
case that the Lewis numbers are equal to one, the eigenvalue spectrum is clearly
structured and the pairs of eigenvalues can be distinguished easily. On the other
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Figure 5.6 : The eigenvalue spectrum of a one-dimensional ILDM. The eigenvalues that are
equal to zero are not shown.

hand, generally δi 6= δ if the Lewis numbers are not equal to one, so the eigenvalue
spectrum is less structured. However, the pairs of eigenvalues can still be distin-
guished. Note that the eigenvalues only represent the time scales involved. Even
though the difference in the eigenvalue spectra of the PS-ILDMs is not very large,
the corresponding manifolds may be completely different. The figures contain no
information of the corresponding eigenvectors, which are determinant for the shape
of the manifold.

5.5.2 The effect of the Lewis numbers

In section 5.3, it was shown that if the Lewis numbers are equal to one, a PS-ILDM
and ILDM are identical in the composition space. Furthermore, the enthalpy and
element fractions are constant in a one-dimensional flame solution. However, if the
Lewis numbers are not equal to one, preferential diffusion occurs. To show that
also preferential diffusion occurs in a PS-ILDM, figure 5.8a shows the enthalpy as
a function of YHO of a one-dimensional PS-ILDM. The PS-ILDM is compared with
a one-dimensional ILDM and FGM, which contains all the time scales involved.
The parameter m in the PS-ILDM is chosen equal to the mass burning rate of the
FGM. From figure 5.8a, it can be concluded that the PS-ILDM includes preferential
diffusion effects, as enthalpy variations are included in the manifold. Close to the
chemical equilibrium, the enthalpy variation of the PS-ILDM is close to the enthalpy
variation of the flamelet. However, further upstream, the PS-ILDM deviates from
the FGM. Figure 5.8b shows the mass fraction of H for the same manifolds. From
this figure, it can be concluded that close to chemical equilibrium, the PS-ILDM
is more accurate than the ILDM, also because preferential diffusion effects are in-
cluded. However, further upstream, both the PS-ILDM and the ILDM strongly de-
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Figure 5.7 : The eigenvalue spectrum of one-dimensional PS-ILDMs, with Lei =  (left fig-
ure) and Lei 6= , (right figure) for i ∈ [, Ns − ]. The PS-ILDMs are computed
with m = mFGM. The dashed lines correspond to element and enthalpy conser-
vation. Finally, the symbols represent the eigenvalues of the reaction progress.
Pairs of eigenvalues are denoted with the same symbol. To be able to compare
λA

i with λJ
i , the PS-ILDM eigenvalues are multiplied by m

ρ
.
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Figure 5.8 : A one-dimensional PS-ILDM (long-dashed line) compared to a one-
dimensional ILDM (short-dashed line) and FGM (solid line). The left figure
shows h as a function of YHO and the right figure shows YH as a function of
YHO. The parameter m of the PS-ILDM is equal to the mass burning rate of the
FGM, i.e. m ∼= . × − g cm− s−.

viate from the FGM.

Figure 5.8 shows that part of the difference between the ILDM and PS-ILDM is
caused by the variations in the enthalpy and element fractions, which are included
in the PS-ILDM. Therefore, it is interesting to compare the PS-ILDM with an ILDM
that is obtained at the local values of the enthalpy h and the element fractions χ j from
the PS-ILDM. In figure 5.9a and b, three ILDMs are presented. Besides the original
one-dimensional manifold, two alternative manifolds are computed in which the
enthalpy and element fractions are not constant. In the first alternative ILDM, the
values of h and χ j are obtained from the PS-ILDM. In the second alternative ILDM,
h and χ j are obtained from the FGM. Figure 5.9a shows profiles of the radical YO.
A similar relation between the manifolds is also observed in the profiles of YH and
YOH. Figure 5.9b shows profiles of the major species YH . A similar relation between
the ILDMs and the PS-ILDM is also seen in the profiles of YO .

The figures show that the ILDM, with h and χ j obtained from the PS-ILDM is
almost equal to the one-dimensional PS-ILDM. Only a small difference can be ob-
served near YHO

∼= .. Therefore, it can be concluded that the main difference
between the original ILDM and the PS-ILDM is caused by preferential diffusion ef-
fects in h and χ j. For completion, an ILDM with h and χ j obtained from the FGM is
compared with the FGM profile. The ILDM profiles are close to the FGM profile, so
it may be concluded that an ILDM where h and χ j are used as additional controlling
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Figure 5.9 : ILDMs with preferential diffusion included. Short dashed line: original ILDM,
solid line: PS-ILDM, solid symbols: ILDM with the local values of h and χ j

from the PS-ILDM, long-dashed line: FGM, open symbols: ILDM with the
local values of h and χ j from the FGM.

variables will give accurate results for this mechanism.

5.5.3 The effect of the parameter m

As stated earlier in this chapter, the parameter m is in an indication for the impor-
tance of diffusion processes compared to reaction processes. A PS-ILDM for the
limit m → ∞ is equal to an ILDM, which does not include diffusion processes. In
other words, an ILDM can be regarded as the limit of a PS-ILDM for an infinite ratio
between chemical and diffusion time-scales. In this section, PS-ILDMs are evaluated
for a finite ratio between chemical and diffusion time scales.

Figures 5.10a and b show an example of a two-dimensional manifold, with one
reaction progress variable and m as additional controlling variable. The figures
show YH and YOH as a function of m and YHO, respectively. Processes associated
with λA

a, correspond to processes in the manifold. Before the effect of m on the mani-
fold is discussed, a number of typical features, which are also observed in the ILDM
method are mentioned. The first feature that can be observed is the occurrence of
a so-called bifurcation. For small values of the parameter m, the manifold can not
be described uniquely with the controlling variable YHO. Similar bifurcations are
also observed for ILDMs, where the mixture fraction was used as additional con-
trolling variable [6]. The second phenomenon that can be observed is the gap in the
manifold. Due to the nature of the eigenvalue spectrum, it is not possible to find
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Figure 5.10 : An example of a two-dimensional H/air manifold, with one reaction progress
variable and m as additional controlling variable.

a solution in the complete computational domain. This phenomenon is not typical
for PS-ILDM, as it is also observed in the ILDM method. However, due to the ad-
ditional eigenvalues in the PS-ILDM method, it is more likely to occur than in the
ILDM method.

To show the effect of the parameter m on the manifold, the manifold of figure 5.10
is projected on the (YHO, YOH)-plane (see figure 5.11). For comparison, the one-
dimensional ILDM is added to the figure. From this figure, it can be observed that
for increasing values of m, the PS-ILDM approaches the ILDM.

5.6 Manifolds with two reaction controlling variables

In this section, the PS-ILDM method is applied to a syngas/air mechanism. In the
figures 5.12 and 5.13, one and two-dimensional ILDMs and PS-ILDMs are compared
with the solution of the equations (5.1-5.3) for a CO-H/air mechanism. The de-
tailed reaction mechanism contains 11 species and 14 reactions and is listed in ap-
pendix A. The Lewis numbers, which also given in appendix A, are obtained from
mixture-averaged computations. The manifolds are constructed for a carbonmonox-
ide/hydrogen ratio of YCO/YH = . and an equivalence ratio ofϕ = . The initial
temperature is  K and the pressure is  atm. For the PS-ILDMs, the mass burning
rate m is taken from the FGM solution (m = . g/cm s). This value of m is chosen
to make a fair comparison between the exact solution and the manifolds. Figure 5.13
shows results for two different two-dimensional PS-ILDMs. In the manifold referred
to as PS-ILDM I, the eigenvalues λA

a, and λA
b, are associated with processes in the

manifold (corresponding to the steady-state relations of equations (5.26) and (5.27)).
In the manifold referred to as PS-ILDM II, the eigenvalues λA

a, and λA
a, correspond

to processes in the manifold (in combination with the steady-state relations of equa-
tions (5.28) and (5.29)).
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Figure 5.11 : The two-dimensional H/air manifold, with one reaction progress variable
and m as additional controlling variable, projected on the (YHO, YOH)-plane.
The arrows indicate the direction of increasing values of m. The one-
dimensional ILDM is represented by the thick solid line.

Figures 5.12a-d and 5.13a-d show profiles of the mass fractions of H, H, O and
the temperature T as a function YCO, respectively. In figure 5.12, the FGM result
is compared to a one-dimensional ILDM and a one-dimensional PS-ILDM. From
the figures 5.12a-d, it can be concluded that close to chemical equilibrium, a PS-
ILDM is slightly more accurate than the ILDM, because preferential diffusion is
taken into account. However, at colder temperatures both manifolds behave com-
pletely different than the FGM, because only one time scale is taken into account.
In figure 5.13, the FGM result is compared to a two-dimensional ILDM and two-
dimensional PS-ILDMs. The trajectories of the two-dimensional manifolds are ob-
tained by using the values of the controlling variables in the one-dimensional FGM
as look-up parameters for the PS-ILDMs and ILDMs. Close to chemical equilibrium,
the PS-ILDMs and ILDMs are equal to the detailed solution. However, further up-
stream, the two-dimensional ILDM deviates from the detailed solution, whereas the
two-dimensional PS-ILDM II is still very close to the detailed solution. The two-
dimensional PS-ILDM I is very accurate for H and H. However, for O and T, this
manifold describes a different behaviour. Even further upstream, both the ILDM
and the PS-ILDMs are inaccurate. In this region, the dimension of the manifolds is
probably too low to get accurate results.

The results show that especially two-dimensional PS-ILDM II is more accurate
than the ILDM manifolds, because diffusion processes are included. On the other
hand, two-dimensional PS-ILDM I shows good results for some profiles, while other
profiles do not correspond to the FGM solution. It is not quite clear what causes the
larger deviations in the YO and T profiles. Probably, this part of the composition
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Figure 5.12 : The solution of a one-dimensional FGM (solid line) compared with a one-
dimensional ILDM (dotted line) and a one-dimensional PS-ILDM (dashed
line).
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Figure 5.13 : The solution of a 1D FGM compared with two-dimensional manifolds. (solid
line: FGM, dashed line: trajectories from a 2D ILDM, closed symbols: trajec-
tories from 2D PS-ILDM I, and open symbols: trajectories from 2D PS-ILDM
II.
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space is dominated by processes associated with negative eigenvalues. Note that
not the entire domain of YCO is shown, as it was not possible to obtain manifolds
that cover the entire domain described by the FGM solution (the maximum value of
YCO in the FGM yields YCO

∼= .).

5.7 Discussion

In this chapter, a new reduction method called the PS-ILDM method has been intro-
duced. The purpose of the development of this method is to investigate whether it
is possible to develop a reduction method, which has a strong mathematical back-
ground and includes information of diffusion processes. If that is the case, the
method can fundamentally support the FGM method. The PS-ILDM method can
be regarded as a combination of the ILDM method and the FGM method, as it com-
bines the manifold procedure of the ILDM method with the equations that are the
basis of the FGM method.

The application of the ILDM algorithm to the FGM equations is not straight-
forward. Due to the diffusion term, information is transported in two directions.
Downstream transport is dominated by negative eigenvalues, while upstream pro-
cesses are dominated by their positive counterpart. The appearance of positive
eigenvalues requires a different approach in the determination of the processes which
may be assumed in steady-state. The difference appears in manifolds with at least
two reaction controlling variables. In this chapter, two approaches have been pro-
posed. In the first approach, the slowest processes both the up and downstream
processes are taken into account in the manifold. In the second approach, only pro-
cesses associated with negative eigenvalues are taken into account in the manifold
and all processes corresponding to positive eigenvalues are assumed in steady-state.
In general, the second approach shows more accurate results. Probably, the up-
stream processes are more important in colder regions of the flame. However, it is
difficult to determine the manifold in these regions, due to numerical problems.

An ILDM can be regarded as the limiting case of a PS-ILDM for an infinite ratio
between chemical and transport processes. This ratio is governed by the parameter
m, which represents the mass flow locally perpendicular to the flame surfaces. In
premixed flames, m = ρu represents the mass burning rate, and u equals the burning
velocity. In non-premixed flames, u can be regarded as the propagation velocity of
the iso-contours of the progress variable Z. As m can be chosen independently, it
adds an additional controlling variable to the manifold. During a CFD application
of a PS-ILDM, the mass flow m is evaluated from the solution of the flame at every
time step. Consequently, m should be used in combination with the other controlling
variables as a look-up parameter for the manifold.

So far, the PS-ILDM method has not been applied in a realistic flame simulation.
However, information about the accuracy of the method is obtained by compar-
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ing PS-ILDMs qualitatively with FGMs and ILDMs. The main observation from this
comparison is that the difference between a PS-ILDM and an ILDM is mainly caused
by the inclusion of preferential diffusion effects, which occur if the Lewis numbers
are not equal to one. In fact, it was shown in section 5.3 that a PS-ILDM and an
ILDM are exactly equal if the Lewis are equal to one. Results show that the in-
clusion of preferential diffusion effects generally leads to a more accurate manifold
than a comparable ILDM. However, if an ILDM would be created at the values of
the enthalpy and element fractions from the PS-ILDM, it is shown that a PS-ILDM
is nearly identical to an ILDM. On the other hand, to capture these enthalpy and
element variations in an ILDM, additional controlling variables are needed.

Like in the ILDM method, the steady-state assumptions in the PS-ILDM method
are based on the eigenvalue spectrum, so the same problems may occur during the
construction of a PS-ILDM. For example, a bad separation between fast and slow
processes leads to inaccuracies in the manifold. Furthermore, the crossing of eigen-
values may lead to numerical difficulties to obtain a manifold solution. In addition,
the occurrence of turning points and bifurcations may cause problems in the param-
eterisation of the manifold.

To conclude, even though the concept of PS-ILDM seems very promising, in
practice the method has disadvantages. In the tested examples, the accuracy of the
method seems to be of the same order as the original ILDM method, which is al-
ready less accurate than the FGM method. Furthermore, similar problems that also
emerge from the ILDM method are observed in the PS-ILDM method. Therefore,
it is also hard to use the PS-ILDM method as a fundamental support for the FGM
method.
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Chapter6
Conclusions and
recommendations

The subject of this thesis has been the development and further testing of chemi-
cal reduction methods, with a main focus on the coupling between chemical and
transport processes. The general principles of chemical reduction methods were
presented in chapter 3. Two existing methods were treated more intensively, i.e. the
ILDM method and the FGM method. The ILDM method has a strong mathematical
support, which makes it relatively easy to automate. With the introduction of so-
called slow manifolds in earlier studies [65], one of the largest sources of inaccuracy
remains the disregard of diffusion during the construction of the manifold. During
the ILDM reduction of a detailed reaction mechanism, the fast chemical processes
are assumed in steady-state. However, a time scale analysis of chemical, convection,
and diffusion time scales in chapter 3 showed that, especially in a premixed flame,
chemical and diffusion time scales are of the same order of magnitude in a large part
of the reaction layer. Furthermore, the importance of the coupling between chem-
ical and diffusion processes is shown in section 2.3, where several transport mod-
els are tested in a one-dimensional premixed flame configuration. Therefore, the
neglect of transport processes during the construction of reduced reaction mecha-
nisms may lead to inaccuracies during flame simulations. On the other hand, the
FGM method has proven to be accurate and efficient, because both chemical and
transport processes are taken into account. However, the mathematical background
is less strong than in the ILDM method. As the FGM method is based on premixed
flames, which are one-dimensional and adiabatic, the main source of inaccuracy
is caused by multi-dimensional perturbations like heat-loss, flame stretch, and in-
homogeneous mixing of fuel and oxidiser. The influence of these perturbations on
the accuracy was already studied in [68].

In chapter 4, the application of the FGM method to systems that are partially-
premixed has been analysed further. In this chapter, the FGM method has been ap-
plied to methane/air counterflow flames, which are one-dimensional and partially-
premixed. These flames can be regarded as one-dimensional triple flames, in which
both premixed and non-premixed flame fronts can be distinguished. For this pur-
pose, a two-dimensional manifold was created, which is parameterised by one reac-
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tion controlling variable and the mixture fraction. The FGM simulations were com-
pared with detailed solutions and with results obtained with a flamelet database,
which was based on non-premixed flamelets. As the premixed flame fronts appear
to be the dominant structures in the flame, the FGM solution is more accurate than
the solution based on non-premixed flamelets. With the non-premixed database it is
not possible to reproduce the non-premixed flame structures. However, with only a
two-dimensional FGM (parameterised with a reaction controlling variable and the
mixture fraction) accurate results were obtained for the major species, the temper-
ature, and the density profiles, even if mixing time scales, which correspond to the
mixing of fuel and air, are of the same order as the time scales of the FGM database.
This is not expected beforehand for reduction techniques, which are purely based
on chemistry. Especially the non-premixed flame front is accurately reproduced by
the FGM method, in contrast to what one might expect beforehand. In this part of
the partially-premixed flame structure, chemistry is much faster than transport. In
the premixed flame structures, however, the time scales of chemical and transport
processes are of the same order. Therefore, most of the difficulties are obtained in
the reproduction of the premixed flame structures, especially at the rich branch.

A number of recommendations considering the applicability of the FGM method
in systems that are partially-premixed, can be made. Firstly, the accuracy of the
FGM computations might be enhanced by using a three-dimensional database with
two reaction controlling variables in combination with the mixture fraction. In that
case, more chemical time scales are captured in the database. Secondly, as it appears
that the non-premixed flame structure can be reproduced accurately with the FGM
method, it is interesting to study the influence on the accuracy if the the gradient in
the mixture fraction is even further increased. Thirdly, the effect of two and three-
dimensional perturbations have not been studied in the same detail yet.

Although the FGM method has proven to be very accurate, its mathematical
background is less strong than the ILDM method. Hence, it is for instance more
difficult to automate the construction of multi-dimensional manifolds. Secondly,
as stated earlier, one of the main sources of inaccuracy in an ILDM is the neglect
of transport processes during the construction of the manifold. Therefore, a new
reduction method has been proposed and developed in chapter 5, called the PS-
ILDM method. This method can be regarded as the combination of the FGM and the
ILDM method, as it uses the ILDM algorithm to obtain a manifold, which is based on
the FGM equations. In that perspective, an ILDM can be regarded as a PS-ILDM for
a infinite ratio between chemical and transport time scales. The general idea behind
the development of the PS-ILDM method is to create a reduction method that is
mathematically sound and which accounts for the influence of diffusion processes.

A simple analytical example has shown the benefit of the PS-ILDM method. Re-
sults obtained with the PS-ILDM method were more accurate than the results with
the ILDM method. However, as not all time scales are included in the PS-ILDM,
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it is less accurate than the corresponding FGM, which includes all the time scales
involved. If the method is applied to more realistic reaction mechanisms, it ap-
pears that basically only preferential diffusion effects are taken into account. More-
over, it was shown that if it is assumed that all Lewis numbers are equal to one, a
PS-ILDM is equal to an ILDM. In addition, in the tested examples, the method ap-
pears to be less accurate than the FGM method, in which all the involved time scales
are taken into account. Finally, it should be remarked that some of the difficulties,
which emerged from the ILDM method, also appear in the PS-ILDM method. As
PS-ILDM method is strongly based on the ILDM method, it might be more success-
ful to develop a method, which is more related to the FGM method. In addition, the
PS-ILDM method can not yet be used as a theoretical support of the FGM method.

Perhaps, the benefit of the PS-ILDM method can be shown in an example, which
is realistic and in which the fast and slow processes are clearly separated. This can
be achieved, e.g. by regarding systems with large differences in the Lewis numbers
(in a similar fashion as in the example of section 5.4). Note that such an example can
only be regarded as a fundamental support of the FGM method. It does not really
contribute to the PS-ILDM method as a practical reduction method. Furthermore,
as the PS-ILDM method is based on the FGM method, which is based on premixed
flames, the applicability of the PS-ILDM method to non-premixed flames should be
investigated.

To conclude, an important aspect in the further development of reduction meth-
ods to obtain a higher accuracy can be found in the coupling between chemical and
transport processes. The reduction method preferably should be applicable to both
premixed and non-premixed systems. From this point of view, the PS-ILDM method
has been proposed as a method in which the time scale analysis of a chemical reduc-
tion method is coupled to the accuracy of a flamelet-based method. However, from
first results it can be concluded that the PS-ILDM method does not seem to offer an
attractive alternative for the ILDM and the FGM method, in order to obtain mani-
folds which include diffusion processes.
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Nomenclature

Roman symbols

A pre-exponential factor *
A phase space system matrix *
Ai chemical species symbol -
a applied strain rate s−

bi external force vector g cm s−

C composition space -
c sound velocity cm s−

ci non-reacting controlling variable *
cp heat capacity at constant pressure J g− K−

cp,i specific heat capacity at constant pressure J g− K−

DT
i thermal diffusion coefficient cm s−

Dij multi-component diffusion coefficient cm s−

Dim mixture-averaged diffusion coefficient cm s−

D diffusion coefficient matrix cm s−

Dij binary diffusion coefficient cm s−

d direction vector *
di diffusion force vector cm−

Ea activation energy J
e unit vector -
F source term vector in the state space *
G level set scalar -
h total enthalpy J g−

hi specific enthalpy J g−

h∗
i corrected specific enthalpy J g−

h
i enthalpy of formation J g−

hη, hξ scale factors cm
I unit tensor -
I unit matrix -
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J Jacobi matrix s−

K stretch rate s−

K grid cell -
k reaction rate coefficient *
Lei Lewis number -
M̄ average molar mass g mol−

Ma Mach number -
M mass g
Mi molar mass g mol−

m mass burning rate g cm− s−

Nc number of controlling variables -
Ne number of elements -
Nph number of phase space variables -
Ns number of species -
Nst number of state variables -
Nss number of steady-state variables -
n molar concentration mol cm−

P projection matrix -
p hydrostatic pressure g cm− s−

Qh perturbation term J cm− s−

Qi perturbation term g cm− s−

q heat flux vector J cm− s−

qR radiative heat flux vector J cm− s−

R universal gas constant J mol− K−

RC convection rate s−

RD diffusion rate s−

R reaction space -
r reaction rate mol cm− s−

S state space -
sL laminar burning velocity cm s−

si chemical source term g cm− s−

s spatial coordinate in the moving frame cm
T temperature K
t time s
U i diffusion velocity cm s−

U matrix of right eigenvectors -
u, v velocity components in Cartesian coordinate system cm s−

us velocity in the moving frame cm s−

ui right eigenvector -
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u flow velocity cm s−

uf flame velocity cm s−

V matrix of left eigenvectors -
V volume cm

vi left eigenvector -
Xi mole fraction -
x Cartesian coordinate system cm
x, y Cartesian coordinates cm
Yi mass fraction -
Y progress variable, reacting controlling variable -
Z mixture fraction -
z j element mass fraction -

Greek symbols

α, fitted parameter *
α direction vector *
β reaction constant -
β, fitted parameter *
β direction vector *
∆ diffusion coefficient matrix cm s−

δ flame thickness cm
δij Kronecker delta -
δh heat flux length cm
δm mixing length cm
ε difference vector in the state space *
ε relative error -
ζ local continuation parameter -
η flame adapted coordinate system cm
η shear viscosity g cm− s−

η,ξ flame adapted coordinates cm
ηji mass fraction of element j in species i -
Θ phase space vector *
ϑ difference vector in the phase space *
κ volume viscosity g cm− s−

Λ diagonalised Jacobi matrix s−

λ ′ partial thermal conductivity J cm− s− K−

λi eigenvalue *
µ j element vector -
µji mole fraction of element j in species i -
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ν stoichiometric fraction -
Π stress tensor g cm− s−

ρ mass density g cm−

Σ perturbation term *
σ surface cm

τ viscous stress tensor g cm− s−

τ time scale s
Υ diffusion coefficient matrix cm s−

Φij coefficient in Wilkes approximation -
φ mole number vector mol g−

φi mole number mol g−

ϕ equivalence ratio -
χ scalar dissipation rate s−

χ j element mole number mol g−

Ψ vector in the state space *
ψh enthalpy diffusive flux J cm− s−

ψi species diffusive flux mol cm− s−

Ω phase space source vector *
ω chemical source vector mol cm− s−

ωi chemical source term mol cm− s−

Subscripts

b burnt
c chemical
f fast
l lean
m manifold
r rich
st stoichiometric
u unburnt

Superscripts

+ production
− consumption
 initial
b backward
det detailed
eq equilibrium
e element
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fu pure fuel
f forward
L left
nr non-reacting
ox pure oxidiser
ref reference
R right
r reacting

Abbrevations

CEM Constraint Equilibrium Manifold
CFD Computational Fluid Dynamics
CPU Central Processing Unit
CSP Computational Singular Perturbation
FGM Flamelet-Generated Manifold
FPI Flame Prolongation of ILDM
ILDM Intrinsic Low-Dimensional Manifold
ISAT In-Situ Adaptive Tabulation
LOI Level Of Importance
ODE Ordinary Differential Equation
PS-ILDM Phase Space Intrinsic Low-Dimensional Manifold
RCCE Rate-Controlled Constraint Equilibrium
TLS Transport Linear Systems

* The unit depends on the situation
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AppendixA
Reaction Mechanisms

In this appendix, the reaction mechanisms that are used in chapter 5 to test the PS-
ILDM method are listed. The PS-ILDM method is tested with a hydrogen/air mech-
anism and a syngas/air mechanism. In section 2.2, it is explained how the chemical
source term si can be derived from the elementary reactions. The speed of a reac-
tion is determined by the reaction constants A, Ea and β. The elementary reactions
and their constants of the hydrogen/air mechanism and the syngas/air mechanism
are listed in table A.1 and table A.2, respectively. In a number of reactions, a third
molecule is involved. This component M does not react itselve, it is needed to let
the reaction proceed. The concentration of species M is given by

[M] =

Ns∑

i=

ξi[Ai], (A.1)

with ξi the so-called collision efficiencies.
The hydrogen/air mechanism contains  species, i.e. H, O, H, O, OH, HO, and

N. The reactions and the corresponding constants A, β and Ea are listed in table A.1
[27]. For the hydrogen/air mechanism, the collision efficiencies are given by: ξO =

., ξHO = ., ξN = ., and ξi =  for the other species. The Lewis numbers
are obtained from a premixed adiabatic flame computation with a hydrogen/air
mixture, which has an equivalence ratio ofϕ = .. In this computation, a mixture

Table A.1 : The hydrogen/air mechanism. All units are cm, s, K according to the conven-
tions used in standard literature on combustion chemistry.

Reactions: A β Ea/R
H + O � OH + O . ×  . 

O + H � OH + H . ×  . 

H + OH � HO + H . ×  . 

OH + OH � O + HO . ×  . 

H + H + M � H + M . ×  -. .
O + O + M � O + M . ×  -. .
H + OH + M � HO + M . ×  -. .
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averaged diffusion model is used to model the diffusion velocity (see equation 2.40).
The Lewis numbers are defined as a weighted averaged of the Lewis numbers in the
complete spatial domain and are given in table A.3.
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Table A.2 : The syngas/air mechanism. All units are cm, s, K according to the conventions
used in standard literature on combustion.

Reactions: A β Ea/R
H + O � OH + O . ×  . 

O + H � OH + H . ×  . 

H + OH � HO + H . ×  . 

OH + OH � O + HO . ×  . 

H + O + M � HO + M . ×  -. 

H + HO � OH + OH . ×  . 

H + HO � H + O . ×  . 

OH + HO � HO + O . ×  . 

CO + OH � CO + H . ×  . -

HO + HO � HO + O . ×  . 

HO + M � OH + OH + M . ×  . 

HO + OH � HO + HO . ×  . 

H + OH + M � HO + M . ×  -. .
H + H + M � H + M . ×  -. .

The CO-H/air mechanism is part of a skeletal CH/air mechanism [86]. The re-
action constants are listed in table A.2 and the Lewis numbers are listed in table A.3.
The collision efficiencies for this mechanism are given by ξO = ., ξHO = .,
ξN = ., ξCO = ., CO = ., and ξi =  for the other components.
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Table A.3 : The Lewis numbers and the molar masses for the hydrogen/air and the syn-
gas/air mechanism.

Species: Mi [g mol−] Lei [-]
H/air CO-H/air

CO . - .

CO . - .

H . . .

O . . .

H . . .

O . . .

OH . . .

OH . - .

HO . . .

HO . - .

N . - -



AppendixB
Additional information on
manifold applications

In chapter 4, a two-dimensional FGM was applied to a counterflow flame, which
was partially premixed. This appendix discusses the data retrieval from a FGM.
Firstly, the interpolation on a one-dimensional manifold is discussed. Secondly, the
retrieval of data from a two-dimensional manifold is treated. Finally, the extrapola-
tion outside the flammability limits is illustrated.

B.1 One-dimensional manifold

Consider a one-dimensional manifold, which is parameterised with the controlling
variable Y . Furthermore, it is assumed that during the application of the manifold,
the value of the controlling is given by Y ∗. The entry Y∗ is enclosed by the manifold
points Y k and Y k+. The dependent variables y∗ = y(Y∗) are obtained by a simple
linear interpolation between the enclosing manifold points, i.e.

y∗ = αyk + ( −α) yk+, (B.1)

whereα is given by

α =
Y∗ − Y k+

Y k − Y k+
. (B.2)

B.2 Two-dimensional manifold

A two-dimensional FGM consists of a series of flamelets. Here, the look-up proce-
dure is discussed for a two-dimensional manifold parameterised with Y and Z. An
example of such a manifold is shown in figure 4.3. The data retrieval can be divided
in a number of steps:

1. Determine where the manifold entry (Y ∗, Z∗) is located. The two enclosing
flamelets i and i +  are obtained, such that Zi ≤ Z∗ < Zi+. Furthermore, the
factor β is given by

β =
Z∗ − Zi+

Zi − Zi+
. (B.3)
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2. The controlling variable is often scaled between  and . Note that the mini-
mum and maximum values of Y in each flamelet can be different. In this case,
it is more convenient to use the unscaled values of Y during the CFD applica-
tion. However, during the retrieval of the dependent variables, this may cause
problems, especially at the edges of the manifold. The extrema of the enclos-
ing flamelets i and i +  are given by Y i

min, Y i
max, Y i+

min, and Y i+
max, respectively. A

correction must be applied if, for instance, the value of Y ∗ is larger than Y i
max,

but smaller than Y i+
max. Applying a correction only if Y ∗ is close to the edges

of the manifold may lead to discontinuities in the profiles of dependent vari-
ables y. Therefore, it is more convenient to map the flamelets to a unit square
(Ŷ , Ẑ) = [, ]× [, ] using the extreme values of Y in the enclosed flamelets
(cf. figure B.1). The extreme values for Y ∗ are determined according to

Y∗
min = βY i

min + ( −β)Y i+
min (B.4)

Y∗
max = βY i

max + ( −β)Y i+
max. (B.5)

Hence, the scaled value of Y ∗ is given by

Ŷ∗ =
Y∗ − Y∗

min

Y∗
max −Y∗

min
. (B.6)

Note that Ŷ∗ = Ŷ i = Ŷ i+ (see figure B.1). The scaled value of the mixture frac-
tion is given by Ẑ = Z, because the mixture fraction is already scaled between
 and . Subsequently, the (unscaled) values of Y i and Y i+ on the enclosing
flamelets can be determined, according to

Y i =
(
Y i

max − Y i
min

)
Ŷ∗ + Y i

min (B.7)

Y i+ =
(
Y i+

max − Y i+
min

)
Ŷ∗ + Y i+

min. (B.8)

3. Retrieve the dependent variables y∗ by means of a bi-linear interpolation. Be-
cause the grid points are not necessarily equally distributed on the enclos-
ing flamelets, the values of the dependent variables are determined on the
flamelets separately. Hence, the parameter α in equation (B.1) is determined
for both the enclosing flamelets separately, i.e.

αi =
Y i −Y k+,i

Y k,i − Y k+,i and αi+ =
Y i+ − Y k+,i+

Y k,i+ −Y k+,i+
(B.9)

respectively. Note that the index i denotes the involved flamelet, whereas the
index k corresponds to the enclosing grid points. Subsequently, the values
of the dependent variables y can be determined for the enclosing flamelets
according to,

yi = αiyk,i +
(
 −αi) yk+,i, (B.10)

yi+ = αi+yk,i+ +
(
 −αi+

)
yk+,i+. (B.11)
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i

i + i + 

i

Ŷ i+

Ŷ i

Y ∗
min

Zi+

Y ∗
max

Y i+
max

(Y ∗, Z∗)
(Ŷ ∗, Ẑ∗)

Y i+
min Ẑi+

Zi Ẑi

Y i
maxY i

min

(a)


(b)

Figure B.1 : Mapping the original enclosing flamelets i and i +  (left figure) to a square
(right figure) to determine the values of Y i and Y i+ (cf. equations (B.7) and
(B.8)).

Finally, the dependent variables corresponding to the manifold entry (Y ∗, Z∗)

can be determined:
y∗ = βyi + ( −β) yi+. (B.12)

B.3 Data retrieval outside the flammability limits

The Z-range, for which premixed flamelets can be computed, is restricted to the
flammability limits. If during the application, the value of the entry Z∗ reaches
values outside the flammability limits, an extrapolation of the dependent variables
y must be applied. As the values Ymin and Ymax are equal for both Z =  and Z = ,
special attention must be paid to the scaling of Y . This problem can be solved by
simply assuming that the mixtures in Z =  (pure oxidiser) and Z =  (pure fuel)
can be represented by flamelets, which consist of two grid points k =  and k = ,
with Ŷ =  and Ŷ =  and y = y.

Outside the flammability limits (Z . . and Z & .), the chemical source
terms si are almost zero [68], so the conservation equation for the species (3.64) re-
duces to

d
ds

(mYi) −
d
ds

(
λ

cpLei

dYi

ds

)
= , i ∈ [, Ns − ]. (B.13)

Note that the identity of this equation is similar to the conservation equation that
can be derived for the mixture fraction, i.e.

d
ds

(mZ) −
d
ds

(
λ

cp

dZ
ds

)
= . (B.14)

Therefore, the solution of Yi(s) is proportional to the solution of Z(s), i.e. Yi(s) ∼

ZLei(s). Since it is assumed that all Lewis numbers are equal to one, the solution
of the enthalpy equation (3.65) is also proportional to the solution of Z(s). Hence,
the species mass fractions and the enthalpy can be interpolated linearly between the
premixed flamelets and the artificial flamelets representing a mixture with pure fuel
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or pure oxidiser. The temperature T can be obtained from the caloric equation of
state, i.e. equation (2.6). Once the temperature is known, the density is computed
with the thermal equation of state (2.11).

A less accurate, but more efficient extrapolation can be obtained by simply lin-
early extrapolating the density and the temperature as well. In that case, not all the
species concentrations are needed during the application of an FGM.



AppendixC
PS-ILDM theory

In chapter 5, the PS-ILDM theory was presented. In this appendix some additional
information about the PS-ILDM method is given. Firstly, the structure of the system
matrix A is treated in more detail. Secondly, the sorting of the eigenvalues during
the construction of a PS-ILDM is discussed.

C.1 The system matrix A

In equation (5.18), the starting point of the PS-ILDM theory was written as

dϑ
ds

= Aϑ. (C.1)

in which the system matrix A is given by

A =

(
O L

−mJ∗ mL

)
. (C.2)

Furthermore, the matrix L can be written as

L =




L  

∅

. . . ...
...

∅

LNs−,Ns−  

LNs , · · · LNs ,Ns−  

LNs+, · · · LNs+,Ns−  LNs+,Ns+




, (C.3)
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with

L, = Le

cp

λ ′ , (C.4)

LNs−,Ns− = LeNs−

cp

λ ′ , (C.5)

LNs , = −
M

MNs

Le

cp

λ ′ , (C.6)

LNs ,Ns− = −
MNs−

MNs

LeNs−

cp

λ ′ , (C.7)

LNs+, = Mh

cp

λ ′ (Le − ), (C.8)

LNs+,Ns− = MNs−hNs−

cp

λ ′ (LeNs − ), (C.9)

and

LNs+,Ns+ =
cp

λ ′ . (C.10)

C.2 The separation of PS-ILDM eigenvalues

To be able to define a PS-ILDM point, equations (5.30), (5.31), and (5.32) must be
solved. The processes, which are assumed in steady-state are based on an eigen-
value analysis. The selection of eigenvalues differs from the ILDM method, because
a number of positive eigenvalues corresponding to element and enthalpy conserva-
tion appear in the eigenvalue spectrum (cf. figure 5.7). In contrast to other positive
eigenvalues, the processes corresponding to these eigenvalues are always assumed
in steady-state.

The relation between the positive and negative eigenvalues is given by λA
b,i =

/δi − λA
a,i, for i ∈ [, Nph/] (cf. section 5.2.3). For the case that Lei 6= , the ex-

pressions for δi can not be obtained analytically. Hence, it is not straightforward to
distinguish between positive eigenvalues originating from the conserved quantities
or positive eigenvalues that correspond to the reaction progress. However, if it is
assumed that all Lewis numbers are equal to one, it can be shown that δi = λ ′/mcp.
Therefore, the procedure to select the eigenvalues is as follows:

1. The manifold computation is started in the chemical equilibrium point. This
point is obtained without an eigenvalue analysis, as it is based purely on ther-
modynamics.

2. Once the chemical equilibrium point is found, the eigenvalues in this point
are evaluated for the case that Lei = , for i ∈ [, Ns − ] and |m| � . The
absolute value of the parameter m is chosen small, so the eigenvalues associ-
ated with the reaction progress become symmetrical with respect to zero (cf.
section 5.3). In that case, pairs of positive and negative eigenvalues can easily
be distinguished.
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3. Subsequently, the mass burning rate is enlarged in small steps towards the
desired value mref. Here, the observation is used that the left eigenvectors cor-
responding to the reaction progress only change slightly during a small change
of m, i.e. |vA

a,i
k · vA

a,i
k+

| ∼=  and |vA
b,i

k · vA
b,i

k+
| ∼= , with i ∈ [Ne + , Nph/] and

k an index indicating a step in m. Hence, the left eigenvectors corresponding
to the reaction progress are used to distinguish between positive eigenvalues
associated with conserved variables and other positive eigenvalues.

4. In a next step, the Lewis numbers are changed in small steps towards the de-
sired values Leref

i , with i ∈ [, Ns − ].

5. Finally, the manifold construction is continued with the computation of the
other manifold points. During the computation of a manifold point, the eigen-
values are separated using the left eigenvectors corresponding to the reaction
progress.
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Abstract

Detailed numerical simulations of burner systems are still very time consuming due
to the complexity of detailed combustion models. Several chemical reduction tech-
niques, which lower the computational costs without losing too much accuracy have
been introduced in the past few decades. Generally, these reduction methods are
based on the assumption that inside a flame, chemical time scales are much smaller
than transport time scales. However, an analysis of time scales in a flame shows that
transport and chemical time scales appear to be of the same order in a large part of
the reaction layer, especially in a premixed flame structure. Therefore, reduction
methods that are purely based on chemistry may lead to inaccuracies. In this thesis,
existing reduction methods are tested and developed further, with a main focus on
the coupling between chemical and transport processes.

Several reduction techniques are highlighted briefly. Two reduction techniques
are treated in more detail, i.e. the Intrinsic Low-Dimensional Manifold (ILDM) method
and the Flamelet-Generated Manifold (FGM) method. Both methods are so-called
manifold methods, where a low-dimensional manifold which contains information
of the chemical composition of the mixture is created in a pre-processing step. Dur-
ing a flame simulation, conservation equations are solved for the controlling vari-
ables, which parameterise the manifold, in stead of solving the full set of equations.
The ILDM method, which has a strong mathematical support, may lead to inaccu-
rate results, because transport processes are disregarded during the construction of
the manifold. On the other hand, the FGM method, which is based on the solution
of one-dimensional premixed flames, has proven to be accurate and efficient, be-
cause both chemical and transport processes are taken into account. However, the
mathematical background is less strong than for the ILDM method.

Many practical combustion applications are partially-premixed. Deviations from
one-dimensional premixed behaviour due to inhomogeneous mixing of fuel and
air may cause inaccuracies during the application of the FGM in simulations of
partially-premixed systems. Therefore, the FGM method is tested in a one-dimensional
counterflow configuration, to be able to find a direct relation between the accuracy
of the FGM method and the gradient in the mixture fraction (which is a measure for
the ratio between fuel and oxidiser). A two-dimensional FGM is constructed from
a series of premixed flame solutions, which have different equivalence ratios at the
inlet. Good agreement has been obtained between detailed results and FGM results
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for the profiles of major species and temperature, even if time scales correspond-
ing to the mixing of fuel and air are of the same order as time scales in the FGM
database. The largest problems were obtained in the reproduction of rich premixed
flame fronts.

Finally, a new reduction method has been introduced and derived in this thesis,
which is referred to as the Phase Space Intrinsic Low-Dimensional Manifold (PS-ILDM)
method. To obtain a reduction method, which is mathematically sound and includes
diffusion processes, the ILDM concept is applied to the equations that are used to
construct an FGM. The PS-ILDM method is applied to a simple analytical exam-
ple. The results show that the PS-ILDM method is more accurate than the ILDM
method, because diffusion processes are included in the manifold. However, first
applications to more realistic reaction mechanisms indicate that basically only pref-
erential diffusion effects are included in the manifold. Furthermore, a PS-ILDM is
less accurate than the FGM method, which includes all the chemical time scales in-
volved.

To conclude, even though not all features of partially-premixed systems have
been analysed, the FGM method appears to be a successful tool to model partially-
premixed flames accurately and efficiently. Furthermore, first steps have been made
in the development of a chemical reduction method, which is mathematically sound
and which includes information of diffusion processes. However, further research
is required to investigate the possibility of using the PS-ILDM method as a prac-
tical reduction method, which is more accurate and efficient than other reduction
methods.



Samenvatting

Het gebruik van complexe en gedetailleerde modellen in numerieke simulaties van
verbrandingssystemen vergt lange rekentijden. De afgelopen decennia zijn een aan-
tal zogenaamde chemische reductiemethoden geı̈ntroduceerd met als doel de reken-
tijden te verkorten, zonder daarbij veel aan nauwkeurigheid in te hoeven boeten.
Over het algemeen zijn deze reductiemethoden gebaseerd op de veronderstelling
dat in een vlam de chemietijdschalen veel kleiner zijn dan transporttijdschalen.
Een analyse van deze vlamtijdschalen laat echter zien dat in een groot deel van de
reactielaag de chemie- en transporttijdschalen van dezelfde orde van grootte zijn.
Het gebruik van reductiemethoden die puur gebaseerd zijn op een analyse van de
chemie kan daarom leiden tot onnauwkeurigheden tijdens een vlamberekening. Dit
proefschrift richt zich op de verdere ontwikkeling van bestaande reductiemetho-
den, waarbij met name aandacht wordt besteed aan de koppeling tussen chemie- en
transportprocessen.

Het algemene principe van een aantal reductiemethoden wordt kort beschreven.
De zogenaamde Intrinsic Low-Dimensional Manifold (ILDM) methode en de Flamelet-
Generated Manifold (FGM) methode worden uitvoeriger behandeld. In beide metho-
den wordt een database gecreëerd, waarin informatie over chemische samenstelling
van het mengsel is opgeslagen. Vervolgens kan deze database worden gebruikt in
een vlamsimulatie. Tijdens de simulatie hoeven in plaats van het volledige stelsel
vergelijkingen alleen vergelijkingen te worden opgelost voor de zogenaamde con-
trolevariabelen, die het manifold parameteriseren. De ILDM methode heeft een
sterk mathematische achtergrond, maar kan leiden tot onnauwkeurigheden omdat
tranportprocessen niet worden meegenomen tijdens het creëren van de database.
Aan de andere kant is de FGM methode, die gebaseerd is op de oplossing van
één-dimensionale voorgemengde vlammen, nauwkeurig, omdat zowel chemie- als
transportprocessen worden meegenomen. De mathematische onderbouwing is daar-
entegen minder sterk als die van de ILDM methode.

In de praktijk zijn veel verbrandingssystem niet puur voorgemengd, maar deels
voorgemengd. Het gebruik van de FGM methode voor het simuleren van deels
voorgemengde systemen kan leiden tot onnauwkeurigheden door het niet homo-
geen gemengd zijn van van de brandstof en de oxidator. Om een relatie te vinden
tussen de nauwkeurigheid van de FGM methode en de gradiënt in de mengfrac-
tie (wat een maat is voor de verhouding tussen brandstof en oxidator), wordt de
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methode getest in een zgn. deels voorgemengde counterflow opstelling. Hiervoor is
een twee-dimensionaal manifold gecreëerd van een reeks één-dimensionale voorge-
mengde vlammen, variërend van arm tot rijk. De resultaten met de FGM methode
komen goed overeen met de gedetailleerde berekeningen wat betreft de profielen
van de voornaamste stofjes en de temperatuur, zelfs wanneer de tijdschalen van het
FGM van dezelfde orde van grootte zijn als de tijdschalen die horen bij de menging
van brandstof en oxidator. Het nauwkeurig simuleren van de rijk voorgemengde
vlamstructuur blijkt voor de meeste problemen te zorgen.

Daarnaast wordt in dit proefschrift een nieuwe reductiemethode geı̈ntroduceerd
en afgeleid: de Phase-Space Intrinsic Low-Dimensional Manifold (PS-ILDM) methode.
In deze methode wordt het ILDM algoritme gecombineerd met de vergelijkingen
van de FGM methode, om een reductiemethode te ontwikkelen die een mathe-
matisch sterke basis heeft en bovendien nauwkeurig is omdat transportprocessen
worden meegenomen in het manifold. Een simpel analytisch voorbeeld laat zien
dat de PS-ILDM methode nauwkeuriger is dan de ILDM methode. Echter, eerste
toepassingen van de methode op meer realistische reactiemechanismen wijzen erop
dat hoofdzakelijk preferentiële diffusieprocessen worden meegenomen. Tevens is
de PS-ILDM methode minder nauwkeurig dan de FGM methode, omdat daarin alle
chemietijdschalen worden meegenomen.

Tot slot kan worden geconcludeerd dat de FGM methode een geschikt gereed-
schap is om deels voorgemengde systemen nauwkeurig en efficiënt te modelleren.
Verder zijn de eerste stappen gezet in de ontwikkeling van een reductiemethode,
waarin transportprocessen worden meegenomen en die tevens een sterke mathe-
matische basis heeft. Verder onderzoek is echter nog wel noodzakelijk, om aan te
tonen dat de PS-ILDM methode bruikbaar is als een praktische reductiemethode,
die efficiënter en nauwkeuriger is dan reeds bestaande reductiemethoden.
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